Locating Objects in Mobile Computing*

Evaggelia Pitoura George Samaras’
Department of Computer Science Department of Computer Science
University of Ioannina University of Cyprus
GGR 45110 Ioannina, Greece CY 1678 Nicosia. Cvprus
pitoura@es.uoi.gr csamara dturing.cs.ucy.ac.cy

Abstract

In current distributed svstems, the notion of mobility is emerging in many forms
and applications. Mobility arises naturally in wireless computing, since the location of
users changes as they move. Besides mobility in wireless computing, software mobile
agents are another popular form of moving objects. Locating objects, ie., identifving
their current location, is central to mobile computing. In this paper, we present a
comprehensive survey of the various approaches to the problem of storing, querving.
and updating the location of objects in mobile computing. The fundamental techniques
underlying the proposed approaches are identified, analyzed and classified along various

dimensions.

Keywords: Mobile computing, location management, location databases, caching, repli-

cation

1 Introduction

In current distributed systems, the notion of mobility is emerging in many forms and ap-
plications. Increasingly many users are not tied to a fixed access point but instead use
mobile hardware such as dial-up services or wireless communications. Furthermore, mobile
software, i.e.. code or data that move among network locations, is emerging as a new form
of building distributed network-centric applications. In the presence of mobility. the cost of
communicating with a mobile user or using mobile code and data is augmented by the cost
of searching for their current location.

Mobility arises naturally in wireless mobile computing [11, 15. 30] since as mobile users
move, their point of attachment to the fixed network changes. Future Personal Communi-

cation Systems (PCSs) will support a huge user population and offer numerous customer

*University of loannina, Computer Science Department. Technical Report No: 98-020
'Contaet Author

services. In such systems, the signaling and database traffic for locating mobile users is ex-
pected to increase dramatically [43]. Thus, deriving efficient strategies for locating mobile
users, i.e., identifying their current location. is an issue central to wireless mobile computing
research.

Besides mobility tied to wireless hardware. data or code may be relocated among differ-
ent network sites for reasons of performance or availability. Mobile software agents [42, 1] is
a popular such form of mobile software. Mobile agents are processes that may be dispatched
from a source computer and be transported to remote servers for execution. Mobile agents
can be launched into an unstructured network and roam around to accomplish their task
[2]. thus providing an efficient, asynchronous method for collecting information or attaining
services in rapidly evolving networks. Other applications of moving software include the
relocation of a user’s personal environment to support ubiquitous computing [44], or the
migration of services to support load balancing. for instance the active transfer of web pages
to replication servers in the proximity of clients [7].

In this paper, we present a comprehensive survey of the various approaches to the
problem of storing. querying. and updating the location of objects in mobile computing.
The emphasis is on the fundamental techniques underlying the proposed approaches as
well as on analyzing and classifying them along various dimensions. By identifying various
parameters and classifving elemental techniques, new approaches to the problem can be
developed by appropriately setting the parameters and combining the technigues.

The rest of this paper is structured as follows. In Section 2. we introduce the location
problem and its variations. In Section 3, we present the two most common architectures
for location directories, i.e., directories that hold the location of moving objects: one is
a two-tier architecture based on a pair of home/visitor location databases; the other is a
hierarchically structured one. In Section 4. we discuss optimizations and variations of these
architectures. In the following sections, we introduce a number of approaches that have been
proposed to reduce the cost of lookups and updates in both architectures. In particular,
in Sections 5 and 6. we discuss caching and replication of location information at selected
network sites and in Section 7, we present forwarding pointer techniques that only partially
update the location directories. In Section B, we present a taxonomy of the approaches
presented. In Section 9, we focus on issues related to concurrency and faunlt-tolerance and
in Section 10 on issues related to answering complex queries about the location of moving

objects. We conclude in Section 11 by summarizing.

Extreme 27 -7 | Aeall sites
Mk RN infEreation ik T

§

Al stective sites -

Availabiliy

8

Serof locations

v

Extreme I
tipp=rogkeate and exact
aformarian ar all s

Figure 1: Approaches to Saving Location Information

2 Location Management

In mobile computing, mobile objects, e.g.. mobile software or users using wireless hardware.
may relocate themselves from one network location to another. To enable the efficient
tracking of mobile objects, information about their current location may be stored at spe-
cific network sites. In abstract terms, location management involves two basic operations.
lookups and updates. A lookup or search is invoked each time there is a need to locate
a mobile object, e.g.. to contact a mobile user or invoke mobile software. Updates of the
stored location of a mobile object are initiated when the object moves to a new network
location. In the rest of this section, we first provide an overview of the problem and then

introduce network architectures that are commonly associated with mobile computing.

2.1 Overview

Approaches to storing location information range between two extremes. At one extreme.
up-to-date information of the exact location of all users is maintained at each and every
network location. In this case, locating a user reduces to querying a local database. On the
other hand, each time the location of a user changes, a large number of associated location
databases must be updated. At the other extreme, no information is stored at any site
of the network. In this case, to locate a mobile user a global search at all network sites
must be initiated. However, when a user moves, there is no cost associated with updating

location databases.

Between these two extremes, various approaches that balance the cost of look-ups against
the cost of updates are plausible. These approaches compromise the availability, precision or
currency of the location information stored for each user (Figure 1). In terms of availability.
choices range between saving the location at all network sites to not storing the location at
all. In between these two approaches, location information may be maintained selectively
at specific network sites. There is a wide range of selection eriteria for the sites at which to
save location information for each user. For example, a choice may be to save the location
of users at the sites of their frequent callers. Imprecision in location information takes many
forms. For instance, instead of maintaining the exact location of the user, a wider region
or a set of possible locations is maintained. Currency refers to when the stored location
information is updated. For instance, for highly mobile users it may make sense to defer
updating the stored information about their location every time the users move. When
current and precise information about a user’s location is not available locally, locating the
user involves a combination of some search procedure and a number of queries posed to

database storing locations.

2.2 Underlying Network Architecture

The networking infrastructure for providing ubiquitous wireless communication coverage
is represented by the personal communication system (PCS) also known by a number of
different names such as personal communication network (PCN) and UMTS (universal
mobile communication system). While the architecture of the PCS has not evolved vet, it
is expected that it will be partially based on the existing digital cellular architecture (see
Figure 2 adapted from [15]). This network configuration consists of fixed backbone networks
extended with a number of mobile hosts (MHs) communicating directly with stationary
transceivers called mobile support stations (MSS) or base stations. The area covered hy
an individual transceiver's signal is called a cell. The mobile host can communicate with
other units, mobile or fixed, only through the base station at the cell in which it resides.
Thus to communicate with a mobile user. the base station of the cell in which it currently
resides must be located. As a mobile host moves, it may cross the boundary of a cell. and
enter an area covered by a different base station. This process is called handoff and may
involve updating any stored location information for the mobile host. It is speculated that
ubiquitous communications will be provided by PCS in a hybrid fashion: heavily populated
areas will be covered by cheap base stations of small radius (picocells); less populated areas

will be covered by base stations of larger radius; and farm land. remote areas and highways

Wireleas radio celf

o "Mkl T
e W e
L (]

= -\-\-\-‘-__
ese i il
P o et | | Hem
/ Hiird e
7 B) -
- .- "ﬂ_-\.,_— I - Il'uh_'h.._.-. L
| Tl Fixed Nerwork — Ju= - tioet
PR Fe y . =% .} '
1Mt] —— L — i P .
v 1) F by ’
Pt | Mbps o Gibps) F, L o
sotite % b A0 fEios]
Hiow | —] A Wirgless radio cell
Fisad Fisaal Vi
; s Hire Hiet /
A v L J |/
A
M v

Wireless LAN cel
Figure 2: Wireless Computing Architecture

with satellites that will provide the bridge between these different islands of population
density.

PCSs involve two types of mobility: terminal and personal mobility [26]. Terminal
mobility allows a terminal to be identified by a unique terminal identifier independent of its
point of attachment to the network. Personal mobility allows PCS users to make and receive
calls independently of both their network point of attachment and a specific PCS terminal.
Each mobile user explicitly registers itself to notify the system of its current location. The
granularity of a registration area ranges from that of a single cell to a group of cells. Once
the registration area is identified. the user can be tracked inside this area using some form
of paging. Paging is the process whereby to locate a mobile user, the system issues polling
signals in a number of likely locations. By changing the size of a registration area, the
flexibility of any combination of registration and paging is attained [32]. If not explicitly
stated otherwise. we use the term cell or zone as synonyms with registration area to indicate
a uniquely identifiable location where a mobile user can be found.

In the cellular architecture, three levels are involved: the access, the fixed, and the intel-
ligent network [43]. The fized network is the wired backbone network. The access network
is the interface between the mobile user and the fixed network. The intelligent network is
the network connecting any location registers, i.e., registers used to store information about
the location of mobile users. This network is used to carry traffic related to tracking mobile
nsers. The Signaling System No. 7 (SS7) [24] and its signaling network is a good candidate
to carry the signaling traffic in the intelligent network.

