SMAS: THE SMART AUTONOMOUS STORAGE
APPROACH TO NETWORK ARTACHED DISKS

V.V. Dimakopoulos, A. Kinalis, E. Pitoura and |. Tsoulos

2-2000

Preprint no. 2-2000/2000

Department of Computer Science

University of loannina
451 10 loannina, Greece

SMAS: The Smart Autonomous Storage Approach to
Network Attached Disks*

V. V. Dimakopoulos, A. Kinalis, E. Pitoura and [. Tsoulos
Computer Science Department,
University of loannina,
GR 45110 Ioannina. Greece

{dimako.pitoura} @es.uol.gr

Abstract

In this paper. we present SMAS systems which are network-attached disks with
processing capabilities, particnlarly suited for distributed computation. In a SuMAS
svstenn, through specific API calls, clients can invoke disk-resident code to be exe-
cuted remotely on the disk. Such code is in the form of pre-compiled filters with
predefined memory requirements and a stream-hased programming interface. The
SMAS operating system at the disk provides support for scheduling filters and for
memory management. We report on an initial implementation of SMAS and present

performance results thar validate our approach.

1 Introduction

There is an increasing demand for storage capacity and storage throughput. This demand
is driven largely by new data tvpes such as video dats and satellite images as well as the
growing use of the Internet and the www that generate and transmit rapidly evolving
datazets, take for example the huge amount of data produced by e-commerce transactions
[8. 6]. Furthermore, there is growing interest in data mining applications that efficiently
analvze large datasets for decision support. Thus, there is a need for storage architectures
that scale the processing power with the growing size of the datasets.

Recent disks embed powerful ASIC designs in order to deliver their high bandwidth;
such chips are capable of doing considerable processing (for instance, see how complex
the SCSI protocol is [2]). In addition, current disks have caches in the order of MB

"Work supported in part by the Hellenic General Secretariat of Hesearch and Technology through
grant PENED-04 /495,
Alzo available as Univ. of loannina, Department of Computer Science, Technical Report No 2000-01.

{for example, Seagate’'s Cheetah has up to 16 MB of cache). This suggests that data
can be processed locally at the disk., This is the idea behind active [1, 10] or intelligent
[7] disks. Such disks have a general purpose processor and memory in the order of MB
and are capable of doing on-the-disk processing. Thev have been proposed as a cheap
replacement to expensive disks; they communicate with the host processor through the
local bus (tyvpically SCSI or Fiber Channel). It is envisioned that they will be able to
relieve the host processor by acquiring and executing part of the applicarion very close
to the data. Such architectures are capable of handling large datasets, since the number
of processors scale with the number of disks. In addition. they can effectively reduce the
amount of data transfered from the disk to the host processor.

At the same time, distributed file systems are used increasingly nowadavs. A good
reason is the huge databases maintained by various companies [14]. Thus, a distributed
storage architecture is needed in order to provide efficient and scalable access to data.
Such an architecture is provided by NASD [3] coupled with their object-oriented file
svstem for network attached storage.

In this paper. we present the SMAS system that emplovs network attached devices
with active disk functionality,. We consider it more important (and practical) for the
active disks to be stand-alone (autonomons) rather than plugged in a local bus. This
is feasible as the processing power at the disk is already capable enough of executing a
simple TCP/IP stack. SMAS disks can also be confizured to operate when attached to
the local bus.

Onr focus is on building a running system that would allow clients to execute appli-
cation code at such network attached disks. We consider the actual constraints placed
on the application programs to be run on the disk and the necessary operating system
support for executing them. In particular, we provide a specific interface for clients to
deploy application programs at the disk through filters that have predefined memory re-
quirements and a stream-based interface. We also provide operating svstem support at
the disk for scheduling such filters and for performing memory management. We have
tested our initlal implementation of SMAS and compare its performance with NFS. The
results are encouraging sinee the measuved performance is close to the expected ideal
speed-up.

The remaining of this paper is structured as follows. In Section 2, we briefly review
related work, In Section 3. we present our design, while in Section 4 we report on our

initial implementation and results. Section 5 concludes the paper.

2 Related work

The idea of data processing at the disk is not a new one. Early proposals include the IBM
360 I/ processors [9] and the specialized database servers of the 80's [4]. What makes

active disk architectures attractive today is that current technology is such that sufficient
processing power and memory can be economically embedded in disks.

