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Abstract

In this work the analysis of wave propagation in human long bones of arbitrary cross section with cavity filled
with bone marrow is presented. We approximate the behavior of the cortical bone with a solid piezoelectric cylinder
of erystal class 6 and the bone marrow with an incompressible viscous fluid. The three - dimensional theory of
piezoelectricity, and the Gauss equation, are used to describe the behavior of the bone. The properties of the bone
are introduced by its stiffness, piezoelectric stress and dielectric matrices. The motion of the fluid in the cavity is
described by the Navier Stokes equations and the continuity equation. We propose a wave - type solution for the
solid and fluid which is combined with the appropriate boundary conditions. The system is considered to be stress
free and coated with electrodes which are shorted on the outer surface, while continuity of fields is required on the
interface between fluid and solid. The frequency eguation, which is applicable for the irregular shape, has been
obtained by making use of the Fourier expansion collocation method. The latter gives the relation between angular
frequency, attenuation and wavelength which can be solved numerically in the complex plane.
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1 Introduction

The study of wave propagation in human long bones provides with useful data on monitoring and controlling fracture
healing or other processes in bone fracture and distraction osteogenesis [1]. It is also known that electromagnetic pulses
and ultrasound are used in the acceleration of the above processes [2]. The bone behaves like a piezoelectric material
of crystal class 6 with the axis of symmetry corresponding to its long axis and this has been justified experimentally
[3]. The wave propagation in long bones has been studied by several authors [4] - [8], but to our knowledge no previous
attempt has been taken to account for the existence of bone marrow. Its study introduces an additional difficulty
which is related to the fact that it has viscous properties which not only increase the degree of difficulty, but also
introduce complex terms. The first increases the mathematical complexity of the problem and the second makes the
numerical treatment much more difficult.

In a recent paper [9] we have studied the wave propagation in a piezolectric cylinder of arbitrary cross section with
a cavity of arbitrary shape, using the Fourier expansion collocation method proposed in [10]. We have succeeded to
have a relation between angular frequency and wavelength for various geometries and system parameters. The results
abtained were very close to those reported experimentally.

In the present work we have tried to combine the findings of this previous contribution with the inclusion of bone
marrow in the cavity of arbitrary cross section. The mathematical modelling for the solid cylinder is based on the three
- dimensional theory of piezolectricity, while the linearized Navier - Stokes equations and the continuity equation have
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Figure 1: The Problem Geometry.

been employed to describe the dynamic behavior of the fluid. The harmonic wave - type solution to the field equation
of the solid and the fluid was found following a method used in [9]. The coefficients introduced must be determined
using the boundary conditions. We consider that the outer surface of the bone is stress free and coated with electrodes
which are shorted. For the inner surface we consider continuity of stresses, displacements and electrostatic potential.
Those boundary conditions introduce certain simplifications to the problem which are related with the surroundings of
the bone. In our approach we do not consider that the bone is supported by muscles or ligaments. For the boundary
conditions on those surfaces which are of arbitrary shape, we have implemented the Fourier expansion collocation
method [10]. This leads to the determination of the frequency equation which must be solved numerically in the
complex plane.

The approach presented is the most general one, since it can be applied to various bone shapes and bone dimensions
when the bone cross - section does not change along the bone axis. The common practice is that the geometry of the
bone is obrained from CT using 3-D reconstruction.

2 Mathematical Description

The geometry of the problem is shown in Fig. 1. Since long bones (like the human fermur) have a trabecular structure
and the experimental observations did not show any wave reflections at the end points [5], the long human bone can
be modelled as an infinite eylinder of arbitrary cross section which contains the bone marrow.

The piezolectrical material {cortical bone) behavior can be described using the three - dimensional theory of
piezoelectricity with the equations of motion
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and the constitutive equations
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(6) D=e:V,u=-¢.-VV,

where p, is the mass density of the cortical bone, T, are the elements of the stress tensor T, D} are the elements
of the electric displacement vector D, u., ug, u. are the displacement vector (u) components, V' is the electrostatic
potential and V,u denotes the symmetric gradient of u.

For a piezoelectric material of crystal class 6, the stiffness matrix ¢, the piezoelectric stress matrix e and the
dielectric matrix e are given as follows
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respectively, where cgg = %[‘-’-‘ll ~e12).
A wave type solution of the equations (1) - (4) in eylindrical coordinates can be taken as
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where G™, U™ W™ and $™ are functions of r and #, i = /-1, g, = % form=0and g,, =1 for m > 1, v is the
wavenumber and w« is the angular frequency.
In that case the solution of the governing equations (1) - (4) is given as
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where a”” ,8"-”"! are arbitrary constants, (™"(k;r) are the Bessel and modified Bessel functions of the first and second
kind, 5”" = —df" F::? + d5'k; ~ dg“kf + di?, o.g.7 = 1,2,3,4, df7 depend on bone properties, frequency and
wa.velength, and k; are the roots of the algebraic equation [11]
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The motion of the fluid in the cavity is governed by the Navier - Stokes equations

