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SUMMARY

In the present work we extend the methodology of constructing the basis of vector Navier
spheroidal functions in a form which is suitable for the solution of boundary value problems.
Those eigensolutions are produced by the application of vector differential operators on
solutions of the scalar Helmholtz equations. This procedure complicates the solution of the
problem since the independent coordinates are connected through the scale factors and cannot
be separated in their final form. We have tried to minimize the extended analytical burden of
the final formulaec by exploiting a priori general properties of the vector operators and
underlying Helmholtz equation Kernel functions. Thus, the final expressions dispose the
simplest possible forms which are adequate for the applications and render analytical facing of
the problem efficient. In addition, we formulate the method of using those eigenvectors. The
physical vector fields in boundary value problems are expressed in terms of Navier
eigenvectors, they satisfy by construction the underlying equations and they are forced to
satisfy the boundary conditions. Finally, in two cases, the electromagnetic and the elastic one,
which are representative problems with differences occuring in the treatment of boundary

conditions, we demonstrate the use of vector Navier spheroidal functions.
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1. Introduction
The purpose motivating the current work stems from the necessity of investigating very

interesting problems arising in a plethora of scientific areas, in the framework of the spheroidal

coordinate svstem.

Indeed. the main factor contributing to the complexity of the analvtical methods constructed to
describe, investigate and solve mathematical models simulating physical processes, is due to
the underlyving geometry fitting suitably to the charactenistics of the svstem under consideration.
In fact, the majority of the analytical methods have been developed in order to describe systems
and processes, “living” in the spherical geometry. In addition, even in cases that the underlving
geometry 15 not the spherical one, there 15 the trend to approximate the problem under
investigation by its spherical equivalent “copy™ and apply then to it the well tested analvtical
approaches. Of course, this is permittable and actually very effective in case that the studied
system 15, geometrically, a perturbation of the spherical ideal case or in case that there exists
qualitative analysis certifying actually unaffectiveness of the response of the system to
geometrical vaniance. However, the mostpart of the interesting problems do not dispose the
symmetry spherical geometrv requires and then the extension of the existed amalvtical
knowledge to other coordinate systems must be followed. Actually, this extension has several
limitations emerging from the applicability of the analvtical procedures to the new systems as
this can be testified a priori using basic criteria. As a matter of fact these criteria include the
solvability of the equations describing the svstem behavior, following fundamental
mathematical tools as coordinate separability of the underlving equations, possibility of
apphcation of Green function techniques and possibility of reduction to the spherical case
through simple limit procedures assuring stability.

In addition to the satisfaction of general solvability criteria, the adopted geometrical system
must fit geometrically within a satisfactory degree of accuracy, with a whole family of
interesting geometrical structures arising in applications. In other words, the adopted svstem
must have parametrical representation permitting dimension scaling to cover a large group of

geometrical configurations.

One of the coordinate systems sharing all the previous privilleges is the spheroidal coordinate
system. It fits with all the configurations lacking symmetry to one direction and behaves

normally when someone tries to adapt analysis to it. In this work, the possibilities offered by



this coordinate system are analvzed and used suitably allowing the formation of the general

framework for a variety of applications as it will be ¢clarified in the sequel.

In many scientific branches of great interest, including theory of elasticity, biomechanics,
scattering theory of acoustic, electromagnetic or elastic waves, the structures under
investigation can be well simulated through simple geometrical setups. As an example, the
authors have developed an extended research methodology of studving very important problems
of biomechanics concerning dynamic characteristics of cranial systems, or problems of wave
propagation, adopting simple geometrical assumptions [1-4]. Refering to the above mentioned
scientific areas, the crucial functions representing the behavior of the investigated problems
satisfy a variety of partial differential equations like the Helmholtz equation, the Maxwell
equations or the equation of the linearized elasticity. The formulation of the general framework
for the solution of the previous equation is a difficult task even for the spherical coordinate

system.

However, special remark must be mentioned to the fact that the majority of equations,
supporting mainly electromagnetic and elastic problems, concern vector instead of scalar fields
and this implies an extra and serious amount of complication to the resulting analysis. Actually
the vector character of the sought solutions is not just an extra analysis burden but incorporates
a very important qualitative difference in the general approach of the problem. The essence lies
on the fact that it is preferable to construct a basis set, to represent the solution space,
consisted of vector eigensolutions instead of imposing the vector character of the solution to the
coefficients of equivalent scalar eigensolution expansions. This alternative approach offers the
possibility to incorporate in the vector form of the basis solutions some wimmediate» properties
reflecting their particular nature (ex. solenoidal or irrotational property of electromagnetic
fields). In addition it is flexible and more adequate to have a basis space having the same
algebraic structure with the original space of the determinable solutions and finally the

unknown coefficients of the basis expansion are scalars and more easily recovered in general.