Location management is handled at the data link or networking layer transparently

on

from the layers above it [39], each time a call is placed or a change in the network point
of attachment occurs. Location management is an issue present at all wireless networks
(e.g.. cellular. wireless LANs, satellites). Although most solutions so far relate to cellular
architectures at the data link layer and to wireless LAN architectures at the networking
layer, most are general enough to be applicable to different layers and architectures. In
addition to handling mobility at lower layers, the need for information about the location
of moving objects is encountered at the application level as well. Applications may need
information about the location of mobile users to answer a variety of queries that involve
location (e.g.. find the nearest restaurant) [16]. Other applications may involve updating
environmental parameters and selecting locally available computing resources (e.g., nearest
printer) [27]. There is no standard way for applications to acquire and use location infor-
mation. For example, applications may choose to maintain their own data structures for
storing location information.

The cellular architecture is not the sole infrastructure for wireless mobile computing.
In its absence, various techniques may be employed to identify the current location of
mobile users, for instance. users may be equipped with a Global Positioning System (GPS)
13, 12]. GPSs are space-based radio positioning systems that provide three-dimensional
position, velocity and time information to suitably equipped users anywhere on or near the
surface of the Earth. Common applications in this area include digital battlefields in the
military context and transportation systems in the civilian industry [45]. Finally, besides
mobility tied to wireless hardware, the techniques presented in this paper are also applicable
when the objective is to locate mobile code and data. Furthermore, similar techniques are
also necessary when instead of location, the objective is to efficiently retrieve other profile
information related to mobile users. This information may include QOS-related parameters

OT BeTVICES,

3 Architectures of Location Databases

In this section, we describe basic architectures for distributed databases used for storing the
location of moving users. The first is a two-tier scheme in which the current location of each
moving user is saved at two network locations. The other is a tree-structured distributed
database in which space is hierarchically decomposed in sub-regions. Finally. we describe a

graph-theoretic approach that employvs regional directories.

3.1 Two-tier Schemes

In two-tier schemes. a home database, termed Home Location Register (HLR), is associated
with each mobile user. The HLR is located at a pre-specified for each user network location
{zone) and maintains the current location of the user as part of the user’s profile. The
search and update procedures are quite simple. To locate a user x. x's HLR is identified
and queried. When a user = moves to a new zone, r's HLR is contacted and updated to
maintain the new location.

As an enhancement to the above scheme, Visitor Location Registers (VLRs) are main-
tained at each zone. The VLR at a zone stores copies of profiles of users not at their home
location and currently located inside that zone. When a call is placed from zone i to user
x. the VLR at zone i is queried first and only if the user is not found there, is x's HLR
contacted. When a user & moves from zone ¢ to j, in addition to updating x's HLR. the
entry for x is deleted from the VLR at zone i. and a new entry for = is added to the VLR
at zone j.

The two prevailing existing standards for cellular technologies, the Electronics Industry
Association Telecommunications Industry Associations (EIA/TIA) Interim Standard 41 (I5-
41) commonly used in North America and the Global System for Mobile Communications
(G5M) used in Europe, both support carrying out location strategies using HLRs and VLRs
[26]. At the Internet networking level, extensions of the IP protocol for routing based on
the HLR/VLR scheme is provided in the IEFTP (Internet Engineering Task Force) Mobile
IP protocol [21].

One problem with the home location approach is that the assignment of the home
register to a mobile object is permanent. Thus. long-lived objects cannot be appropriately
handled. since their home location remains fixed even when the objects permanently move
to a different region. Another drawback of the two-tier approach is that it does not scale well
with highly distributed systems. To contact an object, the possibly distant home location
must be contacted first. Similarly, even a move to a nearby location must be registered at a

potentially distant home location. Thus. locality of moves and calls is not taken advantage
off.

3.2 Hierarchical Schemes

Hierarchical location schemes extend two-tier schemes by maintaining a hierarchy of loca-
tion databases. In this hierarchy. a location database at a higher level contains location

information for users located at levels below it. Usually, the hierarchy is tree-structured.

In this case. the location database at a leaf serves a single zone (cell) and contains entries
for all users registered in this zone. A database at an internal node maintains information
about users registered in the set of zones in its subtree. For each mobile user. this infor-
mation is either a pointer to an entry at a lower level database or the user’s actual current
location. The databases are usually interconnected by the links of the intelligent signaling
network, e.g.. a Common Channel Signaling (CCS) network. For instance. in telephony,
the databases may be placed at the telephone switches. It is often the case that the only
way that two zones can communicate with each other is through the hierarchy: no other
physical connection exists among them.

We introduce the following notation. We use the term LCA(i.j) to denote the least
common ancestor of nodes ¢ and j. A parameter that affects the performance of most
location management schemes is the relative frequency of move and call operations of each
user. This is captured by the call to mobility ratio (CM R). Let C; be the expected number
of calls to user P, over a time period T and U; the number of moves made by F; over T, then
CMR; = C;/U;. Another important parameter is the local call to mobility ratio LCMR; ;
that also involves the origin of the calls. Let C; ; be the expected number of calls made from
zone j to a user P, over a time period T, then the local call to mobility ratio LCMHR, ; is
defined as LCMR; ; = C; ;/U;. For hierarchical location schemes. the local call to mobility
ratio (LCM R; ;) for an internal node j is extended as follows: LCMR; ; = 3, LCMR; ;.
where k is a child of j. That is, the local call to mobility ratio for a user P and a internal
node j is the ratio of the number of calls to P; originated from any zone at j's subtree to
the the number of moves made by F;.

The type of location information maintained in the location databases affects the relative
cost of updates and lookups as well as the load distribution among the links and nodes of
the hierarchy. Let’s consider first the case of keeping at all internal databases forwarding
pointers to lower level databases. For example, in Figure 3(left) for a user & residing at
node (cell) 18, there is an entry in the database at node 0 pointing at the entry for = in the
database at node 2. The entry for = in the database at node 2 points to the entry for = in
the database at node 6, which in turns points to the entry for r in the database at node 18.
When user r moves from zone i to zone j, the entries for x in the databases along the path
from j to LCA(i, j). and from LCA(4, 7) to i are updated. For instance, when user = moves
from 18 to 20, the entries at nodes 20. 7, 2. 6, and 18 are updated. Specifically, the entry
for x is deleted from the databases at nodes 18 and 6. the entry for z at the database at 2

is updated. and entries for x are added to the databases at nodes 7 and 20. When a caller

entried fow iser X when AN R
The focaiton databares —_—
AR R Pratalery —_

entrien for wier X when
rhe lovirion darahaes

LI ; surininin elven focoitones
® .
P
A 1B

\
| maobile user %
— mateell 18

Figure 3: Hierarchical Location Schema. Location databases’ entries at the left are pointers

at lower level databases, while location databases’ entries at the right are actual locations.

located at zone i places a call for a user x located at zone j. the lookup procedure queries
databases starting from node ¢ and proceeding upwards the tree until the first entry for
is encountered. This happens at node LC A(4, j) (the least common ancestor of nodes ¢ and
7). Then. the lookup procedure proceeds downwards following the pointers to node j. For
instance, a call placed from zone 21 to user x (Figure 3(left)). queries databases at nodes
21. 7 and finds the first entry for = at node 2. Then, it follows the pointers to nodes 6 and
18.

Let’s now consider the case of database entries maintaining the actual location of each
user. Then. for user r registered at 18 (Figure 3(right)). there are entries in the databases
at nodes 0. 2, 6. and 18, each containing a pointer to location 18. In this case. a move from
zone 1 to j causes the update of all entries along the paths from j to the root. and from
the root to i. For example, a relocation of user x from node 18 to node 20, involves the
entries for x at 20, 7, 0, 2, 6, and 18. After the update, entries for r exist in the databases
located at nodes (0, 2. 7, and 20. each containing a pointer to 20, while the entries for x in
the databases at nodes 6 and 18 were deleted. On the other hand, the cost of a call from i
to § is reduced. since once the LC A(4, 7) is reached, there is no need to query the databases
on the downward path to j. For example, a call placed from node 21 to user z (Figure
3(right)). queries databases at nodes 21, 7, 2, and then 18 directly (without querving the
database at node 6).

When hierarchical location databases are used, there is no need for binding a user to a

{+] No need for life-long numbering (no pre-assigned HLE)

{+) Suppert for localiny

i) Inereased number of operations (database operarions
and communication messages)

(-} Increased load and storage requirements at higher-levels

Table 1: Summary of the Pros and Cons of Hierarchical Architectures

home location register (HLR). The user can be located by querying the databases in the
hierarchy. In the worst case, an entry for the user will be found in the database at the root.

The hierarchical scheme leads to reductions in communication cost when most calls
and moves are geographically localized. In such cases, instead of contacting the HLR of
the user that may be located far away from the user’s current location, a small number
of location databases in the user’s neighborhood are accessed. However, the number of
location databases that are updated and queried increases relative to the two-tier scheme.
To reduce the number of lookups and updates, instead of placing databases at every node in
the hierarchy. databases may be selectively placed only at particular nodes in the hierarchy.
Furthermore. instead of maintaining precise location information, only coarse information
may be maintained at internal nodes.

A hybrid scheme utilizing both hierarchical entries and pre-assigned home location reg-
isters (HLRs) is also possible. Assume that database entries are maintained only at selective
nodes of the hierarchy and that an HLR is used. In this case, a call originating from zone
t starts searching for the callee from zone i. It proceeds following the path from ¢ to the
LCA of i and the callee’s HLR and then moves downwards to the callee’s HLR. unless an
entry for the callee is found in any database on this path. If such an entry is encountered,
it is followed instead [43].

