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Abstract

Multinode broadcasting, an important collective communication problem, involves si-
multaneous broadcastings from all the nodes in a network. In this work we present new
results and algorithms for the minimum-time solution of the problem in packet-switched
networks that follow the single-port model. In particular, we show that the problem can
be optimally solved in any network that has a hamiltenian cycle; most of the popular
multiprocessor interconnection networks possess this property. We also construct a gen-
eral algorithm for the solution of the problem in arbitrary multidimensional networks and
provide conditions that ensure its optimality.
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1. Introduction

The advent of distributed-memory multiprocessors has spawned an increasing amount of re-
search in information dissemination problems. Given a network of processors (or nodes) where
some of them own pieces of information, the problem is to spread the information to a group
of recipients using the links of the network. The term ‘collective communications’ has been
coined to signify the fact that such problems involve more than two nodes.

Among the variety of situations that can arise in practice (e.g. in parallel numerical al-
gorithms [7, 1]) broadcasting and multinode broadcasting intrigued the research community
as early as the 1950's [8]. In broadcasting there is one node that owns a piece of information
(hereafter called ‘message’ or ‘packet’) and needs to send it to the other nodes in the network.
Multinode broadcasting, which is the subject of this paper, involves simultaneous broadcastings
from all nodes, that is, every node has to send a single message to all the other nodes in the
network.

Two surveys on collective communication problems, including multinode broadcasting,
were given in [8, 6]. Multinode broadcasting is also known as all-to-all broadcasting and
gossiping. Traditionally, though, the term ‘gossiping’ implies certain assumptions about the
communication cost. In particular, it is assumed that whenever two neighboring nodes com-
municate (known as a ‘call’) they can exchange any number of packets in one time unit. Such a
model is not suited for our purposes here; we are interested in obtaining the minimum possible
time needed to solve the problem, instead of the minimum number of calls. Clearly, in practice
the more packets two nodes exchange the more the time delay will be. As a consequence, we
will make the more realistic assumption that in one time unit a node can only send one packet.

We are going to consider packet-switched networks that follow the constant communication
model [6] where:

s communication links are bidirectional

& a message requires one time unit (or step) to be transfered between two nodes

¢ only adjacent nodes can exchange messages.

Furthermore, nodes will be assumed to have single-port capabilities, that is, a node can only
send and/or receive one message at a time. Under such a scheme two basic possibilities arise
based on the nature of the links:

o full-dupler where a node can send and simultaneously receive a message in a step

¢ half-dupler where a node can send or receive a message in a step but not both simulta-

neously.

We are going to study the multinode broadcasting problem for both duplex models since they
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vield different solutions. For each of the models we derive lower bounds on the time needed to
complete a multinode broadcasting operation and we give algorithms to achieve the optimal
times for two large classes of networks. In particular, we show that optimality can be achieved
in any network that possesses a hamiltonian cycle. Rings, tori, hypercubes, cube-connected
cycles, butterflies and deBrujin graphs [9] are but a few examples of popular interconnection
networks which can benefit from our method. To the best of our knowledge, this is the first
optimal algorithm for most of these networks under the model we consider.

In addition we provide a general algorithm that solves the multinode broadcasting problem
in any multidimensional (or cartesian product) network in a modular way. Such networks are
probably the most popular as is evident from their utilization in commercial parallel machines
(e.g- Cray T3D, Intel Paragon). For multidimensional networks a modular solution for the
total exchange communication problem was given in [5]. Assuming we are given multinode
broadcasting algorithms for each of the dimensions, we show how to construct an algorithm for
the multidimensional graph. We also prove that if the algorithms for each of the dimensions
are time-optimal, then the derived algorithm can also be optimal.

The paper is organized as follows: in Section 2 we derive the lower bounds for our problem
in both models. We then proceed to give a simple optimal solution for rings and general
hamiltonian graphs in Section 3. For multidimensional (or cartesian product) networks we
give a general algorithm in Section 4 and derive conditions under which it behaves optimally.

Finally, Section 5 summarizes the results.

2. Lower Bounds

Let us consider a network (or graph) G = (V, E) where V' is the node (or vertex) set and F is
the link (or edge) set. An edge e in E connecting nodes v and u is written as the unordered
pair e = (v,u) and nodes v and u are said to be adjacent to each other or just neighbors. We
will finally assume that the number of nodes is n = |V|.

