TRANSACTION-BASED COORDINATION
OF SOFTWARE AGENTS

E. PITOURA

10-98

Preprint no. 10-98/1998

Department of Computer Science
University of loannina
451 10 loannina, Greece

Transaction-Based Coordination of Software Agents”

Evaggelia Pitoura
Department of Computer Science
University of Ioannina
GR 45110 Ioannina, Greece
Phone : + 30 (651) 97 311
Fax : + 30 (651) 48 131
Email: pitoura@cs.uoi.gr

Abstract

Cooperative software agents provide a novel framework for building distributed appli-
cations. Central to the model is the support for sophisticated coordination and close coop-
eration among different agents working together towards accomplishing a specified task. In
this paper, we focus on expressing and enforcing correctness properties of the coordination
and interaction among agents. We build on transaction concepts from database systems to
formalize the proposed correctness properties and introduce methods for enforcing them in

the context of mobile object systems.

Keywords: mobile objects, transaction models, concurrency control.

1 Introduction

Mobile agents are programs which may be dispatched from a client computer and transported
to a remote server computer for execution. With the rapid development of network-centered
applications and web-based technologies, this new model of distributed computing has at-
tracted much attention. The mobile agent model provides an efficient, asynchronous method
for attaining information or services in rapidly evolving networks: mobile agents are launched

into the unstructured network and roam around to accomplish their task. Agents simplify the

“University of loannina, Computer Science Department, Technical Report No: 98-10

necessary distribution of computation and overcome the communication barrier by minimizing
the interchanged messages. In addition, mobile agents support intermittent connectivity, slow
networks, and light-weight devices which is the case in wireless computing since wireless net-
works are less reliable and offer less bandwidth than their wireline counterparts and portable
machines are resource poor when compared to stationary servers. In wireless computing, mo-
bile agents can be used to offload functionality from wireless components to the fixed network
[PS98].

Most current research on agent-based models [VT97, IEE9T7, CACY94] focuses on aspects
related to intelligence and security, both critical for the realization and success of mobile agent
systems. In this paper, we address another issue, that of consistency. Agents model long-lived
computations, own local resources, and access data at remote systems. There is a need to
ensure that the concurrent execution of multiple agents does not violate the consistency of the
data accessed. Besides their own data, agents access two types of data. First, they access data
owned by other cooperative mobile agents, that is data that belong to the context of other
concurrently executing agents. This form of interference among agents must be controlled to
ensure the consistency of each agent’s context in the presence of concurrent accesses. Second,
agents query and modify data that belong to remote systems. Remote systems may include
persistent data stores such as databases.

Ensuring consistency in the context of the agent model is hard since there is no central
point for the coordination of agents. In addition, the behavior of agents is dynamic, and there
may be no prior knowledge of their potential interaction. In this paper, we consider agents in
the context of object systems. An agent is an active object with its own methods and data.

Qur approach is based on associating with each agent an agent manager to coordinate
its execution. An agent manager provides a focal point for the coordination of each mobile
agent. Each agent manager is itself an agent that may be mobile and distributed at different

sites. The special methods that the agent manager supports form a small and uniform for all

managers set of primitives. Thus, this set can be implemented as part of an agent library.
Agent managers are the analog to transaction managers in traditional database concurrency
control. They cooperate with each other to enforce the serialization of the executions of their
associated agents. The proposed technique provides fine-grained control over agent execution
at the level of each agent’s method execution.

The remainder of this paper is organized as follows. In Section 2, the structure of the
execution of an agent is defined as well as constructs to provide cooperation between agents.
In Section 3. a transaction model for agents is presented, and in Section 4, protocols for
enforcing it are advanced. Related work is briefly summarized in Section 5. Finally, we offer

our conclusions in Section 6.

2 Concurrency and Synchronization

Mobile agents are processes dispatched from a source computer to accomplish a specified task
[CGH*95, Whi%]. Each mobile e;genf is a computation with its local data and execution
state. After its submission, the mobile agent proceeds autonomously and independently of the
sending client. When the agent reaches its destination processing unit, it is delivered to an
agent execution environment. Then, if the agent possesses necessary authentication credentials,
its executable parts are started. To accomplish its task, a mobile agent can transport itself to
another computer, spawn new agents, and interact with other agents. Upon completion, the
mobile agent delivers the results to the sending client or to another server.

