Coloring Permutation Graphs in Parallel

Stavros D. Nikolopoulos

5-99

Technical Report No. 5-99/1999

Department of Computer Science
University of Ioannina
45 110 Ioannina, Greece

Coloring Permutation Graphs in Parallel

Stavros D. Nikolopoulos

Department of Computer Science, University of loannina,
P.O. Box 1186, GR-45110 loannina, Greece.
e-mail: stavros@cs.uoi.gr

Abstract — We study the problem of coloring permutations graphs using some properties of the
Lattice representation of a permutation and the relationship between permutations and binary
search trees. We propose an efficient parallel algorithm which colors a permutation graph
in O(log?n) time using O(n? / logn) processors on the CREW PRAM model, where n is the
number of vertices in the permutation graph. Specifically, given a permutation ;T we construct a
tree T"[7], which we call coloring-permutation tree, using certain combinatorial properties of .
We show that the problem of coloring a permutation graph is equivalent to finding vertex levels
in the color-permutation tree. Our results improve in performance upon the best-known parallel
algorithms for the same problem.

Keywords: Permutation graphs, Perfect graphs, Coloring problem, Parallel algorithms, Trees,
Complexity, PRAM models.

1. Introduction

LetN={1,2,..,n}and 7 = [m, T3, ..., Ty] be a permutation on N. Then we construct an undirected
graph G[7] in the following manner: G[x] = (V. E) has vertices numbered from 1 to n, that is
V={1,2,..n}, and

(L)eE & (i-)(m!-mh<0

for all i, je N, where m;-! denotes the position of number iin 7 [5, 13]). An undirected graph G is
called permutation graph if there exist a permutation 7 such that G is isomorphic to G[7]. We,
therefore, assume in this paper that a permutation graph G[7] is represented by the corresponding
permutation 7. The graph &[] is sometimes called the inversion graph of 7 [5].

Many researchers have been devoted to the study of permutation graphs. They have proposed
sequential andfor parallel algorithms for recognizing permutations graphs and solving
combinatorial and optimization problems on them. For a sequential environment, Pnueli er. al. [11]
gave an O(n?) time algorithm for recognizing permutation graphs using the transitive orientable
graph test. Later, Spinrad [14] improved their results by designing an O(n2) time algorithm for the
same problem. In the same paper, Spinrad also proposed an algorithm that determines whether or
not two permutation graphs are isomorphic in Q(n?) time. In [15], Spinrad er. al. proved that a
bipartite permutation graph can be recognized in linear time by using some good algorithmic
properties of such a graph. They also studied other combinatorial and optimization problems on

e

permutation graphs. Supowit [16] solved the coloring problem, the maximum clique problem, the
cliques cover problem and the maximum independent set problem, all in Q{nlogn) sequential time.
Moreover, Farber and Keil [4] solved the weighted domination problem and the weighted
independent domination problem in O(n) time, using dynamic programming techniques. Later,
Brandstadt and Kratsch [3] published an O(n?) time algorithm for the weighted independent
domination problem. Atallah er. al. [1] solved the independent domination set problem in O(n
log?n) time, while Tsai and Hsu [17] solved the domination problem and the weighted domination
problem in O(n log2n) time and O(n2log2n) time, respectively. Tsukiyama et. al. [18] proposed an
algorithm that generates all maximal independent sets of a general graph in O(nma) time, where a
15 the number of the generated maximal independent sets of the graph. Leung [10] gave algorithms
for generating all maximal independent sets of interval, circular-arc and triangulated (or chordal)
graphs. His algorithm takes O(n2+k) time for interval and circular-arc graphs, and O((n+m)a) time
for triangulated graphs, where k is the number of vertices generated. In [20], Yu and Chen showed
that the generation of all the maximal independent sets can be completed in O(n logn+k) time using
O{nlogn) space.

Although many sequential algorithms have been proposed for permutations graphs, few parallel
algorithm have been appeared in the literature. Due to work of Helmbold and Mayr [6] and Kozen
et. al. [9], the problem of recognizing permutation graphs was shown to be in the NC class.
Helmbold and Mayr presented a parallel algorithm that recognizes a permutation graph in O(log3n)
time using Q(n*) processors on a CRCW PRAM model. They also solved the weighted clique
problem and the coloring problem in O(log3n) time using O(n*) processors on same model of
computation. Moreover, given a permutation graph, their algorithm can construct the permutation
that represents the permutation graph.

Our objective is to study the coloring problem of permutation graphs. Recently, Yu and Chen
[19] proposed a technique that transfer the coloring problem into the largest-weight path problem.
Specifically, their technique, first, transforms a permutation graph (combinatorial object) into a set
of planar points (geometrical object), then constructs an acyclic directed graph by exploiting the
domination relation within the geometric object and, finally, solves the largest-weight path problem
on the acyclic directed graph. The parallel algorithm they proposed can solve the coloring problem
in Q(log2n) time with O(n3/logn) processors on a CREW PRAM, or in O(logn) time with O(n?)
processors on a CRCW PRAM model. Moreover, they proposed parallel algorithms that solve the
weighted clique problem, the weighted independent set problem, the cliques cover problem, and the
maximal layers problem with the same time and processor complexities.

In this paper, we present a parallel algorithm for the problem of coloring a permutation graph,
which run in O(log?n) time with O(n?/logn) processors on the CREW PRAM model. Our algorithm
15 based on some properties of the Lattice representation of a permutation and the relationship
between permutations and binary search trees. Specifically, given a permutation 7, we construct a
tree T"[7] using certain combinatorial properties of 7. We call this tree coloring-permutation tree
(cp-tree) or color tree for short. We prove that the problem of coloring a permutation graph G[] is
equivalent to the problem of finding the level of each node of the color tree T"[7). We show that
the color tree of a permutation can be constructed in D{logzn} time with O(n2/ logn) processors on
the CREW PRAM model. Since, the level of each vertex of a tree is computed in O(logn) time with
O(n/logn) processors on the EREW PRAM model using the well-known Euler tour technique, it

follows that the coloring problem on permutation graphs can be solved in O(log?n) time with O(n2/
logn) processors on the CREW PRAM model.

The paper is organised as follows. In Section 2, we establish the notation and terminology we
shall use throughout the paper. In Section 3, we describe the method that transforms a given
permutation 7 into a rooted tree, that is, the color tree, and we prove that coloring the permutation
graph G[] is equivalent to the problem of finding the level of each node of its color tree. In
Section 4, we present a parallel algorithm for the construction of the color tree, while in Section 5
we prove the correctness of the construction algorithm. In Section 6, we compute the time and
processor complexity of the coloring algorithm. Finally, Section 5 concludes the paper.

2. Definitions

A coloring of a graph G = (V, E) is an assignment of colors to its vertices so that no two adjacent
vertices have the same color. The set of all vertices with any one color is independent and is called a
color class. To distinguish the color classes we use a set of colors C, and the division into color
classes is given by a coloring : V = C, where @(x) 2 g(y) for all (x, y) € E. If C has cardinality &,
then @ is a k-coloring. The coloring problem is to color a graph G with k color where k is the
minimum cardinal k for which G has a k-coloring (minimum number of colors). The number k is
called chromatic number of G and denoted by ¥(G) [6, 8].

