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FINITE DIFFERENCE METHODS
FOR THE WIDE-ANGLE ‘PARABOLIC* EQUATION"

(GEORGIOS AKRIVIS

ApsTrRacT. We consider a model initial and boundary value problem for the wide-angle
‘parabolic’ equation Lur = icu of underwater acoustics, where L is a second-order dif-
ferential operator in the depth variable z with depth- and range-dependent coefficients.
We discretize the problem by the Crank-Nicolson finite difference scheme and also by the
forward Euler method using nonuniform partitions both in depth and in range. Assuming
that the problem admits a smooth solution, and L is invertible for all r under the posed

boundary and interface conditions. we show stability of both schemes and derive error
estimates.

1. INTRODUCTION

In this paper we shall analyze finite difference methods for a model initial and bound-
ary value problem with interface for a third-order partial differential equation. the wide-
angle “parabolic’ equation of underwater acoustics. Given R > 0,u > 0, p > 0, a, A and
g real constants, ag # 0, and z* € (0, 1), we seek a complex-valued function u defined
on [0,1] x [0, R] and satisfying

1+ gb(z,r)|u, + aqu,., = —t'gu, z2€(0,z*)u(z*,1),r € [0, R],

u(0,-) =0, in [0, R]
(1.1) u(z"—, ) = u(z"+,-), in [0, R]
uz(z"—,-) = pu.(2"+,-), in [0, R]
uy(1,-) + pu(l,-) =0, in [0, R]
u(-,0) = up in [0,1];

here b is a complex-valued function. b = § + iy with 3 and v real-valued functions on
[0,2*) x [0, R] and (z*.1] x [0, R], which can be smoothly extended to [0.z*] x [0, R]
and [z*. 1] x [0. R] but have a possible jump discontinuity across {z*} x [0, R]. and ug a
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given complex-valued function on [0.1]. Let L denote the Lipschitz constant of b with
respect to the second variable,

(1.2) sup|b(z,7) — b(z.8)| < Llr —s|  ¥r.s € [0, R].

As a matter of fact, the third-order wide-angle equation is
(14 gblv, + aqua,, = indv,, + iAbv,

but the change of variables u = v exp(—i%r] transforms it into the p.d.e. of (1.1), cf. [1].

The existence of solutions of (1.1) for all smooth initial values ug is called into question
if the second-order operator L(r), L(r)v := aqu., +[1+¢b(-, r)]v. is not invertible under
the indicated boundary and interface conditions for all r € [0, R]; we refer the reader to
4] and [1] for relevant commentary. In the sequel we will assume that L(r) is invertible
for all r € [0. R]., and that the data are smooth and compatible such that problem (1.1)
possesses a solution u which is sufficiently regular for all our results to hold.

We will approximate the solution of (1.1) by a finite difference scheme of Crank-
Nicolson type of second order accuracy in the depth and range variables. For the dis-
cretization in depth, let J € N and 0 = zg < z1 < -+ < z7 =1 be an arbitrary partition

of [0,1] such that z* is a node, z,, = z* say. Let hj :=2; —z;_1.j=1....0 hyp1 :=
0,hj == (hj + hj+1)/2 for j # m, and hm = (hm + phum +1)/2. Fu_rther let H :=
7 P hs). and Cj*! denate the space of complex J + 1-vectors v = (vg,..., vy)T

with vy = 0. We introduce an operator Ay in CJ " by (Agv); = Agv; and

ﬂ.HtJ') r=1),
1. G5i=v 0=
Agvj = (L2 0Ly 1<i<T-1, j#m,
hi  hin h;
Bt s = ...Lf e L.m_l)-
h"m IiIIl':|'1l'.|.+‘1 hiﬂ-
2
Agvy:= Eg—{vi—1 - vy1).
J

Thus, Agv; is the usual centered difference quotient approximation to the second de-
rivative at the interior points z;, j # m, and is suitably defined at j = m and j = J
in anticipation of the approximation of the interface conditions at z* and the bottom
mixed boundary condition.

