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Abstract: In this paper, we consider the problem of partitioning the node
set of a tree T of n nodes and degree d (d > 2) into two sets of prespecified
cardinalities. The goal is to keep the cutsize (i.e., the number of T's edges with
one endpoint in either set) as small as possible. The problem finds applications
in VLSI and networking. We describe two linear time algorithms which produce
partitions of the tree nodes into two sets 17 and V; of desired sizes achieving
cutsizes that do not exceed (d+1)/2 log(g,s)» m+1 and (d+2)/2 logg,,(2m)+
1/2 respectively, where m = min{|Vj|,|Vz2|}. We also compute a lower bound
of |(d —1)/2] (loggm — log,loggm) — d/2 for the cutsize of such a partition
when d > 3 and for all m = |(d' —1)/(2d—2)| (i = 2,..., |loggn]); this proves
that the algorithms we describe are asymptotically worst-case optimal and the
ratio to the optimal solution is a small constant factor. Both algorithms are
similar to the Tree Coloring algorithm of MacGregor for tree partitions [8] but
improve on both its time complexity and upper bound on the partition cutsize.
Brief experimentation with the two algorithms suggests that the first algorithm
performs better than the second, despite the fact that the upper bound on the
cutsize of the produced partition is worse than the corresponding upper bound
for the second algorithm.

1. Introduction.

The work in this paper is motivated by a common graph partitioning problem, which
can be stated as follows: given a graph G of n nodes and a positive integer m < n,
find a partition of G's node set into two sets of sizes m and n — m that minimizes the
number of G's edges with one endpoint in either set. The problem is very interesting, as it
both incorporates the minimization of a resource and a load balanecing mechanism through
appropriate values of m, and finds applications in VLSI (placement of components) and
networking (minimization of communication cost). The most popular among all partitions
of a graph is its bisection, where the cardinalities of the two partition sets differ by no
more than 1. Due to the need for good graph bisections, especially in graph algorithms



based on the divide-and-conquer paradigm, fast algorithms that yield optimal or near-
optimal bisections are very important. Unfortunately, the graph bisection problem on
general graphs is proven to be NP-complete [5]; this motivated research towards finding
heuristics with good average case behavior ([1], [2], [6], [7]). It is yet unknown whether
the graph bisection problem remains NP-complete when restricted to the class of planar
graphs, whereas optimal bisections of trees can be computed in O(n?®) time using dynamic
programming. Returning to the problem of partitioning a graph into two sets of prespecified
cardinalities, few results are known. In a recent paper [3], Bui and Peck gave an algorithm
to compute an optimal partition of a planar graph of n vertices into sets of sizes m and
n — m, where m € [0,n]. The algorithm runs in O(b*n?2%%) time, where b is the number
of edges with one endpoint in either set of the computed optimal partition; since b can be
as large as ./n, the algorithm is not necessarily polynomial.

In this paper, we are interested in the graph partitioning problem applied to the case of
trees. Although rather restricted, the problem is still important as many graphs in practical
applications often are trees. For instance, graphs that illustrate the interdependence of the
procedures of a program (in terms of procedure calls) frequently exhibit a tree structure;
then, the problem of assigning procedures to two remote sites (each being able to handle a
certain number of them without being unacceptably slow) while at the same time minimizing
the communication cost reduces to optimally partitioning a tree.

The problem of partitioning trees such that the cuisize (that is, the number of tree edges
with one endpoint in either partition set) is small has received considerable attention. Most
of the work has been centered around bisections. MacGregor [8] describes the Tree Coloring
algorithm which bisects the node set of a d-tree achieving an upper bound 7(d,n) on the

cutsize, where
> +2logyn, ifd=23;
rid,n) =
1+ % 2logy  n, ifd>4.

He extends the algorithm to handle k-partitions guaranteeing an upper bound of [k~ l]l{% -
(d — 1) logay_3 22) in the cutsize. In either case, the algorithms take O(nlogn) time. Diks
et al. [4] have recently described a linear time algorithm for tree bisections which ensures
a dlogzn cutsize. In the process of computing a tree bisection, their algorithm computes
general (m, n — m)-partitions, but Diks et al. do not analyze its performance in the general
case. We note that an optimal partition (i.e., one that achieves the minimum cutsize) can
be computed by an algorithm based on the dynamic programming paradigm: we recursively
compute the corresponding optimal cutsizes of each of the subtrees rooted at the children
of the root, and then combining the results to cover all possible cases depending on whether
and which among the edges incident upon the root belong to the cutset of a partition or
not. The algorithm runs in O(n®) time and requires O(n) space. Note however that if the
cutsets of the optimal partitions need be computed too, then the required space increases to
O(nd log,n), as the cutsets of all intermediate optimal partitions need be stored. Finally,
if the tree has a symmetric structure, then the algorithm may be made to run faster by
taking advantage of the symmetry. For instance, the time complexity of the algorithm when
applied to a complete binary tree reduces to Q(n?).