A problem with the hierarchical schemes is that the databases located at higher-level
must handle a relatively large number of messages. Furthermore, they have large storage
demands. One solution is to partition the databases at the high-level nodes (e.g., at the
root) into smaller databases at sub-nodes so that the entries of the original database are
shared appropriately among the databases at the sub-nodes [41]. Table 1 summarizes some

of the pros and cons of the hierarchical architectures.

10

3.3 Non-tree Hierarchy: Regional Matching

The objective of the regional directories approach [3] is to favor local operations. in that
moves to near-by locations or searches for near-by users cost less. The approach guarantees
communication overheads that are polylogarithmic in the size (i.e., number of network
sites) and the diameter (i.e., maximum distance between any two sites) of the network.
The overhead is evaluated by comparing the total cost of a sequence of move and eall
operations against the inherent cost, i.e.. the cost incurred by the operations assuming that
information for the current location of each user exists at all sites for free. The comparison
is done over all possible sequences of move and call operations.

Location databases called regional directories are organized in a non-tree hierarchy. In
particular, a hierarchy D of é regional directories is built, where § = log d, for d being the
maximal distance between any two network sites. The purpose of a regional directory RD;
at level i is to enable a potential searcher to track any user residing within distance 2 from
it. Two sets of sites are associated with each site « in an RD; directory: a readset Read;(u)
and a writeset Write;(1) with the property that the readset Read;{u) and the writeset
Write;(w) intersect for any pair of site u and w within a distance 2! from each other. The
two sets of sites are used as follows. Each site reports all users it hosts to every site in its
writeset and upon looking for a user. it queries all sites in its readset.

Whenever a user moves to a new location at distance k away, only the logk lowest
levels of the hierarchy are updated to point directly to the new address. Directory entries
at higher level directories continue pointing to the old address. where a forwarding pointer
to the new location is left. To bound the length of the chain of forwarding pointers. it is
guaranteed that for every user the distance C'(x) traveled since its address was updated at
the regional directory RD; is less or equal to 2'~! — 1 for each level i. The complete search
and update procedures follow.

Regional Matching Search Procedure
/* a call is placed from a user at site w to user z */
i+— 0 address « nil
repeat

t—i+1
/* Search directory RD; */
for all sites u in Read{w)
query u
until address <> nil
repeat
follow forwarding pointers
until reaching z

11

Regional Matehing Move Procedure
/T user x moves from site v to site w */
Let RD; be the highest directory for which C(z) > 2971 — 1
Jor i =1 to maz{J, 4§}
/* Update directory RD; */
for all sites u in Write(v)
update entry
add a forwarding pointer at RD;

4 Placement of Databases

Maintaining location information at all nodes in the hierarchy, although resulting in cost-
effective lookups, it increases the number of databases that are updated during each move
operation. To reduce the update cost, database entries may be only selectively maintained
at specific nodes in the tree hierarchy. In this case. during the search and update procedures.
only nodes that contain location databases are queried or updated; others are skipped. For
instance, when a call is made from j to i the search procedure traverse the tree from node
J up to the youngest ancestor of the LCA(i, j) that contains a location database.

A possible placement of location databases is to maintain location entries for mobile
hosts only at the leaf nodes of the zone in which they reside currently. In this case. when
there is no home location register associated with a mobile host, some form of global search-
ing in the hierarchy is needed to find its current location. In this scenario, location strategies
include flat, expanding. and hybrid searches [6]. Let home be the zone at which a user reg-
isters initially. The flat search procedure starts from the root. and then in turn queries in
parallel all nodes at the next level of the tree until the leaf level is reached. The exzpanding
search procedure starts by querying the home of the callee i, then queries the parent of the
home, which in turn queries all its children and so on. This type of search favors moves to
nearby locations. Finally, the hybrid search procedure starts as the expanding one. but if
the location is not found at the children of the parent of the callee’s home, a flat search is
initiated. The hybrid scheme can locate quickly those users that when not at home happen

to be found far away from it.

4.1 Optimization

The placement of location databases can be seen as an optimization problem. Objective
functions include minimizing: (a) the number of database updates and accesses, (b) the

communication cost, (¢} the sum of the traffic on the network link or links, or any combi-

12

nation of the above. Constraints that must be satisfied include: (a) an upper bound on the
rate at which each database can be updated or accessed, (b) the capacity of links. and (c)
the available storage.

Such an optimization-based approach is taken in [4]. The objective there is to minimize
the number of updates and accesses per unit time given a maximum database service ca-
pacity (i.e. the maximum rate of updates and lookups that each database can service) and
estimates of the call to mobility ratio. In this approach. communication is not considered.
and thus, if the service capacity is sufficiently large, a single. central database at the root is
the optimal placement. The problem is formulated as a combinatorial optimization problem

and is solved using a dynamic programming algorithm.

4,2 Partitions

To avoid maintaining location entries at all levels of the hierarchy, and at the same time
reduce the search cost. parfitions are deployed [6]. The partitions for each user are obtained
by grouping the zones (cells) among which it moves frequently and separating the zones
between which it relocates infrequently. Thus, partitions exploit locality of movement.
Partitions can be used in many ways. We describe next two such partition-based strategies.
For each partition, the information whether the user is currently in the partition is
maintained at the least common ancestor of all nodes in the partition, called the repre-
sentafive of the partition. The representative knows that a user is in its partition but not
its exact location [6]. This information is used during flat search (i.e.. top-down search
starting from the root) to decide which subtree in the hierarchy to search. Thus. partitions
reduce the overall search cost as compared to flat search. There is an increase however on
the update cost since. when a user crosses a partition. the representatives of its previous
and new partitions must be informed. For example, assume that user & often moves inside
four different set of nodes, i.e., partitions, and infrequently between these sets. The nodes
of each partition are {10, 12, 14, 15}, {16, 18}, {19,20,21} and {22, 23, 25, 26, 27} and
are depicted in Figure 4. The representative node of each partition is high-lichted. When
user x is at node 14 in partition 1, the representative of the associated partition. node 1,
maintaing the information that the user is inside its partition. When user & moves to node
16 that is outside the current partition. both node 1, the representative of the old partition.
and node 6, the representative of the new partition, are updated to reflect the movement.
A slightly different use of partitions called redirection trees is proposed in [9]. A single

partition, called local region, is defined by including all nodes between which the user

L3

®

Pd
(I P)]

/\ /\m /\

a)

2 o

'ﬁoo ﬂ@@@ﬁuuv oY)
et QEE@rMMJ"ﬁ;ﬁ """""
ST X
mEw [aEation

Figure 4; Partitions

often moves. The representative of the local region called a redirection agent maintains the
location of all users that have appointed it as their redirection agent. When the user is
located in its local region, its redirection agent redirects any calls passing through it during
any type of search (e.g., flat or using HLEs) to the current location of the user. Movements
inside a local region are recorded in the redirection agent and not necessarily at location

servers outside the region.

5 Caching

Caching is based on the premise that after a call is resolved. the information about the
current location of the callee should be reused by any subsequent calls originated from the
same region. To this end, in two-tier architectures, every time a user z is called. x's location
is cached at the VLR in the caller’s zone, so that any subsequent call to z originated from
that zone can reuse this information [19]. Caching is useful for those users who receive
calls frequently relative to the rate at which they relocate. Similar to the idea of exploiting
locality of file accesses, the method exploits the spatial and temporal locality of calls received
by users.

To locate a user, the cache at the VLR of the caller’s zone is queried first. If the location
of the user is found at the cache, then a query is launched to the indicated location without
contacting the user’'s HLR. Otherwise, the HLR is queried. Regarding cache invalidation.
there are various approaches. In eager caching, every time a user moves to a new location,
all cache entries for this user’s location are updated. Thus, the cost of move operations
increases for those users whose address is cached. In lazy caching. a move operation signals

no cache updates. Then, when at lookup a cache entry is found there are two cases: either

14

the user is still in the indicated location and there is a cache hit. or it has moved out. in
which case a cache miss is signaled. In the case of a cache miss, the usual procedure is
followed: the HLR is contacted and after the call is resolved the cache entry is updated.
Thus, in lazy caching, the cached location for any given user is updated only upon a miss.
The basic overhead involved in lazy caching is in cases of cache misses, since the cached
location must be visited first. So, for lazy caching to produce savings over the non-caching
scheme, the hit ratio p for any given user at a specific zone must exceed a hit ratio threshold
pr = Cy/Cpg. where Cy is the cost of a lookup when there is a hit and Cpg the cost of
the lookup in the non-caching scheme. Among other factors, Cy and Cg depend on the
relative cost of querying HLR's and VLR's.

A performance study for lazy caching is presented in [19. 14]. There, an estimation of
Cy and Cg is computed for a given signaling architecture based on a Common Channel
Signaling network that uses the SST protocol [24] to set up calls. Conclusions are drawn on
the benefits of caching based on which of the factors participating in Cy and Cg dominate.
The hit ratio for the cache of user's i location at zone j can also be directly related to
the LOCMR;; of the user [19]. For instance, when the incoming calls follow a Poisson
distribution with arrival rate A and the intermove times are exponentially distributed with
mean g, then p = A/(A + p) and the minimum LCMAR, denoted LCM Ry, required for
caching to be beneficial is LCM Ry = pr/(1 — pr). So, caching can be selectively done
per user i at zone j. when the LCM; ; is larger than the LOM Ry bound. In general. this
threshold is lower when users accept calls more frequently from users located near by. In
practice, it is expected that LCM Ry > 7 [19].