We have seen that an undirected graph G is a permutation graph if there exist a permutation
such that G is isomorphic to G[] (see Introduction). Let us now give some basic properties of
permutations. It is well-known that permutations may be represented in many ways. The most
straightforward way to represent permutations is simply as a rearrangement of the numbers 1
through n; hereafter N, = {1, 2, ..., n}. For example, in the following permutation n = 9.

index 1 2 3 4 5 6 7T &8 ©

permutation 7 9 3 & 2 8 5 4 1

Suppose 7 is a permutation on Np. Let us think of 7 as the sequence [, M9, ..., Tpl, s0, for example,
the permutation 71=[7,9,3,6, 2, 8, 5, 4, 1] has 1; = 7, m; = 9, etc. Notice that (;T1);, denoted here
as ;7L, is the position of element i in the sequence 7. In our example w771 = 1, mg! = 2, ete.

Let = [m, T, ..., Ty] be a permutation on Ny. An inversion is a pair i <j with 1; > ;. We say
that an element 7; inverts mj, or 7j is inverted by m;, if i <j and m; > ;. An element m; directly
inverts Tj, or 7 is directly inverted by m;, if m; inverts m; and there exists no element 7y such that ;
inverts 7y and 7y inverts 7. In the permutation given above, the elements 2, 5, 4 and 1 are inverted
by 6, while the elements 2 and 5 are directly inverted by 6. We shall use, hereafter, the notation
D-inverts and D-inverted for the terms directly inverts and directly inverted, respectively.

If gj is the number of i <j with ; > ;, then the sequence [q1, g2, ... ¢n] is called the inversion
table of 7. In other words, g; is the number of elements that invert 77j. Similarly, if p; is the number
of elements that D-invert 7, then the sequence [py, p2. ... pn] is called the D-inversion table of .
The sample permutation given above has the following inversion and D-inversion tables: inversion-
table(m)=1[0,0, 2, 2,4, 1, 4, 5, 8] and D-inversion-table(7) = [0, 0, 2, 2, 2, 1, 2, 1, 2]. We can see

that the zero entries in the inversion or D-inversion table corresponds to those elements of 7 that are
not inverted by any other element in 7.

The inversion set (resp. D-inversion set) of an element 77; is defined to be the set which contains
all the elements of 7 that invert (resp. D-invert) m1;. We shall denote the inversion and D-inversion
sets of an element 7; by inversion-ser(;) and D-inversion-set(7;), respectively. In our example,
these two sets of the element 5= 5 are the following: inversion-set(5) = {7, 9, 6, 8} and
D-inversion-set(5)= {6, 8}.

Fig. 1 shows a two-dimensional representation of a permutation that is useful for showing the
inversion and D-inversion sets of its elements. The permutation [y, T2, ..., Ty] 15 represented by
labelling the cell at row i and column i; with the element i; for each i. There is one label in each
row and in each column, so each cell in the lattice corresponds to a unique pair of labels. If one
member of the pair is below and the other to the right, then that pair is an inversion in the
permutation. Based on this property we can easily show the inversion and D-inversion relations of
every pair of elements. For example, let 7, 77j be a pair of element of the permutation . If 7; is
below and 7; to the right, then 7 inverts ; (or m; is inverted by ;). In Fig. 1 (leftmost lattice), this
relation is indicated by a bullet in the corresponding cell, that is, in row j and column ;. The
D-inversion relation of each pair of elements of 7 is indicated in a similar way in the rightmost
lattice of Fig. 1.

. & & & @+ & 7 . nj‘
. & = & ® @ ag . L -9
--.3 -3

. @ a-ﬁ . -6
12 12

. . # . 8
. . -.5

. 4 . 4

1 1

Fig. 1: Lattice representation of the permutation 7=[7,9, 3,6, 2, 8, 5, 4, 1] and its
D-inversion relation of each pair of elements of .

Given a permutation 7 on N,, its corresponding permutation graph G[a] = (V, E) can be
constructed as follows: G[] has vertices numbered from 1 to n; two vertices are jointed by an edge
if the larger of their corresponding numbers is to the left of the smaller in permutation 7. That is,
G[7] has n vertices 1, 2, ..., n, and m edges such that (i, /) € E if and only if (i, j) (7! - 7771) < 0.
conclude this section with some graph-theoretic notation employed in this paper. A tree T = (V, E)
is a graph with a unique path between each pair of vertices. A roored tree has a distinguished vertex
called the root. A directed tree is a rooted tree with directed edges. A (directed) forest is a collection
of (directed) trees. Throughout the paper, all trees will be directed.

We shall consider the directed trees 1o be [eveled; that is, the root r will constitute level 0, the
neighbours of r will constitute level 1, the neighbours of the vertices on level 1 that have not vet
placed in a level will constitute level 2, etc. It is well-known that with this structure, if u is on level A

o i

then the children of u are on level h+1 and the parent of & is on level h-1. Throughout the text, we
shall refer to the level of u as level(u). It is easy to see that level(u) is simply the length of the path
(number of edges) from the root r to u or, equivalently, the distance (number of edges) between u
and the root r. The height of a node u is the number of edges in the longest path from the node u to
a leaf. Finally, we define the height of a tree to be the height of its root.

3. The Color-Mapping Strategy

We have referred to the problem of coloring a graph as one of trying to assign particular colors to
its vertices so that no two adjacent vertices have the same color. Moreover, the number of colors
used must be as less as possible. The key to the solution is to find the color classes of the graph: that
is, the classes of vertices that can be colored with the same color. To this end, one can think of
transforming the graph into another combinatorial object (e.g., tree, directed graph, etc.) and, then,
solving a particular problem on this object (e.g., vertices lying in the same level of the tree, vertices
having the same distance from a particular vertex, etc.) which gives the solution to the coloring
problem.

In this work, we use a strategy to transform a permutation graph G[7] into a rooted tree T [].
which we call coloring-permutation tree or cp-tree for short. Then, we solve the coloring problem
on G[7] by computing the vertex-level function on T*[7]. More precisely, given a permutation 7
(or its corresponding graph), we construct a coloring-permutation tree T[] by exploiting the
inversion and D-inversion relation and we show that the color class C; of graph G[] consists of
those nodes of the tree T*[7] whose distance from the root of the tree equals { = 1. That is, C;
contains all the nodes u of T*[1] such that level(u) =i, 1 <i < k, where k = ¥(G[7]).

Towards the construction of a coloring-permutation tree T[], we first construct a rooted tree
T[] as follows:

(i) Construct a directed acyclic graph (dag) G = (V, E) such that V = {7y, 73, ..., Ty} and
<7, Tj> € E iff m; D-inverts 7j; (see Fig. 2: leftmost figure).

(ii) Given the dag G, construct a (directed) forest ¥ as follows: Remove the edge <, m> from

G iff there exists edge <m;, ;> such that 7; < ;. The node 7; with indegree(m;)) =0in G is
the root of the tree T; in . (see Fig. 2: middle figure).

(iii) Let Ty, Ta, ..., Tx (k= 1) be the trees in % and let 7y, T3, ..., Tk be the roots of those trees,
respectively. Let r be a new node such that » > m; for every i, 1 <i < n. Then, construct a
rooted tree T[] consisting of the nodes and edges of Ty, T;, ..., T, the new node r, and
new edges <r, Ty>, <r, To>, ..., <F, T>. The root of T[] is r, and Ty, T, ..., Ty are the subtrees
of T[x]; (see Fig. 2; rightmost figure).

