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Abstract

Iosif Polenakis, Ph.D., Department of Computer Science and Engineering, University
of Ioannina, Greece, June 2019.
Algorithmic Techniques for Detection and Classification of Digital Objects.
Advisor: Stavros D. Nikolopoulos, Full Professor.

In this PhD Thesis there have been studied the algorithmic techniques for the detec-
tion and classification of digital object. In the area of digital objects, this Thesis focuses
mainly on the investigation of designing and proposing algorithmic techniques that
detect and classify (in terms of indexing) a specific category of digital objects, the one
of software, and more precisely the malicious software, providing finally an integrated
algorithmic framework for protection against malicious software.
It is well known that malicious software consists a security threat of major impor-
tance. Especially the last years, where almost every device supports networked op-
erations, several malicious attacks have been deployed targeting on the infringement
of Confidentiality, Integrity and Availability of data stored into information systems
or any other computing device. Hence, this thesis mainly focuses on the design and
the development of efficient graph-based algorithmic techniques that detect malicious
software samples and further classify them into known malware families, while on
the other hand, the proposal of graph-based strategies for early warning, effectively
prevent the pandemic spread of malicious software between interconnected mobile
devices. The structure of the thesis is developed over two axes, namely, the design
and development of protection techniques against the malicious software, regarding
the detection and classification of malicious samples, and the development of graph-
based techniques for pandemic prevention, regarding the definition of the maximum
permit table time required for a countermeasure to suppress malware’s spread.
Malicious authors, in order to avoid traditional detection methods, have developed
highly sophisticated practices focusing on mutating their produced malicious sam-

ix



ples, incorporating mutation engines that mutate the structure of the generated ma-
licious samples (i.e., polymorphism and metamorphism). On the first development
axis of this thesis, the research focuses on the design and the proposal of a mutation-
tolerant graph-based representation of malicious software sample’s behavior (behav-
ioral graph) resulted from System-call Dependency Graphs, or, for short ScDG, a
Directed Acyclic Graph produced through Dynamic Taint Analysis of the executed
sample. So, in the first state we propose the Group Relation Graph, or, for short GrG, a
Directed Weighted Graph that is an abstraction of ScDG resulting after grouping dis-
joint vertices of it, utilizing the property that system-calls can be merged into groups
based on their similar functionality. Further, we extent this approach by propos-
ing the Coverage Graph, or, for short CvG, where we investigating the dominating
relations among the vertices of GrGs regarding the vertex weight and degree. Addi-
tionally, extending the potentials of the above graph-based representations, we also
propose the Temporal Graphs, that actually depict the structural evolution of the pre-
viously proposed graphs (i.e., GrG and CvG) by depicting their structures through
instances captured over specific periods. Among others, we propose a set of similarity
metrics that utilize quantitative, relational and qualitative characteristics of the above
graph-based representations of malicious software sample’s behavior, utilizing them
in order to experimentally evaluate the detection and classification potentials of our
model.
Moreover, since the usage of mobile devices exhibits a wide spread, dependently of
te adoption of IoT, throughout this thesis, it has also been studied the development
of graph-based algorithmic techniques that would integrate the overall algorithmic
framework for protection against malicious software by investigating graph-based
strategies for suppressing and finally avoiding potential pandemics caused by mal-
ware’s spread. More precisely, we propose a set of graph-based techniques for mod-
eling the topology of towns-planning, the node mobility patterns as also the propa-
gation behavior, incorporating them to develop an algorithmic technique that defines
the maximum permitted time required by a counter- measure to take effect removing
the malware from an infected device (i.e., response time) in order to finally the pan-
demic spread. Finally, the precision of the proposed approach is tested throughout
a series of repetitive (Monte Carlo) series of experiments of various epidemic models
and set of factors that affect the malware’s spread.
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Ε Π

Ιωσήφ Πολενάκης, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο
Ιωαννίνων, Ιούνιος 2019.
Αλγοριθμικές Τεχνικές Ανίχνευσης και Κατάταξης Ψηφιακών Αντικειμένων.
Επιβλέπων: Σταύρος Δ. Νικολόπουλος, Καθηγητής.