In the following section, we abstract the constituting parts of an agent, and formalize

intra-agent and inter-agent synchronization.

2.1 The Model

An agent is an active object encapsulating the state, behavior and location of a computation.

The state of an agent is the set of values of a set of local to the computation variables: its

behavior is the set of methods it provides; and its location is the context of its execution.
Computation starts by invoking an appropriate agent. For a processing unit to execute an
agent, it must provide an agent execution environment.

The agent may be executed as an operating system process, an operating system thread or
it may be managed by a thread package within the agent execution environment. The methods
that build the agent program may correspond to local functions to the agent, functions of other
agents, or functions of remote systems.

To develop our model, we distinguish the methods of an agent as simple and composite.
Composite methods consist of a number of other simple or composite methods. A simple
method is either a primitive or a basic method. Primitive is a method that only accesses the
state of the agent, that is a method that manipulates only local variables. Basic is a method
that accesses non-local to the agent resources, that is resources that belong to another agent
or remote system. Such methods are either methods that access resources of another mobile
agent or resources of the remote system where the agent is transmitted. Each agent has a
top-most method, called Compute, that encodes the intended computation.

Agents are instances of a particular system-defined class called Agent_Class, thus all agents
have similar behavior and structure. Upon activation of an agent, the agent creates an Agent
Manager (AM) to coordinate its execution. AMs are special agents, instances of a system
class called AM _Class. Specific local variables of an AM represent the execution state of each
method of the corresponding agent. An additional local variable records the history of the

execution of the agent, in particular the order of method invocations.

2.2 Intra-agent Concurrency and Synchronization

Concurrency inside an agent is achieved through asynchronous invocations of more than one
of its methods. Synchronization mechanisms are necessary to control the interaction among

the execution of the agent’s methods. Intra-agent synchronization is based on defining a set

of dependencies on the ordering of the execution of methods [RS95a). Such dependencies are
called structural and are expressed in terms of the controllable states of the methods of the
agent.

The states of a method include the submission, execution and completion of the method.
When a method is invoked, it enters the ready state and moves to the submitted state when
it is actually submitted for execution. In terms of basic methods, the agent manager of an
agent may delay the submission of a method to another agent or system to ensure correctness.
When its execution starts, the method enters the running state and remains in this state until
its completion. Upon completion, the method may be either accepted or aborted. If accepted,
the results of the method become permanent and the method enters the committed state. The
committed state may either correspond to failure or success depending on whether the expected
result was accomplished or not. If aborted, the results of the method are not recorded, and
the method has no effect on data.

A state of a method is controllable, if the agent that submitted the method or its agent
manager can cause a transition of the method into this state. Although, the agent that invokes
a primitive method and its manager can control all states of a method, they can control only
the submission of a basic method. The actual execution time of a basic method is under the
control of the corresponding remote mobile agent or system that receives the agent. The same
holds for the completion of a basic method. Some remote systems may provide a prepare-to-
commit state that indicates that a method has completed execution and its results are about to
become permanent. If this feature is available, then the agent or its manager can also decide on
the completion of the method. Figure 1 summarizes the controllable states of a basic method.

The following definition formalizes the concept of a structural dependency among states:

Definition 1 (structural dependency) A structural dependency SD is o triple (C, M, §),

where C' is a specification, M is a set of methods M, and § s a set of controllable states of

the methods M = M.

O zfﬁrndllﬂeh

) et necessarnly
2 EWII:IIH:III by Ihc AN

Ajpeal-iiliied Agert-imitined
Subrmied
I' Sysiemeinitiaed
J Symem-mitisted

g /
1h|’ Syslem-isitined
A Prupn
S | Failed e

@ Q | Aboned
ia) ib}

Figure 1: Controllable states for basic methods, when: (a) there is no prepare-to-commit state,

