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The effect of stress on magnetic properties of ferromagnetic materials, well known
as Inverse Magnetostricton Effect (IME), is studied for thin ferromagnetic films.
The model used, is a micromagnetic one proposed in Ref. [1]. To calculate the
stress dependence on coercivity, numerical non-uniform (NU) solutions, resulting
from Finite Element Model (FEM) calculations, for the Brown' s magnetoelastic
equations are presented and compared with uniform Stoner-Wolfarth (SW) ones.
We study only the case were the applied stresses are oriented parallel to the field’
s direction (Case 2 of Ref. [1]). Energy considerations confirm that the NU modes
are unfavorable throughout the magnetization reversal.
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1. Introduction

Magnetostrictive materials belong to the class of “smart material” since their hysteresis
is controlled by mechanical stresses and their mechanical deformations by magnetic fields
[2]. Thus they are very attractive as actuator and sensor devices, such as microrobots,
micromotors, etc.[3]. The IME is one of the favorable research topics [2, 4]. A rigorous
phenomenological theory of magnetoelastic interactions has been proposed [5], but due
to its complexity only elementary solutions have been obtained [6]. A domain rotational
model, that examines the role of material parameters and mechanical stresses on magnetic
and magnetostrictive hysteresis has been proposed in an earlier work [7], but it ignored
NU modes of magnetization reversal. Such NU modes have been investigated in the
special case of pure magnetostrictive domain wall oscillations [8]. A one-dimensional
micromagnetic model for studying the IME in thin ferromagnetic films, that embodies
the non-uniformity in the magnetization distribution in its basic postulates and thus is
self-consistent, was proposed in a previous work [1]. Uniform SW solutions as well as
the nucleation modes for NU magnetization reversal were presented in Ref. [1] and NU
solutions for the case where the applied field is perpendicular to the stress direction in
Ref. [9].

In this work we discuss possible NU solutions to the previously proposed micromag-
netic model that accounts for the IME in thin ferromagnetic films. We consider only the
case where the applied field is parallel to the stress direction. Brown’' s micromagnetic
equilibrium equations are solved numerically by the Galerkin Finite Element Method
(GFEM). We look for typical Bloch wall solution to the problem under discussion [10].
The coercivity-stress (h.(¢)) and remanence-stress (m.(c)) laws are obtained and com-
pared with analytical [1] and experimental results [4]. Size effects are also discussed.
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2. Brown’ s Micromagnetic Equations

We consider a thin-film of thickness d = 2a along the z Cartesian axis. In its undeformed
state the thin-film has its principal axes along the coordinate axis. The magnetization
reverses in the zr—plane and the infinitesimal plane strains are confined to be uniform
(€ry = —€s2 = €, €z, = 0). The applied uniform mechanical stresses are perpendicular to
the film plane, along the direction of the uniform external magnetic field (Case 2 of Ref.
[1]). The micromagnetic problem is then described by Eqs. (30) of Ref. [1]. We rescale

them according to
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where S is the reduced half thin-film thickness and h; the reduced magnetocrystalline
anisotropy constant. Due to (1), Egs. (30) of Ref. [1] become,
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Hy is the anisotropy field (Hx = 2K, /p.M,) and M,, Ki, B;, ¢ij,1,j = 1,2 are the
saturation magnetization, the anisotropy, the magnetoelastic and the elastic constants,
respectively. Here 8, h, &, h.. h,,. and E;‘m, denote: the magnetization angle with respect
to the applied field, the reduced applied magnetic field, the reduced applied mechanical
stress, the reduced elastic and the reduced first and second magnetoelastic constants,
respectively. The variation of B> due to the applied field H? can be considered small
compared to its tabulated value [11] and thus Eq. (2d) will be neglected in the following.
We limit our discussion to materials with negative magnetocrystalline anisotropy (hx =
—|hx|) and negative magnetostriction (Rume, A%, = 0), like Ni. Due to (1):
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where § = (C/2|K;|)? is the domain wall width, C denotes the exchange constant. The
rescaled nucleation field (Eq. (61) of Ref. [1]) is expressed as
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For convenience, in the following we ignore the bars in the definitions (3-4,6). The reduced
magnetization m = M, /M, along the field direction is computed as follows,

L (P s (6)
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Magnetostriction curves are computed according to the mean strain value (e} defined by:
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Since the elliptic integral obtained after integrating once Eq. (2a) cannot be computed
analytically, a numerical solution is proposed.

