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Abstract

Linear channel equalization has been a successful way for combating intersymbol interference, introduced
by physical communication channels, at high enough symbol rates. In this paper. we consider the
performance of least-squares equalizers in the single-input/multi-output channel context, when the true
channel iz composed of an m—th order significant part and long tails of “small” leading and/or trailing
terms. Using a perturbation analysis approach, we show that if the diversity of the significant part is
sufficiently large, with respect to the size of the tails, then the I—th order least-squares equalizers, with
[ = m — 1, perform well, for all the delays corresponding to the significant part. On the other hand, we
do not have any a priori knowledge for the performance of the equalizers, for the delays corresponding

to the tails. They may, and usually do, perform poorly, Simulations agree with our theoretical results.

The author is with the Department of Computer Science, University of Ioannina, 45110 Ioannina, Greece,

E-mail: liavas@cs.uoi.gr.



1 Introduction

Signals transmitted through physical communication channels are usually distorted by intersym-
bol interference (ISI) and additive noise [1]. One classical way for combating channel distortions,
like ISI. is linear channel equalization. Its target is the computation of an optimum linear filter,
called equalizer. whose output approximates a (possibly) delayed version of the input. If the
quality of the approximation is sufficiently good, then we can recover the input sequence.

It is well known, that in the single-input/single-output (SISO) channel setting, in order to
equalize perfectly a mixed-phase finite-order noiseless channel, we need a doubly infinite linear
equalizer [2].

On the other hand, in the single-input/multi-output (SIMO) channel setting. derived either
by oversampling the channel or by using an array of sensors at the receiver, if the subchannels
do not share common zeros, then an L-th order multichannel equalizer can equalize perfectly

an M -th order noiseless SIMO channel, with L > M — 1 [3].

A case commonly encountered in practice is when the M—th order true subchannels possess
a significant part of order m, with m <« M, and long tails of “small” leading and/or trailing
impulse response terms [4]. Implementation cost considerations force us to investigate which
iz the smallest possible order that an equalizer should have, in this case, in order to offer
acceptable performance. To our knowledge, there does not exist a theoretical answer to this
question. Furthermore, especially in the SIMO channel context, no theoretical explanation has
been given to the fact that equalization performance for some delays appears inherently poor,
while for some others it is usually satisfactory [5)].

In this paper. we consider the least-squares (LS) equalization of SIMO channels. in the cases
in which the M~th order true subchannels possess a significant part of order m and long tails of

“small” leading and for trailing terms. Using a perturbation analysis approach, we show that:

e if the diversity of the significant part is sufficiently large. with respect to the size of the

tails, then the [-th order LS equalizers, with [ > m — 1, attempting to equalize the M-
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th order true channel, offer good performance, for all the delays corresponding to the

significant part:

e we do not have any a priori knowledge for the performance of the LS equalizers, for the

delays corresponding to the tails. They may, and usually do, perform poorly.

In Section 2, we present the framework of the LS SIMO channel equalization. In Section 3,
we study the performance of LS equalizers for the various delays; simulations are presented in

Section 4. Finally, conclusions are drawn in Section 5.

2 LS SIMO channel equalization

In this section. we consider the LS SIMO channel equalization problem. In Fig. 1. we present
the single-input/two-output channel setting, resulting either by oversampling the channel, by
a factor of 2, or by using 2 sensors at the receiver. Although we present our results in the
single-input /two-output channel setting, the extension to the single-input/p-output setting.

with p > 2, is trivial.
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Fig.1 Single-input/two-output channel setting.

If the true channel order is M, then the output of the j—th subchannel, z’, for j=12is
given by

M
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where {h” '} is the impulse response of the j—th subchannel, {s,} is the input sequence and

{w;f } is the additive subchannel noise. We denote the impulse response vector of the j-th

subchannel, for j = 1,2, as hi, 2 [AY ... RYNT where superscript 7 denotes transpose, and
J = M M
: a | B |
the entire channel parameter vector as hys = . By stacking the (L + 1) most recent
b,

samples of each subchannel, we construct the data vector
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which can be expressed as

xz(n) = yo(n) + wr(n) = Hilhy) sp+a(n) + wiin),
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The 2(L +1) x (L + M + 1) filtering matrix Hz(hys) is defined as
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with the (L + 1) x (L + M + 1) matrix Fz(h%,) given by
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It is well established that if L > M — 1 and subchannels h}, and h3, do not share common

zeros, then Hp(hys) is of full-column rank, ie.,

rank (Hp(hpy)) =L+ M+ 1.