Σε αυτή τη διδακτορική διατριβή διερευνήθηκαν οι αλγοριθμικές τεχνικές για την
ανίχνευση και τη κατάταξη ψηφιακών αντικειμένων. Στον τομέα των ψηφιακών αντι-
κειμένων, η παρούσα εργασία επικεντρώνεται κυρίως στη μελέτη του σχεδιασμού
και της περαιτέρω ανάπτυξης αλγοριθμικών τεχνικών ανίχνευσης και κατάταξης
μιας συγκεκριμένης κατηγορίας ψηφιακών αντικειμένων, αυτής του λογισμικού και
πιο συγκεκριμένα του κακόβουλου λογισμικού, δημιουργώντας εν τέλει ένα ολοκλη-
ρωμένο αλγοριθμικό πλαίσιο για την προστασία ενάντια σε αυτό.
Είναι γνωστό ότι το κακόβουλο λογισμικό αποτελεί μία από τις σημαντικότερες
απειλές για την ασφάλεια. Ιδίως τα τελευταία χρόνια, λόγω της εξέλιξης στη δια-
συνδεσιμότητα των υπολογιστικών συσκευών, αναπτύχθηκαν διάφορες κακόβουλες
επιθέσεις με στόχο την παραβίαση της εμπιστευτικότητας, της ακεραιότητας και
της διαθεσιμότητας των δεδομένων που εδράζονται τόσο στην ευρεία έκταση των
πληροφοριακών συστημάτων, όσο και σε αυτόνομες υπολογιστικές συσκευές. Με
αυτή την αφορμή, η συγκεκριμένη διατριβή προσανατολίζεται στον τομέα της Ασφά-
λειας Πληροφοριακών Συστημάτων, έχοντας ως κύριο μέλημα, αφενός το σχεδιασμό
και την ανάπτυξη αποτελεσματικών γραφοθεωρητικών αλγοριθμικών τεχνικών, τα
οποία αρχικά ανιχνεύουν κακόβουλα λογισμικά, ταξινομώντας τα εν συνεχεία σε
γνωστές οικογένειες κακόβουλων λογισμικών, ενώ αφετέρου, βασισμένες στις αρ-
χές της έγκυρης πρόληψης, αποτρέπουν αποτελεσματικά τα φαινόμενα πανδημίας
από την εξάπλωση του κακόβουλου λογισμικού μεταξύ διασυνδεδεμένων φορητών
συσκευών. Συγκεκριμένα, η παρούσα διατριβή αναπτύσσεται πάνω σε δύο άξο-
νες, στον σχεδιασμό και την ανάπτυξη αλγοριθμικών τεχνικών προστασίας από το
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κακόβουλο λογισμικό, αναφορικά με την ανίχνευση και τη περαιτέρω κατάταξη κα-
κόβουλων λογισμικών και εν συνεχεία την ανάπτυξη γραφοθεωρητικών τεχνικών
για την πρόληψη πανδημικών φαινομένων ορίζοντας το μέγιστο επιτρεπόμενο χρο-
νικό όριο για την εφαρμογή των μέτρων προστασίας με στόχο την καταστολή της
εξάπλωσης του κακόβουλου λογισμικού.
Οι δημιουργοί των κακόβουλων λογισμικών, προκειμένου να αποφύγουν τις κα-
θιερωμένες μεθόδους ανίχνευσης, έχουν αναπτύξει ευφυείς τεχνικές που εστιάζουν
στη μετάλλαξη των παραγόμενων κακόβουλων λογισμικών, ενσωματώνοντας μηχα-
νισμούς μετάλλαξης που στόχο έχουν να τροποποιήσουν ριζικά τη δομή των παρα-
γόμενων δειγμάτων. Ως εκ τούτου, στον πρώτο άξονα, η έρευνα επικεντρώνεται στο
σχεδιασμό και την πρόταση μιας αναπαράστασης μέσω γραφήματος της συμπερι-
φοράς του δείγματος κακόβουλου λογισμικού (συμπεριφοριστικό γράφημα) ανθε-
κτικής σε μεταλλάξεις, η οποία προκύπτει από τα Γραφήματα Εξάρτησης Κλήσεων
Συναρτήσεων Συστήματος (κατευθυνόμενα άκυκλα γραφήματα), τα οποία κατα-
σκευάζονται αντλώντας πληροφορία από την εκτέλεση δυναμικής ανάλυσης του
εκτελεσθέντος κακόβουλου λογισμικού. Έτσι, σε πρώτο επίπεδο, προτείνουμε το
Γράφημα Συσχετίσεων Ομάδων (κατευθυνόμενο έμβαρο γράφημα) το οποίο προ-
κύπτει έπειτα από ομαδοποίηση των κόμβων του γραφήματος Εξάρτησης Κλήσεων
Συναρτήσεων Συστήματος, αξιοποιώντας την ιδιότητα ότι οι κλήσεις συναρτήσεων
συστήματος μπορούν να συγχωνευθούν σε ομάδες ανάλογα με την ομοειδή λειτουρ-
γικότητά τους. Επιπρόσθετα, επεκτείνουμε αυτή την προσέγγιση προτείνοντας το
Γράφημα Κάλυψης, όπου διερευνούμε τις “σχέσεις κυριαρχίας” μεταξύ των κόμ-
βων του γραφήματος Συσχετίσεων Ομάδων, αναφορικά με το βάρος και το βαθμό
αυτών. Επιπλέον, επεκτείνοντας τις δυνατότητες των παραπάνω γραφημάτων προ-
τείνουμε επίσης τα Χρονικά Μεταβαλλόμενα Γραφήματα, τα οποία απεικονίζουν
τη δομική εξέλιξη των προτεινόμενων γραφημάτων (δηλ. Γραφήματα Συσχετίσεων
Ομάδων και Γραφήματα Κάλυψης) απεικονίζοντας την εξέλιξη στη δομή τους μέσω
στιγμιότυπων αυτών, τα οποία καταγράφονται ανα συγκεκριμένες περιόδους. Με-
ταξύ άλλων, προτείνουμε ένα σύνολο μετρικών ομοιότητας, όπου αξιοποιούνται τα
ποσοτικά, σχεσιακά και ποιοτικά χαρακτηριστικά των παραπάνω γραφημάτων ανα-
φορικά με τη συμπεριφορά των κακόβουλων λογισμικών, αξιοποιώντας αυτές τις
μετρικές για τη μετέπειτα αποτίμηση των δυνατοτήτων ανίχνευσης και κατάταξης
των προταθέντων μοντέλων.

Επιπλέον, δεδομένου ότι η χρήση των φορητών συσκευών παρουσιάζει ευρεία
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εξάπλωση, κατά την εκπόνηση της παρούσας διατριβής μελετήθηκε η ανάπτυξη
αλγοριθμικών τεχνικών βασισμένων σε γραφήματα, οι οποίες θα ολοκληρώνουν το
ευρύτερο αλγοριθμικό πλαίσιο προστασίας ενάντια στο κακόβουλο λογισμικό, με
τη διερεύνηση στρατηγικών βασισμένων σε γραφήματα για την καταστολή και πε-
ραιτέρω αποφυγή εν δυνάμει πανδημικών φαινομένων που θα προκύψουν από την
εξάπλωση του κακόβουλου λογισμικού. Πιο συγκεκριμένα, προτείνουμε μια σειρά
τεχνικών για τη μοντελοποίηση της τοπολογίας του πολεοδομικού σχεδιασμού, των
μοτίβων κίνησης των φορητών συσκευών καθώς επίσης και της συμπεριφοράς με-
τάδοσης (αναφορικά με το ακολουθούμενο επιδημιολογικό μοντέλο), συντονίζοντας
τα μοντέλα αυτά στην πλαισίωση μιας αλγοριθμικής τεχνικής που θα καθορίζει τον
μέγιστο επιτρεπόμενο χρονικό όριο που απαιτείται από ένα αντίμετρο προστα-
σίας προκειμένου να απομακρυνθεί το κακόβουλο λογισμικό από μια μολυσμένη
συσκευή (χρόνος απόκρισης), ώστε τελικά να αποφευχθεί η πανδημία. Τέλος, η ευ-
ρύτερη απόδοση της προτεινόμενης προσέγγισης παρουσιάζεται μέσα από μια σειρά
επαναλαμβανόμενων πειραμάτων (Monte Carlo) ακολουθώντας διαφορετικά επιδη-
μιολογικά μοντέλα, λαμβάνοντας παράλληλα υπόψη και ένα σύνολο παραγόντων
που επηρεάζουν την εξάπλωση του κακόβουλου λογισμικού.

xiii



Chapter 1

Introduction

1.1 Modern Security Threats

1.2 Malicious Software

1.3 Defense Line Countermeasures

1.4 Related Work

1.5 Structure of the Thesis

1.1 Modern Security Threats

The increasing security threats on the protection of privacy, integrity and confiden-
tiality of systems as also of the data stored in them constitute the key incentives for
research and thorough study on information system security. Security of information
systems is one of the most important issues of concern in maintaining the smooth
and persistent operation of IT. This research proposal is developed in the field of
protection against malicious software and the prevention of its spread, which con-
sists the dominant tactic of cyber-attacks. Therefore, the basic aim of the proposal
is the in-depth and multi-level study on the protection against malicious software
as also the prevention of its spread by proposing effective graph-based algorithmic
techniques which ensure the protection of privacy, integrity and confidentiality of the
systems.

