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SUMMARY
Comparison of existing solutions for the nucleation field of one soft spherical
inclusion in a hard magnetic matrix is carried out. A new 2-D model for
inhomogeneous permanent magnets (RE-TM) is proposed. The new model is based
on the Preisach formalism. The intrinsic properties of the material are related to the
model parameters. The effect of the latter on the major loop characteristic is shown.
The major and minor loop behavior along the easy and hard axes is successfully

reproduced



1. INTRODUCTION

The reversal of magnetization in ferromagnetic materials is a non-linear process
because of the hysteresis of the magnetization response (output) to the applied
magnetic field (input). It involves both irreversible switching and reversible rotation
of the magnetization of the particles or grains in the medium. Both processes depend
on the intrinsic properties and microstructure of the material, and the complex

network of interactions developed.

The models attempting to describe the magnetization reversal are usually based on the
micromagnetic approach [1-6]. The starting point is the free energy equation of the
magnet, the minimization of which, with respect to the magnetization direction,
yields the states of thermomagnetic equilibrium. The solution(s) of the minimized
energy equation correspond(s) to the nucleation field of the matenal, the field at

which magnetization reversal starts.

This approach allows for a detailed description of the microstructure of the material
and the developing interactions because of the different energy density terms that
contribute to the energy equation. However, the resulting equation is also an implicit
function of the magnetization direction, which makes the solution of the general form
of the energy equation extremely cumbersome. In the quest for such solutions,
researchers have either used convenient geometries and microstructures [1-3] in order
to obtain analytical expressions for the nucleation fields or they have used finite

element methods to obtain the nucleation fields of more complex systems [4,5].

When a magnetic material is assumed to be homogeneous, perfectly aligned and made
of single domain particles the magnetizations of which rotate coherently, the

expression obtained for the nucleation field, H,, is the well-known [1]:

H=2_y M,
M

¥

where K and M are the first anisotropy constant and saturation magnetization of the

material, respectively. The second term describes the effect of self-demagnetizing

fields where N is the demagnetizing factor. This expression is referred to as the



ideal nucleation field because first, the actual coercive fields measured in the
laboratory are lower by orders of magnitude and second, no real magnet has a

microstructure compatible with the assumptions underlying this expression.

On the other hand, there exist models which consider magnetic materials, or systems
exhibiting hysteresis, in general, as black-boxes with known inputs (applied fields)
and outputs (bulk magnetization). In the case of magnetic hysteresis, such a
systematic approach, based on the Preisach formalism, has been successful both in
scalar and vector applications[7]. Preisach-type models can be easily implemented
and make efficient tools for media design or cumbersome simulations, as in the case
of magnetic recording [8]. They tune-in to the material being modeled through the
identification process, usually based on simple bulk measurements of macroscopic
material properties. The identification may get more complicated as the complexity of
the model increases but, on the other hand, a successful and systematic identification
method usually implies a successful model since this is what relates the abstract

model assumptions and postulations with reality.

The materials that inspired this work are the inhomogeneous permanent magnets of
the RE-TM type which exhibit an enhanced energy product and coercivity. The hard
phase (RE) contributes the high anisotropy and the soft phase (TM) the high
remanence. The coercivity and the energy product are further enhanced when the 3d
atoms are exchange-coupled to the RE [9]. From a modeling point of view, 3d-alloys
are extremely challenging since not only each phase has different magnetic properties

but they also interact with each other.

The existing nucleation models deal with the simplified geometry of one soft
spherical inclusion, of diameter D, planted inside a hard matrix (shown on fig. 1). The
expressions of the nucleation field obtained are more accurate than the ideal
nucleation field and contribute to our knowledge of the underlying physics taking into
account the different material parameters of the two phases and the interactions
between them. A comparison of these analytical solutions is presented in the first part
of this paper in an attempt to understand the challenges faced when modeling

inhomogeneous materials.



Qur conclusions are incorporated in the design of a 2-D model based on the Preisach
formalism which is not constrained by specific geometries or number of soft

inclusions and deals with the two phases in a statistical sense.

