EXPLOITING VERSIONS FOR HANDLING UPDATES
IN BROADCAST DISKS

E. PITOURA, P.K. CHRYSANTHIS

2-99

Preprint no. 2-99/1999

Department of Computer Science
University of loannina
451 10 loannina, Greece

Exploiting Versions for Handling Updates in Broadcast Disks*

Evaggelia Pitoura Panos K. Chrysanthis
Department of Computer Science Department of Computer Science
University of Ioannina University of Pittsburgh

GR 45110 Ioannina, Greece Pittsburgh, PA 15260
email: pitoura@cs.uoi.gr email: panos@cs.pitt.edu
Abstract

Recently, broadcasting has attracted considerable attention as a means of disseminat-
ing information to large client populations in both wired and wireless settings. In this
paper, we exploit versions to increase the concurrency of client transactions in the pres-
ence of updates. We consider three alternative mediums for storing versions: (a) the air:
older versions are broadcast along with current data, (b) the client’s local cache: older
versions are maintained in cache, and (¢) a local database or warehouse at the client:
part of the server’s database is maintained at the client in the form of a multiversion
materialized view. The proposed techniques are scalable in that they provide consistency
without any direct communication from clients to the server. Performance results show
that the overhead of maintaining versions can be kept low, while providing a considerable
increase in concurrency.

1 Introduction

While traditionally data are delivered from servers to clients on demand, a wide range of
emerging database applications benefit from a broadcast mode for data dissemination. In
such applications, the server repetitively broadcasts data to a client population without a
specific request. Clients monitor the broadeast channel and retrieve the data items they need
as they arrive on the broadcast channel. Such applications typically involve a small number
of servers and a much larger number of clients with similar interests. Examples include stock
trading, electronic commerce applications, such as auctions and electronic tendering, and
traffic control information systems.

The concept of broadcast delivery is not new. Early work has been conducted in the area
of Teletext and Videotext systems [3, 23]. Previous work also includes the Datacycle project
[10] at Bellcore and the Boston Community Information System (BCIS) [13]. In Datacycle,

*University of Ioannina, Computer Science Department, Technical Report No: 99-02

a database circulates on a high bandwidth network (140 Mbps). Users query the database
by filtering relevant information via a special massively parallel transceiver. BCIS broad-
casts news and information over an FM channel to clients with personal computers equipped
with radio receivers. Recently, data dissemination by broadcast has attracted considerable
attention ([12], [19]), due to the physical support for broadcast provided by an increasingly
important class of networked environments such as by most wireless computing infrastruc-
tures, including cellular architectures and satellite networks. The explosion of data intensive
applications and the resulting need for scalable means for providing information to large
client populations are also motivated by the dramatic improvements in global connectivity
and the popularity of the Internet [9, 24].

As such systems continue to evolve, more and more sophisticated client applications will
require reading current and consistent data despite of updates at the server. In most current
research, updates have been mainly treated in the context of caching (for example, [6], [2],
[11], and [16]). In this case, updates are considered in terms of local cache consistency;
there are no transactional semantics. Transactions and broadcast were first discussed in
the Datacycle project [10] where special hardware is used to detect changes of values read
and thus ensure consistency. The Datacycle architecture was extended in [4] for the case
of a distributed database where each database site broadcasts the contents of the database
fragment residing at that site. More recent work involves the development of new correctness
criteria for transactions in broadcast environments [22] as well as the deployment of the
broadcast medium for transmitting concurrency control related information to the clients so
that part of transaction management can be undertaken by the clients [5].

In our previous work [18], we proposed and comparatively studied a suite of techniques
for ensuring the consistency of client read-only transactions in broadcast environments. In
this paper, we propose maintaining multiple versions of items to increase the concurrency
of client transactions. Versions are combined with invalidation reports to inform clients of
updates and thus ensure the currency of their reads. We assume that updates are performed
at the server and disseminated from there. The currency and consistency of the values read
by clients is preserved without requiring clients contacting the servers.

We consider three alternative means for storing older versions. Omne potential storage
medium is the air, in which case, older versions are broadcast along with current values. We
introduce protocols for interleaving current and previous versions as well as for determining
the frequency of broadcasting old versions. A second proposal is maintaining older versions
in the client’s cache. In this case, garbage collection of old versions is possible since there
is local information about active client transactions and their access requirements. Lastly,
we exploit the scenario of maintaining part of the server’s database at the client in the form
of a multiversion materialized view. The novel aspect is that the base relations are on air.
Hybrid approaches where older versions are on air, in cache, and in client’s main memory or
disk are also possible.

Performance results show that the overhead of maintaining older versions can be kept
low, while providing a considerable increase in concurrency. For instance, when about 10%

of the broadcast items are updated per broadcast, maintaining 5 versions per item increases
the number of consistent read-only transactions that successfully complete their operation
from 10% (when no versions are maintained) to 80% — 90%. The increase of the broadcast
size is around 10% to 15% of the original size depending on the broadcast organization used.
For less update-intensive environments, the overhead is considerable smaller.

The remainder of this paper is organized as follows. Section 2 introduces the problem,
defines currency and presents two basic approaches for maintaining correctness. Section 3
describes the multiversioning scheme and related issues. Section 4, 5 and 6 discuss keeping
old versions on air, in cache and in a warehouse respectively. Section 7 discusses disconnec-
tions and updates, while Section 8 presents our performance model and experimental results.
Finally, Section 9 concludes the paper.

2 Broadcast and Updates

The server periodically broadcasts data items to a large client population. Each period of the
broadcast is called a broadcast cycle or beycle, while the content of the broadcast is called a
beast. Each client listens to the broadcast and fetches data as they arrive (Figure 1). This
way data can be accessed concurrently by any number of clients without any performance
degradation. However, access to data is strictly sequential, since clients need to wait for the
data of interest to appear on the channel. We assume that all updates are performed at the
server and disseminated from there.