(b) there is a prepare-to-commit state

There are three types of structural dependency based on the form of C: order, existence,
and real-time dependencies in accordance with the primitives defined in [Kle91]. In an order
structural dependency (C, M, §), C has one of the following forms: M; can enter state s; only
after M; has entered state s;, or M; cannot enter state s; after M; has entered state s;, where
M;, M; € M and s;, s; € §. Ordering structural dependencies can be used to express data
flow dependencies, for instance that M; reads data produced by M;. Ordering dependencies
can be used to enforce a serial execution of a number of methods, by forcing a method to begin
only after the commitment of the previous one. In an eristence structural dependency (C, M,
S), C has the following form: if M; enters state s;, then M; must enter state s;, where M;,
M; € M and s, s; € §. Special cases of existence structural dependencies include critical,
contingency, and compensation methods, Critical methods are methods that, when aborted (or
failed semantically) cause the entire agent to abort (or fail semantically). Contingency methods
are methods that are executed as alternatives when an agent fails semantically. Compensation

methods are methods that are executed to semantically undo the effect of a committed method

when some other method aborts. Finally, in a real-time structural dependency (C, M, 8),C
specifies a requirement for the real time submission or completion of the methods in M.

The state of a method is stored as a local variable of the associated AM. The value of this
variable is modified when a state transition occurs. To implement structural dependencies, the
agent manager handles explicitly the controllable state transitions. This is achieved through
the form_dependency method. The form_dependency is a method of the AMs. It takes as
arguments the type of the dependency and the names of the associated methods and states.
Upon receipt of a form_dependency method, the AM becomes responsible for the enforcement
of the dependency. The dependency may be formed during the execution of an agent based
on the result of a previous action. Dependencies may be also specified statically as part of the
definition of an agent.

Defining flow of control and data using dependencies among states of methods provides fine-
grained control over the execution of an agent. It also allows for a large degree of parallelism
in the agent’s execution, which is very important since different parts (methods) of the agent

may be executed at different network sites.

2.3 Inter-agent Communication and Synchronization

Concurrency at the inter-agent level is achieved by allowing more than one agent enactment.
Agents interact with each other to accomplish a common goal. Moreover, the execution of an
agent may interfere with the execution of another agent indirectly when they both access the
same data concurrently. There is a need to define and control both the desirable and indirect
interactions between agents that are executed concurrently.

Inter-agent synchronization and communication can be achieved either through message
passing or through shared memory. Message passing provides explicit control on the visibility
of an agent’s data, since an agent explicitly sends information about its local data to other

agents or accepts similar information about other agent’s data from them. Both asynchronous

and synchronous messages from an agent to another may be provided.

<send> Object <to> Agent-name

<receive> Object <from> Agent-name

Interaction through shared memory relies on the observation of partial changes in an agent’s
local data caused by other agents. This interaction can be controlled by defining specific points
in the execution of an agent where other agents are allowed to observe its partial results through
modifications in the agent’s local data. This may be accomplished by explicitly defining break
[FO89] or permit [BDG'94] points within the execution of an agent where other agents are

allowed to interleave.

Definition 2 (breakpoint) A breakpoint B of an agent T is a triple (B;, B, {(T:, M;)})
where {(T;, M;)} is a set of pairs of agents (T;) and methods (M;) of these agents, and B; =
(My, 8¢), Be = (Me, s.) are pairs of methods along with corresponding controllable states of the

agent T which allow members of {(T;, M;)} to be ezecuted between B, and B, of T.

Another form of inter-agent communication is delegation, where an agent delegates respon-

sibility of the execution of a method to another agent.

Definition 3 (delegation) A delegation of an agent T is a pair (M;,T;) that denotes that

the method M; invoked by T will be erecuted as part of agent T).

To implement breakpoints and delegation, two special methods, called breakpoint and
delegation, are used. A breakpoint method is sent to the Agent Managers of the agents that
are involved in the breakpoint. The delegation method is sent to the Agent Manager of the
agent to which the execution of the method is delegated.

Interaction among agents can also be achieved by defining a common to all agents data
storage. Agents can then communicate by importing and exporting data from this common
storage. The techniques in this paper are applicable to this scenario as well by considering the

common storage as the local data of a special agent.

