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Abstract-A novel method for the detection of ischemic episodes in long duration ECGs is
proposed. It includes noise handling, feature extraction, rule-based beat classification, sliding
window classification and ischemic episode identification all integrated in a four-stage procedure.
It can be executed in real-time and is able to provide explanations for the diagnostic decisions
obtained. We tested the method on the ESC ST-T database and high scores were obtained for both

sensitivity and positive predictivity (93.75% and 78.50% respectively).
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1 Introduction

[SCHEMIA 1S the most common cardiac disease (CAIRNS et al., 1991; BADILINI et al., 1992; SILIPO
et al.. 1994), and its early diagnosis is very important. Several techniques that automate the
detection and diagnosis of ischemic episodes in long duration electrocardiograms (ECGs) have
been proposed during the last two decades. These techniques can be grouped depending on the
computational paradigm on which they are based (rule-based expert systems, artificial neural

networks, fuzzy expert systems etc.).

Rule-based methods exhibit certain advantages such as direct transformation of medical
knowledge to rules, low computational load and explanation of the diagnostic decisions. However,
their diagnostic value depends on the appropriate selection and combination of the rules and the
method for the extraction of feature values used in the rules. Some rule-based techniques
(LACHTERMAN ef al., 1990a; b; VELDKAME ef al., 1994; ANSLEY er al., 1996; YANG, 1996} used
the ST deviation from the isoelectric line, while some others (WATANABE er afl., 1980; WEISNER

et al., 1982; HsiA ef al, 1986) combined the ST deviation with ST segment slope and other



parameters like the ST index, ST level and ST integral (or ST area). More specifically, if the slope
is lower than a certain threshold and the ST deviation is higher than 0.1 mV then an ischemic beat
is detected. SILIPO et al. (1994) used such rules in ischemic episode detection. Similar rules were
adopted by AKSELROD ef al. (1987), which could reach decisions for subclasses of ischemic beats
and by SHOOK et al. (1989, but with feature values averaged on a 30 seconds window. CAIRNS ef
al. (1991) and LAKS et al. (1989) introduced a relation which has as input parameters the age, sex,
chest or left arm pain, Q wave amplitude, ST elevation and depression and T inversion, and as
output the ischemia probability. BADILINI er al. (1992), used ST segment frequency characteristics

for ischemic episodes detection.

Another class of techniques for ischemia detection is based on artificial neural networks (ANN).
BAXT (1991) proposed a four-layer ANN trained by back-propagation for ischemic patient
identification considering features from patient history, physical examination and ECG
characteristics. STAMKOPOULOS et al. (1992) used a three-layver ANN trained by back-propagation
with input the raw signal corresponding to the ST segment. In another work (STAMKOPOULOS ef
al., 1998), they used non-linear principal component analysis for ischemic beat classification.
SILIPO ef al. (1994) adopted the three-laver ANN trained by back-propagation using as input the
ST amplitude and slope. QUYANG et al. (1997) also developed a three-layer feed forward ANN
trained by back-propagation, but for ischemic patient identification. As input layer they used 40
nodes, 5 ECG characteristic values (Q, R, S and T waves amplitudes and ST deviation) for each
one of the 8 leads (I, Il and V). SILIPO and MARCHESI (1998) compare various approaches for
ischemia detection based on ANNs: static ANNs, static ANNs combined with principal

component analysis, recurrent ANNs and knowledge-learning networks.

There are also ischemia detection techniques based upon different principles. OATES et al. (1989)
used decision tree methods on three quasi-orthogonal leads. JAGER er al. (1992) used the
Karhunen-Loéve transform. TADDEI et al. (1993) developed a geometric method, while VILA et

al. (1997) developed a monitoring system for coronary care units based on fuzzy logic.
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Currently we propose a knowledge — based approach to detect ischemic episodes in long duration
ECGs. The method is based on a four — stages schema. The first is used for noise handling,
artefact characterisation and extraction of ECG features. The second stage is beat classification
(ischemic or not) using medical knowledge in the form of rules based on the features obtained in
the first stage. The third stage is window classification (ischemic or not). The fourth stage

identifies and merges the sequences of ischemic windows detecting the ischemic episodes.

