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Abstract

Among the proposed techniques for delivering drugs to specific locations within the
human body, magnetic drug targeting surpasses due to its non invasive character
and its high targeting efficiency. Although the method has been proposed almost
thirty vears ago, the technical problems obstruct possible applications. It is the aim
of the present work to classify them and propose satisfactory answers. A general
phenomenological theory is developed and a model case is studied, which incorpo-
rates all the physical parameters of the problem.
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1 Introduction

Magnetism is one of the major contributors in biological and biomedical re-
search [1]. Among the many applications of magnetic carriers we mention some
recent ones, such as the use of magnetic microbeads in DNA array biosensors
[2], magnetic elastomers in otiatria as a biomimetic prosthetic tympanic mem-

brane [3] and ferrofluid internal tamponade in retinal detachment surgery [4].
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Magnetite nanoparticles have been detected recently in the human hippocam-
pus [5] and can shed some light to the process of iron biomineralization. Also
the biological and neurophysiological effects of magnetic fields is the subject

of a big controversy [6].

The concept of magnetic drug targeting is not new [7]. Efficient drug targeting
is vital for the medical treatment of various diseases and among them of cardio-
vascular episodes, like stenosis and thrombosis. Ferrofluids, magnetoliposomes
and magnetic micro and nanospheres are promising candidates, for delivering
drugs to specific locations within the body, with high accuracy, minimum or
no surgical intervention and maximum concentration. Their building blocks,
the ferromagnetic particles, with the permanent magnetic polarization and
the magnetophoretic mobility that they develop in an applied magnetic field,
are responsible for their improved properties. The ternary phase structure of
blood (white-red blood cells and plasma), as well as the plethora of particles
that are present in the blood flow, makes hemodynamics an exceedingly com-
plex research field. Visualization of complex flow patterns in the heart has
been accomplished recently, through combined MRI and computational imag-
ing techniques [8]. Moreover, the response of blood in magnetic fields in not
yet completely known, though there are some indications for the diamagnetic,

paramagnetic, or ferromagnetic character of its various constituents [9-11].

The thrombolytic properties of high magnetic fields is also an open field of
investigation [1‘2—1 4]. In arteriosclerosis episodes, like stenosis and thrombosis,
what is important is to keep the thrombolytic drug, usually aspirin, in con-
tact with the source of the problem, the endothelial cells, which are located
along the inner wall of the blood vessel. Some in-vitro and in-vivo experiments

have been performed in this direction [15-17]. Nevertheless, firm theoretical



foundation of magnetic drug targeting is still lacking.

Provided that the biocompatibility of magnetic particles will be accomplished,
investigation of the conditions, for holding a ferrofluid drop on a blood ves-
sel wall, is required. For that purpose, a self consistent phenomenological,
ferrohydrodynamic model is proposed, to account for adhesion. The physical
complexity, though it is not avoided, is kept to the minimum. Technical prob-
lems, concerning the design and the focusing of the strength of the externally
applied nonuniform magnetic field, along the blood vessel wall, are stressed.
We obtain an upper bound of the mean blood flow velocity as a function of
the applied magnetic field, which permits quantitative estimation of the ad-
herence condition. Comparison between the theoretically calculated and the
experimentally observed blood velocity, for the carotid artery [18], confirm
the presence of the upper bound, for given magnetic field strength, blood and

magnetic drug viscosity and geometrical parameters of the model.

2 Ferrohydrodynamic Formulation

2.1 General Theory

In order to define conditions for adhesion of a magnetic fluid (ferrofluid) drug
on a blood vessel wall, we encounter a highly complex situation, where we have
to incorporate magnetostatic field effects on two phase (ferrofluid - blood) flow.
Scrutiny requires taking also into account the effects of static magnetic fields
on blood flow. The knowledge of the biological effects of static or dynamic
electromagnetic fields is still in its infancy. The response of blood on static
magnetic fields depends on a variety of factors like: oxygen content, pH, tem-

perature gradients, etc. Thus, for example, plasma and leucocytes (like in most



biological tissues) are under normal conditions diamagnetic, while oxy- and
deoxygenated erythrocytes are dia- and paramagnetic, respectively [9]. One
might expect that since hemoglobin, the basic molecule that constitutes ery-
throcytes, contains an iron atom as a core, should be ferromagnetic, but it is
its overall structure that results in the observed dia- or paramagnetic char-
acter. Thus conditions that will determine the strength of the external static
magnetic field and the magnetic density of the ferrofluidie drug, for adherence,

must be optimized in order to avoid possible side effects on the blood flow.

