MICROMAGNETICS OF THIN FERROMAGNETIC FILMS
UNDER MECHANICAL STRESS

P.A. VOLTAIRAS, D.I. FOTIADIS, C.V. MASSALAS

2-98

Preprint no, 2-98/1998

Department of Computer Science
University of loannina
451 10 loannina, Greece






Micromagnetics of Thin Ferromagnetic Films

under Mechanical Stress

P. A. Voluiras, D. I Fotiadis', C. V. Massalas’
i Dept. of Computer Science, University of Ioannina, GR 451 10 loannina, Greece
I Dept. of Mathematics, University of loannina. GR 451 10 [oannina, Greece
e-mail; {pvolter, fotiadis @ cs.uoi.gr, cmasalas @ cc.uoi.gr}

Abstract

Understanding micromagnetic processes in magnetic materials play a crucial
role for the design of new magnetic storage devices with improved
characteristics,. Among the phenomena that are present in ferromagnetic
materials, magnetostriction is the one that has not been studied in extent, due
to its complexity. In this paper a simple model is presented to study the effect
of magnetostriction on the magnetization reversal in ferromagnetic materials.
The magnetization reversal mechanism is such that self-magnetostatic energy
i$ minimized. To simplify the calculations the strains are assumed to be
uniform and the ferromagnetic material is confined in a solid nonmagnetic
matrix. The equilibrium equations of the magnetization are derived from the
free energy density expression. The dependence of coherent reversal (Stoner-
Wohlfarth Model-SWM), as well as of non-coherent reversal of the
magnetization on the magnetoelastic constants is discussed. The effect of
stress on the magnetization curve (well known as inverse magnetostrictive
effect) is also stndied selecting the proper boundary conditions. An analvtical
relation between coercivity and stress is obtained for coherent reversal model.
From our analysis we conclude that the stress dependence of coercivity is at
least qualitatively the same with related experiments.

Keywords: Micromagnetics, Magnetization Reversal; Nucleation Field; Thin Film, Mechanical Stress;
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1. INTRODUCTION

The magnetic behavior of ferromagnetic materials, based on micromagnetic theory, has
been studied extensively during the last four decades for rigid specimens [1]. The
coupled magnetoelastic phenomena are essential for the construction of efficient disc
storage devices, actuator and sensor devices. The theoretical framework for the
description of such coupled magnetomechanical phenomena was proposed by Brown
[2] and an extensive literature is cited in Ref. [3]. The foundation of such an approach
was due to the pioneering works of Tiersten [4-5], Brown [2, 6] and Maugin and
Eringen [7-9]. Among the various phenomena that are present magnetostriction is the
most promising for applications and still the most difficult to be described theoretically.
In the classical literature this term denotes the deformation of a ferromagnetic crystal
when it is cooled under the critical Curie temperature (spontaneous magnetostriction),
or when on a previous saturated ferromagnetic crystal is applied an additional external
field capable of increasing the spontaneocus magnetization beyond its saturation value



(forced magnetostriction). Whether the ferromagnetic crystal is longer or shorter in the
direction of the magnetization the material is characterized as having posirive or
negative magnetostriction, respectively. The inverse effect is present too. When a
ferromagnetic specimen is under mechanical loading (tension or compression) a change
is noticed in its magnetic structure (inverse magnetostrictive effect). The capability of
an applied mechanical loading to produce net resulting magnetization in a previously
demagnetized ferromagnetic specimen has been examined experimentally and
theoretically by Misra [10]. A wide class of phenomena that relates the elastic
properties of ferromagnetic materials with the magnetization are generally referred to
as magnetostriction (Joule effect, Matteucci effect, Wiedemann effect, etc.) [11].

Recently, new mathematical tools have utilized (Young measure) in order to explain
the large magnetostriction observed in a class of ferromagnetic materials [12-13].
Similar calculations were also performed by Simone [14]. The effect of
magnetostriction on the magnetization reversal of an infinite cylinder was studied for
the curling mode [15-16]. It was proven that magnetostriction does not affect the
nucleation field of the infinite cylinder. Energy estimations confirmed that in that case
the hysteresis curve is rectangular in shape. In a deformable ferromagnet the elastic
constants depend on the magnetization, thus a nonlinear stress-strain law is followed
[17]. Thermodynamic arguments have been applied to explain this nonlinearity, well
known as AFE effect [18-19].