The tree T[] constructed by the above procedure has the property that every path from the root r
to a node ;7; forms a decreasing sequence P = [r, Ty vees xq], Moreover, if 7; and 7; are two elements
of P such that ; > 71 (77; # r and 7 # r), then al < .frj" in ;. Based in this property we shall refer,
hereafter, to the tree T[7] as decreasing-subsequence tree, or ds-tree for short.

Fig. 2: The construction of the tree T[] of the permutation 7=[7,9, 3,6, 2, 8, 5, 4, 1].

Let 7 = [}, 7T, ..., Ty] be a permutation on N, We define a coloring-permutation tree T"[] = (V7,
E") to be a rooted tree having the following properties:
(iy V*={r, T, Ty}, where r is the root of the tree, and r > ; forevery i, 1 Si<n.
(i) <, T> € E* if m; inverts 7 in 7.
(iii) there is no pair of nodes 7, 7; such that level(;) 2 level(;j) and ; inverts 7j in TT.

It is easy to see that the ds-tree T[] of a permutation 7 is a cp-tree T"[r] if there are no nodes m;,
7 in T[] such that level(7;) 2 level(;) and 7; inverts 7 in 1. Fig. 3 shows the ds-tree T[] and a
cp-tree T*[] of the permutation m=(7, 9, 3, 6, 2, 8, 5, 4, 1]. In this figure, T[7] is not a cp-tree
because there is a pair of nodes {4, 1} such that level(4) 2 level(1) and 4 inverts 1.

Having constructed the ds-tree T[x] of a permutation 1, let us now show the way we can construct
the cp-tree T*[]. Let i, 7; be two nodes of the ds-tree T[] such that level(m;) 2 level(n;) and
inverts 7T in 1. Then, we define the following operation on the ds-tree T[]:

* Inversion-removing: Let p(;) be the parent of the node 7; in T[]. Delete the edge <p(7;),
;> from and add a new edge <;, 7> to T[]

Let T'[«r] be the resulting tree after applying an Inversion-removing operation on T[], Since
inverts 7j, it follows that ; > ; and a4l < E_]"I in m. Therefore, every path from the root of T'[7] to
a node ; forms a decreasing sequence of ;. Thus, we can construct a cp-tree T'[7] by applying
Inversion-removing operations on the ds-tree T[] until no pair of nodes {7, ;} remains in T[x]
such that level(m;) 2 fevei(:rj} and 7 inverts 7T in 7. For example, let T[] be the ds-tree of the
sample permutation 7 used throughout the paper (see Fig. 3; leftmost tree). In this tree, level(4) =
level(1) and 4 inverts 1 in 7. It is easy to see that we can construct a cp-tree T[] by applying an
Inversion-removing operation on the ds-tree T[] (see Fig. 3; rightmost tree).

Remark 3.1 Let G[] be a permutation graph and let T*[7] be a ds-tree of 7 rooted at r. Based on
the way we construct the graph G[x] from the permutation ;T and the way we construct the cp-tree
T*[x] from the ds-tree T[], we conclude that if P = [r, 7, ..., @j] is a path in T"[x], then the
subgraph of G[x] induced by {7, ..., 7} is a K, where m is the number of elements in P.

SRy

We now show that there is an one-to-one correspondence between the length (number of edges) in
the path from r to a node 7; in T*[7] and the color of vertex ; in G[]. More precisely, we prove
that the nodes of the ith level of the cp-tree T"[x] form the color class C; of the permutation graph
G[], where 1 <i < k. Recall that k = ¥(G[7]).

T[] T[]

(©)
©
@

(2
@
(2

()
)
)
=)

O—6)
()
O——)

Fig. 3: The decreasing-subsequence tree T[] and a coloring-permutation tree T"[] of
the permutation 7=[7,9, 3,6, 2, 8,5, 4, 1].

Lemma 3.1 Let 7 be a permutation on Ny. The following numbers are equal:
(i) the chromatic number of G[x];
(i1) the length of a longest decreasing subsequence of ;

Proof. The equivalence of (i) and (ii) holds since a longest subsequence of 1 corresponds to a
maximal clique of G[x], which will be of size }(G[x]) since permutation graphs are perfect (see
also Corollary 7.4 in [5]). O

Lemma 3.2 Let T"[7] be a cp-tree of a permutation 7 rooted at r. Every path from r to a node m;
forms a decreasing subsequence of .

Proof. The lemma holds since the Inversion-moving operation has respect for the properties of the
ds-tree T[7]. O

Lemma 3.3 Let T'[«7] be a cp-tree of a permutation 7 rooted at r and let k be the height of T"[1].
Then k = x(G[x]).

Proof. Lemma 3.2 tell us that every path from r to a node ; of T*[xr] forms a decreasing
subsequence of . This result coupled with the result of Lemma 3.1 implies that k < 3(G[x]) (Note
that the length of a subsequence § of 7 is the number of elements in §, while the length of a path P
of T"[7] is the number of edges in P.) Suppose that k < ¥(G[7]). Let S = [77p, ..., 7g] be the longest
decreasing subsequence of 7. Since the length of § equals x(G[x]) and k < ¥(G[x]), it follows that
there are 77; and 7j in § such that 7; > 7m; and level(T;) 2 level(T;) in T*[x]. Moreover, since S is a
subsequence of 7, it follows that ;! < 1! in . Thus, T"[1] is not a cp-tree; a contradiction. [

Lemma 3.4 Let 7, and T be nodes in T"[x]. If (T, .Tj} is an edge in G[x], then level(m;) #
Feve!'{:'rj}.

Proof. Suppose that level(m;) = Ieuef[f{j]. Since (1T, ;) is an edge in G[7], it follows that 7; inverts
7 in 7. Thus, there is pair of nodes {m;, 75} in T*[1] such that level(T;) 2 level(sj) and m; inverts
in 7, contradicting the properties of a cp-tree. [

Having shown the relation between the coloring problem on a permutation graph G[x] and the
problem of finding the level of each node of the cp-tree T"[], we are in a position to formulate an
algorithm for solving the coloring problem on permutation graphs. The algorithm proceeds as
follows:

Algorithm Celoring:

Input : A permutation 7 and its corresponding graph G[1]=(V, E);
Output : The color of each vertex m;e V,i=1,2, ..., n;

begin

1. Construct a coloring-permutation tree T"[7] rooted at r, where r = 7;
2. Compute the level level(:T;) of each node 7; of the tree T"[7], 1 € i< n;

3. Set color(m;) < level(m), i=1,2, .., k;
end;

In step 3, the algorithm colors the vertices of graph G[1] with k colors, where k is the height of the
color tree T*[7], k<n. Vertices T; and 7T; are colored with the same color if and only if the nodes 7
and M have the same distance in T"[1] or, equivalently, level(m;) = Ievef(,*rj}. The correctness of the
algorithm is established through the Theorem 3.1. Its proof relies on the results of Lemmas 3.3
and 3.4. Hence we may state the following:

Theorem 3.1 Given a permutation 7, the algorithm Coloring correctly solves the coloring
problem on the permutation graph G[7].

4. Construction of the Coloring-Permutation Tree

We have defined the coloring-permutation tree T"[7] of a given permutation ;7 and we have showed
the one-to-one correspondence between the coloring problem on G[x] and the problem of
computing the level of each vertex of T"[x]. It is well-known that we can optimally compute the
level of each vertex of T[] using the Euler-tour technique on rooted trees. Thus, we focus on the
design of a parallel algorithm for constructing a coloring-permutation tree T [77].

