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Abstract

In this work, we examine the acoustic scattering problem of spherical
waves by a two-laver spheroid simmlating the kidnev-stone svstem. Both
the theoretical as well as the numerical treatment are presented. The
ontcome of the analvsis is the determination of the scattered field along
with its multivariable dependence on the several physical and geometric
parameters of the svstem. A comparison with the simpler case of spherical
geometry is realised.

1 Introduction

In a previous communication [1] we have examined. presenting the theoretical
formulation. the point source excitation acoustic scattering problem by a mul-
tilaver isotropic and homogeneous spheroidal body. Our analyvsis is based on
the possibility to express the several fields entering the scattering process. in
terins of the basis of spheroidal wave functions, The solvability of the problem
reduces then to the determination of the expansion coefficients of the scattering
and stationary waves oceuring in the structure,

The solution procedure is to apply the boundarv conditions on those ex-
pansions. taking place on the discontinmity surfaces. Extended exploitation of
orthogonality properties of the involved spheroidal wave functions permits to
transform the boundary conditions to an algebraic linear non-homogencous svs-
temn satisfied by the unknown expansion coefficients. The svstemn is an infinite



one and its specific structure very complicated. However. the general theoretical
regime has been built in [1).

In this paper. we adapt this theoretical background to the investigation of
a particular case consisting of a two-layer spheroid simulating the system of
interest for medicine kidney - stone. The necessity to solve such a problem
stemns first from the importance to implement the aforementioned analysis to
specific problems. affronting simultaneously a lot of peculiarities (convergence
of the expansion, stability. etc.) arising when spheroidal geometry is present.
In addition. the specific application problem merits special biomedical engineer-
ing interest due to the angmented percentage kidney stones appear in medical
clients.

Indeed, kidney stones are very common. About 5% of women and 10%
of men will have at least one episode by age T0. Kidney stones affect two
out of 1.000 people. The common diagnostic tools used is kidney ultrasound.
pvelogram. X-ravs, cte. The first is of great importance since it is a non-invasive
technique and offers a no risk examination. However. a point source generated
field can be used for the patient examination and useful results can be obtained
for the size, shape and relative position of the kidney stone. Those results can
be interpreted by a physician who can suggest a treatiment method.

To our knowledge, there is no previons, theoretical or mumerical approach
to the modelling, use of sound waves for the examination of stones in kidnevs.
Such an approach can offer valuable information and relate the characteristics
of the stone to those of the scattered field. The latter can lead to the inverse
scattering problem which needs further investigation. The treatment of kidney
stones by shock waves is reviewed in [2].

In this work it is used the approach described in [1] and conecerns acoustical
scattering from kidney stones. i.e. the problem is simplified to a double laver
homogeneous spheroidal body to be solved munericallv. The scope is to measure
characteristies of the scattered field which can be used for the identification of
the morphology and other features of the kiduev stones. The major assumption
is a geometric one, since for sinplicity we consider both the kidney and the
stone being spheroids.  Another assmmption is related to the materials: the
stone is supposed to be a rigid body and the surrounding material of kidney
homogeneous. elastic and isotropic body.

The present analysis faces extensively the direct scattering problem. Fur-
thermore, we present a multivariable analysis of the measured scattered wave
with respect to several parameters of the problem aiming to build an inversion
algorithm based on the direct problem structure.

2 The Model

A two - layer isotropic and homogeneous medinm occupying region V, centered
at the coordinate system origin, has been selected to represent the kidnev -
stone system under discussion. The geometry of the problem is shown in Fig.
1. The system fitting suitably with the problem geometry in the spheroidal one
representing every point in R* through the spheroidal coordinates (p. 8. ¢) is
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Figure 1: The System Geometry.
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The two -laver spheroid is reached by an acoustical spherical wave emanating
from a point having pesition vector ' = (p'.#.¢"). The central spheroidal
region. which is surrounded by the surface Sy, corresponds to the kindey stone
and is inpenetrable and rigid. The exterior region. surrounded by the surface S;.
corresponds to the kidney tissue. Those two regions (lavers) are characterised by
their densities pp. 2 and velocities of sound propagation op and e, respectively.
The surrounding region has density p and the velocity of sound is cayy.

For the solution of this specific boundary value problem we follow the general
formulation presented in [1]. concerning the theoretical setting of the acoustical
scattering of spherical waves by multi-layered spheroids.

