STRATIFIED NEGATION IN TEMPORAL LOGIC PROGRAMMING
AND THE CYCLE SUM TEST

P. RONDOGIANNINS

25-98

Preprint no. 25-98/1998

Department of Computer Science
University of loannina
451 10 loannina, Greece



Stratified Negation in Temporal Logic Programming and the
Cycle Sum Test*

P. Rondogiannis

Department of Computer Science, University of Ioannina
P.0O. Box 1186, GR-453110 Ioannina, Greece
e_mail: prondo@cs.ucl.gr

Abstract

We consider stratified negation in temporal logic programming. We demonstrate that
the cyele sum test (which was initially proposed for detecting deadlocks in the context of
temporal functional programming) can also be used as a syntactic stratification test for
tempaoral logic programming. Therefore, on the one hand we exhibit a class of temporal
logic programs with negation which have a well-defined semantics, and on the other hand
we provide further evidence that the cycle sum test is a fundamental one in the area of
temporal programming.
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1 Introduction

Negation in logic programming has received considerable research attention largely due to its
applications in areas such as artificial intelligence and deductive databases. From a semantic
point of view, the addition of negation in classical logic programming is far from straightfor-
ward and many different approaches have been developed [PP90, AB94]. One of the earliest
such approaches is the so-called stratified negation [ABWS88]. Intuitively, a stratified logic
program is one in which negation is not used in a circular way, and this (syntactically deter-
minable) condition ensures that the program has a unique perfect model. Stratification was
generalized by T. Przymusinski [Prz88] to local strafification which is more powerful but can

In this paper, we consider stratified negation in temporal logic programming (and more
specifically in the context of the temporal logic programming language Chronolog [Wad$s,
OWY2a, OW92b]). The simple stratification test of [ABW88] appears to be too restrictive for
temporal logic programming with negation: even the simplest programs, that have an obvious
meaning, fail to pass the test. Consider for example the following Chronolog program:

first plal.
next p(X) « - p(X).
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The declarative reading of the above program is: “p is true of a at time 0. Moreover, p is
true of X at time ¢ + 1 if p is not true of X at time t”. A temporal model of the program
that suggests itself is the one in which p is true of a at the time points 0,2.4,.... However,
the simple stratification test fails for the above program, due to the circularity in the second
clause.

Programs such as the above one are not however truly circular. The meaning of tem-
poral logic programs depends on an implicit time parameter which needs to be taken into
consideration or otherwise most programs would have to be rejected. In other words, an
effective stratification test for temporal logic programming should also examine for temporal
circularities in the program.

In [Wad81] W. Wadge developed the cycle sum test which ensures that a given tempo-
ral functional program of the language Lucid [WAS5], is deadlock free. The test was later
extended by S. Matthews [Mat95] to a wider context (but still in the area of functional
programiming).

We show that the test is also applicable in the area of temporal logic programming with
negation, and we demonstrate that programs that pass the test have a well-defined semantics.
Our contribution is therefore twofold: on the one hand we exhibit a class of temporal logic
programs with negation which have a clear meaning, and on the other hand we provide further
evidence that the cycle sum test is a fundamental one in the area of temporal programming
in general.

The rest of the paper is organized as follows: section 2 contains preliminary material on
temporal logic programming. Section 3 presents a transformation algorithm from temporal
logic programs into classical ones, in such a way that the model theory of the initial programs
is preserved. Section 4 defines the cycle sum test for the classical logic programs that result
from the transformation. Section 5 demonstrates that programs passing the cycle sum test
have a well-defined meaning. Section 6 concludes the paper with a discussion of possible
extensions.

2 Preliminaries: Temporal Logic Programming

The temporal logic programming language we consider here is the language Chronolog [Wad88,
OW92a, OW92b]. As an informal introduction to the language, consider the following
Chronolog [Wad88] program that simulates the operation of the traffic lights:

first light(green).

next light(amber) + light(green).
next light({red) + light(amber).
next light(green) + light(red).

The syntax of Chronolog programs is an extension of the syntax of classical logic pro-
grams [L1087] with two temporal operators, namely first and next. The declarative reading
of these operators will be discussed shortly. A temporal reference is a sequence (possibly
empty) of the above operators. We will often write next® to represent a sequence of k next
operators. A canonical temporal reference is a temporal reference of the form first next”.
An open temporal reference is a temporal reference of the form next®. A temporal atom is an
atom preceded by either a canonical or an open temporal reference.