8

3 The Agent Transaction Model

Attributing to agents the properties of traditional transactions is too restrictive. In particular,
the execution of each agent is not isolated from the execution of other agents, since agents
can see the intermediate results of execution of other agents by accessing their local data.
Furthermore, the execution of an agent is not necessarily atomic, since while a method of the
agent may be aborted, some other method may be accepted. In this section, we define what
is a correct execution of an agent as well as a correct execution of a number of concurrently

executing agents.

3.1 Well-Structured Agent Execution

Two methods of an agent conflict if they do not commute, that is if the order of their execution
affects the final state of data. A commutativity relation is defined for each pair of methods.
Two methods conflict if they do not commute. For example, two methods conflict if they
access the same data item and one of them updates it. We assume that a commutativity
relation is defined for both simple and composite methods. Alternatively, commutativity can
be defined only for simple (primitive and basic) methods and the commutativity of composite
methods can be inferred by the commutativity of their constituting simple methods. In a
closed-nested transaction model, such as that in [HH91], conflicts among primitive or basic
methods result in conflicts among the composite methods from which they are invoked. Inopen-
nested transactions [MRW ™93], there is no such implication. Although, we assume for clarity
of presentation, such an open-nested transaction model, most of the following definitions and
protocols translate easily to the closed-nested situation by for instance using such techniques
as hierarchical timestamps [HH91].

The computation of an agent is extended to include the methods that are delegated to it.
In particular, the execution of an agent is modeled as a sequence of its breakpoints and of state

transitions of the methods that it invokes or are delegated to it. Thus,

Definition 4 (agent execution) An agent execution is a pair (E,<) where ¥ is a set of
events and < is a partial order. An event in an agent erecution is either a breakpoint B in
the Compute of the agent or a pair (M, S) where M is a non-delegated method invoked by the
Compute method of the agent or a method delegated to it and S is a state of M. The partial
order < is such that for all non commutable methods M; and M; either (M;, E) < (M;,E) or

(M;, E) < (M;, E), where E stands for the running state of the method.

Thus, the execution of an agent is a partially-ordered sequence of method executions and
breakpoint events. This partial order must respect the structural dependencies among the

methods of an agent. This is expressed in the following definition,

Definition 5 (well-structured agent execution) An agent erecution is well-structured in
terms of a set D of structural dependencies if the partial order < on its events does not violate

any of the dependencies in D.

3.2 Schedule Correctness

A schedule is an interleaved execution of methods and breakpoints of a set of agents. Formally,

Definition 6 (schedule) A schedule of a set {T1, T3, ..., Tp} of agents executions T; = (I, <;
) s a pair (I, <p) where £ =|JE; and < is a partial order such that: (1) if, for any events
sk and 5; € Ly, sk <; 8 then 8¢ < 51, and (2) for all non commutable methods M; and M;
of two different agent ezecutions either (M;, E) <p, (M;, E) or (M;, E) < (M, E), where E

stands for the running state.

The first condition states that, the interleaved execution of a set of agents preserves the
execution order of each of the agents. The second condition imposes a relative order between
the non-commutable methods of two different agent executions.

Each agent or remote system observes the execution of agents by changes in the state of

its local data. The projection of a schedule S on the local data of agent T; is the schedule that

10

results if we exclude from S all but the primitive methods on data of T; and the breakpoints,
if any, that immediately precede each of them. Similarly, the projection of a schedule S on the
local data of a remote system DB; is the schedule that results if we exclude from S all but the
basic methods on data of DB; and the breakpoints, if any, that immediately precede each of
them.

To enforce that the concurrent execution of transactions (agents) does not violate the
consistency of data, the most common approach is to ensure that the corresponding schedule
is conflict-serializable, that is conflict equivalent to a serial schedule [BHG8T7]. Two schedules
are conflict equivalent, if they consist of the same events and order conflicting operations in
the same manner. This is based on the assumption that each transaction (agent) maintains
data consistency if executed alone. In the case of breakpoints, serializability is extended to
relative serializability [FO89].

A step of an agent execution T is a subsequence of T' that includes exactly the events
between two consecutive breakpoifts in . A method interleaves with a step if it executed
before an event E of the step and after another event E' of the step. We use a modified model of
relatively serializability [FO89] that allows for efficient, i.e., polynomial, serializability testing
[ABAK94]. We say that, in a schedule S, a method My directly depends on a method M if
(M;.E) <, (M, E), where E stands for the running state. The depends on relation is defined
as the transitive closure of the directly depends on relation.