When the cache size is a concern. cache replacement policies, such as replacing the least
recently used (LRU) location. may be used. Another issue is how to initialize the cache
entries. User profiles and other types of domain knowledge may be used to initially populate
the cache with the locations of the users most likely to be called. In the approach we have
described, caching is performed on a per-user basis: the cache maintains the address of the
last called users. Another approach is to to apply a static form of caching, e.g.. cache the
addresses of a certain group of users or certain parts of the network where the users’ call to
mobility ratios (C' M Rs) are known to be high on average.

Caching techniques can also be deploved to exploit locality of calls in tree-structured
hierarchical architectures. Recall that in hierarchical architectures, when a call is placed
from zone i to user r located at zone j, the search procedure traverses the tree upwards from

i to LOA(i, j) and then downwards to j. We also consider an acknowledgment message that

15

5 forward bypass o
@‘ poimter .

-

search procedure

Figure 5: Caching in Hierarchical Location Schemes. For simplicity, the acknowledgment

message is not shown; it follows the reverse route of the search procedure.

returns from j to i. To support caching, during the return path. a pair of bypass pointers,
called forward and reverse, is created [17]. A forward bypass pointer is an entry at an
ancestor of 1, say s, that points to an ancestor of j say t: the reverse bypass pointer is from
t to 5. During the next call from zone ¢ to user z, the search message traverses the tree
upwards until s is reached. Then, the message travels to database t either via LOA(i, §)
or via a shorter route if such a route is available in the underlying network. Similarly. the
acknowledgment message can bypass all intermediate pointers on the path from ¢ to .

For example. let a call be placed from zone 13 to user x at zone 16 (Figure 5). A forward
bypass pointer is set at node 1 pointing to node 6; the reverse bypass pointer is from 6 to
1. During the next call from zone 13 to user z, the search message traverses the tree from
node 13 up to node 1 and then at node 6, either through LC A(1,6). that is node 0, or via
a shorter path. In any case, no queries are posed to databases at nodes 0 and 2.

The level of nodes s and { where the bypass pointers are set varies. In simple caching.
s and t are both leaf nodes, while in level caching, s and t are nodes belonging to any level
and possibly each to a different one (as in the previous example). Placing a bypass pointer
at a high-level node s, makes this entry available to all calls originated from zones at s's
subtree. However, calls must traverse a longer path to reach s. Placing the pointer to point
al a high-level node £, increases the cost of lookup, since to locate a user, a longer path
from ¢ to the leaf node must be followed. On the other hand, the cache entry remains valid
as long as the user moves inside t’s subtree. An adaptive scheme can be considered to set
the levels of s and ¢ dyvnamically.

As in the two-tier location scheme, there are many possible variations for performing

16

cache invalidations [17]. In lazy caching, the move operation remains unchanged. since cache
entries are updated only when a cache niss is signaled. In eager caching, cache entries are
updated at each move operation. Specifically, consider a move operation from zone ¢ to zone
J. where a registration /deregistration message propagates from j via LCA(4,{) to i. During
this procedure, the bypass pointers which are no longer valid are deleted. These pointers
include any forward bypass pointers found during the upward traversal of the registration
message, and any reverse or bypass pointers found during the downward traversal of the
deregistration message [17].

Preliminary performance results are reported in [17]. The analysis is based on a quantity
called Regional Call-to-Mobility Ratio (RCMR) defined for a user & with respect to tree
nodes s and ¢ as the average number of calls from the subtree rooted at s to user . while
user & is in the subtree rooted at ¢. It is shown, that under certain assumptions. for users
with RCM R > 5. caching can result in up to a 30% reduction in the cost of both calls and
moves, when considering only the number of database operations.

Caching in the case of storing the exact location at internal nodes, as opposed to pointers
to lower level databases, can also be deployed in many ways again ranging from simple to
level caching. In simple caching, the current location of the user is cached only at leaf nodes.
In level caching, the current location of a user is cached at oll nodes up to a given level.

Caching is orthogonal to partitions. In fact, in [40, 41] caching is used in conjunction
with partitions. In particular, instead of caching the current location of the callee. the
location of its representative is cached. For example, assume that partitions are defined as
in Figure 4 and user z is at node 14. Let a call be placed for user x. Instead of caching
location 14 (or a pointer to it), location 1, e.g., the representative of the current partition.
is cached. This significantly reduces the cost of cache updates. since a cache entry becomes

obsolete only when a user moves outside the current partition.

6 Replication

To reduce the lookup cost, the location of specific users may be replicated at selected sites.
Replication reduces the look-up cost, since it increases the probability of finding the location
of the callee locally as opposed via issuing a high latency remote look-up. On the other
hand, the update cost incurred increases considerably, since replicas must be maintained
consistent every time the user moves,

In general, the location of a user i should be replicated at a zone j, only if the replication

17

is judicious, that is the savings due to replication exceed the update cost incurred. As in the
case of caching. the benefits depend on the LOM R. Intuitively, if many calls to i originate
from zone j, then it makes sense to replicate ¢ at j. However, if i moves frequently. then
replica updates incur excessive costs. Let a be the cost savings when a local lookup. ie. a
query of the local VLR, succeeds as opposed to a remote query and 3 the cost of updating

a replica, then a replication of the location of user ¢ at zone j is judicious if
r * U;:,_;‘ >3+ (1}

where C; ; is the expected number of calls made from zone j to i over a time period T and
U; the number of moves made by i over T.

Besides cost savings, the assignment of replicas to zones must take into account other
parameters as well. such as the service capacity of each database and the maximum memory
available for storing replicas. The replication sites for each user may be kept at its HLR.
Besides location information, other information associated with mobile users may also be
replicated [35]. Such information may include service information such as call blocking and
call forwarding. as well as QOS requirements such as minimum channel quality or acceptable
bandwidth. Unlike location information which is needed at the caller’s region. service
and QOS5 information is needed at the location at which the call is received. Approaches
similar to those used for replication of location information can be used to replicate service
information at sites that are frequently visited by a mobile user in place of sites from which
most calls for that user originate.

Finally. instead of the exact location of a user. more coarse location information, e.g..
the user’s current partition, may be replicated. The coarseness or granularity of location
replicas presents location schemes with a trade-off between the update and the look-up
costs, If the information replicated is coarse then it needs to be updated less frequently in
the expense of a higher look-up resolution cost.

Choosing the network sites at which to maintain replicas of the current location of a
maobile user resembles the file allocation [10] and the database allocation [28] problem. These
classical problems are concerned with the selection of sites at which to maintain replicas of
files or database partitions. The selection of sites is based on the read /write pattern of each
file or partition. that is the number of read and write operations issued by each site. In the
case of location management, this corresponds to the look-up/update pattern of a user’s
locations. Most schemes for file or database allocation are static, that is they are based on

the assumption that the read/write pattern does not change.

18

We describe next four per-user replication schemes. The first one takes into account
resource restrictions and is centralized. whereas the second one does not place any such
global restrictions and thus is distributed. The first two algorithms are for two-tier schemes,
while the third one is applicable to tree-structured hierarchical architectures, The last
algorithm is not developed specifically for location management but treats the problem of
dynamic data allocation in its general form. It is a distributed algorithm that considers no
global restrictions. It is applicable to any architecture, but it is proven to be optimal for

tree-structured hierarchical schemes.

6.1 Per User Profile Replication

The objective of the per user profile approach [36] is to minimize the total cost of moves
and calls, while maintaining constraints on the maximum number r; of replicas per user F;
and on the maximum number p; of replicas stored in the database at zone Z;. Let M be
the number of users and N be the number of zones. A replication assignment of a user's
profile P to a set of zones R(F;) is found. such that the system cost expressed as the sum:
3" Z_f:i] Z;ER(P) G+ U; —a+C;; is minimized and any given constraints on the maximum
number of replicas per database at each zone and on the maximum number of replicas per
user are maintained.

To this end, a flow network F is constructed as follows. The vertices of the graph
correspond to users F; and zones Z;. There are two special vertices, a source vertex s, and
a sink vertex t. A pair (¢, p) of a cost, ¢, and a capacity. p. attribute is associated with each
edge. An edge is added from s to all P; with (¢,p) = (0,r;) and from all Z; to ¢ with (0,p;).
An edge from F; to Z; with (e,p) = (8 + U; —a = C;;,1) is added only if it is judicious to
replicate P; at Z;. i.e.. if Inequality (1) holds. Then, computing a minimum-cost (min-cost)
maximum-flow (max-flow) on F finds the requested assignment.

In Figure 6, a simple flow network of a system with four mobile users and 3 zones
is depicted. The capacity attribute 2 on edge (s,) indicates that P;’s profile can be
replicated in at most two zones. The capacity attribute 3 on edge (2, f) indicates that the
database at zone Z's can store at most three replicas. Finally, in the pair (—6.1) on edge
{£1, P1), the cost attribute -6 indicates that replicating P;’s profile in zone Z; will vield a
net cost saving of six over not replicating, while the capacity attribute 1 indicates that P
should be replicated at most once in 2.

Adaptation of the replica assignment to changing calling and mobility patterns is also

discussed in [35]. Let F.

