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Abstract

We present probabilistic models which are suitable for class conditional density es-
timation and can be regarded as shared kernel models where sharing means that each
kernel may contribute to the estimation of the conditional densities of all classes, We first
propose a model that constitutes an adaptation of the classical RBF network (with full
sharing of kernels among classes) where the outputs represent class conditional densities.
In the opposite direction is the approach of separate mixtures model where the density
of each class is estimated using a separate mixture density (no sharing of kernels among
classes). We present a general model that allows for the expression of intermediate cases
where the degree of kernel sharing can be specified through an extra model parameter.
This general model encompasses both above mentioned models as special cases. In all
proposed models the training process is treated as a maximum likelihood problem and
EM algorithms have been derived for adjusting the model parameters.

1 Introduction

Probability density estimation constitutes an unsupervised method that attempts to model
the underlying density function from which a given set of unlabeled data have been gener-
ated. An important application of density estimation is that it can be utilized for solving
classification problems. A technique for constructing such classifiers is based on the separate
estimation of the conditional density p(x|Cy) of each class Cp [3], which means that each
density estimation is carried out considering only the patterns of the corresponding class.
To classify a new pattern z, the conditional densities are combined with prior probabilities
P(Cy) through Bayes’ theorem and provide the posterior probabilities P(Cj|x):
p(z|Ck) P(Cy)
L p(z|Cr ) P(Crr)

A density estimation approach that has been extensively used in statistical pattern recognition

P(Cylz) =

(1)

is based on mizture density models [6, 13]. For such models efficient training procedures have
been developed based on the EM algorithm [2]. In classification problems separate mixture

models are employed to estimate the class conditional densities. Throughout this paper we



will refer to that method as separate mixtures. Nevertheless, we argue that more general
models for conditional density estimation can be derived in terms of shared kernel functions
where the class conditional densities are represented by a set of kernels which may contribute
to the estimation of the conditional densities of all classes. This is analogous to kernel sharing
in a typical RBF network.

In this paper, we first propose a model which comprises a special case of the RBF neural
network in which the basis functions are taken to be probability densities and the second
layer weights are constrained to represent prior probabilities. In this way, the outputs of
the RBF represent class conditional densities. This model is discussed in [1] where the basis
functions of the network are considered as a common pool of kernels that represent all the
class conditional densities. The discussion in [1] aims at showing how the activation functions
and the second layer weights of an RBF could be defined so that the outputs to be precisely
interpreted as posterior probabilities of class membership. In our case, as mentioned above, we
consider an RBF model whose outputs directly represent conditional density functions. This
interpretation of the outputs has given the opportunity to treat RBF training as a maximum
likelihood problem and derive an one-stage EM algorithm for adjusting the model parameters.
This approach seems to be more sophisticated than the unsupervised learning technigues
typically used for finding the basis function parameters [1]. Because of the similarity with RBF
network we call this model probabilistic RBF (PRBF) [12]. The PRBF model is presented in
Section 2.

Moreover, we have further extended the PRBF model and developed a more general
one, called APRBF, that allows to express intermediate models between PRBF and separate
mixtures. This model is derived from PRBF by introducing a special parameter (denoted
by A) which adds constraints to the model parameters in order to adjust kernel sharing
among classes. As discussed in detail in Section 3, the role of parameter A is to control the
contribution of each kernel to the density estimation of each class. For this model we have
also developed an EM algorithm for the adjustment of its parameters.

In Section 4 we demonstrate the effectiveness of the proposed methods using both artificial
and real data sets and provide comparative results with other methods. Finally, Section 5

contains conclusions and research directions for future enhancements.

2 The Probabilistic RBF Model

Consider a classification problem with K classes and a training set X = {(z", k"), n =
| R N} where =" is a d-dimensional pattern and k™ is an integer in the range (1, K) in-

dicating the class of the pattern z™. The original set X can be easily partitioned into K



independent subsets X} so that each subset contains only the data of the corresponding class.
Let N; denote the number of patterns of class Ci, ie. Np = |Xi|.

