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SUMMARY

The point source excitation acoustic scattering problem by a multilayer isotropic and
homogeneous spheroidal body is presented. The multilayer spheroidal body is
reached by an acoustic wave emanated by an external point source. The core
spheroidal region is inpenetrable and rigid. The exterior interface and the interfaces
separating the interior layers are penetrable. The scattered field is determined given
the geometrical and physical characteristics of the spheroidal body, the location of the
point source and the form of the incident field. The approach is not limited in a

certain region of frequencies.
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1. Introduction

The examination of the scattering problem of acoustic waves from ellipsoidal and
spheroidal scatterers has attracted the scientific interest as it constitutes a
geﬁeralizatinn of the spherical case and gives birth to models simulating more
interesting realistic scattering problems than these “living” in the spherical geometry.
A lot of effort has been devoted to this direction, especially under the low-frequency
regime and under the basic assumption of the plane wave excitation (Burke 19664,
1966b, 1968, Bowman et. al. 1969, Dassios 1977, 1981, 1982, Kleinman 1965).
Indeed, in many interesting cases, the dimension of the scatterer is very small
compared with the wavelength of the incident field. This event permits the
exploitation of the low-frequency theory leading to the replacement of the scattering
problem by a sequence of corresponding potential problems referring to the same
geometry. This approximation simplifies a lot the whole procedure as it gives us the
possibility to be occupied with Laplace equation solutions instead of handling
solutions of the wave or Helmholtz equation, which become more and more

complicated when geometry becomes more complex.

Unfortunately, there exist acoustic scattering procedures a priori referring to the
resonance, even the ultrasound region - as far as the wave number is concerned - fact
rendering the low-frequency approach inadequate for many interesting applications.
This is the case for an interesting scattering problem studied simultaneously by the
authors (Charalambopoulos et al. 1999a). The problem under consideration concerns
acoustical scattering from kidney stones and is inspired by the necessity of identifying
the morphology and possible pathological features in the kidneys by solving the direct

and inverse scattering problem in the suitable model system.



The frequency range of the acoustic excitation for this particular problem belongs to
the resonance region and in many cases, should be considered closer to the high
frequency region. Consequently, it is necessary to develop a method independent of
the wavenumber, handling directly the undergoing Helmholtz equation. From the
geometrical point of view, the best approximation fitting very accurately the specific
human organ is a stratified spheroidal medium where the several layers correspond to
particular physical components of the structure.

The other important issue of the scattering procedure is the particular form of the
wave excitation. In previous works (Dassios 1977, 1981, 1982), the hypothesis of the
plane wave incidence has been adopted, referring to the fact that in many scattering
procedures, the acoustical wave source can be considered far from the scatterer and
having suitable energy in order for the incident wave to interfere with the scatterer.
Our motivating problem indicates that this is not the case now, as in medical
treatment and monitoring, the sound emitter is located in touch with the human body
and as a consequense, in the resonance region framework, the distance between the
source and the scatterer is not large at all. We infer that the plane wave excitation
assumption is not allowed in our case and that we are obliged to consider the case of a
point source excitation. This is of course another serious complication factor. Indeed,
the spherical wave emanating from the point source adapts to the spherical coordinate
system. But the scattered wave, which is the result of the interference between the
incident field and the scatterer, must be expressed in the spheroidal coordinate system
in order for it to be adapted suitably to the boundary conditions induced on scatterer
surface. The two different geometries must be adapted as the underlying fields are

connected through the boundary conditions. Thus, suitable addition theorems must be



used in order to fit the two geometries. These additional formulae are more complex
in nature to that concerning the fitness between the spheroidal and the plane geometry
induced by the plane wave. In the low — frequency regime, the problem of point
source excitation has been faced for the spheroidal (Dassios et al. 1995) as well as the
ellipsoidal case (Charalambopoulos et al. 1999b), where the wavenumber asymptotic

analysis has been proved very helpful.