This means that H7 (hy) is of full-row rank, yielding that the canonical vectors eg, i.e., the
vectors with 1 at the d-th position and zeros elsewhere, for d = 1...., L+ M + 1. belong to the
range space of H1 (hyr). As a consequence, in the absence of noise, the multichannel equalizer
defined by

j E}L,d i
gLd = - (Hﬂh.ﬂ]) ey,
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where superscript © denotes the Moore-Penrose generalized inverse, equalizes perfectly channel

hys. for delay (d — 1). This happens because filtering x;,(n) through gg 4 gives
X1 (n) gra = st (n) Hi(h M]'(?'ﬂ;, ht.f) €4 = Sn—d+1-

In the sequel. we assume that we know a priori that the subchannels of hys are composed
of a significant part of order m, lying between indices m; and ma, i.e., m = mg — m, and long

tails occupying the rest of the indices. We partition hy; as:

+d;

My, mat

hy = hi

TIL Y i

where superscript  stands for “appropriately zero-padded” and
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With h,,, m, we denote the corresponding truncated vectors, Le.,
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We are interested in the performance levels offered by [-th order equalizers. withm—1 <1 < M.
In general, we can not equalize perfectly hys, by using [-th order equalizers. The best we can
do, in the LS sense, is to compute the I-th order LS equalizers, ford =1,..., 1+ M + 1, given
by

8ld = (H?{hm]):ed.

leading to

x7 () gL = stpg(n) HY (has) (HT (80r) " €a ™ sp-gs1.

In Fig. 2, we plot a portion of the real part of the two subchannels, constructed by the oversam-
pled, by a factor of two, complex-valued microwave radio impulse response chan2.mat, found
at the address hitp://spib.rice.edu/spib/microwave.html. The partitioning into the significant

part and the tails is clear.
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Fig. 2. Portion of the real part of the subchannels of chan2. mat.

In Fig. 3., we plot the vector 2-norm of the residuals of the [-th order LS equalizers, for

delays {0..... 19}, ie.,
[ reallz = || eq — Mi (har) gra ||J, ford=1;:::;20;

and [ = 3,6. We observe that for certain delays the LS performance is satisfactory, while for

delays outside a specific range it is not. Also. we observe that the performance of the 6-th order



LS equalizer is satisfactory for more delays than that of the 3-rd order LS equalizer. In the

sequel, we provide an explanation for this phenomenon.
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Fig. 3. 2-norm of residuals of l-th order LS equalizers, for delays {0,...,19}, for chanZ.mat {I = 3,6).

3 LS equalization performance vs. delay

Our “real-world” problem is the assessment of the performance of the LS solution of the equation

H (har) Bra = €4

for d=1..., I+ M + 1. From the dimensions of the (I + M + 1} x 2({I + 1) matrix ?-!',;F{h_q,;]l.
we obtain that

rank(H] (has)) < min{l + M +1,2(1 + 1)},

which gives that, for [ < M — 1,
rank(H[ (hpr)) < 2(1+1).

This gives that out of the set of the (I + M + 1) different canonical vectors corresponding to
the (I + M + 1) different possible delays, at most 2 (I + 1) may lie into or close the range space
of ’H,fl[h;,;}. Thus, the biggest number of delays for which we may expect sufficiently good LS

equalization, with an equalizer of order [, is 2(l + 1).