Approaching the problem, the methodology we follow develops an algorithmic
framework consisting of two axes: protection against malicious software and preven-
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tion from its spreading between mobile devices. So, at the first level, we study, design
and finally develop protection systems that implement a set of algorithmic methods
of detecting and classifying malware using watermarking techniques as well as other
graph-based approaches. On the second level, based on known epidemiological mod-
els represented by graphs depicting snapshots of the networks that are dynamically
formed between the mobile devices, we use structural information about the location
of the nodes and the topology of the spatial representation, developing algorithmic
techniques to suppress the spread of malware between mobile devices preventing pan-
demics. In order to achieve this goal, the ongoing research is developed on two main
axes, which are initially on the development of algorithmic techniques for protection
against malicious software and then on the development of algorithmic techniques to
prevent its spread between mobile devices as to avoid pandemics.

In the concept of a clearly critical threat on the security of IT operation, we are
called upon to investigate, recommend and implement techniques that, approaching
the problem algorithmically, will provide protection against malicious software and
also suppress to its spread between computing devices.

One of the most important challenges in detecting and then classifying malicious
software is the resilience of each technique against its mutations (strain variation),
with significant success rates being occupied by the so-called behavioral techniques.
In this thesis there have been studied and proposed such malware detection and clas-
sification techniques [7], utilizing System-call Dependency Graphs as representations
of its behavior through specific abstractions of these graphs in mutation-resistant
graphs.

It is widely accepted that prevention is an invaluable tactic, and therefore it is
clearly intended to be applied in the case of suppressing the spread of malicious soft-
ware between mobile computing devices. Having already studied the phenomenon,
from the aspect of the influence of the counter-measure’s response time to avoid pan-
demic spread, it is estimated that further study at the level of nodes of the network
with the greatest influence on the spread of malicious software (critical nodes) would
contribute significantly the research level of the field. Therefore, in the second part
of the proposed algorithmic framework, we aim to develop innovative algorithmic
techniques that, as an evolution of the already proposed ones, will initiate the launch
of graph-based strategies targeting the immunization of critical nodes of the network,
utilizing the position of computing devices in the dynamic network.
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1.2 Malicious Software

Malware or malicious software is a software type intended to cause harm to end
point computers, systems or networks [8]. In this work we design and propose a
graph based model that develops an algorithmic technic for malware detection and
classification. Our method is applied on unknown software samples in order to detect
whether they are malicious or not, and further classify them to one of a set of known
malware families (i.e., set of malicious mawlare samples with similar functionality),
as they have been developed by various antivirus software vendors.

On the contrary part of our scientific field, malware authors, have developed and de-
ployed various techniques in order to avoid the traditional byte-level signature based
detection methods. Since such detection methods appear to be significantly fragile
against even the least (i.e., bit-level) mutation of the initial subject (i.e., ancestor mal-
ware sample), they mutate their software products (malware) creating structurally
different but functionally similar copies of them. Except from the mutation methods
that leverage one, or more, levels of encryption, there also exist more advanced muta-
tion methods. Some of the most applicable malware mutations are the oligomorphism
which is achieved through obfuscation techniques, the polymorphism where the code
is modified through encryption techniques and the metamorphism, in which multiple
structurally different copies of a malware sample are generated.

More precisely an oligomorphic or semi-polymorphic malware, is a specific category
of obfuscated malware disposing an encryption/decryption module for multi-layer
encryption in order to avoid decryption body detection. On the other hand, a poly-
morphic malware can create an endless number of new decryptors that use different
encryption methods to encrypt the body of the malware [9]. As referred in [10], the
main principal is to modify the appearance of the code constantly across the copies.
Finally, a metamorphic malware changes its structure while keeps its functionality each
time it replicates itself [11]. Polymorphic and metamorphic malware is the hardest
type of malware to detect, since are able to mutate in an infinite number of function-
ally equivalent copies of themselves, and thus there is not a constant signature for
virus scanning [11].

Hence, while the main functionality of a malware sample remains immutable dur-
ing its mutations, malware samples can be merged into groups of malware samples
with common functionality, the so called malware families. So, in this work we de-
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veloped an algorithmic technic that not only detects if a program is malicious or not,
but additionally, given a malicious software it can decide the malware family that it
belongs to.

1.3 Defense Line Countermeasures

Since malicious software poses a major threat, several protection approaches have
been proposed and implemented in order to eliminate such threats. The main corpus
of the defense line is mainly developed over three axes, namely malware analysis,
malware detection and malware classification:

□ Malware Analysis. Malware analysis [12] is the process of determining the
purpose and the functionality or, abstractly, the behavior of a given malicious
code. Such a process is a necessary prerequisite in order to develop efficient and
effective detection and also classification methods, and is mainly divided into
two main categories, namely Static and Dynamic analysis [8].

□ Malware Detection. The process of malware detection describes the method which
focuses on determining whether a given program P is malicious or benign ac-
cording to an a priori knowledge [13, 14, 15]. Specifically with the term a priori
knowledge we are referred to something that is known to be malicious or a char-
acteristic that owned by something that is malicious, at a given time. However,
an efficient malware detection is strongly related to malware analysis, during
which, the analyst collects all the required information.

□ Malware Classification. The term malware classification refers to the process of
determining the malware family to which a particular malware sample, let M
belongs to. Malware classification is a quite important procedure, since the in-
dexing of malware samples into families provides the ability to generalize de-
tection signatures from sample level to family level. Through the indexing of a
malware sample to a malware family, the construction of a new sample-specific
signature is omitted, since the sample can be detected by the signature of its
family.
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□ Prevention. One of the most important procedures incorporated to ensure the
suppression of malware’s spread is the deployment of efficient prevention meth-
ods or strategies that focus on the limitation of malware’s propagation over their
early stages. Most of such approaches include the deployment of an underly-
ing compartmental epidemic model as also approaches that implement “early
warning” or immunization strategies.