In this paper we consider an extension of Chronolog that allows negation in the bodies of
the rules of a program (and any reference to Chronolog in the rest of the paper will concern
this particular extension).

A temporal clause in Chronolog is a formula of the form:

where H, Aq,..., Ar,B1,...,Bn are temporal atoms and &k, m > 0. If £ = m = 0, the clause
is sald to be a unit temporal clause. A temporal program is a finite set of temporal clauses.

Chronolog is based on the relatively simple femporal logic TL, which uses a linear notion
of time with unbounded future. The set of time moments can then be modeled by the set A/
of natural numbers. The operator first is used to express the first moment in time (i.e. time
(), while next refers to the next moment in time. The syntax of the formulas of TL is an
extension of the syntax of first-order logic with two formation rules: if A is a formula, then
so are first A and next A.

The semantics of temporal formulas of TL are given using the notion of temporal inter-
pretation [OW92a, OW92b]:

Definition 2.1. A temporal interpretation I of the temporal logic T'L comprises a non-empty
set D), called the domain of the interpretation, over which the variables range, together with
an element of D for each variable; for each n-ary function symbol, an element of [D" — D];
and for each n-ary predicate symbol, an element of [N" — 2"].

In the following definition, the satisfaction relation &= is defined in terms of temporal
interpretations. =;; A denotes that a formula A is true at a moment ¢ in some temporal
interpretation I.

Definition 2.2. The semantics of the elements of the temporal logic TL are given induc-
tively as follows:

1. If f(eg,...,en—1) is a term, then I(f(ep,....e,—1)) = I(f)(I(eg),...,I(en-1)).

2. For any n-ary predicate symbol p and terms eg,....e,_1,

=1t —A iff it is not the case that =y A
i AABIff EriAand=, B
FitAVBIiff ErpAorkEnR B

=it (Yx)A iff Ejjayxe A for all d € D, where the interpretation I[d/x] is the same as
I except that the variable x is assigned the value d.

=rp first A iff =10 A
8. Ercnext A iff Frp A
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If a formula A is true in a temporal interpretation I at all moments in time, it is said to
be true in I (we write =y A) and I is called a model of A.

The semantics of Chronolog are defined in terms of temporal Herbrand interpretations. A
notion that is crucial in the discussion that follows. is that of canonical atom:



Definition 2.3. A canonical temporal atom is a temporal atom whose temporal reference
is canonical.

As in the theory of classical logic programming [L1087], the set Up generated by constant
and function symbols that appear in P, called Herbrand universe, is used to define temporal
Herbrand interpretations. Temporal Herbrand interpretations can be regarded as subsets of
the temporal Herbrand Base Bp of P, consisting of all ground canonical temporal atoms whose
predicate symbols appear in P and whose arguments are terms in the Herbrand universe Up
of P. In particular, given a subset H of Bp, we can define a Herbrand interpretation I by the
following:

(€g,....en-1) € I(p)(t) iff first next’ p(ep,...,eq—1) € H

A temporal Herbrand model is a temporal Herbrand interpretation, which is a model of the
program. In the rest of the paper when we refer to a “model of a program” we always mean
a temporal Herbrand model.

3 The Classical Counterpart of a Temporal Program

In this section we demonstrate that a temporal logic program can be easily transformed into a
classical one whose model theory is closely related to that of the initial program. Intuitively,
given a temporal program P we obtain its classical counterpart P* by adding to the predicates
of P an extra parameter that represents explicitly the notion of time.

The transformation can be formalized as follows:

e Replace every canonical temporal atom first next® p(eg,...,e,—1) in P by the classical
atom p(s*(0),eq,...,en_1).

e Replace every open temporal atom of the form next® p(eg,....e,-1) by the classical
atom p(s*(T),eo,...,en-1)-

e In the body of every clause that contains at least one open temporal atom, add the
atom nat(T) (whose purpose is to restrict the time parameter to obtaining only natural
number values). Also, add to the program the axiomatization of nat.

In the following, we will also refer to the programs that result from the above transformation
as time-classical logic programs. Moreover, terms of the form s¥(0) will be called (ground)
time-terms.