For the discretization in range, let N € Nand 0 =r® < r! < ... < ¥ = R be
an arbitrary partition of [0, R]. and r"*% := (r® + r"+1)/2. Let .Tc = gL _ g8
n=0,....N-1. For°,..., vN € G define 8v" := (vt — v™)/k, and v =
(v + ™) /2.

We associate with a complex-valued function f on [0, 1], the right- and left-hand-side
limits of which exist at z* = z,,. a vector f £ C;,’*I given by fJ =gl 1 €5 <,
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3 ?Em and fr, := f(zm) = [hm f(2°=) + phmar f(z*+ )/2Rm: b(zm.7) and the vectors
b(r) € Cy*'. r € [0,R], are defined analogously. Clearly, if f is continuous at 2*

fm—f{zm F{z"):

We define finite difference approximations U™ & c;j*l T 3 T T T T i PRy
u(zz,7™))7T. as follows: For n =0, let U? := 4. Then. forn=0,...,] N — 1. we require
f0F § = Licisyed-— 1,3 3£,

(1.3) 1+ gb(z;, 7™ 7 )10UT + agdAgUT = éU:Jr”
q

Discretizing the interface condition of (1.1) in the customary way leads. for n = 0.
N-1. to

(1.4) 1+ qb(zm. 7" 2)]OUT. + agdAxU" = —aJ‘U,?:l.

Finally, discretizing the mixed boundary condition at z = 1 by centered differences in

the customary way, we complete the definition of the difference approximations letting,
forn=0,....N =1,

) _ X 1
(1.5) [1+ gb(zg, )00} + agdARUS ~ 2007307 = ~iZU}” 1
J

Lek &= {02 0. I}T = Cﬂj‘:‘i. and for v, w € C‘JH set v @ w = (vowp,....vyws)T.
With this notation in place, we may rewrite (1.3)-(1.5) in the form

(16) U™ +qb(r"*}) ® U™ - 2056 ® OU" + agdARU" = _idgntd
J q

Let h := max; h; and k := max, k,. In this paper we establish second-order estimates
in various norms for the error u™ — U™, for sufficiently small k and h, under the natural
condition that L(r) be invertible for all r € [0, R]. Similar results are proved in [1]
under some conditions on the coefficients of the p.d.e. in (1.1). More precisely. for the
estimates in [1], Ay > 0 in [0.1] x [0, R] is required; the estimates in the discrete H}
and maximum norms are proved under the additional hypothesis that v =0 or ag > 0.
Also, the technique in [1] is restricted to uniform partitions in range.

The forward Euler approximations U™ € Cg*! to u™ are defined by U° := u° and,
for =04 N -1,

(1.7) BU™ + gb(r™) ® OU™ — anhié ® U™ + agdAgU™ = -%U“.
J

For sufficiently small h. we show that the scheme is stable under no meshconditions
and derive error estimates in various norms of second order in h and of first order in
k. assuming that L(r) be invertible for all r € [0. R]. Analogous results. under some
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conditions on the coefficients of the p.d.e. —see (4.9) and (4.10) below— are given
in [1].

For the physical significance of problem (1.1), and numerical methods for it, we refer
the reader to [1], [7]. [8], and the references in these papers.

The paper is organized as follows: In Section 2 we investigate a finite difference
scheme for an indefinite two-point boundary value problem; the established stability
estimate is the heart of the approach of this note. Sections 3 and 4 are devoted to the
analysis of the Crank-Nicolson and the forward Euler finite difference schemes for (1.1).

respectively.

Acknowledgment. The author is grateful to Professor Michel Crouzeix for stimulating
discussions concerning the content of section 2.

2. AN INDEFINITE TWO-POINT BOUNDARY VALUE PROBLEM

In this section we study a finite difference scheme for an indefinite two-point boundary
value problem. The analysis is based on ideas from [3]. The results of this section will
play a central role in the analysis of the Crank—Nicolson and the forward Euler method
in the next two sections; they may also be of independent interest.