Assume that we have a number of M kernel functions, which are probability densities,
and we would like to utilize them for estimating the conditional densities of all classes by
considering the kernels as a common pool. Thus, each class conditional density function

p(x|Cyk) is modeled as
M
pelCh) =) mp(aly), k=1... K (2)
=1

where p(z|j) denotes the kernel function j, while the mixing coefficient m;; represents the
prior probability of the pattern = having been generated from kernel j. given that it belongs

to class Cy. The priors take positive values and satisfy the following constraint:

M
ijk=1, k=1,.... K. (3)
=

We will find it useful to introduce the posterior probabilities expressing our posterior belief
that kernel j generated a pattern x given its class C.. This probability is obtained using the

Bayes’ theorem

. Tjkp(z]7)
P(j|Ck,z) = =—F———. (4)
)= S maelald)
Obviously, the posterior probabilities sum to unity
M
Y P(ilCrz) = 1. (5)
j=1

In the following, we assume that the kernel functions are Gaussians of the general form
N ! ! A\Ty-1y,
p(zli) = WE‘XP{—§(I — pj) E_;' (x— FJ}} (6)

where p; € R? is a vector representing the center of kernel j, while £; represents the cor-
responding d x d covariance matrix. The whole adjustable parameter vector of the model
consists of the priors and the kernel parameters (means and covariances) and we denote it by
f.

It is apparent that the PRBF model (Fig. 1) is a special case of the radial basis function
network where the outputs correspond to probability density functions and the second layer
weights are constrained to represented prior probabilities. Furthermore, the separate mixtures
model can be derived as a special case of PRBF. This is illustrated in Fig. 2. The PRBF
kernels are partitioned into K disjoint groups with each group corresponding to a specific
class. In this sense, each kernel j is associated with only one class C'(j) and the separate
mixtures model is obtained by setting all the prior probabilities of a kernel equal to zero,

except for the prior corresponding to class C(j).
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Figure 1: The architecture of the probabilistic RBF network.

Class K nodes

Figure 2: The separate mixtures model as a special case of the probabilistic RBF network.



2.1 Derivation of the Log-likelihood Function

Let P(Cy), k = 1,...,K be the prior probabilities of the classes. In order to use Bayes’
theorem (1) for unlabeled input data first we have to specify appropriate values for both class
priors and the parameter vector #. In our case, the maximum likelihood procedure is proven
to be directly applicable. Assuming that all data have been independently drawn from an
underlying process, we write the likelihood function in the form

N

p(X|8.P(C1),.... P(Ck)) = [] p(z". Cin) (7)

N
L(8, P(C1),...,P(Ck)) = }_ logp(z", Cin). (8)

n=1

Now, using that p(z, Cx) = P(Ci)p(z|Cx) and also the fact that the data set X consists of K

independent subsets with N elements each, the above quantity takes the form

K K N
L, P(C1),..., P(Ck)) = 3 Nelog P(C) + 3 3 log p(a"[Ci). 0
k=1 k=1rn=1

Apparently, the two terms above can be maximized separately as they do not contain common
parameters. Maximization of the first term yields
Ny

P(Cy) = N

e=1....K (10)

while the maximization of the second term is equivalent to PRBF training. Consequently,

the log-likelihood function suitable for the training of the PRBF network is given by

K N

L) =Y 3" logp(z"(Cw). (11)

k=1n=1
To maximize L(@) it is possible to employ nonlinear optimization techniques, however, it
would be desirable to show that the iterative EM algorithm is applicable in this case. In
the following we describe our approach to maximization of the above likelihood using the
EM algorithm and we show that in the case of Gaussian kernels each iteration of the EM

algorithm is performed analyticallv.

2.2 Applying EM for Training the PRBF Network

The EM algorithm [2] is defined as a very general technique for maximum likelihood estima-

tion. The algorithm is applicable in caces where we seek maximum likelihood estimates in the



presence of unobserved variables. Several extensions and also many applications of the EM
are presented in [7]. Before presenting our EM approach for training PRBF. we will briefly
review the basic properties of the EM algorithm.
Assume that we have a set X of observed data, called incomplete data, and a set of
unobserved variables Z which along with the observed data constitute the complete data
= (X, Z). Furthermore assume that p(X|0) and p(X, Z|#) are the probability densities of

the incomplete and complete data, respectively, parameterized on #. It follows that
p(X|8) = f (X, Z|9)dZ (12)

The EM algorithm approaches the problem of maximizing the incomplete data log-likelihood
function L(#) = log p(X|f) indirectly, in terms of the complete data log-likelihood function
L.(8) = logp(X, Z]0). More specifically, the EM starts from a initial parameter guess and
proceeds iteratively performing alternatively two steps: the E-step in which the algorithm
calculates the expected value of the complete data log-likelihood function (with respect to

the unobserved variables) given the current parameter vector #{) and the incomplete data X
Q(818") = E{L.(6)|X,6"} (13)

and the M-step, where the old parameter vector 8(*) is replaced by 8+!) obtained by maxi-
mizing Q(6|6*)).