Towards developing a study of the performance of the [-th order LS equalizers, attempting
to equalize hys. it proves convenient to decompose our “real-world” problem into an “ideal”
part and a perturbation. In order to develop a successfull analysis, the “ideal” problem and the

perturbation should fulfill the following conditions:

1. The “ideal” problem should have a well-defined and informative solution.

2. The perturbation should be “small” with respect to the “ideal” quantities.

For the ({+m+1) delays corresponding to the significant part, ie.,d=m;+1...., me+I+1,
we consider as “ideal” problem the equalization of the significant part of the channel, h . .
by the I-th order LS equalizers, with [ > m — 1. We show that if the diversity of the significant
part is sufficiently large with respect to the size of the tails, then the {-th order LS equalizers.
for these delays, equalize sufficiently well our “real-world” channel, hyy.

For the delays corresponding to the tails, we must consider in the “ideal” problem not only
the significant part but also certain “small” terms; otherwise, the perturbation can net be
“small” with respect to the “ideal” quantities. We show that, for these delays. we do not have
any a priori knowledge about the performance of the corresponding [-th order LS equalizers,

attempting to equalize hys. In practice, they perform poorly in the majority of the cases.

3.1 Delays corresponding to the significant part

In this subsection, we consider the performance of the [-th order LS equalizers, for the delays
corresponding to the significant part of the channel. Our analysis is performed in three steps.
The first two steps are hypothetical but they lead to the resolution of our problem in the third
step.

In the first step, we assume that our channel is hy;, ;.. 1.e., the truncated significant part
of the true channel; we recall that its order ism. If h! . and h2 .my o not share common

zeros, then H;(hy,, m,) is of full-columm rank,. ie.,

rank (Hi(hp, m.)) =l+m+ 1.



Thus, ’H,;Fl[hm._ .ma) s of full-row rank, giving that

R (Hr(hrn] ,mz}) =R I:If—g-m+1} '

where R (A) denotes the range space of matrix A and I, denotes the n-dimensional identity
matrix. This means that the canonical vectors ey, for d = 1,....l +m + 1, belong to the range

space of H] (B, m, ), Le.,

e € R (Hf (B, m,)) -
Consequently, equation

H{ (B ma) Bra = €d

has always a solution, yielding that, in the absence of noise, channel h;;, », can be equalized

perfectly by an l-th order equalizer, with I > m — 1. The minimum norm solution is given by
g1a = (U] (Bmym2)) " ea:

In the second step, we assume that our channelishy, .

i.e., (the appropriately zero-padded

version of) the significant part of the true channel. It is easy to see that

0m-_i+m—1

rank (?{,}r(h;hmg}) =l+m+1 and R (HE'(h;u.mz]) =R

I[_m+1 1

Ot msiimed
where Oy, ;,, denotes the (n x m) zero matrix. This means that R (?{? -(h‘ii-'l[-mg]) contains the
canonical vectors ey, for d =my; +1,...,ma + 1+ 1. For the corresponding delays, h}, ... can

be equalized perfectly, in the noiseless case, by the minimum norm equalizers

gra= (HF (05, ) ea

In the third step, we consider | (hyy) as the result of the perturbation H; (d;

T .ﬁl’l-g:l acting
011 H?(h,fm .m, ). and we study the performance of the [-th order LS equalizers, attempting to

equalize hyy. We denote the matrix 2-norm of the perturbation as

& 2 | (dh o),
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In order to relate £""™? to the size of the tails, we use the structure of H7 (d3, . ) and
! { M1, e

(1), to obtain

|77 (@, my)

f"—= 'ui_lfm-.

where || - || denotes the matrix Frobenious norm. Then, using the matrix 2-norm,/Frobenious-

norm inequalities [6, p. 57, 72], we obtain

1
E Em

1 i 2
= 70T 14 rime)

p SEM™ < U (Ao )|, = VIH TEm: ()

&L Orpmet (’Hf{’ﬂfm :m?}l). where 0;(.4) denotes the i—th singular value of matrix
A, then rank (?{f{hmj) = [+ m+ 1. That is, perturbation ?{}r{d" } can increase the rank

g g

of our filtering matrix, but it can not decrease it. In this case, we denote by R (Hf{h”));_‘_mﬂ
the (I + m + 1)-st dimensional subspace of R (?{Erl[h;,f}), spanned by the left singular vectors
associated with the (I + m + 1) largest singular values of "H!-T(h_w). Thus, R (?—f}rl{hm }') ot

may be considered as the perturbed subspace corresponding to R (’Hf{hfn,_‘mj }).

