A LINEAR-TIME ALGORITHM FOR COMPUTING
THE OPTIMAL BRIDGE CONNECTING TWO DISJOINT
CONVEX POLYGONS

Leonidas Palios

22-2000

Preprint no. 22-00/2000

Department of Computer Science
University of loannina
451 10 loannina, Greece

|

A Linear-Time Algorithm for Computing the Optimal Bridge
Connecting Two Disjoint Convex Polygons

Leonidas Palios
Department of Computer Science
University of loannina, Ioannina, Greece
palios@cs.uoi.gr

Abstract

Given two disjoint convex polygons P and @, we are interested in computing the
optimal bridge between P and @, that is, the line segment connecting P and @
such that the maximum of the lengths of the paths from a point of P through the
line segment to a point of @ is minimized. This problem has been considered by
Cai, Xu, and Zhu, who described an O(n?logn)-time algorithm for its solution,
where n is the total number of vertices of the two given polygons. Recently, an
O(n)-time algorithm has been proposed by Kim and Shin, who have also addressed
the related problems of bridging a convex and a simple polygon, and two simple
polygzons.

In this paper, we describe an O(n)-time algorithm for the problem of optimally
bridging two convex polygons. In contrast to Kim and Shin’s algorithm, which
relies on the total monotonicity of a table of distances, our algorithm is geometric in
nature and relies on the notion of “far-wedges,” which we introduce. Additionally,
we present a simple linear-time algorithm for computing the intersection points of
the boundary of a convex polygon with the farthest-neighbor Voronoi diagram of
its vertices without computing the Voronoi diagram; we use this algorithm as a
step in our bridging algorithm.

1. Introduction

Given two convex polygons P and @ that do not intersect, we are interested in finding the
line segment connecting a point p of P and a point g of @ which minimizes the value of the
EXPression

max{d(p’,p)} + d(p.q) + {}lgg{d{q?q’) b (1)

where d(a,b) denotes the Euclidean distance between points a and b. The line segment pg
is the optimal bridge between P and (J, which guarantees that the maximum length of
any path from a point of P through pg to a point of @ is minimized over all possible line
segments connecting P and Q.

The problem has been considered by Cai, Xu, and Zhu [3]. They provide motivation
for it and they describe an O(n?log n)-time algorithm for computing the optimal bridge,
where n is the total number of vertices of the two convex polygons P and @. It is tempting
to conjecture that the minimum distance line
segment with an endpoint on either polygon
is the optimal bridge connecting the two poly-
gons. However, this is not necessarily the case,
as indicated in Figure 1: the minimum distance
line segment is ad, vet the optimal bridge is pq.
Nevertheless, the minimum distance line seg-
ment provides a good approximate solution: if b
it is used to bridge P and @, then the value of
Expression (1) is at most twice its value for the o
optimal bridge [3]; this observation results in
a simple linear-time 2-approximate solution,
since the minimum distance line segment connecting two convex polygons can be computed
in linear time (see [4] for a linear-time algorithm for computing the minimum distance
line segment connecting two convex polyhedra, and [7] for a hierarchical representation
of a convex polygon). Recently, Kim and Shin proposed an O(n)-time algorithm for this
problem (5], which relies on the total monotonicity of a table of distances. Kim and Shin
have also addressed the related problems of bridging a convex and a simple polygon, and
two simple polyvgons.

Figure 1

In this paper, we describe a simple linear-time algorithm for computing the optimal
bridge between two given disjoint convex polygons P and). Unlike Kim and Shin’s algo-
rithm, our algorithm is geometric in nature and takes advantage of the properties of the
far-wedges of a convex polygon, which we introduce. Then, the optimal bridge problem is
reduced into a linear number of bridge computation subproblems each of which can be solved
in constant time. Moreover, we describe a simple linear-time algorithm to compute the in-
tersection points of the boundary of a convex polygon with the farthest-neighbor Voronoi
diagram of its vertices without computing the Voronoi diagram; we use this algorithm as a
step in our bridging algorithm.

The paper is structured as follows. In Section 2, we review the terminology that we
will be using and present some properties that will be useful for our algorithm, while in
Section 3, we describe and analyze the algorithm. Section 4 concludes the paper with a
brief summary and extensions.

2. Theoretical Framework

A polygon P is the subset of the plane bounded by a number of closed polygonal lines that
do not intersect themselves or each other. These polygonal lines form the boundary of P,
usually denoted by P, which separates the polygon’s interior from its complement. A
polygon is conver if it is a convex set, that is, for any two points a and b of the polygon
the entire line segment ab belongs to the polygon.

Since the two polygons P and Q) that we want to bridge are convex and disjoint, they
can be separated by a line. Without loss of generality, we may assume that this line is
vertical and that P lies on its left and () on its right.

In order to efficiently compute the optimal bridge connecting P and @, we need to
investigate the possible locations of the endpoints of that bridge. In [3], it has been observed
that the optimal bridge has the following property.

Observation 2.1. ([3]) The optimal bridge connecting two disjoint convez polygons has
one endpoint on the boundary of the first pelygon, the other endpoint on the boundary of
the second polygon, and the two endpoints “see™ each other.