Finite difference methods for indefinite problems with real-valued coefficients are ana-
lyzed in [2]. Bramble's approach makes essential use of the fact that the discrete problem
reduces to a linear system of equations with normal coefficient matrix; consequently, it
can not be easily extended to equations with variable complex-valued coefficients.

Finite element methods for indefinite problems are investigated in [5] and [6]. The
fact that the convergence in the L?—norm is faster than in the H!—norm plays a crusial
role in the analysis of finite element methods for indefinite problems. It is, therefore.
not straightforward to apply this technique to finite difference methods, since in this
case we have second-order convergence both in the discrete L?— and H'—norm.

The continuous problem. We consider the following two-point boundary value prob-
lem with parameter r,r € [0, R],

— uzz(z,7) +d(z,r)u(z,v) = f(2), z€[0,2*)uU (2" 1],

u(0,-) =0, in [0, R]
(2:1) u(z*—, ) = u(z"+, ), in [0, R]
uz(z*—,) = pu(z*+.-), in [0, R]
uy(1,+) + pu(l,) =0, in [0, R];

here p,p.z* and R are as in the introduction. and f : [0,z*) U (2*.1] — C, d :
([0.z*) U (2°.1]) x [0, R] — C smooth functions which can be continuously extended
to [0,2*], [2*.1], and [0,2*] x [0, R], [2*,1] x [0, R], respectively. Let d be Lipschitz
continuous with respect to r uniformly in z,

(2:2) sup |d(z.r) — d(z.s)| < L|r — s vr,s € [0, R].
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We assume that. for every r € [0. R]. problem (2.1) possesses a unique solution.
Let us also consider the following auxiliary two-point boundary value problem

-v'=f w0, 2*) U (=", 1),
v(0) = 0.
(2.3) v(2" =) = v(z"+),
V(2" =) = pu' (2" 4),
v'(1) + uv(1) = 0.
We equip L2 = L?(0, 1) with the natural for problems (2.1) and (2.3) weighted inner
product (-, -),

=" 1

by, ) == fv{z]llﬁ[z]dz - pfvlfz}ﬁ;{z}dz,
0 "
and denote by || - || the induced norm. Let Hj consist of the elements of the Sobolev

space H! which vanish at 0; we will use the norms |[- |1, |-|1. [|w]l1:=( [Jw]/®+ [Jw’||?)"/2,
lwly:= [Jw']].
A variational formulation of problem (2.3) is: given f € L?, seek v € H{ satisfying

(2.3) (v, w') + puv(1)@(1) = (f.w) Yw € H..

Letting T denote the solution operator of (2.3'), v = T f, we rewrite problem (2.1) in
the form: Seek u(-,r) € H} such that

(2.4) u(.r) + T(d(-.T)u(-.r)) =Tf, rel0,R].

e

Using the continuity of T : L? — H_, we easily see that T(d(r):) : Hf — Hj is
compact, and conclude, in view of our assumption for problem (2.1), that A(r). A(r) :=
I +T(d(r)-). is an isomorphism from H{ to Hj. Therefore,

(2.5) |A(r)~ ]l < C(r).
Using (2.2), we easily see that
|A(r) — A(s)|j1 < L|r — 8| vr.s € [0, R].
Thus, we have
(26)  [A(s)™" = A(r)7Ylx < Lir — | [A() "1/l A(s) My Vr.s € [0, R),
i.e., for s sufficiently close to r,

JAD) M
Zir = s

(2.7) |4() 7 < —



From (2.6) and (2.7) we obtain

. . ~1yp. | A
2. A(s)" = |A(r) " | < L ! ~ 3.
{ 8) | | {5] .|‘1 | [:T'j |.T.. oy L|'-" = 5! |4"1{T}_1||1 |T §
Thus, the function ¢, @(r) := ||A(r) =1, is continuous; in particular,

(2.9) sup||(I + T(d(r)-)) "}, < C.