The above transformation algorithm is illustrated by the following example:

Example 3.1. Consider the following temporal logic program:

first next p(0).
next next p(X) + — next p(X).

The transformation described above results in:
p(s(0),0).
pls(s(T)),X) « - p(s(T),X), nat(T).
nat(0).
nat(s(X)) + nat(X).

which is the classical counterpart of the initial program.



Definition 3.1. A Herbrand interpretation of a time-classical program is called normal if:

1. The only atoms regarding the predicate nat that it contains are all the atoms of the
set Nat = {nat(s*(0)) | k= 0}.

2. All the other atoms that it contains are of the form p(s*(0),eq,...,€s—1), where k = 0.

The following theorem can then be easily established:

Theorem 3.1 Let P be a temporal logic program and P* be its classical counterpart. Then,
there is a one-to-one correspondence between the temporal Herbrand models of P and the
normal Herbrand models of P*.

Proof: Given a temporal Herbrand model I of P, obtain a classical interpretation I" by
replacing every canonical ground temporal atom first next® pleg,...,en_1) in I by the clas-
sical atom p(s*(0).eq,...,en—1). It can be easily shown that I* U {nat(s*(0)) | k> 0} is
a model of P*. Similarly, when given a normal Herbrand model of the classical program P*
one can easily obtain a temporal Herbrand model of P. ]

We see therefore that from a model theory point of view, a temporal logic program is closely
related to its classical counterpart. In the rest of this paper, we will consider and analyze the
classical counterpart of a given temporal logic program.

4 The Cycle Sum Test

The classical programs that result from the transformation defined in the previous section
have a specific structure: the first argument of each predicate corresponds to the implicit
time parameter of the initial temporal program. In this section, we show that the special
structure of these programs allows us to define a syntactic test (the eycle sum test), which
when passed, ensures that the time-classical program is locally stratified [Prz88]. It is well
known [Prz88] that locally stratified logic programs have a unique perfect model, which is
taken as their intended meaning. Due to the model correspondence Theorem 3.1, we can
then take the corresponding temporal Herbrand model as the intended meaning of the initial
temporal program.

In the following, we formally define the cycle sum test which is applied to the classical
logic programs that resulted from the transformation of section 3.

The following definitions are needed:

Definition 4.1. Let A be an atom appearing in a time-classical logic program. Then,
time(A) is the term that corresponds to the first argument of A.

Definition 4.2. Let P* be a time-classical logic program and C be a clause in P*. Let H
be the head of C and A be an atom (different from nat({T)) in the body of C. The temporal
difference dif between H and A is defined as follows:

k —m, if time(H) = s*(0) and time(A) = s™(0)

k—m, if time(H) = s*(T) and time(A) = s™(T)
k—m, if time(H) = s*(T) and time(A) = s™(0)
—0x, if time(H) = s*(0) and time(A) = s™(T)

dif(H,A) =
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Intuitively, the value of dif(H, A) expresses how far (ie. how many time-points) in the
worst case the head H of a clause leads the atom A in the body of the clause. In particular,
the value —oc used in the last case of the above definition, signifies that in this case it is not
possible to determine a finite integer value by which the head leads the atom in the body in
the worst case (because the head refers to a specific moment in time while the atom in the
body has an open temporal reference).

Example 4.1. Consider the following temporal logic program:

next p(X) + next next q(X), — first r(X).
first next next p(X) + next gq(X).

The corresponding time-classical logic program is (we omit the clauses for nat):

p(s(T),X) + ql(s(s(T)),X), = r(0,X),nat(T).
p(s(s(0)),X) + q(s(T),X),nat(T).

Then, using the definition of dif we have:

diflp(s(T) ,X).q(s(s(T)),X)) = -1
dif(p(s(T) ,X),r(0,X)) =
dif[p(s(s(0)}),X), q(=(T),X)) = -0

The following definition formalizes the notion of cycle sum graph of a given time-classical
logic program.

Definition 4.3. Let P* be a given time-classical logic program. The eycle sum graph of
P" is a directed weighted graph CGp- = (V, F). The set V' of vertices of CGp- is the set
of predicate symbols appearing in P*. The set E of edges consists of triples (p,q, w), where
p.q€V and w € Z2U {—o0}. An edge (p,q,w) belongs to E if in P* there exists a clause
with an atom H as its head and an atom A in its body, such that the predicate symbol of H
is p, the predicate symbol of A is q and difiH, A) = w.