Let us define the in-hull chain of the polygon P as the closure of the part of the boundary
of P which lies in the interior of the convex hull of PUQ. If the points of tangency on P of
the upper and lower common tangent of P and @ are u and v respectively, then the in-hull
chain of P is the part of P's boundary clockwise from u to v (recall that P is to the left
of the vertical line separating P and Q); this holds even if u = v. Similarly, we define the
in-hull chain of (). In light of these definitions, Observation 2.1 implies that the optimal
bridge connects a point of the in-hull chain of P to a point of the in-hull chain of @ and it
does not intersect the interior of either polygon. (Below, we show that the endpoints of the
optimal bridge in fact belong to a subset of the in-hull chain of either polygon.)

If the endpoint of the optimal bridge on the boundary of the polygon P is p, then the
quantity maxyep{d(p,p’) } is equal to the distance of p to its farthest neighbor in P. It
is not difficult to show that the farthest neighbor of any point of a convex polygon is a
vertex of that polygon. Finding the all-pairs farthest neighbors of a set of n points in the
plane can be done in O(nlogn) time by using the farthest-neighbor Voronoi diagram [9],
and this is worst-case optimal. If, however, the points are vertices of a convex polygon and
they are given in order along the polygon’s boundary, then the all-pairs farthest neighbors
of the set of points can be computed in linear time [2]. The algorithm is based on the total
monotonicity of the table of pairwise distances of the points, which implies that:

Observation 2.2, Let S be the sequence of the farthest neighbors of a convez polygon’s ver-
tices which we visit in counterclockwise (clockwise, respectively) order along the polygon’s
boundary. Then, the sequence that results from 5 after replacing each run of consecutive
copies of the same vertez by a single representative is a subsequence of the polygon vertices
traversed in counterclockwise (clockwise, respectively) order.

For example, the farthest neighbors of
the vertices 1, 2, ..., 8 of the polygon
shown in Figure 2 are 5, 6, 6, 1, 1, 1,
2, 5, respectively. If we replace runs of
the same vertex by a single representa-
tive (including runs that wrap around
the sequence), we get 5, 6, 1, 2, which

Vis)

is a subsequence of the polygon vertices pm g
traversed in counterclockwise order. @~ -7 ¥

We say that a polygonal line v
vV ... U is strictly monotone with re-

spect to a direction (or a line) £ if the :
intersection of viuvs... v with any line e
perpendicular to £ is either the empty
set or a single point. For example, the
polygonal line which starts at vertex 6,

Figure 3

proceeds to vertices 7 and 8, and ends at vertex 1 of the polygon shown in Figure 2 is strictly
monotone with respect to the vertical direction. Note that vertices 6 and 1 are the farthest
neighbors of vertices 3 and 4 respectively, and that the edge connecting vertices 3 and 4 is
vertical. In other words, the polygonal line counterclockwise from vertex 6 to vertex 1 is
strictly monotone with respect to the line supporting the edge connecting vertices 3 and 4.
This is just an example of a general fact, as shown in the following lemma.

Lemma 2.1. Let uv be an edge of a convez polygon P, where u precedes v in a counter-
clockwise traversal of P’s vertices along its boundary. Suppose further that the farthest
neighbors of u and v in P differ. Then, the part of P’s boundary counterclockwise from
the farthest neighbor of u to the farthest neighbor of v forms a strictly monotone polygonal
line with respect to the line supporting the edge uv.

Proof: Let the polygonal line be wyws ... wg, where w; and wy are the farthest neighbors
of u and v in P respectively. Suppose for contradiction that the polygonal line is not
strictly monotone with respect to the line £ supporting the edge uv. Then, there exists
a line £ perpendicular to £ which intersects wyws...wp in at least two points. Without
loss of generality, we may assume that the situation is as shown in Figure 3; symmetric
cases are treated in a similar fashion. Let x and y be the points of intersection of £ with
the polygonal line, where z is encountered before ¥ in a counterclockwise traversal of P's
boundary from wy to wg (note that the intersection may be a line segment, in which case
z and y are the endpoints of the line segment in the order mentioned above). Because P is
convex and wj belongs to the counterclockwise part of P’s boundary from y to v, wy lies
on or above the line through v and y, on or below the line ¢, and on or to the left of the
line £; that is, wy belongs to the triangle with vertices v, y and z, where z is the point of
intersection of £ and # (in fact, it belongs to a smaller triangle, the triangle with vertices
u, ¥ and z). Then, d(v,w;) < d(v,y): the inequality clearly holds if w; belongs to the line
segment vy; if wy € vy, the inequality follows from the fact that the angle vy is at least
equal to 7zy = 7/2, and thus it is greater than the angle vyw;. Moreover, d(v,y) < d(v, z).
The two inequalities yield d{v,wx) < d(v,z), in contradiction to the fact that wy is the
farthest neighbor of v in P.

Of course, the optimal bridge may not necessarily be attached to a vertex of P or a
vertex of @; therefore, we need to determine the farthest neighbor of every boundary point
of P and similarly for Q. We can do that by computing the partition of the boundary of each
of these polygons into sets of points with the same farthest neighbor. Then, Observation 2.2
leads to the following corollary.

Corollary 2.1. Suppose that the boundary of a convez polygon P has been partitioned
into sets of points with the same farthest neighbor in P. Then, if we consider these
sets in counterclockwise (clockwise, respectively) order along P’s boundary, their farthest
neighbors form a subsequence of P’s vertices traversed in counterclockwise (clockwise,
respectively) order.

