Mobile Agent Procedures: Metacomputing in Java®

Dimitrios Barelos Evaggelia Pitoura (contact author)
Computer Science Department Computer Science Department
University of Ioannina University of loannina
GR 45110, Greece GR 45110, Greece

pitoura@es.uoi.gr

(zeorge Samaras
Computer Science Department
University of Cyprus
CY 1678 Nicosia, Cyprus
csamara@turing.cs.ucy.ac.cy

Abstract

In this paper, we introduce Mobile Agent Procedures (MAPs) as an efficient, convenient and
transparent means of utilizing available networked computational resources. MAPs are mobile
remote procedures that are executed in the most appropriate site in a cluster of heterogeneous
workstations. Procedure migration is performed by middleware software transparently from the
application and without relying on operating system or compiler support. The implementation
platform for MAPs are mobile agents in Java.

1 Introduction

A metacomputer is a network of remote and heterogeneous computational resources linked by
software in such a way that they can be used seamlessly as a single computational unit. Over
the past years, the Internet has grown rapidly connecting millions of mostly idle machines. This
grow in conjunction with the development and widespread use of Java has set the scene for an
efficient and transparent way of utilizing this large number of available networked machines towards
metacomputing in the large.

In this paper, we introduce MAPs (Mobile Agent Procedures) as an efficient and convenient
means of metacomputing. MAPs extend RPCs by letting a procedure to be executed at the
most appropriate site among a cluster of Internet or intranet connected workstations. Procedure
migration is performed by middleware software transparently from the application and without
relying on operating system or compiler support. Being implemented as simple annotations to a
Java program, MADPs are easy to use.

The implementation platform for MAPs are mobile agents in Java. Since MAPs are solely
implemented in Java, they provide the same level of security, portability and heterogeneity as Java.
They can be executed at any machine independently of its platform or operating system.

“University of Ioannina, Computer Science Department, Technical Report No: 98-027

An additional benefit is the asynchronous nature of a MAP execution. Being implemented as a
mobile agent, a MAP may be launched to a site and return with the results when its assigned task
is completed. Furthermore, a MAP can change its route and be executed in a different site, for
instance when its initial destination site fails. Thus, MAPs work well in slow networks and with
intermittent connectivity. Moreover, MAPs can be used for programming using very light-weight
clients, such as palmtops, to efficiently transfer computation to more resource-capable devices.

The underlying support for MAPs include a load monitoring system that is also implemented
as middleware outside the operating system using the same Java mobile agent platform. The load
monitoring system keeps track of the available resources and their load. The system configuration
is dynamic: any networked machine can join or leave the MAP system either to contribute its
resource or to take advantage of the available resources. Using MAPs, the system automatically
adapts to the current load by appropriately moving computation around.

The rest of this paper is structured as follows. Section 2 introduces the MAP system and the
MAP client object model. Section 3 describes how the MAP system can be used for metacomput-
ing. In Section 4, related work is summarized briefly. Finally, Section 5 concludes the paper by
summarizing and presenting plans for future work.

2 The MAP System

The goal of the MAP system is to take advantage of the available networked workstations and
distribute the load among them in the best possible way and in a manner transparent to the user.
The workstations may be heterogenous running different operating systems or having different
system architectures.

The approach taken by MAP is that the programmer specifies which procedures to move. There
are three types of procedures: local, host-specific remote, and maobile remote. Local procedures are
procedures that are executed locally at the client. Host-specific remote procedures are procedures
executed remotely but at a specific network site. Finally, mobile remote procedures are procedures
that are executed at any from a number of network sites. The site of execution for a remote
mobile procedure is selected by the MAP-system transparently from the user based on the current
load. Mobile remote procedures can be relocated to a new site transparently from the user if
their destination site fails. In addition, remote procedures mask network disconnections from the
user, since they do not abort when a network failure occurs; instead they poll their sending site
repeatedly till the connection is re-established. The user can declare a procedure to be any of the
three types.

The platform for implementing MAPs is a Java-based mobile agent framework (see [KZ97] for a
survey of such frameworks). Each remote procedure is transformed transparently from the user into
a mobile agent. Mobile agents are processes that may be dispatched from a client computer and
transported to a remote server computer for execution. A Java-based agent framework provides
an agent server along with mobile agents that can migrate from server to server in some fashion
carrying their state with them. Our platform is the IBM’s Aglets Workbench [IBM]. The primary
server provided by this workbench is called Tuhiti, while the mobile agents are called aglets.