In order to apply the EM algorithm to maximize (11) we must first express the unobserved
variables. Similarly to the EM framework for mixture models [10], the problem we have to
overcome is that each pattern is not followed by a label indicating the kernel responsible
for having generated it. To express this missing information we introduce for each pattern
z™ a variable z" which is a M-dimensional vector indicating the kernel that generated z™.

More specifically, if z" was generated from kernel j, then z7 = 1, otherwise z] = 0. The

3
set of the unobserved variables is £ = {z", n = 1,..., N}, while the complete data set is
Y = {(z",k".2"), n=1,...,N}. The log-likelihood function of the complete data is given
by
J"lk
L.(8) = Z 21 le log mjp(z"|7)- (14)
=1 = =

At iteration t + 1 the expected value of the 27 (given z™) is equal to the posterior probability
P®)(j|Cyn, z™), where t denotes that this probability has been computed using the current
parameters %), It follows that the function Q takes the from

Ne M

Q(6)6) = Z 35 PO(|Ck, a") {log mj + log p(z"5)} (15)

k=1n=1j=1



It can be shown that the maximization of @ can be carried out analytically. If we write the
function Q as Q = @ + Q2 where

K N, M
@1016®) =333 PUGICL, ™) log 7k (16)
k=1n=1 j=1
and
K N. M
Q2016®) =3 3" %" PU(|Ck, ) log p(” 1) (17)
k=1n=1j3=1

then we can maximize separately the above quantities since they do not contain common
parameters. In order to maximize ()7 we must take account of the constraints involving priors
(3). Therefore, we introduce K Lagrange multipliers and the quantity Q¥ to be maximized
takes the form

K M
QL (66™) = Q1(816)) — > A (Z Wik = 1) : (18)
=1 \j=1

Expressing the derivatives of Q{' with respect to priors 7., we easily obtain A, = N, k =
l.....K. Also the differentiation of (J; with respect to the kernel parameters leads to the

following update equations:

1) _ They Taky PO(|Ck, )"

= . (19)
T DK TRk POGICK 2)
s+ _ Zhoy Tty POGICK 2) (2" — ™)@ — )T -
g TE., Tary PO(GICE, z°)
@y 1 <
t+ : -
= g L PO k=1 K (21)
where j = 1,..., M. Starting from an initial parameter vector, we first calculate the posterior

probabilities and then we update the parameter values using the above equations (19)-(21).
We perform these steps alternatively until convergence.

In the following, we summarize the training algorithm for the PRBF network:
1. Specify the number of kernels M and the initial parameter values.

2. E-step: For each training point (z",k™) € X compute the posterior probabilities
P (j|Cn,z™), j=1,..., M, from (4) using the current parameters 8t

3. M-step: Find the new parameter vector §**!) from equations (19), (20) and (21) re-

spectively.

4. Tterate going to step 2 until a local maximum of the log-likelihood (11) is reached.



When an RBF neural network is employed for classification problems, the parameters of basis
functions are typically specified by unsupervised techniques such as the K-means clustering
algorithm or Gaussian mixture modeling with EM. After the basis function parameters have
been computed, the second layer weights are optimized rapidly using supervised learning.
However, the determination of the basis functions parameters using unsupervised learning
techniques cannot be regarded as an efficient approach, since it does not make use of class
labels and therefore it might lead to undesirable situations. For example, after unsupervised
training, it is possible for a kernel to represent data of several classes, even if these classes
are linearly discriminated and given that the number of kernels is large enough to sufficiently
represent the data. As it is shown in the next section, the proposed EM algorithm for PRBF
training generally does not adjust the kernel parameters similarly to unsupervised learning

methods, but there is an active competition among classes concerning kernel allocation.

2.3 Adjustment of Kernel Parameters in PRBF Training

According to equations (19) and (20) the means and covariances of each kernel are updated
using data from all classes. This may cause confusion concerning the operation characteris-
tics of the algorithm. At first glance, the algorithm seems to adjust the kernel parameters
estimating the distribution of all data, that is similar to unsupervised techniques. However,
as it is shown next by writing the equations (19)-(20) in a suitable form, the algorithm works
quite differently giving emphasis to the classification problem.