2.1 The Broadcast Model

Clients do not need to listen to the broadcast continuously. Instead, they tune-in to read
specific items. Such selective tuning is important especially in the case of portable mobile
computers, since they most often rely for their operation on the finite energy provided by
batteries and listening to the broadcast consumes energy. However, for selective tuning,
clients must have some prior knowledge of the structure of the broadcast that they can
utilize to determine when the item of interest appears on the channel. Alternatively, the
broadcast can be self-descriptive, in that, some form of directory information is broadcast
along with data. In this case, the client first gets this information from the broadcast and
use it in subsequent reads. Techniques for broadcasting index information along with data
are given for example in [15, 11].

The smallest logical unit of a broadcast is called bucket. Buckets are the analog to blocks
for disks. Each bucket has a header that includes useful information. The exact content of
the bucket header depends on the specific broadcast organization. Information in the header
usually includes the position of the bucket in the beast as an offset from the beginning of the
beast as well as the offset to the beginning of the next beast. The offset to the beginning of
the next beast can be used by the client to determine the beginning of the next beast when
the size of the broadcast is not fixed. Data items correspond to database records (tuples).

=\ 7

Froadrest Daw
Server |

Clients

Figure 1: Broadcast Architecture

| : W

Al x2 x3

hcust

Figure 2: Currency of Updates

We assume that users access data by specifying the value of one attribute of the record, the
search key. Each bucket contains several items.

2.2 Updates and Consistency

During each beycle, the server broadcasts items from a database. A database consists of a
finite set of data items. A database state is typically defined as a mapping of every data to a
value of its domain. Thus, a databases state, denoted DS, can be defined as a set of ordered
pairs of data items in D and their values. In a database, data are related by a number of
integrity constraints that express relationships of values of data that a database state must
satisfy. A database state is consistent if it does not violate the integrity constraints [8].

While data items are being broadcast, transactions at the server may update their values.
There are a number of reasonable choices, regarding the currency of data on the broadcast.
For example, the values on the broadcast may correspond to current values at the server, that
is to the values produced by all transactions so far committed at the server. Alternatively,
updates at the server may not be reflected in the bcast immediately but at pre-specified
intervals, such as at each bcast or at fractions of the beast. We call such intervals currency
intervals. In particular, we assume that, when an item is to appear on the broadcast, the
value that will be broadcast is that produced by all transactions committed at the server by
the beginning of the current currency interval (which may not be its current value at the
server). For uniformity of presentation, when updates are immediately reflected in the beast,
we say that the currency interval is that of an item.

Figure 2 depicts possible currency intervals. The value of a depends on which definition
of the currency interval is adopted. For instance, the value of a is the value produced by all
transaction committed by zg, T2, 3, or just prior to the broadcast of a, if we assume that

the currency interval is the whole beast, three buckets, a bucket, or an item correspondingly.

A client transaction may read data items from different currency intervals. We define
the span of a client tramsaction T, span(T), to be the maximum number of different cur-
rency intervals from which T reads data. We define the readset of a transaction T, denoted
Read_Set(T), to be the set of items it reads. In particular, Read_Set{T') is a set of ordered
pairs of data items and their values that T read. Our correctness criterion for read-only
transactions is that each transaction reads consistent data. Specifically, the readset of each
read-only transaction must form a subset of a consistent database state [21].

We make no assumptions about transaction management at the server. Our only assump-
tion is that the values broadcast for each item are those produced by committed transactions.
Since the set of values broadcast during a single currency interval correspond to the same
database state, this set is a subset of a consistent database state. Thus, if for some transac-
tion T, span(T) = 1, T is correct. However, since, in general, client transactions read data
values from different currency intervals, there is no guarantee that the values they read are
consistent.

When information about the readset of a transaction is available, query optimization
can be employed. One approach is to re-order reads based on the order by which items are
broadcast. Another query optimization technique would be to introduce additional reads.
Additional reads may be used to execute reads in all control branches of a query; such an
approach is cheap in a broadcast environment, since the data are on air anyway. Such query
optimization techniques can effectively reduce the span of a transaction but can not guarantee
that all values in the readset would belong to the same currency interval, especially when
currency intervals are short.

2.3 Invalidation Techniques

A way to ensure the correctness of read-only transactions is to invalidate, e.g., abort, trans-
actions that read data values that correspond to different database states. To ensure this,
a timestamp or version number is broadcast along with each item. This version number
corresponds to the currency interval at which the item was updated. Let vy be the currency
interval at which a transaction performs its first read. For each subsequent read, we test
that the items read have versions v < vp. If an item has a larger version, the transaction is
aborted. We call this method the versioning method. Sinece, the values read by each transac-
tion correspond to the database broadcasted at v, the versioning method produces correct
read-only transactions.

Another way is to broadcast an invalidation report at pre-specified points during the
beast. The invalidation report includes a list with the data items that have been updated
since the previous invalidation report was broadcast. Let us assume that an invalidation
report is broadcast at the beginning of each currency interval. In addition, at each client,
a set RS(R) is maintained for each active transaction R, that includes all data items that
R has read so far. The client tunes in at the pre-specified points to read the invalidation
reports. A transaction R is aborted if an item x € RS(R) appears in the invalidation report,

“ersioning Method

SR Multiversioning with
Multiversioning Method invalidation 4 Invalidaton Method

'] Fa
"
* : ¥,
\ \
begin first invalidation COMITGL
o e R's lifetime == =====~= el

Figure 3: Currency of Reads

Le., if = is updated. We call this method the invalidation method.
Theorem 1 The invalidation method produces correct read-only transactions.

