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Abstract — We propose a novel classification of the edges of an undirected graph and show that this
classification can be used as a constructive tool in proving structural and recognition properties for several
classes of perfect graphs. Specifically, we classify the edges of a graph as either free, semi-free or actual and we
define the class of free graphs as the class containing all the undirected graphs with no actual edges. We prove
that the free graphs satisfy several important properties and are characterized by specific forbidden induced
subgraphs. Based on these results, we show the relationship between free graphs and the classes of perfect
graphs known as domination perfect, chordal (or triangulated), cographs, comparability, interval, permutation,
ptolemaic, distance-hereditary, block, split and threshold. Consequently, we show that free graphs can be
efficiently recognized in parallel by examining the closed neighbourhoods of the end-vertices of their edges,
which, in turn, implies constant-time parallel recognition algorithms for all the above mentioned classes of

perfect graphs in the case where their input graphs contain no actual edges.

1. Introduction

An undirected graph G = (V, E) is said to be perfect if it satisfies the following two properties: the
¥-Perfect property: x(Gu)=w(G,) (for all A ¢ V), and the a-Perfect property: a(Ga) = #(G,)
(for all A = V), where ¥(G,), @(Gya), @(Gy) and #(G,) are the chromatic, clique, stability and
clique-cover number of G, respectively, and G is an induced subgraph of G.

Our objective is to study recognition properties for some important classes of perfect graphs
known as domination perfect, chordal (or triangulated), cographs, comparability, interval,
permutation, ptolemaic, distance-hereditary, block, split and threshold graphs. Many researchers
have extensively studied these classes of perfect graphs and proposed algorithms for the
recognition problem, as well as for many other problems such as colouring, minimal code-
colouring, maximal matching, clique finding, constructing perfect elimination schemes, assigning
transitive orientations, clustering, assigning transitive orientations, minimum weight domination,
minimal path cover, isomorphism, etc. (see, e.g., [11, 29]).



In this paper, we introduce an edge classification and show that it can be used as a
constructive tool in proving recognition properties for the most important classes of perfect
graphs. Based on this classification, we define the class of free graphs as the class which contains
all the undirected graphs having no actual edges. We show structural properties and
characterizations of the members of this class, which imply that free graphs form a subclass of
chordal, cographs, ptolemaic, distance-hereditary, comparability, interval and permutation graphs.
Moreover, we show recognition properties for block graphs, split graphs and threshold graphs,
still using the proposed edge classification [14, 25, 27].

Specifically, given an undirected graph, we partition the edges of the graph into three classes,
called free, semi-free and actual edges, according to the relationship of the closed
neighbourhoods of the endpoints (or end-vertices) of their edges. Consequently, we prove that
any free graph, ie., any graph with no actual edges possesses, among others, the following
important properties: Chordality or property T; a graph satisfying T is said to be chordal or
triangulated; Transitive orientation or property C; a graph satisfying C is said to be comparability;
Transitive co-orientation or property C¢; a graph satisfying C€ is said to be co-comparability, i.e.,
its complement is a comparability graph;, Clique-kernel intersection property or CK property.
Moreover, based on the definition of the actual edges of a graph, we show that the free graphs are
exactly the graphs not having a P4 or a C4 as an induced subgraph.

It is well-known that several classes of perfect graphs have already been characterized in terms
of these properties, as well as in terms of forbidden induced subgraphs. For example, interval
graphs satisfy properties T and C€ [12], permutation graphs satisfy properties C and C¢ [28],
cographs satisfy the CK property [4], cographs have no induced subgraphs isomorphic to Py [4],
threshold graphs have no induced subgraph isomorphic to 2K, P4, or C4 [5], etc. Based on these
properties and characterizations, we show that free graphs belong to the classes of domination
perfect, chordal, cographs, comparability, interval, permutation, ptolemaic and distance-hereditary
graphs. Moreover, we identify the precise structure possessed by certain subsets of vertices and/or
edges of a graph in the case where it is a block, split or threshold graph. Consequently, we
formulate a constant-time parallel algorithm for deciding whether or not an undirected graph
contains actual edges, which operates by examining specific relations of the closed
neighbourhoods of the endpoints of each edge of the graph. This result, in turn, implies than all
the above mentioned perfect graphs can be recognized in constant-time in the case where they
contain no actual edges. The parallel algorithms proposed in this paper run on a Concurrent-
Read, Concurrent-Write (CRCW) PRAM model of computation and use Q(mn) processors.