4.1 The decreasing-subsequence trees

As we showed in the previous section, the ds-tree T[] is constructed by exploiting the D-inversion
relation on the permutation . Therefore, there is a need of computing the D-inversion set for every
element of ;. Obviously, the D-inversion set of an element is subset of its inversion set. So, we first
compute the inversion set for every element m;in 7, and then select from it the elements that
constitute the D-inversion set.

We can easily see that, the inversion set of an element .7; of a permutation 7T is simply the set
which contains all the elements that are greater than 7; and lie on the left of the element 7 in 7 (see
the definition of the inversion set in Section 2). That is,

inversion-ser(m;) = {m;| mj> mjand j < i}

Let B; [1..i-1] be an array such that B;[j] = ; if 7j € inversion-ser(;); otherwise Dj[j] === forj =1,
2, ..., i-1. By definition, an element m; is D-inverted by ; (1; D-inverts ;) if 7 € inversion-set(T;)
and there is no element 7k such that 7 inverts 7 and Ty inverts 7;. Thus, the last element ; of
inversion-set(7;) is a member of D-inversion-set(m;). That is, ; is the element of inversion-ser(;)
with the max index in 7. It is easy to see that 7y € D-inversion-set(m;) if Mk € inversion-set(7;) and
Tk < my for every my in Bj[k..i-1] = [7k, k41, - Ti-1]. Therefore, we can compute the D-
inversion-set of an element J; by computing the suffix minima of Bi[1..i-1] = [Ty, ..., Tk, ..o Tl

where My = if T & inversion-ser(m), 1 €k <i-1.

index 1 2 3 4 5 6 7T &8 9
permutation 7 9 3 &6 2 8 5 4 1

7 9 3 6 2 8|5]|4 1 80 U0y e

=9 0 00 0O0CO0O0

793 000000

7 9 =6 00000

7 9 oo 6§ o B|5]0 0 3336 20000

9 9 o0 o 0o §8 0 0 0

Goonctch R B8 D

55 5 5 55 5 40

6 6 6- 6 -8 S 510 B 202 2 2 2.4 4 4 1
(a) (b)

Fig. 4: (a) The computation of the 7th row of the D-inversion matrix of
7=[7,9,3,6,2 8, 5, 4, 1]; (b) The D-inversion matrix D of .

Let D;[1..i-1] be an array containing that suffix minima of B;[1..i-1], 2 < i < n. Obviously, I}[1] is
the minimum element among all the elements ; of & such that j<i and 75 > &;. That 1s,
Di[1] = min{7j | mj € inversion-set(m;)}. From the way we construct the ds-tree T[], we can easily
see that if p(;) is the parent of node m; in T[], then p(m;) = D;[1].

In Fig. 4(a), we show the permutation 7=[7, 9, 3, 6, 2, 8§, §, 4, 1], the array B7[1..6] and the array
D+[1..6]. We observe that p(77) = 6, where 7 = 5 (see also Fig. 3).

Having computed the D-inversion-set of an element i1; of 7; that is, the array D;[1..i-1], let us now
define an n » n matrix D which contains all the necessary information for the D-inversion relation
of the permutation ;1. We call this matrix D-inversion matrix and we define it as follows:

(i} Dli,fl=m,for i=1,2...,n;
(i) D[i pl=0fori=1,2...,n;and p=i+l, 42, .., n;
(iii) D[l..i-1]=Di[1..i-1) for i=1, 2. ..., n;

Thus, we can easily see that Fig. 4(a) shows the computation of the 7th row of the D-inversion
matrix D of the permutation & = (7, 9, 3, 6, 2, 8, 5, 4, 1]. Fig. 4(b) shows the D-inversion matrix D
of the same permutation 7.

Let E; be the edge set of the ds-tree T[] rooted at r. Since r inverts every element of 7, it follows
that <r, D[1, 1]> e E;. From the D-inversion matrix D we obtain that <r, D[1, {]> e Eg if D[], {] ==
or <D[i, i], D[], i]> € Eg if D[1, i] # =, 2 <{ £ n. Thus, the D-inversion matrix contains all the
necessary information for the construction of the ds-tree T[x].

Next we give a more formal listing of the algorithm for computing the D-inversion matrix of a
permutation 7. The computation of each Dj, 1<i <n, can be done independently, and therefore in
parallel. The following parallel algorithm describes this computation.

Algorithm D-inversion-matrix:
Input : A permutation 7 on {1, 2, ..., n};
Qutput : The D-inversion matrix D of the permutation JT;
begin
1. Foreveryi, 1 <i=<n,do in parallel
1.1 D i] &« =
1.2 D[i,jl«Ofori+l <j<n;
1.3 UD[i,jl<D[ii]jthenD[i j] & o, for1 £j<i-1;
1.4 Compute the suffix minima of D [i, 1..i-1];
end;

The correctness of the algorithm is based on the previous discussion and is established through the
following Lemma.

Lemma 4.1 Algorithm D-inversion-matrix correctly computes the D-inversion matrix of a
permutation ;T on Np,.

Let & = [r, 7y, T3, Ty] be a permutation such that r > 7; for every i, 1 i £n. We have seen that
the ds-tree T[] is a rooted tree such that: r is the root of the tree; 7; is a node iff r > 7;; <m, Ti> is
an edge iff 1y = min{m;j | 1; € D-inversion-se(m;)}; 1<i <n.

Next, we define the ds-trees T[1,], T[], ..., T[7,] of a permutation 7 = [, T4, ..., T,]. The
ds-tree T[7;] (1=i=n) is defined to be a rooted tree such that: m; is the root of the tree; Mpis a
node iff ; > Ap and 7p in [Tie1, Tis2s oo Tnls <k, Tp> is an edge iff Ty = min{7j| 75¢ D-

-10-

inversion-set(fp)}; i+1 <p <n. Fig. 5 illustrates the way we can construct the ds-trees T[7]. T[9] and
T[3] of the permutation 7, where 7 is sample permutation used in this paper.

Fig. 5: The decreasing-sequence trees T[], T[72] and T[73] of the permutation
7=[7,9,3,6,2,8,5, 4, 1]. That is, the ds-trees T[7], T[9] and T[3].

Let T[m;] be the ith ds-tree of a permutation 1, 1<i £n. By definition, 7; is the root of the tree and
7y is a node iff ;> m; and i <j. We can therefore compute the edge set of T[m;] using the
D-inversion matrix D of 7 as follows: Set <D[k, i], m> to be an edge of T[m] if 7 < 7 and m
{Tit1s M2, s T}

Thus, the D-inversion matrix of a permutation 7 contains all the necessary information for
constructing the ds-trees T[mg), T[] ... T[m,). Sometimes, hereafter, we shall denote by T[] the
ds-tree T[] rooted at r = . We construct the ds-tree T[] rooted at ; by computing the parent
function, p(my), for each node 7y in [Tis1, Tis2, -, 7n) such that 7y < 7. Next, we list the parallel
construction algorithm.