The main purpose of the present work is to describe through a simple model the
principal physical mechanism of direct and inverse magnetostrictive effect. More
specifically we confine ourselves on the effect of stress on the magnetization reversal
of thin film ferromagnetic specimens, since for this case there are recent available
experimental results [20-25]. In order to simplify the calculations we adopt a one
dimensional magnetization reversal mode that has the advantage of minimizing the self-
magnetostatic energy. We assume uniform strains and that the external mechanical
stress is applied perpendicular to the external field direction. These simple assumptions
are capable of revealing the underlying physical mechanism for the effect of stress on
the magnetization reversal (coercive force). Even in the coherent reversal (SWM) the
effect of stress on the magnetization reversal is evident. Analytical coercivity-stress
and remanence-stress laws were obtained for the coherent reversal model. Depending
on the sign of the magnetoelastic constants, the theory is applicable to material that
exhibit either positive or negative magnetostriction. The simplifying assumptions do
not allow us to describe the size dependence on coercivity. Simple linearized
calculations around the initial saturation state derive a linear dependence of the
theoretically predicted nucleation field on stress, being tensile or compressive. Whether
these departure modes, from the initial saturation state, will emerge under increased
opposite applied field depends on the solution of the nonlinear problem, which for our
model reduces to the computation of an elliptic integral.



2. THEORY OF MAGNETOELASTIC INTERACTIONS

The present analysis is based on the micromagnetic approach proposed by Brown [2].
This phenomenological theory uses information from the microstructure (quantum
mechanical exchange interactions) and describes the behavior of the material through
macroscopic quantities (exchange forces). In the micromagnetic theory the behavior of
ferromagnetic materials is described through the magnetization vector M (magnetic
dipole moment per unit volume) which is considered as a continuously distributed
vector

M, =M;a, a=afr,1} ij=123 (1)
having a constant absolute value at every point
MM, =MAT), (aa=1) 2)

where M, and a, denote the saturation magnetization per unit volume and the
direction cosines of the magnetization vector, respectively. We note that (2) is valid for
temperatures much lower than the Curie temperature (T << Tf) where the

ferromagnetic material switches to the paramagnetic phase. For deformable
ferromagnets, M, must be replaced by the magnetization vector per unit mass M.,
that is:

M. =M, /p (3)

where p is the mass density. The ferromagnetic Gibbs free energy, at a given

temperature, applied field H®, body force pf, and surface force density T, has the
general expression, with respect to internal variables:

G=F+W,+W, +W, - [| pfiuaV - [|T uds, )
¥ a
where:
1 |
W, = bk H p, HM dv_, (Magnetostatic-self energy) (5)
I

Wy =-u || pH M, av, (Zeeman energy) (6)
¥

i %ﬁa [[ 0 Ky nn,MM, a5, (Surface energy) 7
o

F= j- I pF, _dV, (Helmholtz free energy) (8)
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and H' is the field (H '=H-H “) due to the presence of the magnetization M, K
is the surface magnetocrystalline anisotropy constant, m is the outward unit normal
vector on &V and u is the displacement vector. We note that g, is the permeability
of vacuum. Here and hereafter summation over repeated subscripts is understood.

The local part of the Helmholtz free energy F,_, is assumed to have the functional
form:

{aln)

Fo.=F,..(x, . .M,M, )

where x, , is the deformation gradient. F__ includes elastic, magnetocrystalline

lac
anisotropic, magnetoelastic and exchange energy terms.. The vanishing of the first
variation of the free energy leads to mechanical and magnetic equilibrium equations, as
follows:

Mechanical equilibrium equations
r‘*"-‘ 22 #“JM.-'H:'..' +pf = G:- in V

1 i (10)
7 =§FDM;HI + T on &V’

where 7, is the stress tensor which is generally non-symmetric and M =n M,
represent the magnetic surface charges. The constitutive law for the material is [2,16]:

I (11)

Magnetic Equilibrium equations

pMxH =0 inV

ol on ¥ =

-

&H

where &/én=n-V and H* is the effective field that tends to keep the magnetization
vector paralle] to its direction and has components of the following form:

g A
=ff 1 EF £ 1 EFD-:
HY -H - o __Lp,._l-xmj | (13)

M| éa. p\’ da,
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The self-magnetostatic field H'(= -V®) is the result of the volume (V-M) and

surface (Mﬂ EH-M) magnetic charges and is derived by the following potential
problem:

VO, =V-M, insidel

g i (14)
Vg, . =0 outside I
and the conditions
¢, =0,
Faior) ob (15
—— M, 13)
&M en

on the boundary &V of the ferromagnetic specimen.