In this work, we describe and analyze two algorithms for (m,n — m)-partitions of trees.
The first algorithm works by collecting subtrees of the tree, eventually forming the desired



partition; for an n-node rooted d-tree, it produces a partition of the node set of the tree into
two sets of m and n—m nodes, whose cutsize is no more than (d+1)/2 log4,3)/2 min{m,n—
m} + 1. The second algorithm relies in the same basic strategy and achieves partitions
whose cutsize does not exceed (d + 2)/2 logg, (2 min{m,n —m}) + 1/2 for d > 4, and
2 logs(2 min{m,n — m}) + 1/2 for d = 2,3. This algorithm is an extension of the Tree
Coloring algorithm of MacGregor; this is why, for bisections it matches the latter algorithm’s
bound on the cutsize.

Finally, we note that the performance of our algorithms is a small constant factor away
from the corresponding lower bounds for d > 3. In [9], we show that the optimal bisection of
appropriate families of trees exhibits cutsizes no less than |(d—1)/2] (loggn —logylogyn) -
d/2 for d > 3. This result can be used to prove lower bounds of |(d — 1)/2] (loggm —
logylogg;m) — d/2 for the cutsize of an (m,n — m)-partition when d > 3 and for all m =
l(dF —1)/(2d - 2)] (i=2,...,loggn).

The paper is structured as follows. In Section 2, we present the necessary terminology
that we use throughout the paper. In Section 3, we present the two algorithms to partition
the nodes of a tree into two sets of desired cardinalities, analyze their time complexity and
derive upper bounds on the cutsize of the partition in terms of the sizes of the partition
sets and parameters of the tree. In Section 4, we prove the corresponding lower bounds.
Section 5 concludes the paper with the final remarks and some open guestions.

2. Terminology.

The notion of a tree is one of the most fundamental notions in computer science; its
definition and properties can be found in nearly every introductory book on graph theory.
Below, we quickly review the basic terminology. A tree is a collection of nodes connected
by edges such that for every pair of nodes u and v, there exists a unique path connecting
them. In case a specific node of the tree has been selected as the root, the tree is called
rooted; otherwise it is called unrooted. Since any unrooted tree can become rooted if one
of its nodes is designated as its root, we will restrict our attention to rooted trees.

A rooted tree can be displayed in a layered fashion along the vertical direction as follows
(Figure 1). The highest or 0-th level is occupied by the root only. The first level contains
all nodes of the tree that are connected to the root by an edge. In general, the i-th level
contains all nodes that are connected to a node in the (i — 1)-st level, and do not belong to
the (i — 2)-nd level. (The latter requirement ensures that each node will be displayed once,
and that the layering process will eventually terminate.) If a node belongs to the i-th level,
we say that its depth is i. The maximum among the depths of all the tree node defines the
height of the tree (for instance, the height of the tree in Figure 1 is 4). Additionally, the
nodes u; of the j-th level that are connected to a node v in the (j — 1)-st level by means of
an edge are called v’s children; v is called the parent of the u;s. If a node has no children,
it is called a leaf of the tree. A non-leaf node of the tree is called internal. The tree in
Figure 1 has 6 leaves and 6 internal nodes. The subtree rooted at a node v is the part of
the tree that contains v when the edge between v and its parent is removed.

In case no node of the tree has more than d children, we say that the tree is a d-tree.
For minimality reasons, we assume that there exists a node in a d-tree that has exactly d
children. Finally, we say that a d-tree is complete if each of its internal nodes has exactly



Figure 1 Figure 2

d children, and all the leaves belong to the same (lowest) level (Figure 2 shows a complete
2-tree of height 3). It is an easy exercise to prove that the i-th level of a complete d-tree
contains exactly d* nodes; if its height is h, the entire tree contains a total of (d**1—1)/(d—1)
nodes.