The proposed method is novel in several aspects; the whole detection process is structurally
divided into four distinct stages. This division is made to naturally emulate the diagnostic steps
followed by cardiologists and significantly facilitates the specification, adjustment and tuning of
the overall method. Another important aspect of our approach is that we explicitly deal with noise
problems. We propose a noise handling procedure (applied in the pre-processing stage) that
enables efficient treatment of most types of noise appearing in ECG recordings. Moreover, for
ischemic beat classification, we use medical knowledge in the form of three rules, one of which (T
wave inversion or flattening) (ROWLANDS, 1982; GOLDMAN, 1982) is used for the first time for
automated diagnosis. We also introduce the notion of ischemic window, which is a time window
containing mostly (to allow tolerance in the decision) ischemic beats. Also the method exhibits
flexibility in the definition of an ischemic episode as a sequence of ischemic windows by allowing
small intermediate intervals containing normal beats. These tolerance characteristics of the
method allow on the one hand for the efficient treatment of artefacts and on the other hand for
dealing with problems related to the fact that strict rules (with certain threshold values) are used
for beat classification. Finally, it is worth mentioning that the technique is real-time and exhibits
the highly desirable characteristic that is capable of providing explanations for each decision made
in every stage of the method. Experimental results using the ESC ST-T database indicate that the
proposed diagnostic procedure is effective and performs well both in terms of sensitivity and

positive predictivity.



2 Method

We developed a four-stage procedure for ischemic episodes detection shown in Fig. 1. The four
stages correspond to ECG processing and analysis, beat classification, window classification and
identification of ischemic episodes duration. In the first stage the pre-processing of ECG
recording is performed to achieve noise removal and extraction of the signal features to be used
for beat characterisation. In the second stage each beat is classified as normal. abnormal
(ischemic) or artefact. This information is used in the third stage (the window characterisation
stage) where each 30-second ECG window is classified as ischemic or not. In the fourth stage the
identification of start and end points of each ischemic episode is performed based on the
concatenation of consecutive ischemic windows. We note that the whole procedure described
above is applied in each lead separately. At the last stage, also, a merging procedure is followed to

identify the overall ischemic episodes from the episodes detected in each available lead.

2.1 ECG Signal Processing and Analysis

At this stage we detect the beginning of the ST segment (J point) and the peak of the T wave. We
start with the detection of a point in the QRS complex (QRS point) for each beat using the
algorithm by HAMILTON and TOMPKINS (1986). To make this algorithm faster we have made
some modifications. More specifically, after the detection of a QRS complex we ignore the next
300 msec. This means that the modified QRS detector will become 30% faster but it also means
that in cases of tachycardia (with a heart rate higher than 200 beats/min) the QRS detection will
fail. Nevertheless, these cases are rare and deserve special treatment by the cardiologist. The QRS
detection continues as follows: First, the main wave of the QRS complex (not the R wave) is
identified in the window [QRS — 280 msec, QRS + 120 msec] by locating the point with
maximum signal absolute value. The next step is an initial estimation of the isoelectric line, which

is defined as the mean value of the signal in the window [QRS — 100 msec, QRS — 80 msec], and



is used for the location of the point in the QRS complex with maximum absolute deviation from
that estimated isoelectric line. This point is the peak of the main wave in the QRS complex. We
use it as a reference point (RP) to continue the search for the final identification of the isoelectric

line and the location of the start point (J point) of the 5T segment.

The algorithm developed by DASKALOV ef al. (1998) is applied to the window [RP — 100 msec,

EP- 40 msec] and searches for an interval of 20 msec with signal slope (C, } less than or equal to

2.5 pV/msec. The original algorithm (DASKALOV et al., 1998) uses a slope criterion of €, €35

uV/msec, but we obtained better results by using a stricter threshold of 2.5 pV/msec. The same

algorithm is applied to the window [RP + 20 msec, RP +120 msec] to locate the J point.

In the case that all the above stages have been completed successfully, our algorithm continues in
order to locate the peak of the T wave. In the opposite case the current beat is classified as artefact

and the procedure starts over again with the next beat. We locate the point T, at J80 + 0.0375*

R-R, where J80 = ] + 80 msec and R-R is the time interval between the current RP and the

previous one. We search for the peak of the T wave on the window [T, Ty + 200 msec],

[msed

which is defined as the point with maximum difference in amplitude with respect to the J80 point.