The posterior probability that a pattern = belongs to class Cj, given that it has been
generated from kernel j. can be expressed as

734 P(Ck)
Yii=1 T P(Cr)

and is independent of z. Apparently Ef=1 P(Ci|7) = 1. The probability P(Cy|7) can also be

P(Cils) =

(22)

interpreted as expressing the degree at which kernel j represents data of class Cj.
Let now assume that the algorithm is at iteration £ + 1 and the the E-step has been
completed. We introduce the variables %L"‘” and Ej.:’:"ll j=1,... M,k=1,..., K, which

represent means and covariances matrices respectively as follows:

s TN POIC, )z

o = el 23
1 Tty PO(|Cr, z7) e

. J"-'-i Pl:i'l C ™) (2" — (_t--].::l " — |:_I+1:I v
E;i+1j= n=1 (71C, z™)( Mk ) il ) _ (24)

¥ PO(j|C, z)

Using these notations, we can express the EM update equations in an appropriate form. If we

let the parameter wj; denote either the mean ;i or the covariance matrix X, and, similarly,



the parameter w; denote either y; or ¥;, then we can write that

ey _ Sho {Sak POGIC 2 pui™

; 25
’ Yhe1 Tnky PO(|Cr, z) g
Using (21), (22) and also (10) we finally find that
+1) {t+1)
we)  The1{Tn P(Ci)}w K s )
ur}f'-"l’ _ k=1 {Kjk TS } ik e Z Plft-z—l}(cklj)w;i"'l,l {25'}
k=175 P(Ck) k=1

The above equation indicates that the parameters of kernel j at iteration t + 1 constitute
the expected values of the variables pgi_:l} and E;LH]. k=1.....K, with the corresponding
class probabilities given by (22). Consequently, the new parameter values w; of the kernel j
obtained from an EM iteration during PRBF training can be interpreted as the mean values
of the corresponding parameters w;; that are obtained from K underlying EM procedures.
Each EM procedure corresponds to a specific class Cy and updates the parameters w;; using
only data of class Cj. This suggests that each class €}, competes to 'allocate’ a kernel j (ie.
setting w; closer to wji) and this competition is expressed in terms of the values P(Cylj).
For example, if there exists a class C} having high value for the probability P({Cy|j). the new
parameter values of kernel j will be close to those values obtained from the EM iteration
considering the data of the class Cl..

In the following we illustrate through an example how the algorithm operates compared to
unsupervised learning. We have created a simple synthetic two-dimensional data set that is
a mixture of three Gaussian kernels. Two of the Gaussians correspond to the first class
and the third to the second class (Fig. 3). We applied the EM algorithm for training
PRBF (supervised training) and also the EM for density estimation ignoring class labels
(unsupervised training). In both experiments, two kernels were used with common parameter
initialization. As Fig. 3 indicates, the EM algorithm for training PRBF places one of the
kernels in a sensitive way so as to represent all data of the first class, while the unsupervised
training places the kernels so as to approximate the density of all data. A serious implication
of the above remark is that the PRBF model is expected to have superior generalization
performance compared with an RBF network trained using a two-stage procedure where in
the first stage usupervised learning is applied. This superiority is also clearly illustrated in

the experimental results discussed in later section.

2.4 Comparison between PRBF and Separate Mixtures

As stated previously, the training of the PRBF model follows different principles compared to

unsupervised learning. The same holds when comparing PRBF with the separate mixtures
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(b)

Figure 3: Illustrates the data of two classes and the location of the Gaussian kernels (repre-
sented by circles where the radius is equal to standard deviation) after (a) training a two-kernel
PRBF with the EM algorithm and (b) training a two-kernel mixture model with EM.
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approach. There exist cases where PRBF provides results similar to separate mixtures. For
example, such a case is the synthetic data set illustrated in Fig. 3. If we utilize a separate
single kernel for estimating the conditional density of each class, we will obtain almost the
same representation with that obtained from PRBF with two kernels. Nevertheless, in the
following we discuss two cases where in the first one the PRBF represents the data more suffi-
ciently than separate mixtures, while in the second the separate mixtures technique provides
better representation of data than PRBF. We assume that both PRBF and separate mixtures
utilize two kernels.

