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Abstract

We address the problem of probability density function {pdf) estimation using a Gaus-
sian mixture model updated with the EM algorithm. In order to circumvent the major
drawback of the approach, i.e., the ignorance of the total number of mixing kernels, we
define a new measure for Gaussian mixtures, called total kurtosis, which is based on the
weighted sample kurtoses (fourth moments) of the kernels. This measure provides an
indication of how well the Gaussian mixture fits the data. Then we propose the algo-
rithm KEM (Kurtosis-EM) which monitors the total kurtosis at each step of the EM
algorithm in order to decide dynamically on the correct number of kernels and possibly
escape from local maxima. We show the superiority of our technique in approximating
unknown densities through a series of examples with several pdf estimation problems.

1 Introduction

The Gaussian mixture model [16] has been proposed long ago as a general model for estimat-
ing an unknown probability density function (pdf). The virtues of the model lie mainly with
its good approximation properties and the variety of estimation algorithms that exist in the
literature [11, 16]. The model assumes that the unknown pdf can be written as a weighted fi-
nite sum of Gaussian kernels, with different mixing weights and different parameters, namely,

means and covariance matrices. Then, depending on the estimation algorithm, an optimum
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vector of these parameters is sought that optimizes some criterion. Most often, the estima-
tion of the mixture is done by the maximum likelihood method, aiming at maximizing the
likelihood of a set of samples drawn independently from the unknown pdf [12].

One of the first algorithms that were used for Gaussian mixture modelling was the
Expectation-Maximization (EM) algorithm, a well-known statistical tool for maximum like-
lihood problems [8]. The algorithm provides iterative formulae for the estimation of the
unknown parameters of the mixture, and can be proven to monotone increase in each step
the likelihood of the input samples [11]. However, many researchers have argued about the ef-
ficiency of EM for Gaussian mixtures, since it requires an initialization of the parameter vector
near the solution and assumes that the total number of mixing kernels is known beforehand.

To overcome the above limitations, we propose in this paper an extension to the original
EM algorithm that we call Kurtosis-EM (KEM) algorithm. KEM is a dynamic EM algorithm
that starts with a small number of kernels K (usually K = 1) and performs EM steps in
order to maximize the likelihood of the data, while at the same time monitors the value of
a new measure of the mixture, called total kurtosis, that indicates how well the Gaussian
mixture fits the input data. This new measure is computed from the individual weighted
sample kurtoses, or fourth moments, of the mixing kernels, a quantity defined in analogy to
the weighted means and variances of the kernels and was first introduced in [19]. Based on
the progressive change of the total kurtosis, KEM performs kernel splitting and increases the
number K of kernels in the mixture. This splitting aims at making the absolute value of the
kurtosis as small as possible.

By performing dynamic kernel allocation, KEM manages to find a good estimation of
the number of kernels of the mixture, while it does not require any prior initialization near
the solution. As experiments indicate, our approach seems to be superior to the original
EM algorithm in approximating an unknown pdf. This fact renders it a good alternative for
Gaussian modelling, especially in cases where little or no information about the pdf to be
approximated is available in advance,

In the neural networks literature, a feed-forward network that implements a Gaussian
mixture is the Probabilistic Neural Network [14]. The network uses one Gaussian kernel for
each input sample, while the variance of each kernel is constant and known and the mixing
weights are equal to the reciprocal of the total number of inputs. The network can be regarded
as a distributed implementation of the Parzen windows method [9]. Some of the limitations
of the original network model were relaxed in subsequent works [17, 1, 15, 13, 18), leading



to network models that implement some variations of the EM algorithm. However, in most
approaches the number K of kernels of the mixture is considered known in advance, and it
turns out that the automatic estimation of K is a difficult problem [16, 12].

Statistical methods or neural network models for estimating the number of kernels of
a Gaussian mixture have been proposed in the literature [16, 7, 4, 13, 3]. However, the
former usually cannot satisfy the necessary regularity conditions for estimating the asymptotic
distributions of the underlying tests, and thus have to resort to costly heuristic techniques,
e.g., Monte Carlo bootstrapping, for obtaining a solution.