Algorithm ds-Trees (Decreasing-Subseguence-Trees):
Input : A permutation mon {1, 2, ..., n};
Qutpur : The decreasing-subsequence trees T[], 0<i £ n;
begin
1. Compute the D-inversion matrix D of m;
2. Set mp to be the root of the tree T[1y] and <1y, ;> to be an edge of T[g);
3. For every @y in {m, M2, ..., Ty} do in parallel
if D[k, 1] = == then set i to be a child of the root 7p; that is, p() = 7
else set T to be a child of the node D[k, 1] # ==; that is, p(1y) = D[k, 1];
4. Forevery i, 1 i< n, do in parallel
4.1 Set m; to be the root of the tree T[x;];
4.2 For every 7y in {41, Ti+2, ..., T} do in parallel
if T < 71 then set 7k to be a child of the node D[k, {]; that is, p(7) = D[k, i];
end;

In Fig. 6, we show the ds-trees T[], T[], ..., T[] of the permutation 1=(7,9, 3,6, 2, 8, 5. 4,
1], where r = my.

T[r] T[7] T[9] T[4] T[1]

(r) (7] (9) ®
(1) » @& © 00

® @ 60 00
O ©® 0O

» ©
@D O
OO

Fig. 6: The decreasing-subsequence trees T[7g], T[], ..., T[Tg] of the
permutation T=[7, 9, 3, 6, 2, §, 5, 4, 1]. Here, r = m.

Remark 4.1 Let T[x1;] be a ds-tree of a permutation . By construction, the first decreasing
subsequence of the sequence [, ..., 7Ty forms a path from the root m; to the leftmost leaf of the ds-
tree T[], 0 = i £ n. Moreover, the elements of the first level of the ds-tree T[7;] form an increasing
subsequence of the sequence [Ti4q, ..., Tp], 0 i< n.

4.2 The coloring-permutation tree T [a]

We are now in a position to developed a parallel algorithm for constructing a coloring-permutation
tree T*[n]. In particular, given a permutation 7 = [T, ..., T,], we formulate an algorithm that
constructs a cp-tree T*[1] using the information contained in the ds-trees T[], T], ..., Tl

Towards the construction of the cp-tree T [], we define two sets of nodes for each ds-tree
T[mg), T[], T[7T,]). For the ds-tree T[], 0 £ i < n, these two sets are the following:

link-nodes(T[m;]): it contains all the nodes « of T[m;] having the following property:
there exists a node v in T[] such that:
(i) level(v) = level(u),
(ii) v lies on the left of &, and
(iii) v is inverted by u; that is, 7,1 > my1;

active-link-nodes(T[m;]); it contains all the nodes u of link-nodes(T[;]) having the property:
there exists no node v in link-nodes(T[m;]) such that v inverts wu.

In this paper, we assume that the above sets are ordered sets. That is, the elements in each set are
arranged in the same order as they appear in 7. The following algorithmic schemes describe the
computations of the node sets link-nodes(T[7;]) and active-link-nodes(T[m]), 0Si=n.

Computation of the vertex set link-nodes(T[m;]), 0 <i <n: Let Ly, be an array containing the nodes
of the level h of T[;] and let /Ly, be an array containing the corresponding indices of the nodes of
Ly in the permutation 7. We assume that the nodes in Ly are arranged in the same order as they
appear (from left to right) in the hth level.

e o

The computation of the set link-nodes(T[71;]) of the ds-tree T[7;], 0 £i = n, can be implemented as
follows:

for every level h of T[m;], 1 =i £ n, do in parallel
1. Let Ly be the array containing the nodes of the tree at level A.
Compute the array [Ly having the property: the kth element of IL},
is the index of the kth element of Ly in the permutation 7;
2. Compute the prefix maxima p-max-ILy of the array ILy;
3. For every node u in Ly, do in parallel
if w is the kth element of L}, then
if ILyik) # p-max-1Ly(k) then link-nodes(T[m;]) + wu;
end;

We shall refer to the above algorithmic scheme as Scheme-A. Let T[7;] be a ds-tree and let link-
nodes(Ly) be the set of the link nodes of the hth level, where h 2 1. Fig. 7 shows the computation of
the set link-nodes(Ly) using the algorithmic Scheme-A.

index 1 2 3 4 5 6 7 8§ 9

permutation 7 & 3 & 2 8 5 4 1

Ly 4 1 2 8 7 9

1L, g 9 5 6 1 2 =3 link-nodes(L,) = [2, 8, 7, 9]

p-max-ILy 8§ 9 9 9 9 9

Fig. 7: The computation of the set link-nodes(Ly) of a tree T[7;] with
h-level nodes Ly =[4,1, 2, 8, 7, 9.

Computation of the vertex set active-link-nodes(T[x;]), 0 =i = n: By definition, the vertex set
active-link-nodes(T[m;]) contains no two elements - say 1 and v - such that i inverts v (or v inverts
u) in ;. Thus, we simply have to remove all the elements v of the set link-nodes(T[m;]) that are
inverted by an element u e link-nodes(T[m;]). This computation can be done using a similar
technique as in the computation of the set link-nodes(T[m;]). Specifically, it can be done using
prefix maxima on the elements of the set link-nodes(T[7;]); We shall refer to the algorithmic
scheme that computes the active nodes of a ds-tree as Scheme-B.

Having computed the sets link-nodes(T[;]) and active-link-nodes(T[;]) of the tree T[], 1S i< n,
let us now formulate a parallel algorithm for constructing the coloring-permutation tree T"[715]. The
algorithm proceeds as follows:

Algorithm cp-Tree (Coloring-Permutation-Tree):
Inpur : A permutation won {1, 2, .., n};
Output : The coloring-permutation tree T"[,];
begin
1. Construct the ds-trees T[], T[], T[] and make all of them to be "active” trees;
2. For every active tree T[m;]. 0 i £ n, do in parallel
2.1 Compute the level level(v) of each node v of T[m;];
2.2 Compute the set link-nodes(T[;]) of the link nodes of T[;];
2.3 Compute the set active-link-nodes(T[m;]) of the active link nodes of T[m];
2.4 If active-link-nodes(T[7;]) = @, then make the tree T[7;] to be "non-active” tree;
3. Compute the set link-nodes +— \J g <<, link-nodes(T[T]);
4. For every node u € link-nodes do in parallel
Make the tree T[u] to be "non-active” tree;
5. For every active tree T[], 0 £ i £ n, do in parallel
5.1 For every node u € active-link-nodes(T[m;]) do in parallel
Copy the tree T[u], and replace the subtree of T[;] rooted at u with
the copy of T[ul;
3.2 For every node y of T[m;] such that u inverts y do in parallel
Remove the subtree of T[m;] rooted at y from the tree T[m];
6. If T[m,) is an "active” tree, then execute step 2; otherwise return(T[7;]);
end;

Before proving the correctness of the algorithm cp-Tree, we should define the operations involved
in step 5. Let T[v;] be a tree with n nodes vy, vo, ..., vy and let preord(v;) and info(v;) be the preorder
number and the information of the node v;, respectively. Copy the tree T[v,] is defined to be the
operation that constructs a tree T[u;] with n nodes u;, us, ..., iy such that (i) preord(u;) = preord(v;),
and (ii) info(u;) = info(v;) for i =1, 2, ..., n. Let T[v] and T[«] be two trees rooted at v and wu,
respectively, and let u be a node of T[v]. Replace the subtree T' rooted at u of the tree T[v] with the
tree T[u] is defined to be the operation that makes the parent of the node u of T[v] to point the root
of the tree Tlu]. Remove a subtree T' of a tree T[v] is defined to de the operation that makes the
subtree T to be an empty tree.

5. Correctness

In this section we prove the correctness of the algorithm cp-Tree. We first establish the following
characteristics used in the algorithm.