1.3.1 Malware Analysis

In this chapter we will present the two main streams in malware analysis, the static
and the dynamic malware analysis. Firstly we will discuss the basic methodologies
applied in the static analysis approach while we will cite a few tools that malware
analysts utilize in order to perform static analysis, and then we will present the basic
techniques applied in dynamic malware analysis and respectively we will cite the
corresponding tools utilized in dynamic malware analysis. This chapter has a some-
how smaller extent since, although malware analysis is a quite interesting technique,
there does not exist much work in literature because of its hands-on-craft nature as
it is a more human based method. The vast majority of the publications present only
implementations that automate traditional made by analysts techniques, while the
background of such techniques is out of the scope of this work.

Α. Static Malware Analysis

As we mentioned in the introduction, with the term static analysis we refer to the
process of analyzing an unknown program without executing it [16, 8, 17, 18, 12, 19].
Static malware analysis, since it does not demand the execution of the specimen
under inspection is thus more safer for the testing environment, however demands a
higher level of programming skills and also a deeper knowlegde of object’s structure
since the available software can be in different types varying from plain source code
to binary files. Thus static analysis splits, according to the analyst’s level and the
techniques he utilizes, to basic and advanced static analysis.

Basic static analysis is straightforward and thus can be performed quickly in-
cludin elementary techniques of a brief examination in the executable file without
viewing the actual instructions, providing us knowledge about the specimen’s type
(malicious / benign). As we referred in the introduction, static malware analysis has
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a few drawbacks such as its inability to detect a totally brand-new malware when is
performed in its basic approach, while even in its advanced one, is quite difficult to
be performed when malware’s source code is unavailable as more sophisticated tech-
niques are required. Specifically, as mentioned in [16], static analysis of binaries may
cause some problems to the procedure such as the disassembling that may cause am-
biguous results when performed on self-modifying malware. However, despite these
drawbacks,static analysis has the advantage that it can cover the complete program’s
code [12] and in most of the cases is faster that the dynamic one.

Α.1. Static Analysis Techniques

In this sub-section we will enumerate some of the most used static analysis techniques
that when applied can reveal valuable information about the testing specimen’s struc-
ture.

• File Fingerprinting: A typical malware’s fingerprint can be consisted from its
file’s hash value. Hashing is a common method used for identifying malware
uniquely. As refered in [8] the hash value can be computed in a part of the
malware and then can be quite useful especially when used as label or shared
with other analysts for same purposes.

• Anti-virus Scanning: Before someone starts the analysis, is advised to firstly
scan the testing specimen with at least one or more anti-virus software in order
to detect it. Its is probable that some anti-virus software may have already
detect this specimen [8] if it is malware and thus no further investigation is
needed. Additionally, despite the fact of gaining time from an already done
work, the anti-virus vendors provide with a detailed reports [17] about the
specimen where the analyst can find information about malware’s capabilities,
its signatures and in many cases instructions for its removal. However, as we
mentioned in the introduction malware authors may have changed the code of
malware and consecutively its signature and hence anti-virus software will not
be able of detecting it.

• String Searching: A very naive approach in elementary static analysis is the
string search. There is surprisingly a lot of information in a malware’s source
code in strings of readable text. As referred in [17] there exist strings that inform
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the user with update status, an error occurrence, a connection to a URL or to
copy a file to a specified folder. As easily someone can understand, a quick
web-search of these strings can reveal valuable information.

• Analyzing Obfuscated Malware: As we described in the introduction malware
authors often use obfuscation techniques in order to evade detection. Except
from obfuscation techniques another technique that malware authors utilize for
the same purpose is packing. Packed malware is somehow a malware that has
been compressed and thus it can not be analyzed. As referred in [8], the le-
gitimate software often includes many strings. This declaration is able to lead
us to the conclusion that if a software includes few line then it probably may
be a malware. Consecutively, the elementary techniques mentioned above are
not enough to perform the analysis. The most helpful knowledge in such cir-
cumstances is that when a packed malware is executing then a small wrapper
program is running to decompress the packed malware. Such auxiliary program
are called packers and can be detected using the PEiD program as described in
[8].

• PE File Format: One of the most valuable information about a program’s func-
tionality can be revealed through PE (stands for Portable Executable) file format
used by executable files on Windows systems [17]. The PE file format is a data
structure that contains necessary information for the Windows OS loader to
manage wrapped executable code, object code and DLLs [8]. The core segment
of PE appears in its begin where there exist the header that includes information
about the code, the application type, the library functions, space requirements,
compilation date and time, imported and exported functions, version informa-
tion and strings embedded in resources [8, 17].

• Linked Libraries - Functions : Additional valuable information can be col-
lected through the library linking. The imports are functions stored in a pro-
gram and used from another one. Thus, code libraries can be connected to an
executable by linking [8].

Next we present three basic linking methods an describe the information re-
trieval when they are observed in static analysis.

– Static Linked Libraries: In static linking the code of the library is copied
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inside the executable growing its size. The main problem in the analysis
of static linked libraries, as described in [8], is that the analyst can not
distinguish the linked from the main executable code.

– Run-time Linked Libraries: On the other hand, a commonly used library
linking method is the run-time linking, the libraries are linked only when
needed by the executable. To this point it worth to mention that run-time
linking is mainly used by packed or obfuscated malware.

– Dynamically Linked Libraries: Finally, maybe the most interesting type
of library linking is the dynamic linking, where the host OS searches for the
necessary libraries when the program is loaded. The interesting is that the
information relevant to the libraries to be loaded and the functions that
will be used is stored in the PE file header we mentioned above.

• Imported - Exported Functions: Imported and Exported function can aslo
reveal valuable information about an executable’s functionality. Imported Win-
dows functions can give valuable information to the analyst even by their names
revealing somehow what the executable does. On the other hand, the exported
functions interact wit other programs’ code. DLLs in example, provide function-
ality used by executables. In contrast, if an analyst discovers exported functions
inside an executable, since is not designed to provide functionality to other
executables [8], is very helpful to claim it as malware.

• Disassembling: Right after the conduction of such elementary static analysis
techniques, follow more advances static analysis techniques like the disassem-
bling of the examined file and analyzing the assembly code instructions that
make up the program [17]. Since the description of disassembling techniques
are far out of the scope of this thesis we will mention only that there exist ready-
to-use tools like IDA Pro, that we will suggest in next 2.1.2, that are indicated
for use in such techniques.