Proof. Let ¢, be the currency interval during which a committed transaction R performed
its last read operation and DS% be the database state that corresponds to the currency
interval ¢, 1.e., the database state at the beginning of ¢,. We claim that the values read by R
correspond to the database state DS%. For the purposes of contradiction, assume that the
value of a data item = read by R is different then the value of z at DS%, then an invalidation
report should have been transmitted for = and thus R should have been aborted.]

With the versioning method, transaction R reads values that correspond to the database
state at the beginning of the currency interval at which R performs its first read operation.
With the invalidation method, R reads the most current values as of the beginning of the
currency interval at which it commits (Figure 3).

There is no need to transmit invalidation reports at the beginning of each currency inter-
val. Instead, invalidation reports may be broadcast more or less frequently. In this case, there
is an additional requirement, that before committing, each transaction R must read the next
invalidation report that will appear in the broadcast. The proof is similar to the proof above.
Reading an additional invalidation report is necessary because in this case, items broadcast
between invalidation reports do not necessarily correspond to a single database state. With
this variation of the invalidation method, a read-only transaction R reads the most current
values as of the time of its commitment.

3 Multiversion Schemes

Invalidation methods are prone to starvation of queries by update transactions. To increase
the number of read-only transactions that are successfully processed, we propose maintaining
multiple versions of data items. Multiversion schemes, where older copies of items are kept for
concurrency control purposes, have been successfully used to speed-up processing of on-line
read-only transactions in traditional pull-based systems (e.g., [17]).

3.1 The Basic Multiversion Schemes

The basic idea underlying multiversioning is to temporarily retain older versions of data
items, so that the number of aborted read-only transactions is reduced. Versions correspond
to values at the beginning of each currency interval and version numbers to the currency
interval during which the version was created. Thus, there is a trade-off between the size
of the currency interval and the number of versions. The smaller the currency interval, the
larger the number of versions that are created.

Let Smaz be the maximum transaction span among all read-only transactions. Let vy be
the currency interval at which R performs its first read operation. During vy, R reads the
most current version, that is the versions with the largest version number. In subsequent
intervals, for each data itemn, R reads the version with the largest version number v, smaller
than ve. If such a version exists, R proceeds, else R is aborted. In the extreme case, in which,
all Spae most current values for each data item are available, all read-only transaction proceed
safely. We call this scheme multiversioning.

Theorem 2 The multiversioning method produces correct read-only transactions.

Froof. Let R be a read-only transaction, vy the currency interval at which R performs its
first read operation and DS™ be the database state broadcast at this interval. We will show
that the values read by R correspond to the database state DS" which is consistent and
thus R is correct. For any data item x € RS(R), R reads the version with the largest version
number v, of x, such that v, < vg. This value is the most recent value of = produced by the
beginning of the currency interval vy, that is the value that the item had at DS, O.

In terms of currency, R reads the database state that corresponds to the currency point
at ¢y as in the versioning scheme. If invalidation reports are available, we get the following
variation of the multiversion method that we call multiversioning with invalidation method.
Initially, R reads the most current version of each item. Let v; be the currency interval at
which R is invalidated for the first time, i.e., a value that R has read is updated. After v;,
R reads the version with the largest version number v, such that v, < v;. If such a version
exists, i proceeds, else R is aborted.

Theorem 3 The multiversioning with invalidation method produces correct read-only trans-
actions.

Proof. Let R be a read-only transaction, v; be the first beyele during which an item read by
R is updated for the first time and DS" the database state broadcast at interval v;. We will
show that the values read by R correspond to the database state DS¥-1 which is consistent
and thus R is correct. The items read before v; were not updated prior to v; thus their values
correspond to the database state D5"-. In subsequent beyles, R reads the version with the
largest version number v, such that v, < v;. This value is the most recent value produced

before cycle v;, that is the value that the item had at DS%-t. 0.

With the multiversioning with invalidation method, R reads the values as of the beginning
of the currency interval of its first invalidation. In both multiversioning methods, the values
read till the first invalidation are the same, but after the first invalidation, for the multiver-
sioning method, we read the values that correspond to vy, while for the multiversioning with
invalidation method, we read the values that correspond to v; (Figure 3). The cost we pay
for the better currency is that of broadcasting invalidation reports.

3.2 Updates and Caching

To reduce latency in answering queries, clients can cache items of interest locally. Caching
reduces the latency of transactions, since transactions find data of interest in their local cache
and thus need to access the broadcast channel for a smaller number of times. We assume
that each page, i.e., the unit of caching, corresponds to a bucket, i.e., the unit of broadcast.
Next, we outline how multiversioning can be used in conjunction with caching.

In the presence of updates, items in cache may become stale. There are various ap-
proaches to communicating updates to the clients. Invalidation combined with a form of
autoprefetching was shown to perform well in broadcast delivery [2]. The server broadcasts
an invalidation report, which is a list of the pages that have been updated. This report is
used to invalidate those pages in cache that appear in the invalidation report. These pages
remain in cache to be autoprefetched later. In particular, at the next appearance of the
invalidated page in the broadcast, the client fetches its new value and replaces the old one.
We assume this kind of cache updates in this paper. Other techniques, such as selectively
propagating frequently accessed pages [2] that may outperform autoprefetching, should be
easily combined with our techniques as well.

To support multiversioning, items in cache have also version numbers. For reading items
from the cache, we have to perform the same tests regarding their version numbers as when
reading items from the broadcast. To ensure that items in cache are current, the propagation
of cache invalidation reports must be at least as frequent as the propagation of invalidation
reports for data items. This way, a cached page is either current (i.e., corresponds to the
value at the current currency interval) or is marked for auto-prefetch.

3.3 Other Issues

The multiversioning methods can be easily enhanced to handle deletion and insertion of items.
When an item is deleted, we create a new version with version number the currency interval
say v of its deletion and a special field indicating that the item is deleted. A transaction R
beginning at v; with v; > v (or invalidated at v; if multiversioning with invalidation is used)
will read the version with version number v and find out that the item has been deleted.
Previous transactions with v; < v will read versions with smaller version numbers as desired.
Similarly, when an item is inserted, we add a version with version number the interval of its
insertion.