Although the exact rules that govern the physiology of blood circulation are
still unknown, due to the diversity of the blood constituents and the com-
plexity of the vascular system [19], we will assume that classical continuum
hydrodynamical conservation laws are applicable. Thus according to the gen-
eral theory of hydrodynamics, the blood and the magnetic drug flow are de-
scribed by the conservation of momentum, or Navier-Stokes equations of fluid
motion, in the absence of temperature gradients, augmented for the case of

the magnetic drug with a magnetic body force term 77, [20]:
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and by the conservation of mass:

dp
at

+V-(pu) =0, (5)
Here, 7;; is the stress tensor, T;__':-f is the Maxwell stress tensor, f; is the body
force term, p is the density of the fluid, u; is the velocity, p is the pressure, n is
the viscosity, B; is the magnetic induction, H; is the magnetic field, M; is the
magnetization, v = 1/p is the specific volume, y, is the magnetic permeability
of vacuum and d;; is the Kronecker delta. H; = H{ + H? is the total magnetic
field due to external HY, and internal H] origin. H] is usually known as the
demagnetizing field produced by volume V - M or surface nn - M magnetic
charges, where n is the unit outward vector. The Einstein’ s summation con-
vention is adopted with ( ) ; = 8/8x;, and bold characters denote vector fields.
In general it must be added to the Maxwell stress tensor (3) a term due to the
non-collinearity of the magnetic field with the magnetization, proportional to
M x H. In the following we assume a magnetization collinear with the applied
magnetic field (M; = x H;, x is the magnetic susceptibility), thus such a term
can be neglected. To the equations of fluid motion (1) the magnetostatic field

equations must be added:
Y B=10, (6)
VxH=0. (7)
From hereafter the subscripts (); and ( )2 will denote quantities of the mag-
netic drug and blood regions, respectively. The formulation of the initial

boundary value problem (IBVP) (1,5-7) is completed with the appropriate

initial and boundary conditions. The initial conditions for a pulsating fluid



How are

"ui{t = {yg, 'I"} = ‘-’f{'l"]', =12 {8}

We have two boundary surfaces S, k = 1,2, where & = 1 corresponds to
magnetic drug - blood interface, and k = 2 to the blood vessel wall. When
the magnetic drug is in contact with the blood vessel wall (also known as
endothelium) we have to consider also another interface S; (Fig. 1(b)). On
the interface S; the boundary conditions for the hydrodynamic problem (1)

are

n-u; =n-u; =0, (9)
n x [u] =0, (10)
T )
7 + Tl | fut; =0, (12)

where  is the surface tension, ¢ is tangential unit vector, and for the magnetic

potential problem (5-6) are
n-[B] =0, (13)

7 x [H] = 0. (14)

The abbreviation [A] = A;—A, is used in the boundary conditions (9-14). The
BCs (9-12) correspond to the vanishing of the normal velocity components, to
the continuity of the tangential velocity components, to the jump of the normal
surface tractions and to the continuity of the tangential surface tractions,

respectively, while the BCs (13-14) are the usual ones, for the magnetostatic



potential problem (6-7). The no slip conditions for the velocity field on the

interfaces S, k = 2, 3 read:

w=0, i=12 (15)

In a general pulsating flow the interfaces Si, k = 2,3 are not rigid but deform
in an elastic or viscoelastic manner. Finally, the finiteness of the flow at the

origin and at infinity requires:
u;(t, r — 0) = uy, (16)

HQ[fTT‘ —* ':)C'} = Ua. {1?]