Discretization. Let Sy denote the space of continuous functions in [0. 1] which vanish
at () and reduce to polynomials of degree less or equai one on each subinterval (z;. z;41).

Using the notation h; :=h;,7=1,..., . h e ph_, j=m+1,...,J, we introduce in
Cy*! a discrete weighted L? inner product { ‘)i by
J —
(v.w)g = Zhji:_?wj
i=1

and denote by ||-|| & the induced norm. We shall also use the discrete weighted H}—norm
|- |15 and the discrete H~'—norm || - ||y g, defined for w € CE,"” by

wl
u.m—{Dw “|+th3. ”2}”2

j=m-+1
i=1

lw|l-1,5 == {Zh |Zh£we| + |Zh£w£| Jus

Rewriting (v, w) g in the form

(v,w)lg = —Zhj thw} i = +Zhgtg’w
=2

using the Cauchy-Schwarz inequality and the fact that | - |; g dominates (modulo a
constant factor) the discrete maximum norm, we have

(2.10) (v, w)g| < Cllvll—ymlwh g Yo,we Gt

with a constant C' depending on p.
Using the notation @ for a vector in Cj ! associated with a function w : [0.1] — C,
see section 1, we approximate the solution v of (2.3') by vy € Sy defined by

=

(2.11) (v, X') + puve()x(1) = (/. X)#  Yx € Su.
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Clearly, (2.11) is uniquely solvable. Let Ty denote its solution operator. vy = Ty/f.
Taking x := vy in (2.11), and using (2.10) and the easily established relation

(2.12) Xhae=Ixh VYxe€ Sk,
we obtain
(2.13) T fl1 < Cllfll-1.5-

In the sequel. we will also use the weighted L'(0.1) norm || - |[z1.

1

Ifllzs = f F(8)ds + p [ 1£(s)|ds.
1} -

z

The following result is similar to Lemma 2.4 in [3].

Lemma 2.1. Let T and Ty be the solution operators of problems (2.3') and (2.11),
respectively. Then, there erists a constant C, independent of H, such that

(2.14) ITf —Tgfllx £ CRIfIl + I f L)
Proof. Let P.v € Sy be given by

(2.15) ((Pov)'.X) + pu(P)(DX(1) = (f.x) VX € Sg.

Then,
((v = Pev)'.x') + pu(v — Pev)(1)x(1) =0 Vx € Sw,

and, consequently, for x € Sg,

v = Povf] + pul(v = Pov)(1) =
= ((v=Fev)', (v=-x)") + pp(v — Pv)(1)(# — x)(1)
< |v = Pevfa|v = xl1 + pul(v = Fev)(1)] [(v = x)(1)].

Choosing here ¥ € Sy to be the interpolant of v. we obtain

v = Pvl? + ppl(v — Pov)(1)[? < |v = Pav|rch(|v]g2(0,20) + V] m2(2- 1))
1|,
(2.16) v — P.vly < Chlf]|.

Further, subtracting (2.11) from (2.15), we get

217) (P —va),X) + pu(Pev —vm)()x() = (f.) - (F. 0r  Vx € Sar.



Now
m—1 J-1
(f.x) = (F. 0= _Ei(fx)+rY_ Ei(fX).
i= j=m
where ..
Ei(o) = [ elo)ds = 2 o(a;) + plaa)]

here ¢(z,,) stands for @(z*—) in E,,_1(¢), and for ¢(z*+) in E,,(p). Using the fact
that the trapezoid rule integrates the elements of Sy exactly, we have E;(fx) = E;([f—
I (z50h%)s e

Ej(F0) < Shyss | max [£(9)= F(z)] | max_[x(s)

EjREaSZ i <agzia
s
Eghﬂlf|ff(3]553||}(i|£.ﬂ{u.1}-
ZJ'

Using also the easily established fact

1
2.18 i < max(l. —]|¥| Yy € Sy,
( ) x|l z=(0.1) S ( vf',ﬁ”x'l X H
we obtain
s 3 1 :
(2.19) [(Fe) =1 Xal < Ehmm':fl-. ﬁ_)l!f lzr [xla-