The I-th order LS equalizer provides a combined channel-equalizer impulse response, € 4,
with

B4ER (H}r(hﬂ-ﬂ) ;

that is closest, with respect to the vector 2-norm, to e;. In the sequel, we give the conditions

under which even if we constrain our search to ® (?—i;‘r{hm}l){ R that is, a subspace of

+m+
o ('Hﬂh_.u})_. we can find a vector € 4 that is “close” to e;. Since the LS solution, & 4, can
only do better than &; 4, the fact that & ;4 is “close” to e; means that the [-th order LS equalizers.

attempting to equalize hyy, for the delays corresponding to the significant part, perform “well”.

In order to proceed, we need a measure of the distance between two linear subspaces A and
Y. Such a measure, commonly encountered in numerical analysis, is the sine of their canonical

angles, denoted as || sin £(&, V) [[5. It is well known that [7, p. 92]

pe2(X. ) = |lsin (X, V)|, (3)
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where pg o is the 2-gap between & and Y, defined as [7, p. 91]

po2(X.Y) 2 max max by(z, Y), max da(y. &) . (4)
Ialfa=1 lyilz=1
with
82(z, ) 2 min|| z — v 2. (5)
N vEY :

The theorem that follows provides an upper bound for the distance between R (?—{f § })

and R (#f (har),_ .

Theorem 1: Let R (?{T{h;‘n m]) denote the (I + m + 1)-st dimensional range space of
?{Tl{hifn,_‘m,, Fliml (?—l; § S ) denote the smallest nonzero singular value of ’HT{hml ]
and R (?-Lﬂh;,.f}) i denote the (I + m + 1)-st dimensional subspace spanned by the left

singular vectors of ’HI (har) assoctated with its (l+m+1) largest singular values. Let Em" M2 he

Tltm+1 (H{ {hml 'i‘m )

the matriz 2-norm of the perturbation Hi (dZ,, ,..). IFE™ < .

. then

£Tms
< — —  (6)
2 Titm+1 (H [:hm,l m:JJ _E.’ A

sin / ( (?—it i i ) R (?'f.?(h_.mf]')“_m_'_l)

Otherwise, the upper bound is egual to 1.
Proof: The theorem can be proved easily by using the “generalized sin@ theorem™ of [8]. W
From (6), (3), (4), (5) and the fact that eg € R (H] (b}, ,)). ford =my+1.... . my+l+1,
we deduce that thereisan g 4 R ('H;T{hm}) i such that

E‘i‘i‘ll iz

Tl4m41 (H.! '-r.hml msz Emj ol

les —€qll; =

Using the fact that the LS solution, € 4, can only do better than &4, we obtain

Iy 1T
EI

Tlimtl (H?—{hé‘l:.mﬂ }) Em W

led—€ally < llea —€all, <

(7)

Bound (7) is a worst-case quantity. It means that if o7, (?151 4 mz]) is sufficiently
large with respect to £""™?, then the [-th order LS equalizers, attempting to equalize hy;.

perform well, for all the delays corresponding to the significant part. Of course, assessment of

11



the best-case performance remains a very interesting problem. especially in the cases in which
Titm+1 (H}r[h,ﬁ,ﬁl_mz}) is “small”.

Term o141 (] (hi, m,)), being the distance, in the matrix 2-norm, of M (hi, m,)
from the matrices with rank (I + m), measures “how well” is fulfilled our assumption about
rank (?{}r[hfnhmg}) or, equivalently, rank (‘Hf‘[hm]__mz})~ Analogous quantities have appeared
in studies of the robustness of blind channel approximation methods, with respect to effective
channel undermodeling/overmodeling [9], [10]. These quantities measure the distance of certain
filtering matrices from the matrices with rank one less than the assumed rank. Thus, they may
be interpreted as measures of diversity of the significant part of the channel. For varying [,
lrmtl (H}r{hfm .mz}) are not orderable, in general; extensive simulations have shown that they

are reasonably close each other.
otems1 (HT (B3, m,))
2vi+1

eq— E!,d ”-g =

Using (2), if e, < , we can derive a simpler but looser bound as

2 8;"]'m2 ” 2 \-'"m Em
J;_m_;.]. (H?{hrﬁn,mg]) B g{--ﬂ"l""l (H?{h;m;.m-;})