The statement of this corollary implies that these sets are connected. In fact, each such set
is the intersection of the boundary of the polygon with a region of the farthest-neighbor
Voronoi diagram of the polygon’s vertices; see Figure 2, where the dotted line segments
form the farthest-neighbor Voronoi diagram of the polygon’s vertices.

The partition of the boundaries of P and @ into sets with the same farthest neighbor (in
P and @ respectively) helps us simplify the computation of the optimal bridge connecting
P and Q: we consider pairs consisting of a member from either partition; for such a pair, we
compute the corresponding optimal bridge with endpoints on the boundary sets of the pair,
which involves considering a small number of cases (see Section 3.2 below) and can be done
in constant time. By considering all necessary pairs, we guarantee that the optimal bridge
of P and Q is that among the computed bridges that minimizes the value of Expression (1).

In order to formalize our approach, we introduce the notion of the far-wedges of a convex
polygon. We consider the partition of the boundary of a polygon P into sets with the same
farthest neighbor in P; let the partition sets in counterclockwise order along the boundary
of P (starting at an arbitrary set) be s;...s2, 3...83, . . ., 9¢...81. Moreover, let the correspon-
ding farthest neighbors be v;,, vy, ...,
vj,; these are vertices of P and they
form a subsequence of the sequence
of P's vertices in counterclockwise or-
der along P’s boundary starting at vy, .
Each boundary set s;...s;+; is associ-
ated with the vertex vj;,; this pair de-
fines two lines, one determined by the
points v;, and s;, the other determined
by vj, and s;;. These two lines de-
fine four wedges, one of which contains
in its closure the boundary set s;...8;41;
this is the far-wedge with apex v;, and
boundary chain s;...8;4+1. Figure 4 de-
picts the far-wedges of the convex poly-
gon of Figure 2; note that there is no Figure 4
far-wedge associated with the vertices 3
and 7.

The far-wedges possess some interesting properties as described in the following lem-
mata.

Lemma 2.2. The far-wedge of a vertez v of a convez polygon P lies in the wedge that is
defined by the lines supporting v's incident edges and contains P.

Proof: Easily seen to be true, since each of the two halflines bounding the far-wedge of v
is defined by v and a point of the polygon P.

Lemma 2.3. No two far-wedges of a conver polygon P intersect in the complement of P.

Proof: The proof is by contradiction. Let us consider two far-wedges, one with apex u and
boundary chain s...f, and the other with apex v and boundary chain z...y, and let us suppose
that these two wedges have a point r in common which lies outside P. Since a far-wedge is
convex, the line segment ru lies in the far-wedge with apex u. Moreover, ru intersects the
boundary chain s...t at a point, say, p. Since p belongs to s...t, p's farthest neighbor among
the points in P is u; therefore, d(p,u) > d(p,v). Similarly, if g is the point of intersection
of rv with the boundary chain z...y, ¢'s farthest neighbor is v and d(g,v) > d(g,u). If we
sum these inequalities and add the term d(r,p) + d(r,q) on both sides, we get

d(p,u) +d(g,v) +d(r,p) + d(r,q) = d(p,v) + d(q,u) + d(r,p) + d(r,q)

& d(r,u)+d(r,v) = d(r,q)+d(g,u)+d(r,p) + d(p,v),

which, because of the triangle inequality, holds only if g belongs to the line segment ru
and p belongs to the line segment rv. This implies that u, v, p, g, and 7 are all collinear.
But then in light of Lemma 2.2, the intersection of the far-wedges of u and v and the line
through u and v is a subset of the line segment uv; since r belongs to this intersection, r
belongs to the line segment ww, which comes into contradiction with the fact that r lies
outside P. g

In fact, it can be shown that the intersection of the far-wedge of a vertex v of the convex
polygon P with the complement of P lies entirely in the Voronoi region of v in the farthest-
neighbor Voronoi diagram of the vertices of P; this directly implies Lemma 2.3. Moreover,
it is worth noting that any two far-wedges whose boundary chains share an endpoint are
separated in the complement of P by a wedge with apex the common endpoint (see Figure 4).

As mentioned above, our method for computing the optimal bridge between the convex
polygons F and () relies on the computation of the optimal bridges for all necessary pairs of
a far-wedge of P and a far-wedge of (. Since the endpoints of the optimal bridge “see” each
other and thus belong to the in-hull chains of P and @, we need only consider the far-wedges
of the polygons P and @ whose boundary chains intersect the in-hull chain of P and of Q
respectively; these are the useful far-wedges of P and @Q respectively. (In Figures 5(a) and
5(b), only the useful far-wedges of the polygon @ are shown.) The useful far-wedges of P
can be ordered in clockwise order of their boundary chains from the upper tangent point
on P to the lower tangent point along P’s boundary; note that the first and last useful
far-wedges may need to be clipped about the upper and lower tangent points respectively
(it is possible that the first and last entries may be contributed by the same far-wedge, in
which case the clipping will produce two smaller wedges whose interiors are disjoint). In
a similar fashion, we order the useful far-wedges of @ in counterclockwise order of their
boundary chains from the upper tangent point on @ to the lower tangent point.