Lemma 5.1 Let T[x;] be the ith ds-tree of i, end let x be a link-node of T[7;] at level h. Let ybe a
node at level h-k such that x inverts ¥, 0 < k £ h-1. Then, there exist a node x' in the path from the
root 77; to node x having the following properties:

(1) level(x") = level(y).

(ii}) x'inverts y.
Proof. Let x, y be nodes of the tree T[m;] such that level(x) = h, level(y} = h-k and x inverts y. Let
P = [7;, ..., x] be the path from the root 7; to node x. Obviously, there exists a node x' in P such

=14 -

that level(x") = h-k; see Fig. 8(a). Since x inverts v, it follows that v is not a node of P, x > ¥ and
7! < 7yl Moreover, x' > x and 7y -! < 1. Hence, x'> y and my~! < 71y"!. Thus, x" inverts y. O

T[m] T[x1 T[xT

@ level 0 @

level h-k

(b) (e)

Fig. 8: (a) The tree T[] and the inversion relationship of the nodes x, x" and v; (b} The tree T[x]
in the case where there exists a node x in subtree(sT;; x") such that x inverts y; (¢) The tree T[x]
in the case where either there exists no node x in subtree(T;; x") such that x inverts y

or subtree(7T;; x7) is empty.

Let T[m;] be a ds-tree of a permutation 7T and let x be an internal node of T[m;]. Hereafter, by
subtree(m;; x) we denote the subtree of T[m;] rooted at x. Let subtree(m;; x), subtree(;; x) be
subtrees of the ds-trees T[] and T[7;], respectively. We say that these two subtrees are equal,
denoted subtree(m;; x) = subfree(ﬂ'}; x), if the one subtree is a copy of the other subtree (see Section
4 for the definition of the copy operation).

Lemma 5.2 Let x, y be nodes of a ds-tree T[1;] such that x inverts y and let x’ be a node in the path
P = [, ..., x] such that level(x") = level(y) and x' inverts y. Let subtree(;; v) be a subtree of the ds-
tree T[] rooted at y. Then, subtree(m;; y) = subtree(x", y).

Proof. Since x'inverts y, it follows that y < x’ and 75! < :r}.']. Moreover, there exists a node v’ such
that y' > v and :r},-'] > y~1, and y' is the parent of y'. It is easy to see that y' < x'; specifically, y' is the
smallest element in the range 7;-!.. m,~!, which is larger than y. Let z be an arbitrary node of
the subtree(y) of T[x;]. Obviously, z <y and ;7! > .er'l. We shall prove that z is also a node of the
subtree(y) of T[x']. Suppose the contrary. Then, there exist a node y" in the range m,-L.. Jr}r'l, such
that y" <y and y" > z. In this case, nodes y" and y have parent the node ¥’ in the ds-tree T[7;].
Moreover, it is easy to see that y is a sibling of y". Since ¥" > z, it follows that z is a descendant of y".
Thus, z is not a node of the subtree(y) of T[m;]; a contradiction. O

Lemma 5.3 Let x, y be nodes of a ds-tree T[;] such that x inverts y and let x’ be a node in the path
P = [m;, ..., x] such that level(x") = level(y) and x' inverts v. If a node w of subtree(;; v) is a link-
node in T[], then w is also a link-node in T[x'].

Proof. It follows immediately from the Lemma 5.2. O

.15

Lemma 5.4 Let x, y be nodes of a ds-tree T[] such that x inverts y and let x' be a node in the path
P = [m, ..., x] such that level{x") = level(y) and x' inverts y. Let subtree(;; v) and subtree(;; x") be
two subtrees in T[7;]. If node w is an active link-node in T[x'], then w is either a link-node of
subtree(7;; y) or a node of subtree(;; x) such that w inverts y.

Proof. By Lemma 5.2, the subtree subtree(m;; ¥) of the tree T[] is also a subtree subtree(x’; v) of
the tree T[x']. Let level(y) and level(x) be the levels of the nodes y and x in the tree T[x'],
respectively. We distinguish two cases. (I) level(y) > level(x). In this case w is obviously an active
link-node in the ds-tree T[x']. (II) level(y) = level(x). Then, by Lemma 5.1, there exist node w in the
path P = [x', ..., x] such that level(w) = level(y) and w inverts y. Since y inverts all the nodes in its
subtree, it follows that w is a active link-node of the tree T[x"]. O

Lemma 5.5 Let x, v, ..., g; be link-nodes of the tree T[7;] such that x, € active-link-nodes(T[7;])
and let w, ..., z; be link-nodes of the tree T[x,] such that w e active-link-nodes(T[x,]). After
performing step 5 in the algorithm cp-Tree, w e active-link-nodes(T[;]).

Proof. By Lemma 5.4, w is either the node y, (see case I) or a node that inverts v, ..., z; (see case
II). After performing step 5.1 in the algorithm cp-Tree, the tree T[x,] is a subtree of the T[m;]; that
is, T[x,] = subtree(m;; x;). After performing step 5.2, the subtree of T[m;] rooted at y; that is, the
subtree(m;; y), is removed from the tree T[m;] (note that x, inverts y). Thus, w e active-link-
nodes(T[m;]). O

Lemma 5.6 Let T[1;] be a ds-tree of a permutation 7 and let w be a node such that x e link-
nodes(T[m;]). After the kth iteration of step 5 of the algorithm cp-Tree if x € link-nodes(T[7;]),
then after the (k-1)th iteration of step 5 of the algorithm cp-Tree there exist tree T[;] such that x e
link-nodes(T[m;]) , where j > i.

Proof. It follows immediately from the Lemma 5.5. [

Let x, y, z be nodes of a ds-tree. Hereafter, x inverts y inverts z = (x inverts y) and (y inverts z). Fig. 9
shows a ds-tree, say T[m;], in which the link nodes x;, ¥, ..., z; have the property that x,; inverts ¥,
inverts ... inverts z;. In this case we say that the tree T[] has single link nodes. More precisely, we
say that a ds-tree has single link nodes, if it has only one active link-node in each iteration of the
step 5 of the algorithm cp-Tree.

Suppose that the ds-trees T[mp], T[m], ..., Tlay] of a permutation 7T on Ny have single link
nodes. Based on the results of Lemmas 5.1 through 5.6, it is easy to see that there exist a sequence
To=[T[7], ..., T[:rj]] of length k having the following property:

T € active-link-nodes(T[mg]),

and
Tp € active-link-nodes(T[mp.1]). p = i+1, ..., j.

bt

Fig. 9: The structure of the link-nodes of a ds-tree T[7;] of a permutation 7, having
single link-nodes. Subtrees T[p] and T[g] have no link-nodes.

Consider now the following algorithmic scheme:

forp=1i i+, ...,jdo
Copy the tree T[p], and replace the subtree of T[] rooted at 7, with
the copy of T[mp];

Remove the subtree subtree(7Ty; y), where y is a node such that 7 inverts y;
end;

The above algorithmic scheme constructs the tree T [775]. We shall refer to this scheme as Scheme-

C: It is easy to see that the parallel implementation of Scheme-C corresponds to the step 5 of the
algorithm cp-Tree.

Lemma 5.7 Let T[] be a ds-tree of a permutation 7T and let x be its active link-node. Let y be the
active link-node of the ds-tree T[x]. Let x be at level & > 0 in the tree T[] and let y be at level h > 0
in the tree T[x]. Then, after the execution of the step 5 of the algorithm cp-Tree:

{i) node x is not an active link node of T[m;].