However, the price to pay in order to establish this framework is generally hugh. In cartesian,
cylindrical or spherical geometry, the difference concerning the difficulty level between scalar
and vector solution construction is already apparent. Electromagnetics and elasticity are
formulated in a very efficient manner through the well defined Navier eigenvectors
incorporating a priori special physical properties and constituting a complete set of solutions of

the underlving equations [5]. The authors have testified repeatedly the usefulness of these
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functions in the solution of many interesting application problems permitting spherical
geometry assumption. An important complication factor is the fact that differential equation
and boundary conditions require the intermediate derivation of several physical quantities based
on Navier cigenvectors (ex. stresses in elasticity). interpreted mathematicaly as multiple
differential operations on them. contributing essentialy to the augmentation of the analytical
burden. These manipulations are extended although the above mentioned systems «cooperate

kindly» revealing all their symmetries

The usefulness and fitness of the above fundamental vector fields in the prementioned simple
geometrical systems renders essentially their mvestigation to other geometrical configurations
simulating, in a more realistic manner, specific problems. As mentioned above, the spheroidal
system Is very adeguate to represent most physical sitmations, with preferred direction,
appearing in applications and simultancously allows the applicability of several analytical
methods. However, it results that the extension of the methodology of recovering vector fields
to the more realistic spheroidal system turns out to be a really tough task and that is what the
present work aims at. The complexity of spheroidal vector fields construction 15 proved
indirectly by the fact that almost all the research applied to vector field problems, arising in
applications, in the regime of spheroidal coordinates, has been realized through expansions in
terms of scalar solutions, the well known spheroidal wave functions [5]. However, as
mentioned above, this approach has disadvantages and fails to affront the general problem in a
suitable and unified manner. Moreover, the already existed knowledge [6] about wvector
solutions in spheroidal geometry includes extended and complicated expressions, whose
analytical treatment is, in mostimes, a very difficult task rendering the analytical handling of

the underlying problems undesirable.

In the present work then we extend the methodology to construct the basis of vector Navier
spheroidal functions under the usefulness point of view. As a matter of fact, these
eigensolutions are produced after applying vector differential operators on solutions of the
scalar Helmholtz equations. Unfortunately, in contrast to spherical geometry. in spheroidal
coordinates the grad, div and curl operators, which give birth to the Navier functions after
being apllied to the above mentioned suitable scalar functions, are complicated. Their main
disadvantage is that the independent coordinates are connected through the scale factors and
cannot be separated in the final form. Actually, this is a rather qualitative difference but
someone can not ignore the quantitative extra burden appearing in the spheroidal system due to

the fact that the scalar Helmholtz equation has- in separable coordinate forms- much more



complicated solutions since the basic ingredients functions are infinite expansions of Legendre
and spherical Bessel functions, which constitute the simple basis functions in spherical
geometrv. In what follows we have tried to overcome these problems by expoiting properties
of vector operators and finally formulate the wanted functions in a suitable form. To illustrate
the use of those functions we have chosen two cases, the electromagnetic and the elastic one

where we have used the proposed methodology to formulate the solution of the problems in

terms of the spheroidal Navier vectors.
2. Spheroidal Geometry- Spheroidal Wave Functions.

In this section. we present all the necessary information about the geometrical system under
investigation and the scalar solutions of the Helmholtz equation, which fournishes with the
basic functions via which are represented the solutions of the differential equations under

examination.

The connection between cartesian and spheroidal coordinates as well as the scalar

factors are given by the relations
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where the spheroidal coordinates range over the intervals

uz00<0<nr0<¢p<2rm.

The case pw= 0 corresponds to the line interval connecting the two focii of the

spheroidal system located at the points z=- lza end z%& :



The Laplace operator in spheroidal coordinates takes the form:
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Let us consider the Helmholtz equation

Ay+k iy =0 (2)
Applying separation of variables techniques we conclude that
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where the functions R, § satisfy the equations
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and A, stand for separation of variable constants.

It is proved [5, 7], that the functions R, § are given by the relations
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where there exist four alternatives for the spherical Bessel functions Z'¥,

ZOE= 142
ZO(z) = y,(2)
Z®(2) = B™(2) = (j, (2) +iy,(2))
ZMN2)=hP(2)={j,(2)-y,(2)

while P"(n) denote the Legendre functions. In addition, the symbol > . as it is

k=01
clear from Equation (5), indicates summation over even or odd indices, depending on

the starting index.

The crucial point is the determination of the coefficients 4" (c).

Inserting Equations (5), (6) in Equation (2) and exploiting recurrence relations for

Legendre functions we conclude to the following recursive scheme:
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we obtain the homogeneous system
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for (n—m) odd.

Equation (9a) provides with the eigenvalues 4, ,,.(c),4,,,...(c). 4, ,.4(c)..... and

Equation (9b) provides with the eigenvalues A4, ., (), 4, ,.:(€), Ay s (€,



For every A_ (c) determined above, the coefficients 4. (c) are determined modulo a

multiplicative constant, These coefficients are fully determined when a normalization

condition is imposed.