Throughout the paper we assume that all graphs are finite and that unless stated otherwise the
term subgraph always refers to the notion of induced subgraph. Moreover, m denotes the number
of edges and n denotes the number of vertices in a graph.

2. Free Graphs

Following the notation and terminology in [13, p.167], the neighbourhood of a vertex u is the
set N{u) consisting of all the vertices v which are adjacent with u. The closed neighbourhood is
Nul = {u} w Nu).



Given a graph G = (V, E), we define three classes of edges in G, denoted by AE, FE and SE,
according to relationship of the neighbourhood and closed neighbourhood of the endpoints of
its edges [14, 25, 27]. Let x = (u, v) be an edge of G. Then,

(e, v) € FE if  Nul = NIv]
(u, vi e SE if  MNu) c N[v]
(w, vie AE if Nul=z N[v]

In words, edge (&, v) is a member of FE if its vertices u and v have the same closed
neighbourhoods; it is a member of SE if the closed neighbourhood of vertex u (resp. v) is
contained in the closed neighbourhood of vertex v (resp. u); it is a member of AE if the closed
neighbourhoods of vertices u and v, 1.e., N[u] and N[v], are not comparable with respect to
inclusion. Specifically, an edge (1 v) e AE if both sets N[u] and N[v] have at least a common
vertex, and the vertex set N[u] (resp. N[v]) has at least one vertex which does not belong to N[v]
(resp. N[u]). An edge is said to be a free, semi-free and actual edge if it is a member of class FE,
SE and AE, respectively. Obviously, E = FE + 5E + AE. We illustrate with three graphs G, Hand [
shown in Fig. 1. The edges in classes FE, SE and AE are denoted by f, s and a, respectively.

Figure 1. Three undirected graphs. Free, Semi-free and Actual edges

are denoted by f, s and a, respectively.

In addition to the above, we define thre classes of vertices of a graph G = (V, E), denoted by FV,
SV and AV, as follows: Vertex u belongs to FV (resp. AV) if it is an endpoint of a free edge
(resp. actual edge), and u belongs to S5V if there exists a vertex v such that (u, v} e SE and
N[u] = N[v]. Similarly, we shall call free, semi-free and actual vertices the elements of the sets FV,
SV and AV, respectively.

Having classified the edges of a graph as either free, semi-free and actual, let us now define
the class of free graphs as follows:

Definition 1. A undirected graph G = (V, E) is called free if every edge of G is either free or
semi-free edge.

The following results provide algorithmic properties for the class of free graphs, i.e., the
undirected graphs with no actual edges.



Lemma 1. Let G = (V, E) be an undirected graph with no actual edges, i.e., AE = @. Then, there
exists a partition of the vertex set V into nonempty, disjoint vertex sets Vi, V3, ..., V. m 2 1, ie.,
V=V uVau..u Vy, satisfying the following properties:

(i) Ifx, ye Vithen(x, vJe FE, 1 <i<m.
(i) Ifxe Vi, ye Vjand (x, y) e Ethen (x, ¥) e SE, i#jand 1<i j<m.

Proof. Since AE = AV =&, there follows that E=FE w SFand V=FV u SV. If FE # & and
SE = & there is nothing to prove since G is a complete graph Ky, ie., V=FV = V. IfFE={
and SE = (J there is also nothing to prove since G has the following property: there exists a vertex
x e ¥ such that N(x) =V - {x} and every connected components of G(V-{x}) is a K;, P5 or
induces a star graph on m < n vertices (obviously, if every connected components is K| then G a
star graph on n vertices K] p.1). Inanycase V=Viu Vau .. u V,, where | Vi|=1,1<i<n.
We consider now the case where both sets FE and SE are not empty (see graph G in Fig. 1). By
definition, the set of free edges FE has the following property: if (x, ¥) € FE and (v, z) € FE then
(x, z) & FE. It follows that the edge set FE has the form

FE=FE| WFEz v ... FE;

where the set FEj, | £ < r, is such that: if it contains a free edge (x, ) then it contains every other
free edge having an endpoint on x or y. The corresponding vertex set FV of the edge set FE has
the following form