We now introduce the terminology and our notation regarding partitions. For 1 <m <
n—1, an (m,n—m)-partition of a graph G (or a tree, in particular) of n nodes is a partition
of the node set of & into two sets with cardinalities m and n — m; therefore, there exist
exactly |n,/2| different partitions, namely, partitions into sets of 1and n—1, 2and n—-2, ...,
|n/2] and [n/2] nodes. A given partition of the node set of G uniquely defines the set of G's
edges with one endpoint in either partition set, which is called the cutset of the partition;
the size of the cutset is the cutsize of the partition. Conversely, each subset E of tree
edges defines a unique partition of the nodes of the tree (note that the removal of any edge
disconnects the tree), the underlying assumption being that the nodes incident upon each
edge in E do not belong to the same partition set; the cutsize of this partition equals the
cardinality of the set E. The above observations exhibit a special correspondence between
partitions and sets of tree edges. For a specific m, there are () ways to form the partition
sets of an (m, n — m)-partition, and the corresponding cutsizes may vary substantially; the
partition sets that exhibit the minimum cutsize define the optimal (m,n — m)-partition.

We close this section by noting that in the following we ignore the trivial case of a tree
of 1 node, as well as 1-trees (chains), where all possible node set partitions can be achieved
at cutsize 1. We therefore deal with d-trees (d > 2) of n > 2 nodes.

3. The Algorithms.

In this section, we present two linear-time algorithm that compute an (m, n —m)-partition
of an n-node d-tree for any n and any m = 1,...,n — 1. The first algorithm is based on the
result given by Lemma 3.1 below, whereas the second one in a similar result.

Lemma 3.1. Let m; (1 < 1 < j) be j positive integers in non-increasing order such
that m; < m for alli =1,...,7 and ], mi > m, and let k be the integer for which

S T S M < Ef__‘fll m;. Then, m — E:‘:lm.i < =

Proof: Clearly, 1 < k& < j. Since Ef:‘ll m; > m, we have that myy > m — Zﬁf ™m;.
Moreover, mp.; < {ET m; )/k, because the m;s are in non-increasing order. Combining
these two inequalities for my.1, we get m—Y 5 m; < (Fm;)/k &= Tim; > %m =

k 1
m—3im; < ggm. g



Lemma 3.1 implies the following procedure for the problem of having to collect m items
from batches of mi,...,m; items (where the m;s are in non-increasing order): we collect all
the items from the first k batches which results into having to collect fewer than a fraction
1/(k+1) of m additional items. Sinee k > 1, the total number of times that this procedure
will have to be applied until we collect all m items will be logarithmic in m.

The second algorithm is based on the same principle, albeit in an improved version of
Lemma 3.1, which achieves an asymptotically better upper bound on the cutsize of the
partition produced, but requires slightly more complicated handling.

The Algorithm A.

The first algorithm works as follows:

Algorithm A

1. traverse the tree and associate with each node ¢ its weight w(t) which is equal to the
number of tree nodes of the subtree rooted at t;

2. root « the root of the tree; m — min{m,n — m};
3. while (m>10) do
4. visit the nodes in the subtree rooted at root as long as their associated weights

are at least equal to m; let s be the node whose weight w(s) is the least among
all these weights (which are at least equal to m);

A if (w(s) =m)

6. then collect the nodes of the subtree rooted at s;
T add the edge (s,parent(s)) in the cutset;

8. exit while-loop;

0. else if (w(s)=m+1)

10. then /* collect the subtree rooted at s after removing one of its leaves */

11. collect all the nodes of the subtree rooted at s except for one leaf, say, x;

12. add the edge (z,parent(x)) in the cutset;

13. if (the edge (s,parent(s)) does not belong to the cutset)

14. then add this edge in the cutset;

15. else remove this edge from the cutset;

16. exit while-loop;

17: else [Tw(s)>m+1%

18. d; «— degree of s;

19. find k such that Y%, w; <m < T w; where wy (1 <i<d;) are
the weights of the children of s in non-increasing order; let the children
of ¢ with weights wy,...,wq, be ty,..., tq, respectively;

20. sum — 5wy

21. collect the nodes of the subtrees rooted at £, ...,

22. if (k< (ds+1)/2)

23. then add the edges (s,#1),...,(s,tx) in the cutset;