Choosing in (2.17) x := P.v — vy, and using (2.19). we obtain

(2.20) \Pev — vg|y < Ch| ||

From (2.16) and (2.20), we get

(2.21) lv—veh £ Ch(|Ifll + | Fllzr),

and (2.14) follows. O

We approximate the solution u of problem (2.1) by ug(-.r) € Sg. r € [0. R], given by
222)  (um:(7) X)) + ppu(1,7)x() + (@ur(r).Dr = (F.R)r  Yx € Sn.
Problem (2.22) can be equivalently written in the form

(2.22') ug(-.r) + Te(d(r)ug (-, 7)) = Tr /.



- g -
Now, [I+T(d(r):)] - [I+Tg(d(r)-)] = (T —Tx)(d(r)-). and therefore. in view of (2.14),

(2.23) sup [[[Z + T(d(r)-)] = (I + Tar(d(r)-)]llr < Ch-

From (2.9) and (2.23) we conclude that there exists hg > 0 such that, for A < hy.
I 4+ Tg(d(r)-) is invertible and

(2.24) sup||[I + Tw(d(r)-)] " < C.

Therefore, in particular, ug(-,r) is well defined for sufficiently small h. Now, (2.22')
can be written in the form

ug(-.r) = [I+ Tu(d(r)-)] "' Tu .

and, in view of (2.24), we have

(2.25) sup|lug (-, 7)1 £ C||Tw fl]1,
i.e.,
(2.25') suplug(-,r)h < C|Ta .

From (2.25") and (2.13) we obtain the stability estimate

(2.26) suplugr (-, 7)1 < Ol fll-1.z-

Let U(r) := ug(-,r). Choosing x = ¢;,j =1.....J, p; € Sy, w;(2¢) = d;¢, in (2.22)
we easily see that

5 2 i
(2.27) dir)@U(r) + h—“a QU(r)-AgU(r)=f. rel0,R].
J
From (2.12) and (2.26) we obtain the stability estimate
(2.28) sup [U(r) |11 < C|fl|-1.zr-

In the next two sections, we will apply these results with d(z,r) := —[1 + gb(z,r)|/aq.
For this d. the finite difference scheme (2.27) and the stability estimate (2.28) take the
form

(2.291) U(r) + gb(r) @ U(r) - 2&qf~d RU(r) + agAgU(r) = —aqf.  r€[0.R],
J



(2.29ii) sup |[U(r)|.x < C||fll-1.5-
™

Remark 2.1 Second-order error estimates for the finite difference scheme (2.27) for the
indefinite problem (2.1) can be easily established using the stability estimate (2.28).
Let E(r) € Cj~' be the consistency error of the finite difference scheme (2.27) for the
solution u( r} of problem (2.1).

(2.30) E(ey-= ) @ o) + %f‘-a GOy~ AsBt) —F. FE[0.H).
J
By straightforward Taylnr expansions we see that E(r) = Eq(r) + Ez(r) with
1 . . .
E{ G+l — uzzz(zj r) H1<j3j<J-1, j#m,
1 .
EU{T) = { —ﬁ[phfnﬂuzu{z*+, :I"} = hfnuzzz{z*—, '.l"}l 1fj =m
m
—f;iu,,z{l_.r} i g=.1
and g g 1
R{ fu}—'—ﬁ w)] f1<i<J=1, j#m,
ﬁhj[hjﬂ h; i(
1 1 i s
Ea;(r) = 4 —a[hmﬂ Rom(u) — —-*f-m{ﬂ-}] fj=m
1
—Li(u) ifj=J,
L 33
where
Tj=1 zy
Ri(u) := f (zj41 — 2)%Uzzz2 (2, 7)dz, Li(u):= f (2jo1 — 2)%uzzz2 (2, 7)d2.
A zj J -1

It is straightforward to prove that
(2.31) sup(|| By (r)l| -1z + || E2(r) | ) < CH2.