Trew

represent the flow network solution for a new ecalling and

19

(0, 2)

Pl
Q
P2 \Q
5 Of’"’ﬁe 2
P3
Fohree E\R‘-‘E:O
P4
&
R

Figure 6: Example of a Flow Network

users ZORes

mobility pattern 7., and Fr, 4 represent the flow network solution for the previous pattern
Totd- An algorithm is presented that incrementally computes the min-cost max-flow of
F- .., given the min-cost max-flow of F. ,. A desired property of the replica assignment

algorithm is to keep the cost of evolution from F; to F;

low by avoiding radical changes
in the replication plan. To this end. two approaches are proposed: (1) a tempered min-cost
max-flow, that factors in the cost of replica reassignments when augmenting paths, and
(2) a minimum mean cycle canceling algorithm, that angments flow along cyeles with the

minimum mean cost, where the cost expresses the numnber of replica reassignments.

6.2 Working Set Replication

The working set method [31] relies on the observation that each user communicates fre-
gquently with a small number of sources, called its working set, thus it makes sense to
maintain copies of its location at the members of this set. The approach is similar to the
per-user replication except from the fact that no constraints are placed on the database
storage capacity or the number of replicas per user. Consequently, the decision to provide
the information of the location of a mobile unit F; at a zone Z; can be made independently
at each unit F;.

Specifically, Inequality (1) is evaluated locally at the mobile unit each time at least one
of the quantities involved in the inequality changes. This happen: (a) each time a call is set
up and (b) when the mobile unit moves. In the former case. the inequality is evaluated only
if the caller’s site is not a member of the working set of the callee. If the inequality is found
to hold, the caller’s site becomes a member of the set. In the later case, the inequality is
re-evaluated for all members of the working set, and the members for which the inequality

no longer holds are dropped off the set. This way the scheme adapts to the current call

20

and mobility pattern. Note that in case (a) all four terms of Inequality (1) need to be
recomputed, while in case (b) only the number of moves (U;) needs to be re-evaluated.
Simulation studies in [31] show that. as expected, when the call to mobility ratio (CMR)
value is low the scheme performs like a scheme without replication. When the CM R value
is high, the scheme behaves like a static scheme in which the working set for a user is fixed.
It is also shown that the performance of this adaptive scheme is not primarily affected by

the number of units in the working set but rather by the CM R of each individual unit.

6.3 Replication in Hierarchical Architectures

In hierarchical architectures, the location of a mobile user may be selectively replicated at
additional sites in the hierarchy. These sites are not necessarily leaf nodes. Specifically. as
in the replication schemes for two-tier architectures, the location of a user is replicated at
a node only if the cost of replication does not exceed the cost of non replication. However,
in a hierarchical location database scheme, if a high LOMR value is the basic criterion
of selecting replication sites, databases at higher levels tend to be selected as replication
sites over databases at lower levels, since they process higher LOM R values. Recall that
the LOMR for an internal node is the sum of the LOM Rs of its children. This results in
excessive update activities at higher-level databases.

Below we describe a replication algorithm, call HiPer proposed in [20]. HiPer’s objective
is to minimize communication cost. HiPer replicates the location of user ¢ in database j
if it is judicious, that is, if the benefits of replication exceeds its costs. It turns out. that
it is never judicious to replicate ¢ at j if LOMR;j < Rmin, while it is always judicious
to replicate, if LOMR; ; > Rmoz. If Bpin € LCMR;j; < Rpge. then whether replication
should be performed or not depends on the database topologv. The constraints taken into
consideration are the maximum number N., of replicas per user and a cap L on the
maximum level at which locations may be replicated. An off line algorithm to compute the
sites of replication for each user i proceeds in two phases. In the first phase, in a bottom-up
traversal, it allocates replicas of ¢ at all databases with LCMR; j 2 Rinar as long as the

number of allocated replicas n does not exceed Nyqr. In the second phase, if n < N,
the algorithm allocates the remaining replicas to databases below level L with the largest

non negative LOMER; ; — Rppge in a top-down fashion.

6.4 The ADR Algorithm

The Adaptive Data Replication (ADR) algorithm [46] presents a solution to the general
problem of determining an optimal {in terms of communication cost) set of replication sites
for an object in a distributed system. when the object’s read-write pattern changes dynam-
ically. We will describe the ADR algorithm for the case of tree-structure architectures. Let
F be the current replication set of object . i.e., the sites at which = is replicated currently.
According to the ADR algorithm, the replication set R of each object z is updated pe-
riodically at a time period T. Specifically, at the end of the time period T, specific sites
of the network perform three tests. namely the expansion, the contraction and the switch
test described next. First, we introduce related terminology. A site i is an R-neighbor, if it
belongs to R but has a neighbor site that does not belong to R. If site R is not a singleton
set, a site 1 15 an R-fringe site, if it is a leaf at a subgraph induced by R.

The expansion test is performed by each R-neighbor site i. Site ¢ invites each of its
neighbor j not in R to join R, if the number of reads that ¢ received from j during the
last period is greater the number of writes that ¢ received during the same period from i
itself or from a neighbor other than j. The contraction test is executed by each R-fringe
site i. Site i requests permission from its neighbor site j in R to exit R. if the number of
writes that i received from j during the last time period is greater than the number of reads
that i received during this period. If site i is both an RE-neighbor and an R — fridge. it
executes the expansion test first, and if the test fails (i.e.. no site joins R), then it executes
the contraction test. Finally, the switch test is executed, when R is a singleton test and the
expansion test that the single site i in R has executed fails. Site i asks a neighbor site n
to be the new singleton site, if the number of requests received by ¢ from n during the last
time period is larger than the number of all other requests received by i during the same
period.

The ADR algorithm is shown to be convergent-optimal in the following sense. Starting
at any replication scheme, the algorithm converges to the replication scheme that is optimal
to the current read-write pattern. The convergence occurs within a number of time periods

that is bounded by the diameter of the network.

7 Forwarding Pointers

When the number of moves that a user makes is large relative to the number of calls it

receives, it may be beneficial not to update all database entries holding the user’s location.

22

each time the user moves. The application of this optimization in two-tier architectures
means that the entry in z's HLR is not updated, each time a mobile unit & moves to a new
location [18]. Instead. at the VLR at 2's previous location, a forwarding pointer is set up
to point to the VLR in the new location. Now, calls to a given user will first query the
user’s HLR to determine the first VLR at which the user was registered, and then follow
a chain of forwarding pointers to the user's current VLR. To bound the time taken by the
lookup procedure. the length of the chain of forwarding pointers is allowed to grow up to
a maximum value of K. An implicit pointer compression also takes place. when loops are
formed as users revisit the same areas. Since the approach is applied on a per-user basis, the
increase in the cost of call operations affects only the specific user. The router optimization
extensions to IEFT Mobile IP protocol include pointer forwarding in conjunction with lazy
caching [21].

The pointer forwarding strategy as opposed to replication is useful for those users who
receive calls infrequently relative to the rate at which they relocate. Clearly. the benefits of
forwarding depend also upon the cost of setting up and traversing pointers relative to the
costs of updating the HLR. An analytical estimation of the benefits of forwarding is given
in [18]. It is shown that under certain assumptions and if pointer chains are kept short
(K < 5). forwarding can reduce the total network cost by 20%-60% for users with call to
mobility ratio below (0.5,

To reduce the update cost, forwarding pointer strategies may be also deploved in the
case of hierarchical architectures. In a hierarchical location scheme, when a mobile user x
moves from zone § to zone j, entries for r are created in all databases on the path from
j to LCA(7,1), while the entries for on the path from LCA(4.4) to i are deleted. Using
forwarding pointers. instead of updating all databases on the path from j through LCA(j. 1)
to i, only the databases up to a level m are updated. In addition. a forwarding pointer is set
from node s to node ¢, where 2 is the ancestor of i at level m. and £ is the ancestor of 7 at level
m (Figure 7). As in caching, the level of s and ¢ varies. In simple forwarding, s and t are
leaf nodes, while in level forwarding, s and t can be nodes at any level. A subsequent caller
reaches r through a combination of database lookups and forwarding pointer traversals.

Take, for example, user z located at node 14 that moves to node 17 (Figure 7). Let
level rn = 2. A new entry for r is created in the databases at nodes 17, 6 and 2. the entries
for in the databases at nodes 14 and 5 are deleted, and a pointer is set at z's entry in the
database at node 1 pointing to the entry of z in the database at node 2. The entry for x at

node 0 is not updated. When a user, say at zone 23, calls z. the search message traverses

23

_ Forwarding Poim s

\ / \ / \
A A A AN

Y
DO® e G’C‘J G @D OO 268 @@@

4 WS5er X h USEr X
old Incarion new locatian

—= old entries for x
- - = nEw efmraes for

Figure T: Forwarding Pointers Example (entries are pointers to lower level databases)

X[Ba) (0} x| 1A) s oy icmn ot

|13 - 17
© FoFwanling Pomier Y, T o eriraes for x

5 user x ~== new entries for X
ald kacation nesw [oeation N

Figure 8: Forwarding Pointers Example (entries are exact addresses)

the tree from node 23 up to the root node 0 where the first entry for ¢ is found. then goes
down to 1, follows the forwarding pointer to 2, and traverses downwards the path from 2
to 17. On the other hand. a call placed by a user at 15, results in a shorter route: it goes
up to 1, then to 2. and follows the path downwards to 17.

Forwarding techniques can be deployed also for the case in which entries at the internal
nodes are actual addresses, rather than pointers to the corresponding entries in lower level
databases. The example above is repeated in Figure 8 for this case. Entries for r are
updated up to level m = 2, and a forwarding pointer at leaf node 14 is set to redirect calls
to the new location 17.