Another issue is that of the granularity of versions. Instead of broadcasting versions
of items, it is possible to broadcast versions of buckets. Similarly, it is possible to set the
invalidation report at the bucket level as well. In this case, to implement the invalidation
method, instead of maintaining for each transaction the set of items it has read, we maintain
the corresponding set of buckets.

Central to multiversioning is the number of versions maintained per data item. We may
always keep the k most current values for each item resulting in a fixed increase of size.
Alternatively, we may keep only the different versions of each item during the last &k currency
intervals and discard older values. In addition, to allocate less space for version numbers,
instead of maintaining the number of the currency interval at which the data item was created,
we can broadcast the difference between the current interval and the interval during which
the value was updated, i.e., how old the value is. For example, if the current currency interval
is interval 30, and the version was created during the currency interval 27, the version number
is set to 3 instead of 27. In this case, log(Smaz) bits are sufficient for version numbers.

Finally, we consider two possibilities for the storage of previous versions. In the clustering
approach, all versions of the same item are maintained in consequent storage locations. In
the overflow approach, older versions are stored separately of the current versions in overflow
buckets that are appropriately linked to the current versions,

4 Multiversion Broadcast

With multiversion broadcast, the server, instead of broadcasting the last committed value for
each data item, maintains and broadcasts multiple versions for each data item. The number
k of older versions that are retained can be seen as a property of the server. In this sense, a k-
multiversion server, l.e., a server that broadcasts the previous k values, is one that guarantees
the consistency of all transactions with span k or smaller. Transactions with larger spans can
proceed on their own risk; there is a possibility that they will be aborted. The amount & of
broadcast reserved for old versions, can be adapted depending on various parameters, such
as the allowable bandwidth, feedback from clients, or update rate at the server.

Next, we address two interrelated problems. The first is how to organize the broadcast,
that is where to place the old versions. The other is determining the optimal frequency of
transmitting versions. In other words, if we consider a broadcast disk organization [1], where
specific items are broadcast more frequently than others (i.e., are placed on “faster disks"),
at what frequency should old versions be broadcast?

To describe the broadcast disk organization, we will use an example, for a complete
definition of the organization refer to [1]. In a broadcast disk organization, the items of the
broadcast are divided in ranges of similar access probabilities. Each of these ranges is placed
on a separate disk. In the example of Figure 4, pages of the first disk Disk; are broadcast
three times as often as those in the second disk Disks. To achieve these relative frequencies,
the disks are split into smaller equal sized units called chunks; the number of chunks per disk
is inversely proportional to the relative frequencies of the disks. In the example, the number

HOT COLD
Dasbase: [1]2 |3 | 415 |6 |7 |8 [9 [10] Disks: [1[2[3]4] [5]6[7]3]0 10

Dizk | Disk 2
Counks: [1]2 [3 [4] [7]z] [9 T10]
Chunk 1 Chunk 2a Chuak Zb Chunk 2c
— minor cycle =
Beas: [1]2 3] 4|5 6|t [2]3]a[7]s[1]2]3]a]s [10]
1 2a 1 b 1 2c

Figure 4: Multiversion broadcast

of chunks is 1 (chunk 1) and 3 (chunks 2a, 2b and 2¢) for Disk; and Disks respectively. Each
beast is generated by broadeasting one chunk from each disk and cycling through all the
chunks sequentially over all disks. A minor cycle is a sub-beycle that consists of one chunk
from each disk. In the example of Figure 4, there are three minor cycles.

4.1 Clustering

Following the clustering approach, one way to structure the broadcast is to broadcast all
versions of each item successively. Thus, older versions of hot items are placed along with the
current values of hot items on fast disks, while versions of cold data are placed on slow disks
(Figure 5). Consequently, clustering works well, when each transaction access any versions
of an item with equal probabilities.

The size of each disk, and thus the size of its chunks, is increased to accommodate old
versions. The number of chunks per disk, however, remains fixed. The overall increase in
the size of the beast depends on how related are the hot data items with the items that are
frequently updated. The increase is the largest when the hot items are the most frequently
updated ones since their versions are broadcast more frequently during each beycle.

Regarding indexing, items are still broadcast in the same disk and disk chunk, however
their relative position inside the chunk changes due to the increase of the chunk size. One
approach is to broadcast older versions at a special place or overflow pool inside each chunk
and chain them to the current versions.

4.2 Owverflow Bucket Pool

With the overflow approach, older versions of items are broadcast at the end of each beycle.
In particular, one or more additional minor cycles at the end of each broadcast is allocated
to old versions (Figure 5).

Regarding indexing, the offset of the position of the current value of each item in the
broadcast from the beginning of the beast remains fixed. Thus, the server needs not recom-
pute and broadcast an index at each broadcast cycle. Instead, the client may use a locally
stored directory to locate the first appearance of a data item in the broadcast. To locate
old versions, since their position in the broadcast is fixed, an index can be broadcast before
the minor cycle carrying the overflow bucket pool. A transaction to locate old versions first

10

minor cycle minor cycle

| 1 [2a] 1+ o] 1 [2] IE 2a 1 P wpE 2

""—curn:nt.vaiuc broadcast ——= S clustering -
minor cycle

additional minor cycle

1 | 2% /// % - '-'fthl updates

Chunks o
Diisk _? Wil updm'e‘i:

minor cyel /
YK |”h% B I Izc

- MNew disk

| 1 22| 1 |2

~+——overflow ba

o

Figure 5: Multiversion broadcast with multiple versions

tunes in to read this index. Alternatively, we can maintain a pointer along with the current
version of each item pointing to its older version in the overflow pool. A transaction after
reading the item, if it needs an older version, it uses the pointer to locate it in the overflow
bucket.

