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Abstract

The effect of applied mechanical stresses on the magnetization rever-
sal, well known as inverse magnetostricton effect, is studied for thin fer-
romagnetic films. The model used, is a micromagnetic one proposed in
Ref. [1). Numerical nonuniform (NU) solutions for the Brown' s mag-
netoelastic equations are presented and compared with uniform Stoner-
Wolfarth (SW) ones. We study only the case were the applied stresses
are oriented parallel to the field’ s direction (Case 1 of Ref. [1]). The
dependence of cosrcivity and remanence on applied stress and thin film
thickness is discussed, The framework for stability analysis is developed,
but it is applied only to the saturation solutions of the NU modes, which
are proved to be unstable. Energy considerations confirm that the NU
modes are unfavorable ones throughout the magnetization reversal.
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1 INTRODUCTION

Magnetostrictive materials belong to the class of “smart material” since its hys-
teresis is controlled by mechanical stresses and its mechanical deformations by
magnetic fields [2]. Thus they are very attractive as actuator and sensor de-
vices, such as robotics, micromotors, etc. [3]. Also magnetomechanical effects
in thin film recording media can cause undesirable anisotropy during fabri-
cation processes, which result in “noisy” characteristics of the final recording
head products during operation [4]. Therefore tightly control of magnetostric-
tion effects, either intrinsic (internal stresses) or external (applied mechanical
stresses), is needed. The effect of stress on magnetic properties of ferromagnetic
materials (well known as inverse magnetostriction effect) is one of the favorable
research topies [2,5,6]. A rigorous phenomenological theory of magnetoelastic
interactions has been proposed [7], but due to its complexity only elementary so-
lutions have been obtained [8]. Recently, an energetic approach was introduced
to explain the large magnetostriction observed in a class of ferromagnetic ma-
terials [9]. This theory is applied to large enough materials, where the division
of the crystal into domains is preferable, and thus is not capable of describing
accurately the underlying microstructure. Domain rotational models, that in-
cluded stress effects on ferromagnetic hysteresis have been developed [10], but
they ignored NU modes of magnetization reversal. Such NU modes have been
investipated in some special cases of pure magnetostrictive domain wall osecil-
lations [11], or torsional effects in amorphous ribbons [12]. A one-dimensional

micromagnetic model for studying the inverse magnetostriction effect in thin



ferromagnetic films, that embodies the non-uniformity in the magnetization
distribution in its basic postulates and thus is self-consistent, was proposed in
a previous work [1]. Only the uniform SW solution were presented, as well as
the nucleation modes for NU magnetization reversal,

The aim of this paper is to discuss possible NU solutions to the previously
proposed micromagnetic model that accounts for the inverse magnetostriction
effect in thin ferromagnetic films, and examine their relation with the applied
stresses. Brown’ s micromagnetic equilibrium equations are solved numerically
by the Galerkin Finite Element Method (GFEM). We investigate here only the
case were the in-plane applied magnetic field is perpendicular to the applied
stress direction. We looked for typical Bloch wall solution to the problem under
discussion [13]. The general framework for studying stability of solutions, was
developed, but it was applied only to the special case of the saturation states.
The coercivity-stress (he(c)) and remanece-stress (m,{z)) laws were obtained
and compared with analytical [1] and experimental results [6]. Size effects were

also discussed.
2 Brown’ s Micromagnetic Equations
We rescale the micromagnetic equations (20) of Ref. [1], according to

S:Sﬁ%. (1)

Since we limit our discussion to materials with negative magnetocrystalline

anisotropy and negative magnetostriction, like Ni, iy = —|he|, and hpme = 0,



thus Eqgs. (20) of Ref. [1] reduce to:
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and Hy is the anisotropy field (Hx = 2K/ u.M,). Due to the definition (1):

i

with @ being the half thin films thickness and J the domain wall width:

The rescaled nucleation field (Eq. (60) of Ref. [1]) is:
e =1—2Re e (6)

For convenience in the following we will ignore the bars in the definitions (3-
4.6). For each solution to the boundary value problem (BVP) (2) the reduced

magnetization m = M /M, is computed using the relation

1
= — #dz. i
m= o _sms (7)

Before proceeding to the numerical solution of the BVF (2) we have to mention,

that like in all one dimensional micromagnetic problems, a first integral of (2.1)



can be obtained [14], and thus the whole solution procedure results in the eval-
uation of an elliptic integral, with an unknown constant of integration. Since

this integral cannot be computed analytically, a numerical solution is applied.