(8)

Taking into account that, for varying [, quantities oj 41 ('H?{hfn] ,m?}) are not orderable,
while the numerator at the right-hand side of inequality (8) increases with increasing I, our
analysis favors the use of equalizers with the smallest possible order, i.e.. | = m — 1. This is to
be expected, due to the “worst-case” character of our approach.

Of course, one may consider equalizers with order smaller than (m — 1). However, in this
case, our “ideal” and “real-world” problems can not be related through a “small.” i.e., O(e,,),
perturbation. Our analysis shows that, in this case, we should nof expect sufficiently good
performance, in general.

A seemingly annoying aspect of our results is that they have been derived by assuming the
knowledge of the true impulse response, h)s;. However, since during our analysis we used only
the size and not the structure of the perturbation, ?{f[dfm_mz}lf our results hold also for the

cases in which the impulse response is known to within an O(e,,) estimation error. Derivation

of results by exploiting the structure of the perturbation remains a very interesting problem.
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Recapitulating, we may say that we obtained, in a indirect way, an explanation for the ob-
served satisfactory performance of LS equalizers, for the delays corresponding to the significant
part of the channel. A direct approach. using pseudoinverse perturbation results, might appear
complicated, due to the fact that perturbations on H;r{h;"n._mj} are not necessarily acute [7,

pp. 139, 140].

3.2 Delays corresponding to the tails

In the previous subsection, we saw that, under certain conditions, the {{ +m + 1) delays cor-
responding to the significant part of the channel lead to sufficiently good equalization of hyy,
by the {-th order LS equalizers, for I > m — 1. Also, we saw that the dimensions of H] (has)
imply that at most 2 ([ + 1) delays may lead to sufficiently good equalization performance. This
means that for equalizer order [ = m — 1, we should not expect any other delays to lead to
sufficiently good equalization performance. However, for { > m, it is not immediately clear,
from our analysis until now, whether there exist other delays which may lead to sufficiently
good performance, or not.

Thus, a natural question arises: “Are there any other delays, which may lead generically to
sufficiently good LS equalization?”

In order to answer this question, we perform a perturbation analysis similar to that in the
previous subsection. However, now, in our “ideal” problem we must consider not only the
significant part of the channel but also certain “small” terms. Otherwise, the perturbation
can not be small with respect to the “ideal” quantities. For example. in order to study the

performance of the [-th order LS solution to
H?[hM}EE,mT‘ =Bt

with m] < m;. we must include in our “ideal” problem terms h&ig and hE:' This happens
1 1
because if we do net include these terms, it is not possible to have a nonzero term at the

(m] +1)-st position of the right-hand side of our “ideal” problem. As a result. our “real-world”

13



problem, which has a 1 at the (m] + 1)-st position of the right-hand side. can not be a “small”

perturbation of our *ideal” problem.

A possible “ideal” problem is

?{E—{h:n{ ,mg} EI,m; = Em; .

with h® .

m3 ma denoting the part of the true channel lying between indices m] and ms, appropri-

ately zero-padded.

The first implication of this fact is that we must consider equalizers of order [* = m* — 1,
with m* = mgy — mj. That is, in this case, we need equalizers longer than those used in the
“ideal” problems of the previous subsection: otherwise, we can not equalize perfectly. in general,

hy: m, or, equivalently, hm .my- Lhe corresponding perturbation is H,-{dm m,)- Continuing

similarly to the analysis of the previous subsection, we obtain that the key terms are Em‘ e

that is, the matrix 2-norm of HX(dZ. . ), and o s (’HT{hm ,m}), that is. the smallest

mjmg
nonzero singular value of HJ. I[l’l1,11 m,)- Defining e+ = ” dm ma [|or We obtain similarly to (2)
1 my .
\_ﬁﬁm' EEE-J'M?E VIt 4+ 1leme. (9)

Furthermore, since the small leading and/or trailing terms are usually of the same order of

magnitude [4], we usually have that e, = en-.