In Ref. [7], we can find that

Z (k +k2|m)!dfn ©) = Eztg: | (10)
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Under the above condition, Equation (6) which expresses the “radial” functions

becomes simpler and takes the form

B L\ e
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3. A Brief Discussion on the General Theory of Vector Eigenfuctions.

In this section, we present the general theory giving birth to the vector solutions of the vector

Helmholtz equation:
V2F(r)+42F(r) = V(V-F{r) -V x (V < F(r)) +k*F(r)=0, re R’ (12)

As mentioned above, the vector Equation (12) governs many physical phenomena. Indeed. the
harmonic electromagnetic fields [8] or the transverse and longitudinal elastic fields [9] satisfy
this equation and the crucial parameter & corresponds to the wave number incorporated to the
harmonic character of the specific situation. Although Equation (12) concermns time-reduced
configuration, the solutions of the vector wave equation may be derived from the solutions of

(12) by the Fourier transform.

For an arbitraryv vector function F(r] satisfying Equation (12), let us define the vector field



wlr)= 4HJ'ﬂ|f(rr| | S 13)

where integration extends to R3 :

It is proved that the vector field w(r) satisfies the vector Poisson equation

Viw(r)=-F(r), reR’® (14)
Using, then, the vector formula

Vx(Vx)=v(V.)-v? (15)
we conclude that

F=-V(V-w)+Vx(Vxw). (16)

This is exactly Helmholtz decomposotion theorem, valid for any function F [r] not necessarily

satisfying Equation (12), and states that any vector field may be expresed as the sum of the

gradient of a scalar potential and the curl of a vector potential.

Consequently, Equation (16) takes the form

F{r}: ?Q}(}‘)-i»"? * A{r) (1n
where (;J(r} stands for the scalar potential, A(r}stands for the vector potential and are given
by the relations

o(r)=-v-wir) (18a)
Alr)=Vxwl(r). (18b)

The first of the fields given in representation (17) is usually called the longifudinal (or
lamellar) component, since a gradient points in the direction of greatest rate of change of the
scalar potential. The second is called the transverse (or solenoidal) component, since the curl

of a vector is usually transverse to the direction of greatest change.

In addition, in case that F (r} satisfies Equation (12), then it is straightforward to show that the

potentials ¢ and A satisfy the equations
o(r) +k? olr)=0, re R (19a)

V2A(r)+k*A(r)=0, reR’. (19b)
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Eq. (19a) reveals the first advantage of the separation of the vector fields to longitudinal and

transverse components. In fact, the determination of the longitudinal component is totally
equivalent to the determination of the scalar potential ¢(r), which solves the much easier

scalar Helmholtz equation, whose examination has been presented in previous section.
So. the longitudinal solutions have the form

where @ solves the scalar Helmholtz function.

In the sequel, our effort must be devoted to the transverse component. This field may always be
derived from a pair of scalar fields, fact implied by its free divergence property. reducing then

by one the initial general three scalars representing it.

Under a general point of view, we consider the curvilinear coordinates £;,£5 .53, with scale
factors Ay, h, . h3 and suppose that this coordinate system adapts the physical problem thanks

to the fact, for example, that some boundary of the problem coincides with the coordinate

surface £;=C .

It would be advantageous to choose the two scalars describing the transverse field so that the

part of the field derived from one scalar be tangential to the surface §1=C and the other to be
normal to it. A vector normal to the &, surface is a,f . where f stands for some scalar
function of £, &, . &5, which has to be determined. This is not, however, always a transverse

field. its divergence is seldom zero, even if f is independent of &;.

However, the vector

M=V )= o) 2 0v) @

is tangential to the surface & ;= C and since is, a priori, divergence free, constitutes the one

sought solution after the scalar f has been determined.

11



Extended manipulations [3] lead to the conclusion that for six from the eleven coordinate
systems which allow separation of the scalar Helmholtz equation, it is possible to set up a

solution of the type introduced by Eq. (20) in the general form
M =V x(a;w(& ) (22)
where |/ is a solution of the scalar Helmholtz equation, &=z ,w =1 for the cylindrical

coordinates (including cartesian) and where £;=r, w=r for the spherical and conical

coordinates.

Consequently the one independent transverse vector solution is based on one scalar field

satisfying the scalar Helmholtz equation. The other transverse component would be desirable to
be normal to the coordinate surface £y=C . As mentioned above a function of the form
a;f can not be expected to play this role. Nevertheless, every function of the form
N:?x?x(alwz), (23)
where y satisfies also scalar Helmholtz equation and W has the same form as in Equation
{21), constitutes a transverse solution, which can be proved to be normal to the coordinate
surface & ;=C . Actually, Nis not identical to M even if y =y . In fact Nis often

perpendicularto M when » =y .