Ferromagnetic thin film under mechanical stress

The above formulated magnetomechanical problem is very complicated and thus it is
difficult to be solved even under major assumptions. Our aim is to simplify the problem
without loosing the underlying physics. Recently a series of experiments were
performed in order to show the effect of stress on the hysteresis of ferromagnetic thin
films [20-21]. Similar experiments for Ni thin films were also performed by the authors
of references [22-24]. SW like models have been used by these authors to explain
experimental observations [25]. We assume that:

(i) The width of the thin film d =2 is in the x direction, and the film is infinitely
long in the other two directions y and z.

(i) The magnetization vector is confined on the Oyz plane and it is only dependent on
the distance x from the thin film center, M: (0, M ; sin(8), M ; cos(6)), 6= é(x).

(1i1) The body forces are neglected ( £ =£}).

(iv) The external applied field is along the z axis which is also an easy axis of the
crystal (H“': {III, 0H"® ))

(v) Infinitesimal  deformations are confined to be uniform (e, = Hu,, +u,,)

u =4, x,, Ar,. =4, =mnst.].

(vi) The crystal is cubic.

(vii) The applied tensile (T: > ID} Or compressive (TI < D) stresses are along the x
direction.

(viii)) Exchange-strictive phenomena are negligible since this is also dictated by
available experimental results [20].

(ix) The surface magnetocrystalline anisotropy is considered negligible.
(x) The elastic constants do not change with the magnetization.



The geometry of the problem, after the above assumptions is shown in Fig. 1.
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Figure 1: Problem Geometry,

The selection of the magnetization reversal plane (parallel to the boundary surfaces of
the thin film) has the advantage of minimizing the magnetostatic free energy and thus
the potential problem (14-15) is automatically satisfied. Thus it can be neglected in the
further solution of the problem. All the calculations are limited to the case where the
mechanical stress is applied perpendicular to the direction of the external field
(rLH® ]' The problem of a mechanical stress applied parallel to the direction of the
external field (T/H°) is mathematically more elaborate due to the presence of

magnetic charges on the boundary surface and thus the unavoidable solution of the
potential problem (14-15).

Since the crystal is cubic the local part of the free energy can be decomposed into the
following parts:

Fuc=FotF e +F,+F 5 (16)
where

i 2 _—
Fo=—(Va) (Va,) *(va:)}
Fh:K(aiai'vaiaﬂ Taza;) -
E,= Z (e +e; +eﬂ]+—(e;.f_—e;: "'f"fx)"“i (e”e}} +e, e, -e:v_en)
F_.=5, (a e tae. rale, ):—23 (axa}exy +aae, +a_,axe_,x)



3.EFFECT OF STRESS ON MAGNETIZATION.

If the stress tensor £, is computed from equations (11) and (16-17), it is not difficult

to show that the mechanical equilibrium equations (10.1) are automatically satisfied. In
this case the mechanical equilibrium problem reduces to the satisfaction of the
boundary conditions (10.2). These boundary conditions give to the model its validity
for describing magnetization reversal mechanisms under stress.

Since M _=n-M =0, on the boundary surfaces x = ta we have:

: i = X
t.n =0 (18)
I:'x”x = {]ﬁ

where according to (11) and (17)

. =C 8, TG [e_v_v +e, ) + Ba, +[231areu 428, (ayew +dae, )+ K (ﬂz Fir. )10}

-

1. =Cue, ¥2B,aa + [EBL ae,, +2B, [ﬁ‘;é‘x}- +a, ey__]+K {ax +da ]]ar (19)

. =G0 kB aa+ [281 ae_+1B, (ayey: +a.e, ) +K [ﬂ: +a, )]cxz ,

Due to the simplifying assumptions, substitution of (19) into (18) leads to

x

c,e +cl:(e}.}. -i-E_._,) =T (20)

The magnetic equilibrium problem, after the assumption (i1), reduces to the following
set of equations:

H* sinf-H cosf=0 (21.1)
H* cosf=0 (21.2)
H* sin@=0, (21.3)
where
H = ——"(sine,, +cosbe, ) (22.1)
H Mg -
2K
eff e 1 - _ 1 ¥ g_
i WAL, cos fsiné A e, sin .
2B, o C " E@ " |/ﬁ\ 3-| ;
ST s Lms —5 -sinf| er |



. 28,
sin” Bcosd — 2 e, cosf -

Hf“' =H® -

.uu_-'\/fs ‘J'..ﬂu." &
; 3 223
28, e _sinf# 2 s'nﬂdﬂm SKdﬁj_TL o

- . - inf—-+cosf | —
M, M dx?’ Lcir

The equations (22.1) and (21.2-3) lead to

H::}' - '[:I:| (21}

which due to (20.2) is automatically satisfied, while substitution of (22.2-3) into (21.1)
leads to the differential equation,

d e sin4# sin28
e -2K y + B, (e:_. —e__,__v]

c

-2B.e,. cos260 - u M H"sin@=0 (24)

The boundary conditions (12.2) read:

24 =0 25
% ik (23)

=z

Thus the problem reduces to the solution of the BVP (24-25) and (20.1). We introduce
the following dimensionless parameters:

2K B B, H*
Eopley B=—— Rme— fa—io pe—
#DMS .luc*wj Fang M.‘:’.‘ {2&}
o T [ 58 [=p I
S:_, Uz x:g }E: “1;. 'hq: - L] 'hE: *4‘.'
Rc #anS -'f"'[::.ﬂ/{.’.‘.T HEM; . #-:-MS
where
C. 24
R, = - = - (27)
#’C}J'M.; #GM;
is the exchange length.
Then the BVP (24-25) and (20.1) takes the following form
d'e , sind# ; . ; -
=g B8 E—%—- +hS§ E(E:_, - e_._y)smw -8 "e  cos20-hS " sinf =0,
d
oy (28)
Cﬁ T=+%




Like all one dimensional micromagnetic problems the Brown's equation (28.1) can be
mmtegrated at least once [26],

!(dﬁ'\‘: h_tcns48+iﬂ(e _e_.)%fj

e ot | {2
&) TsT 8 | §° (29)

..o
SE ¥z

where A, is an integration constant. Equation (29) can equivalently be written in the
following form

.T
ﬂﬂ

(30)

which is an elliptic type integral that, under appropriate conditions, can be calculated
even analytically. It is obvious that the initial saturation state 6,(x)=0 is not a
solution of the BVP (24-25). It is a solution if we assume that e,, =0. Thus in the

following we will concentrate our attention on solutions with strain tensor,

!_/E .|:| ﬂ\'l
eqziD e 0 31)
0 0 o

where we have additionally assumed that e, =0 and e, =e,, = e This is a legitimate
assumption since the applied mechanical stresses are along the x direction. In general
the strain tensor e, has contributions from intrinsic strains due to spontaneous

mdch

magnetostriction e, as well as external strains from mechanical deformations ;™"
In the following we assume that the intrinsic mangetostrictive strains are negligible
compared to the forced mechanical strains due to applied stresses. This is justified
because magnetostrictive in origin strains are of the order of €] = O(10™°) while the
mechanical ones are e ** 2107, Then the boundary condition (28.3) reduces to the

following linear relation between the applied stress and the strain

o=(h+h)e @

3.1 COHERENT REVERSAL

We first seek for solutions of uniform magnetization reversal. These modes of reversal
were first proposed by Stoner and Wolfarth [27] for single domain particles.

Equation (28.1) reduces to



_ h, sindf+4h esin28
a 4sin & ) (33)

The hysteresis curve is defined as the mean magnetization along the applied field
direction

I =
M, = rjjf M.e. dl. (34)
I
Thus for the problem under discussion

m=cosf, m=M, /M, (35)

Hysteresis curves based on the parametric set of equations (33) and (35) are plotted in
Fig. (2) for zero applied stresses:
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Figure 2: Hysteresis loops for coherent magnetization reversal for o = 0, & = 500, and various

reduced anisotropy constants, ’, E[-ﬂf-,t}).