We noted earlier that the optimal bridge may be attached to any point of the in-hull
chain of P. In fact, we show that it is attached to a point in a subset of this chain, which
we will call the reduced chain of P. To define the reduced chain of P, we consider all
the useful far-wedges of the polygon Q. The polygon P is intersected by some of them
and by some of the wedges between consecutive far-wedges of @, and is thus partitioned
into slices; see Figure 5. (Note that P may entirely belong to a far-wedge or to a wedge
between consecutive far-wedges, so that it may consist of a single slice.) If the topmost slice
belongs to a far-wedge with apex w, then we draw the upper tangent halfline from u to P;

Figure 5

see Figure 5(a). If it lies between far-wedges, then it lies in a wedge with apex a point,
say, y, on the boundary of Q; then, we draw the upper tangent halfline from y to P (see
Figure 5(b)). Let a be the point at which the tangent touches P. We work in a similar
fashion with the lowermost slice defining a lower tangent to P from a vertex or a point on
the boundary of Q; let b be the point of tangency at P. Then, the reduced chain of P is the
part of P’s boundary clockwise from a to b (in Figures 5(a) and 5(b), the reduced chain of
P is indicated by the thick polygonal line). Note that, since the tangents which define the
endpoints of the reduced chain are drawn from points of @, the reduced chain is a subset
of the in-hull chain of P. The construction implies that:

Observation 2.3. The tangent halflines defining the endpoints of the reduced chain of the

conver polygon P do not intersect in the complement of Q any of the halflines bounding
the far-wedges of .

We show next that the optimal bridge is attached to a point of the reduced chain of
P; thus, we will focus on the far-wedges of P whose boundary chains intersect the reduced
chain of P. It is important to observe that since the polygons P and) are separated
by a vertical line, any line intersecting both P and @ is not vertical and therefore the
above/below relation with respect to that line is well defined.

Lemma 2.4. The optimal bridge connecting the convex polygons P and @ is attached to P
at a point of P’s reduced chain.

Proof: Suppose, for contradiction, that the endpoint of the optimal bridge on the boundary
of P does not belong to the reduced chain of P. Then, the endpoint belongs to the difference
of the in-hull chain of P minus the reduced chain of P. In general, this difference consists
of a subset of P’s boundary counterclockwise from the top endpoint of the reduced chain
and another subset of P’s boundary clockwise from the bottom endpoint of the reduced
chain (see Figure 6). Below, we will concentrate in the former case; the latter is handled
similarly.

Let pg be the optimal bridge, whose endpoint p belongs to the part of P’s in-hull chain
which is counterclockwise from the top endpoint a of the reduced chain. We consider two
cases depending on whether the top slice of P belongs to a far-wedge of @ or not. Suppose
that the top slice belongs to a far-wedge U of @, and let u be U's apex (Figure 6(a)). Then,
since the line ua is an upper tangent from u to P, the point p lies on or below the line ua.

On the other hand, g lies above the line uea, since it “sees™ the point p which is farther away
from a in the counterclockwise direction along P’'s boundary. Thus, the line ua intersects
the bridge pg; let ¢ be the point of intersection. Additionally, if the point of intersection
of the line ua with the boundary chain of IV is z, then r belongs to the line segment ut;
t cannot fall between u and =z, because it would then belong to @, in contradiction to the
fact that the interior of the line segment pg does not intersect). Therefore, the point z
belongs to the triangle with vertices u, p, and ¢, and does not coincide with g. This implies
that d(p, z) + d(z,u) < d(p,q) + d(g,u) < d(p,q) + d(g, FN(q)), where FN(q) denotes the
farthest neighbor of g in (). Since the farthest neighbor of z in @ is u, this inequality shows
that the bridge pr results in a smaller value of Expression (1), thus contradicting the fact
that pqg is the optimal bridge connecting P and @. In the second case, the top slice belongs
to a wedge between two consecutive far-wedges of @ (Figure 6(b)). Let y be the apex of
this wedge (the common endpoint of the boundary chains of the two far-wedges), and let
w be the apex of the far-wedge whose boundary chain is incident upon y in the clockwise
direction along Q’s boundary. Then, in a fashion similar to the previous case, we can show
that y belongs to the triangle with vertices w, p, and g, and does not coincide with ¢.
Consequently, d(p,y) +d(y, w) < d(p,q)+d(g,w) < d(p,q)+d(g, FN(g)), which contradicts
the optimality of the bridge pg in light of the bridge py.

An advantage of the reduced chain over the in-hull chain is the property given in the
following lemma; we will exploit this property in our algorithm.

Lemma 2.5. Any halfline bounding a far-wedge of the conver polygon @) intersects the
reduced chain of the convex polygon P in at most one point.

Proof: Suppose for contradiction that this is not true and that there is a halfline A bounding
a far-wedge of @) that has two points of intersection with the reduced chain of P. Let a and
b be the endpoints of the reduced chain. Then, since the region bounded by the reduced
chain of P and the line segment ab is convex, the halfline h does not intersect the interior of
the line segment ab. Let us consider now the quadrilateral bounded by the line segment ab,
the upper and lower tangents defining the reduced chain, and the vertical line £ separating
P and Q. Clearly, the reduced chain belongs to this quadrilateral. Moreover, since the
halfline h has its apex to the right of £, extends to the infinity to the left and intersects
the reduced chain, it cuts through the quadrilateral. Since it does not intersect the interior
of the line segment ab, it intersects the upper or the lower tangent or both. But this is
impossible, because of Observation 2.3.