Summarizing all these results, we conclude that we can define three scalar functions, @, ¥ .

all satisfying the scalar Helmholtz equation and leading to the construction of a basis for the
most general solutions of the vector Helmholtz equation and this basis consists of the vector
fields given by Equations (20), (22), (23) whose form allows a suitable application of the

various boundary conditions.
4. Spheroidal Eigenvectors
The analysis presented in last chapter reveals the limited cases in which the construction of

vector elgenvectors satisfies the necessary criteria for the «reasonable» solvability of boundary

valug problems.

At first glance, the restriction in the choice of the possible crucial functions w(-,_*‘fl} brings bad

news for the spheroidal geometry. Indeed, flexability in the treatment of the boundary

12



conditions on spheroidal surfaces would require “candidate™ transverse eigenvectors of the
following type:

M=Vyx¢,
N:%(ﬁ'wé)_ (24)

In fact, these vectors live in the tangent and normal space of the surface and adapt verv well to

several types of boundary conditions.

Unfortunatelv, these vector functions do not satisfy vector Helmholtz equation! This can be
testified directly but it can be deduced from the general theory presented in last section, given
that no permitable function w{.fl) leads to expressions (24).

Consequently, we are obliged to restrict ourselves to vector eigenvectors constructed via
auxiliary vectors not coinciding with the unit vectors of the spheroidal geometry. This
necessary assumption is accompanied with the disadvantage that the boundary conditions can
not have the most possible easily handled form, encountered in cartesian, spherical and conical

coordinates.

In contrast. the vectors

"M=Vwxa and
IN=Vx *M=Vx(Vixa) (25)

where ac{X §.2,r} (X,§,Z are the unit vectors in the x,y,z directions respectively), do
satisfy vector Helmholtz equation and constitute eight choices to represent the transverse
components of the vector fields, forcing ¥ to run over the countable basis set of scalar

Helmholtz equation solutions. In addition, they have the most symmetric form and fournish

with the least burden to the complication of the boundary conditions.

The transverse solutions (25) together with the longitudinal solutions L =V have to be

expressed in the spheroidal coordinate system. To accomplish this, we use the spheroidal

representation of grad operator

v=2 ‘

a (sinhzy -|~sir12|'5?)]-'fz du 60| asinh usinf dp
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The longitudinal basis functions L e"{:j are obtained after applving grad operator (26) on

scalar functions
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Let us now treat the transverse vector fields expressed by relations (23).

We start with the vectors "M and "N, which correspond to the «right» choice in the
spherical case. Actually they constitute the most “clever” selection when the spheroid under

consideration 1s a perturbed sphere.

In order to determine * M we use the relation

v, 0= vr’”*g” (28)

F‘.‘!H

which leads to the expression
%
m

enr () (i) oL, i)
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2_ V2 {2 )2 ; \[cos(me)
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The construction of the vector field "N , ) can be based on the definition

oM
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and realized after applving the operator cur! - expressed in spheroidal coordinates - to the

previously constructed eigenvector " M (n} We obtain then, after some calculations that
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Actually, this is the straightforward construction of the ecigenvector "N 9 and previous
S HiR

relation is the preferable form, under some possible slight modifications used in a few works
treating spheroidal problems [6, 12, 13]. However the expression (30) is a very complicated
expression and becomes much more complex if someone tries to apply boundary differential
operators on it. As a matter of fact, it contains a lot of differentiations of second order and this
creates the question whether some terms can be simplified after combining this expression with
the differential equation itself. In other words there exists the feeling that expression (30)
contain some ficticious terms, which should be rearranged suitably to lightening the burden of
the equation. Actually these terms stem from the fact that operator cur! does not “know™ the
differential equation satisfied by the functions on which it acts. Mevertheless, instead of

rearranging terms, it would be preferable to follow a simple different procedure to obtain an

alternative «minimal» expression of "N ’ ':’}

fn
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Indeed. following some simple arguments based on differential equation properties, we begin
with the definition equation

()= gur M ) (i) (31)

ol T

r
NG
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and we obtain
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(32)
The first term of the last part of representation (32) is equal to L “:Ej’ while the third term is

acquired after applying the differential operator r-V on the same function. As far as the
second term is concerned, it has a verv simple expression,

In other words, we have

O=r, O VL, a2y O (33)

r
mn mn

r
N,
i

Another useful representation of "N ; ) is the intermediate step of (32) fournishing the

e

formula

rN O-p Ouv(rn O)sr2y O (34)
i by L PLL ofHH

It is true that expressions (32-34) dispose as well as second order differentiations (all appearing

in the term (r- V)L ) ), but now no retractable differentiation is appearing.
aﬂﬂi
Similar treatment can be applied to the construction of vector solutions

*M,YM,"M, *N,” N,°N. Together with the eigenvectors L,” M,” N, we have nine sets of

eigenvectors and it depends on the particular nature of the problem, what specific choice must
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be adopted. We present, here, the formation of vector solutions “M and N and simply

remark that the other eigenvectors based on cartesian vectors X,¥ are constructed sinularly.