2.1 The MAP System Architecture

Sites act as clients or servers. Clients are the sites that send procedures for execution at other sites.
Severs are the sites that accept procedures for execution. A site may be both a client and a server.
In additions server brokers act as intermediates (Figure 1). Each server broker:

e keeps track of the system configuration, that is of the participating clients and servers,
» monitors the servers’ resources, and

e notifies the clients of any changes in the system load.

Clients P
MAPs = =
o
O =

and load information and load mformation

>
Remstration A “A;spaﬂun

Server Brokers

Figure 1: MAP’s Architecture.

To monitor the servers’ resources, the server broker creates a mobile agent called LoadCounter.
The LoadCounter agent visits the participating servers in turn. To compute the load of each server,
the LoadCounter takes into account:

¢ the number of mobile agents that are hosted in the given context,
e the available memory of the Java Virtual Machine,

e the response time of a simple benchmark that the LoadCounter submits at each server it
visits.

The server broker sends at each participating client information regarding the available servers
and their current load along with an indication of the “best” destination site. The client decides
where to send any mobile remote procedures using the following heuristic: it follows with probability
1 —a the broker's suggestion and with probability a chooses as destination one of the available sites
randomly, where 0 < @ < 1. This is done to avoid overwhelming any particular site.

2.2 The MAP Client Object Model

Figure 2 depicts the constituent parts of a client, where each component is implemented as a
mobile agent. There are two subsystems: the procedure subsystem and the MAP connection
subsystem. Before a procedure is transfered, a ProcedureStub agent is created. This agent is the

[Serwr’l‘ahk] LoginRequester |

Agent | Agent Map Connection Subgyslen

| Procedire Procedure

I Lati
Stub o Procedure Subsyslem

Figure 2: The Components of a MAP Client.

local part of the procedure. The ProcedureStub agent transforms the procedure to be executed into
a mobile agent called ProcedureImpl and provides it with the address of a destination site. The
Procedurelmpl moves to the specified address. After its execution, it returns to its ProcedureStub
with the results.

Besides scheduling its procedure for execution, each client must also register with the server
brokers. This is taken care of by the MAP client connection subsystem. To enter the MAP system,
the ServerTable Agent creates the mobile agent LoginRequester. The LoginRequester moves to
the server broker to negotiate the entrance of the client into the system. In case of success, it
returns with the table of available servers and their current load. It is the responsibility of the
ServerTable Agent to accept the tables that are subsequently sent by the server broker.

The class hierarchy of a MAP client is shown in Figure 3. A program, called for instance
aProgram, to be run as a MAP client, is defined by MAP to be a subclass of the MAP-system
defined class M AP _client. The M AP client class includes the following variables:

e contert : AgletContext: This is the context in which all procedures that are going to be
executed at remote sites are created as well as the context in which all procedures returning
from a remote site are placed.

e daemon : Daemon: implements the Agent Transfer Protocol (ATP). It listens at a specified
port for incoming aglets and places them in the right context.

e servers : HashTable: a table of all servers and their current ATP address.
» server_broker : String: The server broker’s address.

The aProgram class includes the procedures to be executed. A local procedure is just a method
of the aProgram class; the code of the method is the code of the local procedure. For a host-specific
or mobile remote procedure, two agents of class ProcedureStub and Procedurelmpl are created.
Besides being an aglet, the ProcedureImpl Base has the following characteristics:

e when the connection to the sending client is down, it periodically polls the sending client,
and

e if the destination site is down, it notifies the sending clients and asks for an alternative route.

The ProcedureStub passes the parameters of a remote procedure in a hash table. When
Procedurelmpl returns, it sends a message of type result to the ProcedureStub agent. In turn,

4

MAP_clivnt

Result
Notifier

n

C_:) MAP-system Clisses 1

—*= Suhclass Relatosship

Figure 3: The Client Object Model

ProcedureStub passes any results to the main program. A special parameter called ResultNotifier
acts as a semaphore to synchronize the execution of a remote procedure. When a remote procedure
is sent for execution, the execution of the main program is suspended. Execution of the main
program resumes, when the procedure returns with the result. Remote procedures can be exe-
cuted concurrently with each other, if the user defines them using a special MAP instruction called
parallel. In this case, the main program continues when all such defined procedures return.