Let F be a far-wedge of the polygon P, and let § = [WIQ,. i W E] be the ordered set
of the useful far-wedges of the polygon @ from the upper tangent point counterclockwise to
the lower tangent point. We partition the set & into three subsets: A4 = [Wf? ey Wﬁl],
B=[WH9,..., WJ-Q], and C = [lﬂg_l, - ,WE], where B is the set of far-wedges of @ which
intersect the interior of the boundary chain of F. Note that any (but not all) of the above
three subsets may be empty. We show that a bridge with one endpoint on the boundary
chain of F' and the other on the boundary chain of any of the far-wedges in .4 other than
Wi@;l cannot be optimal.

Lemma 2.6. Let F be a far-wedge of the polygon P. Suppose that we partition the ordered
set of the useful far-wedges of Q into the sets A, B, and C with respect to F' as indicated
above. Then, a bridge with one endpoint on the boundary chain of F' end the other on
the boundary chain of any of the far-wedges in A other than FVEI cannot be optimal.

Proof: Suppose for contradiction that the optimal bridge connects a point p of the boundary
chain of F to a point ¢ of the boundary chain of a far-wedge W in A4 other than P’VST Let
u be the apex and s...t be the boundary chain (traversed in counterclockwise order along
the boundary of Q@) of Wﬂl, Since pq is the optimal bridge and the far-wedge W precedes
WEI in A, we conclude that the point ¢ lies below the line supporting pg. Moreover, the
points p and g lie on opposite sides of the line through u and ¢. Therefore, ¢ belongs to the
interior of the triangle with vertices u, p, and g. This implies that

d(p,t) + d(t,u) < d(p,q) +d(g,u) < d(p, q) + d(q, FN(q)),

where FN(g) denotes the farthest neighbor of ¢ in Q. The above inequality, however,
contradicts the optimality of the bridge pg in light of the bridge pt.

A similar lemma holds for the far-wedges in C: a bridge with one endpoint on the
boundary chain of the far-wedge F' and the other on the boundary chain of any of the
far-wedges in C except for Wﬁl cannot be optimal. These lemmata imply the following
corollary.

Corollary 2.2. Let P and Q be two disjoint conver polygons and let pg be the optimal
bridge connecting them, where p € P and q € Q). Moreover, let F be a far-wedge of P
whose boundary chain intersects the reduced chain of P, and let A = [WF yee Wity B=

mﬂe,, s ,Wf"], and C = [F’VE_I i ,WE] be the partition of the set of useful far-wedges of
Q with respect to F as described above. If the optimal bridge pg has its endpoint p on the
boundary chain of F, then it has to be one of theq{part:’at} optimal bridges connecting F

to one of the far-wedges Wﬁl, W,F, e WE, Wi-

Lemma 2.3 and Corollary 2.2 help us prove that the number of pairs of a far-wedge of P
and a far-wedge of @ that we need to consider in order to compute the optimal bridge is
linear in the total number of vertices of the polygons P and Q.

3. The Algorithm

As mentioned earlier, we assume that the two given polygons P and () are separated by a
vertical line with P being on its left and @ on its right. The algorithm for computing the
optimal bridge connecting P and (is outlined in Algorithm 3.1. Note that Step 3 of the
algorithm implements Corollary 2.2; while processing the far-wedge F of P, the pairs (F, W)

. We compute the far-wedges of the two polygons P and Q.

. We form a list Lp of the useful far-wedges of P ordered in clockwise order: similarly,
we form a list Lg of the useful far-wedges of @ ordered in counterclockwise order.

. Starting at P’s vertex with the largest x-coordinate and by moving up and down, we
determine the reduced chain of P.

. Let L be the sublist of the far-wedges in Lp whose boundary chains intersect the
reduced chain of P. Let Ly be the sublist of the far-wedges in Lg which intersect
the reduced chain of P; we chp the first and last element of L, about the endpoints
of the reduced chain of P and we augment LQ by including one far-wedge before and
one after (if there exist).

. U — first far-wedge in L},;
for each far-wedge F in L} in order
while U # one of the last 2 elements of Ly
T «— element following U in Ly;
if F's boundary chain is below T
U+~ T;
else
we exit the while loop;
W « II;
we compute optimal bridge of (F, W) and corresponding maximum path length ¢;
if ¢ < minimum value min_£ of maximum path length computed so far
we update the overall optimal bridge and min_¢;
if W # last element of L,
W «— element following W in Lg;
while W # last element of L; && F’s boundary chain does not lie above W
we compute opt. bridge of (F, W) and corresponding max path length #;
if ¢ < minimum value min_f of maximum path length computed so far
we update the overall optimal bridge and min_¢;
W «— element following W in L;
we compute optimal bridge of (F', W) and corresponding max path length #;
if £ < minimum value min_{ of maximum path length computed so far
we update the overall optimal bridge and min_{;

Algorithm 3.1. The algorithm for computing the optimal bridge connecting
two disjoint convex polygons P and Q.

which are considered for optimal bridge computation are precisely the pairs (F, W, 1)
(F, WF], o L W _H] It is also worth noting that the above/below tests with respect
to far-medges of @ involve elements of L"Q except for the first and the last one; since both
halflines bounding these far-wedges intersect the reduced chain of P (see Step 4), these tests
are well defined.

Next, we describe in detail Step 1 of the algorithm and how one can compute the

optimal bridge connecting a point of the boundary chain of a far-wedge of P to a point of

10

the boundary chain of a far-wedge of Q.