Summarizing the previous remarks, we state the problem in its well posed
mathematical form. The aim of the direct scattering problem is the determination of
the scattered field in the exterior space of the stratified spheroidal body. This field -
in its time-independent form after assuming time harmonic dependence - satisfies a
specific boundary value problem for it satisfies the Helmholtz equation, the
Sommerfeld radiation condition at infinity (Morse and Feshbach, 1953) and suitable
boundary conditions on scatterer surface, where it is related to the incident field as
well the penetrating the scatterer surface field. As a matter of fact, all the boundary
conditions on the interfaces of the stratified structure involve implicitely all the
exterior and interior waves of the system. The scattered field as well as the interior
fields are regular functions wherever are defined, in contrast to the incident spherical
field, which disposes a singularity at the point source location point. We expand all
waves of the problem in terms of the sphercidal wave functions, incorporating
asymptotic properties and then we force them to satisfy the several boundary
conditions of the problem. Exploiting suitably the properties of the special functions
involved in these expansions, we determine, after extended analytical procedures, the

coefficients in the above mentioned expansions.



Consequently we determine the scattered field as well, which incorporates in
parametric form all the information about the physical and geometrical properties of
the scatterer. The undecoding of this information from the knowledge of the scattered
field is the inverse scattering problem and merits special interest in medical
applications similar to that motivating our research. Of course, the alternatives we
have in the position and distance of the receiver, measuring the scattered field,
relative to the position of the point source and the scatterer is a very significant factor
for the solution of the inverse scattering problem and are going to be examined under
the guideness of the direct problem analysis and the already existed monitoring and

measurement techniques in the accompanying application paper.

2. Spheroidal Geometry - Spheroidal wave functions

Before stating the problem under consideration, it is better to prepare the necessary
framework concerning the geometrical and physical background of the problem. The
underlying geometry, as it has already been stated, is the spheroidal one and the
fields describing the harmonic response of the system satisfy the Helmholtz equation.

Let us present briefly how Helmholtz equation behaves in the spheroidal coordinate

system, following mainly the arguments given in Morse and Fesbach (1953)..

The connection between cartesian and spheroidal coordinates as well as the scalar

factors are given by the relations
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Let us consider the Helmholtz equation
Ay+kiy =0 (2

Applying separation of variables techniques we conclude that
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where the functions R, § satisfy the equations



4 | gva @-—[ . J
ir(n _]]_ { a2l 2 ’
{]‘rﬂL J J

and 7., stand for separation of variable constants.

It is proved [12], that the functions R, § are given by the relations
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where there exist four alternatives for the spherical Bessel functions Z'%,
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while P™(n) denote the Legendre functions. In addition, the symbol Z L as it is

k=0,1
clear from Eq. (5), indicates summation over even or odd indices, depending on the

starting index.

The crucial point is the determination of the coefficients d." (c).

Inserting Egs. (5), (6) in Eq. (2) and exploiting recurrence relations for Legendre

functions we conclude to the following recursive scheme:
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for (n—m) odd.

Eq. (9a) provides with the eigenvalues A, (¢), 4, ... (€). 4, ,..4(c)..... and Eq. (9B)

provides with the eigenvalues A, ,..,(c). 4, ,...(€). 4, ,..s (C)....

For every A_ (c)determined above, the coefficients d;” (c) are determined modulo a

multiplicative constant. These coefficients are fully determined when a normalization

condition 1s imposed.

In Ref 12 we find
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Under the above condition, Eq. (6) which expresses the “radial” functions becomes

simpler and takes the form
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3. Statement of the problem

A multi-layer isotropic and homogeneous stratified spheroidal body occupying region
J', centered at the coordinate system origin, is reached by an acoustic spherical wave
emanated by a point source located at point M having position vector r'= (u',8",¢").
The core spheroidal region-surrounded by surface §,- is inpenetrable and rigid. The
exterior surface S, as well the interfaces separating the interior spheroidals shells,

occupying regions V. are penetrable and must compensate pressures and normal
velocities on their sides. The several layers are characterized physically by their
densities p, and the velocity of sound propagation ¢, in every particular component.
The surrounding space has density p and the sound propagates in this region with

speed c¢,,. The geometry of the problem is given in Fig. 1.

The result of interference of the incident spherical field with the scatterer is the
creation of the scattered wave propagating outwards the scatterer as well as the
creation of penetrating acoustic fields enclosed in the several spheroidal layers. The
direct scattering problem consists in the determination of the scattered field, given the
geometrical and physical characteristics of the scatterer as well as the parameters
describing completely the excitation (i.e. position of the point source and particular

form of the incident field).

