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Abstract

To accommodate the increase in user population in future personal communica-
tion systems, hierarchical architectures of location databases have been proposed. In
this paper, a scheme based on forwarding pointers is presented, that reduces the cost
of the overall network and database traffic generated by frequent location updates in
such hierarchical architectures. To reduce the number of forwarding pointers that nead
to be traversed to locate a user, auxiliary caching techniques are presented. Various
conditions for initiating updates of the database are also introduced. Special care is
given so that the scheme correctly supports the concurrent execution of updates and
lookups. The applicability of the scheme and the performance of the caching techniques
is demonstrated through a number of experiments for & range of call to mobility ratios
and for a variety of moving and calling behaviors.

Heywords: Mobile Computing, Mobile Databases, Location Management, Pointer For-
warding, PCS svstems.

1 Introduction

In a Personal Communications Service (PCS) system, users place and receive calls through
a wireless medium. PCS users are located in system-defined cells, which are bounded
geographical areas. A cell is a uniquely identifiable unit. Inside a cell, a user can be tracked
using some form of paging. Databases are used to store information about the location
of moving users. When user A places a call to user B, a number of database lockups are
performed to identify the cell § where B resides. When user A enters a new cell, the location
databases that contained information about A’s old address must be updated.

For future PCS systems, with high user populations and numerous customer services,
the signaling and database traffic for locating users is expected to increase dramatically
[18]. To accommodate this increase in traffic, a distributed database architecture has been
proposed in which location databases are organized in a hierarchy [18, 1, 7]. Each location
database contains information about the location of all users registered in levels below
it. The use of a hierarchical scheme however, incurs considerable increases in the cost of
move operations, since a number of location databases must be updated. In this paper,
we consider the problem of locating moving users using such hierarchical tree-structured
location databases. In particular, to reduce the cost of moves, instead of updating all



location databases involved, a forwarding pointer to the new location is set at the lower level
database. Forwarding pointers have been considered for two-tier schemes in [8]. However, if
forwarding pointers are never deleted. then long chains are created, whose traversal results
in an excessive increase in the cost of locating users during calls.

We consider two alternative conditions for purging forwarding pointers and for updating
the hierarchical database: one based on the maximum number of the forwarding pointers
and the other on the distance of moving. In addition, we introduce a number of auxiliary
caching techniques that effectively reduce the number of pointers a call has to traverse
before locating the callee. Finally, we extend our scheme so that it correctly supports
the concurrent execution of move and call operations. The treatment of concurrency is
general enough and is applicable in any hierarchical location database independently of the
employment of forwarding pointers.

To study the performance of the forwarding scheme along with the caching techniques
and the various conditions for purging forwarding chains, we have developed an event-driven
simulator. We have performed a number of experiments for a range of call to mobility ratios,
for users with different mobility and calling behavior, and for a real-word number of cells.
Since whether the database or the communication cost is the dominating factor follows from
various system-dependent parameters, we treat each of the costs separately in our analysis.
The results clearly show that under certain assumptions and for small call to mobility ratios,
the forwarding scheme coupled with appropriate auxiliary caching techniques on a per user
basis can reduce both the overall database load and the communication traffic by 60% to
20% depending on the call to mobility ratio.

The rest of this paper is organized as follows. In Section 2, we introduce the forwarding
scheme and various strategies for improving its performance. In Section 3, we extend the
proposed schema to handle correctness issues that arise from the concurrent execution of
call and move operations. In Section 4, we present our models for the call and mobility
behavior of PCS users, briefly describe our cost model, and report performance results. In
Section 5, we compare our work with related research and in Section 6, we offer conclusions.

2 The Location Strategy

The location problem in PCS systems can be described in terms of two basic operations,
a call operation to locate a moving user, and a move operation to update the information
about the location of a mobile user when the user enters a new registration area. The basic
location strategies proposed in the IS-41 and GSM [13] standards use a two-tier system in
which each moving user is associated with a pair of a Home Location Register (HLR) and a
Visitor Location Register (VLR). Calls to a given user, first query the VLR in the caller’s
region, and then if the callee is not found in the region, they query the callee’s HLR. Moves
require updating the HLR.

