THE BRANCHING-TIME LOGIC PROGRAMMING
LANGUAGE Cactus AND ITS APPLICATIONS

P. Rondogiannis, M. Gergatsoulis and T. Panayiotopoulos

3-97

Preprint no. 3-97/1997

Department of Computer Science
University of Ioannina
45 110 Ioannina, Greece

The Branching-Time Logic Programming
Language Cactus and its Applications™

P. Rondogiannis!, M. Gergatsoulis®>.T. Panayiotopoulos®

I Dept. of Computer Science, University of Ioannina,
P.O. BOX 1186, 45110 Ioannina, Greece,
e_mail: prondo@zeus.cs.uoi.gr

2 Inst. of Informatics & Telecom., N.C.S.R. ‘Demokritos’,
153 10 A. Paraskevi Attikis, Greece
e_mail: manolis@iit.nrcps.ariadne-t.gr

3 Dept. of Informatics, University of Piraeus
80 Karaoli & Dimitriou Str., 18534 Piraeus, Greece
e.mail : themisp@unipi.gr

*This work has been funded by the Greek General Secretariat of Research and Technology under the
project “TimeLogic” of [IENEA'35, contract no 1134,

Abstract

The notion of tree is a very common and useful one in computer science. Trees
are used in all kinds of applications, ranging from simple sorting algorithms to so-
phisticated heuristics for solving intractable problems. It is therefore reasonable to
investigate programming language paradigms in which the notion of tree is the main
design criterion.

In this paper we introduce the new logic programming language Cactus. in which
tree-related concepts can be described in a clear and elegant way. Cactus is in
fact a temporal logic programming language, one in which the notion of time has
a branching (and therefore tree-like) structure. As a result, Cactus appears to be
especially appropriate for expressing non-deterministic computations or generally
algorithms that involve the manipulation of tree data structures.

Keywords: Logic Programming, Temporal Logic Programming, Branching Time.

Contents

1

2

3

Introduction
The syntax of Cactus programs

Cactus Applications

3.1 Expressing non-deterministic behaviour
3.2 Generating seqUenCeS v v v b v e e e e e e e e
3.3 Representing and manipulatingtrees
3.4 Modeling Recursion Using Branching Time

The branching time logic of Cactus

4.1 Semantics of BTL formulas
4.2 Axioms and Rulesof Inference

A proof procedure for branching time logic programs
Possible Extensions

Conclusions

o

o

-1 o v N

10

11
11
12

14

16

18

1 Introduction

Temporal programming languages[OM94, Org91] are recognized as natural and expressive
formalisms for describing dynamic systems. For example, consider the following Chronolog
[Wad88] program simulating the operation of the traffic lights:

first light(green).

next light(amber) + light(green).
next light(red) + light(amber).
next light(green) +« 1light(red).

However. Cronolog as well as most temporal languages|OM94, Hry93, OWD93, Bau93,
Brz91, Brz93. GRP96] are based on linear flow of time, a fact that makes them unsuitable
for certain types of applications. For example, as M. Ben-Ari, A. Pnueli and Z. Manna show
in [BAPM&3], branching time logics are necessary in order to express certain properties of
non-deterministic programs.

In this paper we present the new temporal logic programming language Cactus which
is based on a tree-like notion of time; that is, every moment in time may have more than
one next moments. The new formalism is appropriate for describing non-deterministic
computations or more generally computations that involve the manipulation of trees.

Cactus supports two main operators: the temporal operator first refers to the begin-
ning of time (or alternatively to the root of the tree). The temporal operator next; refers to
the i-th child of the current moment (or alternatively, the i-th branch of the current node
in the tree). Notice that we actually have a family {next; | i € N} of next operators, each
one of them representing the different next moments that immediately follow the present
one.

As an example, consider the following program:

first nat(0).
nexty nat(Y) +— nat(X),Y is 2#X+1.
next; nat(Y) «— nat(X),Y is 2*X+2.

The idea behind the above program is that the set of natural numbers can be mapped on
a binary tree of the form shown in figure 1. More specifically, one can think of nat as a
time-varying predicate. At the beginning of time (at the root of the tree) nat is true of
the natural number 0. At the left child of the root of the tree, nat is true of the value 1.
while at the right child it is true of the value 2. In general, if nat is true of the value X at
some node in the tree, then at the left child of that node nat will be true of 2«X+1 while
at the right child of the node it will be true of 2#X+2. One can easily verify that the tree
created contains all the natural numbers.