In Section 2 we revise the use of Gaussian mixtures as models for probability density
estimation, and we describe how the EM algorithm can be used for obtaining maximum like-
lihood solutions. Then, in Section 3 we present our method, the Kurtosis-EM algorithm. We
first define the new measure of total kurtosis that is needed by the algorithm and then de-
scribe how KEM uses this measure for producing better solutions. We consider the univariate
case only. Work is under progress to extend the definition and use of total kurtosis in higher
dimensions. Section 4 gives experimental results from the application of the algorithm to pdf

estimation problems, while Section 5 summarizes and gives hints for future research.
2 Gaussian mixture modelling with the EM algorithm

2.1 Gaussian mixtures

We say that a random variable x has a finite mixture distribution when the probability density
function p(z) of £ can be written as a finite weighted sum of known densities, or kernels, f(z).
In cases where f(z) is the Gaussian pdf we say that z follows a Gaussian mixture.

For the univariate case and for a number K of Gaussian kernels, the unknown mixture is

written
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parameterized on the mean p; and variance crf. In order for p(z) to be a probability density
function with integral 1 over the input space, the additional constraint on the weights m; of

the mixture must hold
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The Gaussian mixture model is general and under regular conditions it may approximate
every continuous function having a finite number of discontinuities (universal approximation
theorem [5]). Also, compared to other pdf models, the Gaussian mixture model exhibits a

number of attractive properties:

# It yields continuous and differentiatable functions.
« [t assumes no discretization of the input space.
» It does not require the whole training set beforehand.

# Under appropriate conditions, it may also approximate nonstationary distributions.

For the estimation problem, we assume a training set X of n independent and identically
distributed samples of the random variable z, taking values from an input space, e.g., in the

univariate case the real line IR, and write
X =(21,...,2a), @€ER. (4)

Training aims at finding the number of kernels K and the optimum vector 8* of the 3K

parameters of the mixture

6’=(T{,_P!.I._CF;,....Iﬂ'lr!p:lr,_UEcL (5)

which leads to an approximation of the unknown pdf p(z).

For the estimation of the optimmum vector #*, we try to maximize the likelihood p(X) =
plz1)---plz,) of the training set with respect to the unknown parameter vector 8. The point
8" of the parameter space that maximizes the above funection is called the maximum likelihood

estimate and constitutes a solution to the problem:

6° = arg iax L), L@ = ][] plz). (6)
EX
Although efficient methods exist for the estimation of the 3K parameters of the mixture

from a set of samples of x, the automatic estimation of K remains a difficult problem [12].

2.2 Maximum likelihood solutions with EM

The EM algorithm [2, 11, 8] is a powerful statistical tool for finding maximum likelihood
solutions to problems involving observed and hidden variables. The algorithm applies in cases

where we ask for maximum likelihood estimates for some observed variables, or observations,
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but we do not know the exact form of their probability density function. Instead, we know
the joint density of these variables and the hidden variables.

At each EM step the algorithm computes the quantity
Q(616") = Ey[logp(X,Y|6)| X, 6" (7)

which is a function of the parameter vector # and which is obtained by averaging the logarithm
of the joint density of X and Y, conditioned on 8, over the hidden variables Y, given the
observations X and the current estimate of the parameter vector ') (E step). Then, a better
estimate §*+1) of the parameter vector is computed as the value that maximizes the quantity
Q (M step). Alternating these two steps, the EM algorithm can be shown [11] to monotone
increase the likelihood of the observations X, thus yielding an optimum #% in the maximum
likelihood sense.