A stream-based programming model for disklets (Le., disk-resident code) is presented
in [12, 1]. Their active disks are attached to the local bus of the host processor. The disklet
programming model is similar to ours in terms of providing a stream-based interface, re-
stricting local memory and disallowing disk access. They justify their design decisions
by providing a detailed simulation of active disks. In contrast, our focus is on building
an actual system which introduces practical restrictions. In [12, 13], an evaluation of the
disklet model is provided against two alternative architectures: shared memory multipro-
ceszors (SMPs) and workstation clusters. For most of the applications tested, active disks
and clusters significantly outperformed the SMP architecture.

The IDISKs (Intelligent disks) architecture proposed in [7] is based on replacing the
nodes in a shared-nothing cluster server with intelligent disks that is disks capable of
local processing. The main difference in the IDISKs architecture is that the disks are
directly connected with each other via switches thus exhibiting muech higher bandwidth
disk-to-disk communication.

The architecture closest to SMAS is the active disks of [10]. The authors of [10] con-
centrate on developing a number of applications to validate the active disks approach.
Their analvtical and experimental results promise linear speed-ups in disk arravs of hun-
dreds of active disks for certain data-intensive applications. Instead, the alternative of
directly attaching a number of traditional SCSI disks to the local bus of a single server
machine caused the server CPU or the interconnect bandwidth to saturate even when a

small number of disks (less that ten) was attached.

3 The SmAS approach

SMAS devices are autonomous (i.e. network-ready) disks but they also have significant
processing capabilities like Active/Intelligent disks. Active disks have been mainly en-
visioned as attachments to the local bus of a server [12]. This would however require
expensive server architectures especially if one also considers the resources required for
supporting multiple interconnected active disks,

It is essential, from a practical point of view, to investigate devices that do not require
alterations to a given infrastructure. A smart disk should use part of its processing
capabilities to support a simple TCP/IP stack and attach itself easily on a local network.
Apart from the obvious cost reductions, this approach has the additional advantage of
true distributed processing, without the bottleneck of a front-end processor (in a multiple
active disk arrangement [12] disks can only communicate with clients through the server
processor’s connection to the network). However, a SMAS device could easily include
interface support for SCSI or FiberChannel local buses, so as to be easily attached on a

local bus if desired.
Next, we present in detail the specifics of SMAS design. This includes the program-
ming interface for invoking remotely the disk-resident code and the necessary operating

svstem support for the disk.

3.1 Programming interface

An application uses the SmAS device through a client-side APIL In order for the disk
to be emploved seamlessly in an existing network, all standard operations are supported
(open(), read(), write(). lseek() etc.); a SMAS disk can easily replace a conventional
NFS server,

The API includes additional calls that allow for local processing at the disk. This
way a disk-side part of the application can be defined: it is executed on the smart disk
and its sole purpose is to minimize the communication between the disk and the client
by eliminating the unnecessary data movements. For example, instead of transferring
the whole file at the client side and performing an SQL-Select there, the disk-side code
may perform an SQL-Select locally and thus communicate only the selected data to the
application.

In contrast with the disklet programming model [1], we have decided to use a library
of pre-compiled filters stored at the disk. While downloadable disklets offer a high degree
of flexibility, they also place an additional security burden on the disk. Also. it is not
clear how the whole disklet mechanism deseribed in [1] would actually be implemented in
practice,

We have implemented a collection of parametrized filters including a general SQL Se-
lect filter, filters for aggregate operations (min, max, count. ete.) plus an implementation
of the grep command for unstructured data. Filters are registered and placed in a filter
library at the server. This is done starically. through a strict register filter() interface
which requires for each filter, apart from its main code, an initialization and a parameter
checking routine.

A client selects the required filter with a smas usefilter () call; this call identifies the
filter to be used plus the required parameters (if any). After that, the client has access to
the relevant remote data, one entry at a time, by continuously calling smas nextrecord().
The simple application discussed in Section 4 (Fig. 1(a)) illustrates the SyMAS API con-
ventions.

Filters are executed at the disk and are responsible for selecting and processing the
data that is going to be sent to the client. A filter receives data from an open(Jed file and
possibly outputs processed data for delivery to the application at the client’s side. Filters
are. like disklets, simple stream-based processes with no file access rights. The on-disk
operating svstem is responsible for supplving a flter’s input with file data.

A flter is not allowed to acquire or release memory dyvnamically. All its memory
requirements are known apriori (they are declared at the time the filter is placed in the
disk’s filter library). Consequently, whenever an application decides to use a particular
filter (through a smas_usefilter() API call) the disk’s operating system knows exactly
the necessarv memory size and allocates it statically to the filter.