FVv=ViuVau.uV;

where V; contains all the vertices of G which form a free edge in FE;, 1 i £ r. From the above
we conclude that, set V; is a clique, 1 i< r, and if an edge (x, y) € E has an endpoint in V; and
the other endpoint in Vj, i#j, then (x, y) € SE. Therefore, the lemma is proved for the graph
G(FV). Let us now focus on the properties of the elements of set SE. This set contains semi-free
edges with an endpoint in V; and the other in either Vjor V-FV, where i#jand 1 sisr. If
FV =V the lemma holds. In the case where FV < V, every vertex in V-FV joined by a semi-free
edge with a vertex in at least one set Vj, | </ < r. This implies that we can partition the vertex set
V-FV into one-vertex disjoint sets Visq, Vg2, oo, Vi, m <, e, | Vil=1fori=r+l, ..., m.
Hence, the lemma follows. [J

Lemma 2. Let G = (V, E) be an undirected graph with no actual edges, i.e., AE = @, and let
V=ViuVyu .. u Vg, 3<m<n, be a partition of V satisfying the properties of Lemma 1. If
N(Vi) n Vj# @, then Vj u V; induces a clique, i #j.

Proof. Let Vi, Vj be two vertex sets satisfing the condition N(V;) ~ Vj# &,i#j, and let p e V;
and g € Vjbe such that (p, g¢) € E. Since (p, ¢) € SE (see Lemma 1) we may suppose that
MN[p]l = Nlg]. Also by Lemma 1 all edges in sets V; and Vj belong to FE. This implies:

Vye Vj:Vi o Nlpl c Nlg] = ND]

saying that the vertex set Vi u V;j induces a clique.



Lemma 3. Let G = (V, E) be an undirected graph with no actual edges, i.e., AE = &, and let
V=ViuVau . u WV, 3<m<n, be a partition of V satisfying the properties of Lemma 1.
Then, there exists a clique Vi, 1 < k < m, satisfying the following property:

NV =VIUuVau UV U Vg W W Vi
where m = 1,

Proof. As a preliminary to proof of this Lemma, we can define a transitive ordering < on the
clique set {Vy, V2, ..., Vin} on the bases of:

Vi<Vj & 3pe Vi, ge Vj: (p,g) e E, Nlp] = Nlg]

This is in fact equivalent to:
Yxe Vi ye "I.-"j ¢ Nx] = N¥vl

which holds due to Lemma 2, and because all edges in Vj and Vj belong to FE. The ordering can
be represented by an oriented connected graph in which the (hyper)vertices correspond with
cliques in the original graph.

Now it is easily verified that the ordering allows a unique largest element, which conforms with
the clique Vi (if not, there should be cliques Vi, Vg, Vy, where r # 5 # 1 # r, such that V; < V; and
V< ¥ which is impossible). [

Corollary 1. Let G = (V, E) be a graph with no actual edges and let V = V] u Vo u ou Vg,

3 <m < n, be a partition of V satisfying the properties of Lemma 1. Then, Vi v V; induces a
clique, fori =1, 2, ..k-1, k+1, ..., m.

Lemma 4. Every subgraph of a free graph is a free graph.

Proof. The lemma is obviously true since every subgraph of a free graph contains no actual
edges. O

A typical structure of a free graph is shown in Fig. 2. The results of this section can be
summarized as follows:

Theorem I (see also [27]). The vertex set V of a free graph G = (V, E) can be partitioned into
m 2 2 nonempty, disjoint vertex sets Vi, Va, ..., Vi, ..., Vp, Le.,

V=ViuViu . uV¥Vpu.uV¥Vn,

satisfying the following properties:

{(P1)  There exists a vertex set Vi such that N[V]=V. 1 =ksm.

(P2) Ewvery vertex set V; induces a complete graph G(Vi), i.e., Vijis aclique, 1 <i<m.

(P3)  Every vertex set Vi u Vj induces either a complete graph G(Vju Vj), or a disconnected
graph having two complete subgraphs G(V;) and G(Vj), 1 =i j=m.

{(P4)  Edges with both endpoints in V; are free edges, 1 £i < m.

(P5)  Edges with one endpoint in Vj and the other endpoint in V; are semi-free edges,
1<i,j<Smandi#j.



Vi+i1

Figure 2. The typical structure of a free graph. A line between cells V; and Vj indicates that each
vertex in Vj is adjacent to each vertex of Vj. All edges in Vj are free edges;
All edges between cells are semi-free edges.