The problem of estimating an unknown Gaussian mixture by maximizing the likelihood of
the parameter vector # can be regarded as a problem with hidden variables and thus solved by
using the EM algorithm. In this case, the hidden variables are the kernels the input samples

statistically belong to, while each EM step provides an improved estimate of the parameters

T, ij, and o; of each kernel 7, j = 1,..., K. These iterative formulae can be shown [15, 12]
to be
(t+1) Losigss
" = L L PUR) (8)
i=
(£41) n L Plil|z;) =;
'l._t' 1} — i=1 JIT; i 0
g Pz 3!
n piile) (2 {t+1), 2
G_E(H—:] - z;:=] Ul&'i] {l; — ) (10)
4 =1 Plilz;) ’

f) t) (1)
) £ (il o)

Plilz) = ~—=Cr oy (11)

where the index t + 1 denotes the next (better) approximation of a parameter based on its
previous value at . It is easy to see that the priors m; satisfy the condition Z:;-; 1%; = 1 after
applying the above formulae for all kernels.

It is useful here to make a qualitative analysis of the above formulae. In each EM step we
use the posterior probability P(j|z;) that a sample z; belongs statistically to kernel j when
the prior probability of the latter is m;, and which is computed by applying the continuous

version of the Bayes' theorem. This quantity P(j|z;) is computed for every kernel j from
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Figure 1: Likelihood function and local maxima.

the previous estimates of the parameters 7;, u;, and o; for this kernel and input z;. This
quantity is summed over all input samples x; for the estimation of the new priors m; (8), is
summed weighted by the inputs z; for the estimation of the new means (9), and is summed
weighted by the square distances of the input samples z; to u; for the estimation of the new
variances af; (10). In analogy to the formulae of the sample moments in statistics [20], the
estimated parameters in each EM step of the EM algorithm can be regarded as weighted

sample moments of the inputs X, with the weights being the posterior probabilities P{j|z;).

2.3 Convergence

In problems of Gaussian mixtures, due to the nonlinearities of the underlying densities with
respect to the parameters p and o, the likelihood function exhibits almost surely local maxima
or saddle points. In Fig. 1 it is shown a typical likelihood function for a problem of a Gaussian
mixture, where a number of local maxima are evident. It is reasonable, therefore, to ask from
a maximum likelihood method to escape from such local maxima and converge to the global
maximum,

Although the EM algorithm monotone increases in each EM step the likelihood of the
observations, it cannot ensure convergence of the parameter vector 8° to the global maximum
of the parameter space [11]. The algorithm may easily get stuck to a local maximum or saddle
point, Moreover, so far we have assumed a known number of mixing kernels and thus have
obtained the iterative solutions (8)—(10). In practice, though, this is hardly true: K is usually

unknown and has also to be estimated from the input samples. These two constraints hamper



severely the efficiency of the EM algorithm.

Unfortunately, for the estimation of the number K of mixing kernels we cannot use the
maximum likelihood method. Maximizing the likelihood with respect to the number of kernels
implies choosing one kernel for each input sample of X, with the kernel mean coinciding with
the sample. Apparently, such a solution would lead to a large number of kernels, equal to the
cardinality of X, giving rise to overfitting problems.

Concluding, it appears that the EM algorithmn for Gaussian mixtures suffers from the
problems of the local maxima and the unknown number of kernels. In order to overcome
these two problems on-line, i.e., while the algorithm evolves, we need a measure of the quality
of the approximation at any instant, as an indicator how well the model fits the data. A
bad fitting would necessitate a change to the parameter vector, or even an increase of the

dimensionality of the parameter space. In the following we touch these issues.

3 The Kurtosis-EM algorithm for Gaussian mixtures
3.1 The total kurtosis measure

Having assumed that the random variable z follows a Gaussian mixture actually implies
that the input samples x; originate from K Gaussian kernels. Moreover, using the posterior
probability (11) that a sample x; statistically belongs to a kernel j, each input sample can be
regarded as originating from one of the kernels j with probability P(j|z;).