The derivation of “M , U is based on the definition expression

o I

YRR [‘}, : I[:']E]___zL UMY (35)

o MR mn i

Expressing suitably the wvectors Ex?. fix? and @xZ in spheroidal coordinates and

combining (34) and (35), we obtain easily that

Rm' (f C)]Smu (m.¢) cos(me)
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: f”{é C)—[ n (71,0)] | i (36)
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To derive N, m, we could use the relation N )= g2 M, ) and express everything in
Smin Smn

T
spheroidal coordinates. We obtain then a rather complicated expression and the above

procedure is proved to be a bad idea. We could, however, proceed as in the "N construction

Casc,

Using differential properties, we obtain

“'}]E}:?{?-[‘I‘;rﬁ")i]] v(w 0:)=

.
N OD-vrm Doy vvaf‘ (
Hin

L3
I o L \ s

vt o | g2y W

Fia J s

where we have profited again that ‘¥ EHE’-} satisfies Helmholtz equation.
oM

Expression (37) is elegant and actually, commenting exactly as in the "N case, we mention

this expression is the preferable form for boundary condition treatment. Even if we try to
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express Eq. (37) in spheroidal coordinates, we obtain a rather complicated form again, given
by the following equation
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As a matter of fact, relation (38) could obtain a more condensed form if we gathered all terms
corresponding to the same unit vector but we preferred to keep this form to reveal the origin of

every specific term.
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Expression (38) is much more complicated than (36) and we understand, as in the "N case,

the treatment of boundary conditions on °N, should be more sophisticated than
straightforward. Before proceeding to the handling of eigenvectors, it should be useful to make
some remarks concerning the criteria determining the specific choice between the nine available
vector solutions. The complexity of N functions compared to the rather simple form M

would imply, at first sight, the suggestion to avoid functions N at any cost.  Unfortunately,

this is not always possible. For instant, it would be really enthousiastic to work with L,” M

and M instead of the set L," M," N . However, it is easily proved and can be testified by
simple inspection that for problems with azimouthal svmmetry - the case m =0 - the vectors

"M and M become parallel and lose their independence. Consequently, they fail to
represent an arbitrary solenoidal field. In addition, under the same framework. azimouthal
svmmetry could be a natural property of the problem as the underlying geometry disposes this
property. In conclusion, the most of times, it is not an easy task to avoid including in the
eigenvector basis functions of kind N. An additional remark is that the assurance of
dimensionless eigenvectors demands suitable scaling of the previous functions and usually this

15 accomplished by suitable division with powers of wave number. So usually, we are talking
about L = é\?‘?, M= %? x(¥r) and N = %{T xM). The special treatment of these

functions will be apparent in the next section.

5. Formulation and Solution of Boundary Value Problems based on Spheroidal

Eigenvectors

As it has been stated in the previous sections, what orientates the suitable forms of spheroidal
eigenvectors is the applicability and usefulness of these functions to several scientific fields,
Two main areas have attracted our attention in our work, The electromagnetic and the elastic
case., Both regions of mathematical physics contain the most part of interesting boundary value

problems and reveal the powerfulness of the already constructed eigenvectors,

Electromagnetic Case
In this framework, the goal is the determination of the electromagnetic field in finite and infimte
regions given the boundary conditions occuring on discontinuity surfaces. The electromagnetic

field obevs to the differential Maxwell equations, while the boundary conditions stem from
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suitable treatment of the integral forms of Maxwell equations. We conclude then that every
discontinuity surface must compensate tangential components of electric field E and normal
components of the magnetic flux density B. In addition, the surface charge density o,
balances the difference of the normal components of the electric flux density D, while the
surface current density K coincides with the difference of tangential components of the
magnetic field H. Consequently, boundary condition investigation imposes the treatment of

functions n-D, nxE, n-B and nxH on discontinuity surfaces (n stands for the unit

normal vector on the surface under consideration),

In many interesting applications, we have isotropic and homogeneous media and the
stimulation of the system obeys to harmonic time — dependence. In this case, problems
referring to scattering theory, electromagnetic oscillations and so on, the examination of only
one field, e.g. the electric one, is necessary and sufficient for the determination of the whole
electromagnetic field. Under these assumptions, the treatment of the sealar function n-E and

vector function n x E is sufficient on boundary surfaces,

The usual framework, defining the spectral analysis of the mentioned problem, is to expand the

electric field E;occuring in every component }; of the system, separated from the other
adjacent components by the mentioned above discontinuity surfaces §;, m terms of spheroidal
cigenvectors M; and N;. The free curl ecigenvectors L; are excluded from this

representation as the electric field is a free divergence field in the free — charge region and is

then represented through solenoidal basis vector functions. The eigenvectors L, M, N;

depend on the physical parameters of region V; and so are labeled through index 7.