In the first example, assume that we have a two-class problem and the data set is displayed
in Fig. 4. The data are arranged in two distinct regions, where in each region there exist
many patterns of one class and few patterns of the opposite class. If we separately model
each class conditional density by a single Gaussian kernel, then (as shown in Fig. 4(a)) we
do not obtain a good representation of the actual densities. Obviously, this is due to the
fact that a single kernel is not adequate to model the density of each class. On the other
hand, the PRBF model with two kernels adjusts the kernel parameters so that the conditional
densities are adequately modeled (Fig. 4(b)) and associates each kernel with both classes by
appropriately adjusting the prior values. Note that in order to obtain the same representation
using separate mixtures we need four kernels, that is two kernels for each mixture model. The
above example implies that in cases where the data of different classes are highly overlapped,
the PRBF may utilize the kernels more efficiently than the separate mixtures approach.

The data of the second example are displayed in Fig. 5 where we can observe that the
first class data arise from one kernel, while the second class data arise from two distinet
kernels. As shown in Fig. 5(a), the single kernel functions provided by a separate mixtures
mode] represent the data more adequately compared to the PRBF solution. As illustrated
in Fig. 5(b), PRBF does not manage to find a solution similar to that of Fig. 3 because the
two regions of the second class are widely separated. This example shows that there exist
cases where it is desirable to have a separate set of kernels devoted to represent data of each
class. Finally, a general remark which can be drawn from the previous examples is that by
combining properties of shared kernel models with those of separate mixtures, we can develop

more general and efficient models for class conditional density estimation.

3 Intermediate Models between PRBF and Separate Mixtures

As pointed out in Section 2, the separate mixtures model can be considered as a constrained
special case of the PRBF model. In the same way, the EM updates used for separate mixtures

training can be obtained from the EM updates for training PRBF simply by setting some
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Figure 4: Displays the data for a two-class problem and the final solution found (a) using
separate single kernels and (b) using a PRBF network with two kernels. Is is obvious that
PRBF utilize the kernels so that to represent sufficiently the data.
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Figure 5: Displays the data for a two-class problem and the final solution found (a) using
two separate single kernels and (b) using a PRBF network with two kernels. In this case the
single kernels give better representation of data than PRBF.
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prior probahilities to zero.

We have also shown in the previous section that, depending on the data. the PRBF model
may or may not provide better results compared to separate mixtures. From this point of
view, it would be very interesting if we could express intermediate models between PRBF
and separate mixtures for conditional density estimation. In this spirit, we have devised the
APEBF model described next.

The APRBF model is actually a PRBF model, ie. they exhibit no difference in operation,
once they have been trained. The main difference lies in the training process employed in the
case of the APRBF model.

In the APRBF model there is an additional parameter A (assuming values in [0, 1]), which
is incorporated in the training process to control the degree of sharing of each kernel. More
specifically, for a problem with K classes, the M kernels of a PRBF model are partitioned
into K disjoint groups Ty, k = 1,.... K, so that the group T}. corresponds to class Cj. and
[Ty + ...+ |Tx]| = M. We wish that the kernels of group T} would fully contribute to the
density estimation of class Cj, while they would contribute less (depending on the value of
A) to the density estimation of the other classes. To express this preference we introduce the

following function

n(@IC) = X mup(ali) + A X maplali), k=1,...,.K (27)
JET: €T
where the expression j € Ty denotes all kernels of the set | Jis; Tyr. It is important to note
that the priors ;. satisfy the constraints (3), except for the case when A is zero, where by
definition it holds that

Y mpel, E=l.. K (28)
JET,

Obviously, the function py(x|Cj) is not a probability density, (since 3. er, T+ A X 2y, ik <
1). except for the cases when A is one or zero. This function is only defined for training
purposes and must be distinguished from the class conditional density p(z|Ci, A) provided
as output of the APRBF model (after training). The function p(z|Cj, A) is computed in the
usual PRBF way (2), ie. the parameter A is not involved in the normal operation of the model.
The parameter A is included in the definition of p(z|Ck, A) just to denote its involvement is
the training procedure.