Α.2. Static Analysis Tools

According to the techniques we previously enumerated, for the hash value compu-
tation the most used algorithms are the SHA1 and the MD5. On the other hand
for the obfuscated malware in the case of packed one, PEiD is recommended in [8]
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since it can detect packed files by detecting the type of packer or compiler employed
to build the application. For the investigation of PE files the PEView can browse the
analyst through a lot of valuable information Next, the dynamically linked libraries
can be explored with the Dependency Walker, distributed with MS Visual Studio, that
lists only the dynamically linked functions in an executable. Finally, when advanced
static analysis techniques are deployed, the Interactive DisAssembler Professional is
recommended and wide used by most of virus analysts. IDA Pro is able to disassem-
ble an entire program and perform function discovery, stack analysis local variable
identification and much more are detailed described in [8].

Β. Dynamic Malware Analysis

In this section we will present another effective technique for analyzing malware,
the dynamic malware analysis. With this term we refer to the usage of dynamic
techniques for analyzing malware during run-time [12]. The main advantage against
static analysis is that in dynamic analysis is immune to obfuscation techniques as
the analyzed instructions are the ones that code actually executes. So, firstly we will
present the basic dynamic analysis techniques as they are described in the available
literature while finally, as in the previous section, we will enumerate some tools that
are utilized in dynamic analysis. As referred in [16] the analysis of actions performed
by a program while it is being executed is called dynamic analysis. As dynamic malware
analysis is performed while actually executing the malware it has to be done in a
fully isolated and thus safe environment worth to sacrifice, meaning in example a
virtual machine. Dynamic analysis is also called behavioral analysis since the analyst
actually observes the behavior of the malware or in other owrds the interaction it
has with its environment, in our case the operating system. As mentioned in [17]
a fairy good picture of malware’s behavior can be developed by simply monitoring
its interaction with the file system, the registry, other processes and the network.
To this point we ought to underline that even though dynamic analysis techniques
that we present next are extremely powerful and plenty of valuable information, they
should be performed only after the performance of static analysis and much more the
monitoring should be performed very carefully since may put at risk the analyst’s
system or its entire network. Finally dynamic analysis has one more limitation, that
is not actually a drawback, is the fact that not all possible execution paths my execute
when a malware runs [20].
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Β.1. Dynamic Analysis Techniques

Through the dynamic malware analysis technique we focus on capturing the behavior
of the testing malware. The term behavior as referred in [21] includes the files that
the sample tries to create or modify, the changes it attempts to perform in Windows
registry, the loaded DLLs, the accessed virtual memory areas, the creation of processes,
the network connections it opened and other information.

• Function Call Monitoring: As we know, a function consists of code that is
responsible for a specific task. However, even it seems to be a trivial notion,
the abstraction of such implementation details can reveal a semantically richer
implementation [16]. In order to analyze a program’s behavior it is needed
to intercept in some fashion between function calls, a process called function
hooking[21]. Consecutively a dummy function that is responsible for that proce-
dure is called hooking function [16]. Such functions are responsible for recording
the hooked function’s invocation to a log file or analyzing its input parameters,
which is information that later we will leverage in order develop our model (see
chapter 6). Next, we cite some system related functions that can be monitored
in order to observe malware’s behavior. When function calls are monitored it
results to the function call trace [16]. Such traces consist by a a sequence of func-
tions with their arguments invoked by the malware under analysis during its
execution.

– API: These functions form a coherent set of tasks. Usually the operating
systems provide many sets of application program interfacesused by other
applications to perform common tasks [16, 8].

– System Calls: While the common applications are executed in user-mode the
operating system is executed in kernel-mode. Thus, only the kernel-mode
executed code has direct access to system’s state. However a user-mode
application can request from system to perform a limited set of tasks using
the system calls, a specific API provided by the system. The interest of such
API comes from the fact that malware actually is an application and since
it executes in user space it needs to invoke a corresponding system call in
order to interact with its environment [16, 8].

– Windows Native API: Finally, Windows Native API resides between the
system calls and the Windows API. As referred in [16]. the legitimate
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applications use the Windows API to interact with the operating system,
whereas malware commonly skips this layer and interact with the Native
API to thwart analysis techniques like function hooking.

• Function Parameter Analysis: Function parameter analysis in dynamic mal-
ware analysis focuses on the actual values passed when a function is invoked
[16], as by tracking parameters and return values leads to the correlation of
function calls.

• Information Flow Tracking: Information flow tracking focuses on how the
interesting data are processed by the program. This type of data are marked
with a label in some fashion (so called tainted), and each time they are processed
the propagate their label.

– Taint Source and Taint Sinks: As referred in [16], the introduction of this
data’s label is made by a taint source, while a taint sink is a system compo-
nent that reacts when stimulated with tainted input.

– Directed Data Dependencies: In order to be propagated the tainted data’s
labels, a direct assignment of arithmetic operation must be dependent on
a tainted value

– Address Dependencies: Accordingly, when needed to taint addresses a label
propagation can be achieved when a read or a write operation has target
an address derived from tainted operands.

• Instruction Trace: The sequence of machine instructions that the sample ex-
ecuted during its analysis consists its instruction trace[16]. Instruction trace
contains includes valuable information that is not contained in form of higher
level abstractions of malware’s behavior.

• Auto-start Extensibility Points: The auto-start extensibility points [16], define
system mechanisms that allow programs to be invoked when the system boots.
So, it is of major interest to investigate them since it is probable for malware to
try to add itself to an available auto-start extensibility point.

• Taint Analysis Since we have developed a basic background about function call
monitoring we proceed by presenting a specific type o dynamic analysis, the so
called Dynamic Taint Analysis. Dynamic Taint Analysis is the monitoring of the
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data flows in programs or whole systems during the execution of the sample
[5]. Dynamic Taint Analysis is a very powerful technique to extract data-flow
dependencies among executed system calls. Additionally, it can be applied in
a set of taints as a single path symbolic execution. As referred in [5, 22], and
we explained above, a label (taint) is introduced by a taint source (system calls)
and through program execution it propagates according to some propagation
rules to the taint sink (system call arguments). In Figure 2.1 we present an
analyze to a greater extent the procedure of Dynamic Taint Analysis of an
unknown executable since is the technique that as we referred we will utilize in
our approach.

Β.2. Dynamic Analysis Tools

In this section we present some tools widely used in dynamic malware analysis as
they described in [8]. In order to monitor registry, file system, network, processes
and thread activity Process Monitor is an advanced monitoring tool suitable for win-
dows. On the other hand when performing dynamic analysis centralized in process
monitoring, Process Explorer is referred as displays child-parent relations between
the running processes. In a deeper level, through Process explorer, the analyst can
launch the Dependency Walker, a powerful tool that let provide the analyst with
valuable information about handles and DLLs. Additionally, RegShot is one more
powerful tool that can compare two registry snapshot in order to check the changes
happened in registry during malware’s execution. Finally when needed to observe
the network activity performed by malwares execution Netcat can be used in order to
capture inbound and outbound connections for port scanning, forwarding and much
more.