The graph G in Fig. 1 is a free graph, while the graphs H and I in the same figure are not free
graphs. Next, we prove that the free graphs satisfy important properties which are later used as a

base for showing the relationship between the class of free graphs and many other classes of
perfect graphs.

A graph is a diagonal graph or D-graph if for every path in G with edges (v, v;), (v, v3),
(v3, vy), the graph also contains the edges (v}, v3) or (v5, vy). It is important to point out that Wolk
[34] showed that the D-graphs are precisely the comparability graphs of rooted trees. This result
was later quoted incorrectly as "A graph without induced subgraph isomorphic to Pg, ie., a
cograph, is the comparability graph of rooted trees”. The graph C4 is a counter-example to this
statement. From the definition, it is easy to see that D-graphs contain no actual edges. Therefore,
we are in a position to state our first result.

Theorem 1. Diagonal graphs (or D-graphs) are precisely the undirected graphs with no actual
edges, i.e., the free graphs.

Based on the definition of the actual edges of a graph, we can easily show that the free graphs are

exactly the graphs not having a P4 or a C4 as an induced subgraph. Thus, the following theorem
holds.

Theorem 2. A free graph G contains no induced subgraph isomorphic to P4 or Cy.

A sun of order p, or p-sun (p 2 3) is a chordal graph on vertex set {xy, x2, ..., Xp, ¥1, Y24 -ons ypl.
where {y1, ¥2, ...y yp} is an independent set, (x, x2, ..., Xp) is a cycle, and each vertex y; has exactly

Ef



two neighbours, xj.; and x;. By definition, every p-sun (p = 3) contains an actual edge. So, we
obtain the following results.

Theorem 3. Let G be free graph. Then, G contains no induced subgraph isomorphic to p-sun
(p:2 3).

For a graph G the k-th power Gk of G is the graph with the same vertex set as G where two
vertices are adjacent if and only if their distance is at most k in G. The cligue graph K(G) of G is
the graph whose vertices are the maximal cliques K!, K2, ..., KP of G, in which (K!, Ki) is an edge
if and only if K! m KJ # @, where i # j. The following theorem clarify the relationship between G2
and K(G) of a free graph G.

Theorem 4. Let G be free graph. Then, both G2 and K(G) are complete graphs.

Let y(G) and 1(G) be the domination number and independent domination number of a graph G,
respectively. A graph G is called domination perfect graph if y(H) = ((H), for every induced
subgraph H of G. The domination number $(G) is the minimum cardinality taken over all
dominating sets of G, and the independent domination number (G) is the minimum cardinality
taken over all maximal independent sets of vertices of G. Based on the properties (P1) and (P2)
of Theorem I, we can prove y(H) = «(H) = 1, for every induced subgraph H of a free graph G.
Thus, we obtain the following theorem.

Theorem 5. Let G be free graph. Then, G is a domination perfect graph.

3. Relationship between Free and Perfect Graphs

Based on the previous results, we show here that the classes of perfect graphs known as chordal,
cographs, ptolemaic, distance-hereditary, comparability, interval and permutation, properly
contain the class of free graphs.

3.1. Chordal Graphs and Cographs

A graph G =(V, E) is called chordal (or triangulated) if every cycle of length, at least, four has a
chord, i.e., an edge joining two nonconsecutive vertices on a cycle [7, 19, 20, 24]. Chordal graphs
arise in the study of Gaussian elimination on sparse symmetric matrices, in the study of acyclic
relational schemes, and are related to and useful for many location problems [15, 26, 30, 32].
Cographs (or complement reducible graphs) are defined as the class of graphs formed from a
single vertex under the closure of the operations of union and complement. Cographs is a well-
know class of perfect graphs arising in many disparate areas of mathematics and computer
science such as scheduling, colouring, computational semantics, and other practical applications.
Cographs themselves were introduced in the early 1970s by Lerchs [21] who studied the
structural and algorithmic properties of these graphs and showed the following two very nice
algorithmic properties (see also [ 4, 6, 22, 31]): (i) cographs are exactly the Py restricted graphs,
and (ii) a cograph has a unique tree representation called cotree. Next, we present the
fundamental theorem on cographs.