B, dp v, 16w, 16w 6v 208v 1
19 - plot o Ry A0 1oy
e o = ntNem i Tl T e ™)
g 18p 521,‘3 1 fug 1 52‘1?,9 521,‘3 2 du, 1
20 — i e — — e — _————— e — — — ]
e P o = 758 “{arz"'rar"'r?aﬁrﬂ -t A
B, o, 18v. 18%w. &
211 — ek M
() P15 T{ tror TEE TR
and the continuity equation
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where v, g, v; are the velocity components of the fluid, p; is its mass density of the fluid, p is the pressure and 77 is
the viscocity.

Following the method proposed in [8] the analytical wave - type solution of the system of equations (19) - (22), in
cylindrical coordinates, can be written as
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where U™, 4™, w™ and ¢™ are functions of r and #. The expressions (23) - (26) are used in Equations (19) - (22) and
the resulting system can be solved using an auxilliary function g [11]. The obtained solution is
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where A", B" are arbitrary constants and I™(z) are the modified Bessel functions of the first kind.
Next, we assume that the outer 5; and the inner S surfaces are of arbitrary shape and that the following boundary
conditions hold:

() Tog=Tys =Tz =0, V=0 on S,
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where ¢ is the coordinate normal to the boundary, s is the tangent coordinate, Ty, is the normal stress, T i = 5,2
are the shear stresses of the solid cylinder, and 7, is the normal stress, 7;,i = s, z are the shear stresses of the fluid
and the “dot” denotes differentiation with respect to time.

Those boundary conditions correspond to outer surface which is stress free (in reality this is affected by the existence
of muscles and ligaments) and covered with electrodes which are shorted. The latter is valid for the inner surface,
since in this surface we have continuity of displacements, normal and shear stresses and electrostatic potential.

The coordinates g and s vary with the angle §. Thus, to satisfy the boundary conditions, we follow Nagaya's
procedure [10]. First the curved boundaries 5; and S; are divided into small segments 5§ and Sf, k=1,2,...,7 for
the outer and inner surface of the solid cylinder respectively. Then each of these directions is assumed to be constant
although each magnitude varies along the segment. Thus, we can take approximately the curvilinear coordinate g as
the orthogonal coordinate X* and the curvilinear coordinate s as the orthogonal coordinate Y*.

For the k - th segment the boundary conditions can be written in Cartesian coordinates as:

(i) Txx =Tyy =Tx. =0, V=0, on S{"

(i) Txx = 7xx. Txy = 7xv,. Tx: = Txz tix = vx, 0y = vy, =0,V =10, o1 SE.

Since the solution of the problem is expressed in terms of the coordinates r and #, we transform the fields appearing
in the boundary conditions in terms of these coordinates instead of the Cartesian coordinates X and Y.

However, the coordinate r at the boundaries is expressed as a function of 8. Thus, the boundary conditions cannot
be satisfied directly. To overcome this problem, we perform the Fourier expansion of those equations along the inner
and outer boundaries of the cross section. If the series appearing in the transformed expressions were truncated up to
N + 1, one has
|:31:| dff{D,-_,{L:.','}',kij,Cﬁ,Ei_f,é.'j_.ﬂ‘:]} =)

For given material parameters (c,;, €5, €:;.77), the relation (31) is a transcendental relation of the frequency w, the
wave number < and the roots k; of the equation (18).

The elements D,..r, s =1,2,....22N + 11 of the matrix D are the Fourier coefficients of the Fourier expansion of
the boundary conditions. If the geometric relations for the coordinate r at the boundaries are known, the integrals
occured can be caleulated numerically and thus the frequency equation is given by (31).

The determinant is shown in (32). In this representation j = 1,2,3,4,] = 1,2 and D™* are submatrices of order
NxN Nx(N+1), (N+1)x (N+1)or (N+1)x N. The terms Da‘; are the same as the terms Dy for
r=123,....8s=jj+4,7+8,7+ 12 with the subsecript (1) to correspond to r = 7 and the subscript (g to
T = Fo)-

The frequency equation can be solved numerically to obtain the frequency and attenuation coefficients as a function
of wavelength.

3 Concluding Remarks

We have proposed a method to find the frequency relation for the wave propagation problem in human long bones
filled with bone marrow. The piezoelectric behavior of the cortical bone itself as well as the viscous nature of the
bone marrow introduce the peculiarity of the problem. We have led to a complicated expression for the frequency
equation using the Fourier collocation method to overcome difficulties originated from the arbitrary cross section. This
approach is very general and can be applied to any geometrical configuration.
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