1.3.2 Malware Detection

As we mentioned previously, malicious software samples are intended to compromise
the privacy, the confidentiality or the integrity of a system, of data or any other cyber-
source constituting hence an intrusion. To this end, Intrusion Detection Systems, or,
for short IDS, are deployed in order to monitor the execution of applications, the traf-
fic of networks or whole systems, aiming on spotting malicious activity patterns [23].
The system supervision through an IDS can be performed through the application
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of malware detection techniques, that reference file comparisons against signatures of
malicious software [24], behavior monitoring of malicious patterns and system super-
vision [23]. However, the increasing birth-rate of new or mutated malware samples
has raised the need for efficient and elaborated malware detection techniques that can
effectively detect new malware strains in reasonable amounts of time. The detection
approaches are strongly connected to the features set provided through the previ-
ous stage of malware analysis, and are distinguished to static and dynamic features,
respectively. Static features may include, statistical analysis on n-grams or opcodes,
properties of control flow graphs, while dynamic features are obtained the execu-
tion time of a program and concern its general behavior (i.e., interaction with the
host-environment - O.S.), access events or any other interconnection patterns [25].

Malware detection as a general term is the process of determining, if a given pro-
gram is malicious or benign [14, 15, 26, 13], according to an a priori knowledge. For
this purpose there have been implemented techniques that leverage a series of distinct
characteristics in order to be able to distinguish malicious from benign programs.

The implementation of malware detection can be treated as a procedure highly
intertwined with the process of classification. Actually one can think that the detection
of malware has the sense of classifying an unknown specimen into exclusively one
of the solely two classes malicious or benign. However, formally speaking, a malware
detector can be defined as a function that takes input an undefined program p and
by scanning it for the existence or not of the signature s, determines if it is malicious
or benign respectively [13].

Malware detection is implemented through the utilization of a series of specific
malware detection techniques [26]. In the latest approaches, malware detection is
implemented with two approaches, signature-based detection and behaviour or anomaly-
based detection.

Malware detection methods can be categorized into signature-based detection and
anomaly or behavior-based detection [27, 28, 29, 30, 31, 32, 33, 34], according to
the object the are applied on. In this section we will discuss to a greater extent the
categories of malware detection methods enumerating their pros and cons respectively.

A. Signature-based Malware Detection

Signature-based detection is the dominant virus-detection method. Implementing this
technique, a malware detector searches in program’s under inspection raw content
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for the presence of a virus-specific sequence of instructions, the so called virus signa-
ture [18]. If malware detector find such signature then the program under inspection
is probably infected. Actually, a string signature represent a pattern in a suspicious
program’s raw content and thus is used in order to uniquely identify it. Fast string
matching algorithms are used in signature-based detection, utilizing regular expres-
sions and string alignment techniques in an effort to detect malware variants. The
extraction of malware’s signature can be achieved by disassembling the malware’s
file and selecting some pieces of unique code [13].

Signature-based malware detection is one of the major techniques deployed by
antivirus software products due to its time efficacy that provides real-time protection
against malicious threats [35]. A byte-level signature is a sequence (i.e., pattern) of
bytes used to identify each newly discovered malware, using a scanning scheme of
exact correlation and a repository of signatures in order to detect malicious software
samples [28]. A signature may represent a byte-code sequence, a binary assembly
instruction, an imported Dynamic Link Library (DLL), or function and system calls.
[29, 30]. Novel malware detection approaches using machine learning can be de-
ployed through two methods, namely, assembly features and binary features [27].
However, signature-based detection techniques can easily be evaded through code
obfuscation techniques that even the least modification on the code sequence would
lead to a completely different byte-sequence [28]. A major characteristic of signature-
based malware detection is the exhibited precision so through object scanning utilizing
efficient meta-heuristic algorithms as in the uniqueness signature creation. This char-
acteristic regarding its precision may turn to a drawback, since such methods can not
detect obfuscated or mutated (e.g., polymorphic) malware samples, as their signature
does not match the stored one [27].

As referred in [13], the signature of a malware is consisted by a byte sequence
that uniquely identifies this malware. Once a set of such signatures has been collected
for a series of malware and then been stored in a database, then the malware detector
utilizes this set by looking for code signatures or byte sequences inside the programs
of the system it is installed on. Thus, the malware detector scans specific locations
in the system and if in a program is found a signature that matches with one in
detector’s database then this program is claimed as malware and its access to the
system is blocked by the detector. Even though this practice seems extremely efficient
for the end-host considering its accuracy and speed, however its main drawback is its
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inability to detect brand-new or mutated malware, or in other words its inflexibility
to generalization. Thus, the only solution for such approaches to work properly is to
keep updated their signatures databases in order to be possible to detect at least as
many malware variants have been already detected by the Anti-virus system vendor.

Despite all the theory we cited above, we ought to notice that the term signature is
more generic as it seems. Through the literature, the term signature may also refers to
more abstract objects such as a set of actions and many times it may gets confusing.
We will just mention the example in [14], where malware signatures are represented
by templates that actually are set of actions that compose a profile. Similarly, we will
refer the terms host-based signature and network signatures as they discussed in [8].
A host-based signature is used to detect malicious code on a victim computer by identify
files created or modified by a malware or by detecting changes made to the registry.
These signatures are also called indicators and focus on what the malware does to a
system in a more behavioral manner in contrast with the traditional string signature
that focus on the characteristics of the malware. Thus, as a result indicators are more
resilient to morphed malware. Finally, there are also exist the network signatures, that
detect malicious code by monitoring the network traffic.

Additionally we can proceed to a further categorization of signature-based detec-
tion where this hyper-category of detection methods is divided into static and dy-
namic [26], just like the analysis. Thus, in Static Signature-based Detection the program
under inspection is examined for sequences of code and so the signature are represent-
ing sequences of code. On the other hand in Dynamic Signature-based Detection the
maliciousness of the program under inspection results from data gathered during its
execution time, such as patterns of behavior (not to be confused with behavior-based
detection).