The role of A is to specify an a priori (user defined) preference that the model would be
close to PRBF or to separate mixtures. Letting A obtain values from one to zero, we move
from the case of full sharing of kernels among classes (PRBF) to the case of no sharing of

kernels (separate mixtures). More specifically, if A is closer to zero, the kernels of group

14



T;. will be used more for representing the conditional density of the class C and less for
representing the densities of the other classes. In the opposite case, when A is closer to one,
the kernels of T have more freedom to contribute to the estimation of all conditional densities.
In other words, through the specification of A, it is possible to impose a priori constraints
to the grouped kernels, which express how much each group is available to contribute to the
conditional density estimations of the other classes. In this sense, A can be considered as a
special tvpe of hyperparameter, since it controls the adjustment of the rest of parameters.
Based on functions (27), we can introduce the posterior probability of a pattern x of class

C. having been generated from kernel j as follows

Tieplxli) e
o = hae(x), fjeT,
PA(jiCeo) = { Ry~ e - BicT (29)
m = .lhjk{r}, if j 2T
which satisfv
M
Y PilCh2) = 3 k() + 2 T hj(z) = L. (30)
=1 €T JeT%
The introduced notation h;; serves as a means of making the above definition and also the
EM algorithm presented below more easily understandable. It is apparent that the posterior

values are in general higher for the kernels of group T rather than for the rest of kernels since

in the latter case the posteriors are not penalized by the parameter A.

3.1 EM Algorithm for \PRBF

The training of the APRBF model can be formulated as a maximization problem of the
following function
K N

Ly = lugH Hm z"|Ci)

=] n=1
NJ,

= Zzlugm (z"ICw) (31)

=1ln=
subject to the constraints (3) concerning the priors. The above function can be regarded as
a penalized form of the corresponding likelihood defined by (11). However, it must be noted
that the penalties or parameter constraints are not expressed through the introduction of an
additive term (a prior distribution) [3, 7], but are embedded in a novel way into the functional
form of the original likelihood.
The same EM framework presented in Section 2.2 can also be applied in this case. The

log-likelihood function of the complete data is

Lc(8]A) = Z Z { D Zlogmup(a™li) + Y 27 log Amjup(z" IJJ'} (32)

=1n=1 | jeTy i€Ty
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and the function @ to be maximized in the M-step is written as follows:

K N
QI N = 3 { > P(i|Ck, 2 log mirp(z™[) + 3 PO (51Ck, &) log Amjup(” 1)

k=1n=1 | jeT} JeTy
K Nk J"f f

=¥ ZPI (4ICx, 2z"™) log wjap(="5) +log A 3 P37 (jICk, ")
k=1n=1 8Ty
K Ny « K N 2

- ZZZP '(71Ck, ™) log mikp(z") +1og A" ¥ 3 PGk, 2. (33)
k=1n=]j= k=1n=1 ;T

The second term of (33) does not contain any adjustable parameter since A is fixed parameter
and therefore can be discarded. Using (29) the M-step requires the maximization of the

function
Q816" A Z Z { Y il logmup(znli) + 2 3 A Iogﬂjwcfsﬂ}. (34)
=1n=1 | jeT} i¢T:

Maximizing (34) is straightforward and it can be carried out in a similar way to that presented

in Section 2.2. Finally, the following update equations are obtained:

i n N Yy T
1h1) _ Tonti AR (E™)2" + A T Tan b (2™)z

T N (35)
' TN A5 (E™) + AT sk Tt B (27)
Ny .
s+ _ Tnka R (2" + A T Toy b (2" (36)
N
' EQ‘Lhﬁ?{iﬁ"}+l&=#2nhhjka{ )
i
L) ‘:';En_1 Kz, R =k "
Tk = s N p® ony ie bt 2k (37)
o A it jj.f[ ), i =

where j € Ti.. k= 1,..., K and w" abbreviates the expression (z” —;A_EH_I}}{;]:" ~ #5_1‘-"‘1]}’1"1 The
above equations actually differ from the corresponding of Section 2.2 only in the definition
of the posterior probabilities which now are given by (29). An interesting issue is that the
penalty mechanism (realized through A) affects only the E-step of the algorithm. This differs
in principle from the case of other penalized EM procedures where the penalties (expressed
through a separate prior distribution) affect the M-step, while the calculation of the function
Q remains unchanged [5].

Finally, the EM algorithm for training APRBF is summarized as follows:
1. Specify the number of kernels M and the initial parameter values.

2. Set the parameter A to a fixed value and specify the groups of kernels Ty, k = 1.... K.

16



3. E-step: For each training point (z", k") € X compute the quantities hﬁﬁn{r“}, j =

1,...,M, from (29) using the current parameter values.

4. M-step: Find the new parameter vector #*!) from equations (35), (36) and (37) re-

spectively.
5. Iterate going to step 2 until a local maximum of the log-likelihood (31) is reached.