3 Numerical Solution

Nowadays, there is a variety of numerical schemes (NS) for treating micromag-
netic problems. All can be classified in three major categories: (1) Energy
minimization algorithms [15] (2) Landau-Lifshitz equation solvers [16] and (3)
hybrid methods [17]. A complete and critical review on the subject is given in
Chapt. 11 of Ref. [18]. In N5(1) the discretization of the domain of solution
is followed by numerical minimization of the energy functional. For this reason
the finite element method is used, since it allows to handle irregular geometries.
In the N5(2), after using calculus of variation to obtain the Euler-Lagrange
equations (well known for the present problem as Landau-Lifshitz equations),
numerical integration is performed. Finally, in N5(3), a combination of analyti-
cal and numerical techniques is followed, guided by the geometry of the problem
and the proper treatment of the magnetostatic self energy, which is the most
time consuming part of all three approaches.

In the present work we followed the second approach but instead of using
already proposed algorithms [16], for numerical integration of Brown' s micro-
magnetic equations (2), we preferred to solve them with the GFEM. In this

method the solution is expanded in quadratic elements

3
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where @; is the gquadratic basis function and #; is the unknown at the i** node
of the element, The GFEM calls for the weighted residuals R; to vanish at each
nodal position i :

s f L(8)det(J)de, (9)
¥

where L is the nonlinear operator that acts on € (see Eq. (1)) and J is the Ja-
cobian of the isoparametric mapping, with D = [—S, §] the domain of solution.

For the present problem

1 o9 sin 46 : : 2
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with Az = 25/N,, where N, is the total number of elements used. All the
numerical results obtained correspond to material constants of Ni [1]. In general
each solution m obtained, represents a point in the three dimensional space
designated by (k. o, 5). In the computations we varied all three parameters,
but the results presented here are for varying h, # and § = 1.5 For the material
constants of Ni this corresponds to a film thickness 24.75nm.

In all our numerical computations, the degeneration of the solution to the
SW limit represents more than a problemn. This is because the nucleation mode
for the presented problem is a coherent one [1]. Like in all nonlinear BVPs, and
the present one (Egs. (2)) possesses multiple solutions. Since the search for
solutions in a nonlinear BVP depends strongly on the initial guess, we searched
for tvpical Bloch domain walls excitations [13]. All the obtained solutions are
summarized in the three modes shown in Fig. 1, for the same set of parameters:

a compressive stress ¢ = —5 x 10 and a reduced thickness 25 = 3. Close



to jumping fields in the hysteresis curve the numerical approach fails, since
it is designed to find static equilibrium solutions, while the jumping field is a
non-equilibrium (saddle) point [19]. Nevertheless, for very small systems with
anly few discretization points, the jumping fields can be computed with high
accuracy [19,20], by refining the continuation step in the initial and the final
solution branch. Magnetization profiles at various stages of the reversal are also
included in Fig. 1. The departure from saturation for mode A is at h, = 0.65 <
b, = 1.175, and corresponds to typical perturbation of the 8W mode B. At
h = —0.75 the magnetization profile of mode A has the classical Bloch wall
structure, while at A = —1.5 a complete Bloch wall has been formed. For the
mode C, that is a physically non acceptable, since it corresponds to negative
susceptibilities and passes from the origin (m({k = 0) = 0), continuation for
he = —0.204 < h < —0.16 resulted into degeneration to the SW mode B. The
nature of the singularity of this point, for mode C, cannot be determined and it
is under investigation. We proved that it is a higher order singularity, since it
cannot be treated as a turning point. All the magnetization profiles in mode C
are perturbations of the Bloch wall solutions. Notice that mode A corresponds
to higher coercivity and remanence with respect to the SW mode B, Typical
solutions of the BVP are presented in Fig. 2 for varyving h. Fig. 2a corresponds
to mode A, while Fig. 2b to mode C. The source of the non uniformity of the
solutions of mode A is the fact that #(z = 0) = 0¥ k. In mode C the solution
for h = —0.16 is quit close to the SW limit.