We can now state the cycle sum test:

Definition 4.4. A time-classical logic program P* passes the cycle sum test if the sum of
weights across every cycle in CGp- is positive.

Example 4.2. The lights program of section 2 can be also coded using negation in the bodies
of the clauses:

first light(green).

next light(amber) + - light(red),— light(amber).
next light(red) + - light(green),— light(red).
next light(green) + - light(red),— light(green).

The above program can easily be shown that passes the cycle sum test.



In the following section we show that every time-classical logic program passing the cycle
sum test is locally stratified and therefore has a well-defined meaning.

There is an important difference between the test described above and the usual stratifi-
cation tests for classical logic programming. Given a classical logic program with negation, a
stratification algorithm usually constructs a program dependency graph [PP90] and the edges
of the graph are labeled as positive or negative depending on whether they “connect” the head
of a program clause with a positive or negative literal in the body of the clause. The cycle
sum test as defined above, does not take into consideration positive and negative edges, and
it is therefore possible that certain positive programs will not be directly acceptable by the
test. For example, consider the following:

first p(a).
p(X) « next p(X).

This program is not directly acceptable by the test (the cycle sum graph contains a cycle
with weight —1) but it obviously has a well-defined meaning under the standard semantics of
temporal logic programming.! The obvious solution is to define as acceptable all the programs
that are either positive or pass the cvcle sum test.

We believe however that a refinement of the test that would additionally take into account
positive and negative edges is possible although not straightforward (this is further discussed
in the concluding section). In this article we restrict attention to the formulation of the test
given by Definition 4.4.

5 Justification of the Cycle Sum Test

In this section we show that time-classical logic programs passing the cycle sum test are locally
stratified and therefore have a unique perfect Herbrand model. The following definitions are
NEecessary:

Definition 5.1. [PP90] Let P be a classical logic program (with negation). The dependency
graph DGp of P is a graph whose vertex set is the Herbrand base Bp of P and whose edges
are determined as follows: if A and B are two atoms in Bp, there exists a directed edge from
A to B if and only if there exists an instance of a clause in P whose head is A and one of
whose premises is either B or =B. In the latter case, the edge is called negative.

Definition 5.2. [PP90] Let P be a classical logic program (with negation). For any two
ground atoms A and B in Bp we write A < B if there exists a directed path in the dependency
graph of P leading from A to B and passing through at least one negative edge. We call the
relation < the priority relation between ground canonical atoms.

The following theorem from [PP90] actually defines the notion of local stratification in
terms of the priority relation <:

Theorem 5.1 [PP90] A logic program P is locally stratified if and only if every increasing
sequence of ground atoms under < is finite.

!However, notice that programs such as the above in fact contain some form of deadlock [Wad81] and are
in a sense against the spirit of temporal logic programming which views predicates as infinite streams [Wad88).



Notice that given a time-classical logic programs P*, there is a close relationship between
the structure of the cycle sum graph CGp- and the dependency graph DGp-. The following
(graph theoretic) definition is needed before stating Lemma 5.1 helow:

Definition 5.3. [Har72] Let G be a directed graph. A walk in G is a sequence of vertices
and edges, vg, €1, 1, . ., €, Uy in which each edge e; connects v;_y with v;. A closed walk has
the same first and last vertices.

Lemma 5.1 Let P* be a time-classical logic program. Then, a directed path in DGp- corre-
sponds to a walk in CGp-.

Proof: Let vg. €1, v1,...,€n, Uy be a directed path in DGp-. The graph DGp- is constructed
in a similar way as the graph CGp- by looking at the structure of the clauses of P*. The
main difference is that the vertices of DGp- are terms of the Herbrand base of P* while the
vertices of CGp- are predicate names appearing in P*. Therefore, there exists a corresponding

sequence of vertices and edges vl el . v}, ...,e ,v" in CGp-, such that each v} refers to the
q 02 =1 V1 1
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same predicate name p; as v;. The only difference is that while all of the v;’s are distinct as
they are different terms of the Herbrand base of P*, the v}’s might not be all distinct because

they are predicate names (and not terms). =

The lemma given below will be used in the following discussion:

Lemma 5.2 Let W be a closed walk in o directed graph G. Then, there exists a sequence of
(not necessarily distinct) cycles Ci,...,Cy in G such that: (i} if an edge appears m times in

W then it also appears in exactly m of the cycles, and (ii) every edge that appears in a cycle
also appears in W.

