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Abstract

The proposed micromagnetic model [1] is extended to account for
shearing strains. We assume that the ferromagnetic material is a sin-
gle cubic crystal, the magnetization reverses coherently and the strains
are uniform. The equilibrinm field equations are derived from the free
energy functional. The role of the material parameters and the applied
stresses (inverse magnetosiriction effect) on the magnetization and mag-
netostriction curves is examined in detail.
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1 Introduction

Understanding micromagnetic processes in magnetic materials plays a crucial
role for the design of new magnetic storage devices with improved characteris-
ties. Among the phenomena that are present in ferromagnetic materials, magne-
tostriction is the one that has not been studied in extent, due to its complexity.
Magnetostrictive materials are very attractive for the production of microelec-
tromechanical systems (MEMS), such as microrobots, micromotors, ete. [2,3].
The magnetomechanical problem, in general, is extremely complicated due to its
non-linear character [4-6]. Recently, new mathematical methods have utilized
to treat the large magnetostriction observed in a class of ferromagnetic ma-
terials [T-9]. Those theories are applied on large enough materials, where the
division of the erystal into domains is preferable, and thus are not capable of de-
seribing accurately the underlving microstructure. Savage and Spano proposed
a rotational model that includes shear stresses to explain the large magnetoe-
lastic coupling observed in Metglas 260053C [10]. A probabilistic model for
magnetostrictive and magnetic hysteresis in Terfenol-D compounds has been
proposed by Armstrong [11]. The critical stresses that eliminate hysteresis in
magnetostrictive materials were determined by Cullen et al. [12] for coherent
magnetization reversal. Curling nucleation modes in elastic infinite circular
ferromagnetic cylinder were studied in [13].

The main purpose of this work is to discuss, through micromagnetic princi-
ples, the role of shearing strains, applied mechanical loads and material parame-

ters on the magnetization and magnetostriction curves of magnetostrictive ultra-



thin films. Ultra thin films can be treated approximately as fine single domain
particles [14]. In the literature [15,16] the effects of stress and magnetostriction
on the magnetization are studied assuming additional terms in the magnetic
anisotropy energy density. In order to examine the combined effects of stress
and magnetostriction on the magnetization reversal, a simple Stoner-Waohlfarth
(SW) rotational model is introduced. Though the formulation is quite general
and can be applied to materials with positive or negative magnetostriction, the
discussion is limited to the case of cubic crystals with negative magnetostriction
and magnetocrystalline anisotropy, like Ni. The results obtained are compared

with those based on other models as well as on experiments.

2 The Variational Principle

According to the micromagnetic approach to the magnetomechanical problem
[4,5], the state of the deformable ferromagnetic material is described by the
magnetization vector u(z) per unit mass (u; p; = p2 = const.) and by the
displacement vector w(x). Stable equilibrium states correspond to minima of

the (Gibbs free energy functional
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where: F'{g;, pti 5, €:5) is the local internal energy per unit mass, e;; are the
infinitesimal strains (e;(z) = (wi; + 154)/2), wm is the magnetostatic self-
energy per unit volume, wy is the Zeeman energy density due to applied field
H" p, is the mass density in the undeformed configuration, f are the body

forces and T are the surface tractions.



In the present study we assume that the ultra-thin magnetostrictive film
extends infinitely in y and z directions. In its undeformed state the thin film
has its principal axes along the coordinate axes. The problem geometry is
shown in Fig. 1. The specimen is a single crystal of cubic symmetry with its
easy directions oriented along the coordinate axes, in the undeformed state. The

present analysis relies on infinitesimal uniform strains described by:
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Due to the assumptions made the Gibbs free energy functional (1) takes the
following form [4. 5],
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where: G = @ / Vo, K1 is the magnetoerystalline anisotropy constant, By, Bp
are the magnetoelastic constants, epq, €12, c4q are the elastic constants, T is

the uniform surface traction and g, is the magnetic permeability of vacuum.