In Appendix A we prove that the saturation states of mode A are unstable



ones. It can also be verified, by the following argument that they are and

energetically unfavorable ones. The reduced free energy per unit length (g =

G/2|K1|a) is:
— hmeecos® @ + hoe* — heosf — oe| dz,

g
o(h,e) = f_ )
(11)

For the saturation states # = 0, . along the positive or negative field directions

1 E 2_ sin’ 28
282\ dr )

fiy, this reduces to:
glhs,e) = 25(F(e) T hs)y  fle) = hee® — hmee — ce. (12)

Thus, for example, for the initial saturation state with h, < hy = glhs.€) =
glhn,€). It is also obvious from Fig. 3 that the NU modes are energetically
unfavorable ones throughout the magnetization reversal, were we plot the total
energy for the three modes of solution as a function of the applied field h. We
also included in the plot the exchange energy (dashed curves) for comparison.
Notice the metastable states —h, < k < 0, in mode B that lead to the irreversible
rotation to the magnetization at h = h,. We have thus derived that the mode
A deviates unstably from saturation and is an energetically unfavorable one
throughout the magnetization reversal. These arguments alone, do not prove
that this is an unstable mode of magnetization reversal. The stability must be
examined solving the eigenvalue problem (A.3-A.4), of Appendix A, for every
value of h, which is a subject of a future communication.

According to a theorem proved by Brown and Shtrikman [14]: all one di-

mensional non uniform equilibrium solufions to the micromagnetic problem are



unstable for a homogeneous, rigid, ferromagnetic erystal in a uniform erxter-
nal field. For magnetically inhomogeneous materials, this is not always valid
[14,21,22]. Magnetostrictive deformations (intrinsic, applied field or mechani-
cal stress, in origin) might change the elastic buf not the magnetic homogeneity
of the material. Without being able to prove it, it is believed that the above
mentioned theorem will held and for a ferromagnet that deforms uniformly, and
has no volumetric changes (zero dilatation e; = 0), like the problem studied
here. This is because the only thing that changes due to magnetostriction in
such a deformation mode, is the orientation of the magnetocrystalline easy axis,
with respect to the crystallographic axes, and not its distribution within the
material,

Typical magnetization curves for the mode A, for varying tensile and com-
pressive stresses are plotted in Fig. 4, Though the remanence of mode A seems
to decrease with applied stress, as it is the case for SW reversal [1], with a
bit higher values, the coercivity has a minimum for tensile stresses and then
increases, like the SW mode B. The stress dependence of coercivity and re-
manence is given in Fig. 5a and Fig. 5b, respectively. For the particular case
of Ni, the coercivities in Fig. 5a are as high as H, = 341kA/m for stresses
T, = 250 M Pa. At least in the stress range we performed our simulations,
there are no critical stresses for eliminating hysteresis in the NU mode A, The
minimum in the h.(o) curves is analogous to related experiments on amorphous
ribbons and wires (23] and thus further examination is needed to verify if it can

be applied to these problems. Thus the NU solutions of mode A are proved



to be worst candidates for explaining the observed behavior in related experi-
ments [6], than the SW coherent solutions of mode B [1]. Simulations have also
been performed for varying size parameter S and all resulted in a decrease of

the coercivity and remanence of mode A, as it is the case for experiments [6].