2.1 Hierarchical Location Databases

To avoid “long-distance” signalling messages to the HLR, when most calls and moves are
geographically localized, a hierarchical directory structure has been proposed [18, 1, 7]
and is under study for the European third-generation mobile system called the Universal
Mobile Telecommunication System (UMTS) [5]. Hierarchical location schemes extend two-
tier schemes by maintaining a hierarchy of location databases, where a location database
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Figure 1: Hierarchical Location Schema. Location databases’ entries are pointers to lower
level databases.

at a higher level contains location information for users located at levels below it. Usually,
the hierarchy is tree-structured. In this case, the location database at a leaf serves a single
cell and contains entries for all users registered in this cell. A database at an internal
node maintains information about users registered in the set of cells in its subtree. For each
mobile user, this information is a pointer to an entry at a lower level database. For example,
in Figure 1 for a user z residing at node (cell) 18, there is an entry in the database at node
0 pointing at the entry for = in the database at node 2. The entry for x in the database at
node 2 points to the entry for z in the database at node 6, which in turns points to the entry
for x in the database at node 18. The databases are usually interconnected by the links of
the intelligent signaling network, e.g., a Common Channel Signaling (CCS) network. For
instance, in telephony, the databases may be placed at the telephone switches. It is often
the case that the only way that two cells can communicate with each other is through the
hierarchy; no other physical connection exists among them.

The hierarchical scheme leads to reductions in communication cost when most calls and
moves are localized. In such cases, instead of contacting the HLR of the user that may be
located far away from the user’s current location, a small number of location databases in
the user's neighborhood are accessed. In addition, there is no need for binding a user to
a permanent home location register (HLR). since the user can be located by querying the
databases in the hierarchy. On the other hand, the number of database operations caused
by call and move operations increase.

Let LCA(4, j) stand for the least common ancestor of nodes § and j and lea(i, j) be the
level of the LCA(i, 7). Let the level of the leaves be level 0. When user r moves from cell
i to cell j, the entries for x in the databases along the path from j to LCA(4, 7). and from
LCA(i, j) to i must be updated. For instance, when user & moves from 18 to 20, the entries
at nodes 20, 7, 2, 6, and 18 are updated. Specifically, the entry for x is deleted from the
databases at nodes 18 and 6, and an entry for x is added to the databases at nodes 2, 7,
and 20. When a caller located at cell i places a call for a user y located at cell 5, the lookup
procedure queries databases starting from node i and proceeding upwards the tree until the
first entry for « is encountered. This happens at node LC A(s, 7) (the least common ancestor
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Figure 2: Pointer Forwarding.

of nodes 4 and j). Then, the lockup procedure proceeds downwards following the pointers
to node j. For instance, a call placed from cell 21 to user  (Figure 1), queries databases at
nodes 21, 7 and finds the first entry for £ at node 2. Then, it follows the pointers to nodes
6 and 18. We call the above operations basic move and basic cell respectively.

2.2 Forwarding Pointers

To reduce the update cost, a forwarding pointer strategy is deployed. In this approach,
instead of updating all databases on the path from j through LCA(j.7) to ¢, only the
databases up to a level m are updated. In addition, a pointer is set from node s to node &,
where s is the ancestor of ¢ at level m. and ¢ is the ancestor of j at level m The level of s and
t may vary. A subsequent caller reaches r through a combination of database lookups and
forwarding pointer traversals. Take, for example, user z located at node 14 that moves to
node 17 (Figure 2). Let level m = 2. A new entry for z is created in the databases at nodes
17, 6 and 2, the entries for = in the databases at nodes 14 and 5 are deleted, and a pointer
is set at z's entry in the database at node 1 pointing to the entry of x in the database at
node 2. The entry for z at node () is not updated. Using forwarding pointers may increase
the cost of calls, since it may results in a combination of tree links and forwarding pointers
traversals. For instance, when a user, say at cell 22, calls z, the search message traverses
the tree from node 12 up to the root node 0 where the first entry for x is found, then goes
down to 1, follows the forwarding pointer to 2, and traverses downwards the path from 2
to 17. On the other hand, a call placed by a user at 18, results in a shorter route: it goes
up to 6 and then to 17.

In the following, we assume forwarding at the leaf level in which case forwarding pointers
are set among leaf nodes, but the analysis applies to other types of forwarding as well. In
this case. when a user moves from location i to location j, a forwarding pointer is simply
set at node ¢ pointing to node j. Calls originated from a cell k to a user x located at cell {
proceed initially as in the basic call: go up to the tree till the first entry for z is encountered
and then down following the entries to a leaf node, say m. However, £ may not be actually
located at m, but the entree at m may be a forwarding pointer to another leaf node. Thus,
before actually locating a user, a chain of forwarding pointers may have to be traversed.