24. else  /*k>(ds+1)/2%

25. collect s

26. if (the edge (s,parent(s)) does not belong to the cutset)
27. then add this edge in the cutset;

28. else remove this edge from the cutset;

29, add the edges (s,tg41),.... (8, tg,) in the cutset;

30. if (sum=m)

al. then remove from the collected set a leaf y of the subtree of £y,
32. add the edge (y,parent(y)) in the cutset;

33. else sum « sum + 1; /* include tree node s */
34 /* prepare next iteration of while-loop */

35. root «— ;] M +— 1 — SUm;

The correctness of the algorithm follows from the fact that in each iteration we reduce
m by the number of collected nodes and that the weight of the new root t;.; indeed exceeds
the number of remaining nodes to be collected. Moreover, in lines 18-33 w(s) > m + 1,
which implies that the total sum of the weights of the children of s is greater than m; thus,
Lemma 3.1 indeed applies.

Most of the steps of algorithm A are straightforward. The steps in lines 1, 4, 6, 11, 21
and 31 can be carried out by means of a depth-first search traversal in time linear in the
size of the corresponding subtree. In particular, in line 4, we do not proceed to subtrees
with weight less than m while visiting the nodes of the subtree rooted at root; in this way,
we guarantee that the time spent in the execution of line 4 in all the iterations of the while
loop is O(n). The location of k (line 19) is achieved in O(d,) time by means of the linear-
time median finding algorithm. We determine the median of the set {w(t;),...,w(tq, )} and
partition the set into two subsets S; and Sy of elements less than or equal to the median
and greater than the median respectively. If the sum of the elements of 5; is larger than
m, we repeat the process in 5, otherwise, we collect the elements of S;, we reduce m by
the sum of the elements in 5, and repeat the process in S; for the new m; eventually, we
end up with a set of cardinality 2 or 3, which can be handled in a brute-force fashion in
constant time, Since, in each of the median finding and partitioning rounds we deal with
a set of half the size of the set in the previous round, the total amount of time required is
linear in the degree d; of 5. Given that the new root ¢4 in each iteration of the while loop
is different from that in the preceding iteration, the total time of the execution of line 19 is
O(n). The above discussion implies that the total running time of algorithm A is linear in
the size of the tree.

The effect of lines 22-33 is to try to keep the cutsize small. Suppose that we want
to collect the nodes of the subtress rooted at the children #q,...,% of 5. If & does not
exceed (approximately) half the degree of s, we simply collect the nodes of these subtrees,
increasing the cutsize by no more than (approximately) d/2. If, however, k exceeds half the
degree of 5, we can include 5 in the collected set, increasing the cutsize by 1 plus the number
of non-collected children of s, which does not exceed (approximately) d/2. (We note that
in case the total number of nodes of the k subtrees is equal to the desired number, we may
include s in the collected set by removing at the same time a leaf of ¢;.)



We finally note that, in every execution of the lines 18-33, m is at least equal to the
corresponding k of line 19; this follows from the fact that each of the collected subtrees
t1,...,tx contains at least one node. In fact, m > k + 1 unless the current iteration is the
final iteration of the while loop.

An Upper Bound on the Cutsize The examination of all possible cases, in conjunc-
tion with Lemma 3.1, yields the following expression for the cutsize C'(m) of an (m,n—m)-
partition produced by Algorithm A:

b (o)

2, where m = 2; (b)

G} < ¢ k+ C(|m/(k+1)]). where 1 < k < (d+1)/2; i
B R where 1l <k < (d+1)/2; (d)
d—k+1+C(|m/(k+1)]), where(d+1)/2<k<d-1; le)
\d—k+2, where (d+1)/2<k<d—-1land m > k; (f)

Case (a) results if w(s) = m and may occur for any value of m (lines 6-8). Case (b) results
if w(s) = m + 1 (lines 10-16); it comes up only when m > 2, as there is always a leaf in a
tree. Cases (¢) and (d) correspond to the line 23 of the algorithm, the latter case occurring
whenever sum = m. Similarly, cases (e) and (f) correspond to the lines 24-33, with case (f)
resulting if sum = m; these cases occur only if d = 3, because, for d = 2, k is equal to 1
and the test k < (d + 1)/2 (line 22) is true leading to cases (c) and (d).

Now, we are ready to prove our upper bound.