2. NUCLEATION MODELS

The main underlying assumption of the nucleation models presented below is that
nucleation, as opposed to domain wall pinning, is the governing mechanism of the
magnetization reversal. Nucleation starts at the soft spherical inclusion of diameter D
planted in a hard magnetic matrix perfectly aligned along the direction of the easy
axis. The expressions that follow are all based on the minimization and linearization

of the free energy ( £ ) equation:
E=[{E.()+E () +E, () + E,,(r)}dr (1)
where E, is the exchange energy density, £, is the anisotropy energy density, £, is

the energy density of interaction with the applied field (Zeeman energy density), and

E_ is the self-magnetostatic energy density; all are implicit functions of position r :
E,(r)= A®)[V-m@)]

E, (r) = -(K,()@(r)- m(r))* + K, (r)(n(r) m(r))* +...) )
E,(r)=-m(r)-H

E, ()=~ M@)-H,(r)

Skomski and Coey model

For an ideally soft inclusion (K =0) of radius 7,, Skomski and Coey [2] obtained

the following implicit equation for H_:

4, i ( ) =
—Jrn |M‘H" cot; 24,5 —1|+1+r, by~ Mt =0 (3)
A, "\ 24, l{ 24, 24,

where 4, M, K,, and 4;, M), K are the material parameters of the soft and the hard

phase, respectively.

The model of Kronmiiller

According to Kronmiiller ef al., the general form of the nucleation field is:



H, :r:r(ﬁK,rU]%il—N%Mx (4)
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where @ and N are the parameters describing the microstructure of the material.
a(AK ,r,) is the factor by which the ideal nucleation field is reduced due to a soft
inclusion of anisotropy AK and width 2r,. N, takes care of the effect of stray fields.

Analytical expressions for the parameter a(AK,r,) have been obtained for one-, and

two- dimensional rotation of the magnetization of the nucleated region, and for both

harmonic and quasiharmonic diffusion profiles of anisotropy [1]:

» One-dimensional rotation: harmonic case

With z being the easy axis, the exchange stiffness A(z) is assumed to be constant

throughout the sample and the diffusion profile of the first anisotropy constant is
described by:
P
K(2)=K, +AK|1-¢ " | (5)
)
where K is the anisotropy constant at the center of the inhomogeneity and

K, (=)= K, + AK is the anisotropy constant of the ‘homogeneous’ material.

Then:

Oy AK
a=—+1-— 6
e (6)

where &, =7/ A4-AK corresponds to the Bloch wall width of the material when
K, << K ().

e One-dimensional rotation: guasiharmonic case

The diffusion profile of the first anisotropy constant is now described by:

Ki()=K+ (7)

and
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P B IR (8)
K, | 2m, V A

e Two-dimensional rotation: harmonic case
In the case of two-dimensional rotation the inhomogeneity is again infinite in the y-

direction but of length L in the x direction and:

azs +1_£+(5_aj ©)
i K, L
e Two-dimensional rotation: guasiharmonic case
. [ 4AKr? T ;
a:]—ﬁf ) +[§—EJ (10)
K \2m, )| ) A L

The solutions for the 2 - D rotation predict higher nucleation fields (higher a) than
those obtained in the case of 1 - D rotation because of the term containing the length-

parameter, L.

We have calculated the reduced nucleation fields according to expressions 3,6 and 8-
10 for a sample of anisotropic Sm;Fe;sNs; as a function of the diameter of the

inhomogeneity, 2r,. The material parameters used are shown in Table 1 and the

results in Figs. 1 and 2.