In order to allow for higher-level processing at the disk. filters should know the strie-
ture of file entries. Files are assumed to consist of a sequence of records, each described
as a collection of fields. Before a filter can be utilized. the application should inform
the SMAS svstem about the number and type of fields of each file record (through a
gmas recordstruct() API call).

3.2 The operating system

An operating svstem is necessarv for a smart disk. The SMAS operating svstem (SMAS
05) should be as thin as possible in order to minimize execution overheads and memory
costs, Consequently, its functionality should be kept down to a minimum. The only
offered services must be:

o Networking,
¢ Process (filter) management. and,
s Mlemory management.

Full networking functionality is necessary for attaching the disk to an existing network.
Such functionality should be consider rather common place and inexpensive (consider for
example the network-ready CD-ROM server by Axis [3]). Particular attention should
be paid at optimizing the network interface (for example minimization of the number of
messages exchanged between the server and the client and compression of messages).

A limited form of process management will be required in order to schedule the filver
execution. Such a need arises when multiple clients are connected to the disk. Process
management should be simple and efficient. However, as discussed in [1]. simple strategies
like run-to-completion could ultimarely limit the disk’s performance. In our case. the fact
that filters are pre-compiled and embedded in the disk’s library allows for accurate esti-
mations of their running times and. consequently. for more informed scheduling strategies,
like shortest-job-first [11].

Finallv, memory management is probably the most important service since disk's
memory is usually its most limited resource. However. memory management is highly
simplified due to the filter-based processing: the memory requirements of the filters are
known apriori and are satisfied as soon as a filter starts execution. Since the filter cannot
allocate dyvnamically any more memory, it is a simple {(and quick) matter to free the

allocated memory as soon as the filter completes its execution.

Finally, it should be mentioned that minimun additions are required at the client’s
operating svstem so as to have kernel support for SMAS functionality. In order to avoid
such interventions the client-side APT might as well be implemented as a user-space library,
with only slight performance degradation,

4 Implementation and evaluation

We have emulated a SMAS device using an old Pentium-based PC, running at 166 Mhe.
with 320 byte of memory and with a minimized version of Linux as its operating system.
The hardware components are analogous to that found inside a present-day disk only
much more economical. The SMAS system software (SMASQS) is running as a Linux
daemon and awaits at a particular port for a client connection. Communication is handled
biv the standard socket librarv. At startup, SMASOS acquires a 16Mbyte memory chunk
and uses it for implementing its own memory management.

In order to verify the validity of our approach as well as reveal any inefficiencies in the
implementation, we have experimented with a number of applications. Although simple,
a particularly illuminating one is shown in Fig. 1{a). The client utilizes the SQL-Select
filter in order to obtain and process relevant records from a file stored at the smart disk.
The filtering is done locally at the disk, which returns only the appropriate records to the
application, minimizing thus network communication.

We then executed the same application by NFS-mounting the file (Fig. 1(b)] and
compared the total running times. If Toyra55 and Taps are the corresponding running
times of the two approaches, the observed speedup is defined as Twps/Tsarass and is
plotted in Fig. 2. for various record sizes.

Let 5 be the selectivity factor, thar is the probability that a data record is selected by
the SQL-Select filter. If a file contains N records then the SMAS code will only deliver
&N of them to the application. We generated files that would result in prescribed values
for the selectivity factor s (between 10% and 100%). Fig. 2 shows clearly that the SMAS
version is able to deliver superior performance, especially for smaller selectivity values.
This fact should actually be expected because of the reduced network communication.

The results in Fig. 2 were obtained for file sizes in the area of 100MBytes. In order
to determine the socker messaging overheads we experimented with varions record sizes.
It can be seen from the figure that the performance did not exhibit a wide variance;
however, the smaller the record size the smaller the observed speedup was. This is due
to the headers inserted by the sockert library to a message: these extra bytes account for
a smaller percentage as the message size grows. improving thus performance.

Assuming that the communication [computation (processing) time ratio per record
is greater than one, computation (processing) time, then the total ronning time should be

dominated by the total communication time. Since the SMAS version only communicates

J/* Open remote file */

fd = smas_open("zeus.cs.uoi.gr:/pub/testfile"”, 0_RDONLY);
JF Inform the disk about the record’s structure (100 bytes) '
smas_recordstruct({fd, INT, 4, CHAR, 96);

J/* Specify the filter to use: check if 1st field > 10 */
smas_usefilter{fd, SQLSELECT_FILTER, 1, GREATER, 10};

/% Now get and process all selected records */
while (smas_nextrecord(fd, buffer) != 0)

process (buffer);

(a) SMAS (client) application

/* Open the remole file - NFS mounted =/
fd = open("/mnt/zeus/pub/testfile”, O_RDONLY);

S* Get, filter and process records */
while { read(fd, buffer, 100) != 0)
S* Filter ol our (client) side =/
if { checkcondition(buffer) }

process(buffer);

(b) Teaditional NFS approach

Figure 1: Sample application

a portion s of the total data, while the NFS-mounted file approach communicates all of it
to the client, it is expected that (ideally) a speedup of the order of 1/s should be observed.