Similar conditions are necessary for the magnetic field H as well. The above
developed IBVP has to be solved for the velocity field u(t, r), for given mag-
netic fleld configuration H(r). In the general case, the apparent difficulties

are enormous, and so some special problems will be discussed below.

3 The Model

In order to appreciate on the difficulties that we encounter in the solution, we
just mention that even in oversimplified cases where the hydrodynamic prob-
lem (1) is neglected and one faces the solution of the magnetostatic potential
problem (6-7) and the free boundary condition (11}, results are obtained only
with properly designed finite element codes using supercomputers [21,22]. For
that purpose a qualitative analysis will be presented, with emphasis on the
responsible physical mechanisms for adherence, like the strength of the mag-
netic field and the magnetization of the ferrofluidic drug that overcomes the

blood velocity. Well known analytical results will be combined to account for



the hydrodynamic drag exerted by the blood flow on the ferrofluidic drop and
for the magnetophoretic driving force and its limitations. A more elaborated
investigation, with the development of a numerical model, that will satisfy the

full IBVP, described above, will be the subject of future investigations.

We assume that the magnetic drug constitutes a hemisphere like structure of
radius R attached to the blood vessel wall, with the coordinate origin located
on the center of the primitive circle on the equatorial plane of the hemi-
spherical drop (Fig. 1(a-b)). Diffusion phenomena are neglected (p; = pa).
The blood vessel is considered to be an infinite, rectilinear, rigid, non-porous
cylindrical tube, with smooth internal surface, of radius Ry. We will address
the case Ry = R, in order for the equatorial plane of the hemispherical drop
to coincide with the blood vessel wall. The ferrofluidic drug will originally be
supplied through a catheter in the blood stream, thus it is more likely to have
a prolate hemispheroidal like shape, but for computational convenience we
investigate here a hemispherical like drop. The extension is straight forward
for the prolate case and will be discussed in a future work. Moreover, adhesion
effects, due to Van der Walls forces, possible lift effects on the drug - vessel
wall interface and buoyancy forces will be neglected because of the strength
of the magnetophoretic force. In order to simplify further the magnetic po-
tential problem, we consider a diluted, incompressible ferrofluidic drug, with
no temperature gradients. The first two of the above simplifications are jus-
tified, since we usually need water based drugs to avoid side effects. As far
as the absence of temperature gradient effects is concerned, this is acceptable
for local flow considerations. Then the third term of the Maxwell stress tensor
of Eq. (3) will be omitted, the magnetization depends only on the external
field (H =~ H"), and the magnetic body force terms in the equation of fluid

motion (1) vanishes. We will limit our discussion on the low Reynolds number



regime, where inertial effects are neglected. This is a legitimate approxima-
tion for capillaries and thin vessels, or for possible slow viscous flows in larger
vessels. Then the equations of motion (1) and the equation of continuity (5),

reduce to the Stokes flow for the velocity field w:

nV?u = Vp, (18)

V-u=0, (19)

and the magnetostatic potential problem (6-7) is neglected. Similarly, due to

the above assumptions the boundary conditions (11-12) are rewritten as:

[Pon = P] + P + Pn = pe; (20)
[p.] =0, (21)
where
Pon =207~ g—:, (22)
pﬂ:=n(i-%‘+ﬁ~%) (23)

are the normal and tangential viscous pressures on the interface S;. respec-
tively, with 8/0h = 2 -V, 3/8f = t -V, and p,n, p. and p. have the usual

notations as in [20]:

H H
pm=n.:.fﬂﬂ1.rdH=pﬁ]deH, (24)
0 ]
_ BoME  pox? HE
po=tm = EX (25)
Pe=7V -7 (26)



with H,=n-Hand H,=t-H.In general, the constitutive law M = xH
might be nonlinear (x = x(H)), but in the following we will limit ourselves to
a linear constitutive law (x = const.). Notice the absence of magnetic pressure
terms in Eq. (18). By considering for the moment axisymmetric solutions of

the form

u=Vx (@{T" ) éé) f (27)

rsind

which fulfill condition Eq. (19), and by taking the curl of Eq. (18) this reduces

to the following PDE for the stream function ¥

# sin6f 1 a\]°
[5 i ?(ME)] =t )

Following separation of variables of the form ¥ = r" sin® @, and considering

only the k = 2 mode, the permissible n’ s are n = —1, 2, 3, 4 thus:

sin’ @

W= (%+C‘g-r+03r2+04r4) (29)