2.1.1 Noise Handling

The procedure described above produces very good results only when the ECG recording has a
high signal-to-noise ratio (SNR). If we attempt to define the isoelectric line and detect the J point
in a noisy signal using the described method several problems will occur. The presence of noise
(top row in Fig. 2), such as the power line interference (A/C), the electromyographic
contamination (EMG) and the baseline wandering (BW), may lead the algorithm to ambiguous

results. To overcome this problem we developed a technique that manages to remove BW and to



accurately detect the isoelectric line and the J point in cases where the ECG is contaminated with

A/C and/or EMG noise,

The noise removal procedure starts by treating first the problem of the baseline wandering. It is
well known (BROCKWELL er al., 1991) that slow noise can be modeled successfully by low order
polynomials. This is the approach we follow in the sequel. Considering a small time interval in the
ECG signal, for example one cardiac cycle, then the baseline shift can be modeled by a first order
polynomial (straight line). As a consequence, the subtraction of the polynomial from the recorded

signal will reproduce the original ECG.

For each cardiac cycle, we consider a time interval that starts 60 msec before the P wave and ends

60 msec after the T wave. Let x(t), r=12,..,N be the recorded ECG signal. Using a least

squares procedure we can estimate the polynomial x(r) that best fits x(r):

t)=xpt+x,,fort=12,.,N. (1)

The corrected ECG signal, »(r) (without the baseline drift) is given by:

W) =x(t)=x(), for t=12,...N . ()

We have observed that the existence of the QRS complex slightly shifts the polynomial towards
its main QRS polarity: if the QRS has a large R wave then the polynomial shifts upwards and the
opposite happens when Q or S waves are large. Thus, a modified two-stage procedure has been

adopted.

In the first stage, we estimate the polynomial corresponding to x(1) :



M) =Ft+%,. (3)

As we mentioned above, x(f) may have a slightly diverted slope due to, for example, a large R
wave. Let us assume that the QRS complex consists of the samples x(r) for ¢ =1¢,,....,15 . In order

to decrease the influence of the QRS complex on the estimated polynomial, in the second stage,

we replace the QRS complex with the corresponding values of the polynomial x(r) .

Thus we get a new signal, denoted u(r) , as follows:

Oy = e x(t) = 1,51, 205, X(t3 + 100, X(N)}. @)

Then, we compute the fitting polynomial

G(1) =yt + 1y (5)

and we obtain the final ECG signal, f(r), as:

S0y =x()—u(r), (6)

which is without BW noise and also translated around the zero voltage level.

It must be noted that in cases where no baseline wandering exists the influence of the above
procedure on the original signal is very small; this becomes apparent from the high scores

achieved by our procedure.



After the baseline correction, we proceed with the isoelectric line and the J point identification.
The isoelectric line is defined as the mean value of the signal f(7) in the window [RP — 80 msec,
RP — 60 msec]. We use a moving averaging window of 20 msec in the interval [RP + 20 msec, RP

+ 120 msec] to obtain the signal g(7). The J point is detected using the DASKALOV et al. (1998)

algorithm on the signal g(t).

Fig. 2 clearly illustrates the improvement of the described method in the detection of the
isoelectric line and the J point. The top row shows the three types of noise distortion, the middle
row displays the detected characteristics without use of our method and the bottom row the

detected characteristics when our method is applied.

2.2 Beat Classification

In the every day medical practice when a cardiologist uses a long-term ECG to diagnose ischemia,
he examines two features in every available lead, the ST segment and the T wave. Our beat
classification method is based on rules that take into account the above features. More specifically
we consider three rules (ROWLANDS, 1982; GOLDMAN, 1982): The first one (Fig. 3) classifies the
beat as ischemic when the ST deviation is more than 0.8 mm (0.08 mV) below the isoelectric line
and has a slope (angle) larger than 65° measured from the vertical line. The ST deviation is
measured at the point J80 (J + 80 msec) when the cardiac rhythm is less than 120 beats/min or at
the point J60 (J + 60 msec) when the heart rate is higher than the previous threshold. The ST slope
is measured considering the line segment from J to J80 (or J60). The second rule (Fig. 4) refers to
positive ST segment deviations: when the point J80 (or J60) is more than 0.8 mm above the
isoelectric line then this beat is characterized as ischemic. The third rule (Fig. 5) refers to the T
wave inversion or flattening, eg: if at the initial beats of the ECG recording the T wave has