Theorem II (Comeil, Perl and Stewart [1985]). Let G=(V, E) be a undirected graph. Then, the
following statements are equivalent:
(i) G is a cograph;
(ii}) G does not contain P4 as a subgraph;
(iii) any subgraph of G has the CK-property;

An immediate consequence of the results provided by Lemma 2.1 and statements (i) and (ii) of
Theorem II is that free graphs are exactly the chordal cographs. Thus, the following theorem
holds.

Theorem 6. Let G =(V, E) be free graph. Then, G is both chordal graph and cograph.

Let us comment on statement (iii). A kernel of a graph is a maximal independent set and a clique
is a maximal complete set (in fact such a clique is a maximal cligue). Obviously, the vertex set
S ¢ Vis a kernel in G if and only if S is a clique in G€. A graph is said to have the cligue-kernel
intersection property (or CK-property) if and only if every clique of G has one vertex in
common with every kernel of G. Obviously, every subgraph of a free graph is a free graph and,
therefore, every subgraph of a free graph has the CK-property.

A graph G is called strongly chordal if G is chordal and G contains no sun, G is called balanced
chordal if G is chordal and G contains no sun of odd order, and G is called compact if G
contains no sun of order 3. We have showed that a free graph is a chordal graph (Theorem 6)
and it contains no induced subgraph isomorphic to p-sun, p 2 3 (Theorem 3). These prove the
following result.

Theorem 7. Let G be free graph. Then, G is a strongly chordal graph, a balanced chordal graph
and a compact graph.

We know the following three statements are equivalent for a chordal graph G: (i) G2 is chordal;
(ii) K(G) is chordal; (iii) every sun of G of order greater than 3 is suspended [33]. If G is a free
graph, then G2 and K(G) are complete graphs and, therefore, chordal graphs. Thus, we have the
following result.

Theorem 8. Let G be free graph. Then, both G2 and K(G) are chordal graphs and every sun of
G of order greater than 3 is suspended.

3.2. Comparability and Permutation Graphs

The class of perfect graphs known as comparability (or transitive orientable) graphs, plays an
important roll in graph theory, especially due to its close relation with the classes of interval and
permutation graphs [10, 12]. An undirected graph G=(V,E) belongs to the class of
comparability graphs if each edge of the graph can be assigned an one-way direction in such a
way that the resulting oriented graph G = (V, F) satisfies the following condition: <x, y> ¢ F and
<y, > € F imply <x, z> € F, for every vertex x, y, ze V.



We now consider a class of perfect graphs known as permutation graphs. A graph G = (V, E),
with vertices numbered from 1 to n, ie., V = {1, 2, .., n}, is called a permutation graph it there
exists a permutation T = [, T2, .., Tg] on N = {1, 2, ..., n} such that,

(L) eE & (-7 @l@-a1{@)<0

for all i, je N, where m;"!, denoted here as 7-1(i), is the index of the element i=sm;in 7 [11, 28].

Pnueli, Lempel and Even established in 1971 (see [28]) where an undirected graph belongs to the
class of permutation graphs.

Theorem III (Pnueli, Lempel and Even [1971]). A graph G is a permutation graph if and only if
G is both comparability and cocomparability graph.

We have proved that a free graph is a cograph. Since cographs are a subclass of permutation
graphs, cographs are comparability and cocomparability graphs. Moreover, it 15 well-known that
a comparability graph is superperfect [11]. Therefore, the following theorem and its corollary
hold.

Theorem 9. Let G = (V, E) be a free graph. Then, G is both comparability and cocomparability
graph.

Corollary 2. A free graph is a permutation graph and superperfect graph.

3.3. Interval Graphs

An undirected graph G = (V, E) is called an interval graph if its vertices can be put into one-to-
one correspondence with a set of intervals lofa linearly ordered set (like the real line) such that

two vertices are connected by an edge of G if and only if their corresponding intervals have
nonempty intersection [9, 11].

The following theorem establishes, through the properties T and C¢, where an undirected
graph belongs to the class of interval graphs.

Theorem IV (Gilmore and Hoffman [1964]). An undirected graph G is a interval graph if and
only if G is a chordal graph and its complement G° is a comparability graph.

We have proved that a free graph is both chordal graph (Theorem 6) and cocomparability graph
{Theorem 9). This result implies that free graphs are interval graphs. Moreover, it is well-known
that every interval graph is a circular-arc graph; the converse, however, is false [11] (The
intersection graphs obtained from collection of arcs on a circle are called circular-arc graphs.).
Thus, the following theorem and its corollary hold.