The basic idea behind pdf estimation using Gaussian mixtures is that the distribution
of samples in a local region can be approximated by a Gaussian kernel. Nevertheless, if the
number of kernels is not adequate for a given pdf, this assumption may not be valid, and
the approximation results may be poor. Thus, although the parameters of the kernels, i.e.,
means and variances, are correctly estimated from the weighted sample moments of the input
samples (9)—(10), it is probable that the fit is not adequate. In Fig. 2 we show such a case:
the input samples (vertical bars) follow a bimodal distribution while EM tries to fit them to
a single Gaussian kernel. In this case, there is no way to use the first two moments {mean
and variance) of the kernel to reveal this hidden multimodality.

To overcome the above inefficiencies, it is reasonable to resort to higher moments in order
to decide whether kernel j fits adequately the samples lying in its vicinity. One indicator of

this type is the fourth sample moment, called kurtosis (k) that is defined for a kernel with
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Figure 2: Wrong fitting: the EM algorithm tries to fit the input samples (vertical bars) to a
Gaussian kernel, while the samples actually follow a bimodal distribution.

mean ¢ and variance o as
1 n
k== lai-w)/a]* -3 (12)
=1

where the term 3 makes the quantity zero if the data follow the Gaussian distribution [10].
In analogy with the definitions of weighted sample moments (9)-(10), we define the

weighted kurtosis of a Gaussian kernel 7 as the quantity

4
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Although difficult to prove analytically, experiments showed that in the case where the data

(13)

originate from a Gaussian mixture, then the weighted kurtosis of each kernel of the mixture
is approximately zero. Intuitively, we expect this to be true for a mixture of well-separated
kernels where the posteriors are almost one for samples belonging to the correct kernel and
almost zero for distant samples. In this case, (13) reduces to the original definition of kurto-
sis (12) for all kernels. On the other hand, if for some kernel j the distribution of the samples
in its vicinity is non-Gaussian, the associated weighted kurtosis x; deviates from zero to a
positive or negative number.

To test how large this deviation is for the whole mixture, a new measure is needed that
weighs the deviation k; of each kernel according to its importance 7; for the whole mixture.

In this sense, we define a new quantity called total kurtosis as

K
K’T = Zﬂjlﬁj.‘- (1'1'-]
i=1

which is a weighted sum over the individual kurtoses of the kernels of the mixture. The abso-

lute values are needed to compensate for the individual kurtoses taking positive or negative

values,



The total kurtosis K1 can be regarded as a measure of how well a Gaussian mixture fits
the data, since a low value (near zero) indicates that each individual kernel fits naturally
the samples in its vicinity, therefore the mixture constitutes a good approximation to the
unknown pdf that generated the samples. On the other hand, a large value of the total
kurtosis means that there are kernels that do not fit adequately their corresponding samples,
or their parameters (mean and variance) are not properly adjusted.

The measure of kurtosis is important since the value of the likelihood alone does not
provide much information regarding the effectiveness of the fit. For example, by using the
EM algorithm we arrive at a solution of maximum likelihood for a specific number of kernels,
but we cannot be sure whether the solution constitutes an acceptable approximation to the the
unknown pdf; the two densities may differ significantly based on other distance measures [6].
On the other hand, we know that a lower bound for the total kurtosis is the zero value.
Therefore, we can expect that the lower the total kurtosis value of the obtained solution is,
the better is the approximation of the unknown pdf.

As an example, consider the approximation of two unknown pdfs using a Gaussian mixture
with K = 10 kernels. The first pdf was a Gaussian mixture with four components, while
the second was a uniform pdf. The maximization of the likelihood provided solutions with
likelihood values -12202 and -11732 respectively. These values contain no information of
how well the obtained solutions approximate the corresponding pdfs. As expected, the first
solution accurately approximated the known Gaussian mixture, while the second solution was
only a coarse approximation to the uniform pdf. The total kurtosis of the solutions was 0.03
and (.31 respectively for the two cases. This means that the total kurtosis value revealed that
the first approximation was accurate, while the second approximation was coarse. In general,
although it is not easy to prove it theoretically, solutions of lower total kurtosis, provide better
fit to the samples compared to solutions with higher total kurtosis. In the following section we
propose a technigue based on the EM algorithm that automatically increases the number of
kernels based on the value of the total kurtosis of the mixture. We call this dynamic technique
the Kurtosis-EM {KEM) algorithm.