The constants in Eq. (29) are determined from the BCs (9-10, 12, 16-17) with

U = —Ug = —Up€,, (Ug > 0), (30)

and e, = cos#é, — sinfég. Then the flows in regions (1) and (2) become:

B = Astiy [(1 - (%)2) cosf &, — (1 2 (%)2) sinﬂég] . (31)

e [ (8) -2 (8] -
_ [,11 (?) + A2 (?)3 - 1] Sinﬂég}._ (32)
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with

_ 2mp+3m M T2

= : = , A= —— 33
amm) 7 Amtm) 7 2m+m) =)
Substitution of (31-32) into (18) and integration deduces the pressures
cosf
Pr=0MAsUoT —7 (34)
cosf
P = '2?}'2)&1 HQR—TE'—. {35}

The solution (31-32) does not satisfy the no slip conditions (15). An efficient
way to overcome this problem is to search for surfaces where two different
flows coincide, and each one of the flows satisfy the appropriate boundary
conditions in the region separated by the surface. This is permissible due to
the linearity of the problem. Thus, for example, one such surface for the two

flows u,, and wgo,n is the following:

(uup - um.ﬂ}?' =0. {Bﬁj
In order to determine flows that satisfy the no slip conditions (15), we searched
for asymmetric flows of the form (27) with ¥ = ¥(r,f, ¢) and no singularities

inside the hemispherical drop, by the method of separation of variables. The

only acceptable non-singular solution was the usual shear flow

U, = Uy TE;. (37)

Far away from the drop it is legitimate to assume that the flow is of the

Poiseuille type
U, = u,(r, 0, @) (cosf &, — sinféy), (38)

11



with

T

uy(r,0,0) = —up l(%)zsingﬂ -2 (Ej sin # cos r;a'::] ; (39)

Looking for a surface of the form (36) inside the magnetic drop, with u,, =
u'Y and wgp, = u, we deduce that such a surface has a maximum at
Im/R = (—a+£vVaZ+8)/4,y = 2 =0, a = u,/(A\ug), and intersects the
equatorial plane = = 0, along a closed elliptic like curve with z = =R and
y = £R/v2 = £0.7R, which is not far from the primitive circle r = R. Notice
that 0 < z,./R < 1for a > 0 and a — 0. Thus for the qualitative estimations
presented here, the shear flow presented above is a sufficient approximation for
the flow inside the drop and close to the blood vessel wall (equivalent results
are obtained if we use instead of a shear a Poiseuille type flow). Following
a similar procedure for the determination of surfaces that separate modified
Poiseuille or shear flows outside the drop, we obtained acceptable results only
for the space in front of the drop with respect to the direction of the blood
velocity, but not behind. Nevertheless, despite the inconsistencies on the sat-
isfaction of the no slip conditions (15) inside and outside the ferrofluidic drug
drop, we will assume that the flow (31-32) is appropriate for our qualitative
computations. In a more accurate calculation, it is expected that due to the
no slip condition, the drag that experiences the magnetic drop will be a bit

smaller from the one obtained from Eqgs. (31-32).

4 The Adhesion Condition

Even if we will derive a flow that satisfies the BCs (15) we have also to fulfill
the BC (20) on the free boundary 5;, that determines the type of deformation

of the magnetic drop in the presence of the blood flow. Our primary concern

12



here is to estimate under what conditions the magnetic drop adheres to the
blood vessel wall. In order to keep the mathematics simple without loosing the
physical understanding, we might assume that the shape of the drop remains
unaltered (hemispherical). Then we have to replace the capillary pressure (26)

by the equivalent for the sphere

With the substitution of Eq. (40) into (20) the later defines the stability
boundary against decomposition into smaller drops, and thus it may be con-
sidered as a suitable adhesion condition. But even then we have to introduce
an adapted inhomogeneous magnetic field, that will counteract to the blood
flow, in order for the condition (20) to result in an expression for the mean
blood velocity as a function of the maximum external field. For our problem
geometry a legitimate form of the external magnetic field, would be in a first
approximation that produced by a point source located outside the body at

z=-6,y=0,2=(, (8,( > 0), (see Fig. 2(b)), of the form

- m(r + dé, — (é.) (1)
B (r2 + 62 + 26z — 2¢2)*?