In the multinode broadcasting problem each node will receive n — 1 messages, one from
each of the other nodes. Under the single-port assumption messages at any node can only
arrive one by one. Consequently, there will be at least n — 1 time units required to receive all
those messages. If Trp, Typ are the times needed to perform multinode broadcasting in G
under the full- and half-duplex models, we have the lower bound of:

Tup,Trp 2 n—1 steps. (1)

For the case of half-duplex links the lower bound can be further tightened. Each of the n

broadcast messages must be received by n — 1 nodes. In other words, each message implies
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n — 1 receptions. For the receptions to occur, there must clearly occur n — 1 transmissions,

too. In total, for all n messages there will occur:

n(n — 1) receptions and n(n — 1) transmissions.

If the number of nodes is even then at most n actions (receptions or transmissions) can occur at
each step. To make it clearer, since no node is allowed to simultaneously receive and transmit
messages, at most half of the nodes can send a message and at most half of the nodes can
receive a message. As a result, at most n/2 transmissions and n/2 receptions may be had at
each step. This gives the lower bound of:

T8 > 2n - 1). (2)

If n is odd then at most n — 1 actions (receptions or transmissions) can occur at each step,

that is, one node can not participate at all, giving the lower bound of:

THH > 2n, (3)

3. Multinode Broadcasting in Hamiltonian Networks

A graph is hamiltonian if it contains a hamiltonian cycle, that is, a cycle that passes through
every node exactly once. A ring is trivially hamiltonian. Another well-known example is the
hypercube; a hamiltonian cycle can be constructed through the use of Gray codes. Networks
like cube-connected cycles, butterflies and deBrujin graphs are also known to contain a hamil-
tonian cycle [9]. The same is true for graphs that are cartesian products of hamiltonian graphs
[3]. Thus, k-ary n-cubes and general tori are hamiltonian, being products of simple rings.
Clearly, an n-node hamiltonian graph G contains an n-node ring as a subgraph. What we
show here is that in any ring and under any of the models we consider, the lower bounds of
(1)—(3) are tight, i.e. multinode broadcasting can be performed in optimal time. As a result,
and since the bounds of (1) - (3) depend only on the number of nodes, multinode broadcasting
can be performed optimally in any hamiltonian graph through the links of its hamiltonian cycle.
It is therefore enough to construct optimal algorithms for general rings, and this we do in the

following subsections.

3.1. Rings with full-duplex links

Formally, an n-node ring has node set V = {0,1,...,n — 1} and node i is adjacent to nodes
i@ 1 and i S 1, where &/& are the operations of addition/subtraction modulo n.
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If the network follows the full-duplex model, a very simple algorithm can be employed
to perform multinode broadcasting in the minimum time of Eq. (1). Each node is assumed
to have a buffer which initially holds the message it has to broadcast. At each step node i
(for all ¢ = 0,1,...,n — 1) sends the message contained in the buffer to neighbor i & 1 and
simultaneously receives a message from neighbor ¢ & 1. The received message is placed in the
buffer.

It is trivial to see that at each step messages are rotated around the ring; after n — 1 steps
all messages will have passed through node i (for all i), thus concluding the operation. An
example is given in Fig. 1 for n = 4 nodes. We have followed the notation m; to denote the

broadcast message of node 4.

m}

(;? STEP |

m2

Figure 1. Full duplex multinode broadcasting in a 4-node ring

3.2. Rings with half-duplex links
3.2.1. Even number of nodes

If the number of nodes is even, it can be easily seen that the lower bound of 2(n—1) steps under
the half-duplex model can be achieved by emulating the algorithm for the full-duplex case.
Each step of the latter algorithm is emulated by two steps in the half-duplex case as follows:
in the first step we let even-numbered nodes perform transmissions (and hence odd-numbered
nodes are the receptors) of their message; in the second step the situation is reversed, having
odd-numbered nodes transmit. Thus, 2(n — 1) steps will be needed in total, which is optimal
as seen by (2). An example for n = 4 nodes is given in Fig. 2. Notice that because in odd-
numbered steps some nodes receive a message without sending the one they already hold,

two-message buffers (FIFO) are needed.

3.2.2. Odd number of nodes

In a ring with an odd number of nodes, we cannot directly emulate the algorithm for the full-
duplex case because there must exist one node at each step that does not participate at all.

Nevertheless, it turns out that one can use another simple algorithm that guarantees optimal



4, Multinode Broadeasting in Multidimensional Nefworks 5

- N ES I
; .
. ’
, a
STEF | (1) STEP Z @ STEP S
[mi] [ml], Imi2] [ma], [ml] [m3],
/‘I /‘I !‘
w2 == ml - mil -
m m i Mz Ty . ml Sy
‘\ ~ b
1 % %
& srer: : STEP 6
e ]
v
. :
B .

i [m2] [md]
\

Sun m3

m]

Figure 2. Half duplex multinode broadeasting in a 4-node ring

time. The algorithm is best understood through the example in Fig. 3 for n = 5 nodes.