Theorem 3.1. Let T be a d-tree (d > 2) of size n = 2. Then, for any positive integer
m < n, Algorithm A finds an (m,n — m)-partition of the node set of T whose cutsize is
at most

\_% log[d_,,am(min{m._ n-— m})‘t + 1

Proof: Let us assume without loss of generality that m = min{m,n — m}. We will show
that C(m) < ‘f%t log(gyzyam +1foralmz=1, which will prove the theorem. The proof
proceeds inductively on m. If m = 1 then our algorithm locates a leaf s with weight w(s)
equal to 1, collects it, and the cutsize of the resulting partition is 1, which does not exceed
the value i‘% logiarayel +1=1tforall d > 2. Suppose now that the upper bound holds
for C(3) for all i = 1,...,r—1. We want to prove that this also holds for C(r), wherer = 2.
We examine all the cases in the expression of C(m) verifying that they do not exceed the
desired bound. We note that [Z5] £ gf5 < r/2 <r; thus, the inductive step implies that

L2 a r |
G(|.;:+1J) < 4 loguyay | i) +1
< Glogaiyye g +1 )
< Hllogaygypr +1— 5 logiga(k+1) (1)

since the function "’%,l log, x is increasing for all z > 0.

(a) Trivially true.

(b) We need to show that 2 < '-’%-1- loggyayem + 1 forall r 2 2. It suffices to show that
1< 'iizl log{d +3)/2 2 or equivalently log, .-,£_42—3 - d%] < 0. The last inequality holds for
all d > 2; the function fi(z) = logy(x + 1) — z is strictly decreasing for all z > 0.45
and fi(1) = 0.



(¢) Inlight of the inequality (1), we need only show that for 1 < k < % it is true that

d+1 ke d+1
IDE[d+3],-’2{k +1)<0 &= z

Jos < 0.

In(k+1) In{dEl+1) =
The last inequality holds for k=1 and all d > 2; see case (b). It also holds for &£ = 2,
since the function fi(z) = z/In(z + 1) is strictly increasing for z > 2 and k < d%l

(d) This case follows from case (c) as C(.) is a non-negative-valued function.

(e} If we use Kk = d + 1 — k, then the inequality that we want to prove becomes x +
Clog=) < “‘"’Tl log(giayar +1, where2 < k < &£1: this follows from case (c), given
that % log, = is an increasing function and d+2 -k >k + 1.

(f) Since r > k in this case and the function i'{-l— log, = is increasing for all z > 0, it suffices

to show that d = k+ 1 < $lloga g nk where L < k < d— 1. If k > 42 then

d-k+1< 81 <dil < %log(d_w_}ﬂ k, as desired. The only other case is if k = d%z,

which implies that d is even and at least equal to 4 (recall that d > 3 in case (f)).

Then, the inequality we want to prove is written as

d+2 d _d+1 d+2 g —
d——— 41 =— = 1 —_— e < ]
g T3S T3 BTy n(Z+1) - n(ZE +1)

which holds, since the function fa(z) = z/In{zr + 1) is increasing for * > 2 and
dfl = 4500
R A ]

In particular, for the case of a bisection: we substitute n/2 for m and we have

Corollary 3.1: For any d-tree (d = 2) of n = 2 nodes, we can always find a bisection of
the tree’s node set whose cutsize does not exceed [9‘;—1 logiaa)2 %J + 1.

This upper bound on the cutsize of an optimal bisection of a d-trees implies an O(log, n)
upper bound if d is a constant, and an O(n) upper bound if d is ©(n).

The Algorithm O.
Algorithm O is based on the following Lemma which is similar to Lemma 3.1.

Lemma 3.2. Let m; (1 < i < j) be j positive integers in non-increasing order such
that m; < m foralli = 1,...,7 and ¥1_;m; > m, and let k be the integer for which
Eff m; < m < Ei“"l m;. Then, min{m — % m;, Titlm; =m} < m/(2k +1).

i=]

Proof: Let a = m — ZLI m; and b = Zf:ll mi; —m. Then a+ b = my.;. Because the
m;s are in non-increasing order, mysq < (Z#_“ m; )/k. Therefore a 4+ b < (5 m;)/k. The
combination of the last inequality with the equality Ef: { Mi = m — a, which results from
rewriting the definition of a, implies that

m—a m

a+b< - =R (k+1la+kb<m = min{a,b}igk_:rl-




Lemma 3.2 implies that if we allow ourselves to collect more nodes at a step and then
remove the excessive ones, we may end up reducing the number of nodes that we seek to
collect by at least a fraction 1/(2k + 1) at each step. This is better than the 1/(k + 1)
fraction of Algorithm A and suggests fewer iterations and probably a smaller upper bound
in the cutsize.