Introducing the following dimensionless quantities:
g=G/ueM?, m= M. M, =cosb, o=T/uM?, h=H2M,
hi = 2K1 /ptoM2,  hmer = B1/toM?,  humes = BafpaM?,
het = (11 — c12)/oM?,  hes = cag /28 M2, (4)
oL =oceost 1y, og=csn2,

the dimensionless Gibbs free energy is given by
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The terms on the right hand side of (5) represent successively: the anisotropy
energy, the magnetoelastic energy, the Zeeman energy. the elastic energy and
the energy due to the uniform surface tractions. The reduced magnetoelas-
tic constants e and ho..; can be related to the saturation magnetostriction

constants Ajgg and Ay as follows [1?]:
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Minimization of the Gibbs free enersy (5) with respect to the magnetization m,
under constant strains ep, es results in the magnetic constitutive law for the

material that is:

A2
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where the first term on the right hand side of (7) is of a pure magnetic origin,
while the rest are due to magnetoelastic effects. Similarly, minimization of [5)
with respect to the strains e and eg, under constant magnetization m, results

in the following stress-strain constitutive laws:
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As expected, apart from the first term on the right hand sides of eqs. (8) and (%)

that represent the pure mechanical in origin strains, the second terms account



for the magnetostrictive strains. The stability conditions for the energy minima

(7-9) are the usual ones:

Kis0 (10)
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The conditions (10) and {11} are the well known stability criteria for ensuring
the positive character of the pure elastic quadratic energy form. Due to (12)
it is easily verified that the initial saturation state (m = +1) along the field

direction is a stable state only for
hmes 05 < 0, (13}

and since we our analysis is limited to materials with negative magnetostriction
{(hmes > 0, due to Egs. (6) and (10}), the condition (13) is satisfied for =/2 <
¥ < wand 37/2 < 3 < 2, since ¢ > 0. This is expected, since for materials with
negative magnetostriction, the stress direction becomes a hard axis (Mo <
0) and if it is oriented in a small angle from the applied field direction, the
magnetization has to overcome an energy barrier in order to be aligned with the

applied field. For Ni the reduce material constants are given in Table 1.

3 Magnetization and Magnetostriction Curves

We note that in the cases ¢ = 0, 7/2, 7 the effect of material parameters
(hi, hmety Ame) and applied stresses (#) on coercivity h. and remanence m,

can be determined analytically, while in any other case numerical treatment of



the problem is needed.

3.1 Casel (=0 )

In this case o5 = 0, o, = o and solving Eq. (7) for m results in at most three
real roots and thus a single jump in the magnetization curve that determines
coercivity. This jump corresponds to 8h/8m = 0. Since the magnetization curve
is stress dependent this jump may not exist (anhysteretic magnetization rever-
sal), provided that the stresses are larger than a critical value (&) determined

by the condition (8h/8m)m=o = 0:
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The coercivity corresponds to k. = h{m,.) with m,. the roots of 8h/8m = 0.

Thus, since
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the coercivity in given by
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and the remanence (k{m,) =0) by
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Equation (16) is analogous to the one obtained in the previous work on the effect
of longitudinal stresses and magnetostriction, on the magnetization reversal
[1,18]. From Eqs. (16) and (17) it is deduced that for o = 0 the increment

in the coercivity and the remanence, is of the order of 1072 for magnetoelastic



constant as large as Ame = 4 x 103, with Ay, = 0. This fact is illustrated in
Fig. 2, for the coercivity. Notice that due to (16) the coercivity for the case of
Ni decreases with the applied stress and vanishes for & > #,. There is a critical
region of stresses (¢ > og), where the hysteresis loop is rectangular, with the
coercivity identical to the nucleation field h,. The nucleation field is defined as
the field where the initial equilibrium saturation state along the field direction
becomes neutral (% = 0). This is obtained after substituting Egs. (8) and (9)

into (5) and linearizing the latter around the equilibrium state m = +1, that is:

hn _— _,_hk o hg‘ltl Ehi“s + hﬂﬂeiﬂ’_
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This linear dependence of h, on & is analogous to the problem studied in [1].
Then, the critical stress (o) for rectangular hysteresis is determined from the

condition {8h/8m)m=s1 =0
o =3hme — So.. {19)