positive (negative) voltage (we use the first 30 seconds to extract the polarity) then all beats with



negative (positive) T wave voltage are classified as ischemic — also, beats with T waves of very

low voltage, compared to the T waves voltage of the initial beats, are classified as ischemic.

It must be noted that this method for beat classification is unreliable when the SNR is very low. In
such cases it is risky to perform beat classification due to the lack of reliable definition of the
isoelectric line and the J point. In noisy cases, even an expert doctor cannot decide safely if a beat
is ischemic or not. When our algorithm encounters artefacts (as an output of the first stage) it

ignores them and behaves as if these artefacts had never been met.

The beat classification method is summarised below:

Detection of ischemic beats

IF (J80 (or J60) < 0.08 AND slope = 65°) OR {rule 1}
(J80 (or J60) = 0.08) OR {rule 2}
(T is inverted OR T — 0) {rule 3}

THEN The beat is ischemic

ELSE The beat is normal

2.3 Window Classification

Once every beat in each lead has been classified as ischemic or normal, the next stage is to decide
whether a sequence of beats belongs to an ischemic window. According to ESC recommendations
(TADDEI et al., 1988), an ischemic episode is defined as a time period of no less than 30 seconds
containing ischemic beats. For this reason we have implemented a sliding adaptive window that
examines whether there exists a sequence of ischemic beats lasting more than 30 seconds. The

window is classified as ischemic if the same rule is valid for all ischemic beats in the window. If
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for example, there exist 15 seconds with positive ST deviation which are followed by 15 seconds
with T inversion, the window is not ischemic. The first window of the recording includes the
initial 30 seconds of the ECG signal and the sliding technique proceeds moving the window one
beat at the time, while always keeping its duration equal to 30 seconds. This means that we will
not have the same number of beats in all the windows but this number is adapted to the heart rate.
To make window classification less strict we use a threshold in the percentage of the ischemic
beats appearing in a window. If a window has more than 75% of ischemic beats, we consider that
it belongs to an ischemic episode. This percentage threshold is applied to avoid situations in
probable ischemic intervals where noise deteriorates the reliability of the feature extraction or to
handle cases where some beats in the window are close to be characterized as ischemic but are not

triggering any of the rules we use.

The sliding window classification algorithm is summarised below:

| Detection of ischemic windows

IF [(number of ischemic beats from rule &)/ (all beats)] = 0.75
THEN Window| k is ischemic
ELSE Window| £ is normal

(where k=1,2,3)

2.4 Identification of Ischemic Episodes

If a series of consecutive ischemic windows is identified then the left boundary of the ischemic
episode corresponds to the beginning of the first window in the series and the right boundary to
the end of the last window. However, in order to increase the flexibility of our algorithm, the

existence of time intervals of less than 30 seconds with beats that do not constitute an ischemic
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window is permitted in the above counting. Once all the episodes for each lead are detected, then

a merging technique is realised to define the overall episodes in the ECG recording.

The identification of ischemic episodes algorithm is summarised below:

Definition of ischemic episodes in each lead

IF Window'| k| is ischemic
THEN Start of Ischemic Episode’ = Start of Window'
WHILE Window/|  ; is ischemic OR

(End of Window'| ¢ | — End of Ischemic episode’) < 30 sec
DO

IF Window'| ;) belongs to an ischemic area

THEN End of Ischemic Episode’ = End of Window/| t;

ENDDO

(where £k=1,2,3
i=1,2, ..., number of ischemic episodes in each lead and

j=1, 2, ..., number of windows)

The complete flow — chart of our method is shown in Fig. 6.