The horizontal axis in Fig. 2 is the axis of the reduced applied field A and the vertical
one is the axis of the reduced magnetization m. The dashed lines denote the
irreversible jump of the magnetization from the one stable saturation state to the other,
since the hysteresis loop corresponds to positive susceptibilities {f?m [Eh > EIJ'.
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It is generally acceptable that applied stresses produce easy axis (EA) of
magnetization. Thus in many calculations the magnetostrictive effects are considered
as another form of magnetic anisotropy. If on a previous demagnetized ferromagnetic
specimen we apply mechanical stresses an EA of magnetization emerges as shown in
Fig. 3 for materials with positive and negative magnetostriction A;, under tensile
|[_cr > ID} or compressive stresses (o < G}.

. —
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<« |5

Figure 3: Easy Axis formation due to stress (The easy axis is indicated with the thick
line) schematic).
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As it is shown in Fig. 3, for materials with positive magnetostriction a tensile stress
produces an EA along the direction of the applied stress (Fig. 3a), while the same
applied stress in a material with negative magnetostriction produces an EA
perpendicular to the direction of the applied stress (Fig. 3c). These are experimental

i |



observations that must be justified by the theory. In related experiments [20-24] it is
observed, that for materials with negative magnetostriction (like Ni) an applied tensile
Or compressive stress increases or decreases, respectively, the coercivity, if the external
field is applied perpendicular to the direction of the stress. All possible effects of
stresses on the coercivity are shown in Fig. 4 for materials with negative

magnetostriction.
As<0

oc<0

H{] — e g

—p. - .. .‘—

|

o . N

Figure 4: Effect of stress on coercivity for materials with negative magnetostriction, with the external
field applied parallel or vertical to the stress direction (schematic).

The situation is exactly the opposite for materials with positive magnetostriction.
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The condition e =0 corresponds to non-vanishing applied stresses and the second
term on the numerator of the right hand-side of equation (33) changes sign for tensile
or compressive stress, and this affects the whole hysteresis curve, as it is evident in Fig.
5, for just one set of parameters.

| e:ﬂ}u /’//‘”/////—
0.5} e*:ﬂl / i'
05} i: / 1
1%/2 -
h —»

Figure 5: Hysteresis loops for & = 0 (tensile e > 0 and compressive e < 0) for &, = -4,
h =35x10" and | =107,

It is obvious from Fig. 5 that stress alters the magnetic characteristics of the thin film.
This corresponds to material with negative magnetostriction, like Ni. In this case
h >0, for materials with positive magnetostriction (A <0) the situation in Fig. 5 is
exactly the opposite. It is obvious from equation (33) that increment of 4 by an order
of magnitude and decrement of e by an order of magnitude do not alter the stress
dependence on coercivity since both of them appear in (33) as a multiplication product.
A family of hysteresis curves for tensile and compressive stress for |¢f =10 are
plotted in Figs. 6 and 7, respectively (dashed lines). In the same figures the related
hysteresis curves for zero stress (solid lines) are also presented for comparison.

1F
0.5}
T 0
m

0.5}

-1

Figure 6: Hysteresis loops for e = 10", h, E[-¢, l]] and & = 2x10°. The related hysteresis loops
for e =0 are also shown for comparison (solid lines).
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Figure 7: Same as Fig. 6 with e = 107"

In Figs. 6 and 7 the regions with negative slope should also be considered undesirable
from physical reasoning (&m/éh >0). The irreversible jumps at these points are not
shown to avoid difficulties in reading the figures. The straight dashed lines in Figs. 6
and 7 correspond to zero magnetocrystalline anisotropy (hk =0). Thus, under the
simplifying assumptions of our model, materials with negligible magnetocrystalline
anisotropy and negative magnetostriction, that reverses their magnetization uniformly,
have non-hysteretic behavior under compressive stress and rectangular hysteresis loops
for tensile stress applied perpendicular to the direction of the external field.