As we saw in the previous subsection, if term Eﬂi 12 e sufficiently small with respect to

T pm=+1 f?{{(h;';q m?}), then we expect en; to be close to R (’HE: {hm}) . implying that

[*+m
the I*~th order LS equalizer, attempting to equalize hjs, for delay mj}. performs well. In the

sequel, we use a result of [9], showing that this does not happen for m] corresponding to the

tails.

Theorem 2: If ojimy ('HT{hml mj}) denotes the smallest nonzero singular value of the

[2}!? } (10)

runk-(l + m + 1) matriz 'r'-iITI[hm:I mg)s then

Tl+m+1 (?{; (hgssine ) < min{ \/Ehﬂl 2 + 22| 2 J|
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In this case, (1) and the fact that hE,i‘{ and hi,fl; belong to the true channel tails, i.e., d:

Iy gt

result in
Ot sme+1 (M (B my)) < €m. (11)

Theorem 1, relations (9), (11) and the fact that e;- = e, yield that, usually, we do not have
any a priori knowledge about the distance between R (H;{I{h;:_mz}) and K (’H,E:I[h_-. f}){_ TR
In fact, in the majority of the cases, the only upper bound we can give for the sine of their canon-
ical angles is 1, meaning that it is not guaranteed that there is a vector in R (?{}‘f {h_:.,,f])E_Tlm_*1

that is close to ep:.

One may wander if ey,: may be generically close to the subspace spanned by the left singular
vectors of ?{E:{h_u} corresponding to its remaining nonzero singular values. It turns out that
this does not happen, for a counterexample can be easily constructed. It can be easily seen
that we can null terms hﬁ% and hﬁ% of the my.~th Tow of H7. (hi,: ), by adding a small, i.c.,
O(€m ). perturbation matrix, composed of terms -hil:; and —hfi;l at the appropriate positions
of the m;-—th row, and zeros elsewhere. This small perturbation makes e,;; orthogonal to the
range space of the resulting perturbed matrix. Of course, this perturbation does nol have the
structure of ?{?:{d;’;ﬂ;.me]. However, it is very informative, in our framework, in which we repeat
that we use only the size and not the structure of the perturbation, because it implies that for

the delays corresponding to the tails, we can not derive a worst-case bound smaller than 1.

Analogous arguments hold for the d > my + 1 + 1 case.

4 Simulations

In the previous section, we derived bounds for the performance of LS equalizers, for the various
equalization delays. In this section. we perform simulations to check our theoretical results.

In Fig. 4a, we plot a 10-th order 2-channel impulse response, composed of a 2-nd order
significant part, lying between positions m; = 3 and ms = 5, and tails. In Fig. 4b. we plot the

2-norm of the residuals of the 3-rd order LS equalizers, for the various delays, and bound (7)

15



(thick line). We observe that our bound is able to predict the performance of the LS equalizers
for the various delays. Also, we observe that for some specific delays corresponding to the tails,
the 2-norm of the residual of the LS equalizers is “close” to 1, supporting the arguments of the

previous subsection.

Impulse response LS parformance vs delay
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Fig. 4. (a) 10-th order impulse response (b) Bound (7) (thick line) and 2-norm of residuals of the 3-rd

order LS equalizers versus delay.

5 Conclusions

We considered the relationship between LS equalization performance and equalization delay,
in the cases in which the M—th order true subchannels possess an m-th order significant part,
with m < M, and long tails of leading and/or trailing terms. Using a perturbation analysis
approach, we showed that if the diversity of the significant part is sufficiently large with respect
to the size of the tails, then the l-th order LS equalizers, with [ > m — 1, perform well, for
all the delays corresponding to the significant part. On the other hand, we do nof have any
a priori knowledge for the performance of the LS equalizers for the delays corresponding to
the tails. They may, and usually do, perform poorly. Our results offer an explanation of the

observed behavior of LS equalizers in “realistic” cases [3].
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