A Hierarchical Scheme for Locating Mobile Users

E. Pitoura and I. Fudos

97-02

Technical Report No. 97-02/1997

Department of Computer Science, University of Ioannina
GR 451 10 Ioannina, Greece, Tel./Fax +30-651-48131

R e

A Hierarchical Scheme for Locating Mobile Users

Evaggelia Pitoura and Ioannis Fudos
Department of Computer Science
University of loannina
GR 45110 Ioannina, Greece

email: {pitoura,fudos}@cs.uoi.gr

Research Paper

Abstract

Locating moving objects is central to mobile computing. To reduce the cost of moves, instead
of updating upon each move all location databases involved, a forwarding pointer is set to the
new location. In this paper, we investigate the use of forwarding pointers in a hierarchical scheme
of location databases. To avoid the building up of long chains of forwarding pointers. we propose
various purging heuristics. We comparatively study the performance of the non forwarding and
of the forwarding strategies along with a set of different purging heuristics for a range of call to

mobility ratics and for users with different moving and calling behaviors.

Keywords: Mobile Computing, Distributed Database Systems, Simulation.

1 Introduction

In a Personal Communications Service (PCS) system, users place and receive calls through a wireless
medium. PCS users are located in system-defined cells, which are bounded geographical areas [2, 9].

A cell is a uniquely identifiable unit. Inside a cell, a user can be tracked using some form of paging.

Databases are used to store information about the location of moving users. When user A places a
call to user B. a number of database lookups are performed to identify the cell ; where B resides.
When user A enters a new cell, the location databases that contained information about A's old
address must be updated.

For future PCS systems, with high user populations and numerous customer services, the signaling
and database traffic for locating users is expected to increase dramatically [10]. To accommodate this
increase in traffic. a distributed database architecture has been proposed in which location databases
are organized in a tree [10, 1, 4]. Each location database contains information about the location of
all users registered in levels below it. The use of a hierarchical scheme however. incurs considerable
increases in the cost of move operations. since a number of location databases must be updated.

In this paper. we consider the problem of locating moving users in such hierarchical tree-structured
location databases. In particular, to reduce the cost of moves, instead of updating all location
databases involved. a forwarding pointer to the new location is set at the lower level database.
However, if forwarding pointers are never deleted, then long chains are created, whose traversal
results in an excessive increase in the cost of locating users during calls. Forwarding pointers have
been also proposed for locating mobile users in [5, 3] but the work there is for non-hierarchical
schemes. Forwarding pointers in a hierarchical database scheme of a different type is presented in
[6]. However. the emphasis there is on adaptability rather than on strategies for purging forwarding
pointers.

Purging forwarding pointers has many possible variations. We consider such variations and
their relative performance. To study the performance of the forwarding scheme and of the various
strategies for purging forwarding pointers, we have developed an event-driven simulator. We have
performed a number of experiments for a range of call to mobility ratios, for users with different
mobility and calling behavior, and for a real-word number of cells. The results clearly show that the

forwarding scheme coupled with an appropriate purge heuristic on a per user basis can reduce the

cost of calls and moves by a factor of 2 for small call to mobility ratios.

The rest of this paper is organized as follows. In Section 2, we present the forwarding scheme and
the various strategies for purging forwarding pointers. In Section 3, we describe our model for the
call and mobility behavior of PCS users. In Section 4, we briefly describe our simulator and report

performance results. Finally, in Section 5, we offer conclusions.

2 The Location Strategy

Databases are used to store information about the location of PCS users. These databases are
interconnected by the links of the signaling network, e.g., a Common Channel Signaling network [8].
These databases form a tree that may be of arbitrary depth and width. The database at each leaf
serves a single cell and contains entries for all users inside the cell it covers. A database at an internal
node maintains information about all users registered in the set of cells in its subtree. Specifically,
we assume that the entry for user A at a level i database contains a pointer to the level i —1 database
in the subtree of which A resides. For example, in the tree hierarchy of Figure 1 for a user located
at cell 25, there is an entry at the database at level 9 pointing to 23, at level 3 pointing to 9, and at

0 pointing to 3.