Theorem 10. Let G = (V, E) be a free graph. Then, G is an interval graph.

Corollary 3. Free graphs form a subclass of circular-arc graphs.



3.4. Distance-hereditary and Ptolemaic Graphs

A graph G = (V, E) is called distance-hereditary if it is a connected graph in which every induced
path is isometric. That is, the distance of any two vertices in an induced path equals their distance
in the graph. Simply, a distance-hereditary graph G is a graph preserving distances in each
connected induced subgraph [17, 18]. Distance-hereditary graphs were introduced by Howorka
[17], who gave, among others, the following characterization of such graphs: a connected graph
G is distance-hereditary if and only if every cycle in G of length at least 5 has a pair of chords
cross each other. The distance-hereditary graphs form a subclass of the parity graphs [1, 4, 23] (a
graph G is a parity graph if every odd cycle of G of length at least 5 has two crossing chords).

An important class of perfect graphs, known as ptolemaic graphs, forms a subclass of the
distance-hereditary graphs. Actually, a graph G is a ptolemaic graph if and only if it is chordal
and distance-hereditary graph. Moreover, it is well known that the class of block graphs forms a
subclass of the ptolemaic graphs. Therefore, we have the following string of concepts:

block graphs — ptolemaic graphs — distance-hereditary graphs — parity graphs

We have proved that free graphs are exactly the chordal cographs. Moreover, cographs form a
subclass of the class of distance-hereditary graphs (each connected induced subgraph preserves
distances), and therefore, they form a subclass of the class of parity graphs. Thus, we can present
the following theorem and its corollary.

Theorem 11. Let G be a free graph. Then, G is a ptolemaic graph.

Corollary 4. Free graphs form a subclass of distance-hereditary and parity graphs.

3.5. Block Graphs

A graph G is called block graph if it is connected and every block (i.e., maximal 2-connected
subgraph) is complete [2]. Howorka [18] offered the following purely metric characterization: a
connected graph is a block graph if and only if its distance function d satisfies the four-point
condition, i.e., for any four vertices u, v, x, y, the larger two of the distance sum

diun, v) + dix, y), d(u, x)+d(v.y), du y)+dv, x)
are equal.
Unfortunately, all the free graphs do not satisfy the above four-point condition. For example,
the free graph K2 + 2K give distance sums 2, 2 and 3. The next theorem provide us with another
type of metric characterization, namely, via forbidden isometric subgraphs.

Theorem V (Bandelt and Mulder [1986]). Let G be a connected graph with distance function d.
Then, the following statements are equivalent:

(i) G is a block graph;
(il) d satisfies the four-point condition;
(1i1) neither K4 minus an edge nor Cp, with n 2 4 is an isometric subgraph of G;

=10-



We focus on statements (i) and (iii) of Theorem V. By definition, a free graph does not contain
subgraphs isomorphic to Cy with n 2 4, and therefore, it does not contain Cp (n 2 4) as an
isomorphic subgraph. It is easy to see that a graph is a block graph if and only if it is chordal and
each edge appears only in one clique.

Theorem 12. Let G =(V, E) be a free graph and let [Vi| = 1, where Vi is a clique satisfying the
properties of Lemma 1. Then, G is a block graph if and only if there exists no semi-free edge
{x, ¥v) in G such that x, y & V.

Proof. (=) Let u be the vertex of set V. Suppose that there exists a semi-free edge (x, ¥) in G
such that such that x, y ¢ V. This implies that xe Viand y e Vj where i # j. Since (x, y) is a
semi-free edge, there exists a vertex z € Vp, where p # i and p # j, having the property (z x) € E
{or (z, ¥) & E). Obviously, (x, u) appears in more than one clique; an absurd. (<) It is easy to see
that N(z) = Vi u {u} for every z e Vj and i # k, where u € V. Since « is a cutpoint and G is a
chordal graph, there follows that G is a block graph. 0l

Theorem 13. Let G = (V, E) be a free graph and let |Vi| > 1, where V. is a clique satisfying the
properties of Lemma 1. Then, G is a block graph if and only if G is a complete graph.