Let e(r) := u(r) — U(r). Subtracting (2.27) from (2.30) we obtain
&‘[T} Re(r) + z—jé @ e(r) — Age(r) = E(r), r € [0, R],

i.e., in view of (2.28),
sup le(r) |1,z < Csup ||E(r)||-1,#.
r r

Thus, using (2.31) we obtain
(2.32) sup le(r)|1,i < Ch2.
r

This estimate implies also second-order error estimates in the discrete L? and maximum
Norms.



3. THE CrRANK-NICOLSON METHOD

In this section we examine the Crank-Nicolson scheme (1.6) for problem (1.1). We
show consistency and stability, and establish second-order error estimates.

Consistency. The consistency error E™ € Cg"“. i =0 ] N — 1. of the Crank-
Nicolson scheme (1.6) for the solution u of (1.1) is given by

(81)  E":i=0u"+qb(r"*¥) ® u” ~ 2000 ® Ou” + agdAgu” + £§u=1+é,
J

We rewrite the consistency error in the form

f.?t-l
1 -~ A .
E" = T f [Uy(r) + gb(r) @ u.(r) - an}?-ﬂ @ Up(r) + agA i, (r) + E'E-E{r];dr
J

Aa1"f 1 X —
% f [@(r) = a(r"*3)ldr — g f [b(r) — b(r"*2)] ® @, (r)dr.

It is easily seen that the first term on the right-hand side can be estimated as in Re-
mark 2.1. and the last two terms are of order O(k?) in the discrete maximum norm.
Consequently,

i 2 4 12
(3.2) o, [E”ll-1 < OO + 12)

Stability. Using (2.29), we immediately obtain from (1.6). for sufficiently small h.
(3.3) 10U < C(IU -1 + U™ ||-1,), n=0,...,N-1

Using now the fact that the discrete H] norm dominates the discrete L? norm which in
turn dominates the discrete H=! norm. we obtain

(3.4) lBU™l& < CIU|g + U™ |g),  n=0,...,N-1,
as well as
(3.5) 10U v g < C(IU™ 1,z + U™ 1 5), n=0,....,N-1.

Now, from (3.4) we obtain
(1= Ck)|U g < (1 4+ Cky)||IU &
i.e., for sufficiently small &,

U™l < (14 cka)lUMler,  n=0....,N=1;



consequently, stability in the discrete weighted L? norm follows,

: x U < CIIU°||.
(3.6) o 22X Nl < ClIT i
Analogously, for sufficiently small k, from (3.5) we obtain stability in the discrete
weighted H} norm

8 \[rn < . R
(3:7) 022 (U g < CIU I m

Stability in the discrete maximum norm follows also easily from (3.3): Estimating the
left-hand side from below and the right-hand side from above by the maximum norm,
we get, for sufficiently small k,

max|U;‘+l| < (1 + ckp) max [UT, n=10,...;,N=1,
i i
i.e.,
(3.8) max |UF| < C max|U7?|.
fin i

From the above stability estimates, it follows, in particular, that, for sufficiently small
k and h. the Crank-Nicolson approximations U®,...,U" are well defined by (1.6).

Combining stability and consistency, we next prove optimal order rate of convergence
of the Crank-Nicolson approximations.

Theorem 3.1. Assume that the solution u of (1.1) is sufficiently smooth in [0, z*] x
(0. R] and in [2*.1] x [0, R], and that k and h are sufficiently small. Let U° := u®, and
UY,....U" be the Crank-Nicolson approrimations given by the finite difference scheme

(1.6). Then, there exists a constant C, independent of hy,....hy and kq..... kn, such
that
3. |4 _ TTT < 2 4 2 3
(3.9) Jmax (v~ Ul < CK? + ),
3. le;® __ TIT < 2+ 2
(3.10) pmax, fu Uly.g < C(k* + h*)
and
no__rrnj 2 2
{3.11) UE}%}(N 0213%; luj — UF| < C(E° + h%).
Proof. Let €™ := u™ = U™, n = 0,...,N. Subtracting (3.1) from (1.6), we obtain the

error equation

(3.12) de™ + qa{r“"'%] @ de™ — an{'—ﬂi ® 0e"” + agdAge” = —i%e"”—* + E™.
J



Using (2.29), we immediately get from (3.12)