10



The scattered field incorporates all the information about the scatterer and the
undecoding of this information constitutes the inverse scattering problem, whose
solution is based-as in all problems with simple geometry-to the suitable exploitation

of the solution of the direct problem.

(u'.8'.9")

, v=Jv
Si(u=w) Vi U '

=0

X

Fig. 1: Problem Geomeiry.

The mathematical formulation of the problem under consideration is the following.

The point source located at point M(',8',¢'), emits a harmonic spherical wave of

the form

11
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stands for the time-independent spherical wave. The harmonic time-dependence is

induced through the factor e™", fact rendering all the fields appearing in the problem
dependent on time through the same multiplicative factor. Consequently, we restrict
ourselves to study the reduced equations and waves after supressing the time

harmonic dependence. In addition, the implicit dependence of all the functions on the

point source position r’ is omitted in the sequel, for simplicity.

In Eq. (13), k= 2 stands for the wave number of the propagation process in the

et

exterior space.

The scattered field satisfies the Helmholtz equation,

A= (e)+ku"(r)=0, re R*\V (14)
as well as the radiation condition of Sommerfeld,

B

u™ ()= iku™ (r) >0, as r—ow (15)
ar

The interior fields u(r) satisfies also Helmholtz equation

du'(r)+k'(r)=0, reV, (16)

I

where & = — stands for the wave number in medium V).
H |
c,



All the fields are connected through the boundary conditions, which after some

possible field renormalizations (Colton and Kress, 1983), take the form

Surface 5, p{n““"+ u) =p, ¥ (17a)
é ; d
Sx ubd‘-ﬁ'l'_i_ u.ﬂ R u| (i?h
E'ﬁn( J cn )
Surface S, (/<izn-1): pu'=p_ u™ (18a)
—u'= qiu": (18b)
on  n
Surface S,: —u'= 0. (19)
on

It is proved that the boundary value problem constituted by Eqgs. (14-19) is a well

posed mathematical problem.

4. The Solution of the Direct Scattering Problem.

In order to solve the boundary value problem under consideration, we expand first all

the fields satisfying Helmholtz equation in terms of the spheroidal wave functions as

follows:
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(We incorporate the asymptotic condition of Sommerfeld (Kolton and Kress, 1983) by

choosing the radial Hankel function he,,, (cosh z;c) to express the scattered field.)

In addition, ¢ :-;—ff,.a and c:Eka. Finally, summation Z denotes > ,
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while the constants .-*&.m(c"“] relate to the normalization constants of the wangle»
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The problem of determination of the several waves of the problem has been
transferred - using the expansion in spheroidal wave functions - to the determination

of the coefficients entering the expansions.

Similarly to the secondary fields, the incident field has to be expanded in the same
function basis. In order to expand a spherical wave in spheroidal coordinates we use

an appropriate addition theorem (Morse and Fesbach, 1953) to obtain

+ Y ik

kR
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E
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where
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Expressions (21), (22) and (23) are the suitable forms that must be inserted in the

boundary conditions in order for the expansion coefficients to be determined.

The normal derivative operator appeared in boundary conditions has the following
form in spheroidal coordinate system

2 19 1 2. (24)
on. By op :QL{ cosh u® —cos’§ ¥

I\.A

Treatment of Boundary Conditions

1) Surface S,

Equation (19) is written as:

a', cos(mp) S, (cost; c"')je’, (coshu,; ¢*')+)
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for 0<f<7,0<p=<2m.

Given that cos(mg), sin{mg) are orthogonal functions and that S, (n:usnf-‘ c ) are

orthogonal for constant m , as n varies we obtain:

a. je' (ccrsh,un; c['])+}:"m }E'M(coshyc,: c':']]= 0, mz0, n=mm+1,m+2,..(26a)

ﬂ’mje'm(mshlu ‘”)+d Ry (coshyu, ): 0, mz0, n=mm+1m+2,.(26b)
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ii) Surface §, [<isl-{

Equation (18a) takes the form
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)

P
%zim,,ic':-f:'}_:J;,cas{mga}Sm(msfi‘; ! )ye (coshy c"

r |—]

.I'H‘.IT

cos(me) S, (cusﬂ el ”je (GOShF.--' Cr'“”)ﬁ
g

! sin(me) Sm(cost?; il (cnsh,u,; clfm}; . 27)