It is straightforward to verify that for A = 0 the above algorithm reduces to K independent
EM procedures associated with the separate mixtures case, where the conditional density of
the class C} is modelled by a mixture containing the kernels of group T}.. Also in this case the
special constraints concerning priors (28) are explicitly satisfied due to and (30) and (37). In
the opposite extreme case where A = 1, the update equations reduce to those corresponding
to PRBF (Section 2.2).

3.2 Averaging over A

From the previous presentation, it is obvious that the employment of the APRBF model
requires the specification of the parameter A. Nevertheless, it is not clear how we can find
a optimal value for this parameter. Probably, we could define a suitable prior distribution
(or a regularization term) over the parameters and jointly maximize the likelihood and the
prior to find an optimal A value. However, the specification of such a prior function seems
to be problem dependent according ot the discussion of Section 2.4. Therefore, we have
implemented an alternative scheme that is based on a multi-net approach that combines
the decisions of several models [11]. More specifically, we train several APRBF networks for
different A values. To classify a new pattern we combine for each class (through averaging)
the density estimations p(z|Cy, A) provided by the several models.

Performing averaging over A is also motivated by a Bayesian perspective [9]. In the
Bayesian fremwork, once the posterior distribution of the model parameters has been inferred,
then any model related quantity can be computed through integration of this quantity with
respect to the posterior distribution. In our case, once the distribution p(A|X) (for a given
data set X) has been specified, then the conditional density p(z|C}) for a new pattern zV+!

can be exressed as i
P 0L = [ paVICk NP(IX)dA. (38)
0

Now, if we choose a set of values {X;, i = 1,.... L} for the parameter A and obtain the

corresponding estimations of the class conditional densities through training the APRBF
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model (for each value A;), then we can approximate (38) with the following average:

L
; 1 o
p(z"*H0k) & 7 3 p(@" T [Ci ). (39)

i=1
In next section it is shown that performing averaging using few A; values leads in some cases

to significant improvement of generalization performance.

4 Experimental Results

To assess the classification performance of the proposed shared kernel models. we have con-
ducted a series of experiments on well-known classification data sets. We have implemented
and tested the APRBF network for various choices of the parameter A. The form of kernel

functions we used in all experiments is that of spherical Gaussians, (ie. £; = JJE-I ) defined as

plzly) = “i—,.—exp{-w}- (40)
v (2mo3)d 203

Furthermore to illustrate the idea of integrating out the parameter A, we also implemented
the modular approach, where simple averaging is performed as described in equation (39).
In addition, for typical comparison purposes, we have used the implementation of two-stage
training for classical RBF networks available in the Netlab toolbox [8]. According to this
implementation, in the first stage the basis functions parameters are determined by fitting
a Gaussian mixture model using EM, while in the second stage the basis functions are kept
fixed and the second layer weights are computed by a solving a linear system. However, it
must be stressed that our purpose is mainly to test the APRBF network as tool for class
conditional Gaussian mixture modeling and not to perform comparisons with classification
models that are based on function approximation (as is the RBF model).

In our experiments we have considered data sets the ESPRIT Basic Research Project
ELENA (no. 6891) [4]. We have selected one artificial data set (Clouds) and two real data
sets, namely Satimage and Phoneme.

To assess the performance of the several models for each problem we have selected the
5-fold cross-validation method. For each problem the original set was divided into five inde-
pendent parts (holdouts), where each holdout was created using randomly selected patterns
from the original set. Moreover, care was taken so that each part maintained the original
proportions among the data of different classes (ie. the class priors). Using these holdouts,
five pairs of training and test sets were constructed by keeping one of them for testing and
joining the other four to form a training set. For each problem the results reported in the

tables correspond to the average test error for the five pairs of training and test sets. We
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Figure 6: Illustrates the data of the clouds data set.

present results for several numbers of kernel functions which in all cases are multiples of the
number of classes. We adopted this convention, because we would like the groups used by
APRBF to contain an equal number of kernels, since we assumed no prior information con-
cerning the complexity of the data of each class. The kernels of group T} were initialized
using training patterns of the corresponding class Cj.. and all models were tested under the
same parameter initialization. Moreover, the bold numbers in each table indicate the model
that provided best average performance for a specific number of kernels.

We first tested the algorithms using the two-dimensional Clouds data set (with two
classes), which consists of 5000 patterns of two classes with equal class proportions. As
illustrated in the graphical representation of this data set (Fig. 6) the two classes are highly
overlapped. As Table 1 indicates, the RBF network provides high error, due to the improper
way with which unsupervised learning for hidden layer places the kernels in the data space.
On the other hand, the PRBF (A = 1) gives the best generalization performance for almost
all numbers of kernels.