The interference of the incident field «™(r) with the structure leads to the
emanation of the scattered field in the surrounding space as well as the creation
of aconstic field in the kidneyv tissue not penetrating the interior rigid body. The
incident and the secondary fields obey to Helmholtz equation in their definition



domains and are connected through boundary and impedence conditions on the
discontinnity surfaces.

For the solution of the specific boundary value problem. we follow the gen-
eral formulation presented in [1], concerning the theoretical setting of the acous-
tical scattering of spherical waves by multi-lavered spheroids.

The aforementioned acoustic fields are expanded in a complete set of scalar
Helmholtz equation solutions. known as spheroidal wave functions [1]. Those
can be computed with methods deseribed in [3].

More precisely, we have the representations

. 1 . 4 — s

u(r) = W{ﬂ:”“ cos(mo) Gy (cos 8 ') jepn(cosh ')
e LiTRR c

+ 4 },m sin{mia) S, (cos #; e (cosh p {'l'_l M

*_,,I,”, COG[IHG'}S,““[_I:‘t_r:éﬁl:f'l:Ij:lyf;.,,,,[fmi]ljr:("‘”]

iJ:;rlr.-in:- SIn(1o ) S | cos H: 'r-'{l:ljyﬁmrrlicf-:'ﬁh e ¢! l]}}’r Ty A1)

s 1 :
uCr) = Z T—(T{nigﬁi cos{ma) Spr (cos B: e)he,, (cosh e )
"l"i'-l -'I rrere fl.
I sin(m o) S (cos B: e)he gy (cosh g )}, reV. {2}
; . 1 2 :
w(r) = 2:}.-2 m&,,”,{mﬁ b ¢)8,n(cos @' )
e T
o T jf-'.,m(t:f_:u:-;lj.I.:f":f_:}hr:,,,,,(cusll;r:r'} 1 }Ju." 3
wos(miy @”{ jemnlcosh p: c)hen(coshp'ie) p<p'” (3)
(1)

In the above relations, we meet the angular wave functions 5., and the
spheroidal radial functions jen. Yemn. Memn = j€mn + iy€ma- Their definition
is given in [1]. but the general concept is that these functions are represented as
infinite expansions of the corresponding spherical functions. Notice here that
the special selection of radial functions incorporates the outgoing propagating
behavior of the seattered feld.

In addition, the parameters ¢!V ¢ are given as o'l = ékm and ¢ = %L-n
(k. %y are the wave numbers) and constitute a measure of the relation between
the geometric characteristic dimension of the system and the wavelengths, A,
stand for the normalization constants of the angular funections 5,,,,.

The above expansions share the important privillege that the unknown char-
acter of the acoustie flelds is transfered to the determination of the expansion
coctficients orientating the problem to the linear algebra regime.

The solution process consists in forcing the expansions (1), (2}, and (4) to
satisfv the boundary conditions and exploit the orthogonality properties of the
involved funetions to obtain proper algebraie relations hetween the expansion
coeflicients,



We present briefly here the main steps of the analvsis. The quantitative
form of the boundary conditions is
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Equation (5) and orthogonality of 5,,,(cos#: ) lead to the relations
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Unfortunately, Equations (2) involve angular function of different parame-
ters o, o'l which do not share nmtual orthogonalitv. However, we can project
on Spunicos#;¢) to obtain algebraic equations but we cannot avoid infinite sum-
mation in the final expressions (in constrast to the separable Equations (6-7)).

More precisely. we obtain
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The final non-homogeneons system of equations is
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(in the case of 3} .8} . 35XU the function cos(mo’) is replaced by sin(mo’)).



3  Numerical Solution - Results

The nou-homogeneous system (16) is solved mumerically. For given m the svs-
tem (16) is truneated to a finite system of dimension IxN
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such that ||u3¢ — uiic, || < 109, This is performed by an iterative procedure.
We observe that the value of N is strongly dependent on the problem charac-
teristics,

The elements of D“ depend on the compntation of spheroidal angular and
radial wave functions and their derivatives of the first, second and third kind
3. The presence of the latter introduces complex terms and the system (21
is translated to
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where the subscripts r and i denote real and imaginary parts, respectively.
The svstem (22) can be easily transformed to the inflated equivalent
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The above solution is repeated for m = 0, 1.2. ... and the field in the kidney
tissue and the scattered field are computed from (1) and (5), respectively.
The quantities < S S > and Agel(elt) are computed as
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where d"™ (¢!}, d7" (¢) are the expansion coefficients which are computed fol-
lowing [4].