An analysis of a forwarding method in a hierarchical location scheme in which entries are
actual addresses is presented in [23]. Besides forwarding, the scheme also supports caching:
leaf caching (i.e., caching the address of the callee only at the zone of the caller) that is

called jump updates and level caching (i.e., caching the address of the callee nodes on all

24

nodes in the search path) that is called path compression. All combinations of forwarding
(no forwarding (NF), simple forwarding (SF) and level forwarding (LF)) and of caching
(jump updates (JU), path compression updates (PC) and no caching (NU)) are considered.
Preliminary simulation results are presented for two types of environments: (a) arbitrary
moves and calls and (b) short moves and locality of calls (i.e., most calls are received
from a specific set of callers). The aggregate cost of search and update is considered. and
the cost metric is the number of messages. The simulation showed the combination LF-
PC to outperform all other combinations in both environments except of the case of high
communication and low mobility and of low mobility and high communication. In these
cases. in the second environment, the combination LF-JU performed better due to locality
of calls. A per-user adaptive scheme was suggested to choose between the LF-PC and
LF-JU combinations based on the call and mobility characteristics. To determine those
characteristics, for each mobile unit a sequence is maintained of all moves made and calls
received. This sequence determines the degree of mobility of the host (low or high) and
whether it has a large number of frequent callers.

Obsolete entries in databases at levels higher than m (e.g.. the entry at node 0 in Figures
7 and 8) may be updated after a successful lookup. Another possibility for updates is for
each node to send a location update message to the location servers on its path to the root
during off-peak hours.

To avoid the creation of long chains of forwarding pointers, some form of pointer reduc-
tion is necessary. There are many variations of pointer reduction depending on the type of
the reduction and on when it is initiated [29]. For simplicity, we describe these variations
for simple forwarding. In simple purge, after a successful look-up, a direct pointer is added
from the first node of the chain to the current location of the user. while all intermediate
forwarding pointers are deleted. This results in a chain of length one. Take for example,
chain 11 — 18 — 26 — 14 that resulted from user r moving from node 11, to nodes 18, 26.
and 14, in that order. In simple purging, the entry at 11 is made to point directly to 14
and the entries at nodes 18 and 26 are deleted. Thus, the chain 11 — 14 is produced. In
complete purge. the entry in the first node of the chain is also deleted, producing a chain
of zero length. This involves the deletion of all entries in internal databases on the path
from the first node to the LC A of the first node and the current location. and the addition
of entries in internal databases on the path from the LC A to the current location. For
instance, for the chain 11 — 18 — 26 — 14, besides the entries for = at 18. and 26. the

entry for z at 11 is also deleted. Then. the entries in higher-level databases leading to 11 are

25

——= ald enries for x
== e s for X

-

Figure 9: Example of Pointer Purging

also deleted. In particular, the entry for x at 4 is deleted and entries are set at nodes 1. 5,
and 14 leading to 14. the new location (see Figure 9). Purging of forwarding pointers, either
simple or complete. can occur at calls or moves. Purging at calls is initiated when. after a
successful lookup, the first node of the chain is reached. Purging af moves is initiated when
a system-defined maximum on the length of the chain is reached. Alternatively. forwarding
pointers may be purged periodically,

Forwarding pointer techniques find applications in mobile software systems. to maintain
references to mobile objects, such as in the Emerald System and in 55P chains. Emerald
[22] is an object-based system in which objects can move within the system. S5P chains
[34] are chains of forwarding pointers for transparently migrating object references between
processes in distributed computing. The S5P-chain short-cutting technique is similar to the

simple update at calls method.

8 Taxonomy of Location Management Techniques

The techniques proposed in the previous sections are based on exploiting knowledge about
the calling and moving behavior of mobile objects. Basically, two characteristics are consid-
ered: stability of calls and moves and locality of moves and calls. Stability in the case of calls
means that most calls for a user originate from the same set of locations. Stability of moves
refers to the fact that users tend to move inside specific regions. Locality refers to the fact
that the cost of a lookup or update operation increases with the distance traveled. Local
operations such as moves to neighbor locations or calls from near-by places are common
and should cost less than remote operations.

Several more specific types of movement and calling behaviors have been identified in

the literature. For example, users usually move to nearbyv locations more often than to

26

Patterm of Moves and Calls

el B

Seabilicy Laowality
|
|

Calls Moves Hierarchical structurss

Cache (replicate) & frequent calbers Partition the lacations

Belative Freguence of Moves and Calls (LCME)

Small LOMER Large LCMR

Partial updatas - forward pointers Cache (replicane)

Figure 10: Techniques along the Dimensions of Locality, Stability. and CMR (call to mobility

ratia).

remote locations. or follow a certain mobility pattern that is the same over short periods
of time. For example, users may follow a daily routine, e.g.. drive from their home to their
office, visit a predetermined mumber of customers, return to their office, and then back to
their home. This pattern can change but remains fixed for short periods of time. Another
possible moving behavior is that there is an epicenter (e.g., home location) of movement.,
Similarly, various calling types are possible. For instance, there may be time locality of
calls, or each user may receive most of its call for a specific set of locations, e.g.. friends,
family, business associates. Another determinant factor in designing location techniques is
the relative frequency of calls and moves expressed in the form of some call to mobility
ratio. In general, technigues tend to decrease the cost of either the move or call operation
in the expense of the other. Thus. the call to mobility ratio determines the efficacy of the
technique. Figure 10 summarizes the various techniques that exploit locality. stability and
the call to mobility ratio. This technique are orthogonal; they can be combined with each
other.

Besides developing techniques for the efficient storage of location information, the ad-
vancement of models of movement can be used in guiding the search for the current location
of a mobile object (see for example. [33. 3]), when the stored information about its location
is not current or precise. For instance, potential locations may be searched in descending
order of the probability of the user being there.

An important parameter of any calling and movement model is time. The models should

capture temporal changes in the movement and calling patterns and their relative frequency

27

/ Dynamic (adaptive) or static

P

Variations

Per object. group of objects, geographical region
Figure 11: Further Taxonomy of Location Technigues.

as they appear during the day, the week or even the year. For instance, the traffic volume
in weekends is different than that during a workday. Thus. dynamic adaptation to the
current pattern and ratio is a desirable characteristic of location techniques. Another issue
is the basis on which each location technigue is emploved. For instance. a specific location
technique may be employed on a per user basis. Alternatively. the technique may be adopted
for all PCS users or for a group of users based either on their geographical location (i.e, all
users in a specific region). on their mobility and calling characteristics (i.e., all users that
receive a large number of calls) or a combination of both. Figure 11 summarizes these two
dimensions of location technigues.

Table 2 and 3 summarizes correspondingly the variations of the two-tier and hierarchical
location scheme and their properties.

Since the performance of most location techniques depends on the call to mobility ratio
(CMR), in order for the system to adapt to the most appropriate technique based on the
current CMR, dynamically estimating the current value of the CM R is a central issue. One
approach to estimating M Rs is to calculate running estimates of UM Rs on a per user
basis. Two such strategies are proposed in [19]. The running average algorithm maintains for
every user the running counts of the number of incoming calls and the number of times that
the user changes location. When the distribution of the incoming call process or the user
movement process changes, a variation of this procedure, called the reset-K algorithm, gives
maore accurate estimations. Another approach is to maintain information about the CM R,
for instance in the HLR. and download it during off-peak hours. Analytical estimations of
the MR are also possible. For instance, if the coming call stream to a user is consider
a Poisson process with arrival rate A and the time a user resides in a region has a general
distribution with mean 1/u, then LCMR = A/u. Finally, traces of actnal moving users can
be used (for example, the Stanford University Mobile Activity TRAces (SUMATRA)[38].

Finally, another parameter that affects the deployment of a location strategy is the
topology of network sites, how they are populated and their geographical connectivity, How
the strategy scales with the mumber of mobile objects, location operation and geographical

distribution is also an important consideration.

28

|
Method Variations Applicable when:
_ Cache updase overhead
Caching Eager cacking: By Large LCME
When x i called by y, Call Suabilicy
cache 18 location at Lazy caching Cache update cverhcad
¥'s pane | oocurs at calls
Replication Additional constrainzs are st
z . Per- i an the number of replicas per
Selecrively replicase wamm i st and on the namber
x5 addness o the of replicas per wser
zanes from which Large LCME
il receives the most Adapeive and dismibuned: Call Saability
calls / i the replication sies ane compused
Noritng Ser dyramically by cach
mobibe bost locally
- Forwarding Pointers
When x mowes, : A :
| add a forwanding Rn.m'lm the length of the chain of forwanding Senall LEMER
| pointer Fram its old s
10 fis new sddress

Table 2: Summary of Enhancements to the Basic Two-Tier Scheme. LCM R stands for the
Local Call to Mobility Ratio.

lssmes aristions

Appropriafe when:

Caching
Whes x al Bond i = callod by wser v al pose j.
cache al a node on the path from j 10 LOALL j)
2 padnizT i 2 node on the pach from i o LCAJL j)
i b wsad by ey swbsequens ¢all e x From 2ons |

Lp to which mee level
1 maintain seche enirics

When 1o updase cuche snmies

Large CMR
Call Szabisity

Replicsting
Selectively replicaie x's bocation ar imernal and'or
beuf databases,

Largs CMR
Call Sahilivy

Forwardisg Peincers

When x meaes from ¢ell i o oeld §, insigad of apdating |

all databases on the path from & ra LOA(L jb and from
LC AL, 1o |, updsse ull dasabases e 0o some lovel =
and 2dd a forwenling poinber al the level = ancestor
o i b o i e level s ancsston oTE

When and how to purge
the faraanding pointers

Setiing the level m

Smadl LOMR

Partitiens
Devedz the locanons im0 s | panitons) = tha
the user moves inxide a pariition frequemly and
| eromses the beundary of a pantition mrely.
Keep information sbout the partition in which the user
eesides instend of s axae locarsn

Whove Saabibiy

29

Table 3: Summary of Proposed Enhancements to Hierarchical Location Schemes.