We propose auxiliary techniques that reduce the number of forwarding pointers that a
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Figure 3: Full Update of the Directory Entries.

call has to traverse hefore locating the user. The first technique is based on the observation
that it should be possible to re-use the information about the user’s location from the
previous call to that user. To this end, each time a call is set up, after the address of the
callee has been resolved, it is saved at the first node of the chain. Thus, any subsequent
call to that user can use the cached location to locate him, instead of traversing a number
of forwarding pointers. This is essentially a variation of caching in which instead of caching
the address of the callee at the caller [9], the address is cached at the starting node of the
chain of forwarding pointers. The cached location can then be used not only by subsequent
calls from the same cell, but from calls originated from any cell. Caching does not add to
the latency of a call operation, since it can be performed off-line.

A similar caching strategy is deployed along with move operations. In particular, during
each move, the new location of the user can be cached at the first node of the chain. However,
in contrast to caching at calls, the entry cached at a move is of use only if the next operation
involving the user is a call operation. Intuitively, if the call-to-mobility ratio (CMR) is very
low, continuously updating the cached entry at each and every move operation, (which
corresponds to having in effect a chain of one pointer) adds to the overall traffic without
necessarily reducing the latency of some call operation. Thus, instead of caching at each
move, caching is done selectively. The decision to cache is based on an estimation of the
probability that the next operation will be a call operation. This is estimated by comparing
the number of moves in a row and the call-to-mobility ratio. This requires a counter be
associated with each mobile unit. The counter is incremented when the unit changes location
and it is set to zero when the unit receives a call. It also assumes that an estimation of
the CMR is available. For this purpose, techniques such as proposed in [9] can be utilized.
Again, caching can be performed off-line without adding up to the move set-up time.

Besides caching, in order for the hierarchical directory scheme to maintain the property
of efficiently supporting local operations, the directory entries must be occasionally fully
updated. Otherwise, the first node of the chain, i.e., the node at which each call is first
directed by following the tree database entries, may end up being far away from the user’s
actual location. Fully updating the data structure includes {a) deleting all intermediate
forwarding pointers in the chain and (b) updating the internal nodes of the tree (Figure 3).

Regarding full updates, two issues must be addressed. One issue is the correct execution
of calls that proceed concurrently with a full update. We consider this issue in Section 3.
The other issue refers to the condition for initiating these procedures. We consider two
possibilities. The first is to initiate a full update when the number of forwarding pointers
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Figure 4: Move and Call Procedures. For clarity of presentation, for the call operation we
do not show the case in which node ¢ is one of the nodes in the forwarding pointers chain.

exceeds some maximum value. The other is to fully update when the user moves outside
the vicinity of its current region. We capture this by considering the level of the least
common ancestor of the two locations: an update is initiated when the user moves to a
location whose level of the least common ancestor with the current location is larger than a
threshold level. We experimented with different values for both criteria for updating. The
results are presented in Section 4.3.

Finally, we note that before setting a forwarding pointer. detecting eycles is necessary
to avoid infinite loops during calls. For example, consider chain 11 —+ 18 — 26 — 14 and a
move made to 18. Carelessly adding a pointer to 18 results in chain 11 — 18 — 26 — 14 —
18 and some future calls may hang. Cycles can be detected by checking upon each move of
a user A from j to i, whether an entry for 4 already exists at i. If so, there is a path from
4 to i which can then be purged. Thus, the chain of the example becomes 11 — 18.

Finally. although during normal moves, cache entries are not invalidated. moves that
form cycles or cause the initiation of full updates make cached entries obsolete. Thus, there
is an additional overhead associated with such moves, that of updating the entry cached at
the first node of the chain, if any.

Figure 4 summarizes the call and move procedures. The deployment of these techniques
along with the forwarding pointers strategy reduces the total database load and communi-
cation traffic over the basic hierarchical schema by a considerable factor (see Section 4).

3 Concurrency

In any hierarchical location database, each call results in a number of query operations
being issued at various nodes of the hierarchical database. Similarly, a full update initiated
by a move causes update operations to be executed at several nodes of the database. The
discussion so far was based on the assumption that moves and calls arrive sequentially and
are handled atomically and isolated one at a time, and thus, there is no interleaving between
the queries and updates of the various call and move operations. In this section, we extend
the move and call procedures to handle concurrency.