The ServerTableAgent and the LoginRequester classes implement the MAP client connection
subsystem. A client gets the address of the broker(s) through a pair of programs called geturl and
urlsrv. The geturl program broadcasts a message in the local network asking for the address of
the broker. The urlsrv program is running at some of the nodes of the network and replies to the
message with the address of the broker.

3 Programming with MAPs

To use the MAP system, the user just needs to define the type (local, host-specific remote, or mobile
remote) of each procedure. This is done using a very simple declaration language, called MAPDL
(Mobile Agent Procedure Definition Language), the syntax of which is given in the Appendix.

The MAPGEN precompiler accepts as input the definitions of the procedures in MAPDL and
generates the code necessary for the program to run as a MAP client. The user just provides the
code for implementing the procedures and the main procedure that invokes them. MAPGEN works
as follows:

1. Reads the MAPDL input file to determine the type of each procedure (local, remote, or
remote mobile).

2. Checks whether the necessary source files for each procedure exist.
3. Produces the program code (.java files).

4. Creates a Makefile to be used in the final compilation (.class files).

procedures i

MAPDL main procedurs E implementations :
File (file main.impl) ;L)
\ ' /
MAPGEN
Procedure P

<Program_name=,java | Implcm:nlatinns

Figure 4: The steps for creating a MAP client

The step for creating a MAP client are illustrated in Figure 4.

An Example. Assume the following application: meteorological data are selected from various
remote stations and are used to make a prediction. There are three main procedures:

e Hostinfo get_data{URL host): that selects the data at each host,

o Forecast compute_forecast(MeteoData data): that makes the prediction using the data selected
(this is a resource-demanding task),

e void print_forecast{Forecast): that prints the results.

The get_data procedure is a host-specific remote procedure; the compufe_forecast procedure is
CPU-consuming and is implemented as a mobile remote procedure; while the print_forecast proce-
dure is a local one. To code the application, the user creates the MAPDL file called meto.map (Fig-
ure 5} that includes the definition of the types of the procedure and is given as input to the MAP-
GEN generator. The user also specifies three files namely the get_data.impl, compute_forecast.impl
and print_forecast.impl files that include the implementation of the three procedures as well as the
main.impl file that invokes them (Figure 5). The rest is left to the MAPGEN compiler.

4 Related Work

MAPs provide a simple annotation to a Java program towards utilizing the available networked
resources. The idea of process migration and load balancing in workstation clusters is not new.
Recent approaches include Condor [Con|, Globus [Glo] and the NOW projects [NOW]). Most of
these approaches require users to have login access to the machines as well as maintaining binaries
for all architectures participating in the computation.

There are many recent research proposals, complementary to ours, that utilize Java towards
using available networked resources in a seamless manner. MILAN [MIL] is a research project

nuin.impl metermap

.
Vector meteaDatz = new Vecton();] r impert mesga.*
Vector hosts = new Vector(k, |
I
A pdd zll hosts Program Forecast

I
HostInfo get_duta(URL host):host_speeitic;

I . o Farecast compure_forecasi{vector MeteaDatu): remobe_mabibe;
Hastlnfo = ger_datal (URLje-nextElemeni(] void prini_forecasyForecast forecast);

while {Enusteration e = hosvelements(y, e hasMoreElements();)

MeteoDuta.add Element(infa);]
b
0 ready Lo forecast -
Forecnst fo = new Farecusi(),
Fe = compute_forecasumetealata);
print_forecasti},
end of main i:r.;||

Figure 5: MAP Example.

aiming to provide services for transparent management and utilization of networked resources. In
the MILAN project, Charlotte [BKKW98] provides a Java-based infrastructure for metacomputing
on the web. It provides a distributed shared memory abstraction at the programming language
level, load balancing and fault masking, through eager scheduling where a task can be submitted
to several servers. The Java Market [AAB9S]| follows a web-centric approach: users can contribute
their machine’s computational resources by just pointing a Java-capable browser to the Java Market
web page, while similarly, they can launch jobs to the system by posting them on the Web.