Location strategies are evaluated based on two criteria, namely, the associated database
and network overhead. In terms of database operations, various objectives are set including
minimizing (a) the total number of database updates and queries. (b) the database load and
size, and (c) the latency of each database operation. In terms of communication. location
schemes aim at reducing among others (a) the total number of messages, (b) the number of
hops, (¢) the distance traveled, (d) the number of bytes generated. and (e) the sum of the

traffic on each link or over all links.

9 Consistency and Recovery

The focus of this section is on consistency and recovery issues for location databases. Moves
and calls are issued asynchronously and concurrently. Since each of them results in number
of database operations, concurrency control is required to ensure correctness of the execution
of these operations. In the case of a location database failure. database recovery is also
required. We discuss recovery in the context of two-tier location schemes. Approaches to
handling recovery in hierarchical schemes and their enhancements is an interesting, but less

studied, research problem.

9.1 Concurrency Control

Since call and move operations arrive concurrently and asyvnchronously. concurrency control
issues arise. If no special treatment is provided for concurrency, a call may read obsolete
location data and fail to track the callee. In this case, the call is lost and is reissued anew.
This simple method does not provide any upper bound on the number of tries a call has to
make before locating a moving user.

Concurrency issues get more involved in hierarchical location schemes. In such schemes,
a lookup operation results in a sequence of query operations issued at location databases
at various levels in the hierarchy. Similarly, a move operation causes a sequence of update
operations to be executed on various location databases. The underlying assumption so far
was that moves and calls arrive sequentially and they are handled one at a time. Thus,
it was assumed that there is no interleaving between the queries and the updates of the
various call and move operations. This is a reasonable assumption only if all network and
database operations are performed in negligible time. There are various approaches to the
problem. For instance, setting at the old address a forwarding pointer to the new location

is necessary to ensure that calls that were issued prior to the movement and thus arrive at

30

the old address will not be lost. If a transactional approach is adopted. traditional database
concurrency control techniques are used to enforce that each call and move operation is
executed as a transaction, i.e., an isolated unit. This approach is highly impractical, since,
for instance, acquiring locks at all distributed databases involved in a call or move operation
causes prohibitive delays.

A more practical approach is based on imposing a specific order on the way updates are
performed. In particular, upon a move operation from ¢ to j. first entries at the path from
J to LCA(i, j) are added in a bottom-up fashion and then the entries at the path from the
LCA(i, 3) to i are deleted in a top-down fashion. Special care must be given so that during
the delete phase of a move operation. an entry at a level k —1 database is deleted only after
servicing all lookups for higher-level databases. For an application of this approach to the
regional matching method refer to [3].

When a replication scheme is used, there is a need for deploying coherency control
protocols, to maintain consistent replicas every time the user moves, Coherency control
is a well-studied problem in transaction management [8]. However, traditional approaches
based on distributed locks or timestamps may be expensive. thus other techniques that
ensure a less strict form of replica consistency may be advanced. For example. if there is an
HLR or a master copy that is always consistent, i.e, maintains the most up-to-date location,
then a lookup can rely on this copy to locate the user when the location at a replica proves
to be obsolete. Another approach is to use forwarding pointers at the old location to handle

any incoming calls directed there from obsolete replicas.

9.2 Failure Recovery

Database recovery is required after the failure of a location database. In the case of the
VLR/HLR either the VLR, the HLR. or both may be periodically checkpointed. If this
is the case, after the failure the backup is restored. However. some of the records of the

backup may be obsolete.

9.2.1 VLR Fzailure Restoration

If the VLR is checkpointed, the backup record is recovered and used upon a failure. If the
backup is obsolete, then all areas within the VLR must be paged to identify the mobile
users currently in the VLR's zone. Thus, the restoration procedure is not improved by
the checkpointing process. In [25], the optimal VLR checkpointing interval is derived to

balance the checkpointing cost against the paging cost. GSM exercises periodic location

31

updating: the mobile users periodically establish contact with the network to confirm their
location. It is shown that periodic confirmation does not improve the restoration process,
if the confirmation frequency is lower than 0.1 times of the portable moving rate [25]. A
mechanism is proposed, called location update on demand. which eliminates the need for
periodic confirmation messages. After a failure, a VLR restoration message is broadcasted
to all mobile users in the area associated with the VLR. The mobile users then send a
confirmation message. To avoid congesting the base station. each such message is sent

within a random period from the receipt of the request.

9.2.2 HLR Failure Restoration

In G5M, the HLR database is periodically checkpointed. After a HLR failure, the database
is restored by reloading the backup. If a backup record is obsolete. then when a call delivery
arrives, the call is lost. The obsolete data will be updated by either a call origination or a
location confirmation from the corresponding mobile user. An estimation of the probability
of lost calls can be found in [25]. In 1S5-41, after a HLR failure, the HLR initiates a recovery
procedure by sending an “Unreliable Roamer Data Directive” to all its associated VLEs.
The VLRs then remove all records of mobile users associated with that HLR. Later, when
a base station detects the presence of a mobile portable within its coverage area and the
portable is registered at the local VLR. the VLR sends a registration message to the HLR
allowing it to reconstruct its internal structures in an incremental fashion. Before the
location is reconstructed, call deliveries to the corresponding maobile user are lost.

A method called aggressive restoration is proposed in [25]. Following this method. the
HLR restores its data by requesting all the VLRs referenced in its backup copy to provide
exact location information of the mobile users. The probability pr; that the HLR fails to
request information from a VLR is estimated. An algorithm is also proposed to identify
VLRs that are not mentioned in the backup copy. These VLRs are such that there are
portables that move in the VLR between the last HLR checkpointing and the HLR failure

and do not move out of the VLR before the failure.

10 Querying Location Data

Besides the efficient support of location look-ups and updates, a challenging issue is the
management of more advanced queries that involve the location of moving objects. Ex-

amples of such queries include finding the nearest service, as well as more involved queries

32

such as identifying the shortest route with the best traffic conditions. Such location queries
may not include location directly, but may require tracking mobile objects indirectly, e.g.,
queries that involve data produced and located at mobile hosts. Location queries may be
imposed by either static or mobile users and may include databases located at both static
and mobile sites.

The management of location queries is complicated by the fact that location is a fast
and continuously changing data. Furthermore, there are location queries that may have
both a spatial dimension, e.g., involve the position of a user and a temporal dimension, e.g..
involve time, for example: “find all objects that will enter a specified region in the next
hour” or *what is the weather and traffic within 1 mile from a moving user”. Location
queries may include fransient data. that is data whose value changes while the queries are
being processed. e.g., a moving user asking for nearby hospitals. Another possible type of
location queries are continuous queries, e.g.. a moving car asking for hotels locating within a
radius of & miles and requesting the answer to the query to be continuously updated. Tssues
related to continuous queries include when and how often should they be re-evaluated and
the possibility of a partial or incremental evaluation.

An issue that complicates further the processing of location queries is the introduction
of imprecision. To control the volume of location updates, an approach is to store imprecise
information about the location of moving users. This means that either the stored loca-
tion is not maintained up-to-date. that is it is not updated each time the user moves. or
approximate location information is saved, for instance only the partition where the user
resides not its exact location. Furthermore, in a variety of location queries, knowing the
exact location of some users may not be necessary. Thus, a new problem that arises in
query processing is how to derive an optimal execution plan for a location query that will
acquire only the missing information necessary to answer it.

(Querying location in cases in which the stored location of a user is approximate is dis-
cussed in [16]. In this approach, partitions are defined such as zones between which the
user relocates very often constitute a partition while zones between which it relocates in-
frequently belong to different partitions. The system guarantees bounded ignorance. in that
the actual and stored location of a user are always in the same partition. Only movements
among zones belonging to the same partition are considered. Thus. to determine the ac-
tual location of a user, searching in the partition of its stored location is sufficient. In this
scenario, deriving an optimal execution plan reduces to determining an optimal sequence

in which to search inside the partitions of the users involved in the query.

33

The transient and continuous aspects of location queries are considered in [37]. The
position of a moving object is represented as a function of time. Thus, position changes
continuously with time even without an explicit update through a database operation. A
new data model. called MOST, is proposed to incorporate such dynamic attributes. MOST
enables queries that refer to future values of dynamic attributes, e.g., retrieve all the air-
planes that will come within 30 miles in the next 10 minutes. The answer to future queries
is tentative, i.e., it should be considered as correct according to what is currently known.

Another approach to reducing the traffic generated by location updates is exploiting the
notion of a route [45]. In this approach, objects move on predefined routes. The current
position of an object is modeled as the distance from its starting point along a given route.