In the overflow approach, long-running read-only transactions that read old versions are
penalized since they have to wait for the end of the beast to read such versions. However,
transactions that are satisfied with current versions do not suffer from a similar increase in
latency. On the contrary, in the clustering approach, the overhead in latency due to the
increase in the broadcast size is equally divided among all transactions.

A drawback of the approach is that the introduction of the additional minor cycle affects
the relative speed of each disk which is now slightly modified. Another problem is that the
space allocated to old versions is fixed, it is a multiple of the size of a minor cycle. To avoid
this restriction, older versions of items can be placed on the slowest disk. In this case, the size
of the slowest disk and the size of its chunks are increased to accommodate old versions. Old
versions are placed on those chunks of the disk that are broadcast last. Again, the relative
speed is affected.

4.3 0Old Versions on New Disk

With this approach, a new disk is created to place any old versions. The relative frequency of
the disks with the current versions is maintained, by simply multiplying their frequency by a
positive number m, so that the slow disk that carries the old versions is m times slower than
the disks with the current versions. For instance, say we have a broadcast organization for
the current versions consisting of three disks: Disk; with speed 4, Disks with speed 2, and
Disks with speed 1. We create a new disk Disk; where we place the old versions. Assume
we want new versions to be broadcast three times (m = 3) more frequently than old versions.
Then, we adjust the relative frequencies of the disks as follows: Disk; now has speed 12,
Disks has speed 6, Disky has speed 3, and Disk, has speed 1. With this approach, the size

11

of each beast is also multiplied by m.

Figure 5 shows yet another example. A new disk Disks with 6 chunks is created for
the old versions. Current items are broadcast twice (m = 2) as frequent as old versions.
The relative frequency of the two disks is maintained; items of Disk; are broadcast three as
frequent as items of Disks. The resulted beast is twice the size of the original plus the extra
space for the old versions.

To locate older versions of items, pointers may be kept along with their current versions.
This approach is adaptive. Old versions are placed on faster disks when there are many
long-running transactions and on slower disks when most transactions need current values.

5 Multiversion Caching

In multiversion caching, the client cache is used to provide an alternative storage medium for
older versions of data items. A version is associated with each cache entry. When an item
is updated at the server, its cache entry is not updated, instead a new entry is inserted in
cache for the new version. Thus, for a data item, there may be multiple entries with different
version numbers. We assume that the cache replacement policy is such that, the following
always hold:

Page Replacement Invariant: For each data item, the versions cached are the most recent
ones.

Then, we can either use the multiversioning method or the multiversioning with invalida-
tion method. It is also possible to avoid broadcasting version numbers along with items. In
this case, the version number associated with each cached item is the currency interval during
which the item was inserted in the cache. This value is larger or equal to the currency interval
during which the item was actually updated. In this case, we get the following variation of
the multiversioning with invalidation method. Until its first invalidation at currency interval
say vy, a transaction R reads items from the broadcast. After v;, R only reads items from
the cache. In particular, R continues operation as long as there are versions in cache with
version numbers v < w;, that is versions inserted in cache prior to the invalidation.

With multiversion caching, the effective cache size is decreased, since part of the cache is
used to maintain old versions of items. However, for long-running transactions that read old
versions, there may be some speed-up, since older versions may be found in cache. Whereas,
k (the number of older versions broadcast) in the multiversion broadcast, is a property of the
server, in multiversion caching, k (the number of versions kept in cache) is a characteristic
of each client. Transactions at different clients may have varying spans. In this case, it is
the client’s responsibility to adjust the space in cache allocated to older versions, based on
the size of its cache, the requirements and types of its read-only transactions, or other local
parameters.

12

5.1 Garbage Collection

Instead of maintaining in cache all k oldest versions, it is reasonable to maintain only the
useful ones. A version is useful if it may be read by some invalidated transaction. In this
case, the page replacement invariant is revised accordingly.

Page Replacement Invariant(revised): for each data item, the versions cached are the
most recent useful ones.

We assume that the multiversioning with invalidation method is used, but the same also
holds for the simple multiversioning method, if we just consider begin points of transactions
in the place of invalidation points. Let JL={R; Ri1,...,Rizn} be the set of all active
invalidated transactions, that is of transactions that one of the items they have read was
subsequently updated. Let v r; be the currency interval that corresponds to the database
read by R; (that is, R; was invalidated for the first time at vg,+1). Transactions appear in
the list in ascending order of invalidation, that is, B; is the transaction that was invalidated
first.

When an item in cache is updated, the version in cache is invalidated and the new value
of the item is autoprefetched. Instead of always maintaining the previous version, that is the
version in cache with the largest version number v', we maintain this version only if there is
a possibility that it will be read, that is, if there is an R; in IL that may read v'. This can
be tested as follows. Recall that vg,,, is the most recent invalidation point. We discard v, if
vR;,, < v'. This is because in this case v’ is not useful: transactions that will be invalidated
in the future will read the newly inserted version, while transactions in the current I'L will
read versions with version numbers smaller than «'.

Furthermore, when a transaction Ry, in IL finishes (aborts or commits), for each item z
in cache, we delete all versions that were useful only to R,;. In particular,

Condition for Discarding Versions

When a transaction R, completes its operation, a version of = with version number v, is
discarded, if all following three conditions hold:

(1) there is a version of z with version number v such that v > v, (i.e., v, is not the current
version),

(2) if Ry, is not the most recently invalidated transaction (i.e., m # i + n), then there is a
version with version number v such that v, < v < vg,,,,, and

(3) if Ry, is not the transaction that was invalidated first (m # i), then v, > vp__,.

We will show that the above conditions are correct (no useful versions are deleted) and
optimal (all non-useful versions are deleted).