3.2 The Kurtosis-EM algorithm

Based on the definition of the total kurtosis presented above, we have developed a new
technique for pdf estimation based on Gaussian mixtures that exploits the EM algorithm for

parameter estimation and automatically adjusts the number of kernels K using criteria based



on the total kurtosis of the mixture. The proposed algorithm is based on the idea that we
try to maximize the likelihood by performing EM steps that in general lead to a decrease of
the total kurtosis value.

More specifically, we start with a small number K of kernels (usually K is selected from one
to three) and perform EM steps using the K kernels. These EM steps adjust the parameters
of the kernels so that the likelihood is increasing and the total kurtosis is decreasing. This
procedure is continued until either a local maximum of the likelihood is encountered or the
total kurtosis reaches a minimum value and starts increasing. We distinguish between these
two cases. In the first case a local maximum of the likelihood is also a local minimum of the
total kurtosis, since no further update of the parameters is possible. If this happens, we check
the value of the total kurtosis and, if it is sufficient low, we accept the solution, otherwise we
consider that the solution is inadequate. Then, using the current local maximum parameters
of the kernels, we create a new initial point for the EM algorithm by splitting one of the
kernels in two as it will be described later in this section.

In the second case where the total kurtosis starts increasing without the likelihood having
reached yet a local maximum, we consider that the EM algorithm has made its best in
trying to fit each Gaussian to the given samples. Consequently, more kernels are needed to
approximate the samples better. Therefore, if an EM step leads to an increase in the value
of the total kurtosis, this is considered as the event that triggers the split of a kernel in two
kernels in order to provide the capability for better approximation of the unknown pdf by
the Gaussian mixture. After splitting, the K + 1 kernels continue to be updated at each
step using the EM algorithm. In general, the splitting of the kernel leads to a decrease in
the value of total kurtosis. Nevertheless, in some cases it is possible that, due fo hmproper
initialization of the two new kernels, the value of the kurtosis temporarily increases for some
steps, until the kernels move to the right positions and the kurtosis starts decreasing again.
For this reason, for a number of EM steps after a split, no further splits are permitted, since
we allow the kernels to move to their appropriate positions even if this temporarily leads to
an increase of the total kurtosis (of course, since EM steps are performed, the value of the
likelihood always increases at each step).

Once we have decided when to perform kernel splitting by monitoring the value of the total
kurtosis after each EM step, it remains to specify which kernel will be selected for splitting.

A deviation of the total kurtosis K7 from zero implies that the weighted kurtosis & of one

or more kernels deviates also from the zero value, Therefore, a reasonable selection criterion is
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to split the kernel j that contributes most significantly to the high value of the total kurtosis,
i.e., we select the kernel with the highest value of m;|%;|. The two new kernels that are created
have means equal to p; + o; and uj — o; respectively, and variances both equal to ;. Their
priors are also set equal to 7;/2.

Finally, we must also specify termination criteria for the proposed method. Since the EM
algorithm converges for fixed number of kernels, we must specify criteria for disabling kernel
splitting in future steps. Consequently, the EM algorithm will converge to a maximum value
of the likelihood. A criterion of this kind is a measure of the effectiveness of the split: we
keep the value of the total kurtosis at the time of a split and the corresponding value at the
time of the next split. If the difference is very small, we consider that splitting is no longer
effective and from that time on, we keep the number of kernels fixed and perform EM steps
until reaching a local maximum of the likelihood.