One could claim that branching time logic programming (or temporal logic program-
ming in general) does not add much to logic programming, because time can always be
added as an extra parameter to predicates. However, from a theoretical viewpoint this
does not appear to be straightforward (see for example [Gab&87, GHR94| for a good discus-
sion on this subject). Moreover, temporal languages are very expressive for many problem

4

P

Figure 1: A mapping of the natural numbers on a binary tree

domains. As it will become apparent in the next sections, one can use the branching time
concept in order to represent in a natural way time-dependent data as well as to reason in
a lucid manner about these data.

2 The syntax of Cactus programs

‘The syntax of Cactus programs is an extension of the syntax of Prolog programs. In the
following we assume familiarity with the basic notions of logic programming [L1087].

A temporal atomn is an atomic formula with a number (possibly 0) of applications of
temporal operators. The sequence of temporal operators applied to an atom is called the
temporal reference of that atom. A temporal clause is a formula of the form:

H + Blr Bm

where H, By,, B, are temporal atoms, m = 0. If m = 0 then the clause is said to be a
unit temporal clause. A Cactus program is a finite set of temporal clauses.

A goal clause in Cactus is a formula of the form « A;,...., 4, where 4;, i =1, ...,n are
temporal atoms.

3 Cactus Applications

In this section we present various applications showing the expressive power of branching
time logic programming,.

3.1 Expressing non-deterministic behaviour

Consider the non-deterministic finite automaton shown in figure 2 (taken from [LP81] page
55) which accepts the regular language L = (01U 010)*. We can describe the behaviour of

this automaton in Cactus with the following program:

first state(q0).

next; state(ql) + state(q0).
next; state(q2) + state(ql).
next; state(q0) + state(ql).
nexty state{q0) + state(q2).

Figure 2: A non-deterministic finite automaton
Notice that, in this automaton ¢0 is both the initial and the final state. Posing the goal
clause:
+ first next, next; next, state(q0).

will return the answer yes which indicates that the string 010 is an acceptable string of
the language L.

3.2 Generating sequences

One can write a simple Cactus program for producing the set of all binary sequences. The
set of such sequences may be thought of as a tree, which can be described by the following
program:

first binseq([|).

next, binseq([0|X]) « binseq(X).

next; binseq([1|X]) + binseq(X).

The goal clause:
+ binseq(S).

will trigger an infinite computation which will generate all possible sequences.

One can combine the program binseq with the program for the nondeterministic au-
tomaton given in subsection 3.1. In this wayv we can produce the language recognized by
the automaton. More specifically. the goal clause:

+— state(q0).binseq(S).

produces the infinite set of all the binary sequences recognized by the automaton. The
above goal clause (assuming a left to right computation rule) is not the classical generate-
and-test procedure (not all binary sequences are generated but only those for which the
automaton reaches the final state q0). Each succesful evaluation of the goal state(q0)
conducts the corresponding evaluation of binseq.

It is worthwhile noting here that in order to generate another language one only needs
to change the definition of the automaton and not the definition of binsegq.

In order to code the same problem in ordinary logic programming (e.g. in Prolog). the
notion of the sequence has to be added as an extra argument to the state predicate. The
corresponding program is shown below:

state(q0, []).

state(ql, [0|X]) + state(q0,X).
state(q2,[1|X]) + state(ql,X).
state(q0, [1|X]) + state(ql,X).
state(q0, [0[X]) + state(q2,X).

Given the goal clause:
+ state(q0,S).

Prolog's underlving execution engine would generate the sequences recognized bv the au-
tomaton.

The Prolog version of the program is not as natural as the Cactus one. In Prolog, the
sequences handled by the automaton have to be made explicit and “passed around” by the
program, while in Cactus this is avoided with the use of the temporal operators.

3.3 Representing and manipulating trees

Branching time logic programming is a powerful tool for representing and manipulating
trees. A tree can be represented in Cactus as a set of temporal unit clauses. The structure
of the tree is expressed through the temporal references of the unit clauses. Moreover.
the well known tree manipulation algorithms are easily and naturally expressed through
Cactus programs. For example, consider the binary tree of figure 3.

A possible representation of the information included in this tree is given by the fol-
lowing set of Cactus unit clauses:

=1

NN

Figure 3: An (ordered) binary tree containing numeric data

first data(8).

first next, data(5s).

first next; data(12).
first next, nexty data(2).
first next,; nexty data(9).
first next, next; data(7).
first next, next, data(15).