Thus, we lead to the expression
E:’ = X[H!'M!' + ﬁ:’Nf) (39)

where summation runs over all denumerable sets of parameters originated from separation

constants in the coordinate separation approach.

In everv boundary value problem the determination of coefficients «;,; is sought, fact

coinciding with the determination of the electromagnetic fields of the problem.
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This is accomplished through the boundary condition satisfaction. In oscillation problems, the
boundary conditions are homogeneous and so the coefficients «,, f; are determined modulo

some arbitrary constants as expected, while scattering problems are connected with non -

homogeneous boundary conditions leading to unique determination of the underlying fields.

The method of handling the boundary conditions is the following. Every boundary condition
satisfied on a spheroidal surface 5, described by £ = C;, must be projected on a complete set
of functions on 77, - space leading after suitable orthogonalization arguments to algebraic

linear systems having as unknowns the sought coefficients «;, ;.

The complete set of functions in the 7, @ - space can be selected through several choices.
However, the most adaptable choice to the specific forms of underlying functions is the set

ol (.‘r;.r}a[ E?S;:m@)ﬂh m=0]12,. ;n=m, denoted for simplicity in the sequel as P(n)F(p).
_sin(mg) |

However, special attention must be assigned to the fact that the necessity to introduce a weight

function (£, 77,¢) usually occurs in applications and this appears in the sequel.

As mentioneed above, boundarv conditions invelve the functions £-E; and £xE,.

i
Transforming everything in scalar functions, the above functions are equivalent to the terms
E.E,, #-E; and ¢-E, . It results that the treatment of the boundary conditions is equivalent
to the determination of the “brackets™

(&M, Pa)F()), (E-N,.P()F(p)),

{7 M, P(F(@)). (ii-N,,P()F(9))

and

(@M, P(NF()),(¢-N;, P(F ().

At this point, the suitable representation of the eigenvectors M, N; plays important role.
Particularly, the integrals referring to N; would be very complicated expressions if the

definition representation is used without any special treatment.

We present, now briefly, the derivation of the above crucial “inner” products. To guarantee

simplicity, the scalar function ¥ on which the construction of eigenvectors is based are
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denoted as W(&,n.¢) = R(&)S(n)P(p), omitting the several indices appearing in the

definition formulae.

We now begin with the handling of the term EA -E; postponing the determination of the

introduced weight function @ .

More precisely, we obtain

> 3 2 _—
(g-N,Fjﬂ)::[.f-NPFmdé =}-£§-'~?x(‘~?xﬂ}PFmd5=

L | s &
Elg 'V x(MPFo)dS - E!g [V(PFw)«MKs.

But for every vector field A we have

Jaf-?xAdS:C:.
5

Consequently

I;“'- NPFadS = - I £.[V(PFo)MYs = j (ExM) V(PFo)s.

8 5

In addition

EKI\"I:%.-‘EX(T‘Fxr)z—?‘l-’(r-f)—ir(é w)z
K2y 1 {=

o Snys

* vy - L vy)

(40)

(41)

(42)

Inserting (42) into (41). expressing the differential operators and the surface element in

spheroidal coordinates, we obtain
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Notice that Equation (43) does not contain second order terms, which have been eliminated
through the integral law (40).

The presence of the denominator (e;‘z == ?}'2) in the integrals of Equation (43) is a complicator
factor and would be useful this term to be compensated through the weight function @. A

posteriori information justifies that a good choice for this auxiliary function is

o=-n2)e2 -¥. (44)

This assumption, of course, creates some inevitable calculus burden, but it offers the great

advantage to avoid the scale factor (§2 - ?}2] mixing the spheroidal coordinates. A prion, we
notice that we are obliged to use the same weight function in the product (:f M, PF > as these

terms appear simultaneously.

Combining Equations (43) and (44) and following extended and elaborate analysis, we obtain
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In the previous expression the integrations have been separated and all the 77 - integrals are

easily calculated. Indeed, function S contains associated Legendre functions of the same

azimouthal number with function P, while there exist well known recurrence formulae to

express the influence of the differential operator (1 - nl)qi or of 17 on Legendre functions in
o

terms of the Legendre functions themselves. So, the well known orthogonalization arguments
of the associated Legendre functions can be used to define the quantities appeared in (45). The
precise values of these integrals are not within the scope of this paper, but their presentation is

used to the application paper [10].

In the same framework we can find that
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We handle now the integrals incorporating projections on the 7 - direction. We denote the

weight function as @; since there is no reason to be related to @ .

We have

J 5 MPF®,dS = lT ‘[ 5 (V¥ xr)PFo,dS =
5 5

= ﬂ(r x77)- V¥ (PFa, JdS = %J‘(r gIg %) V(PF e S =
g 8

_ _% (- &) - v¥(PFw, ds.