2.1 The basic location strategy

The problem of locating a mobile user can be described in terms of two basic operations, a call and
a move operation. Consider PCS user A that moves from cell i to cell j. The entries along the path
from i to the least common ancestor of ¢ and j, denoted LCA(i. j) must be updated. Specifically,
a message propagates up the tree from j to LCA(f, j) adding entries for A and then down the tree
from LOCA(i, j) to i deleting the entries for A. For instance in Figure 1, if a user moves from cell 25
to cell 23, the entries at nodes 25 and 9 are deleted and entries for that user at 3, 8, and 23 are set.

Consider a call from PCS user A at cell ¢ to user B located at cell j. The message from cell ¢

DO CODO OO VOO OB B® O

@

Figure 1: Hierarchical location scheme.

is propagated up the tree till an entry for user B is first found at LCA(i,j). Then, the message
propagates down the tree from LCA(i, j) to the cell j where B resides. For instance. a call from a
user at cell 26 to a user currently residing in 23, results in querying the databases at nodes 26, 9,
and 3 and then at nodes 8 and 23.

We call the above operations basic move and basic call respectively.

2.2 The forwarding pointer location strategy

To cut down the cost of move operations, we propose using forwarding pointers. Upon each move
from cell ¢ to cell j. instead of updating all databases on the paths from j to LCA(i.j) and from
LCA(i,7) to i, a forwarding pointer to j is set at the database of i. In the tree hierarchy of Figure
1, a move of PCS user A from cell 25 to 23. results simply in setting the entry for A at 25 to point
to 23. No internal databases are updated.

Using forwarding pointers may increase the cost of calls. Calls originated from cell ¢ to cell j

proceed initially as in the basic case, going up to the LCA(7. j) and then down to j. However, the

user may not be actually located at j, but the entree at 7 may be a forwarding pointer to another leaf
node. Thus, before actually locating a user. a chain of forwarding pointers may have to be traversed.
For instance, if a call is placed from a user at 22 to user A of the previous example, to locate 4,

databases at nodes 22, 8, 3, 9 and 25 are queried and then the forwarding pointer to 23 is followed.

2.3 Purging forwarding pointers

If forwarding pointers are never deleted, long chains of forwarding pointers are created resulting in
calls with high latency. There are many variations in purging forwarding pointers depending on the
form purge takes and on when it occurs.

In simple purge, we simply add a direct pointer from the first node of the chain to the current
location of the user and delete all intermediate forwarding pointers. This results in a chain of length
one. For example a chain 11 — 18 — 26 — 14 is replaced by chain 11 — 14. In complete purge,
we also delete the entry in the first node of the chain. This causes the deletion of all entries at the
internal databases from the first node to the LC A of the first node and the current location and the
addition of entries on the path from the LC A to the current location. This results in a chain of zero
length. For instance the chain 11 — 18 — 26 — 14 is deleted. as well as the entries at 4, and entries
are set at 1, 5, and 14.

Purging of forwarding pointers, either simple or complete, can occur at calls or at moves. Purging
at calls is initiated at each call when the first node of the chain is reached during the call. Purging
at moves is initiated when a system-defined maximum on the length of the chain is reached. To
purge pointers, the first node of the chain must be known. However, upon a move, this information
is unavailable. Thus, to reach the first node, instead of keeping a single linked list of forwarding
pointers, we maintain a doubly linked list, in which we also keep a backward pointer to the previous
location of the user.

Finally, we note that before setting a forwarding pointer, detecting cycles is necessary to avoid

infinite loops during calls. For example, consider chain 11 — 18 — 26 — 14 and a move made to

5

18, carelessly adding a pointer to 18 results in chain 11 — 18 — 26 — 14 — 18 and future calls will
hang. Cycles can be detected by checking upon each move of a user A from j to ¢, whether an entry
for A already exists at . If so, there is a path from j to ¢ which can then be purged. Thus, the chain

of the example becomes 11 — 18.