311 THE h. = h.(c) LAW

It is not difficult to show that equation (33) can be written as

h=-cosd (2!1_3 +h, ﬁoszﬁ], (36)
or due to (35) as

h=hm)=-m (Ehl e+ hk(zmz —l)]. (37)

Equation (37) can also be inverted, in order to obtain the constitutive relation
m = m(h), but it is not really needed in order to obtain the law that relates the reduced

coercive force (hc =H./M 5] and the reduced stress o. Under the above mentioned

assumptions the reduced free energy (g = G/ (;fﬂMg)] can be written as

g=g(8)=1,.(6)-hcosé, (38)

with

T



F in* . .
()= =2 =, 2220 hesin 0+ (h, + ), (39)
#o‘ws
or by invoking (eq. (32)), as:
sin*26 h ; o’
E =h - in°
fm{ﬂ) kg +h]+h:crsm 3+h]+h: (40)

Then we can relate the slope of the magnetization curve &m/éh with the second
derivative of the free energy with respect to @ as follows:

ch
amlB)

[m(8)] g"(8), (41)

where ()' = d/d#. The sign of g"(#) is therefore the sign of the slope of the hysteresis
curve. Thus sections of the curve with positive slope represent stable states; and
sections with negative slope, unstable states. At the point of infinite slope
[é‘m {2h= :r:} the magnetization reverses irreversibly from the one equilibrium state
to the other. This point corresponds to the coercive force . and is expressed by

LR (42)

But due to (37) equation (42) leads to:

i (8 AR (43)
m;=% h

Substitution of (43) into (37) results in the coercive field

%
me 2 2 )

We note that the coercivity does not depend on the thickness of the thin-film §, due to
the assumptions made. Generally, coercivity decreases with increasing thin-film
thickness. Equation (44) is a rational upper bound for the actual observed coercivity as
a function of o. It should agree well with experimental results for thin films with
thickness d=2a <500mm. For materials with negative magnetostriction
(A <0< A >0) and negative magnetocrystalline anisotropy (4, <0) the law (44)
predicts an increase of coercivity for tensile stresses (o >0) and a decrease for
compressive stresses (o <0). The law (44) is valid only when the directions of applied

.



stress and external field are perpendicular to one another (o L A). This is what actually
was observed in the experiments by Han, Zhu, Judy and Sivertsen [20-21] and
Callegaro and Puppin [22].

We can compare the results obtained by (44) for Ni thin film of thickness
d =2a =20 nm, since for this particular case there are available experimental results
[22]. The material constants for Ni are given on Table 1

Constant SI
A —50x10°°
A ~20x107%
q  248x10" (N/m?)
¢;  153x10" (N/m?)

¢y 116x10" (N/m?)
M; 3979 (kd/m)

K ~426x10° (J/m*)
G 6.8x107*(J/m)

Table 1: Material constants for Ni [28].

For deformable ferromagnetic specimens we have
M =pM; (1-u,,) (45)

In the case under discussion

u 2e (46}

ni

I

and e =(0(10™*), therefore we accept that,
M, = pM, = const. 47)

We note that for uniformly magnetized specimens the magnetoelastic constants are
given by [6]:

3
B = _E;{lx (‘:ai _C”]
3

B, = _E*im Caqs

(48)

and due to (26) we have

-16-



(49)

For Ni the dimensionless guantities have values shown in Table 2, for a thin film of
thickness d =2a =20 nm.

S h___ h 2 2 h,
0.17 -4.28 31581 1749 124658396 TEP0618E

Table 2: Dimensionless parameters for Ni.

The coercivity values based on (44) are compared with experimental values [22] and
the results are cited in Table 3.

T, MPa)| of=T, [ )| HE Oe) | b= (= HZ* [M ) 5o (eq(44)
-125 -62832 131.1 0.262 0.3860
-100 -50265 132.7 0.265 0519
.62 31164 1343 0.269 0.744

0 0 140 0.280 1.166
33 17593 144.1 0.288 1.430
70 35186 147.1 0.294 1712
85 42726 148.6 0.297 1.837
100 50263 156.2 0.312 1.966

Table 3: Coercivity according to (44) and [22] for Ni thin film of thickness & =2c =20 nm.