Other projects include Javelin [CCIT97], ATLAS [BBBY96], SuperWeb [AISS97] and ParaWeb
[BSST96]. Javelin [CCIT97] and SuperWeb [AISS97] allow machines connected to the Internet to
make their idle resources available to remote clients through Java-enabled Web browsers. ATLAS
[BBB96] combines Java and the Cilk programming model to allow the execution of parallel mul-
tithreaded programs on networked computing resources. Paraweb [BSST96] provides extensions
to the Java programming environment and the Java runtime system that allow programmers to
develop new Java applications that exploit parallelism.

5 Summary and Future Work

We have designed and implemented the MAP system: a system that allows procedures to be exe-
cuted at the most appropriate site among networked connected machines. The main characteristics
of the MAP system include:

e it is easy to use: the user just defines the type of a procedure,

it is platform and operating system independent,

MAPs are asynchronous thus they work well with slow networks or intermittent connectivity,

MAPs are appropriate for light-weight clients,

load balancing is attained.

We are currently locking in various ways of improving our system. The issues we are looking
into include: the frequency of collecting load information and of transferring this information to

clients, more sophisticated ways of calculating the system load, and means of accounting and billing
for the server resources used by clients. We are also investigating the integration of MAPs with
our mobile agent prototype for web database access [PSP99].

References

[AAB98] Y. Amir, B. Awerbuch, and R. S. Borgstrom. The Java Market: Transforming the Internet
into a Metacomputer. Technical Report CNDS-98-1, Center for Networking and Distributed
Systems, John Hopkins Univ., 1998,

[AISS97] A. D. Alexandrov, et. al. SuperWebh: Research Issues in Java-Based Global Computing. Con-
currency: Practice and Ezperience, June 1997.

[BEB96] J. E. Baldeschwieler, R. D. Blumofe, and E. A, Brewer. ATLAS: An Infrastructure for Global
Computing. In Proceedings of the Tth ACM SIGOPS European Workshop on System Support
for Woldwide Applications, 1996,

[BKKW98] A. Baratloo, et. al. Charlotte: Metacomputing on the Web. International Journal of Future
Generation Computer Systemns, 1998, To appear.

[BSST96] T. Brecht, et. al. ParaWeb: Towards World-Wide Supercomputing. In Proceedings of the Tth
ACM SIGOPS European Workshop on System Support for Woldwide Applications, 1996.

[CCIt97] P. Cappello, et. al. Javelin: Internet-Based Parallel Computing Using Java. Concurrency:
Practice and Ezperience, November 1997,

[Con] The Condor Project. www.cs.wisc.edu/condor.
[Gla] The Clobus Project. www.globus.org.
[IBM] IEM. Aglet Workbench, www.trl.ibm.com.jp/aglets.

[KZ97) J. Kiniry and D. Zimmerman. A Hands-on Look at Java Mobile Agents. IEEE Internet Com-
pufing, pages 21-30, July 1997,

[MIL] The Milan Project. www.cs.nyu.edu/milan/milan /index.html.

[NOW)] The NOW Project. http://now.cs.berkeley.edu/.

[PSP99] S. Papastavrou, G. Samaras, and E. Pitoura. Mobile Agents for WWW Distributed Database
Access. In Proceedings of the 15th International Conference on Data Engineering, 1999, To
appear.

Appendix: The Syntax of MAPDL

<definition file> — <import_definition> <const_definition> <program.definition>

<import.definition> — ¢ | <import.definition> “import” <import.fileid> *"

<const_definition> — € | <const.definition> “const” <const_type> <const_id> “=" value %"

<program_definition> — “program” <program name._id> “{" <proc_decllist> “}"

<program.decl_list> — € | <proc_decl list> <return_type_id> <procedurename.id> “(” param._list
“7 gmodifier deel> 7"

<param_list>> — € | <param.decl> | <param list> “,” <param.decl>

< param_decl> — <param-type_id> <param name_id>

<modifier.decl> — ¢ | %" “local” | “” “remote_mobile” | “" “host_specific”

Notes

— The <import.definition> and <const_definition>> declarations follow the exact Java syntax.
— If all procedures are defined local, the code produced does not invoke the aglets framework.
— The default type for a procedure is local.