3. Numerical Solution

In the present work we prefer to solve Brown’ s micromagnetic equations (2), with the
GFEM. In this method the solution is expanded in quadratic elements

3
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where ®; is the quadratic basis function and #; is the unknown at the i** node of the
element. The GFEM calls for the weighted residuals R; to vanish at each nodal position
i
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where L is the nonlinear operator that acts on 8 (see Eq. (2)) and J is the Jacobian of
the isoparametric mapping, with D = [—S, S| the domain of solution. For the problem

under discussion
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where () = d/d¢ and Az = 25/N, and N, is the total number of elements used. All the
numerical results obtained correspond to material constants of Ni [1]. In general each so-
lution obtained, represents a point in the three dimensional space designated by (h, o, E
The results presented here are for varying h, ¢ and S = 1.5. For the material constants
of Ni this corresponds to a film thickness 84.75nm. In all our numerical computations,
the degeneration of the solution to the SW limit represents more than a problem. This is
because the nucleation mode for the presented problem is a coherent one [1]. Like in all
nonlinear BVPs, and the present one (Egs. (2)) possesses multiple solutions. We searched
for typical Bloch domain walls excitations [10]. All the obtained solutions are summarized
in the three modes shown in Fig. 1, for the same set of parameters: a compressive stress
o = —5 x 10% and a reduced thickness 25 = 3. Close to jumping fields in the hysteresis
curve the numerical approach fails [14] but for very small systems with only few discretiza-
tion points, the jumping fields can be computed with high accuracy [15], by refining the
continuation step in the initial and the final solution branch. Magnetization profiles at
various stages of the reversal are also included in Fig. 1. The departure from saturation
for mode A is at h, = 0.1 < h,, = 0.8076, and corresponds to typical perturbation of the
SW mode B. At h = —0.87 the magnetization profile of mode A has the classical Bloch
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wall structure, while at h = —0.88 a complete Bloch wall has been formed and at h = —8
two Bloch walls are formed. For the mode C, that is a physically non acceptable, since
it corresponds to negative susceptibilities and passes from the origin (m(h = 0) = 0),
continuation for h, = —0.343 < h < —0.31 resulted into degeneration to the SW mode B.
The nature of the singularity of this point, for mode C, cannot be determined and it is
under investigation. Notice that mode A corresponds to higher coercivity and remanence
with respect to the SW mode B. Typical solutions of the BVP for modes A and C are
analogous to those presented elsewhere [9]. Energy estimations confirm that mode A is
an unfavorable one throughout the magnetization reversal compared to mode B.

Without being able to prove it, we believe that the Brown-Shtrikman theorem for
1-D micromagnetic problems [12], derived for a rigid specimen, is also applicable and for
an elastic ferromagnet that deforms uniformly and has no volumetric changes (e; = 0),
confirming that the obtained NU solutions are unstable. This is because the only element
that changes due to magnetostriction in such a deformation mode is the orientation of
the magnetic easy axis, with respect to the crystallographic axes, and not its distribution
within the material. Typical magnetization curves for mode A, for varying tensile and
compressive stresses are plotted in Fig. 2a. Magnetostriction curves are plotted in Fig. 2b.
Notice the shift of the magnetostriction curves along the strain axis due to the applied
stress, as well as the change in their shape, with the departure from resultant strain
observed at positive fields for tensile stresses. Though the remanence of mode A seems to
decrease with applied stress, as it is the case for SW reversal [1], with a bit higher values,
the coercivity has a minimum for compressive stresses and then increases. The h.(o) law,
for mode A, is given in Fig. 3 (the enclosed figure corresponds to m. (o) law). For the
particular case of Ni, the coercivities of Fig. 3 are as high as H, = 255 kA/m for stresses
T, = £100 M Pa. Thus the NU solutions of mode A are proved to be worst candidates
for explaining the observed behavior in related experiments [4], than the SW coherent
solutions of mode B [1]. Simulations have also been performed for varying size parameter
S > 1.5 and all resulted in a decrease of the coercivity and remanence of mode A, as it is
the case for experiments [4].

4, Conclusions

The one-dimensional micromagnetic model proposed in Ref. [1], that accounts for the
IME in thin ferromagnetic films was solved numerically by the GFEM. Three branches in
the magnetization curve were obtained: two NU modes that correspond to positive (mode
A) and negative (mode C) susceptibilities, respectively, and the Stoner-Wolfarth (SW)
mode (mode B) studied previously [1]. Mode A is energetically unfavorable throughout
the magnetization reversal, compared to the SW coherent rotation. Mode C is physically
non permissible one, since it corresponds to negative susceptibilities, and degenerates for
large negative fields to the SW mode B. The coercivity and remanence of mode A are
higher than those of the SW mode B and thus fail to explain the related experiments [4].
Thus, the NU magnetization distribution along the thin films thickness, is not capable to
explain experimental results. Modification of the model after taking into account shearing
and NU strains might be a step towards quantitative agreement with experiment. The
general stability is not studied.
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A
Figure 1: Magnetization curves for S = 1.5 and ¢ = -5 x 10°



Figure 2: (a) Magnetization and (b) Magnetostriction curves of mode A for varying o,
with § = 1.5. The numbering from 1 to 6 corresponds to ¢ = —2 x 10%, =10%, 0, 10%,
2 x 10* and 5 x 10*, respectively.
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Figure 3: h. vs. o for § = 1.5 (the SW solution and h, [1] are plotted for comparison).