Table I: Material Properties

Properties ~ SmyFe;sNs '
(BH)max 880 KJ/m’

oM, 155T
Ki 12 MJ/m’
A 10.7x107" J/m
58 3x10° m

! as reported by Skomski and Coey in Ref.2;



In Fig. 1, the reduced nucleation field (Ho/Hp igeat) according to the Skomski and Coey

calculation (eq. 3), is plotted against the reduced inclusion diameter (2r,/§,) for
different ratios 4,/A4, =1.0,1.5,2.0. Notice the “plateau” region up to diameters

equal to the Bloch-wall width [2]. For inclusions of diameter less than &g, the
nucleation field is equal to the ideal field because of the exchange interactions. For an
inclusion of diameter twice the wall width, the nucleation field decreases down to
40% of the ideal one. Varying the exchange constant of the hard phase while keeping

that of the soft phase constant we notice that a higher ratio of 4, /4, vields slightly

higher nucleation fields.

In Fig. 2, egs. (6) and (8) with AK =1.0K, are compared against eg. (3) with
A, /A, =1.0. The results for 2-D rotation predict higher nucleation fields by 10-15%
and are not shown here. The “plateau” region breaks down at diameters smaller than
the wall width of the hard phase in the cases of egs. (6) and (8) eventhough the
exchange energy in inhomogeneities of that size should be able to prevent
deterioration of the ideal nucleation fiel. In the case of the quasiharmonic anisotropy
profile (eq. (8)), 40% of the ideal nucleation fields is lost for diameters up to &, . For
diameters of inclusions higher than 35, = 9nm , all three solutions predict a decrease

in the nucleation field down to approximately 10-15% of the ideal one.

4. THE NEW MODEL
The new model adopts the macroscopic approach based on the Preisach formalism but
uses solutions for the nucleation field as building blocks or figures of merit.

According to the formalism [7], a magnetic material can be described by a
characteristic probability density function o(H . ,H_) where H_ and H_ are the
upper and lower switching fields of elementary square loop operators (Fig.4),
y(H,_ ,H )=%1. We can think of an elementary loop as the switching characteristic
of a specific grain or group of grains with identical behavior. When the elementary
loop does not experience any interactions, or the sum of the interactions it experiences

is zero, it is centered at H =0 and H_ =-H = H_ with H_ being not the coercivity

of the magnet but the coercivity of the "grain" represented by this elementary loop.



When interactions, H, are included, the loop is shifted to the left or to the right

according to the direction of the resultant interaction force, thus making it easier or

harder to switch. For the case showninFig. 4, H, =H_-H and H_=-H_+H, A
probability density function p(H_ ,H_) is then defined over a triangular plane, the

Preisach plane, bounded by H_ =0, H, =H_,, and H_=H_, where H_, is the

sar ?

saturation field. The height of the density function over an elementary area dH dH

depends on the magnetization of the "grains" ensemble contained in it. Integration
over the Preisach plane of the density function convolved with the square loop

operator yields the magnetization of the material as a function of the applied field

Starting from positive saturation (all operators are in the +] state) and decreasing the

applied field H < H _,, all operators with H > H, will switch to the negative state. If

sat >
the field increases up to M, the operators with H < H, will revert to the +1 state.
This way, for any sequence of fields, a “boundary” separating regions of negative and
positive magnetization is obtained, which serves as the “memory” of the system. For
the 1-D case this boundary looks like a staircase consisting of horizontal and vertical
segments (Fig.3). The magnetization of the material as a function of the applied field

M(H), is then the integral of the characteristic material density over the Preisach
plane:

M(H}:jjp(H,,H_ Ww(H_.H YdH dH (11)

The model is complete as long as the pdf p(H_,H_) and the switching operator

y(H _,H ) are determined experimentally or analytically.

In the scalar case, the operator y(H,,H ) behaves like a switch, which toggles

between the +1 and -1 state of the “unit-magnetization” of the "grain". This
assumption conforms to the scalar nature of the model but it prevents the model from

predicting the reversible component of M (H), which is due to rotation of the M-

vector and the bowing of domain boundaries. The total susceptibility of a material,

defined as the local slope of an M-H curve, has a reversible and an irreversible
component: x,, =X, +Xx, where, x, =dM/dH and x, =0dM/oH| [15]

Reversible behavior on an M-H loop is observed near saturation points where the



relationship between M and H is practically linear (no hysteresis). Near saturation,
the magnetization moments of misaligned grains rotate reversibly tending to align
fully with the large applied field. In scalar models, the reversible component of the
magnetization can be added on to the irreversible component obtained from the
Preisach model [14]. Otherwise, a vector model accounting for rotation as well as

switching [8] is needed.