on the reference frame attached to the magnetic drop, with m the magnetic
dipole moment. This is a typical Coulomb field. A dipole source would also be
a sufficient approximation, but we adopt the form (41) since it approximates
well conical magnetic spikes designs, of a biomedical apparatus. It has to be
emphasized here that the non-uniformity of the applied magnetic field, which
is vital for the magnetophoretic mobility of the ferrofluid drug, is higher only
close to the magnetic pole. This is a major technical problem that has to be

resolved, in order for the drug targeting to remain essentially non-invasive.
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This limitation in bulk vessels is not present on surface ones. Semi-invasive
techniques, like magnetic needles, provide always an alternative solution. The

fact that the magnetic point source is oriented at an angle

w = arcsin (%) (42)

with respect to the r—axis of our coordinate system (see Fig. 2(b)) will be
apparent from the following discussion. The boundary condition (11) or (20)

can also be rewritten in vectorial form as:

[T] =pepr, T;=(rs+7)n;. (43)

Substitution of (31-32) and (40-41) into (20) results in an expression that con-
tains not similar azimuthal and polar components, which cannot be satisfied.
In order to overcome this obstacle we might replace the local condition (20)
by the more global one after integrating (20) over the surface area S;, which

written in dimensionless form, reads:

El; = 4% fS [ (K + h2)dS, (44)
where
B, = “"IfR (45)
is the magnetic Bond number
- % g % Ho = g, Sp = 27R?, (46)
- : (47)

[1 +sin®w + (ERJ? +2 (?H) sinfcosod — 2sinwsin # [
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+ sinfl cos @ + sinw cos ¥

hy, = (48)

2

lm [==

[1 + sin?w + ( 7 ) +2 (%) sin A cos ¢ — 2sinwsin H‘rﬂ :
and dS = R?sinfdf#do. Due to the flow considered, the mean blood flow
velocity ug does not enter into the adhesion condition (44), either directly
through the viscous pressure (22-23), or indirectly through the hydrodynamic
pressure (34-35). Placing the magnetic point source at z = { > 0 (w # 0) (see
Fig. 2(b)) results in a non-vanishing magnetic traction along the flow direction,
that may balance the drag due to the blood flow. This traction balance can be
expressed as an additional global condition, that results from the projection
of Eq. (43) along the flow direction &, and the integration over the surface of

the magnetic drop S;:

J[ (@1 -pei)ds =0 (49)
5

The above condition can be interpreted as a way to take into account the
deformation of the magnetic drop due to the blood flow (see Fig. 2(a)), that
it is not included in the proposed solution. Provided that we can express this
angle w as a function of the drop deformation, the model becomes also quan-
titative and further detailed calculations of the flow need not be performed.

In dimensionless form Eq. (49) reads:

_ X - 3 2] -
Vo= e jS f 12 = (1 +2x)h2) . dS, (50)
where
_ _Thuo -
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is the dimensionless velocity,

".I"l:"--i 2
= Yy R 32
p=n(23q), %-2 (2

and 7, = cosf. Note that the capillary pressure does not enter the condi-
tion (50) as expected. Thus instead of one adhesion condition (44), we now
have two Eqgs. (44, 50) and the dependence of blood flow velocity on the
applied magnetic field is parameterized as B, = Bn(R/d, x,w) and V,, =
Via(R/8, %, w, 7). The obtained law V;,, = V,,(B,,) constitutes an upper bound
to the correct one, since an additional constraint, Eq. (50), is introduced. Pro-
vided that a method can be devised that computes a lower bound close to the
upper bound, the exact result may not need to be determined at all. Such a
method, which will not be examined here, is to apply again the variational
principle, that resulted to the field equations, after removing a positive term

from the energy functional.