A schedule is relatively serial if, for all pairs of agents, T; and T, if a method M of T; is
interleaved with a step of T} starting with breakpoint (B, Be, {(T}, M;)}) then at least one of
the following is true: (a) M does not depend on any method pair of an event of the step and

no method of an event of the step depends on M, or (b) (T3, M) € {(T}, M;)}.

Definition 7 (correct schedule) 4 schedule is correct if (1) the erecution of all its agents

are well-structured, and (2) it 15 conflict equivalent to a relatively serial schedule.

1l

As the following theorem shows, to ensure that a schedule is conflict equivalent to some
serial schedule, it suffices to ensure that its projections are conflict serializable with consistent

orders:

Theorem 1 If each agent and remote system projection of a schedule S is conflict equivalent
to a relatively serial schedule, then, if there is an order <, consistent with the serialization

orders assumed by each projection, then S is conflict equivalent to o relatively serial schedule.

Proof. (Sketch) The schedule S, having the same set of agents as S and with order <, orders
conflicting operations the same way with schedule S, so it is conflict-equivalent to it. It is also
relatively serial. To prove that, suppose it is not, then one of its projections is not relatively

serial, a contradiction. O

4 Managing Agents at Run-Time

Ensuring the correctness of the interleaved execution of agents is the responsibility of different

units, in particular of (Figure 2):

e agent managers (AM) of all agents involved
The AMs are created upon the activation of each agent to ensure its structural cor-
rectness. They decompose the top-most method (Compute) of their associated agents
into basic and primitive methods and take care of submitting the basic methods to the

appropriate AMs or DGT M s at remote sites.

e distributed transaction managers (DGTMs) located on top of each remote system
Each DGTM coordinates the submission of agents to its system. Each DGTM receives
methods from the various AMs, schedules them to control concurrency and inter-agent

synchronization and submits them to the corresponding LTMs.

e pre-existing local transaction managers (LTMs) at each remote system

An LTM at a remote system controls the execution of the basic methods submitted to

12

1 i -
| Agent Manager (AM) Jl - e : ! Agent Manager [;‘um |

i .,
-
| Agent (o) Agent
a7 N Agent_r
G G
Remore_Syzrem_[Remore_System_m

Figure 2: Agent execution

the corresponding remote system. The properties that an LTM ensures for the execution
of a method vary based on the requirements of each system. For example, LTMs for
database systems ensure the ACID properties of each basic method, that is, that each

method is executed as an atomic, consistent, isolated and durable unit.

The above approach resembles traditional multidatabase transaction management tech-
niques [BGMS92, PBE95]. The main difference is that there is no central point of control, in
the form of a global transaction manager. Instead, control is distributed among agent managers
and local schedulers (DGTMs). This way. bottlenecks that can seriously affect performance,
especially in cases of widely distributed systems, are avoided. We outline how agents managers
and DGTMs cooperate to ensure relatively serializable executions.

Upon its creation, each agent receives a timestamp. Each timestamp must be unique, for
example, it can be defined to be a combination of the value of the clock and the user’s id.
The timestamp of an agent corresponds to its global serialization order. Each AM has two
basic responsibilities. First, it coordinates the execution of its agent. It ensures that its agent
execution is well structured. To enforce the specified structural dependencies, the AM can
either use graph-based methods [BDG™94] or automata-based techniques [ASSR93]. Second,

each AM produces correct relatively serializable executions on its local data consistent with

13

the timestamp order.

To handle breakpoints, the commutativity relation between the methods that follow the
breakpoint and the methods specified in the breakpoint is changed at run time. In particular,
the AM upon receipt of the breakpoint method, it modifies the commutativity relation so that
for the duration of the breakpoint, the associated methods commute even if they normally
do not. Delegation is taken into consideration directly in the definition of an agent execution
by making a delegated method part of the execution of the agent it was delegated to. In
particular, upon receipt of the delegate method, the AM treats the corresponding methods as
part of its own agent execution.