In the vector case, the scalar operator y(H,,H_) is replaced by a vector one,
T'(H,,H_). Such an operator is the coherent rotation Stoner-Wohlfarth model which

predicts the orientation of the unit magnetization vector, m, under the effect of a
normalized external field, h, for a magnetically isolated ellipsoid of revolution with

uniaxial amsotropy:
tang = (h, /b, J° (12)
where @ is the angle of m with the easy axis and A, &, are the components of h

along the easy and hard axis respectively. The boundary on the Preisach plane no
longer consists of vertical and horizontal segments only. Rotation makes switching

easier and the boundary is curved in such a way as to allow for more switching.

The identification of the model for a given system/material is related to the
characteristic density p(H,,H_) which cannot be measured directly. It has been
shown that p(H ,H )= p(H_H) and p(H_,H,)= p(H, )p(H,)[14]. Inthis case,
one only needs to obtain expressions for, or measure the distributions of, the grain

coercivities and interactions in the material being modeled. The parameters of the

probability density functions that are used to model o(H_)and p(H,)are then linked

to macroscopic or microscopic material properties.

Since the inhomogeneous permanent magnets are RE-TM alloys consisting of a hard
and a soft magnetic phase interacting with each other, the new model, in the spirit of
the Preisach formalism, takes into account the different characteristics of the two

phases. The density of coercive fields p(H ) is the weighed sum of two densities p,

and p,, for the soft and hard phase respectively, with p; centered at a lower field than



2, . The weight attached to each function depends on the % content of the soft
phase, w . The characteristic density (Fig. 4) is then:
p(H_H )= p(H,,H,)= p(H )p(H,) = [wp,(H )+ 0= W)ps(H ) Jos (H.)

The angular dispersion of easy axes is accounted for by the superposition of the
response of Preisach planes dispersed around the easy axis according to a fourth

distribution p,(a) with a being the angle a plane forms with the easy axis.

For an appropriate switching mechanism, I'(H_,H ), the magnetization response of
the magnet to a sequence of applied fields (H,,f = 0,1,2,....1s given by:

o M i
2 Hop Ho

MH)= [ | [ou@pnHbwp(H )+ 0~ w)p(H. o) Yy (H. . H )dH dH _da

w2 -H o H,

To identify the model, we need to relate the parameters of p,, with j=1234, to

macroscopic and, if possibly, microscopic properties of the material, such as the grain

size distribution, the coercivity A, the exchange constant A4, the first anisotropy

constant K, the saturation magnetization M, and the percentage content of each

phase as well as the squareness, §, and coercivity squareness, 5", of the alloy.

3. RESULTS

In order to test the model, we assumed that all the probability density functions p,

are Gaussians N(u,o°) of the form:

r 27
(H =, )
p,(H)= exp| - 1
i JEHJE { 20 J

Fig. 5 shows the major loop and first- and second- order minor loops obtained for the
characteristic density of Fig. 4. In Fig. 6, the major loop field sequence is applied
along the hard axis. The model exhibits the expected hysteresis behavior in both
major and minor loops and has good vector properties. Notice that switching (Fig. 5)

begins at fields above 0.6H, while H_, = 10H_ (not shown).

-10 -



The next step is to study the effect of the densities' parameters on the properties of the

M-H curve and investigate their relationship to the material properties.

e The angular dispersion function p,(a) is centered at zero degrees (Hs=0) to the
easy axis with the standard deviation, o, varied between 5° and 25°. This

parameter is the only one controlling the loop squareness, S, while it affects the

coercivity, M, as well (Fig 6). Table 2 shows the effect of o,, while all other

parameters are kept constant, on § and /_ for a number of parameter sets.