First, when a move from cell i to cell j occurs, a forwarding pointer pointing to j is set



at i to prevent from being lost any calls that have been issued prior to the movement and
have been directed to the old address i. Then, a specific order is imposed on the database
operations caused by a full update. In particular, each full update is performed in two
phases: an add and a delete phase. Let a user’s z movement from ¢ to j that causes a full
update, and let vy be the first node in the forwarding pointers chain of z. If there is no
such chain, vg is i. First, entries at the path from j to LCA(j, vg) are added in a bottom-up
fashion and then the entries at the path from LCA(j,vy) to vy are deleted in a top-down
fashion. In a similar manner, forwarding pointers from vy to 4. if any, are deleted starting
from vy and moving towards i. We also distinguish between the two phases of a call. During
the upward phase, a call moves up the tree to find an entry for the callee. Once the first
entry for the location of the callee is found, the call moves downwards to this location.

We serialize full updates caused by move operations as follows: a move starts a full
update only after the updates caused by the previous full update has been completed. To
enforce the serialization of full updates, a full update locks for updates the new address j.
A message is sent to unlock j, when the last node is deleted. Only then, can a new full
update operation be initiated.

Besides updates, we must also ensure that any call concurrent with a move will succeed
in locating the user. Specifically. we will first show that:

Lemma 1 During the upward phase, any call placed by a user at cell ¢ and being concur-
rently executed with a move, say from location i to location j, will be directed either to the
old location, 1, or the new location j.

Proof. To distinguish among the possible relative positions of ¢, i, and j, we use the
following two properties of the least common ancestor that hold for any tree nodes ., y,
and z: (a) lca(z,y) = lea(z,z) = lealy,z) < lea(z,z), and (b) lea(z,y) > lea(z, z) =
lealy, z) = lea(z,y). Case(i): lea(j,i) < lea(i,c), that is the caller is equidistant from the
old, i, and the new, j, locations. Then, during its upward phase, the call encounters the first
entry for z at LOA(j, ¢) (= LCA(i,c)). Then, at node LCA(j,1), the call moves towards j, if
the add phase has reached the node, and towards i, otherwise. Case (ii): lea(j, i) > lca(j. c),
that is the caller is closer to the new location. The call proceeds upwards to node LC A(j, c).
If the add phase has reached LC A(4, ¢). then the call is directed to j. Otherwise, it continues
moving upwards till it either reaches a newly added entry or it reaches LC A(c, i), whichever
comes first. In the former case, the caller is directed to j and in the later case to ¢. Case(iii):
lea(j, i) = lea(j.c), that is the caller is closer to the old location. If the delete phase has
reached node LC A(4, ¢), the call moves up to LCA(f. ¢) and then towards j. Otherwise, it
moves towards i, O

Now, we must show that the call during its downward phase will succeed in locating
the callee. There is a racing issue. To illustrate it, assume the concurrent execution of a
full update for user = being in its delete phase and a concurrent call to user x being in its
downward phase. Say that at some time, the call queries node m at level k and follows
the pointer to the corresponding level k — 1 node, say node . Immediately afterwards, the
move deletes the entry at level k. Then, traveling faster than the call, the move arrives at
node ! and deletes the entry for z. When the call arrives at node [, it founds no entry for
z. There are at least three ways to treat the problem. We adopt the third one as being the
most practical.



Method 1: Repeatable Calls

In this approach, no special treatment is given to concurrent operations. Calls that read
ohsolete data fail to track the user, and the lookup procedure is reissued anew. Specifically,
o search fails at some node u at level k, if the callee has moved out of the subtree rooted
at u and the corresponding entries have been deleted. In this case, the call can continue by
moving upwards to level k + 1 and read the database at the parent of node u. Unless. in
the meanwhile, the callee has moved again in the subtree rooted at w, the call will succeed
this second time. Otherwise, it will move repeatedly up and down the tree. Thus, although
simple, this method does not provide any upper bound on the number of tries a call has to
make before locating a moving user.

Method 2: Obtaining Read Locks

In the transactional approach, traditional database concurrency control techniques are used
to enforee that each call and move operation is executed as a transaction, i.e., an isolated
unit. This approach is highly impractical since for instance acquiring locks at all distributed
databases involved in a call or move operation causes prohibitive delays.