Proaf. (=) Let (u, v) be a free edge such that u, v € V. Suppose that G is not a complete graph,
and let x, y be two vertices such that (x, y) ¢ E. Then, it is easy to see that G contains an induced
subgraph K» + 2K; (a K4 minus an edge), i.e., G({w, v, x, ¥}). Thus, edge (1, v) appears in more
than one clique, and therefore, G is not a block graph; an absurd. (<) Obviously, G is a block
graph. O

5.6. Split Graphs

An undirected graph G = (V, E) is defined to be split if there is a partition V =K + S of its vertex
set V into a complete set K and a stable set S.

It is well know that split graphs are characterized in terms of the properties T and T, i.e.,
split graphs = T + T* (see Foldes and Hammer [8]). That is, a graph G is a split graph if and only
if G and its complement G are chordal graphs.

Theorem VI (Foldes and Hammer [1977]). Let G be a undirected graph. The following
conditions are equivalent:
(i} G is a split graph;
(ii) G and G are chordal graphs;
(iii) G contains no induced subgraph isomorphic to 2K, Cy, or Cs;

Unfortunately, free graphs do not satisfy the property T€ since the complement of a split graph is
not always a chordal graph. For example, the complement of the graph 2K5, which is the graph

C4, obviously is not a chordal graph. Therefore, in the context of this work, statements (i) and (ii)
seems not to give us any useful information. On the other hand, statements (i) and (iii) provide us
with a characterization of split graphs in terms of forbidden induced subgraphs. It is easy to see

that a free graph contains no induced subgraph isomorphic to C4 or Cs (see Theorem 2). Thus,
we obtain the following result on split graphs,

T



Theorem 14. Let G be a free graph. Then, G is a split graph if and only if G contains no induced
subgraph isomorphic to 2Ks.

5.2. Threshold Graphs

The class of threshold graphs, a well-known class of perfect graphs, is defined to contain those
graphs where stable subsets of their vertex sets can be distinguished by using a single linear
inequality. Equivalently, a graph G=(V,E) is threshold if there exists a threshold assignment

[, 1] consisting of a labelling @ of the vertices by non-negative integers and an integer threshold r
such that:

§ is a stable set iff a(v) + a(vy) + ... + alvp) St

where vie S, 1<ispand S V.

Threshold graphs were introduced in 1973 by Chviétal and Hammer [5]. They were
rediscovered and studied by other researchers, including Henderson and Zalcstein [16] (see also
(11, 12, 27]). Threshold graphs have an interesting application to computing which is the
synchronization of parallel processes. Specifically, they provide a simple programming technique
which can be applied to let the computer system to prevent conflicts automatically and control the
traffic of programs running and waiting.

We have seen that most of the classes of perfect graphs we consider are characterized by
forbidden (isometric in some cases) subgraphs. Chvital and Hammer [5] have characterized the
threshold graphs as the graphs which contain no induced subgraphs isomorphic to 2K, P4 or Cy.

Theorem VII (Chvital and Hammer [1973]). Let G be a undirected graph. Then, the following
statements are equivalent:

(1} G is a threshold graph;

(ii) G has no induced subgraph isomorphic to 2K;, Py, or Cy;

We have proved that a free graph contains no induced subgraph isomorphic to P4 or C4 (see
Theorem 2). By combining these results with the results of Theorem VII, we obtain the following
theorem.

Theorem 15. Let G be a free graph. Then, G is a threshold graph if and only if G contains no
induced subgraph isomorphic to 2Ks.

4. Parallel Recognition Algorithms

We present here parallel algorithms for recognizing free graphs and block graphs with no actual
edges. The model of parallel computation used is the well-known Concurrent-Read, Concurrent-
Write PRAM model (CRCW PRAM) [3, 27].

4.1. Recognizing Free Graphs

We now formulate and analyze a parallel algorithm for computing the classes of free, semi-free
and actual edges, and therefore, recognizing whether or not a undirected graph G = (V, E) is a
free graph. The algorithm operates as follows:
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Step 1. Compute the edge sets FE, SE and AE of a graph G as follows:
for every edge (1, v) € E do in parallel
if MN[u] = N[v] then FE &« {(u, v)};
if N[u] < N[vlor N[ul = N[v] then SE « {{(u, v)};
if N n Nv) =@ then AE « {(u, v)}; AV « {u, v};

Step 2. If AV =@, then G is a free graph;

The computational time-processor complexity of the above algorithm can be easily computed on
a parallel computational model. Each operation of the algorithm is executed in O(1) time with
O(n) processors, and therefore, the algorithm is executed in O(1) time with O{m n) processors
using a CRCW PRAM. Thus, we obtain the following results.