For the case of Ni, #r < 0, and since ¢ > 0 there are no stresses for square
hysteresis loop. Longitudinal and shear magnetostrictive curves are plotted in
Fig. 3a and Fig. 3b for varving magnetocrystalline anisotropy constant. It is
evident that for the given material constants, the stability criteria {10-12) result
in hysteretic magnetostrictive curves. The sharp transitions observed along the
initial strain curves, in both Figs. 3a-b, at a critical field value, are due to the
crudeness of the model. It is obvious that for small anisotropy only small applied
magnetic fields are capable to produce the resultant length change (strain) in

the material. This is analogous to the case es = 0, studied previously [18].



Efficient performance of actuator devices require small anisotropies to produce
the strain in the material [20]. In Fig. 4a and Fig. 4b we plotted magnetostrictive
curves for varying applied stress o. It is obvious that longitudinal stresses, apart
from shifting the longitudinal strains along the strain axis [23], result, also, in
both er(h) and eg(h) curves in the formation of a “hard strain aris”. Thus,
it is confirmed that stresses serve as a way to change the magnetocrytsalline

anisotropy of the material.
3.2 Case 2 (v=m/2)

In this case 5 = ¢; = 0 and thus the applied stress has no effect on the magne-
tization and magnetostriction curves. This is expected, since we assumed that
the material is infinite along the stress direction. The coercivity and remanence
correspond to h.(c = 0) and m,{e¢ = 0) in Eqs. (16) and (17), respectively.

They can equivalently be rewritten as:
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3.3 Case3 (v#0,n 7/2)

In this case the equation k(m) = 0 has at most four real roots, which can not be
obtained analytically. Thus there are at most six jumps in the magnetization

curve determined by the solutions of the equation:

ah
5 =0 (22)



The nucleation field h, is identical to that of Eq. (18) after replacing o by
ap, and thus depends on the stress orientation h, = h,(o, ). Due to the
symmetry of the problem h (¢) = ho(r £ v¢) and m.(¢) = m.(7 £ ). The
numerical solutions of Eq. (22) are summarized in Fig. 5, where we plotted the
coercivity as a function of stress orientation o (Fig. 5a), for varying o, and as
a function of stress ¢ (Fig. 5b), for varying 1. We included in Fig. 5a and the
unstable branch of solutions (0 < ¥ < 7/2) since for materials with positive
magnetostriction (Amel, Ames < 0) these become stable ones. In the particular
case of Ni, the coercivities in Figs. 5(a-b) are as high as H. = 3.5 M, =~ 139kA/m
for applied stresses as high as T = 1.25 = lﬂﬂxaﬂeff =~ 250 MPa. The curves
labeled ¢ = = and /2 in Fig. 5b correspond to the analytical solutions (16)
and (20), respectively. For v # 7 a minimum is observed in the h.(7) curves,
for some applied stress. This stress dependence of coercivity has been observed
in experiments on amorphous ribbons and wires [21] and on pearlitic steel [22].
We also plotted and the remanence as a function of stress orientation angle 1,
for varving ¢ in Fig. 6a and as a function of ¢ for varying 4 in Fig. 6b. The
remanence in the stable stress orientation region (7/2 < ¢ < «), is always a
decreasing function of ¥+ and . Tvypical magnetization curves for some specific
points of the hq(1, o) surface (see Figs. Sa-b) are presented in Fig. 7. Notice
that for the case of Ni, hy; = 0 and thus the hyvsteresis loop can never become
rectangular (hy = h.). The field axis is normalized with respect to the anisctropy
field. Magnetostriction curves for longitudinal strains are plotted in Fig. 8 for