As in the case of even rings, each node has a two-message buffer with a first-in first-out
(FIFO) discipline. In the first step the transmitting nodes are nodes 1, 3, ..., n — 2. Node
0 does not participate at all and the rest of the nodes are the receivers. After each step the
pattern is rotated around the ring, e.g. in the second step, nodes 2, 4, ..., n — 1 are the
transmitters. In general, in the jth step (1 < j < 2n) the transmitters are nodes j &0, j & 2,
j@®4, ..., j@(n—-1), node &1 does not participate and the remaining nodes are the receivers.
The algorithm proceeds this way for 2n steps in total. Notice that during those 2n steps the
pattern repeats itself twice. In Fig. 3 the receivers/transmitters pattern rotates around the

ring for 5 steps and then repeats itself from the 6th step till the final 10th step.

Theorem 1 The algorithm is an optimal multinode broadcasting algorithm for odd rings with
half-duplex links.

The proof is rather involved and, for presentation purposes, it is given in the Appendix.

4. Multinode Broadcasting in Multidimensional Networks

In this section we are going to develop a general multinode broadcasting algorithm for any
multidimensional graph. Although simple, the algorithm will be shown to be optimal if certain
conditions are met.

Given k graphs G; = (V;, E;), i = 1,2,...,k, their (cartesian) product is defined as the
graph G = Gy x +-- x Gy = (V, E) whose vertices are labeled by a k-tuple (v1,...,v), called
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Figure 3. Half dupler multinode broadeasting in a 5-node ring

address, and:

={@n- v [weVii=1,....k}
{f{ﬂh g (.. oug)) |

3j st. (v5,u5) € By and v; = u; for all i # 5.

We will call such products of graphs multidimensional graphs and G; will be called the ith
dimension of the product. The ith component of the address tuple of a node will be called the
ith address digit or the ith coordinate. The definition of E above in simple words states that
two nodes are adjacent if they differ in exactly one address digit. Their differing coordinates
should be adjacent in the corresponding dimension. An example is given in Fig. 4. Dimension

1 is a graph A consisting of a two-node path with V4 = {a, b} while dimension 2 ( B) consists
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of a three-node ring with Vg = {0,1,2}. Their product has node set

V = {(a,0), (a, 1), (a,2), (5,0), (5, 1), (5,2)}.

According to the definition, node (a,0) has the following neighbors: since node a is adjacent
to node b in the first dimension, node (a,0) will be adjacent to node (b,0); since node 0 is
adjacent to both nodes 1 and 2 in the second dimension, node (a,0) will also be adjacent to
nodes (a, 1) and (a, 2).

(i (b
()
(a.1) (b1
@—® X @ =
(.2 (b2
. Y,
A B AxB

Figure 4. A two-dimensional graph

Hypercubes are products of two-node linear arrays (or rings), tori are products of rings.
If all dimensions of the torus consist of the same ring, we obtain k-ary n-cubes [4]. Meshes
are products of linear arrays [9]. Generalized hypercubes are products of complete graphs [2].
Multidimensional graphs have n = nyna .- - n; nodes, where n; = |V;| is the number of nodes
i =1k e K

It will be convenient to use the don't care symbol *+' as a shorthand notation for a set of
addresses. An appearance of this symbol at an element of an address tuple represents all legal
values of this element. In the last example, (a,*) = {(a, 1), (a,2),(a,3)}, (*,1) = {(a,1),(b,1)}
while (#,+) denotes the whole node set of the graph.

4.1. The Algorithm

Let G = A x B. A k-dimensional network (7 % - -+ % G}, can still be expressed as the product
of two graphs by taking A = Gy and B = G3 x - -+ x Gg, s0 we may consider two dimensions
without loss of generality. Let A = (V4,E4), B = (Vp,Eg), G = (V, E), ny = |V4|, na = |Vz|
and n = ning. Finally, let

I’{q — {Ui|i=1s2s-'-enl}

Ve = {m li= 1,2,,..,712},

Graph G can be viewed as ny (interconnected) copies of A. For example, in Fig. 4 graph Ax B

consists of three copies of A, where the corresponding nodes are interconnected according to
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the edges in B. Let A; be the jth copy of A with node set (*,u;), where * takes all values in
V4. Similarly, G can be viewed as ni copies of B, and we let B; be the ith copy of B with
node set (v, *).