3.1. Computing the far-wedges of a convex polygon. All the far-wedges can
be determined easily by intersecting the boundary of the given convex polygon with the
farthest-neighbor Voronoi diagram of the vertices of the polygon; if the intersection of the
Voronoi region of a vertex v with the boundary of the polygon is a polygonal line s...t,
then there is a far-wedge with apex v and boundary chain s...t. Although the computation
of the farthest Voronoi diagram for a general set of n points in the plane may necessitate
B(nlogn) time in the worst case, the diagram for the vertices of a convex polygon can be
computed in time linear in the size of the polygon [1]. This suggests a linear-time algorithm
to compute the far-wedges, but it subsumes the computation of the Voronoi diagram as a
preprocessing step. Below, we propose a simple alternative way to compute the far-wedges
of a convex polygon in linear time without computing the farthest-neighbor Voronoi diagram
of its vertices. We work as follows:

1. We compute the all-pairs farthest neighbors of all the vertices of the given convex
polygon; this can be done in time linear in the size of the polygon by using the
algorithm of Aggarwal et al [2].

2. For each edge uv of the polygon, we check the farthest neighbors of its endpoints
u and v. If the vertices u and v have the same farthest neighbor, then the farthest
neighbor of every point of the edge is the same as the (common) farthest neighbor of u
and v. Otherwise, we refine the edge by partitioning it into subsegments, each having
a different farthest neighbor. This is done as follows. If the farthest neighbors of u
and v are adjacent vertices of the polygon, then the edge uv is partitioned into two
subsegments about its point of intersection with the perpendicular bisector of the line
segment connecting the farthest neighbors of u and v; clearly, this bisector intersects
the edge uv, because u and u’s farthest neighbor lie on opposite sides of the bisector
and similarly for v and v's farthest neighbor. Suppose now that the farthest neighbors
of u and v differ and they are not adjacent vertices of the polygon. We may assume
without loss of generality that u is immediately before v in a counterclockwise traversal
of the vertices along the boundary of the polygon. Note that Observation 2.2 implies
that the farthest neighbors of the subsegments of the edge uv form a subsequence of
the sequence of vertices from the farthest neighbor of u to the farthest neighbor of v
traversed in counterclockwise order along the polygon’s boundary.

In order to compute the partition into subsegments and the associated farthest neigh-
bors, we use a stack to store the current list of farthest neighbors. Initially, we push in
the stack the farthest neighbor of u and the polygon vertex adjacent to it in counter-
clockwise order along the polygon boundary. Then, we process each of the remaining
vertices up to the farthest neighbor of v in the following way. We consider the line
segment defined by the current vertex and the vertex at the top of the stack and the
line segment defined by the two vertices at the top two positions of the stack. If the
perpendicular bisectors of these two segments intersect at a point belonging to Hy,
(where Hy, is the closed halfplane defined by the line supporting the edge uv and not
intersecting the interior of P), then the vertex at the top of the stack is popped, and
the perpendicular bisector test is repeated for the line segment defined by the current
vertex and the vertex which is now at the top of the stack and the line segment defined
by the two vertices at the top two positions of the stack. The process is repeated until
either the stack ends up containing only one element or the bisectors intersect at a

11

Figure 7

point in the complement of H,,. Then, the current vertex is pushed in the stack; its
processing is complete and we continue with the processing of the next vertex.

After all the vertices from the farthest neighbor of u counterclockwise to the farthest
neighbor of v have been processed, the stack contains the farthest neighbors of the
subsegments of the edge uv in order from u to v. The subsegments are determined by
the points of intersection of the edge uv and the perpendicular bisectors of the line
segments defined by pairs of vertices in consecutive positions of the stack.

3. The final partition of the boundary of the polygon is computed by merging adjacent
edges and edge subsegments which are associated with the same farthest neighbor
(the merging can be easily performed during the previous step by processing the
edges in the order they appear along the boundary of the polygon). The far-wedges
are determined by each element of the partition and the associated farthest neighbor.

To illustrate the algorithm let us consider the processing of the edge connecting vertices 7
and 8 of the polygon shown in Figure 2. The farthest neighbors of vertices 7 and 8 are the
vertices 2 and 5 respectively. So, we start by pushing vertices 2 and 3 in the stack. Then,
we consider the perpendicular bisectors of the line segments with endpoints the vertices
4 and 3, and 3 and 2 (Figure 7(a)); these bisectors intersect at a point of Hy,, and thus
vertex 3 is popped from the stack. At this point, the processing of vertex 4 is complete,
vertex 4 is pushed in the stack, and we continue with the processing of vertex 5. Now,
we consider the perpendicular bisectors of the line segments with endpoints the vertices 5
and 4, and 4 and 2 (Figure 7(b)), which intersect at a point which does not belong to H,,.,.
The processing of vertex 5 is complete and vertex 5 is pushed in the stack. This completes
the processing of the edge connecting vertices 7 and §: the contents of the stack indicate
that this edge contributes three subsegments with farthest neighbors the vertices 2, 4, and
5 (compare with Figure 2).

The correctness of this algorithm is established by means of the following two lemmata.

Lemma 3.1. Let P be a conver polygon and let uv be one of its edges with u preceding
v in a counterclockwise traversal of P’s vertices along its boundary. Then, any vertez
of P, which lies between the farthest neighbor of u and the farthest neighbor of v in a
counterclockwise traversal of P’s vertices and is not in the stack after the edge uv has
been processed in Step 2 of the algorithm, is not the farthest neighbor of any point of the
edge uv in P.