It is obvious that the theoretical coercive force is always an upper bound of the
experimentally measured one. For large compressive stresses the gap between
theoretical predictions and experimental results i1s minimized. The disagreement
between theory and experiment is evident. This is mainly due to the fact that the strains
are not in general uniform as it was assumed in the above calculations. In addition the
material is finite and thus magnetostatic effects alter the picture of uniform
magnetization and the material is not defect-free in the sense that there are always
imperfections that serve as nucleation centers which decrease coercivity. Therefore it is
expected that for thinner films than those used in [20-22] the law (44) is applicable.
One can use equation (44) as a fitting law to experimental results for thin films in order
to calculate the magnetostriction constant A, provided that the elastic and

anisotropy constants are known. In that case due to (49.1) equation (44) gives:

1 {2 h -k, ‘|%
i unll i) o ) e 50
hl: (J] 3 3;?# [-hk ‘:‘ﬂﬂuﬂ hj +}: ":Fjl . { }

¢

S



One can also assume that the applied stress alters the character of the
magnetocrystalline anisotropy and thus equation (44) can be used as a fitting law to the
experimental results, in order to determine the mangetocrystalline anisotropy. provided
the elastic and magnetostrictive constants are given. We will not examine these cases
further.

3.1.2 THE m, = m,(c) LAW

Due to eq. (37) we can compute the remanence as a function of stress. The remanence
corresponds to A=0 and thus using (37) we obtain, in dimensionless form

(m_,,! =M, :'"IM:l

g s . AT
mF—-_\,z m (51)

For materials with negative magnetostriction {.fel > DJ and negative magnetocrystalline
anisotropy U?..{ < EJJ' (like Ni), equation (51) predicts that the remanence increases for
tensile stress and decreases for compressive. This shows the same qualitative behavior
as experimental observations [20-22]. We note that equation (51) was obtamed for
mechanical stresses that were applied perpendicular to the direction of the external
field (o L h) Typical results for Ni are shown in Fig. 8.

0.8

T = 3 0 2 4 6
o(x10") —»

Figure 8: Remanence m; as a function of stress . The material constants correspond to Ni.

The energy is plotted in Fig. 9 as a function of & with the applied field as a parameter.
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Figure 9: Energy as a function of & for various applied fields 7 € [—'.-‘. ’."] with step 1 and for an
applied compressive stress o = =30265. The material constants correspond to Ni.

It is obvious from Fig. 9 that for large positive fields the initial saturation state along
the direction of the applied field (8 =0) is the stable equilibrium state, while for large
negative fields the saturation along the reversed field (=) is a stable equilibrium
state. When the field is reduced from large positive values, metastable states emerge.
For negative fields those metastable states are responsible for the irreversible jump at
h=h.. The bold curves correspond to fields before (A =0) and after (k= -1) the
irreversible jump at A. = —0.519. In Fig. 10 the situation is the same as that of Fig. 9
with the difference that we now plotted the energy as a function of the magnetization
m.
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Figure 10: Same as Fig. 9 with g = g{m]

The energy profiles for equilibrium solutions (equation (38) with A given by (36)) are
plotted in Fig. 11 as a function of the angle & for various applied stresses.
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Figure 11: Energy equilibrium profiles as a function of & for various stresses.

It is obvious that the two saturation states of uniform magnetization =0 and 8 =7
along the direction of the applied field are equilibrium states. The irreversible transition
at the point of infinite permeability [h = }%J to the other equilibrium state € =7 is
also marked in Fig. 11. The same situation is shown in Fig. 12 where instead of the
free energy we plot its second derivative.

Figure 12: Same as figure 11 with g"{&] instead of g{g).

Irreversible transition regions (g"(6) = 0) at &= A, are also marked as in Fig. 11. The
hysteresis curve for the material parameters that correspond to Ni are plotted in Fig.
13 for various stresses.
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Figure 13: Hysteresis curves for varying stresses o El—& HJ x10% with step 2x10%, The material
parameters correspond to Ni. The bold curve correspond to zero applied stresses (o = 0],

We summarize in Table 4 the upper and lower bounds for stress and coercivity of Fig.
13

o (x10%) h T.(MPa) H,_(kA/m) H,. (Oe)

-8 0.227 -159 5.03 F5:S
8 2.501 159 09.51 1250.5

Table 4: Coercivities and stresses for Fig. 13. The material constants correspond to Ni,

It is deduced from Fig. 13 that the application of a tensile stress on a material with
negative magnetostriction and negative magnetocrystalline anisotropy, apart from
increasing the coercivity, it also increases the remanence and the deviation from the
initial saturation state appears at lower fields. These are experimentally observed facts
too [21]. The opposite happens with the application of a compressive stress.