Let us assume that there exist multinode broadcasting algorithms for each of the dimen-
sions. Our method utilizes the algorithms for the dimensions so as to synthesize an algorithm
for the whole graph. In other words, the problem of performing multinode broadcasting in
G = A x B is decomposed to the simpler problem of performing multinode broadcasting in A
and in B. This is a highly desirable simplification since multidimensional networks are quite

complex structures.

Phase 1: Multinade Broadcasting within the copies of B
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Figure 5. The two phases of the multinode broadcasting algorithm

The algorithm we are going to give for G consists of two phases, and is illustrated in
Fig. 5. In Phase 1 nodes perform a multinode broadcasting in the second dimension. Notice
that because there are no nodes in common between the copies of B what we will describe
for a certain copy B; occurs simultaneously for the other of copies of B, too. Consider node
(vs,u4) in By, and let m(vi, u;) denote its own broadcast message. When Phase 1 is complete,
this node will contain all broadcast messages from the nodes in B;, that is, it will contain the

messages of nodes (v;, #): m{vg, u1), m(vi, uz), ..., m(vi, tn, ). This holds for every node in the
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graph. In particular, every node in A; will contain ny messages, each one originating from a
different node. In other words, at the end of Phase 1 all n = nq x ng broadcast messages will

have been received by the n; nodes in A; (for all j), each node holding n; of them.

Phase 1:
1 Do in parallel for all B;, i =1,2,...,m
2 In B; perform multinode broadeasting;

Phase 2:

3 Fxr=12...,12

4 Do in parallel for all 4;, 1 =1,2....,n32

5 In A; perform multinode broadeasting with

node (v;, u;) broadeasting m(v;, u,) (1 =1,2,...,n1);

Figure 6. The algorithm for graph G = A x B

It should now follow clearly that the way to distribute those messages to every node in 4; is
through multinode broadcastings within A;. Thus Phase 2 consists of a series of n; multinode
broadcastings in the first dimension in order for each node to broadcast the ns messages it
holds.

The algorithm is summarized in Fig. 6, and is a general solution to the multinode broad-
casting problem for any multidimensional network. If the network has & > 2 dimensions
G = G % .-+ % Gy, the algorithm ecan be used recursively by taking 4 = &; and B =
G2 % -+ x Gj. Phase 1 (lines 1-2) can be performed by invoking the algorithm with 4 = G2
and B = G3 x --- x Gy, and so forth.

Notice that the algorithm is independent of the link model in use. Because the two phases
are executed one after the other, and within Phase 2 the multinode broadcastings are also
executed serially, only one multinode broadcasting operation is in effect at any step. As
a result, the whole algorithm is consistent with the link model of the algorithms for each
dimensions. For example, if the algorithms for A and B operate on half-duplex links, so does
our algorithm for G = A x B.

4.2. Optimality conditions

We proceed now to determine the time required for the general algorithm in Fig. 6 and the
conditions under which it behaves optimally. Let T4 and Tg denote the number of steps

needed to perform multinode broadcasting in A and B correspondingly.
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Theorem 2 The multinode broadeasting algorithm for G = A » B requires:
T =Tg+n:T4

time units.

Proof. The result is straightforward: Phase 1 performs multinode broadcasting within B; (for
alli = 1,2,...,n1 in parallel), taking thus time equal to T5. Phase 2 performs ny multinode
broadcasting operations within A; (for all j = 1,2,...,ng in parallel), each requiring T4 steps.
=

Theorem 3 Under the full-duplex model, if multinode broadcasting in A and B can be per-
formed in time equal to the lower bound of Eq. (1) then the same is true for G= A x B.

Proof. If T4 and Ty achieve the lower bound of Eq. (1) then Ta =n1 — 1 and Tg = nz — 1.
From Theorem 2 we obtain:
T=(nzg=1)+nz{ni—1)=mng—1=n-—1,

as required. B

Theorem 4 Under the half-duplex model, if both dimensions have an even number of nodes
and multinode broadeasting in each one can be performed in time equal to the lower bound of
Eq. (2) then the same is true for G = A x B.

Proof. If both dimensions have an even number of nodes then by Eq. (2) we must have

Ts=2(n1—1) and Tg = 2(nz — 1). From Theorem 2 we obtain:
T=2(nz—1)+2n3(n1 —1)=2nnz —2=2(n-1),

which is optimal. |

Theorem 5 [Under the half-duplex model, if only one dimension has an even number of nodes
and mulfinode broadeasting in each dimension can be performed in time egqual to the lower

bound of Eq. (2) or Eq. (3) then the algorithm for G = A x B is optimal within two steps.