12

Proof: Since each of the vertices, which lie between the farthest neighbor of u and the
farthest neighbor of v in a counterclockwise traversal of P’s vertices, is pushed in the stack
when processed, a vertex that is not in the final stack must have been popped. Let w be
such a vertex. Since w has been popped from the stack, then it must be the case that the
perpendicular bisectors defined by two line segments connecting w to two other vertices of
P intersect at a point in H,,. The two bisectors define four wedges, one of which contains
w; then, the wedge across from this wedge contains in its closure the farthest-neighbor
Voronoi region of w. Since the bisectors intersect at a point in Hy,, the interior of the
farthest-neighbor Voronoi region of w lies entirely outside P; therefore, the Voronoi region
does not contribute any subsegments on the edge vu, and w has been correctly removed
from the stack. i

Lemma 3.2. Let P be a conver polygon and let uv be one of its edges. Then, for every
verter w which is in the stack after the edge uv has been processed in Step 2 of the
algorithm, there exists a point p of the edge uv such that w is the farthest neighbor of p
in P.

Proof: Suppose without loss of generality, that u precedes v in a counterclockwise traversal
. of P’s vertices along its boundary. Let the contents of the stack be wy =FN(u), ws, ...,
- wy=FN(v) from bottom to top, where FN(u) and FN(v) are the farthest neighbors of u
and v in P respectively; then, the vertices wy, ws, ..., wg form a subsequence of the sequence
" of P’s vertices in a counterclockwise traversal of P’s boundary from wy to wy. Because of
the convexity of P and of Lemma 2.1, this implies that the polygonal line wyws ... wy is
convex and strictly monotone with respect to the line supporting the edge uv.

Let h, be the halfline that is produced if we extend the line segment uv to infinity
past its endpoint v. Then, the perpendicular bisector of the line segment wywo intersects
hy; otherwise, u and FN(u)=w; would be on the same side with respect to the bisector,
and thus d(u, FN(u)) < d(u,ws), in contradiction to the fact that FN(u) is the farthest
neighbor of u. Since the perpendicular bisectors of the line segments wijws and wpw;
intersect in the complement of H,,, the perpendicular bisector of wows intersects h, and
the point of intersection is farther from u than the point of intersection of the bisector of
wywe with h,. By applying this argument over and over for the pairs of line segments
defined by triples of consecutive elements of the stack, we conclude that the perpendicular
bisectors of all the line segments defined by pairs of consecutive elements of the stack
intersect h,. In a similar fashion, one can show that the perpendicular bisectors of all the
line segments defined by pairs of consecutive elements of the stack intersect the halfline h,
which is produced if we extend the line segment uv past u. In other words, all these bisectors
intersect the edge uv. Moreover, the points of intersection are in the same order from u
to v as the pairs of consecutive elements of the stack (from bottom to top) that define
them. So, if the perpendicular bisector of the line segment w;w;4; intersects the edge uv
at the point p; (1 < i < k), and if pp = u and p = v, then the line segments p;p; 41
(0 < i < k) define a partition of the edge uv. We will show that every point in the open
line segment p;p;+1 has w;;; as its farthest neighbor in the polygon. Let x be a point in
the open line segment p;p;+1. Then, the perpendicular bisectors of all the line segments
defined by pairs of consecutive elements of [wy,ws, ..., w;] intersect the line segment uz.
This implies that

d(z,w;) > d{z,wj—1) > ... > d(z,w).

13

Moreover, the perpendicular bisectors of all the line segments defined by pairs of consecutive
elements of [wj, wjt1,...,w] intersect the line segment zv, which implies that

d{x:u"_'il} > d(m!wj+l} > . 3 d{x1wkj'

Observation 2.2 implies that the farthest neighbor of z has to be between the farthest
neighbor of u and the farthest neighbor of v in a counterclockwise traversal of P’s vertices;
hence, in light of Lemma 3.1, it has to be one of the vertices in the stack. The above
inequalities imply that this vertex is precisely w;. Therefore, for every vertex in the stack,
there exists a point of the edge uv with that vertex as its farthest neighbor among the
points of the convex polygon P.

3.2. Computing the optimal bridge between two far-wedges. Suppose that we
have a far-wedge F' (with apex u and boundary chain s...t) of the polygon P and a far-
wedge F' (with apex v and boundary chain z...y) of the polygon Q; the boundary chain s...¢
is assumed to be traversed clockwise along the boundary of P, whereas the chain z..y
counterclockwise along the boundary of Q. One needs to distinguish the following four
main cases; any other case is top-to-bottom or left-to-right symmetric to one of these cases.

1. the points u and v belong to both far-wedges (Figure 8(a)): Then, so does the line
segment connecting u and v. The optimal bridge connecting F' and F' is the closure
of the intersection of the line segment uv with the complement of PU Q. In fact, this
is the optimal bridge of P and @, and we can thus stop the processing and report it.

2. the point u belongs to the far-wedge F' and the far-wedge F lies above the line through
u and v: Then, if t belongs to F', the optimal bridge connecting F and F' is the
closure of the intersection of the line segment fv with the complement of P U @, and
the value of Expression (1) is the sum of the lengths of the line segments ut and tv
(Figure 8(b)). If t does not belong to F', then it lies above F'; then, the optimal
bridge connecting F and F' is the line segment tx and the value of Expression (1) is
the sum of the lengths of the line segments ut, ¢z, and rv (Figure 8(c)).