Method 3: Using Counters

We associate with each entry for x in each location database at level k a counter, called
pending calls counter (PCCy). The PCC counts the number of calls that queried this entry
while moving downwards to locate z or following the chain of forwarding pointers towards
2's current location. An additional counter at each node i, called local;, counts the number
of calls whose downwards phase started at node i, i.e., calls that found the first entry for
the callee at node i. Note, that PCCj-; + localy.; — PCCy. is equal to the number of call
operations traveling from level k£ + 1 to level k.

During the delete phase of a full update operation, an entry at a level k database is
deleted only if PCCy > PCCj.q + local,:. Otherwise, the delete operation is delayed till
the calls searching for r arrive at the level k + 1 database.

Lemma 2 During the downward phase, a call moves correctly to the location found in
the upward phase. Thus, it arrives at j either directly or indirectly through i by following
pointers.

Proof. Let a call ¢ be at level k during its downward phase after having found an entry
for z. If the entry for x directs the call to the new location j, then the call will succeed in
finding an entry at level k— 1 since in the add phase the entries are included in a bottom-up
fashion. If the entry directs the call to the old location i, the call will succeed finding an
entry at level k — 1 since an entry is deleted only when all pending calls from previous levels
have been serviced as indicated by the PCC. Similar claims hold for following the forward
chain, if any. O

Thus, all calls will eventually succeed in reaching either i or j. In effect, the algorithm
in the first case makes a call appear as if it has occurred before the move, that is, it pushes
the call backward, or makes it appear as if it has occurred after the move, that is it pushes
the call forward. Figure 5 summarizes the required modifications of the call procedure and
the implementation of the full-update operation.
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Figure 5: Move and call procedures extended for handling concurrency.

4 Performance Evaluation

We assume a hierarchy of location databases embedded in the hierarchy of telephone
switches. To allow for maximum flexibility in the design of the location management scheme,
we consider hierarchies with a variable number of levels. The leaves correspond to cells and
thus each leaf corresponds to a unique physical address.

4.1 Cost Estimation

We differentiate between the database and the communication cost. We consider as database
cost the total number of database operations (queries or updates). For the communication
cost, we count the total number of links traversed by the messages involved. Assuming that
two nodes u and v communicate with each other by traversing the spanning tree connecting
them, let span(u.v) be the number of links in the path connecting them in this spanning
tree. We assume that span(u,v) = r 2lea(u. v), that is, it costs r times less, (i.e., there are
r less links in the path) for nodes u and v to communicate directly than to communicate
through their least common ancestor in the tree.

Let ¢ be the cell of caller z, v be the current cell of user y. & be the length of the chain of
forwarding pointers for user y, and n be the new cell inside which y moves. In the forwarding
scheme, let vy be the cell containing the first forwarding pointer and v; (i = 0, ... k) the i-th
node in the chain. We consider first a call placed by user x to user y. The corresponding
costs are as follows:

e Basic Scheme:
database cost: 2lca(e,v) +1
communication cost: 2lecalc, v) + span(e, v)
e Forwarding Scheme:
database cost: 2lca(c,vp) + & +1



communication cost: 2lea(e, vg) + Zﬁ_] span(v;, vi+1) + spanic, v)
For a move of user y from the current cell v to a new cell n, the costs are:

e [asic Scheme:
database cost 2lca(v,n) + 1

communication cost 2lealv,n) + 1 + span(v,n)

o Forwarding Scheme:
database cost: 2

communication cost: span(v,n)

There are additional costs for caching at calls or moves, fully updating the hierarchical
scheme, and deleting cycles, as follows:

e cost of caching at calls or moves:
communication cost: span(n,g)
database cost: 1
e cost of a full update of the hierarchical scheme resulting from a move outside the
vicinity of the current regiomn:
communication cost: 2lea(n, vg) + EE‘Q span{v. vic1)
database cost: 2lea(n,vo) + &
e cost of deleting a cycle (where [ is the length of the cycle):
communication cost: E:iﬁ_ span(vj, vjs1) + spanin, vy)

database cost: [

4.2 Calling and Mobility Model

We assume that, for each user, calls and moves occur independently. The interarrival times
between two calls follow an exponential distribution, with parameter the mean interarrival
time between two calls, t,. The interarrival times between two moves follow another ex-
ponential distribution, with parameter the mean interarrival time between two moves, fp,.
The ratio of the number of calls over the number of moves called Call to Mobility Ratio
(CMR) is then

CMR = t,_,,,

&

The source of a call event is selected using one of the following distributions:

s Arbitrary Calls
A call may be placed from any cell with equal probability %= where n is the number

of different cells. We use a discrete nniform distribution to select one from n cells.