The following program defines the predicate descendant (X). A temporal atom of the
form (Temporal reference) descendant (X) is true if data(X) is true in the time repre-
sented by {Temporal reference) or in a future moment of this time point.

descendant(X) <« data(X).
descendant(X) ¢« data(Y),next, descendant(X).
descendant(X) « data(Y),next; descendant(X).

A more efficient definition of the predicate descendant which takes into account the
fact that the binary tree is ordered (binary search) is shown in the following program.

descendant(X) +« data(X).
descendant(X) « data(Y),X < Y,next, descendant(X).
descendant(X) « data(Y),X > Y,next, descendant(X).

By posing the goal clause:
«— first next, descendant(7).

we will get the answer yes, because the value 7 is in a node which represents a moment in
the future of first next. :

Using the definition of the predicate descendant we can define the predicate search
which tests if a specific numeric value is in a node of the data tree. The definition of
search is given by the clause:

search(X) + first descendant(X).

Let us now define a predicate flattree which collects the values of the tree nodes into
a list. This definition corresponds to the preorder traversal of the tree.

flattree([]|) + data(void).

flattree([X|L]) + data(X),
next, flattree(L1),
next,; flattree(L2),
append(L1,L2,L).

Notice that the above program recognizes the tips of the tree when it encounters a
data(void) unit clause. For this, we have to add the following unit clauses to the program:

first next, next, next; data(void).
first next, next, next, data(void).
first next, next; next; data(void).
first next, next; next, data(void).
first next, next, next; data(void).
first next,; next, next, data(void).
first next, next; next; data(void).
first next, next, next, data(void).

A more compact representation of the above tree (that avoids the use of void nodes)
would be to distinguish the (inner) nodes from the leafs of the tree bv using two different
predicate names e.g. node and leaf instead of the single predicate data. In that case we
have to change slightly the definition of flattree. The new representation of the data

tree becomes:
first node(8).

first nextq node(5).

first next; node(12).
first next, nexty leaf(2).
first next; next, leaf(9).
first next, next, leaf(7).
first next; next, leaf(15).

The new definition of flattree becomes:

flattree([X]) « leaf(X).

flattree([X|L]) + node(X),
next, flattree(L1),
next, flattree(L2),
append(L1,L2.L).

Notice that the definition of the predicate append used in flattree is the usual one:

append([|,L,L).
append([X|Xs],L, [X|R]) < append(Xs,L.R).

The predicate append is independent of time and it performs the concatenation of its first
two arguments.

3.4 DModeling Recursion Using Branching Time

In the following we present an example of how branching-time can be used to model the
tree-like structure of recursion. Consider for example the usual way of computing the
Fibonacci numbers in Prolog:

£ib(1,0).

fib(1,1).

fib(F,N) + NiisN-1,N2isN-2
£ib(F1,N1), £ib(F2, N2),
F is F1 +F2.

Given the above program, a goal clause of the form:
+ fib(F, 10).

will return the 10°th Fibonacci number.

During the execution of the above goal, the value of the parameter N of £ib changes in
a tree-like way (because of the recursive calls in the body of £ib). We can define in Cactus
a predicate n which models the change of the parameter N of the Prolog program (when N
starts with initial value 10):

first n(10).
nexty n(Y) +— n(N),YisN-1.
next, n(Y) +« n(N),YisN-2.

At the beginning of time, n is true of the value 10. In general, if n is true of the value N
at some node in the tree, then at the left child of that node n will be true of N-1 while at
the right child of the node it will be true of N-2.

We can rewrite the Fibonacci program in a purely branching time way:

fib(1) + n(0).

fib(1) + n(1).

fib(F) + nexty, fib(F1),next, fib(F2),F is F1 +F2.
Given the above definitions for £ib and n, a goal clause of the form:

+ first £ib(F).

10

will return the 10°th Fibonacci number.

The above program is definitely a less intuitive one than the original Prolog program.
The reason is that in the Cactus program, while the tree of n is constructed in a top-to-
bottom way, the tree of £ib is beeing built bottom-up. Actually, the variables ¥ and F of the
original Prolog program would varv in exactlty this way during execution, a fact that is not
however expressed explicitly in the Prolog program. In other words, the Cactus program
has a more operational flavour because it expresses explicitly the recursion mechanism for
computing the final result.

As we realize from the above example, it is possible for certain logic programs to
be transformed into branching time logic programs that contain only unary predicates.
A similar transformation exists for functional programs (see for example [Yag84, Ron94,
RW97]) and has formed the basis for dataflow implementations of functional languages.
An interesting question for further investigation is whether the technique we outlined in
the above example, is applicable to wide classes of logic programs.