The algorithm works as described below. We use the variables X, Y and swap in order
to ensure that the collected nodes are directed to their correct destination. Upon completion
of the algorithm, the set A contains min{m,n — m} nodes, and the set B the remaining
ones.

Algorithm O

1. traverse the tree and associate with each node t its weight w(t) which is equal to the
number of tree nodes of the subtree rooted at t;

2. root +— the root of the tree; m « min{m,n — m};

3. mark all the nodes of the tree as if they belong to the set B;

4, X — A; Y — B; swap « false;

5. while (m >0) do

6. visit the nodes in the subtree rooted at root as long as their associated weights
are at least equal to m; let s be the node whose weight w(s) is the least among
all these weights (which are at least equal to m);

7. if (w(is)<m+1) J*w(s)=m or w(s)=m+1%

8, then put all the nodes of the subtree rooted at s in the set X;

9, add the edge (s,parent(s)) in the cutset;

10. if (w(s)=m+1)

11. then /* remove a leaf */

12! put one leaf, say, , of the subtree rooted at s in the set };

13. add the edge (z,parent(z)) in the cutset;

14. exit while-loop;

15. else Jfw(s)>m+1%/

16. d; «— degree of s;

17. find k such that T5 ,w; <m < T w; where w; (1 <i<d,) are
the weights of the children of s in non-increasing order; let the children
of s with weights wy,...,wq, be t1,...,t4, respectively;

18, SUITL +— Zle Wi
/* collect the subtrees rooted at £i,...,%; and possibly ;41 */

19. put all the nodes of the subtrees rooted at t1,..., ¢ in the set X and all
the nodes of the subtrees rooted at tiy3,..., %, in the set ¥';

20. if (wey1 = 2= (m — sum))

21. then put the nodes of the subtree rooted at tg4; in the set ¥

22. if (k <ds/2)

23. then add the edges (5,t1),..., (s, t¢) in the cutset;

4. else FrkSdaf2 b}

25. put node s in the set X;

26. add the edge (s,parent(s)) in the cutset;

7. add the edges (s, t;11), ..., (8, ta,) in the cutset;



28. if (sum =m)

20, then put a leaf y of the subtree rooted at ¢, in the set Y;
30. add the edge (y,parent(y)) in the cutset;

31. else sum « sum + 1; /* include tree node s */

32. M +— T — Sum;

33. else J* w1 < 2% (m — sum) */

34. put the nodes of the subtree rooted at fr1; in the set X;

35. if (k<d;/2)

36. then add the edges (s,1),...,(s,ti+1) in the cutset;

37. else J* k>d 2%}

38, put node s in the set X;

39. add the edge (s,parent(s)) in the cutset;

40. add the edges (s, txs2),...,(s,%4,) in the cutset;

41. put one leaf, say, z, of the subtree rooted at ¢; in the set V',
42. add the edge (z,parent(z)) in the cutset;

43. swap +— true;

44. m +— Sum + Wrel — M;

/* prepare next iteration of while-loop */

45, root +— teiq)

48. if (swap)

47. then swap X and ¥,
48, swap +— false;

The correctness of the algorithm follows from the fact that m and swap are updated
appropriately ensuring that the set A contains min{m,n — m} nodes eventually. Steps
similar to those of the Algorithm A are carried out in the same way yielding O(n) time
complexity.

Observation 3.1. At every iteration of the while loop, m < weight(root)/2.
Trivially true in the first iteration. In subsequent iterations, we repeat the procedure in a
tree of size a + b trying to collect min{a, b} nodes.