10



s Set of Frequent Callers
Each user receives most of its calls from a specific set of locations. This corresponds
to a real-life situation in which a user is frequently called by a set of other users or
groups of users, e.g., friends, family, business associates or regular customers. We
model a set of frequent callers with a discrete bimodal distribution, which distributes
a .85 probability uniformly over a set of specific locations and a (.15 probability

uniformly over all other locations. So, a call has Lo probability to be placed by a

T

to be placed by another location. where ny is

-

0.15

frequent calling location, and
n—ng
the number of frequent calling locations.

The destination of a move event is selected via one of the following distributions:

o Arbitrary Moves
A user may move to any location, except from its current one, with the same prob-
ability. We use a uniform distribution as in the case of arbitrary calls, however the
probability that the user remains in the same location after a move is ().

o Frequent Moves to Neighbor Cells on a Grid

Since users usually move to nearby locations, we model such a situation in which
distant moves are unlikely to happen and short moves to neighbor locations are most
likely to happen. We assume that the user moves on a grid of cells [17] and that the
user may move with a high probability (0.96) to a neighbor cell on the grid while
there is a small probability (0.04) that the user will jump to some other non-neighbor
cell. The movement to neighbor cells corresponds to an active user physically moving
across cells. On the other hand, the rare movement to non-neighbor cells, corresponds
to a user turning off its mobile host and turning it on again in some arbitrary cell. To
model this distribution, we use a discrete bimodal probability distribution similar to
that used for the set of frequent callers.

4.3 Experiments and Results

We have developed an event-driven simulator to evaluate the performance of the location
strategies. We simulate calls to a specific mobile user and moves made by this user using an
event-driven simulator. An event is either a move or a call event. The simulator software
has been developed in C4+ and runs on a SUN 10 workstation. The purpose of the set of
experiments is to:

¢ determine the optimal condition for initiating full updates,
« demonstrate the benefits of caching,
e provide a comparison of the forwarding schema with the basic schema.

# illustrate optimizations of the forwarding schema for frequent callers.

We run the experiments for a wide range of call to mobility ratios and for a total
of about 6000 move and call events per user. We have experimented with hierarchies of
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Table 1: Optimal values for purging in terms of the overall database and communication
cost (a) for nearby-moves and (b) for random moves.

different height and width. The results show that the relative performance of the schemes
under consideration remains the same. The results presented are for a tree of height 8 and
out-degree 4 [17]. The experiments were performed multiple times and statistical means
were derived for all estimates. Since the relative size of the communication and the database
cost depends on many factors such as the load of the network and the size of the databases,
we consider the two costs separately. We set the communication factor r equal to (L3.

Experiment 1: Condition for Full Updates

The first experiment aims at determining an appropriate condition for initiating full updates.
We considered both conditions set in Section 2, i.e., (a) the condition based on the distance
of the move, as determined by the level (height) of the least common ancestor of the new and
old location of the move operation, and (b) the condition based on the length of the chain
of forwarding pointers. In particular, we are looking for an optimal value for the level and
length beyond which to fully update so that the overall database and communication cost
is minimized. Table 1(a) shows the optimal such values for nearby moves, and Table 1(b)
for uniform moves. As expected, this value directly depends on the CMR. since frequent
updates decrease the cost of calls while increasing the cost of moves. Also, the optimal
values are slightly higher for uniform moves. This is because basic moves cost more in the
uniform model of moves than in the near-by model of moves and thus the savings from
forwarding are correspondingly higher.

Experiment 2: Benefits of Caching

We have performed a set of experiments to verify the benefits of caching. For this set of
experiments, the condition for fully updating was based on the height, and the optimal
values were taken from Experiment 1. Caching adds no overhead to the latency of move or
call operations, since it can be performed off-line. Figure 6 demonstrates the effectiveness
of caching for near-by moves and Figure 7 for uniform moves. The mean and maximim
chain lengths refer to the mean and maximum number of pointers a call has to follow before
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Figure 10: Decrease of the database and communication traffic caused by forwarding (left)
for near-by moves and (right) for uniform moves.

locating the callee. As shown, caching proves very effective in minimizing both the mean
and the maximum values of the chain. In addition. caching reduces the call set-up time
without adding to the overall database and communication cost as demonstrated by Figure
8 for near-by moves and Figure 9 for uniform moves.