Table 2: The effectof o, on H_and §.
o, (degs) 5 10 15 20 25
S 997 0985 0967 0949 0935

H_ (Oe) 2700 2200 2000 1850 1800

e The interactions function p,(H.) is also centered at zero field on the assumption

that the average interaction field experienced by the materials is zero. The

standard deviation, o, is varied (Fig.7) affecting mainly the slope of the major

loop around the coercivity, i.e., the wider the interactions distribution gets, the
lower the slope. This behavior suggests a way to distinguish between exchange

and magnetostatic interactions since strong exchange interactions result in loops

with high §° and a narrow interactions distribution does the same thing in the
model. This parameter is also related to the grain size since larger grains favor

magnetostatic interactions and smaller ones are exchange coupled.

o The soft and the hard phase coercivity functions, p,(H_ ) and p,(H_,.,), are

centered at their respective ideal nucleation fields:

where j=1 for the soft phase and j=2 for the hard phase. The coercivity of the M-

H curve depends on the mean values (u, <H_ < u,) of the two distributions as

well as on their standard deviations (o, and o, ). The coercivity of the magnet is

o] 1



affected by the grain size as well. Larger grains lead to a logarithmic decrease of

H

4

since stray fields become of importance at negative applied fields [16]. The

grain size effect has not been included at this stage.

e Finally the % content (w) of the soft phase was varied from 1 to 60%. As the %
content of the soft phase increased, the coercivity of the alloy decreased and
remanence increased (Table 3). The remanence increases almost linearly with w,
in agreement with experimental results [10,16], due to the higher magnetic

moment of the soft phase.

Table 3: The effect of the % content of the soft phase on H.
w*100% 1 10 20 30 40 50 60

(AH. )% - 048 049 049 198 202 206

GiERL: - B3 B3 36 37 3s 89

The results obtained so far are suggesting that the proposed model can reproduce the
hysteresis behaviour of inhomogeneous magnets. Future work involves the
substitution of, the only one available for now, S-W-based I'(//_,H_) by other
switching operators. This is dictated by the fact that the magnetization rotation in this
type of magnets is not coherent. The use of the S-W astroid might be the reason why
irreversible processes begin to manifest themselves at fields not lower than 0.6 H .
The work presented in the first part of this paper will be the basis for designing a new
appropriate switching mechanism. Second, an interactions distribution p,(H,), other
than a Gaussian, might be necessary. It has been mentioned already that stray fields
become more prominent as the applied field, decreasing from H ., becomes
negative. This suggests that the interactions distribution is not symmetrical around the
axis of coercivities on the Preisach plane. Finally, an alternative approach is to use the
model for irreversible processes only and then add the reversible component based on

measurements of x_ (H)and x, (H) [18].

o



6. CONCLUDING REMARKS

The comparison of existing analytical solutions for the nucleation field of a soft
spherical inclusion inside a hard magnetic axis contributes to our knowledge of the
magnetization process in inhomogeneous magnets. The results are incorporated in the
design of a new model which is a first attempt to use Preisach -type models for
inhomogeneous magnets. The model has successfully reproduced the hysteresis
behavior of such alloys and the identification parameters have been related to

microscopic and macroscopic material properties.

=13 -
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Figure 8:

Figure 9:

Simplified Geometry of One Soft Spherical Inclusion.

The Skomski and Coey Reduced Nucleation Field vs. the Reduced
Inclusion Diameter; A, [A, =1.0,1.5,2.0.

The Solutions of Skomski and Coey (s _¢) and Kronmiiller's Harmonic
(k_h) and Quasiharmonic (k_gh) cases.

The Preisach Plane and the Scalar Operator.

Preisach Density for Inhomogeneous Magnets.

Major Loop with First and Second Order Minor Loops.
M-H Loop along the Hard Axis.

The Effect of Angular Dispersion on the M-H curve;
o, =5,10,15,20,25",

The Effect of the Interactions Distribution on the M-H Curve,
o, /H, =02,04,06,10,18.
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