varying anisotropy constant, for stress ratio o5 /o = 4/5, with ¢ = 5x 10*, Like

10



in Fig. 3, small anisotropy needs only small applied field to produce the resultant
strain in the material. The difference with the Case 1 is that, by taking into
account shearing strains and for og # 0, the magnetostricive curves are more
realistic, in comparison with experiments, and do not show the sharp transitions
that are present for 1 = 0, #/2, 7. Finally, in Fig. 9 we plotted magnetostrictive
curves for longitudinal (Fig. 9a) and shearing (Fig. 9b) strains, for varying os,
with 71 = 6 % 10*. The magnetostrictive curves are also realistic and the
applied stresses seems to form a “hard strain azis”, as it is the case of Fig. 4.
This type of dependence of the magnetostriction curves on applied stresses has

been observed in related experiments [23, 24].
4 Conclusions

In the present study a simple SW rotational model is proposed for both fer-
romagnetic and magnetostrictive hysteresis. The model accounts for all types
of relations between material parameters. It is confirmed that the change in
the coercivity and remanence due to magnetostriction is a second order effect.
The effect of anisotropy on the magnetostrictive hysteresis dictates the region of
efficient performance of actuator devices. The effect of applied stresses seems to
be analogous to that of magnetocrystalline anisotropy, forming “easy” or “hard
strain axis”, for materials with positive or negative magnetostriction, respec-
tively. Inclusion of shearing strains (with gs # 0), in the model, resulted in
more realistic magnetostriction curves, in comparison to the case where only

pure longitudinal strains are taken into account [18]. Though the present study

11



is limited only to single ferromagnetic crystals, the minima in A.(e, ¥) curves
for 7/2 < 4 < 7 and 37/2 < ¥ < 27 are in qualitative agreement with related
experiments on amorphous ribbons and wires [21] and further examination is

needed in order to make this agreement quantitative.
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Figure 1: Problem geometry.

Figure 2: Variation of h, with hp (-4 < hy € -3.7 with step 0.1, Ay, = 0).

Figure 3: Magnetostriction curves (a) —er and (b) es, vs. h, with ¢ = 0 and
varving hg.

Figure 4: Magnetostriction curves (a) —eg and (b) eg, vs. h, with varying a.

Figure 5: (a) Coercivity h, vs. ¥ for 0 € ¢ < 1.2 x 10°, with step 1.5 x 10%.
(b) Coercivity he vs. o for 7/2 < ¢ < 237/32 (dashed lines) and 3r/d < ¥ < =
{full lines) with step =/32.

Figure 6: (a) Remanence m, vs. ¥, for 0 < ¢ < 1.2 x 10° with step 1.5 x 104
(b) Remanece m, vs. o for 7/2 < i < 7 with step #/16 and for v» = 2537 /256.

Figure 7: Typical magnetization curves at different parts of the h.(e, ¢) phase
diagram (Figs. 5- 6). (i) ¢ = 1.25 x 10%, ¢ = 7/2, (ii) ¢ = 1.25 x 105, ¢ =
97/16, (iii) ¢ = 4.2 x 10%, ¥ = 13x/16, (vi) ¢ = 5 x 10%, ¢ = 157/16, (v)
o=125x%10% ¢ =15%/16, (vi)e 2 0., ¥ = 7.

Figure 8: Magnetostriction curves —eg vs. h, with os/op = 4/5, ¢ = 5 x 104
and for varying hy.

Figure 9: Magnetostriction curves (a) —er and (b) es, vs. h, with op = 6 %
104, o5 = 201 tan v and for varying 1.



hk hmel hmca h'ﬁ! hea
-4.28 3581 1749 47752208 58307959

Table 1: Dimensionless material constants for Ni [1,19].
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