(i1) the active link node of T[;] is the node y at level 24,

-17 -

Thus, the algorithm cp-Tree produces the tree T*[mp] after performing O(logk) times the steps 2
through 5, where k is the number of trees in the sequence Ty;

Fig. 10: The structure of the link-nodes of a ds-tree T[7;] of a permutation .T having
multiple link nodes.

Let T[m;] be a ds-tree of a permutation 7. It is likely to have the case where there exist subtrees
subtree(;; p) and subtree(7;; g), where i < p < g, having the following property: there is no node in
subtree(;; g) which inverts a node in subtree(7;; p). Therefore, there are two active link nodes in
the tree T[m;] - say x; and xg - since xp (resp. xg) is a link node in T[7;] and there is no node in
T[m;] which inverts x;, (resp. xg). In this case we say that the tree T[7;] has mulriple link nodes. The
structure of a ds-tree having multiple link nodes is shown in Fig. 10.

It is easy to see that any operation (see step 5 of the algorithm) on the nodes of subtree(;; p)
does not affect the link-node relationship of the nodes in subtree(m;; g). Thus, the results of this
section can be summarized in the following Theorem.

Theorem 5.1 Given a permutation 7 on Ny, the algorithm ep-Tree constructs the coloring-
permutation tree T"[7] after O(logn) iterations of the steps 2 through 5.

6. Resource Requirements

To establish the time and processor complexity of the algorithms we developed so far we shall use
the well-known Concurrent-Read, Exclusive-Write PRAM model of parallel computation (CREW
PRAM) [7, 12]. In this model, the operations of union (), intersection () and subtraction (-) on n

-18.

elements are executed in O(logn) time with O(n / logn) processors. The prefix sums of n elements
can also be computed within the same time and processor complexities. Moreover, in this model, the
computation of the postorder, preorder and inorder numbers of each node of a tree, as well as the
level of each node of a tree can be done in O(logn) time with O(n / logn) processors using the well-
known Euler-tour technique (actually, all the above operations are computed in the EREW PRAM
model within the same time-processor complexity); see [7].

6.1 The D-inversion-matrix algorithm

We first compute the time and processor complexity of the algorithm for the computation of the
D-inversion matrix of a permutation ;T on N,. Obviously, substeps 1.1 through 1.3 are executed in
O(1) sequential time. Substep 1.4 computes the suffix minima of an array of length i, where 1 =i <
n. It is well-known that the suffix minima of n elements can be computed in O(logn) time using n/
logn processors on the EREW PRAM model (Note that the suffix minima problem is based on the
computation of the prefix-sums of n elements.) [7]. The four substeps are executed for every i,
1 £i<n, in parallel. Thus, the following theorem holds.

Theorem 6.1 Given a permutation 7 on Ny, the algorithm D-inversion-matrix computes the
D-inversion matrix of a permutation 7 in O(logn) time using n2/ logn processors on the CREW
PRAM model.

6.2 The ds-Trees algorithm

Let us now compute the overall complexity of the algorithm ds-Trees which constructs the n+1
decreasing-subsequence trees T[mg), T[], ..., T[7,] of a permutation 7.

The algorithm consists of 4 steps: Step 1. By Theorem 6.1, the computation of the D-inversion
matrix of a permutation 7T on n elements can be done in O(logn) time using n2/ logn processors.
Step 2. Obviously, it takes O(1) sequential time. Step 3. Having computed the D-inversion matrix,
this step requires O(1) time and n processors or O(logn) time and n/ logn processors. Step 4. The
time and processor requirement of the substeps 4.1 and 4.2 are the same as that required for steps 2
and 3, respectively. Both substeps are executed for every i, | £i < n, in parallel. Therefore, step 4
requires O(1) time and n? processors or O(logn) time and n2/ logn processors.

Take into consideration the time and processor complexity of each step of the algorithm, we can
present the following result.

Theorem 6.2 Given a permutation 77 on N, the algorithm ds-Trees constructs the decreasing-
subsequence tree of the permutation 7 in O(logn) time using n2/ logn processors on the CREW
PERAM model.

6.3 The cp-Tree algorithm

Next, we compute the time and processor complexity of the algorithm cp-Tree. We shall obtain
the overall complexity by computing the complexity of each step separately. Let us first compute
the time and processor complexity of some operations used in the algorithm.

-19-

We have mentioned that the level of each node of a tree can be computed in O(logn) time using
O(n [logn) processors on the EREW PRAM model [7]. Let us now compute the complexity of the
algorithmic scheme which computes the link nodes of a ds-tree (see Scheme-A). In this scheme, the
array Ly, stores the nodes of the level h of a ds-tree as they appear in the tree from left to right. It is
easy to see that the array /Ly, which contains the indices of the nodes of Ly, in the permutation JT can
be computed in O(logn) time using ny, / logn processors on the EREW PRAM model, where ny, is the
number of nodes of level h. The prefix minima of n elements can be computed in O(logn) time
using np / logn processors on the EREW PRAM model [7]. Therefore, the execution of Scheme-A
requires O(logn) time and n / logn processors on the EREW PRAM model. In a similar way we show
that the Scheme-B, which computes the active link nodes of a ds-tree, is executed in O(logn) time
using n / logn processors on the EREW PRAM model. Thus, the following lemma holds.

Lemma 6.1 The sets of link and active nodes and the level of each node of a ds-tree with n nodes
can be computed in O(logn) time using O(n / logn) processors on the EREW PRAM model.

It is easy to see that the Lemma 6.1 gives us the complexity of the step 2 of the algorithm cp-Tree
in the case where it is executed for a ds-tree T[1], 0=i=n.

We focus now on step 5, which is the crucial step for the processor complexity of the algorithm
cp-Tree. Obviously, a ds-tree T[u] with n nodes can be copied in O(logn) time using O(n / logn)
processors on the EREW PRAM model. The tree T[u] is moved in a ds-tree T[m;] by simply make
the parent of u in T[] to point in T[u]. This operation takes O(1) sequential time. If h is the level
of the node u in T[x;], then all the nodes at level h that are inverted by node u can be found in
O(logn) time using ny / logn processors on the EREW PRAM model, where ny is the number of
nodes of level A.

To compute the processor complexity of the algorithm cp-Tree, we first compute the processor
complexity of step 5. We prove the following lemma.

Lemma 6.2 Each iteration of step 5 of the algorithm cp-Tree requires O(n? / logn) processors on
the EREW PRAM model.