Finally in order to make the things crystal-clear, we notice that the main dif-
ference between Signature-based detection and Behavior-based detection is that the
Signature-based one is in some fashion a static detection method, as it relies on some-
thing that we got a priori and it is fixed, demanding consequently update for each new
variant. On the other hand, the Behavior-based Detection is a more dynamic one as it
relies on some global rules that if offended then the maliciousness of the subject can
be claimed without the need of updating this a priori knowledge as it can be applied
to all. Summing all the above we can conclude that a signature is something charac-
teristic for an object that its existence indicates the objects identity while a behavior, as
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we will see next, is a set of rules, that when violated then the identity of the object is
indicated. Thus, if a malware detector uses signatures in order to detect if a program
is malicious or not, then it is actually searching for the existence of something (i.e.
byte/instruction sequence, set of actions etc.) existed also to other malware, while if it
uses the behavior then it is actually searching for a violation of a rule (i.e. resource
misuse) that benign programs do not as we will discuss next.

B. Behavior-based Malware Detection

Another approach deployed for malware, gaining remarkable research interest dur-
ing the last yeas is behavioral detection, or more formally, behavior-based malware
detection [36]. Behavior-based malware detection mainly focuses on capturing the
interaction (in terms of interconnection, relations or dependencies between system-
elements i.e., system-calls or API calls) between the executed software and the system
(i.e., Operating System) [5, 37, 14, 6, 12, 30, 38, 39, 40]. From an abstract machine
learning aspect, the behavior-based systems are trained over a learning phase with
behaviors exhibited during the execution of known malicious software samples, while
in the monitoring phase the trained behavior-based system decides if an unknown
software sample is malicious or not [28]. Behavior-based detection systems as ex-
pected require the execution of the software sample in order to extract dynamically
(see, Dynamic Malware Analysis) the exhibited behaviors. In order for these dynamic
systems to perform the mining of the specified behaviors they utilize software and
hardware virtualization technologies, alongside with imitation conditions [27], pro-
viding the test sample with an environment as close to reality in order to evade the
sandbox-detection mechanisms deployed occasionally by malicious software samples,
and letting them exhibit their intentions. Despite the fact that such techniques de-
ploy quite elaborate algorithms on their implementations, the incident that malware
families tend to evolve in order to avoid detection [29], results to the need of the de-
velopment of more elastic and mutation resilient techniques like the one we propose
in this work.

As referred in [26] anomaly-based detection depends on the normal behavior of
an executed object. Actually it occurs in two phases which is the training or learning
phase and the detection and monitoring phase. The goal is for the detector actually to
learn the behavior exhibited by a program under inspection. More precisely, anomaly
detection systems build models of expected behavior of applications by analyzing events
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that are generated during their normal execution [41]. So, when such a model is devel-
oped then spare events can be analyzed partially in order to observe any deviations.
Consequently, such deviations are adequate to indicate the presence of maliciousness.
Next we will present the two dominant types of behavior-based malware detection
the Anomaly-based Detection and the Specification-Based Detection explaining their
functionality and discussing their pros and cons.

B.1 Anomaly Based Detection Methods

Malware detectors that utilize anomaly-based detection techniques, base their method
for detection on models of normal behavior of users and applications, called profiles [26].
Thus any violations to this kind of rules indicates an attack. Additionally utilizing
such methods a malware detector is not restricted to what is known till now where can
be detect any abnormal behavior whether is part of the model or not. However, using
this technique may results in higher false positive rates, as newer benign application
may exhibit a behavior different from the older ones.

As we referred in the previous section, in behavioral detection and more precisely
in the anomaly-based one, there do not exist any a priori assumptions about appli-
cations. In contrast, the behavior profiles are built analyzing system call invocations
during a normal execution by collecting distinct fixed-length system call sequences
[41]. So, as easily on can understand if during the execution of the program under
inspection the produced system call sequences compared to the pre-recorded exhibit
a variation then this is an event that indicates a possible malware existence.

Similarly to signature-based detection we divide the anomaly-based one into static
and dynamic. In Static Anomaly-based Detection the detection of malware relies on
characteristics of suspicious file’s structure, providing thus the ability to not execute
the host program [26]. On the other hand, in Dynamic Anomaly-based Detection, the
detection of malware relies on the gathered information of malware’s execution. So,
any profile inconsistencies are caught in the detection phase during monitoring and
compared with the learned profile conclude to the detection of malware. In Figure
3.5 we cote a simple example of the behavior-based detection method we discussed
above.
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B.2 Specification Based Detection Methods

Malware detectors that utilize misuse-based methods are based upon descriptions
of attacks (signatures) while they try to match data logged during the execution of
a program as clues of a modeled attack. As easily one can understand there exist
the same drawback as in traditional signature-based detection where only the sat-
isfaction of a priori specified models indicates an attack. As we referred above, the
main drawback of Anomaly-based Detection techniques is the high false positive
rates exhibited through detection. Thus, in order to mitigate this limitation there has
been proposed a type of Anomaly-based Detection the Specification-based Detection.
Specification-based Detection approximates the requirements (specifications) for a sys-
tem or an application running on the end-point, instead of its implementation [26].
In this type of behavioral detection the whole process relies on, either manually writ-
ten or through static analysis, application-specific models [41]. So, the main goal is
the development of a rule set specifying the valid behavior that should be exhibited
by any running application [26]. Thus, if during the monitoring of an application
a non-conforming system-call is invoked then this is a clue for the existence of a
malware leading to detection. However, in Specification-based Detection there is ex-
hibited another drawback that is the very limited capability of generalization from
the pre-defined specifications. As someone could expect, if the approach uses the run-
time behavior then the type of Specification-based Detection is defined as Dynamic,
whereas Static Specification-based Detection relies on structural characteristics of the
program respectively.

1.3.3 Malware Classification

Next, we will discuss some major topics concerning malware evolution. Specifically,
we will focus on the evolution of malware according to how malware families share
common characteristics through their commonalities in their specimens’ source codes
resulting from phylogeny. Additionally we will discuss the importance of malware
classification into malware families and how this grouping is able to increase the
detection rates through the leverage of signature generalization when a signature can
be applied globally to the members of a malware family decreasing subsequently the
need for new signature production for individual malware.

Particularly, malware authors, in order to avoid traditional detection methods,
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produce new (mostly mutated) malware samples rapidly, utilizing existing ones in
order for the new strains to preserve the functionality inherited from their ancestors.
As referred in [30] mutated malware samples are generated from existing ones utiliz-
ing automated techniques [42, 43] or integrated tools, generating new samples from
libraries and code parts from code exchange networks.

Through the literature, the term malware classification has been confused several
times with malware detection. Distinguishing precisely these two procedures, it can
be stated that malware detection is a binary classification, where a a set of unknown
samples is classified against a collection of malware and goodware samples, while
malware classification is a multinomial classification on whether an already detected
malware sample belongs to a particular family or type [44]. As described in [45],
malicious software samples that belong to the same malware family tend to exhibit
similar behavioral and structural profiles. Additionally, malware classification aug-
ments the analysis of new, or mutated, malicious samples where their signatures
have not been constructed yet [46].