3 Modeling the Environment

3.1 The topology

We assume a hierarchy of location databases embedded in the hierarchy of telephone switches. To
allow for maximum flexibility in the design of the location management scheme, we consider hierar-
chies with a variable number of levels h. The hierarchy of location databases is thus modeled by a
complete tree of height h with an out degree d(i) for level i(i = 1...h). The leaves correspond to
cells and thus each leaf corresponds to a unique physical address. In Figure 1, the location databases

are organized in a complete tree of height 3 with d(1) = 3, d(2) = 2, and d(3) = 3.

3.2 Cost estimation

We assume that the physical address of a mobile user is the address of the cell inside which it
currently resides. Tracking users inside a given cell is an issue orthogonal to identifying this cell
and is beyond the scope of this paper. Let FF be the cost of following a forwarding pointer, i.e.
sending a message to an arbitrary site knowing its physical address, and SF be the cost of setting a
forwarding pointer. Similarly, let FL be the cost of following a link in the hierarchy of the location
databases, i.e. sending a message to a parent or child location database site, and SF the cost of
setting a link. Communicating with neighbors is less expensive than communicating with arbitrary
cites. We have taken this into consideration when setting the relative values of 5L, FL, FF, and
SF in our simulation studies. In setting the values of SL, FL, FF, and 5F, we also account for the

mean delay in queues waiting to be served by a location database management system.

Let current(z) be the cell where user x currently resides and k be the length of the chain
of forwarding pointers. In the forwarding scheme, let register(z) be the cell containing the first

forwarding pointer.

We consider first a call placed by user r to user y.

Basic Schema: In the basic scheme, the cost is

2lca(current(x), current(y))FL,
where [ca(i. j) is the height of the LCA(i, 7) of leaf nodes i and j.
e No purge: In the forwarding schemes with no purge. the cost is

2 lea(current(z), register(y))FL + kFF.

e Simple Purge: When simple purge of the chain of forwarding pointers takes place during calls,
the overall cost is

2lca(current(z), register(y)) FL + k(FF + SF).

o Complete Purge: When complete purge during calls takes place, in 1 to purging the forwarding
chain, the location databases on the paths to the common ancestors of the location where the

callee was first register and its current location are updated. Thus, the overall cost becomes:

2lcalcurrent(z), register(y))FL + k(FF + SF) + 2lca(register(y), current(y))SL.

Let a move made from a user x to a new cell noted new(z).

s Basic Schema: In the basic scheme the cost for a move is

2lca{current(z),new(z))(FL + SL).

e Cycles: In the forwarding schemes, the cost for a move if a cycle is detected in the forward
chain is:

I|SF +(1—1)FF,

where [is the length of the cycle.

e No Purge (no cycles): In the forwarding schemes with no purging the cost of a move is just

the cost of setting a forwarding pointer, i.e.,

SF.

o Simple Purge (no cycles): When simple purge of the chain of forwarding pointers takes place
during a move. the cost is

k(FF + SF).

e Complete Purge (no eycles): When complete purge during a move takes place the overall cost
becomes

k(SF + FF) + 2lca(register(z), new(z))(SL + FL).

Finally, the probability of network contention in a hierarchical database arrangement is considered

very small and in real world corresponds to temporary non-availability of the telephone network.

3.3 Calling and Mobility Model

We simulate calls to a specific mobile user and moves made by this user using an event-driven
simulator. An event is either a move or a call event.

We assume that, for each user calls and moves occur independently. The interarrival times be-
tween two calls follow an exponential distribution, with parameter the mean interarrival time between
two calls, £.. The interarrival times between two moves follow another exponential distribution, with
parameter the mean interarrival time between two moves, f,,. The ratio of the number of calls over

the number of moves called Call to Mobility Ratio (CMR) is then

t
CMR = tﬂ

[

The source of a call event is selected using one of the following distributions:

s Arbitrary Calls
A call may be placed from any cell with equal probability <. where n is the number of different

cells,. We use a discrete uniform distribution to select one from the n cells.

¢ Set of Frequent Callers
Each user receives most of its call for a specific set of locations. This corresponds to a real-life
situation in which a user is frequently called by a set of other users or groups of users, e.g.,
friends. family. business associates or regular customers. We model a set of frequent callers
with a discrete bimodal distribution, which distributes a 0.9 probability uniformly over a set
of specific locations and a 0.1 probability uniformly over all other locations. So, a call has
%% probability to be placed by a frequent calling location, and n—?-}le to be placed by another

location, where ny is the number of frequent calling locations.