1015 < C(lle™ ¥ |-t + || E”||-1.10),
l.e., in view of (3.2),
(3.13) 8”15 < Cle™ ¥ g +C(k* +h?), n=0,...,N-1L
Using now the fact that the discrete H} norm dominates the discrete L? norm, we

obtain
"+ |1 i < (1 + ckn)|e™ 1 i + ckn (K2 + h2),

and conclude easily that (3.10) holds.

The estimates (3.9) and (3.11) can be established analogously; they also follow from
(3.10), since the discrete Hj norm dominates the discrete L2 norm as well as the discrete -
maximum norm. O

4, THE FORWARD EULER METHOD

In this section we study the forward Euler finite difference scheme (1.7) for problem
(1.1).

Consistency. The consistency error E™ € C;]I"'l: n=0,...,N—1, of the forward
Euler scheme (1.7) for the solution u of (1.1) is given by

(4.1) E™ := u™ + gb(r™) @ Bu” — ?aqhiﬁ ® ou™ + agdAgu™ + i%u“,
J

As in the case of the Crank—Nicolson scheme, it is easily seen that

(4.2) max _||E™|-1,m < C(k+ h?).

0<n<N-1
Stability. Using (2.29), we immediately obtain from (1.7), for sufficiently small h.
(4.3) U5 < C|U™ -1, n=0,....N—1

Using the fact that the discrete H} norm dominates the discrete L? norm, and the
discrete L? norm dominates the discrete H~! norm, we obtain

(4.4) loU™a < CIU™m,  n=0...N-1,
as well as

(4.5) U™ g <CIU 1, n=0,....,N—-1



Now, from (4.4) we immediately obtain
U™ < (1 + k) IU™| 1,
and conclude easily that

4.6 I U™ || g < CIU°)|g.

(4.6) o2 N0 = CIT |

Analogously, from (4.5) we obtain stability in the discrete weighted H} norm,
, jie < C|U%, .

(4.7) D%af_:x.“«"L g 2CU W\ g

Moreover, using the fact that the discrete maximum norm dominates the discrete H ~!
norm and is dominated by the discrete H{% norm, we get from (4.3)

ma_ix'&TH| < (1 + ckn) max |U, n=0,....N-1,
3 J

and, consequently,
(4.8) max |U]'| < C max '[,Tf.,
Jm J

The above stability estimates imply, in particular, that, for sufficiently small h, the
forward Euler approximations U?,..., U are well defined by (1.7).

The stability estimate (4.6) was first derived in [1] for & > 0 under the condition that
either

(4.9) ~ is bounded away from zero
or

%‘5 > 1+ qmax§(z,7), if g >0
(4.10) ﬂ,; ‘

z, > -1+ |q|r§§xﬁ{z1 r), if g <0,

where C,, is such that ||p||? < C,||l¢'||? for all smooth functions vanishing at 0.
Combining stability and consistency, we obtain optimal order rate of convergence of

the Euler approximations. The proof goes along the same lines as the proof of Theorem

3.1, and is omitted.

Theorem 4.1. Assume that the solution u of (1.1) is sufficiently smooth in [0, 2*] x
[0,R] and in [z*,1] x [0, R], and that h is sufficiently small. Let U° := u®, and
UL,....UY be the forward Euler approzimations given by the finite difference scheme
(1.7). Then, there erists a constant C, independent of hy....,hy and ky..... kx, such
that

1o ™ i €L 2
(4.11) n%ag}iv |u™ = U"||g < Clk + h*)

3 no__rm < 2
(4.12) ué\:}lagm_m Ut.g £ Clk+h%)
and
(4.13) max max |uf —U?| < C(k+ o D

0<n<Nog <t 7
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