3 Results and Discussion

We tested the proposed method using the European ST-T database. This database contains ECG

recordings with annotated ischemic episodes. To evaluate the performance of our method we use
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two common measures for ischemia detectors (JAGER, 1998). The first is the sensitivity (Se),
which measures the ability in detecting ischemic episodes. and the second is the positive
predictivity (PPA), which gives an estimation of how well ischemic and non-ischemic episodes

are differentiated,

Following the description of our method the main parameters are:

o Ischemic ST deviation (= 0.08 mm)

¢ Ischemic ST slope (= 65

* Percentage of ischemic episodes in a window in order to characterise it as ischemic (= 75 %)

*  Window duration (= 30 sec)

=  Maximum time interval to differentiate two consecutive ischemic windows (= 30 sec).

There are also secondary parameters involved in our method such as:

e The time at the beginning of each ECG used to extract the T wave polarity (= 30 sec)

* The maximum allowed time interval between two consecutive ischemic episodes in order to
merge them to one (= 30 sec)

¢ The minimum number of non-artefact beats in a window to proceed with the window
characterisation (= 10 beats)

* The slope criterion in detecting the J-point [30] (= 2.5 uV/msec).

We tested the performance of our technique using different parameter values. The performance of
our method is mainly affected by the main parameters. The best results were obtained for the

values indicated in the parentheses above.

From the episodes in the ESC 5T-T database we excluded those annotated ischemic episodes that
refer to alterations of more than 0.2 mV between the T wave amplitudes, since our medical
experts disagreed with this rule (ROWLANDS, 1982; GOLDMAN, 1982). Moreover, the ischemic

episodes were annotated separately for each lead and we performed a pre-processing in order to
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obtain an overall annotation (lead independent) of the ischemic episodes. We also found that in
some cases our method produced ischemic episodes, mainly short in duration, that were not
annotated as ischemic in the database. We consulted three cardiologists who evaluated those
episodes and their evaluation was taken into account in the assessment of our method. This is not
unusual, as similar practice has been reported previously of the proposed method (TADDEI et al.,

1995; VILA et al., 1997).

Using the 90 ECG recordings (592 ischemic episodes) the obtained sensitivity is 93.75% and the
positive predictivity 78.50%. The 90 ECG recordings can be separated in two groups (A and B)
based on the amount of noise. Group A (64 recordings) contains the ECGs with at most 10% of
noisy beats, the amount of noisy beats ranges from 0.67% to 9.56%, while group B the remaining
recordings, where the amount of noisy beats ranges from 10.69% to 99.82% (see Table 1). The

noise information is provided by the ESC ST-T database.

The performance of our method on clean (Group A) and noisy (Group B) recordings is shown in

Table 2, while the results per recording are given in the Appendix.

As Table 2 indicates, our method provides good detection results concerning both sensitivity and
positive predictivity. It is worth mentioning that the sensitivity is not essentially influenced by the
presence of noise. This indicates the efficiency of the employed noise handling method. Our
findings compared with other researchers results show the superiority of the proposed approach.
More specifically, the reported sensitivity for the ESC ST-T database set ranges from 71 % to
85.2 % and the reported PPA ranges from 66 % to 90 %. It must be noted that most of the works
refer to a subset of ECG recordings of the database (JAGER ef @/, 1992; STAMKOPOULOS ef al.,
1992; SILIPO ef al., 1994; TADDEI et al., 1995; VILA et al., 1997; STAMKOPOULOS ef al., 1998,
SiLIPG and MARCHESI, 1998). Also, it is worth mentioning that the techniques used in the above
references are based mainly on neural and statistical approaches. Such methods exhibit a serious

drawback compared with our knowledge-based approach, due to their inability to provide

14



explanations for their classification decisions. This inability constitutes a serious disadvantage
from the user’s (doctor’s) point of view, which expects from the decision system to supply him
with explanations for each classification decision it makes. It is well — known that neural and
statistical approaches do not provide this highly desirable feature (unless tedious further post-
processing is performed in the form of rule extraction). On the contrary, due to the knowledge-
based nature of every decision module in our system, the proposed method satisfies this important
requirement, and it is able to provide for each ischemic episode, the reason (rule) that led to that
decision. Also, our method exhibits additional desirable features, since it is simple, easily
implemented and fast. The last feature is of particular importance, because the proposed method

can operate in real-time mode providing on line decision support to the medical personnel.