4 Conclusions

The already proposed models for estimating the effect of applied stresses on the
magnetization reversal in ferromagnetic materials are domain wall rotation in
character [10], or they invoke the domain structure as a prerequisite [9]. Thus
they are not capable to describe accurately the underlying microstructure. The
one-dimensional micromagnetic model presented in this investigation, that ac-
counts for stress effects on the magnetization reversal in thin ferromagnetic films
and embodies the non-uniformity in the magnetization distribution in its ba-
sic postulates, was solved numerically by the GFEM. The material constants
are taken for Ni, but the analvsis is quit general and applies to materials with
negative magnetostriction and magnetocrystalline anisotropy constants. Three
branches in the magnetization curve were obtained: two NU modes that corre-
spond to positive (mode A) and negative (mode C) susceptibilities, respectively,
and the Stoner-Wolfarth (SW) mode (mode B) studied previously [1]. Mode A
deviates from the saturation state in an unstable way and is energetically unfa-
vorable throughout the magnetization reversal, compared to the SW coherent
rotation. Mode C is physically non permissible one, since it corresponds to neg-

ative susceptibilities, and degenerates for large negative fields to the SW mode

10



B. The coercivity and remanence of mode A are higher than those of the SW
mode B and thus fail to explain the related experiments [6]. Thus, the NU
magnetization distribution along the thin films thickness, is not capable to ex-
plain experimental results. Modification of the model after taking into account
shearing and NU strains might be a step towards quantitative agreement with
experiment. The minima in the h.(¢) curves are qualitative the same with re-
lated experiments on amorphous wires [23], and further investigation is needed
to examine if the present model applies to such materials. The general stability
is not studied, though the possibility of existence of stable NU solution branches
is discussed, based on a thearem for one dimensional NU magnetization reversal

for rigid ferromagnet [14].
A Stability Analysis

The numerical approach is capable to obtain only equilibrium solutions, To
test the static stability of these solutions, we introduce the dynamic criterion
proposed by Brown [24]. According to this, let 5 be an equilibrium ie. a
solution of (2) and let # = 6y + €. If (2) is regarded as an equilibrium of forces,
the equation of motion in the vicinity of # is obtained by adding a dissipative

term:

He

at’
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with ¢t we denote time and « is a positive constant. To test the stability only

first order terms need to be considered with
£ = eglz) exp(—t/7). A2
Thus Eq. (A.1) reduces to (( ) = d/dz):
ef -+ ((cos 46 — 2he cos 26 — h cosfo) S + 2) w=0. A3
If and only if all eigenvalues a/r of (A.3) with
eq(£5) =0, Ad

are positive (7 > 0), the equilibrium #p is stable. We check here just the stability
of the saturation solutions #; = 0 and #, = m, for large positive and negative

applied fields f,, respectively. In this case (A.1) reduces to:

EE: + kifu = ﬂ, |Iﬂ._.|: = \/[hﬂ = hg}Sz + % Ab

The general solution of (A.5) is eg(x) = C) explksz) + Coexp(—kiz) and sat-

isfaction of the BCs (A.4) result in &y =0 or:
g = iy & ha)S2, A6

Stable and unstable saturation states are summarized in in Table 1. Since for

Saturation State  Stable  Unstable
EEI:D hs:}hn hg {hﬂ
By =7 he < hn  hy > ha

Table 1: Stability of saturation states.

mode A the saturation state correspond to smaller saturation fields compared
to the mucleation field. due to Table 1 all the numerical solutions, of this mode

at h = h,, obtained, are unstable,
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Figure 1: Magnetization curves for S = 1.5 and ¢ = =5 x 10%

Figure 2: (a) 6 vs x for varying h € [-0.7, 0.65] with step 0.05 and h €
[-7.75, —0.75] with step 1.0. (b) @ vs x for varying i € [—0.16, 0] with step
0.05.

Figure 3: Total reduced energy g vs applied field h, for § = 1.5, 0 = —5 x 10%,

16



Figure 4: Magnetization curves for 5§ = 1.5 and varying ¢. The numbering from
1 to 7 corresponds to o = —1.25 x 10°%, —5 x 104, —2.5 x 104, —5 x 103, 2 x 10%,
5 % 10%, and 9 x 10%, respectivelly .

Figure 5: (a) h. and (b) m, vs. o for § = 1.5 (the SW solution [1] are plotted
for comparison).
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