The algorithm just described, that dynamically adds kernels based on the value of the total
kurtosis, is called Kurtosis-EM, or simply KEM. The attractive feature of KEM compared
to EM is that KEM requires no initial knowledge about the number K of the kernels of
the mixture. KEM starts using a small number of kernels, and adds kernels in the mixture
dynamically, while the algorithm evolves. Moreover, it requires no initialization at a point
which is already near the optimum solution, as is the case with EM, while, by dynamically
increasing the number of kernels, the algorithm is capable of potentially escaping from local
maxima of the likelihood function, and thus leading to a better approximation of the unknown
pdf.

The KEM algorithm is summarized below. In the following description €;.es are user
defined variables, limit denotes the number of steps after the last splitting during which a
new splitting is not allowed, nosteps denotes the number of steps after the last splitting and
Kpiit denotes the total kurtosis value at the time of the last split. Moreover if the variable

enableSplitting is set equal to 1 then no further kernel splitting is allowed.

1. Initialization: Set the initial number K of kernels and initialize the parameters of the

kernels {means and variances).

2. Compute the initial value of the total kurtosis K-}"-M and the initial value of the likelihood

L"'!d,
3. Set nosteps := 0, Ky := K:‘.’J!“r, enableSplitting .= 1.

(a) Perform an EM step. Set nosteps := nosteps + 1.

11



(b) Compute the new value of the total kurtosis K7** and the new value of the likeli-
hood L™%.
(¢) Check for convergence: if |[L™" — L] < ¢; goto step (f).
(d) If (K3 > Kfj‘i} and (nosteps > limnit) and (enableSplifting = 1) then
o Perform kernel splitting,.
o K :=K+1, nosteps := 0.
Kl ;= Kpew, [0 .= [new
Compute Kje¥, Lnew
If | Kprit — K7¥%| < €2 then enableSplitting := 0.

e Set Kot == K%ew

(e) Goto step (a)

(f) If (K3 is not small enough) and (enableSplitting = 1) then
s Perform kernel splitting.
o K :=K +1, nosteps := 0.
o ool = pnen gold i peew

Compute K3*%, L7

If | Kopiit — K3*| < £ then enableSplitting := 0.

Set K&piit = K3

Goto step (a)

4. end

4 Examples

To assess the effectiveness of our approach we have conducted experiments with data drawn
independently from known distributions, which in turn we tried to approximate using the
KEM algorithm and the conventional EM algorithm. After training, we tested the accuracy
of the obtained approximations with respect to the true pdf’s.

In every problem considered, we have created a data set of n = 5000 points drawn in-
dependently from the corresponding pdf to be approximated. In all experiments the EM
algorithm started with the means of the K kernels being uniformly distributed within the

range of the data, while the deviance & of each kernel was set equal to 0.5. On the other
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Figure 3: The approximation of a Gaussian mixture pdf with four kernels.

hand, the KEM algorithm always started with K = 1 kernel with mean in the center of the
data range and & also equal to 0.5.

We have considered four one-dimensional problems: i) a Gaussian mixture pdf with four
kernels, ii) a a Gaussian mixture pdf with five kernels iii) a pdf with three uniform kernels
and iv) a pdf with two Gaussian and two uniform kernels.

In all experiments, since the original pdf g(z) is known, we could compute the theoretically
optimal log-likelihood L for the specific set of samples z; (i = 1,...,n) drawn from the

respective pdf
n
L=7% logg(z:) (15)
i=1

4.1 Example 1

In this experiment we have generated samples using the following Gaussian mixture pdf:

g(z) = 0.25A(=7,0.5) + 0.25NM(=3,1) + 0.25N(3,1) + 0.25A(7,0.5)

13
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Figure 4: The approximation of a Gaussian mixture pdf with five kernels.

where A'(u, o) is the normal distribution with mean p and standard deviation o. The value
of the theoretical likelihood was L = —12201.

Fig. 3 displays the original pdf g(x) as well as the obtained solutions using the KEM and
the EM algorithms. The EM algorithm was applied on K = 4 kernels and provided accurate
solution with [ = —12201.4 and total kurtosis Kr = 0.03. The KEM algorithm was able to

identify the correct number of kernels and provided an accurate solution with K = 4 kernels
having L = —12201.9 and K7 = 0.033.