The destination of a move event is selected via one of the following distributions:

o Arbitrary Moves
A user may move to any location, except from its current, with the same probability. We use
a uniform distribution as in the case of arbitrary calls, however the probability that the user
remains in the same location after a move is 0, thus the probability that any other location is

selected as the destination of the mowve is ﬁ

» Frequent Moves to Nearby Locations
Since users usually move to nearby locations, we model such a situation in which distant moves

are unlikely to happen and short moves to neighbor locations are most likely to happen. We use

a discrete probability distribution in which the probability of a user moving to some location

z decreases hyperbolically with the distance of z from the current location.

¢ Movement by a Pattern
Users usually have a certain mobility pattern that is the same over short periods of time. For
example, such a scenario corresponds to users that follow a daily routine, e.g., drive from their
home to their office, visit a predetermined number of customers, return to their office, and
then back to their home. In such cases, the user moves according to a certain pattern, e.g..
among specific locations. This pattern can change but remains fixed for short periods of time
(time locality). To model such scenarios, a sequence of locations is selected and the user moves

circularly through that sequence.

To produce random numbers for the discrete probability distributions of the cases of set of callers
and of frequent moves to nearby locations we have used the alias method (see e.g. [7]). The alias

method models arbitrary discrete probability distributions with a fixed range.

4 Experiments and Results

We have developed an event-driven simulator to evaluate the performance of the location strategies.
The simulator software has been developed in C+4 and runs on a SUN 10 workstation.

We study the behavior of (1) the basic scheme, (2) the forwarding scheme with no purging of
the forwarding pointers, (3) the forwarding scheme with simple purging at moves, (4) the forwarding
scheme with complete purging at moves, (3) the forwarding scheme with simple purging at calls, and
(6) the forwarding scheme with complete purging at moves. For purging at moves, the maximum
length of the chain was set to 5, based on the analysis for the non hierarchical scheme in [5].

We run the experiments for a wide range of call to mobility ratios and for a total of 4000 move
and call events. We present the results for three types of environments: (a) arbitrary calls and moves,

(b) arbitrary calls and moves to nearby locations, and (c) arbitrary calls and pattern of moves.

10

We have also performed the same set of experiments for set of callers. As expected. the results
are similar to the case of arbitrary calls. since what actually affects the performance of the scheme
is the movement model. We plan to experiment with scenarios in which there is some correlation
between the movement and calling behavior. For instance, when the set of callers has common sites
with the moving pattern or the callers reside in nearby-locations. For example, that would be the
case when the majority of calls to a PCS user originate from the town where the user usually resides.

We have experimented with hierarhies of different height and width. The results show that the
relative performance of the schemes under consideration remains the same. The results presented
are for a tree of height 10 and of a total number of about 17000 cells.

We estimate the benefits of forwarding by computing the ratio Eﬁ;—-fm where for the cost of
forward we use the cost of the simple purging at moves schemes, that proves to have a relative stable
performance at all three types of environments. We use the results to draw conclusions about the

appropriate forwarding scheme to be deploved on a per-user basis or more accurately for classes of

users with specific call and mobility behaviors and CMR ratios.

4.1 Arbitrary Calls and Moves

When moves are arbitrary, the chain of forwarding pointers becomes very long, thus the performance
of the no purging strategy degrades rapidly as CMR grows. Specifically, as shown in Figure 2(up)
the no purging scheme for 0.1 < CMR < 10 performs 2 to 5 times worse than the basic scheme. Only
when moves are very infrequent (CM R > 100), the performance of no purging becomes comparable.
The E'E;ﬂ_tiﬂfﬁ ratio for low call to mobility ratios ranges from 2 (at CMR = 0.01) to 1.7 (at
CMR = 1.0). As expected for high CM Rs, the benefits of forwarding become less apparent and the
ratio drops to 1.2 at CM R = 100.

Figure 2(down) depicts the cost of the four purging strategies. For CMR < 2, the best strategy
is the simple purge at calls. For CMR > 2, the simple or complete purge at moves strategies

outperform the other strategies.