5 Results

The double integrals in Eqs. (44, 50) can in some cases be obtained in closed
analytical form but since they do not have any irregular behavior they can
be computed numerically with high accuracy. The 3 factor in Eq. (50), is
susceptible of corrections, after computing a more accurate flow velocity field.
Results are presented in Figs. 3(a-b) after eliminating w, for varying viscosity
ratio v, and magnetic susceptibility y, respectively, and for two values of the
ratio R/d = 0, 0.2. The limit R < § (solid lines in Fig. 3) corresponds to a
blood vessel far from the magnetic pole, like in the case of the thigh artery,
with R = 1mm and é = 5cm. The second case R/§ = 0.2 with § = 5mm,

(dashed lines in Fig. 3) corresponds to surface vessels, like veins. In Figs. 3(a-

16



b) the limiting values of the magnetic Bond number, where the blood velocity

vanishes V,,, = 0, are given by:

Bp=-—, (53)

3
X
for R < 4. They correspond to w = 0, where the present approach fails to
estimate the critical magnetic field required for adhesion of the magnetic drug.
For a diluted ferrofluid with x = 0.05, in the limit of R <« § with w = 7/30,
and for 4, = 2/7 we obtain from (44, 50) B,, = 59.3453, —V,, = 0.0118.
These values correspond to a ferrofluid with viscosity m; = 21 x 1073V sec/m?,
provided that the blood viscosity is 72 &= 3 Nplasma = 6 X 1073N sec/m?, in the
expected range Myjeod = (1.58 —3.8) x 1073 N sec/m? come across the literature
[24,25], and the mean blood velocity is —ug = Vi By v/m = 83.6925 em/ sec,
which is a true upper bound to the calculated blood velocities for the carotid
artery (10 — 60)em/sec [18]. The critical magnetic field for a drop of R =
0.5mm is Hy = /B, v/( o R) = 109k A/m or 0.14 Tesla.

6 Conclusions

The general theory for treating magnetic drug targeting, was developed. With
minor corrections the theory can also be applied when the carrier is not a
typical ferrofluid, but rather a lipid vessel (magnetoliposome). All necessary
physical parameters like the strength and the orientation of the magnetic field,
the magnetic composition of the drug, the blood composition and velocity are
introduced in a model case. An upper bound to the critical magnetic field
for magnetic drug capturing on blood vessel wall was derived. Provided that
the orientation angle w, of the applied magnetic field will be related to the

deformation and the diffusion of the drug, the model might become also quan-
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titative. The difficulties on the design of proper non-uniform driving magnetic
fields were discussed. The flexibility of the model permits the treatment of,
either bulk (arteries), or surface (veins) blood vessels. The biocompatibility
of the magnetic micro and nanobeads is a major issue and is imminently re-
lated to the possibility of biomineralization. Iron biomineralization processes
have been observed in a variety of living organisms. Thus, it is expected that
magnetite beads are more biccompatible compared to the more toxic nickel or
cobalt oxides. It has to be addressed here, that at the final stages of a clinical
application of such a process the presence of the magnetic drug in the target-
ing area depends mainly to the extent of the stenosis. It is expected though
that such a process will not take place for more than 10-15 minutes and more
over a suction instrumentation might be present, so biocompatibility is pre-
served even for more toxic ferrofluidics. Finally, in a long perspective, issues
like the diffusion and dispersion of the drop through the porous vessel wall and
in the blood stream, the pulsating character of the blood flow, the elasticity
of the blood vessel, or the phagocytosis of the magnetic drug (ferrofluid or

magnetoliposome, in orgin) should also be investigated.
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Fig. 1. Model Geometry. (a) Cross-section along the zr—plane. (b) Coordinate sys-
tem.

Fig. 2. The deformation of the magnetic drop (a) and its interpretation in the model

(b).

Fig. 3. Magnetic Bond number B, vs V,, for (a) ¥ = 0.5 and varying =,, (b)
~» = 0.5 and varying x. Solid lines correspond to R/é = 0 and dashed to R/é = 0.2.
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