An Upper Bound on the Cutsize The analysis of all possible cases in Algorithm O,
in conjunction with Lemma 3.2, yields the following inequality for the cutsize C'(m) of the
{m,n — m)-partition that the algorithm produces:

1, (a)

2 where m > 2: (b)

k + C(|m/(2k +1)]), where 1 < k < d/2; (c)

k, where 1 < k < d/2; (d)

Cm} £\ =kt 14 Clm/ (2 +1)]), wheredj2 <k <d—1: e)
d—Fk+2, whered/2 <k <d—1and m>k; (f)
k+1+C(lm/(2k+1)]), where 1 < &k < d/2; (9)
\d—k+1+C(|m/(2k+1)]), whered/2 <k <d-1. (k)

Case (a) results if w(s) = m and may occur for any value of m (lines 8-9.14). Case (b)
results if w(s) = m + 1 (lines 8-14); it comes up only when m > 2, as there is always a leaf
in a tree. Cases (c¢) and (d) are due to line 23 of the algorithm, the latter corresponding
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to the case where sum = m. Similarly, for the cases (e) and (f), which correspond to the
lines 25-31. Case (g) corresponds to the line 36 and case (h) to the lines 33-42 (note that
in this case sum < m). It is important to observe that cases (e), (f) and (h) occur only
ifd> 3 ifd=2, then k = 1 and the tests & < d/2 of the lines 22 and 25 are true, thus
leading to cases (c), (d) and (g).

Now we are ready to prove an upper bound on the cutsize.

Lemma 3.3. Let T be ad-tree (d > 4) of size n = 2. Then, for any positive integer m < n,
Algorithm O always finds an (m,n —m)-partition of the node set of T whose cutsize is at

most
d+ 2

2

1
logdH(E min{m,n — m}) + 5"

Proof: We use induction on m, in a fashion similar to the one used in the proof of The-
orem 3.1. If m = 1, then Algorithm O produces a partition with cutsize equal to 1; we
therefore need to show that 1 < %52 (logy,;2) + 3. This is equivalent to proving that
1 < (d+2) logg,; 2, which holds given that the function g;(d) = (d+ 2) loggy, 2 is strictly
increasing for d > 3 and g1(3) = 5log; 2 = 2.5 > 1. For the inductive step, we assume that
the upper bound of C(7) holds for all: = 1,...,7 — 1, and we will prove that it also holds
for C(r) where r = 2.

(a) Follows from the basis of the induction given that the function .;t_-%g logg, , = is strictly
increasing for x > 0 and d > 0.

{b) In this case,

d+2 1 (d + 2) In(2r)
2r) 4 = = < : — e e——

2<

which holds for all » > 2 and all d > 2; note that (d + 2)In(2r) > (d+ 1) In 3 and the
function go(x) = z/In(zx) is strictly increasing for all z = 3.

(c) Weaker than case (g).

(d) Follows from case (c), since C(.) is a non-negative-valued function.

(e) We need to show that d —k+ 1+ C(r/(2k + 1)) < ‘i%? logg1(2r) + §, where d/2 <
E<d-—1 If weset x =d— k, the inequality that needs to be proved is written as
k+1+C(r/(2(d—k)+1)) < L2 logy, 1(2r)+31, where 1 < & < d/2. Since & < d/2, then
d—# > r and therefore v /(2(d—«)+1) < r/(25+1); given that the function "'%3 logg,,
is strietly increasing for x > 0, we have that C(r/(2(d—&)+1)) < C(r/(2r+1}). This
implies that case (e) follows from case (g).

(f) We need to show that d—k+2 < 422 logy,(2r)+ § whered/2 <k <d-1,r > k and
d = 4. Since the function (d + 2) logy, , x is strictly increasing for z > 0, it suffices to
show that d—k+2 < %52 log,,,(2k)+ }. Again, weset & = d—k. Then, this inequality
becomes Kk +2 < % log,, 1(2(d — &) +1/2, where 1 < k < d/2. Given that k < d/2,
we have k < (d—1)/2; this implies firstly that 2d— 2k > d+1 = log,.,(2(d-&)) = 1
and secondly that k + 3/2 < (d + 2)/2. The combination of the last two inequalities
yields the desired bound.
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(g) We need to show that K+ 14+ C(r/(2k+ 1)) € (d+ 2)/2 logy,(2r) + 1/2, where
1<k<df2 Sincek+1+C{r/(2k+1)) 2 k+1+ %lﬂgﬂl[ﬁr}{ﬁk +1))+ 1 =
k+1—232logy, (2k+1) + d%zlogd_[hl{?f} + 3, we need only prove that k + 1 —
"HTE logg1(2k+1) <0 — %% < 1. The last inequality holds for d = 4
and any k such that 1 < k < d/2, since the function gs3(z) = (z + 1)/ In(z) is strictly
increasing for > 4 and 6/ In(5) > 4/In(3).