Experiment 3: Forward vs Basic

We have performed a number of experiments to study the effect of the forwarding scheme
in decreasing the overall database load and communication traffic. Depending on the CMR
both the overall database traffic and the communication cost are decreased by a factor of
52% to a factor of 5% for near-by moves (Figure 10(a)). For uniform calls, the corresponding
values ranges from around 18% to around 7% (Figure 10(b)).

The price for this improvement is an increase of the call set up time. This is shown in
Figure 11{a) for near-by moves and in Figure 11(b) for uniform moves. Call latency can be
effectively kept short if information about the calling behavior is known before hand. In this
case, a simple scheme that caches the location of the user at the callers can reduce the cost.
We present results for such a scheme. For the purposes of this experiment, we assumed a
pre-specified set of frequent callers, uniformly chosen among all cells. In practice, either the
user explicitly specifies this set, or the set is derived by observing the frequency of receiving
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Figure 12: Owverall database and communication cost for set of frequent callers.

calls for each mobile user.

We have extended both the basic and the forwarding schemes with a simple caching
scheme that replicates the location of the user at the cell of its frequent callers. To locate
the user, a frequent caller first uses the location saved at its cache. If this location is
outdated, (e.g., the user has in between moved to a new location), a cache miss is signaled.
Upon a cache miss, the caller uses the usual procedure to locate the callee. The cache entry
is updated upon a cache miss after the user is located using the normal procedure. Setting
forwarding pointers improves the performance of caching since it decreases the cache miss
ratio. Figure 12 shows the benefits of forwarding in terms of the overall cost, while Figure
13 shows the benefit of forwarding in terms of the call set-up time. Note, that in the case
of frequent callers, the forwarding scheme works well even for high values of the CMR.

5 Related Work

Location management has attracted much current research in mobile computing. Various

approaches have been proposed for reducing the cost of move and call operations for both
hierarchical and non hierarchical location database architectures [14, 12].

One proposal to reduce the cost of calls is replicating (see e.g., [16, 15] for hierarchical
and [10] for non hierarchical architectures) or caching (see e.g., [9] for non hierarchical and
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Figure 13: Call set-up time for set of frequent callers.

[7] for hierarchical architectures) the location of mobile users at the sites of their frequent
callers. To reduce the cost of network traffic generated by frequent updates, a scheme based
on partitioning is presented in 3, 4]. Partitioning is performed by grouping the cells among
which a mobile unit moves frequently and separating the cells between which it relocates
infrequently. Only moves across partitions are reported. Finally, the assignment of location
databases to the nodes of a signaling network is discussed in [1], where database placement
is formulated as an optimization problem. Those schemes are orthogonal to the address
forwarding strategy and can be used in conduction with it to further reduce database and
communication costs.

Address forwarding for a non hierarchical architecture is discussed in [8] along with
an analysis of its benefits for different CMRs. Forwarding pointers have been also used
in [6] again for non hierarchical location databases. The focus there is on IP-based pro-
tocols. In [2]. forwarding is explored in a different framework for a hierarchical. though
not tree-structured. location database architecture, called regional matching directory. The
treatment is theoretical and based on a worst case order analysis.

In [11], forwarding pointers are used in hierarchical location databases. However, the
architectural assumptions are different in that the actual location is saved at each internal
database instead of a pointer to the corresponding lower level database. The forwarding
pointer is set at different levels in the hierarchy and not necessarily at the lower level
database as in our scheme. The emphasis there is on choosing an appropriate level for

setting the forwarding pointers and on updating obsolete entries in the hierarchy after a
successful call.

6 Summary

Tracking mobile users is central to mobile computing. In this paper, we have studied the
use of forwarding pointers in a hierarchical database arrangement embedded in a telephone
network. In such schemes, instead of fully updating the hierarchical database upon each
move, a forwarding pointer to the new location is set at the previous location of the user.
However, the forwarding scheme increases the cost of a call operation, since a number of
forwarding pointers may have to be traversed before locating the callee. We have introduced
caching techniques that effectively reduce this number as well as conditions for initiating a
full update of the database entries. Finally. we have described a synchronization method to
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control the concurrent execution of call and move operations. Experimental results show
that under certain assumptions and for small call to mobility ratio, the proposed forwarding
scheme leads in reduction of both the overall database load and the communication traffic
by 20% to 60% depending on the call to mobility ratio and the moving behavior.
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