Each DGTM produces DB; correct relatively serializable schedules consistent with the
timestamp order. We now describe the submission of a basic method from a DGTM to an
LTM so that relatively serializability is ensured. To execute a composite method, each AM
can use techniques such as the semantic-based locks of [MRW™93]. Each DGTM possesses a
variable called a logical ticket (LT)-and a list of the timestamps of all basic methods that have
been submitted to the site. The logical ticket is the larger of the timestamps in the list. A
method that does not commute with a submitted method is not allowed to execute concurrently
with it; thus, if such a method arrives with a smaller timestamp than the timestamp of its
conflicting method, it is aborted. Two commutable methods are executed concurrently without
any further control.

Complications arise if we consider autonomous remote systems. In these systems, transac-
tions may be executed outside the control of the DGTM by being directly submitted to the
LTM. If we allow such submissions of autonomous operations directly to the LTM, indirect
conflicts among commutable methods may arise through conflicts with autonomous operations;
these can be avoided by forcing direct conflicts among them. In this case, an additional data
item per site is needed. This data item is physically stored in that site and is called a physical

ticket (PT) [GRS94]. All commutable methods submitted by a DGTM to the LT M read and

14

write the PT so that they become conflicting. This is accomplished by having each DGTM

execute the following code after a commutable method M of an agent T is received [BRG92]:

get (LT)
if (LT > T’s timestamp)
abort (M)
else
submit(M) to the LTM
in a critical regiom
get (LT)
if (LT > T’s timestamp)
abort (M)
else
write(PT, T’s timestamp)
-= methud-H is executed --
if decision taken to commit M
set (LT, T’s timestamp)
commit (M)

else abort(M)

O

In summary, each AM ensures that the execution of its agent is well structured. It also

ensures that the projection of all operations on its agent’s data is relatively serializable based

on the timestamp order. Each DGTM; ensures that the execution of all basic methods at its

corresponding site i is relatively serializable based on the timestamp order. Thus, schedule
correctness is ensured.

The information that a method has been aborted or committed is passed from the LT M

through the DGTM to the corresponding agent manager that decides what the next action

15

will be. For example, in the case of a method being aborted, a compensating method may be
submitted, or the aborted method may be retried. Similarly, if a prepare-to-commit state is
supported by the system, this information is also passed from the LTM through the DGTM
to the AM. In this case, the AM can make its own decision on whether to commit or abort a

method.

5 Related Work

The techniques for supporting consistency in mobile object models presented in this paper
combine concepts from multidatabase concurrency control, advanced transaction models, and
workflow management. [BGMS92] offers an excellent survey of the problem of concurrency
control in multidatabase systems. However, the majority of multidatabase transaction man-
agement systems adopt a centralized approach; [WV90, BRG92] are possible exceptions. Many
advanced transaction models have been proposed (see [Elm92| for examples). ACTA [CR94]
provides a framework based on ﬁrstr-order logic for reasoning about extended transaction mod-
els. This model is low-level; a higher-level model based on transaction primitives is described
in [BDGT94]. These two models can be used to express and implement respectively the struc-
tural characteristics of agents. On the basis of extended transaction models, many researchers
have defined workflow specifications [RS95b, GHS95]| similar to the agent structural dependen-
cies. A very preliminary presentation of some ideas in this paper has appeared in [PB95]. In
the current paper, we formalize these ideas in the form of a transaction model for agents and

present protocols for the implementation of the model.

6 Conclusions

In this paper, we have presented a scheme for ensuring correctness of the concurrent execution
of agents. The properties ascribe to the execution of an agent is that of advanced transactions.

In particular, the structure of an agent is defined through dependencies between the execution

16

state of its methods. Furthermore, agents can cooperate with each other by sharing their

intermediate results or by delegating the responsibility of specific actions to each other. The

enforcement of the structural properties of an agent and the control of the interaction of

agents with other agents and remote resources is assigned to per agent agent managers that

accomplish this task through a well-defined small set of primitives. These primitives can be

efficiently implemented in the form of library support for concurrency.