Theorem 16. The free, semi-free and actual edges of an undirected graph G with n vertices and
m edges can be computed in O(1) time with O({m n) processors on a CRCW PRAM model.

Corollary 5. Free graphs can be recognized in O(l) time by using O(m n) processors on a
CRCW PRAM model.

Corollary 6. Domination perfect, chordal, strongly chordal, balanced chordal, compact,
cographs, ptolemaic, distance-hereditary, parity, comparability, superperfect, interval, circular-arc
and permutation graphs with no actual edges can be recognized in O(1) time by using O(nm)
processors on a CRCW PRAM maodel.

4.2. Recognizing Block Graphs having no Actual Edges

The results provided by Theorems 12 and 13 implies a parallel algorithm for recognizing the
subclass of block graphs whose members contain no actual edges. The recognition algorithm
operates as follows:

Step 1. Compute the vertex set Vi of a free graph;

Step 2. If [Vi| = 1 then G is a block graph if there exists no semi-free
edge (x, ¥) in G such that x, v e V.,

Step 3. If [Vg| = 1 then G is a block graph if G is a complete graph;

Having computed the computational complexity of recognizing free graphs, let us now compute
the time and processor complexity of recognizing block graphs in case they contain no actual
edges. Let G = (V, E) be a free graph and let A be the adjacency matrix of the graph G. A vertex
x e Vi if and only if Alx, ¥] = 1 for every v # x. Therefore, the vertex set Vi can be computed in
O(1) time with O(n?) processors. Moreover, |Vi| = 1 if and only if there is only one vertex x e Vi
having the property Alx, ¥] = 1 for every y # x. Thus, the operation of testing whether Vy
contains one or more vertices can be executed in O(1) with O(n2) processors. Similarly, the
operation of testing whether a vertex set induces a complete graph or not can be executed in O(1)
with O(n?) processors. Based on Theorems 12 and 13, we can present the following result.

Theorem 17. Block graphs with no actual edges can be recognized in O(1) time by using O(nm)
processors on a CRCW PRAM model.
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4.3. Recognizing Split and Threshold Graphs having no Actual Edges

The characterizations provided by Theorems 14 and 15 offer information on how to design a
constant-time parallel recognition algorithm for split and threshold graphs in the case where these
graphs contain no actual edges. The recognition algorithm operates as follows:

Step 1. Compute the vertex set Vi of a free graph;
Step 2. Select semi-free edge (v, u) of G(V-V);
Step 3. If there exists a semi-free edge (x, ¥) in G({V-Vy) such that
[N(x) o N} n {v, u} = @ then G is not a split graph nor a threshold graph;

We observe that all the operations of the algorithm have been appeared in the previous algorithms
and, thus, these operations have known time-processor complexity. We can therefore present the
following results.

Theorem 18. Split and threshold graphs containing no actual edges can be recognized in O(1)
time by using ({n m) processors on a CRCW PRAM maodel.

5. Conclusions

In this paper we classified the edges of a graph as either free, semi-free or actual, we defined the
class of free graphs, i.e., the class of all the graphs with no actual edges and we proved that the
members of this class possess several important properties among which the properties T, C and
CC, as well as the cligue-kernel intersection property. Moreover, we showed that the free graphs
are characterized by specific forbidden induced subgraphs. Based on the fact that many classes
of perfect graphs are characterized in terms of these properties and forbidden induced subgraphs,
we proved that free graphs belong to the class of domination perfect, chordal (or triangulated),
cographs (or complement reducible), ptolemaic, distance-hereditary, comparability, interval and
permutation graphs. The recognition of a free graph can be easily done in constant-time by
using a powerful parallel model of computation. Furthermore, recognition properties for block,
split and threshold graphs containing no actual edges have been also shown, leading to a
constant-time parallel recognition algorithm.

We are currently studying other recognition properties and characterizations of free graphs in
order to extend classes of perfect and/or non perfect graphs in which they might belong. We
hope our study will also enable us to further extend classes of perfect graphs whose members can
be recognized in parallel constant-time.
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