3. both far-wedges F and F' lie above the line through u and v: This case is similar to
the previous one. If ¢ belongs to F', the optimal bridge connecting F and F' is the
closure of the intersection of the line segment tv with the complement of P U (), and
the value of Expression (1) is the sum of the lengths of the line segments ut and fv

Figure 8

14

(Figure 8(d)). If ¢t does not belong to F”, then it lies below F'; then, the optimal
bridge connecting F and F' is the line segment ty and the value of Expression (1) is
the sum of the lengths of the line segments ut, ty, and yv (Figure 8(e)).

4. the far-wedge F lies above the line through u and v whereas the far-wedge F' lies below
it (Figure 8(f)): Then, the optimal bridge connecting F and F' is the line segment tx
and the value of Expression (1) is the sum of the lengths of the line segments ut, tr,
and zv.

3.3. Time complexity of the algorithm. As shown in Section 3.1, Step 1 of the
Algorithm 3.1 takes time linear in the total size of the polygons P and Q. Step 2 also takes
linear time: note that computing the common tangents of two disjoint convex polygons can
be done in time linear in their combined size [8]. It is not difficult to see that Steps 3 and
4 are completed in linear time as well. Finally, so is Step 5. To see this, we first observe
that 7 does not move backwards in LE?; thus, the total number of times the condition of
the first while loop in Step 5 does not exceed |Lp| 4 |Li|, which is linear in the combined
size of P and Q. Moreover, the total number of (partial) optimal bridge computations for
pairs of a far-wedge of P and a far-wedge of () is also linear in the combined size of P and
- Q: if the partition of the set of useful far-wedges of @ with respect to a far-wedge F' of P
is A=[WP,... . W2, B=W2,...,WP, and C = [W2,,...,Wg], then |B| < kr +2,
. where kr denotes the number of far-wedges of @ whose intersection with the reduced chain
of P is a subset of the boundary chain of F. Then, since our algorithm computes (partial)
optimal bridges for the pairs (F, ‘W,El}, (F, W‘Q}, e Wﬁl} during the processing of
F, it considers at most kp + 4 such pairs. Because of Lemmata 2.3 and 2.5, we have that
Y rkr < |Q|. Therefore, 3 p(kr +4) = O(|P| +|Q|), that is, the total number of (partial)
optimal bridge computations is linear in the total size of P and Q).

4. Concluding Remarks — Extensions

‘We presented an algorithm for computing the optimal bridge between two disjoint convex
polygons, which takes time linear in the total size of the given polygons, and is therefore
optimal. The algorithm is fairly simple and can be easily coded for use in practical appli-
cations. We also presented a simple linear-time algorithm for computing the intersection
points of the boundary of a convex polygon with the farthest-neighbor Voronoi diagram of
its vertices without computing the Voronoi diagram; we use this algorithm as a step in our
bridging algorithm.

The problem can be generalized in several ways. First, the convexity restriction on the
one or both polygons can be relaxed: compute the optimal bridge between a convex and a
non-convex polygon, or between two disjoint non-convex polygons. Kim and Shin provided
an O((n+m)log(n+m))-time algorithm for the computation of the optimal bridge between
a non-convex simple polygon of n vertices and a convex polygon of m vertices which are
disjoint, and an O(n m+m log m)-time algorithm to bridge two disjoint non-convex polygons
of n and m vertices where m > n. It is interesting to investigate whether faster algorithms
for these problems are possible, and if yes, to come up with such algorithms. Additionally,
the problem can be extended into three-dimensional space, where one wishes to compute
the optimal bridge connecting two disjoint convex polyhedra. Currently, no algorithms are
known for this problem, nor for the problems arising when the convexity restriction on one
or both polyhedra is relaxed.

15

5. References

1. A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor, “A linear-time algorithm for com-
puting the Voronoi diagram of a convex polygon,” Discrete and Computational Ge-
ometry 4(6) (1989), 591-604.

2. A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R. Wilber, “Geometric Applications
of a Matrix-Searching Algorithm,” Algorithmica 2(2) (1987), 195-208.

3. L. Cai, Y. Xu, and B. Zhu, “Computing the optimal bridge between two convex
polygons,” Information Processing Letters 69 (1999), 127-130.

4. D.P. Dobkin and D.G. Kirkpatrick, “A linear algorithm for determining the separation
of convex polyhedra,” Journal of Algorithms 6 (1985), 381-392.

5. S.K. Kim and C.5. Shin, “Computing the Optimal Bridge between two Polygons,”
Research Report HKUST-TCSC-1999-14, Hong-Kong University, 1999.

6. D.T. Lee and F.P. Preparata, “The all-nearest neighbor problem for convex polygons,”
Information Processing Letters 7(4) (1978), 189-192.

7. K. Mehlhorn, Data Structures and Algorithms 3: Multi-dimensional Searching and
Computational Geometry, Springer-Verlag, 1984,

8. F.P. Preparata and S.J. Hong, “Convex Hulls in Two and Three Dimensions,” Com-
munications of the ACM 20 (1977), 87-93.

9. F.P. Preparata and M.I. Shamos, Computational Geometry, An Introduction, Springer-
Verlag, 1985.

16