The set of rules we use for beat characterisation is based on the modern understanding of ECGs
(ROWLANDS, 1982; GOLDMAN, 1982). We include rules based on T inversion or flattening and ST
slope from the vertical. We use T inversion in a novel way compared to others (AKSELROD ef al.,
1987, LAKS et al., 1989; CAIRNS et al, 1991; BAXT, 1991; BADILINI et al., 1992; OUYANG ef al,

1997), but we cannot assess their method since they use their own datasets.

The performance of our method can be further improved in terms of positive predictivity by
further refinement of the noise handling procedure. We noticed that we had difficulties in
recordings with very low SNR in the J point, the isoelectric line and T peak detection. In the last
case severe problems will occur when incorrect T peak detection happens at the beginning of the
ECG recordings (0122, e0139, e0163, e0170, e0204, 0205, e0411, 0601, 0604 and e0605)
since the sign of the T wave is determined incorrectly. The exclusion of those ten recordings leads
to a significant improvement of the PPA (Se: 95.32% and PPA: 87.31%). It must be noted that
modern ECG recorders and Holter devices include filtering modules so the output ECG signal has
better SNR than the signals contained in the database. It is obvious that our method will perform

better with such equipment.
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4 Conclusions and Future Work

We have proposed a novel technique for the detection of ischemic episodes in long duration
ECGs, which has shown good diagnostic performance in the ESC ST — T database. This is due to
several characteristics of the method such as: effective noise handling, beat classification using
up-to-date medical knowledge and flexibility in the definition of ischemic windows and ischemic
episodes. The method exhibits desirable features, since it is simple, easily implemented and can be
executed in real time. Also, the method is capable of providing explanations for the diagnostic
decision made. The performance of our method compares well with previous reported results

using the ESC ST-T database.

Future work will focus on further improvement of the noise handling procedure and in the
development of a database with annotated ECG recordings based on updated medical knowledge.
We are also highly interested in transferring the method to the clinical practice and evaluate its
performance in real conditions. Furthermore, we are in the process of developing a hybrid
intelligent system that appropriately combines the proposed method with artificial neural networks

to enhance diagnostic reliability.
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Appendix