11

500000 T T T T T T " T v

] Mo Purge -
450000 J Eimple Purge at Moves - o

Agregato Cost

:

oM oos o 025 05 Q.73 g 20 40 &0 i) 100 1000
Call 1o Mobility Ratsia (CMRA)

S e & L
Cﬂm%ﬁuﬁat“é% :
- Furge a1
70000 Compiate Purge at Calls - - - |
60000 - -
|
g 50000
40000 - e GeemSagn o e
- o SONBEEE apets= HORNS,
20000 - 4

01 005 01 025 0. 40 ED BD 100 1000

5 O™ 10 20
Cail 10 Mabsity Ratio (CMR]

Figure 2: The behavior of the location schemes for arbitrary calls and moves.

12

4.2 Arbitrary Calls and Nearby Moves

When moves are to neighbor cells, the cost of the no purging scheme is many times less than that
in the case of arbitrary moves. This is because the length of the chain of forwarding pointers often
remains short, since the probability of revisiting a site in the chain and thus forming a cycle increases.
In a hierarchical scheme, moves to nearby location cost less than moves to remote locations since
fewer levels in the tree must be updated. Thus, as expected in this case, the benefit of using a
forwarding scheme as expressed by the ratio E%rﬁr—d is of a lesser magnitude than in the case of
arbitrary moves. In particular, it is around 1.3 (Figure 3(up)).

Figure 3(down) depicts the cost of the four purging strategies. For CMR < 3, the best strategy
is the simple purge at calls. For CM R > 3, simple or complete purges at moves outperform the other
strategies. Using the simple purge at calls strategy for low CM R values instead of the simple purge
at moves strategy increases the E%r:i—d ratio from around 1.3 to a range from 2.1 (CMR = 0.01)

to 1.5 (CMR = 1).

4.3 Arbitrary Calls and Pattern of Moves

For the pattern of moves mobility model. we assume that the user moves among 10 arbitrarily
chosen cells. Since cycles are detected, in this case, the length of the chain never exceeds 10. Thus,
as expected the no purge forwarding scheme has comparable behavior with that of the other purge
strategies (Figure 4(down)). Moreover. for CM R < 1 it performs better than the complete purging
schemes and for CMAR < 0.75 better than the simple purge at moves scheme. The %::ﬁ
ratio for low call to mobility ratios ranges from 2.3 (at CMR = 0.01) to 2 (at CMR = 1.0). As
expected for high CM Rs, the benefits of forwarding become less apparent and the ratio drops to 1.3
at CME = 100 (Figure 4(up).

Figure 4(down) depicts the cost of the four purging strategies and that of the no purging scheme.

For CMR < 1, the best strategy is the simple purge at calls. For CMR > 1, the simple purge at

13

T T 2 T T T T ‘E
Biasic Schemd — |
Mo Punge. ----
Simpile Purge at Moves
£20000 - it
100000 - 4
g
=
E 80000 - 4
0000 = 4
Qo Qos o 02 05 075 10 20 40 5.0 a0 160 1000
Call to Meobiley Rasic (CMA)
T T T T T T L T — T T
Basic Schema —
45000 Simple Purge a1 Moves —-- 7
Comgm Purgs at Maves -
male Furge &t Caks
Compiste Purge a1 Cals - - -
0000 -
B0 -
i St - 3
L] - g
e .
g' 30000 + 4
25000
20000 - 1
00t Qo5 0 025 05 @75 1.0 2.0 4.0 &.0 a0 100 1000
Call b Moiliry Ratic [CMA)

Figure 3: The behavior of location schemes for arbitrary calls and moves to nearby locations.

14

Basari&mama —
Simpie Purge at Moves

Rgoregate Cost

20000 - 4

oor oos Qi 25 05 4.0 &0 B0 00 100.0

075 1.0 20
Call 1o Mobidity Rago (CMA)

i

S I

T
— =

Lt

20000 - -

a0r 0os 0 225 05 0.75 1.0

20 4.0 BO B 100 100.0
Call 1o Mabiity Pasa (CMA)

Figure 4: The behavior of location schemes for arbitrary calls and moves based on a pattern.

15

1 wmmm