4.2 Example 2
In this experiment we have generated samples using the following pdf:
glz) = 0.2N(=7,1) + 0.2M(-3,0.5) + 0.2A7(0,3) + 0.2N(3,0.5) + 0.2N(7, 1)

The value of the theoretical likelihood was L = —13382.6.

Fig. 4 displays the original pdf g(z) as well as the obtained solutions using the KEM
and the EM algorithms. The EM algorithm was applied on K = 5 kernels and was stuck

14
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Figure 5: The approximation of a uniform pdf with three kernels.
in a local maximum with L = —13718 and total kurtosis Ky = (0.35. On the contrary, the

KEM algorithm provided a much better solution with K = 6 kernels having L = —13385 and
Kr = 0.062.

4.3 Example 3

In this experiment we have generated samples using a mixture of uniform kernels:
(z) = lU{ 10, -7) 4 IL’{ 2 E}J—IUT 10)
our) = 3 f T 3 3 T 3 { 1

where U(a,b) is the pdf of the uniform distribution in [a,b]. The value of the theoretical
likelihood was L = —11513.4.

It is known that the Gaussian mixture method encounters difficulties in approximating
uniform pdfs. This fact was confirmed by our experiments (Fig. 5), however the KEM algo-
rithm was still able to give better solutions than EM. KEM yielded a solution with K = 13
kernels having L = —11673 and total kurtosis K = 0.22. EM, tested on K = 13 kernels,
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Figure 6: The approximation of a pdf with two Gaussian and two uniform kernels.

gave a worse solution compared to KEM: the likelihood value was L = —11825 and the value
of the total kurtosis was Ko = 0.36.

4.4 Example 4

Finally we have conducted experiments with the following pdf consisting of two Gaussian and
two uniform kernels:

g(z) = 0.25N(=7,0.5) + 0.25U/(=3,—1) + 0.25U(1, 3) + 0.25\(7,0.5)

The value of the theoretical likelihood was L = —10492.

The obtained solutions are shown in Fig. 6. The KEM algorithm provided a solution with
K = 12 kernels having L = —10577 and total kurtosis K¢ = 0.15. The EM algorithm was also
tested with K = 12 kernels, but again the obtained solution was worse compared to KEM:
the likelihood value was L = —10730 and the value of the total kurtosis was K+ = 0.31.

As a conclusion, we can state that the dynamic addition of new kernels which is guided

by monitoring the value of the total kurtosis makes the KEM algorithm an effective approach
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that yields considerable improvement over the classical EM algorithm. Moreover, as shown
in examples 1 and 2, KEM algorithm has the ability to approximately identify the number
of Gaussian kernels of an unknown Gaussian mixture pdf, which is of major importance in

many applications.

5 Conclusions

An approach has been presented for Gaussian mixture modelling which dynamically adjusts
the number of mixing kernels. For this reason we have defined the total kurtosis measure as
an indication of how well a Gaussian mixture fits the data. The proposed KEM algorithm
constitutes an adaptation of the well-known EM algorithm that monitors the value of the
total kurtosis and increases the number of kernels in the case where this measure starts
increasing. The increase in the number of kernels is performed through splitting of the kernel
that contributes more significantly to the value of the total kurtosis. In this sense the KEM
algorithm proceeds by performing both likelihood maximization and kurtosis minimization.
The increase in the number of kernels stops when no further progress in the minimization of
the kurtosis seems possible. Experimental results on several test problems indicate that the
KEM algorithm constitutes a promising dynamic alternative to the EM approach. In this
work we have examined the univariate case. Current work focuses on a multi-dimensional
definition of the weighted kurtosis (and the total kurtosis) and the application of the KEM
algorithm to pdf estimation problems of higher dimensionality. Moreover, we aim at testing
the effectiveness of the KEM algorithm on several applications where the EM approach has

already been employed, e.g., classification, robotics etc.
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