Indexing the location of moving objects is another important topic. The problem with
a straight-forward use of spatial indexing is that the spatial index has to be continuously
updated, since objects are continuously moving. Two methods of indexing location are

proposed in [37] in the context of dynamic attributes.

11 Conclusions

Managing the location of moving objects is becoming increasingly important as mobility
of users. hosts or programs becomes widespread. This paper focuses on data manage-
ment techniques for locating, i.e., identifying the current location. of mobile objects. The
efficiency of techniques for locating mobile objects is critical since the cost of communi-
cating with a mobile object is augmented by the cost of finding its location. Location
management techniques use information concerning the location of moving objects stored
in location databases in combination with search procedures that exploit knowledge about
the objects’ previous moving behavior. Various enhancements of these techniques include
caching, replication. forwarding pointers and partitioning. The databases for storing the
location of mobile objects are distributed in nature and must support very high update
rates since the location of objects changes as they move. The support of advanced queries

involving the location of moving objects is a promising yet intriguing research topic.

References

[1] Special Issue on Intelligent Agents. Communications of the ACM, 37(7), 1994.

[2] Special Issue on Internet-based Agents. I[EEE Internet Computing, 1(4), 1997.

34

[3]

4]

(5]

0]

)

[12]
13]

14]

15

I. F. Akyildiz and J. 8. M. Ho. Dynamic Mobile User Location Update for Wireless
PCS Networks., ACM/Baltzer Wireless Networks Journal, 1(2). 1995.

V. Anantharam, M. L. Honig, U. Madhow, and V. K. Kei. Optimization of a Database
Hierarchy for Mobility Tracking in a Personal Communications Network. Performance
Eavaluation, 20:287-300, 1994,

B. Awerbuch and D. Peleg. Concurrent Online Tracking of Mobile Users. In Proceedings
of SIGCOMM 91, pages 221-233. November 1991.

B. R. Badrinath. T. Imielinski. and A. Virmani. Locating Strategies for Personal
Communications Networks. In Proceedings of the 1992 International Conference on

Networks for Personal Communications, 1992,

M. Baentsch. L. Baum, G. Molter, 5. Rothkugel, and P. Sturm. Enchancing the Web’s
Infrastructure: From Caching to Replication. IEEE Internet Computing. 1(2):18-27,
March 1997.

P. A. Bernstein, V. Hadjilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addisson-Wesley, 1987,

| G. Cho and L. F. Marshall. An Efficient Location and Routing Schema for Mobile

Computing Environments. JEEE Journal on Selected Areas in Communications, 13(5),
June 1995,

L. W. Dowdy and D. V. Foster. Comparative Models of the File Assignment Problem.
ACM Computing Surveys, 14(2):288-313. June 1982,

G. H. Forman and J. Zahorjan. The Challenges of Mobile Computing. IEEE Computer.
27(6):38-47, April 1994,

GPS - Introduction to GPS Applications. www.redsword.com/gps/apps/index.htm.
GPS - USCG Navigation Center GPS Page. www.naveen.uscg.mil/gps/.

H. Harjono. R. Jain, and S. Mohan. Analysis and Simulation of a Cache-Based Aux-
iliary User Location Strategy for PCS. In Proceedings of the 1984 International Con-

ference on Networks for Personal Communieations, March 1994,

T. Imielinksi and B. R. Badrinath. Wireless Mobile Computing: Challenges in Data
Management. Communications of the ACM, 37(10), October 1994.

35

16]

[17]

1§

[19]

20]

T. Imielinski and B. R. Badrinath. Querving in Highly Mobile Distributed Environimn-
nets. In Proceedings of the 18th International Conference on Very Large Data Bases
(VLDEB 92), 1992.

R. Jain. Reducing Traffic Impacts of PCS Using Hierarchical User Location Databases.

In Proceedings of the IEEE International Conference on Communications, 1996,

R. Jain and Y-B. Ling. A Auxiliary User Location Strategy Employing Forwarding
Pointers to Reduce Network Impacts of PCS. Wireless Networks. 1:197-210. 1995.

R. Jain, Y-B. Ling, C. Lo, and S. Mohan. A Caching Startegy to Reduce Network
Impacts of PCS. IEEE Journal on Selected Areas in Communications, 12(8):1434-44,
October 1994,

J. Jannink. D. Lam. N. Shivakumar. J. Widom. and D.C. Cox. Efficient and Flexible
Location Management Techniques for Wireless Communication Systems. A CM/Balfzer

Journal of Mobile Networks and Applications, 3(5):361-374. 1997.

D. B. Johnson and D. A. Maltz. Protocols for Adaptive Wireless and Mobile Network-
ing. IEEE Personal Communications, 3(1), 1996.

E. Jul, H. Levy. N. Hutchinson, and A. Black. Fine-Grained Mobility in the Emerald
System. ACM Transaclions on Computer Systems. 8(1):109-133. February 1988,

P. Krishna, N. H. Vaidya, and D. K. Pradhan. Static and Dynamic Location Man-
agement in Mobile Wireless Networks. Journal of Computer Communications (special
issue on Mobile Computing), 19(4). March 1996.

Y. B. Lin and S. K. DeVries. PCS Network Signaling Using SS7. IEEE Personal

Communications. June 1995,

| Y-B. Ling. Failure Restoration of Mobility Databases for Personal Communication

Networks. Wireless Networks, 1:367-372, 1995.

S. Mohan and R. Jain. Two User Location Strategies for Personal Communication

Services. JEEE Personal Communications, 1(1):42-50, 1st Quarter 1994.

B. Clifford Neuman, S. S. Augart, and S. Upasani. Using Prospero to Support In-
tegrated Location-Independent Computing. In Proceedings USENIX Symposium on
Mobile & Location-Independent Computing, pages 29-34. USENIX. Angust 1993.

36

28]

[29]

130]

31]

32]

[33]

34

[36]

37

[38]

M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, 1991.

E. Pitoura and [. Fudos. An Efficient Hierarchical Scheme for Locating Highly Mobile
Users. In Proceedings of the 7th Iternational Conference on Information and Know-

eledge Management (CIKM'98). November 1998. To appear.

E. Pitoura and G. Samaras. Data Management for Mobile Computing. Kluwer Aca-
demic Publishers, 1998.

S. Rajagopalan and B. R. Badrinath. An Adaptive Location Management Strategy
for Mobile IP. In Proceedings of the 1st ACM International Conference on Mobile
Cmputing and Networking (Mobicom'95). Berkeley, CA. October 1995.

C. Rose. Minimizing the Average Cost of Paging and Registration: A Timer-Based
Method. ACM/Baltzer Wireless Networks Journal, 2:109-116, 1996.

C. Rose and R. Yates. Location Uncertainty in Mobile Networks: a Theoretical Frame-
work. IEEE Communications Magazine, 35(2), 1997.

M. Shapiro. P. Dickman, and D. Plainfosse. SSP Chains: Robust, Distributed Ref-
erences Supporting Acvelie Garbage Collection. Technical Report Technical Report
1799, INRIA. Roecquenteourt. France, November 1992

N. Shivakumar. J. Jannink, and J. Widom. Per-User Profile Replication in Mobile
Environments: Algorithms, Analysis, and Simulation Results. A CM/Baltzer Journal

of Mobile Networks and Applications, 2(2):129-140, 1997.

N. Shivakumar and J. Widom. User Profile Replication for Faster Location Lookup
in Mobile Environments. In Proceedings of the 1st ACM International Conference on
Mobile Cmputing and Networking (Mobicom’95), 161-169. October 1995.

A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying Moving
Objects. In Proceedings of the 13th International Conference on Data Engineering
(ICDE 97), 1997.

Stanford Pleiades Research Group. Stanford University Mobile Activity TRAces
(SUMATRA). www-db.stanford.edu/sumatra.

37

[39]

[40]

4]

42]

43]

4]

43]

[46]

F. Teracka. Y. Yokote, and M. Tokoro. A Network Architecture Providing Host Mi-
gration Transparency. In Proceedings of the ACM SIGCOMM Symposium on Commu-
nications, Architectures and Protocols, pages 209-220. September 1991.

M. van Steen, F. J. Hauck, G. Ballintijin. and A. S. Tanenbaum. Algorithmic De-
sign of the Globe Wide-Area Location Service. Technical Report IR-440, Faculty of

Mathematics and Computer Science, Vrije University, December 1997.

M. van Steen, F. J. Hauck, P. Homburg, and A. S. Tanenbaum. Locating Objects in
Wide-Area Systems. IEEE Communications Magazine, pages 2-7, January 1998,

J. Vitek and C. Tschudin, editors. Mobile Object Systems: Towards the Programmable
Internet. Springer Verlag, LNCS 1222, 1997.

J. Z. Wang. A Fully Distributed Location Registration Strategy for Universal Per-
sonal Communication Systems. IEEE Journal on Selected Areas in Communications,
11(6):850-860. August 1993.

M. Weiser. Some Computer Science Issues in Ubiquitous Computing. Communications
of the ACM. 36(7):75-84, July 1993.

0. Wolfson. S. Chamberlain. S. Dao. L. Jiang, and G. Mendez. Cost and Imprecision
in Modeling the Position of Moving Objects. In Proceedings of the 14th International
Conference on Data Engineering (ICDE 98), 1998.

0. Wolfson, 5. Jajodia, and Y. Huang. An Adaptive Data Replication Algorithm.
ACM Transactions on Database Systems, 22(2):255-314. June 1997.

38