4 The branching time logic of Cactus

In this section we describe the branching time logic (BTL) on which Cactus is based. In
BTL, time has an initial moment and flows towards the future in a tree-like way. The set of
moments in time in BT L, can be modelled by the set List(N) of lists of natural numbers.
In this case, each node has a countably infinite number of branches (next operators).
Similarly, we may choose a finite subset S of N and define the logic BT L(5), which has
a finite number of next operators (branches starting from each node). In any case, the
empty list | | corresponds to the beginning of time and the list [i|t] (that is. the list with
head 7 and tail t) corresponds to the i-th child of the moment identified by the list t.

BTL uses the temporal operators first and next;, 1 € N. The operator first is
used to express the first moment in time, while next; refers to the i-th child of the current
moment in time. The syntax of BT L extends the syntax of first-order logic with two
formation rules:

e if 4 is a formula then so is first 4, and

e if 4 is a formula then so is next; A.

BTL is a relatively simple branching time logic. For more on branching time logics one
can refer to [BAPMS83].

4.1 Semantics of BT L formulas

The semantics of temporal formulas of BT L are given using the notion of branching tempo-
ral interpretation. Branching temporal interpretations extend the temporal interpretations
of the linear time logic of Chronolog[Org91].

11

Definition 4.1. A branching temporal interpretation or simply a temporal interpretation
I of the temporal logic BT L comprises a non-empty set D, called the domain of the
interpretation. over which the variables range. together with an element of D for each
variable; for each n-ary function symbol, an element of [D™ — D]; and for each n-ary
predicate symbol, an element of [List(N) — 2P"].

In the following definition, the satisfaction relation = is defined in terms of temporal
interpretations. =;; A denotes that a formula A is true at a moment ¢ in some temporal
interpretation I.

Definition 4.2. The semantics of the elements of the temporal logic BTL are given
inductively as follows:

1. If £(ep,... €n-1) is a term, then I(£(eo,...,€n-1)) = I(£)(I(eo),. .., I(ep-1))-

2. For any n-ary predicate symbol p and terms eg,....eq-1,

3. B A iff it is not the case that =14 A
4L EFr ANBiff ErpAand =, B
5. Fre AVBIiff FrpAorEn B

6. F1e (Vo)A iff =ipajz)e A for all d € D where the interpretation I|d/z] is the same
as I except that the variable r is assigned the value d.

L ;Ff_t first A lff |=;L] A
8. Fremnext; Aiff Erpg A

=]

If a formula A is true in a temporal interpretation [at all moments in time, it is said
to be true in I (we write =; A) and [is called a model of A.

Clearly, Cactus clauses form a subset of BT L formulas. It can be shown that the usual
minimal model and fixpoint semantics that apply to logic programs, can be extended to
apply to Cactus programs. However, such an investigation is outside the scope of this
paper and is reported in a forthcoming one[RGP97].

4.2 Axioms and Rules of Inference

In this section we present some useful axioms and inference rules that hold for the logic
BT L, many of which are similar to those adopted for the case of linear time logics [Org91].
In the following, the symbol V stands for any of first and next;.

12

Temporal operator cancellation rules: The intuition behind these rules is that the
operator first cancels the effect of any other “outer” operator. Formally:

V(first A) & (first A)

Notice that this is actually a family of rules, one for each different instantiation of the
operator V.

Temporal operator distribution rules: These rules express the fact that the branching
time operators of BT L distribute over the classical operators -, A and V. Formally:

"-E'II—‘.{:] — ﬂ(v;{}
V(AAB) & (VA) A (VB)
V(AV B) & (VA) v (VB)

Again, each of the above rules actually represents a family of rules depending on the
instantiation of V.

.From the temporal operator distribution rules we see that if we apply a temporal
operator to a whole program clause, the operator can be pushed inside until we reach
atomic formulas. This is why we did not consider applications of temporal operators to
whole program clauses.

Temporal operator non-commutativity rule: Of particular interest is the following
rule which concerns the branching time operators:

next; next; A 4 next; next; A, when i #j

What the above rule states is that in general, two operators next; and next; can not be
interchanged when 7 and j are different.

Rigidness of variables: The following rule states that a temporal operator V can “pass
inside” ¥:
V(VX)(A4) & (VX)(VA)

The above rule holds because variables represent data-values composed of function symbols
and constants which are independent of time (i.e. they are rigid).

Temporal operator introduction rules: The following rule states that if A is a theorem
of BTL then VA is also a theorem of BT L.

if FAthen FVA

The validity of the above axioms is easily proved using the semantics of BT L.

13