Proof. Let T[mg], T[], T[T,] be the ds-trees of a of a permutation . If all these trees have
single link nodes, then we are done since for every tree T[7;] at most one tree T[] is copied and
moved in T[7;], where i <jand 0 <i < n-1. We now consider the case where the ds-trees have
multiple link nodes. Let T[] be such a tree having k active link nodes during an iteration of step 5
and let T[7;] be an active ds-tree. It follows that k trees are copied and moved in T[7;]. Therefore,
step 5 requires kn / logn processors for a ds-tree. Let T[x;], T[x2], ..., T[xy] be the active ds-trees
during an iteration of step 5 and let ky, ks, ..., kp be the numbers of active link nodes in these ds-
trees. Then, (k; + k3 + ... + kp)n / logn processors must be available for the execution of step 5.
Obviously, if x, v are two active link nodes of an active ds-tree, then x # v. Let x be an active link
node of an active ds-trees T[x;], 1 =i =< p-1. Assume that x is also an active link node of another
active ds-tree T[x;], where i <j and 2 <i < p. Then, x; is a node of the ds-tree T[x;]. Since x is an
active link node in T[xi], x; is an ancestor of the node x of T[x;]. Thus, x; & link-nodes (see step 4). It
follows that the ds-tree T[x;] is a non-active tree, a contradiction. Then, we conclude that if x, y are
two active link nodes in the forest of the active ds-trees, then x # y. Thus, (k; + k2 + ... + ky)< n and
the lemma holds. O

-20 -

We are now ready to compute the time and processor complexity of the algorithm cp-Tree. The
algorithm consists of six steps. Step I. By Theorem 6.2, the construction of the ds-trees of a
permutation 7 on N, can be done in O(logn) time using nZ/ logn processors on the CREW PRAM
model. Step 2. This step incorporate operations whose time and processor complexity are given by
Lemma 6.1. Thus, the step is executed in O(logn) time with n2/ logn processors on the EREW
PRAM model. Step 3. The union of n+1 sets, each of length O(n), is performed in O(logn) time
with n?/ logn processors on the EREW PRAM model. Step 4. Obviously, this step is executed in
O(1) with n processors on the EREW PRAM model. Step 5. It consists of substeps 5.1 and 5.2,
which are executed for every active tree T[7;], 0 i € n. Substep 5.1. Lemma 6.2 coupled with the
discussion concerning the time complexity of the operations of copy and move a ds-tree implies
that substep 5.1 is executed in O(logn) time using n2/ logn processors on the CREW PRAM model.
Substep 5.2. The time and processor requirement of this substep is the same as that required for
substep 2.2. Step 6. Obviously, this step is executed in O(1) sequential time.

By Theorem 5.1, the algorithm cp-Tree performs O(logn) iteration. Thus, take into consideration
the time and processor of each step of the algorithm, we can present the following result.

Theorem 6.3 Given a permutation 77 on Ny, the coloring-permutation tree T [7] can be constructed
in O(log2n) time using O(n? / logn) processors on the CREW PRAM model.

6.4 The Coloring algorithm

The algorithm Coloring incorporate all the operation described in the previous algorithms. More
precisely, by Theorem 6.3 the step 1 takes O(log2n) time and O(n? / logn) processors on the CREW
PRAM model. The level of each node of tree with »n nodes is computed in O(logn) time with n /
logn processors on the EREW PRAM model. Finally, the step 3 of the algorithm requires O(1) time
and O(n) processors. Thus, we obtain the following theorem.

Theorem 6.4 The problem of coloring permutation graphs can be solved in O(log2n) time using
O(n? / logn) processors on the CREW PRAM model.

7. Conclusions

In this paper we studied the problem of coloring permutations graphs using the Lattice
representation of a permutation [13] and the relationship between permutations and binary search
trees. We proposed an efficient parallel algorithm which colors a permutation graph in O(logZn)
time using O(n? / logn) processors on the CREW PRAM model, where n is the number of vertices in
the permutation graph.

The idea of our algorithm is motivated by the work performed by C-W Yu and G-H Chen [19].
They presented an algorithm which takes as input a permutation graph and transforms it into a set
of planar points, constructs an acyclic directed graph, and finally solves the largest-weight path
problem on this acyclic digraph. Using this strategy, they solve the coloring problem on
permutation graph in O(logZn) time using O(n3/logn) processors on a CREW PRAM model of
computation or in O(logn) time using O(n3) processors on a CRCW PRAM [2, 7, 12]. The approach
used in this paper is different from the previous algorithm. We presented an algorithm which takes
as input a permutation 7, and constructs the color tree T"[T] using combinatorial properties on 1.

=2] -

Then, it solves the coloring problem for the permutation graph G[mn] by computing the level of each

node of the tree T"[7]. Our parallel algorithm improves in performance upon the best-known
parallel algorithms for the same problem.

In closing, we should point out that with slight modifications our coloring algorithm can also

solve the weighted clique problem, the weighted independent set problem, the clique cover problem,
and the maximal layers problem within the same complexity bounds [19].

References

(1]

[2]

(3]

(4]

(5]
6]

(71
(8]
(%]

(10]

(11]

[12]

[13]
[14]

[15]

[16]

(7]

(18]

[19]
[20]

M.I. Atallah, G.K. Manacher and J. Urrutia, Finding a minimum independent dominating set in a
permutation graph, Discrete Applied Mathematics, vol. 21, pp. 177-183, 1988,

P. Beame and J. Hastad, Optimal bounds for decision problems on the CRCW PRAM, J. Assoc. Compur,
Mach., vol. 36. pp. 643-670, 1989,

A. Brandstadt and D. Kratsch, On domination problems for permutation and other graphs, Theoretical
Computer Science, vol. 54, pp. 181-198, 1987,

M. Farber and J.M. Keil, Domination in permutation graphs, Journal of Algorithms, vol. 6, pp. 309-321,
1985,

M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., 1980.

D. Helmbaold and E'W, Mayr, Applications of parallel algorithms to families of perfect graphs, Computing,
vol. 7, pp. 93-107, 1990,

1. J&J4, An Introduction to Parallel Algorithms, Addison-Wesley, Inc,, 1992,
T.R. Jensen and B. Toft, Graph Coloring Problems, John Wiley & Sons, Inc., 1995,

D. Kozen, UV, Vazirani and V.V. Vazirani, NC algorithms for comparability graphs, interval graphs, and
testing for unique perfect matching, Lecture Notes in Computer Science, vol. 206, pp. 498-503, 1985.

LY .-T. Leung, Fast algorithms for generating all maximal independent sets of interval, circular-arc and
chordal graphs, Jowrnal of Algorithms, vol. 5, pp. 22-35, 1984,

A, Pnueli, A. Lempel and 5. Even, Transitive orientation of graphs and identification of permutation
graphs, Canadian J. Math., vol. 23, pp. 160-175, 1971,

J. Reif (editor), Synthesis of Parallel Algorithms, Morgan Kaufmann Publishers, Inc., San Mateo,
California, 1993.

R. Sedgewick and P. Flajolet, An Introduction to the Analysis of Algorithms, Addison-Wesley, Inc., 1996,

1. Spinrad, On comparability and permutation graphs, SIAM Journal on Computing, vol. 14, pp. 658-670,
1985,

1. Spinrad, A, Brandstadt and L. Stewart, Bipartite permutation graphs, Discrete Applied Mathematics, vol.
18, pp. 279-292, 1987,

E.J. Supowit, Decomposing a set of points into chains, with applications to permutation and circle graphs,
Inform. Process. Lett., vol. 21, pp. 249-252, 1985,

K.H. Tsai and W.L. Hsu, Fast algorithms for the dominating set problem on permutation graphs, Lecture
Notes in Computer Science: Algorithms, vol. 450, pp. 109-117, 1990,

5. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, A new algorithm for generating all the maximal
independent sets, SIAM Journal on Computing, vol. 6, pp. 505-517, 1977.

C-W. Yu and G-H. Chen, Parallel algorithms for permutation graphs, BIT, vol. 33, pp. 413-419, 1993,

C-W. Yu and G-H. Chen, Generate all maximal independent sets in permutation graphs, Intern. J.
Computer Math., vol. 47, pp. 1-8, 1993,

-7 .