; I?I.;l 505("7@)5 m,,(cosﬁ; el ])}ae (-::osh;;_;c
" ot Siﬂ(mqﬂ} Sm(cusﬁ'; P ]I)J,g (cosh,u_,; f:[.-u:-)

Equation (18b), in a similar way, takes the form
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The orthogonality of trigonometric functions m.i{m{p) and ﬂ'n{mw} guarantees that
for every specific m the corresponding terms of the above double sums are equal to

each other. If we project then these equations containing the simple sums »_ to the
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complete and orthogonal set of functions Sm(cos&; c[‘“‘}), n=mm-+l,m+2,..,

obtain the following relations:

p,Jait je,, (coshp,; V) 4yt ye,, (coshy,; )] =
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are the mixed inner products of “radial” functions, which would be diagonal only in

the very specific case ¢"/= ¢

i) Surface §,

We handle Egs. (17) following the same steps, i.e exploiting orthogonality of

azimuthal and radial functions, obtaining the following results

;J[a “ he (coshy,; c)+2ike S (cos8'; c)cos(me’)je,, (coshy,; c)he,, (cosh ', c)]

A

[a e {cnsh Uy c':”)+}':w. ye, (coshu c! ](5 L 'm) (32a)
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I ]
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Let us define the matrices

i=012...1I-1

| hat- loms RRAS | »
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1+] i+2
= Sm_rz"smn bl

#Ra
B"'l = A (cll-l}}
P

¥, = |ohe,, (cosh ;). he',, (cosh u;)f

L(1]
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and the supermatrices ((2/ +1)x (2/+1))

[ s 0 0 0 0
~Brm AN 0 0 0
0 =BT AT 0 0
B 0 0 =B AW 0
0 0 0 0 - B}
R 0 0 0 0
0 0 0 0 0
-B 0 0 0 0
0 B 0 0 0
B - 0 0 -BI' 0 0
0 0 0 0 B
0 0 0 0 0

= 0
where 0=[0,0] and 0 :E J

A™ j=012,...0-1 where §&' =8

mn?

(=TI —TE— T —

L
A,

m.Hn
= B.!

L=T =1 — N —

mouR
i B,l

=

&

L= — T —

Then, the system of coefficients satisfies the non — homogeneous linear system
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where

x™ =[x, X, Xpzre o]

LR AR ]

with

1 2 =2 I i
(O]— ln =5 M:‘m 'Es.rrm ﬁmn 0.'!1.'1 e Jg."‘m 5"‘?-'1‘

' B”, B B"

e+l m.
m o i
Bm—'..m B.nfrl_nn-l Bm—[,m—l
D™= .. ” -
m m L)
Bw.:-v_m Bm-rl.'_m—l Bm-rv,m—b'

(common for (a.y) and (5,8))

b =[b,,b,.b,....b_..J,

and
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_'_G,{]}_.._1D}—p2fk£w5 (cosé';c)cos(me') je, (cosh u,;c)he, {cosh;f';c},J

[LE]

" | -2ike,S,, (cosf';c)cos(mg) je'

™ A

(cosh y;;c)he,, (cosh i';c)

mn

is of dimension (27 +1).

(for the case of 5.6, 8™ cos(mg') is replaced by sin(mg')).

The solution of the system (34) is possible when the system is truncated to a finite
value of N . The same procedure must be repeated for every value of azimuthal
number m. This leads to the determination of the scattered field expansion
coefficients to the desired accuracy. This is examined for the case of the two layer

spheroidal human kidney in Ref. .

5. Concluding Remarks

In this work we give the most general approach to the point source excitation
scattering problem by stratified spheroidal structures without restrictions to frequency
region, geometrical, physical or measurement characteristics. We exploited the
powerful background of spheroidal wave functions and expanded all the fields in
terms of them. This approach gives a series of infinite linear systems (because of the
spheroidal geometry — in the case of spherical geometry those systems are
degenerated to finite ones) satisfied by the expansion scattered field coefficients
which can be determined by truncation. This method finally constitutes the direct
scattering problem solution. The inverse scattering problem solution is under
investigation for the specific application problem (Charalambopoulos et al. 1999a)

and is based on the suitable use of the direct problem solution.
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