Correctness: We will show that it is no possible that any transaction will read v,. Case (a):
For each R; in IL, with vg; > vg,,, it holds vg, < wg__,, thus R; would not read v, but
a version v > v where v; is the version of Condition (2) above. Case (b): For each R; in
IL, with vg; < vg,,, it holds vg, > vg,,_,, thus R; would not read v,, but from Condition

13

(3) above, it will read an item with version number vg,,_, or smaller. Case (c): Since from
Condition (1), v, is not the most recent version, any transaction that will be invalidated in
the future will not read v, but a more current version.

Optimality: We will show that if any of the three conditions does not hold useful versions
may be deleted. Case (a): Assume that we delete a version v, for which there is no version in
cache with version number v, such that v > v,, then v, is the current value and may be read
by transaction invalidated in some future point. Case (b): Assume that we delete a version
v, such that there is no vy, vo < ¥y < ug,..,, then v, is useful at least to Rm41. Case (c):
Assume that we delete a version v,, v, < vg,,_,, then Ry may read v,.

5.2 Page Replacement

When older versions are maintained in cache, the page replacement policies must be re-
vised. An approach that offers flexibility is to divide the cache space into two parts: one
that maintains current versions and one that maintains older ones. In this case, different
cache replacement policies can be used for each part of the cache. This approach provides
for adaptability, since the percentage of cache allocated to older versions can be adjusted
dynamically. The most suitable organization for this approach is overflow buckets with old
versions where the buckets are placed on the old version part of the cache.

Another approach is to apply a global policy, that is to replace the page with the overall
smallest probablity of being accessed without considering version numbers. Clustering works
better with this approach. Finally, to maintain the invariant, when a version of item z with
version number v is selected for replacement, we must in addition discard from the cache all
x's versions with version numbers v’ < wv.

6 Multiversion Warehouse

In this scenario, the client stores the data of interest locally. Data are defined and maintained
using views defined over base relations, When the base data are updated the view becomes
stale. Updating the view to reflect changes of base data is called view maintenance. View
maintenance is a well known and studied problem (for example, see [14] for a survey) which
is beyond the scope of this paper. Here, we only focus on views in terms of broadcast and
Versioning.

In the broadcast setting, for scalability reasons, we assume that the server is stateless.
In particular, the server cannot maintain any views in lieu of its clients. Furthermore, the
server is not aware of the views maintained at its clients. In addition and in contrast to [25],
we assume that there is no direct communication from clients to the server. Specifically, the
client cannot ask the server to compute the view.

(One main advantage of the broadcast model is that the base relations are available to
clients without any storage overhead. In fact, the base relations are on air and thus using them
to recompute the view is not expensive in terms of communication messages. To maintain
the view, we create a client transaction that we call the view maintenance transaction. The

14

view maintenance transaction has two parts: the first part, called view-query, recomputes
the view, while the second part, called view-updater, installs the updates in the local view.

The view-query part is executed as a normal client read-only transaction concurrently with
any query processing at the client. The view-query recomputes the view to take into account
any updates. Depending on the currency requirements, any of the versioning, invalidation or
multiversioning methods can be used by the view-query. For instance, if the most-up-date
values as of the commitment of the view-query are required, then the view-query must use
the invalidation method. The view-query can either recompute the view from scratch or
use an incremental technique. Furthermore, a locally stored index can be used to speed-up
the processing of the query and decrease its span. The view-updater installs the updates at
the client. To allow reads at the client to proceed concurrently with the view updater, two
versions of data may be kept along the lines of [20].

With this simple view maintenance scheme, the server is not aware of the fact that clients
maintain views and thus there is no associated overhead at the server. Furthermore, there is
no need to modify the content of the broadcast. An important issue is that of the currency of
the locally maintained view that can be decoupled from the currency of the broadcast data.
The maintenance transaction may run periodically or when updates occur. In the second
case, the invalidation reports can be used to trigger the execution of view maintenance.

7 Other Issues

7.1 Disconnections

In many settings, it is desirable that clients do not monitor the broadcast continuously.
For example, in the case of clients carrying portable devices, operation relies on the finite
power provided by batteries, and since listening to the broadcast consumes energy, selective
funing is required. Besides, access to the broadcast may be monetarily expensive, and thus
minimizing access to the broadcast is sought for. Finally, client disconnections are very
common when the data broadcast are delivered wirelessly. Wireless communications face
many obstacles because the surrounding environment interacts heavily with the signal, thus
in general wireless communications are less reliable and deliver less bandwidth than wireline
communications. In such cases, clients may be forced to miss a number of broadcast cycles.

In general, versioning frees transactions from the requirement of reading invalidation
reports. When there are no versions, a transaction can not tolerate missing any invalidation
reports. Furthermore, with multiversioning, client transactions can refrain from listening
to the broadcast for a number of cycles and resume execution later as long as the required
versions are still on air. In general, a transaction R with span(R) = sg can tolerate missing up
to k— s g currency intervals in any k-multiversion broadcast. The tolerance of the multiversion
scheme to intermittent connectivity depends also on the rate of updates, i.e., the creation
of new versions. For example, if the value of an item does not change during m, m > &,
currency intervals, this value will be available to any read-only transactions for more intervals.
Mulitversion caching further improves tolerance to disconnections. In this case, disconnected

15

operation is supported, since a read-only transaction can proceed without reading data from
the broadcast, as long as appropriate versions can be found in cache.