Proof: By induction on the length of the walk W. u

The following theorem demonstrates that programs passing the cycle sum test are locally
stratified. The proof uses Lemmas 5.1 and 5.2.

Theorem 5.2 Let P* be a time-classical logic program that passes the cycle sum test. Then
P* is locally stratified.

Proof: Assume that P* is not locally stratified. This means that there exists an infinite
increasing sequence A; < Az < --- of atoms of the Herbrand base of P*. Each atom in the
sequence corresponds to a clause of the program whose ground instantiation has the atom
as its head. As the sequence is infinite, there exist infinitely many atoms of the sequence
that correspond to the same clause of the program, say C. These atoms form an infinite
subsequence B, < By < --- of the initial sequence.

Consider now two atoms B; and B;,; from the new sequence. The first argument of B; is
of the form s*(e), where k > 0 and e is either 0 or a non time-term. Moreover, by Definition
5.2, there exists a directed path from B; to B;;, in the dependency graph of P*. By Lemma
5.1, this path corresponds to a walk in the cycle sum graph of P*, which is in fact a closed
walk because B; and B;,; are atoms having the same predicate name. A closed walk can be
decomposed into a number of cycles (Lemma 5.2) and therefore by the cycle sum test, the
sum of the weights that correspond to the edges of the walk is positive. Alternatively, the first



argument of B; leads the first argument of By, by a positive amount (i.e., the first argument
of By, is either of the form s™(e) or s™(0), with m < k). Consequently, the first arguments
of the members of the sequence B decrease in complexity and therefore the sequence can not
be infinite. This is a contradiction, which implies that program P* is locally stratified. L]

Theorem 5.3 Let P* be a time-classical logic program that passes the cycle sum test. Then
P* has a unigue perfect model which is also normal.

Proof: By Theorem 5.2, P* is locally stratified, which means that it has a unique perfect
model M* [Prz88]. This model obviously contains the set Nat = {nat(s*(0)) | k= 0} due
to the two clauses in P* that define the predicate nat. We need to further show that M*
does not contain any other atom regarding the predicate nat and that it only contains atoms
of the form p(s*(0),ep,...,e,-1). Consider the interpretation N* that results if we remove
from M* all atoms regarding the predicate nat that do not belong to Naf and all atoms that
are not of the form p(s*(0),eq,...,e,—1). We have N* C M*. It can be easily shown that
every ground instance of a clause in P* is true under N*. Therefore, N is also a model of
P*, which contradicts the fact that perfect models are minimal models [Prz88]. =

From the above discussion, we conclude that given a temporal logic program P, if its
classical counterpart P* passes the cycle sum test, then P* is guaranteed to have a unique
perfect model M* which is normal. Therefore, by Theorem 3.1, there exists a temporal
Herbrand model M of P, which we take as the intended meaning of P.

6 Conclusions

In this paper we have developed a syntactic test (the cycle sum test) for temporal logic
programs with negation. Programs that pass the test are guaranteed to have a well-defined
meaning. In particular, the test represents an application of the notion of local stratification
in the context of temporal logic programming.

Obviously, not all locally stratified programs can be detected and in fact, as noted in
section 4, certain positive programs are not directly acceptable by the test. The obvious
solution is to define as acceptable all the programs that are either positive or pass the cycle
sum test. We conjecture that an extension of the test can be devised that can handle a
significantly broader class of temporal logic programs with negation and which directly accepts
positive programs. Such an extension would probably rely on a generalized cycle sum graph,
which apart from the integer weights would also contain indications of whether edges are
positive or negative. The notion of “sum” across cycles would then have to be generalized to
take into account the new indications.

Another interesting topic for further research would be the consideration of other temporal
logic programming languages, that use an extended set of temporal operators or that are
based on different notions of time. One interesting such case is that of branching-time logic
programming [RGPY7] in which the set of possible worlds of the underlying branching-time
logic is the set of lists of natural numbers. Such a language would require a more powerful
cycle test which would have to be applicable to the more complicated underlying set of possible
worlds.
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