(h) Same as case (). g

Lemma 3.4. Let T be o d-tree (d = 2,3) of size n = 2. Then, for any positive integer
m < n, the Algorithm O always finds an (m,n — m)-partition of the node set of T whose
cutsize is al most 1

2log; (2 min{m,n — m}) s

Proof: Let us assume again that m = min{m,n — m}. For the specific values of d, the

mequality for C(m) becomes:

P 1 P 1

(m = 2) 2 (m = 2)
14+ C(%) 1+C(3)

1
Ca(m) < ¢ Cslm) <4 24 0()

i 3 (m = 2)

2+ C(%) 2+ C(%)
= L2+ C(B)
It is an easy exercise to prove that both Cz(m) and Cs{m) do not exceed 2logz 2m + 1/2

for all valuesof m = 1.

The combination of Lemmata 3.3 and 3.4 yields the following result regarding the cutsize
of the (m,n — m)-partition that Algorithm O produces.

Theorem 3.2. Let T be a d-tree (d = 2) of size n = 2. Then, for any positive integer
m < n, Algorithm O always finds an (m,n — m)-partition of the node set of T whose

cutsize does not erceed

2 logs (2 min{m,n - m}) + L ifd=2,3

2
d+2

5 logiq (2 min{m,n — m}) - if d > 4.

4. The Lower Bound.

In [9], we proved that for d > 3 the bisection of an n-node complete d-tree admits
cutsizes at least equal to |(d —1)/2] (logyn — logylog; n) — d/2. We can extend this result
for arbitrary partitions and we can show that:

Lemma 4.1. Let T be a complete d-tree with n = (d" — 1)/(d — 1) nodes. Then, for

m; = |(d' = 1)/(2d = 2)] (i = 2,...,|loggn]), the optimal (mi,n — m;)-partition of T’
nodes has cutsize that is at least equal to |(d —1)/2] (log(2m;) — logglogy(2m;)) — d/2.
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Proof: It can be shown that the cutsize will not increase if the m; nodes are collected from
the same complete d-subtree of height i. This subtree contains (d* —1)/{d—1) = 2m; nodes
and therefore the problem reduces to optimally bisect the nodes of this subtree. The lemma
follows from the above stated result for tree bisections.

5. Concluding Remarks.

In this paper, we consider the problem of partitioning the node set of a tree T of
n nodes and degree d (d > 2) into two sets of prespecified cardinalities. We described
two linear time algorithms which produce partitions of the tree nodes into two sets V7 and
Va of desired sizes achieving cutsizes that do not exceed (d + 1)/2 logiy . 3om + 1 and
(d +2)/2 logy.;(2m) + 1/2 respectively, where m = min{|V}|,|V2|}. These algorithms
are worst-case optimal (in fact, yielding partitions whose cutsize is a small constant factor
times the optimal sclution in the worst case), as implied by the lower bound of |(d —
1)/2] (loggm — logylog,;m) — d/2 which we prove for the cutsize of such a partition when
d>3andforallm= |(d*—1)/(2d—2)] (i=2,...,logyn). Brief experimentation with the
two algorithms suggests that the first algorithm performs better than the second, despite
the fact that the upper bound on the cutsize of the partition that it produces is worse than
the corresponding bound for the second algorithm.

We close this section by describing some open questions. Firstly, it is very interesting
to come up with competitive algorithms for the case of partitions. The algorithms we
described are worst-case optimal, i.e., in the worst case the produced cutsize is not more
than a small constant factor times the optimal cutsize. They are not necessarily competitive,
however, since we cannot guarantee that at all times the produced cutsize does not exceed
a constant times the corresponding optimal cutsize. Secondly, it is of interest as well to
further reduce the gap between the lower and the upper bounds for the cutsize. Thirdly,
more extensive experimentation with the algorithms and variants of them could result into
better understanding of the problem and could yield algorithms with even better theoretical
or practical performance. Additionally, it might be interesting to work out tight lower
bounds for the case of binary trees. The cutsize is of course O(logn), but it would be
worth locking into the constant in front of the logarithmic term. (Brief experimentation
with complete binary trees of up to 22! nodes suggests that the maximum cutsize is roughly
E(logy n/2).) Last but not least, upper and lower bounds in the cutsize of optimal partitions
(and bisections in particular) of planar or more general graphs are yet to be established.
Such bounds will shed new light to partitioning algorithms, such as the one in [3], whose
performance depends on the cutsize of the corresponding optimal partition.
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