Wy

Expressing everything in spheroidal coordinates, we obtain

= 2z 1

foNEs 1/2 @' FSPe

e jn-WledS=—£R(é)(§2 -1) jr#v #dﬂ- (47
WL 0 - Vi-’

2 g2 2
The right choice for @, is @; =+/1-17 (§ -1 ]2 and this seems useless now, but it is

invoked by the treatment of N - tvpe eigenvector.

Consequently
2 2
k[—J jﬁr-MF}f'mld? =
& 3
. (48)
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To handle the corresponding integral concerning vector N we use representation (34)

according to which
kPN =VY+V(r- V¥ + k> ¥r, (49)
where we have adopted the suitable dimensional analysis.

We infer that
E‘F
RJ.?; NPFm]dS———J V2 PFe,dS
_:'7 )1 (30}
i i ka [ m1-7°
el I (A VI V¥PFodSs + — | - ¥PFa,dS
ﬂ' : 2 3 (:’2_?;'.2)]"1

Only the second term of the right hand part of (50) contains second — order derivatives and

merits then some special treatment.
Indeed, we obtain
%J{?} V(- V)®]PFodS
§
2 (a)? T )
= E:@J y& -1 Id@)jﬂ'l -1’ E[(r V¥ )PFo, )n (51)

22 [ oo o2 (e, o

0 -l
where the integration by parts in 1 - integral has simplified the analysis eliminating the second

order derivatives,

Following extended analytical manipulation of the underlving spheroidal functions we obtain
that

26



2
;r[_J I(ﬁ- N)PF@,dS =
% LY

2x
£ -1R©) [ ordp) - (62
0

kr:t.

+22E2 - 1RE) _f ®Fdo!

. i
e = ({:)!w@*

In :;1{ ]Pdr;r 4J'( 1}73 il

1
(g2 - ] o0 OF ol
1)lj Pcf +( ):[:-“_1( )lf*?} 5‘-‘?d
1 -
—fﬁs(lﬂv )g(l—vl)gdﬁ

(¢ -1)2_[1— 0 SPan -2l - )J’(‘W%SPJJ:

-1 |
b

j?fu —7?)SPdn

1

-(f-f)f(-nz)gm
j?:r

- 6_[?}' SPdn + 4[?1&)’&’?;
-1 -1

i

Pa'n+'? 2 4 jr;.'?Pdr;r
-1

(32)

Similar remarks are valid for the 77 - integrals appearing in Equation (52).

As far as the projection on the ¢ - direction, the resulting integrals are treated similarly.

Selecting @, = (1 -n? )”2 (;3

"‘{‘3 j;v M(PFo, S =

[ -1re J DFdp I

-1

/2
?]'2 }1 we obtain

ir 1 -
(2 -1kree) jmm;o j (1- 72 )g% Pdn
0 | 53)
—n? hSpdn,
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The Elastic Case

A very interesting scientific area from the theoretical point of view is the elastic boundary value
problem. The elastic medium under a certain simulation regime, propagates the data permitting
the propagation of elastic waves, which interfere with discontinuity surfaces creating secondary
distrurbances establishing the scattering procedures. The elastic fields, in accordance with the

electromagnetic ones, can be explained through the eigenvector basis.

However, elastic propagation has the particular nature that every initial distrurbance creates
two elastic waves travelling with different wave numbers. The “slower™ wave is the so called
“transverse” part having solenoidal nature and is expressed completely in terms of Nawvier
eigenvectors M, N introduced in the previous sections. The “faster” wave is irrotational and
constitutes the “longitudinal” component of the elastic wave. It can be expanded in the

eigenvectors of L - type with different wave number.

Keeping the same terminology as in the electromagnetic case, we summarize that every elastic

field in the region F; is represented as

“f = ],["!l'lJ + l]f
where
uf = ZQFLT . l.lf =Z(ﬁiMf +?J'Nf}’
and
L —quﬁf’, M, = L?x(‘?frl N, =-]'—"?=><1"nr’lJ
k k
2 s :
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Notice that ‘{":,! = p, s satisfy the scalar Helmholtz equation with wave number Irr-r,f =p,5

with kf > k7 .

The transverse and longitudinal components of the eclastic fields are not independent and the
boundary conditions are responsible for this. In this case, the displacement fields and stresses
have to be balanced on the interfaces. The elastic stress is acquired after the application of the

stress operator

T =2u0-V+ A0V - +uixVx (55)
on the displacement fields, where A;,4; are the Lamé constants characterizing the elastic
properties of the medium ¥}, and # is the normal unit vector which coincides with c_;: on

every spheroidal surface. Consequently. we have to treat the vector functions T,-u;u and Tou]

on the surfaces £ =C.

Handling 7;u; is equivalent with treating 7;M; and T;N;. Let us begin discussing on these

solenoidal elastic components.