3.1 The Limiting Case of a Sphere

The investigation of the corresponding two-laver spherical structure is very
helpful for the understanding of our problem. To alleviate the analysis. without
loss of generality, we assume the point source to be located on z - axis at distance
ry from the spherical system origin, which coincides with the centres of the two
spheres of radii a, 3 with 7 > a. The fields under investigation obtain the much
simpler form
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where F, are the Leguulre polvnomials, while j,.y, stand for the spherical
Bessel functions and hy' for the spherical Hankel function of the first kind,
The boundary condition on Sy is
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The houndary conditions can be written in matrix form as
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The above system is solved (see Ref. [4]) for every n and particularly the
scattered field is obtained using Eq. (28).

The following properties for the kidney material and the surrounding medinm
are used in onr computations

M= 1,022K g/m*.e; = 1.533m,/ sec.

on = 1, 000K g/m?, coy = 1.403m /sec.
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Figure 2: [u%¢| as a function of # forn' =3.n" =06 and 0’ = 20.

The summation in Equation (28} depends on the value of n', which ensures
convergence of |u™¢|. This computation has been done by using an iterative
procedure and the results obtained are shown in Fig. 2. The value of n'
for convergence is strongly dependent on ko kj.o and 3. In the case under
dliscussion, for fixed values of k. ky.a and /3. the computational procedure was
repeated until [[uC), — [, ] = O(1077).

Figs. 3 and 4 show the dependence of [%¢| and [u™]| on # and the distance
from the center of the sphere for ko = 0.9240 and ko = 0.2244 which corre-
spond to surrounding air and kidney tissue with sound speed ¢ = 1533 m/sec.
It is shown that the scattered field decreases as the distance from the center
of the sphere (r/a) increases and the incident field increases with decreasing
distance.

Fig. 5 indicates the dependence of the scattered field on the size (o) of
the kidnev stone for water surrounding ¢ = 340m/sec and kindey tissue with
¢ = 1533m/sec which corresponds to ko = 0.263 and ko = 0.256. It is
shown that the scattered field increases as the size of the spherieal kidney stone
increases, The scattered field disappears as the radins of the sphere becomes
very small, This observation indicates that the use of acoustic waves can be
used for the determination of the kidney stone size,

3.2 The Spheroidal Kidney

The results for the spheroidal geometry are shown in Figs. 6 - 9. The relations
given in Appendix A are used to represent the obtained quantities in spherical
geometry. The shape dependence of the scattered field is shown in Fig. 6 as
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the spheroid deviates from the spherical geometry (ap/ 3 = 1). This shows
that the scattered wave can provide with information on the spheroidal ratio of
radii. The dependence of the scattered wave. measured on the minimum sphere
containing the kidney, on the distance of the point source is shown in Fig, 7.
The position of the diagnostic equipment should be as close as possible to the
kidnev outside surface and if it possible in contact with it. Usually a lubricant
is used to obtain the optitmum contact. Our results show that if a medinm with
smaller sonnd speed exists the obtained scattered field (and the received signal)
decreases significantly (Fig. 9).

Another important parameter which enters the problem is the size of the
spheroidal stone which affects the scattered feld. An increase in the scattered
field is obtained with increasing size of the kidney stone (Fig. ).

4 Concluding Remarks

In this work we examined the acoustic scattering problemn of spherical waves by
the kidney-stone system. Our analvsis is based on the expression of the fields
entering the problem in terms of the basis of sphercidal wave function. The
determination of the expansion coefficients is an easy process which minimises
the computational effort required.

The multivariable parametrization we performed indicates that the process
can be proven a useful tool in clinical practice in order to predict non-invasively
the size and the shape of kidnev stones. However. some practical difficulties
might enter since the sound transmitter should be in touch with the human
body and in the resonance region framework, the distance between the souree
and the scatterer is not large at all.
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The geometric approximation we treated is very close to the realistic but
other geometries can be investigated too. The results of the direct problem we
solve can be used in a database which along with pattern recognition techniques
can be used to build an inversion algorithm to provide with accurate diagnostic
decisions.

5 Appendix A

The computations for the spheroidal kidney correspond to the coordinate #
which is transformed for better understanding to the coordinate Hsphvriml' In
this case the secattered and incident field are computed as
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