7.2 Update Transactions

While read-only transaction can proceed without contacting the server, update transactions
must communicate their updates to the server for validation. Multiversion concurrency con-
trol for update transaction is also possible. Actually, it is easy to provide snapshot isolation
introduced in [7] and supported by a number of databases vendors. To this end, we outline
an implementation of the first-committer-wins method [7]. Regarding reads, update trans-
actions at the client proceed like read-only transactions. Regarding updates, values of items
updated at the client are maintained locally and transmitted to the server for validation.
They are incorporated and included in subsequent broadcast intervals only if validated suc-
cessfully. When a client update transaction T completes its operation, it gets a timestamp
Veommit- L he client sends to the server the list of items written by T and their values, the
commit timestamp ¥.pmmit. and the value vjnye which is the currency interval at which T
was invalidated. At the server, T is accepted, if there is no transaction T" with v}, in
[Vinvals Yeommit] Such that WS(T) n WS(T') = 0, where WS(T) is the set of items written
by T. To perform this test, we check the version numbers of the items written by TT.

Snapshot isolation is not equivalent to serializability. For example, it suffers from the
write skew anomaly. e.g., two transactions read two items z and y and each modifies one of
them resulting in a violated constraint between x and y. However if all update transactions
transform the system from one consistent state to another, snapshot isclation will gnarantee
consistent reads. To ensure serializability (e.g., one-version serializability [8]), stronger tests
are required for update transactions, such as also checking their readsets.

8 Performance Evaluation

In this section, we evaluate the performance of multiversion methods with respect to various
parameters.

8.1 The Performance Model

Our performance model is similar to the one presented in [1]. The server periodically broad-
casts a set of data items in the range of 1 to Neltems. We assume a broadcast disk organiza-
tion with 3 disks and relative frequencies 5, 3 and 1. The client accesses items from the range
1 to ReadRange, which is a subset of the items broadecast (ReadRange < Noltems). Within
this range, the access probabilities follow a Zipf distribution. The Zipf distribution with a

become increasingly skewed as theta increases. The client waits ThinkTime units and then
makes the next read request.

16

Server Parameters [lient Parameters

Mo of Tiems Broadcast 1000 RemdRange (range of cliemt reads) SO0

UpdaleRange 500 iheia {zipf distribution parameter) 095

theta (Zipf distribution parameser} n4s Think Time (time between client

Offset (apdate snd reads in brosdeast units) 2
cliens-read access deviation) 0 - 230 (100) Number of reads per guey 5. 50(20)
Muamber of apdases at the server 50 - 500 {300 5 (transaction span) varies
Currency interval heast

Broadcast Disk Parameters Cache
Mo of disks 3 CacheSize 125
Relative frequency: Diskl, Disk2, Disk3 531 Cache replacement policy LRU
No of liems per range (disk) Cache invalidation anvalidation =
Rangel. Rangsl, Rangel 75, 175,750 autoprefesch

Table 1: Performance Model Parameters

Updates at the server are generated following a Zipf distribution similar to the read access
distribution at the client. The write distribution is across the range 1 to UpdateRange. We
use a parameter called Of fset to model disagreement between the client access pattern and
the server update pattern. When the offset is zero, the overlap between the two distributions
iz the greatest, that is the client's hottest pages are also the most frequently updated. An
offset of k shifts the update distribution k items making them of less interest to the client.
We assume that during each beycle, N transactions are committed at the server. All server
transactions have the same number of update and read operations, where read operations are
four times more frequent than updates. Read operations at the server are in the range 1 to
Noltems, follow a Zipf distribution, and have zero offset with the update set at the server.

The client maintains a local cache that can hold up to CacheSize pages. The cache
replacement policy is LRU: when the cache is full, the least recently used page is replaced.
When pages are updated, the corresponding cache entries are invalidated and subsequently
autoprefetched. The currency interval is a beast. Table 1 summarizes the parameters that
describe the operation at the server and the client. Values in parenthesis are the default.

5.2 Performance Results

Due to space limitations, we only present some representative results to show the applicability
of the method. Figure 6 shows the increase of the size of the broadcast using each one of
the proposed multiversion broadcast organization schemes. In all experiments, we used the
simple multiversion schemes (without invalidation reports). For the clustering approach, the
increase depends on the offset. The increase is the maximum when the hot items are the
most updated ones {Of fset = (), while it is minimum when the frequently updated items
are cold and thus their versions are placed on slow disks. For the new disk approach, the size
of the broadeast is doubled from the case of no versions. However, the current value of each
item appears twice as often as in the no version case, thus, it is as if we had an additional
beycle. The increase shown for this case is only that for broadcasting versions on the slowest

17

Inarzase of he Brosdcast Sies (%)

10 T
Chunter may o
Cluster min -
F] Cverliom Poal -0--
B Dtk =
a0 -
£ mt
] B
i
-
g “l
3 1 2 I L]
Humiar ef Old Varsons Humber of Oid Vemsons

Figure 6: Increase of the broadcast size. For the figure at the left updates are set to 100 per
beast, while for the figure at the right to 50.

disk.

Figure 7 shows the decrease of transactions aborted due to updates. With the overflow
pool approach, transactions have to wait for the end of the broadcast to locate old versions,
thus their span increases as does their probability of abort. For the new disk approach, since
the broadcast size is effectively double the size of the other methods, for the same update
rate the updates are 200 and 100 correspondingly. However, these updates appear in the
broadcast very late (the currency interval is that of a beast, thus in this case, it is also two
times larger than in the other two). Thus, we pay for the increase in concurrency, by reading
less current data.

Regarding caching, using part of the cache space to keep old versions results in a very small
increase in concurrency of long running transactions. This is because less space is allocated
to current versions, thus the span of transactions increase since they have to read items from
the broadcast and so does their abort rate. Thus, our conclusion is that it is better to keep
older versions in secondary memory than in cache. In this case, garbage collection results in
a dramatic decrease of the space required to maintain old versions (e.g., for maintaining up
to 3 old versions per item in cache a same size secondary storage is sufficient).

