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Introduction

The goal of this work is the production of Navier eigenvectors in cylindrical coordinates. It
is well known [1] that in spherical geometry there exists a complete set of vector functions,
the Navier eigenvectors, in the space of solutions of the time-independent reduced equation
of dynamic elasticity. In many problems of elasticity having cylindrical structure a similar
complete set of vector functions is needed in order to have a specific representation for
every particular solution of equation of elasticity in form suitable to satisfy the boundary
conditions of the problem.

The usefulness of this complete set emerges from the fact that it is much better from the
application point of view to have a representation of a differential equation solution
through a specific basis than to consider it as a formal function satisfying the equation.
Especially this is true for boundary value problems of partial differential equations. The
reason for this is that the basis representation transfers the problem of the determination
of a function (the solution of the problem) to the problem of determination of its
coelficients with respect to the specific basis. Consequently the differential equation
problem is transformed to an algebraic problem and the satisfaction of boundary conditions
forces these coefficients to satisfy some kind of linear non-homogeneous systems whose
solution is much easier than other kind approach.

Especially for the equation of elasticity, even under the above mentioned representation
schema there are two alternatives. The first one considers scalar basis functions and so
requires vector coefficients to reproduce the vector elastic fields. The second one, which is
proposed in our work. considers a basis of vector functions, the Navier eigenfunctions, and
consequently the coefficients in this type of expansions require scalar coefficients, fact
rendering the algebraic solution approach much more simple and efficient. The usefulness
and application of Navier eigenvectors in boundary value problems in elasticity is clear in
Ref. 2 and 3 where the dynamic characteristics of elastic structures of cylindrical symmetry
are studied.



The construction of Navier eigenvectors is accomplished in two stages: first the application
of Helmholtz decomposition expresses every elastic field as the superposition of a
solenoidal transverse field and an irrotational longitudinal one. Following separation of
variables techniques in cylindrical geometry we get the most general representations of
these two fields mentioned above assuring completeness based on the fact that these fields
satisfy Helmholiz equation with different though wavenumbers. Consequently every elastic
field is represented through the constructed eigenvectors.

Construction of Navier Eigenvectors
We consider the time independent reduced equation of dynamic elasticity
UV ur)+ A+ V(V-u(r) + po‘u(r) =0, reV, (1)

where wu(r) is the displacement field characterising the harmonic motion of the elastic
material defined completely by Lamé constants A, y and density p. The displacement field
u(r) is decomposed as follows:

u(ry=u’(r)+u(r) (2)
where

V() +ku’(r)=0, Vxu(r)=0 (3)
Viu'(ry+kiw’'(r)=0, V.u'(r)=0 4
and
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Decomposition (2) is known as Helmholtz decomposition and its verification is based on the
remark that if
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then according to potential theory
u(ry = Vir). (6)

Furthermore, using vector analysis arguments

Vav(r) = V(V.v(r) + Vx[-V xv(r)]. (7



Combining equations (6) and (7) we obtain
u(r)=V(V.v(r)+Vx[-Vxv(r)] (8)

On the other hand applying on equation (1) the operators V(V- ) and Vx(V x ) we get

VIV(V v )]+ V(Y v(r) =0 (&)
and
VIV x(Vxv(n]+k2[V x(Vxv(rn] = 0. (10)

Equations (8). (9) and (10) lead immediately to representation (2).

The irrotational character of u”(r) imposes that there exists a scalar function ¥*(r) such
that u”(r)=VY¥¥(r). Introducing this expression in equation (3) we find that “W¥¥(r)
satisfies the scalar Helmholtz equation with wave number ,.

The solenoidal character of u’(r) imposes that two possible forms of this field exist:
V¥ (r)x ¢ and Vx (V¥ (r)x @)

where YW(r) satisfies again the scalar Helmholtz equation with wave number k. The

veclor ¢ is in general an arbitrary constant unit vector, though there are cases where it can
he taken variant vector [4].

We have to determine the most general functions ¥ (r) and W' (r) introduced previously
and replace them in the already mentioned expressions of «”(r) and u’(r) in order to get

all possible forms of the displacement fields and to construct a complete set of vector
eigenfunctions for the equation of elasticity.

The separation of variables technique for the cylindrical coordinate systems leads to the
following representations of W', r= p,s

¥ A) = O, (ke Z;(z:4) Y

where ¢t = p,s stands for the longitudinal and transverse field, respectively, m = 0,£1,%2,..,
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Z (z:A) =sin(Az), Z,(z;A) = sinh(Az),
Zy(z:A) = cos(Az), Z,(z;A) = cosh(dz)’

and
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Applying the procedure described previously, after selecting & =Z, as it is induced by the

cylindrical geometry of the problem. we get the following expansions for the eigenvectors
under examination,
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and d)fﬂ (x) stands for the derivative with respect to its argument.



Notice that instead of using J;?fo"*{r;l} for N}”"{r;l} we have used
X3

d

1 , d
E(—ﬁxM}*""[r:A}J which satisfies also the vector Helmholtz equation (the operator e
Z\ X, Z

commutes with V*) and constitutes a vector function independent of M!"'(r:4).
This choice is based on the fact that the finally chosen NT'(r:4) is expressible in terms of
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vector functions P, B”, C!" instead of —V x M (r;A). which is not.
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