Proof. Without loss of generality assume that n3 is odd and n; is even. Otherwise, we might
rename the dimensions by considering graph G = B x A which is isomorphic to A x B, Thus,
according to Egs. (2) and (3) we must have T4 = 2(n; — 1) and Tg = 2ny. From Theorem 2
we obtain:

T = 2n2 + 2no(ny — 1) = 2nyn2 = 2n.

Since n is even, the lower bound of Eq. (2) shows that T is suboptimal by 2 steps. ]
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5. Conclusion

In this work we studied the problem of multinode broadcasting which involves simultaneous
broadcastings from every node in a network. We have considered packet-switched networks
with single-port capabilities, whereby a node can at most send and/or receive one message at
each step. We note that this is exactly what most present-day machines are capable of. Under
this model, we consider the case where simultaneous transmission and reception is allowed at
each node (full-duplex) and the case where a node is only allowed to either transmit or receive
at each step (half-duplex].

For both duplex cases we obtained optimal algorithms for rings which are easily extended
to every hamiltonian graph, such as tori, hypercubes, butterflies, etc. Under the model we
consider these algorithms are the only known optimal solutions to the multinode broadcasting
problem. Some results in [1] were only approximate for a few of the graphs we considered.

We also provided a general solution to the problem for multidimensional networks. We
derived a modular method that utilizes multinode broadcasting algorithms for each of the
dimensions. This algorithm applies in any multidimensional network, whether it is hamiltonian
or not. Our scheme is simple but it nevertheless maintains optimality always under the full
duplex model and in most cases under the half-duplex model. An interesting course of further
research is the case where the network is half-duplex and all dimensions contain an odd number
of nodes. In this setting our method cannot maintain optimality even if multinode broadcasting

in every dimension can be performed optimally.

6. Appendix

Proof of Theorem 1 We are going to prove the theorem by showing that the messages
are rotated around the ring and reach their most distant {clockwise) destinations in exactly
2n steps. For example, the message of node 2 (mz) will have reached node 1 at or before the
(2n)th step, and clearly, on its way it will have passed through (and broadcast to) all nodes
in the graph.

Let ‘T’ denote that a node is transmitting a message, ‘R’ denote that it is receiving a
message and ‘N’ denote that it is not participating. During the first n steps of the algorithm
node 0 follows the behavior pattern:

By = {NRTRT- - -RT},

that is, in the first step it does not participate, in the second step it receives a message, in
the third step it sends a message and so on. During the next n steps, it repeats the actions
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of By once more. In the same way, it can easily be seen that any node 1 follows the behavior
sequence B; which is the sequence By rotated by ¢ positions to the right. For example, node
1 has:

By = {TNRTRT---R}.

What we are going to show is that the n messages are rotated around the ring by |n,/2|
positions after exactly n steps. That is, node |n/2]| will contain the message of node 0 (my),
node |n/2| + 1 will contain my and so on. This is enough to prove the theorem since the
remaining n steps are identical; another rotation of the messages by |n/2| positions will
advance the messages to their most distant destinations, concluding thus the algorithm.

Let us hence isolate the first n steps. According to the algorithm and the FIFO discipline
at the message buffers, no message m; can advance ahead of message m;.;. Consequently,
the clockwise order of messages is preserved. Another observation is that every node i goes
through its behavior sequence B; exactly once. Initially, all nodes contain exactly one message
in their buffers, the one they are about to broadcast. But in the behavior sequence, the number
of T's is equal to the number of R’s, i.e. a node will perform exactly |n/2| receptions and
\n/2| transmissions. Based on this, and because there are no consecutive R's or T's in the
behavior sequence, we reach the conclusion that after n steps every node will end up again
with exactly one message in its buffers.

Summarizing, we have shown that after n steps the messages will have rotated around the
ring; every node will contain exactly one message and the clockwise order will he preserved.
Let us say that the messages advanced (rotated) by d positions, that is, m; will reside at node
i @ d. The only remaining issue is to prove that d = |n/2].

Each message must travel to the most distant node in the clockwise direction. This means
that it will eventually cross n—1 links in total. Thus the total distance for all messages to reach
their final receptors is TD = n(n — 1). Each transmission by a node advances a message one
step closer to its final receptor and consequently decreases the remaining total distance by 1.
Because in the first n steps of the algorithm each node performs exactly |n/2] transmissions,
the remaining total distance after those n steps will be equal to RTD = TD—n|n/2| = n|n/2].

If the messages had rotated by d positions then each one would have been n — 1 — d links
away from its final destination. Consequently, the remaining total distance would have been

equal to n(n — 1 —d}. Equating this quantity with RT D gives the desired result of d = |n/2].
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