The Satimage data set contains 6435 36-dimensional patterns belonging to six classes.
The ELENA database provides also a five-dimensional description of this data set which
was obtained using discriminant factorial analysis. This five-dimensional version of Satimage
we use in our experiments. Performance results are displayed in Table 2. Table 3 displays
the corresponding performance results for the Phoneme data set which contains 5404 five-
dimensional patterns belonging to two classes.

From the presented experimental results, it is clear that the APRBF network is more

effective than the classical RBF network. Moreover, there is no clear conclusion that can be
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Number of kernels
Algorithm 8 10 12 14 16
REBF 23.5 23.2 | 2204 | 22.04 | 21.95
I A=0 | 1184 | 11.16 | 10.74 | 10.66 | 10.56
[ A=025 | 11.92 | 11.18 | 10.84 | 10.76 | 10.68
A=05 |11.26 | 10.94 | 10.76 | 10.68 10.6
A=0.75 11.32 | 11.14 | 10.66 | 10.72 10.6
=1 11.26 | 10.72 | 1068 | 10.52 | 10.54
| Averaging | 11.48 | 109 | 10.72 | 10.66 | 10.64

Table 1: Results on Clouds data set.

Number of kernels
Algorithm ] 10 12 | 14 16
RBF 245 | 2457 | 24.00 | 24.12 | 24.08
A=0 21.27 | 20.59 | 20.20 | 2053 | 2024
A=025 | 22.38 | 20.81 | 19.85 | 19.94 | 20.03
A=0.5 21.75 | 21.03 | 20.74 21 20.64
A=075 | 2157 | 21.53 | 22.06 | 21.42 | 21.27
A=1 21.51 | 21.46 | 21.62 | 21.53 | 21.42
Averaging | 20.94 | 20.44 | 20.33 | 2064 | 20.35

Tahble 2: Results on Phoneme data set.

drawn concerning the performance of the PRBF (A = 1) and the separate mixtures model
(A = 0). An important conclusion is that in many cases better performance results are
obtained for intermediate values of A and, also, that the multi-net approach, although more
computationally expensive, constitutes a technique that on average seems to provide the best

performance results.

5 Conclusions and Future Research

We have presented probabilistic models for class conditional density estimation, that are based
on the idea of kernel sharing among the classes, which is in direct analogy with the classical
RBF network. In this spirit we have presented the PRBF network and developed an EM
algorithm for fast and effective PRBF training.

Moreover, we further extended the above idea and proposed a more general model (the
APRBF network) which allows for controlling the degree of sharing of grouped kernels among

the classes. This general model constitutes a unifying framework for treating mixture models
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Number of kernels
Algorthm | 12 | 18 | 22 | 30 | 36 |
RBF | 1651 | 15.85 | 14.07 | 14.28 | 14.15 |
A=10 15.14 | 14.80 | 1397 | 1345 | 13.56 |
A=025 | 15.87 | 14.90 14 12.95 | 12.74 ||
A=10.5 15.90 | 15.14 | 14.12 | 13.28 | 12.99
A=0.75 | 16.20 | 15.62 | 15.17 | 14.42 | 1434
A=1 15.87 | 15656 | 15.15 | 14.70 | 14.28
Averaging | 14.4 | 14.04 | 13.56 | 12.71 | 12.28 |

Table 3: Results on Satimage data set.

for classification and encompasses as special cases both the PRBF network (for A = 1) and
the traditional separate mixtures approach (for A = 0). We also developed an EM algorithm
for efficient training of the APRBF network. Since the performance of the model depends
drastically on the value of A (which is problem dependent and must be specified by the user),
we also proposed a multi-net approach where several models are constructed for different
values of A and the network outputs are combined to classifv a new pattern.

Current and future research is focused on two directions. The first is the development of a
more flexible model that will allow for the separate specification of the degree A;; with which
the kernel j is allowed to contribute to the conditional density estimation of class C).. Besides,
it is of significant importance to develop training algorithms that will automatically adjust
the value of A. The second research direction is related to the development of algorithms
that dynamically adjust the number of kernels. Specifving the number of basis functions is
an important open research issue in RBF training and mixture modeling, and our aim is
to check the adaptation and applicability of the several techniques proposed so far in the
framework of the PRBF network [14, 13].
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