Clearly
Tz'Mi = 2‘#!‘5 ’ 1"E”:."":[I + #a"f x V x M,- = 2.“1‘(5 ’ W‘?)VI;' w #:’krrs‘E * N{: (56)

TN =2, VN, + ;¢ x (VxN;)

=2u,E - VN, + [‘? x ;—,(‘? <M, ﬂ =24;€- VN, + ik E XM,

i

Consequently, in the framework of treatment of inmer products <¢&-I;M;, PF > and

<@ TN, PF &, 6= E.7.6 . the second terms of the right hand side of Equations (36) and
(57) have already examined in the electromagnetic case and only the terms

<a- (é'-?).\/[i,PF > and <@ -(g-?)\l,-,FF > make their appearance for the first time.

Postponing the determination of those terms, we examine also the influence of the stress

operator on the L; eigenvectors. More precisely

TL; =2p;E - VL; + 4,8V - L; = 24,6 VL, - kPP . (58)
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Similarly to transverse solutions, boundary conditions handling of longitudinal wave is reduced

to the determination of inner products of the form {é~(§-‘?).,r-,PF >, G=EF.

Let us begin the investigation of these integrals from the irrotational component. Using

differential identity

Vx(axb)=b-Va-(V-ah+a(V-b)-a-Vb (59)
we infer that

kE VL= VWY =Vx (V¥ xE)+ (V. V¥R -ve(v &)+ v vé =
V[V <) k2wE - ve(v &)+ v vE o

where, for simplicity, we omit in the sequel any kind of indices.

Given that g.f f =1, we find that T-"f 95 = 0. Projecting Equation (60) on é we obtain

kE-(2-VL)= & Vx (Ve xé)-k2¥ - (V- EJ¢- V). (61)

Consequently, explotting integral law (40), we can show that

k<& (VL) PF >= J‘F‘P~ V(PFo)ds - I(.g VYE . V(PFo)s

3 ,_ 3 ©)

-2 [wPFods - [-ve v -EJpFods.
5 5

Every term of Equation (62) contains only first — order derivatives and has similar form to that
encountered in electromagnetism. It is not within the purpose of this work to give all the terms
appearing in the inner products. Actually, this is accomplished in our forthcoming work [11].

where interesting elastic problems occuring in spheroidal geometry are studied. However, the
most difficult terms expected, are the integrals of the form < - (.f . ?)\I - 5 F.0.
Straightforward calculation would be a mess. In contrast, using (59) we find that

E VIN=Vx(Nx&)+ (@ NE-N(V-£)+N.ve

- Vx(Nx&)-N[-£)+N-ve. (63)

Consequently, taking for example a = £ |

G oN=E valid) 6 NI-) o
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Then, using again the integral law (40), we would obtain a very useful expression for the

desired mntegral reduceable to already determined integrals. Suitable use of representation (49)

is necessary for handling the projections of E. ‘G’)N to the directions 7 and @ .
6. Concluding Remarks

The goal of this work is to construct the vector Navier functions in sphercidal geometry in a
form which 1s suitable for the solution of boundary value problems, Instead of following a
direct and straightforward calculation of the Navier functions by defining the application of the
differential operators on Helmholtz equation kernel, we trv, in this work, to minimize the
extended analytical burden of the final formulae. This i1s accomplished by exploiting a prion
general properties of the vector operators and the underlying Helmholtz equation kemnel
functions. In other words, we absorb the complexity of the analytical treatment using all the
symmetries of the problem. So, the final expressions do not have unexploited hidden
information and dispose the simplest possible form which turns out to be adequate for the

applications and renders analytical facing of the problem efficient.

However, the construction of Navier eigenvectors presented in this work is only the one side of
the problem. We have to render the expressions of these functions suitable for the applications
and this is actually the most interestig task as it justifies the whole approach. Indeed. these
eigenfunctions are gomng to be used as basis functions in boundary value problems of
electromagnetics and elasticity. The physical vector fields in these problems are expressed in
terms of the Navier eigenvectors and satisfy then by construction the underlying equations. In
the sequel, they are forced to satisfv the boundary conditions of the problem on the boundaries
of the system, which are coordinate surfaces. The implication of the boundary conditions vary
on the particular physical problem. Mathematically, the boundary conditions are treated by
imposing specific differential operators on the vector solution of the problem and force the new
expressions to take specific forms on the boundary surfaces. These differential operators could
be simple as the curl operator (electromagnetics) or very complicated as the differential stress

tensor (elasticity).

However, the linearity of Navier representations renders sufficient the determination of the
boundary condition differential operator acting on the kernel Navier eigenvectors. In other

words the second more essential task of this work must be the determination of the fundamental
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vector functions constituting the basis of the transformed solutions after the application of the
boundary condition operators. For the spheroidal case, this is a very difficult job, particularly
for the elastic case, when the boundary conditions have complicated differential
representations. In this framework, all the necessarvy matenal is constructed in this work and
special mention must be assigned to the determination of the application of stress operator on

Navier eigenvectors, in the elastic case.
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