9 Conclusions

Data dissemination by broadecast is an important mode for data delivery in data intensive
applications. In this paper, we propose maintaining multiple versions to increase the concur-
rency of read-only transactions in the presence of updates. Invalidation reports are also used
to ensure the currency of reads. The approach is scalable in that it is independent of the
number of clients. Performance results show that the overhead of maintaining versions can
be kept low, while providing a considerable increase in concurrency.

18

Femoniage ol Transaolone Abortad %)

T
war = Chsilir ——

G
Croarfiw Pogl «a=- Cremrliow Pogl -+-
W Diak -2 90 Moy Cishy -

an -

7ok

Parcaniagas ol Transaclions Aborted [%)
]

3 3
Humbar ol Oid Varsans Hurmbar af Cid WYarsans

Figure 7: Abort Rate. For the figure at the left updates are set to 100 per beast (in this case,
when no versions are maintained the abort rate is 88.5%) while for the figure at the right the
updates are set at 50 per beast (in this case when no versions are maintained the abort rate

is 83%).

References

[1] S. Acharya, R. Alonso, M. J. Franklin, and 5. Zdonik. Broadcast Disks: Data Management for
Asymmetric Communications Environments. In Proceedings of the ACM SIGMOD Intl. Confer-
ence on Management of Data (SIGMOD §5), June 1995,

[2] 8. Acharya, M. J. Franklin, and 5. Zdonik. Disseminating Updates on Broadcast Disks. In Pro-
ceedings of the 28nd International Conference on Very Large Data Bases (VLDE 96), September
1996.

[3] A. H. Ammar and J. W. Wong. The Design of Teletext Broadcast Cycles. Performance Evalua-
tion, 5(4), 1985.

[4] 5. Banerjee and V. 0. K. Li. Evaluating the Distributed Datacycle Scheme for a High Performance
Distributed System. Journal of Computing and Information, 1(1), 1994,

[5] D. Barbard. Certification Reports: Supporting Transactions in Wireless Systems. In Proceedings
of the IEEE International Conference on Distributed Computing Systems, 1997.

[6] D. Barbard and T. Imielinski. Sleepers and Workaholics: Caching Strategies in Mobile Environ-
ments. In Proceedings of the ACM SIGMOD Intl. Conference on Management of Data {SIGMOD
44), pages 1-12, 1994.

[7] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil., and P. O'Neil. A Critique of ANSI
SQL Isolation Levels. In Proceedings of the ACM SIGMOD Conference, pages 1-10, 1995.

[8] P. A. Bernstein, V. Hadjilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addisson-Wesley, 1987,

[9] A. Bestavros and C. Cunha. Server-initiated Document Dissemination for the WWW. [EEE
Data Engineering Bulletin, 19(3), September 1996.

19

[10] T. Bowen, G. Gopal, G. Herman, T. Hickey, K. Lee, W. Mansfield, J. Raitz, and A. Weinrib.
The Datacycle Architecture. Commuinications of the ACM, 35(12), December 1992.

[11] A. Datta, A. Celik, J. Kim, D. VanderMeer, and V. Kumar. Adaptive Broadcast Protocols
to Support Efficient and Energy Conserving Retrieval from Databases in Mobile Computing
Environments. In Proceedings of the 15th IEEE Internotional Conference on Data Engineering,
April 1997.

[12] M. J. Franklin and 5. B. Zdonik. A Framework for Scalbale Dissemination-Based Systems. In
Proceedings of the OOPSLA Conference, pages 94-105, 1997,

[13] D. Gifford. Polychannel Systems for Mass Digital Communication. Communications of the ACM,
33(2), 1990,

[14] A. Gupta and 1. 5. Mumick. Maintenance of Materialized Views: Problems, Techniques and
Applications. IEEE Data Engineering Bulletin, 18(3), June 1995.

[15] T. Imielinski, 5. Viswanathan, and B. R. Badrinanth. Data on Air: Organization and Access.
IEEE Transactions on Knowledge and Data Engineering, 9(3):353-372, May/June 1997.

(16] J. Jing, A. K. Elmargarmid, S. Helal, and R. Alonso. Bit-Sequences: An Adaptive Cache In-
validation Method in Mobile Client/Server Environments. ACM/Baltzer Mobile Networks and
Applications, 2(2), 1997,

[17] C. Mohan, H. Pirahesh, and R. Lorie. Efficient and Flexible Methods for Transient Versioning
to Avoid Locking by Read-Only Transactions. In Proceedings of the ACM SIGMOD Conference,
1992,

[18] E. Pitoura and P. K. Chrysanthis. Scalable Processing of Read-Only Transactions in Broad-
cast Push. In Proceedings of the 15th IEEE International Conference on Distributed Computing
Systemns, May 1999 To appear.

[19] E. Pitoura and G. Samaras. Data Management for Mobile Computing. Kluwer Academic Pub-
lishers, 1998,

[20] D. Quass and J. Widom. On-Line Warehouse View Maintenance. In Proceedings of the 1997

SIGMOD Conference, pages 393-404, 1997,

[21] R. Rastogi, S. Mehrotra, Y. Breitbart, H. F. Korth, and A. Silberschatz. On Correctness of
Non-serializable Executions. In Proceedings of ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 97-108, 1993.

[22] J. Shanmugasundaram, A. Nithrakashyap, R. Sivasankaran, and K. Ramamritham. Efficient
Concurrency Control for Broadeast Environments. In ACM SIGMOD International Conference
on Management of Data, 1999. To appear.

[23] J. Wong. Broadcast Delivery. Proceedings of the IEEE, T6(12), December 1988.

[24] T. Yan and H. Garcia-Molina. SIFT - A Tool for Wide-area Information Dissemination. In
Proceedings of the 1995 USENIX Technical Conference, 19935,

[25] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a Warehousing
Environment. In Proceedings of the 1995 SIGMOD Conference, pages 316-327, 1995.

20