3.2 NON-UNIFORM REVERSAL

Linearized Problem (Nucleation field calculation)

Some first conclusions about the mode of departure from the initial saturation state
along the direction of the applied field can be derived by the linearized form of

equation (28.1-2) which is the following:

d’ .
—_E: -k*e(x)=0, (52)
dx

with



K =(heh —he)s (53)
The general solution of (52) is
Hx)=C, e~ +C, ™. (54)

(The exponential in (54) should not be confused with the strains). The constants are
determined from the boundary conditions (28.2):

EC e —kC, e =0

kC e™ -kC,e* =0 53)
Non vanishing solution to the set of equations (55) exists when

k* sinh(kS) =0, (56)
Equation (56) determines the nucleation field. Thus from (56)

k=0 (57)

and due to (53) we obtain the following linear relation between the nucleation field and
the applied stress

.rcil'\. = _hk + .;]‘1 e, {53)

The derived law h, = h, (o) has already been used for the interpretation of stress
dependence on coercivity for iron whisker by Self et al. [29]. We note that the typical
theoretical value of the nucleation field - A, is modified by the second term in (58)
due to applied stresses and it does not depend on size. This is mainly due to the
oversimplification of the problem. In Fig. 14 we plot the reduced coercivity and the
reduced nucleation field, as a function of the applied stress and the results are
compared with experimental observations [22].
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Figure 14: Reduced coercivity as a function of stress. The material constants correspond to Ni, The
dots correspond to experimental data of Callegaro et al [22].

Figure 14 is misleading, in the sense that shows that the experimental data are
independent of stress. This is not actually true as the enclosed framed figure shows.
What is remarkable is that the theoretically predicted coercivity 1s always an upper
bound of the experimental results. One can fit the available experimental values of
coercivity (Table 3) to equations (50) and (58) in order to calculate the anisotropy and
magnetostriction constants for Ni. provided that the elastic constants are known. The
results are summarized in Table 5.

Eq. (50) Eq. (58)
K (J/m') -1034.90 -281.80
A (x107°) -1,35 -1.09

Table 5: Material constants for Ni.

The values calculated by equation (50) are closer to the tabulated values (Table 1),
compared to the values obtained from equation (58). The higher discrepancy obtained
from the fitting by equation (58) is due to the fact that this equation computes the
nucleation field and not the coercivity. The nucleation fizld is always an upper bound
of the true coercive force that is computed by solving the non-linear problem.
However, this is out of the scope of the present work. The fitting of the experimental
data to those based on eq. (50) is also shown graphically in Fig. 15.
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Figure 15: Reduced coercivity as a function of stress (eq. (50)). The dots correspond to experimental
data of Callegaro et al [22].

The modes of departure from the initial saturation state along the direction of the
applied field correspond, due to (57), to

Ax) =8 =const. (59)

Thus, in the present model, the magnetization vector deviates uniformly from the initial
saturation state €,(¥)=0, and the thin film, perhaps, behaves like a ferromagnetic

particle that remains single domain throughout the magnetization reversal. The non-
uniform reversal problem is under investigation and it will be presented in a future
communication.

4. CONCLUDING REMARKS

The theory of magnetoelastic interactions, originally proposed by Brown [2] was
utilized in order to describe the magnetization reversal for thin-ferromagnetic films that
undergo mechanical loading. Due to its complexity this theory is difficult to be applied
to specific problems. For uniform rotation of the magnetization and for applied stresses
perpendicular to the direction of the external field, analytical coercivity-stress A. (o)
and remanence-stress my (o) relations were derived which explain qualitatively the
experimental results. The model predicts that for an applied tensile stress on a material
with negative magnetostriction, and with the direction of stress perpendicular to the
direction of the external field, the coercivity and remanence increase and the deviation
of the magnetization from the initial saturation state along the field direction is
performed for lower fields with respect to the stress free state. The opposite is also
deduced for compressive stresses. Those predictions show the same qualitative
behavior with the experimental observations. The theoretically computed coercivity is
always an upper bound of the measured one. Due to the assumption made the A.(o)

-4 .



law does not include the size dependence on coercivity. We note that the model is
subjected to further improvements by assuming non-uniform magnetization reversal
mechanisms. The case of non vanishing surface magnetic charges can also be studied,
after carefully improving the model, in order to explain the magnetization reversal for
thin films with applied stresses parallel to the direction of the applied field.
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