References

[ABAK94] D. Agrawal, J. Bruno, A. Abbadi, and V. Krishnaswamy. Relative Serializability: An

[ASSR93]

[BDG*94]

[BGMS92]
[BHGS7]
[BRG92]
[CACO4]
[CGH*935)
[CR94]
[Elm92]
[FOS9]

[GHS93]

IGRS94]

[HH91]

Approach for Relaxing the Atomicity of Transactions. In Proceedings of the 18th ACM
Symposium on Principles of Database Systems, pages 130-149, 1994,

P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and Enforcing Intertask
Dependencies. In Proceedings of the 9th International Conference on Very Large Database
Systems, pages 134-144, 1993,

A. Biliris. S. Dar, N. Gehani, H. V. Jagadish, and K. Ramamritham. ASSET: A System
for Supporting Extended Transactions. In Proceedings of the 1994 SIGMOD Conference,
pages 44-54, May 1994

Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of Multidatabase Transac-
tion Management. VLDB Journal, 1(2):181-239, 1992,

P. A. Bernstein, V. Hadjilacos, and N. Goodman. Cencurreney Control and Recovery in
Database Systems. Addisson-Wesley, 1987,

P. K. Batra, M. Rusinkiewics, and D. Georgakopoulos. A Decentralized Deadlock-free
Concurrency Control Method for Multidatabase Transactions. In Proceedings of the 12th
International Conference on Distributed Computing Systems, June 1992,

Special Issue on Intelligent Agents. Communications of the ACM, 37(T7), July 1994.

D). Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. Itinerant Agents
for Mobile Computing. IEEE Personal Communications, 2(5}, October 1995.

P. K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models using
acta. ACM Transactions on Database Systems, 19(3):450-491, September 1994.

A. K. Elmagarmid, editor. Database Transaction Models for Advanced Applications. Morgan
Kaufmann, 1992,

A. A, Farrag and M. T. Ozsu. Using Semantic Knowledge of Transactions to Increase
Concurrency. ACM Transactions on Database Systems, 14(4):503-525, December 1980.

D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed and
Parallel Databases, 3(2), 1995,

D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. Using Tickets to Enforce the Se-
rializability of Multidatabase Transactions. [EEE Transactions on Knowledge and Data
Engineering, 6(1), February 1994,

T. Hadjilacos and V. Hadjilacos. Transaction Synchronization in Object Bases. Journal of
Computer and System Sciences, 43:2-24, 1991,

17

[IEE97]
[Kle91]

[MRW+93]

[PBY3]

[PBES]
[PS98]
[RS95a]
[RS95b]
[VT97]
[Whig6]

[WV0]

Special Issue on Internet-based Agents. JEEE Internet Computing, 1(4), July-August 1997.

J. Klein. Advanced Rule Driven Transaction Management. In Proceedings of the IEEE
COMPCON, 1991.

P. Muth, T. C. Rakow, G. Weikum, P. Brossler, and C. Hasse. Semantic Concurrency
Control in Object-Oriented Database Systems. In Proceedings of the 9th International
Conference on Data Engineering, pages 233-242, 1993,

E. Pitoura and B. Bhargava. A Framework for Providing Consistent and Recoverable Agent-
Based Access to Heterogeneous Mobile Databases . ACM SIGMOD Record, 24(3):44-49,
September 1995.

E. Pitoura, O. Bukhres, and A. Elmagarmid. Object-Orientation in Multidatabase Systems.
ACM Computing Surveys, 27(2):141-195, June 1995.

E. Pitoura and G. Samaras. Data Management for Mobile Computing, volume 10 of Ad-
vances in Databases Systems. Kluwer Academic Publishers, 1998.

M. Rusinkiewicz and A. Sheth. Specification and Execution of Transactional Workflows.
In W. Kim, editor, Modern Database Systems, pages 592-620. Addison Wesley, 1993.

M. Rusinkiewicz and A. Sheth. Specification and execution of transactional workfliows. In
W. Kim, editor, Modern Database Systems, pages 592-620. Morgan Kaufmann, 1995.

J. Vitek and C. Tschudin, editors. Mobile Object Systems: Towards the Programmable
Internet. Springer Verlag, LNCS 1222, 1997.

J. E. White. Mobile Agents. General Magic White Paper, www.genmagic.com/agents,
1996.

A. Wolski and J. Veijalainen. Achieving Serializability in Presence of Failures in a Hetero-
geneous Multidatabase. I Proceedings of the Parbase90 Conference, February 1990.

18