Performance of our technique for all ECG recordings of the ESC ST-T database

SNR [ ECG [ Se (%) PPA (%) || SNR | ECG Se (%) PPA (%)
99.33 | 0103 104 777 104 i 954 el211 100 111 50 172
97.14 | e0104 100 14/14 100 14/14 94,64 | e0212 100 111 100 111
99.06 | 0105 100 66 100 66 82,35 | e0213 30 2/4 100 22
9942 | 0106 90 91 100 X9 96,32 ell302 100 10710 100 10410
80,44 | 0107 60 3/5 42,86 7 97.6 e(303 100 22 100 212
98,54 | 0108 100 15/15 100 15/15 98,72 e(304 100 177 100 T
93,72 | e0110 | 33,33 1/3 10D 171 94,18 | e0303 100 11 100 111
964 | ellll 100 (1) 100 66 92,83 | e0306 25 1/4 16,67 1/6
9542 | 0112 100 T 70 o 9944 | e(403 100 1717 94 44 17/18
044 | eD113 83,33 10/12 100 10710 98,75 el 404 100 i3 100 33
98.04 | 0114 100 15/15 100 15/15 96.76 | 0405 100 66 100 66
83,5 | e0115 | 92,31 12/13 100 1212 || 85,64 | 0406 100 212 50 2/4
9235 | 0116 | 66.67 213 50 274 97.43 | <0408 100 11 30 1/2
8082 | 20118 100 glrl 63,64 71 99,53 | (409 100 22 100 212
78,73 | 0119 100 O/G 75 912 96,33 | eld10 30 ) 100 141
8919 | 0121 100 33 &0 315 95,68 | eld411 71,43 57 41,67 512
98,97 | e0122 100 1/1 7,69 1713 99,78 | e(413 100 4/4 40 410
98,92 | 0123 100 313 100 33 74,08 | edd]3 100 o9 100 94
92.64 | «0124 | B8.89 85 100 88 100 e417 100 4/4 100 4/4
97.14 | 0125 100 4/4 6667 416 9935 | 0418 &5 17720 94 .44 17/18
97.04 | 20126 80 4/5 4444 4/9 9222 | e0501 100 i3 100 33
94.65 | 0127 100 88 B8.89 89 98,22 | 0509 100 22 100 22
95.07 | 0129 100 12/12 100 12112 || 83.35 | <0515 | 8571 &7 85,71 &/7
78.06 | 20133 100 1/1 100 171 £9,31 eflol] 30 24 16,67 22
94,18 | 0136 100 88 100 B8 97.4 elol2 100 11411 68,75 11/16
86,89 | 0139 100 212 11,76 217 9096 | ede03 100 33 100 33
96,22 | 0147 100 5/5 100 5/5 949 eleld4 | 5556 39 41,67 512
0,18 | e0148 100 18/18 G0 18720 || 99.36 | e0603 100 111 33,33 1/3
93,46 | 0131 94,12 16/17 100 16716 || 97.44 | ed606 100 3/5 83,33 36
94.26 | c0154 100 11411 100 11411 B8.5 e0607 100 Q% 100 99
5249 | e0135 100 55 100 35 97,1 e609 100 i3 100 313
51,53 | 0139 100 212 100 212 97.85 | 0610 100 515 100 515
92,92 | «0161 100 44 26,67 4/15 88.74 | 0611 100 3/5 100 A3
91,68 | «0162 100 212 66,67 23 75.68 | D612 100 4/4 30 4/8
94,68 | e0163 100 53 ik 46 M3 60,26 | ed6l3 100 5/5 100 55
98 el166 100 1212 80 12/13 B5.81 ellol4 100 ylri 100 "7
7171 | D170 0 01 0 0/5 9338 | edols 100 a8 100 88
93.58 | =0202 100 Q% 64,29 914 94,86 | <0704 100 17 100 "7
98,94 | <0203 100 9/9 100 GG 75.96 | <0801 0 0/4
95,39 | 0204 0 o2 0 03 36,9 e0808 100 14/14 100 14/14
85.63 | «0205 100 4/4 40 4/10 43,78 | <0817 100 16/16 100 16/16
97.89 | 0206 100 Qg 100 05 77.94 | =0818 100 14/14 100 14/14
08.06 | 20207 100 4/4 100 4/4 98,89 | el301 1040 4/4 100 4/4
92,89 | <0208 100 9/9 100 QG 9428 | el302 100 15/15 100 15/15
95,25 | <0210 100 313 75 3/4 97.07 | el3D4 100 111 100 1/1
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Table | ECG recordings groups

Group A e0103, 0104, 0105, e0106, 0108, €0110,e0111,e0112,e0113, 0114, e0116,
e0122, e0123, 0124, 0125, e0126, 0127, 0129, 0136, €0147, e0151, 0154,
el161, e0162, 0163, 0166, e0202, 0203, 0204, 0206, 0207, 0208, 0210,
e0211. e0212, 0302, 0303, e0304, e0305, 0306, 0403, e0404, 0405, e0408,
e0409, e0410, e0411, e0413, e0417, e0418, e0501, e0509, e0602, 0603, 0604,

e0605, e0606, 0609, 0610, e0615, 0704, 1301, 1302, e1304

Group B e0107,e0115,e0118,e0119,e0121,e0133, e0139, 0148, e0155, e0159, 0170,
e0205, e0213, 0406, e0415, e0515, e0601, 0607, e0611, e0612, e0613, el614,

e0801, e0808, e0817, 0818
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Table 2 (werall performance of our technigue for “clean” and noisy ECGs

Se PPA
Yo Episodes Yo episodes
Clean 04.26 394/418 80.74 394/488
Noisy 02.53 161/174 73.52 161/219
TOTAL 93.75 555/592 78.50 555707
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Fig. 1: The four-stage technique

Fig. 2: Derection of ECG characteristics in three types of noisy signals (top row), when the noise
handling method is applied (bottom row) or not (middle row)

Fig. 3: Negative ST deviations

Fig. 4: Positive ST deviations

Fig. 5: Twave inversion and flattening

Fig. 6: Flow chart of the overall technique
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