Fig 2 however shows that despite the improvements over NFS, the performance of the
SMAS application, is actually well below the ideal. This is largely due to the following
reasons:

* SMASOS in its present form places a significant overhead on the filter execution,
which makes filtering time per record non-negligible. This is worsened by the fact

that 5MASOS currently runs as a user-space process in Linux,

e NFSis highly optimized. utilizing prefetching and caching techniques which in effect
pipeline computation and communication to a high degree.

We are currently optimizing SMASOS and investigate data prefetching techniques. We
are confident that performance will move much closer to the ideal. It is also in our future

plans to provide kernel support for SwAS in Linux, which will improve performance

=]

W T 1
P
¥ T : !
8 1 1 .
; | | =
= ¢ ot ' ' * Ideal
E ! . | % 10K recsze
ol ¥ 8K recsize
& OK recsize
P 4K recsize

Salectivity (%)

Figure 2: Speedup with respect to traditional NFS handling

significantly.

5 Conclusions and future work

In this paper. we introduced the SMAS network attached disk architecture with program-
ming functionality on the disk. As compared to a classical file server, an autonomous
network-attached device offers significant advantages. First of all. the cost is much smaller,
so that one could purchase a number of smart disks for the price of a mid-sized server,
Second. SuAS devices have dedicated processing on the disk that provides for efficient
distributed processing. A server on the other hand is a general purpose machine that
has to deal with many other things apart from file processing. The results of an initial
implementation of SMAS are encouraging and justifv our design decisions.

Our future plans include: (a) optimizations for pipelining disk access, processing at
the disk and communication, (b) an interface at the client-side for clients to program and
register their own filters and (c) advanced filter scheduling,

References

[1] A. Acharya, M. Uysal. and J. Saltz. Active disks: programming model. algorithms
and evaluation. In ASPLOS 98, 8th Conference on Architectural Support for Pro-
gramming Languages and Operationg Systems, pages 212-217, San Jose, California,
October 1998,

(2] ANSL Information systems - small computer system interface-2 (scsi-2). Technical
report, ANSI X3.131-1994, 1994,

[3] Axis Communications, Cd-rom servers, white paper. Technical report. 1996.

[4] D. J. DeWitt and P. Hawthorn. A performance evaluation of database machine
architectures. In VLDEB 81, September 1981,

[3] G. Gibson, D, Nagle, K. Amiri, F. Chang, E. Feinberg, H. Gobioff, C. Lee, B, Qzcerd,
E. Riedel, D. Rochberg, and J. Zelenka. File server scaling with network-attached
secure disks. In Sigmetrics 97, Int1 ACM Conference on Measurement and Modeling
of Computer Systems. Seattle. Washington, June 1997,

[6] J. Gray. What happens when processors are infinitely fast and storage is free? In
dth Workshop on I/0 in Parallel and Distributed Systems, November 1997,

[7] K. Keeton. D. A, Patterson. and 1. M. Hellerstein. A case for intelligent disks (idisks).
SIGMOD Record, 27(3):42-52, July 1998,

8] George Lawton. Storage technology takes central state, JEEE Computer, 32(11).
November 1999,

[9] D. Patterson and J. Hennessev. Computer Architecture: A Quantitative Approach.
Morgan Kaufian, 1996.

[10] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large-scale data mining
and multimedia. In VLDE 98, 24th Intl Conference on Very Large Data Bases,
pages G2-73, New York. USA. August 1998,

[11] A. S, Tanenbaum and A. S. Woodhull. Operating Systems: Design and Implementa-
tion. 2nd ed, Prentice Hall, 1997,

[12] M. Uwsal, A. Acharva, and J. Saltz. An evaluation of architectural alternatives
for rapidly growing datasets: active disks, clusters. smps. Technical report, Dept.
of Computer Seience, University of California, Santa Barbara, Technical Report
TRCS98-27, October 1998,

[13] M. Uysal. A. Acharya, and J. Saltz. Evaluation of active disks for decision support
databases. In HPCA, 2000,

[14] R. Winter and K. Auerbach. The big time: the 1998 vidb survey. Datebase Progrom-
ming and design, 11{8), August 1998,