Α. Philogeny

Another field of malware analysis applied in malware classification is malware phy-
logeny[47], which aims on inferring evolutionary relationships between instances of
families. The major profit from creating a phylogeny model is the fact that newly
developed elaborated detection systems that deploying such techniques can detect
that a sample that has not been previously seen can be related to a malware fam-
ily, when analyzed along an evolution path [48]. Throughout this process the main
target is to reveal similarities and relations among a set of specific malware samples
coexist and are exhibited by all the members of the set (i.e., malware family) [49],
distinguishing its type or family. Such approaches can be utilized to identify evolu-
tion trends in over a set of malware samples [30], constituting hence valuable tool for
more generalized signatures or, in general, more elaborated detection-techniques. The
models applied on phylogeny, using mostly phylogenetic networks, model evolution-
ary relations among malware families, describing temporal ordering among samples,
defining ancestor-descendent relations, as also relationships between families, aug-
menting hence malware classification [] and unveiling evolutionary trends [50].

One of the most important issues concerning the protection against malware’s
spread is how the AV production industries will be able to manage the thousands of
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suspicious files arriving for analysis every and most of the are malware. Obviously,
the construction of individual signature for each malware sample does not consists
an effective solution. As referred in the literature, and exists as a general sense, each
individual malware is not developed from scratch, since if so, then there would not
appear so many new malware samples every day to be analyzed. Contrary, malware
authors almost always, exception consist the targeted attacks (e.g., STUXNET), either
share their code or use mutation engines in order to develop their malware or to
morph them respectively. This work is grown based upon the wider axes of malware
analysis including the components of pure analysis, malware detection in terms of
determining if an object is malicious or benign, malware classification in terms of
classifying a malware specimen into one malware family. As we referred in the intro-
duction, the procedures of malware analysis, detection and classification are strongly
connected, however, malware classification is also connected to another sense, con-
cerning how malware families are interconnected and how malware is evolved sharing
and distinguishing characteristics between samples, the so called phylogeny.

As referred in [51, 52], various types of malware (i.e. viruses, worms, trojans etc.)
share common characteristics, so between them as to other previously seen malware.
Leveraging this observation, a malware analyst is in position to build a phylogeny
model that capturing this relations to be able to contribute in a proper family naming
or to the development of more flexible detection and classification techniques.

Malware authors have developed a network of code sharing, exchanging code for
the development of their malware. Every day new malware strains are released that in
almost all of the cases are mutations of previously seen malware, either including code
through code reusability in terms of recycling, or by fixing bugs existed in previous
versions. So, easily someone can understand that this effort of malware authors to
cooperate in malware development can be leveraged from malware analysts in order to
develop more efficient detection techniques, as we mentioned above. The information,
provided from the build of a phylogeny network that captures the share of code in
malware development, may be proven quite precious on understanding the relations
of malware and how new strains are actually evolutions of older ones. Thus, these
relations can be interpreted either to mutations caused due to any need for change
to malware’s functionality, or to mutations caused as a result of morphing engines
used in malware’s detection avoidance i.e polymorphism or metamorphism.

So, the main goal in building a phylogeny model is to examine software artifacts in
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order to observe where there exist commonalities and differences in order to construct
an evolution history [51]. A quite convenient representation of malware’s evolution
could be a tree-like one as a dendrogram [53] (see Figure 4.1) where malware samples
have been clustered according to a technique that detects commonalities between
specimens.

B. Software Similarity

Software as a general term can be classified into two categories, malicious or benign,
according to the existence or not of maliciousness to its functionality. So, if a program
belongs into the class of malicious programs then it has inherited the characteristics
of its mother class, the software. Consequently, malware just like the software has the
ability to evolve. As we referred in the previous section, a family of malware can be
evolved as to fulfill some new added requirements or simply because of some bug-
fixes. So, in order to be able to determine if a given unknown malware is actually an
evolution of a previously seen one, in other words is member of a specific family, we
need to define a method that will be in position to determine according to a given input
and a background knowledge if this specimen is member of a known family. Thus, a
rational approach could be to compare the similarity of the given object against some
pre-classified objects.

As we have all ready describe, the traditional signature-based detection techniques
are unable to detect morphed malware, and thus an approach of creating distinct sig-
nature for each individual malware could be ineffective and for sure counterproduc-
tive. So, as the need of family level signature construction grows we need to develop
techniques that are able to classify with high accuracy rate a given unknown malware,
since it is not a brand-new one, to a malware family. Thus, in order to address these
needs, there have been developed a series of techniques spare in the literature that
utilize either data mining techniques or are graph-based ones with orientation to the
behavioral graphs (see sections 3.3.3 and 4.4).

Generally speaking, the software similarity problem focuses on determining the sim-
ilarity between two programs [2]. Thus, the result of a method that computes metrics
for such purposes result in a value between 0 and 1, where values near 0 indicate
low similarity while values near to 1 indicate high similarity based on a threshold
value. An approach to software similarity problem using known similarity metrics
on profiles produced by characteristics of two objects (i.e. a recurring pattern existed
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in a known malware and its variations ) may lead to the immediate detection of
new variants straight from their release, to generic signature construction and in the
observation of commonalities and relationships between different malware families
[53].

C. Classification of Malware into Families

As we referred above the construction of distinct signatures for each individual mal-
ware is inefficient and counterproductive. Thus, the grouping of each individual mal-
ware into families that exhibit similar characteristics (i.e. similar behavior) is a rational
and effective solution. The main requirement for clustering malware into families
is for the members in each family to exhibit the highest similarity with the other
members belonging to the same family and the minimum similarity with members
belonging to other families. However, there exists families of malware that are of the
same type (i.e. bots, bankers, downloader etc.) meaning that in general exhibit the
same behavior, resulting to misclassifications.

Everyday thousands of files arriving to AV industries in order to be analyzed.
In order to make analysis more efficient and to be able to handle large amounts of
data, a proper clustering of malware that exhibit similar behaviors is needed so to
not spent time in analyzing a malware that is a variant of a previously seen one, as
to create more generic signatures that satisfy the detection of any member belonging
to a specific family [3, 38].

D. Behavior-Based Classification Methods

As we referred previously, malware samples that belong to the same family tend to ex-
hibit the same or at least a similar behavior. Consequently, the ability of recognizing
commonalities among samples that belong to the same family leads to the devel-
opment of techniques that immediately detect both known and unknown malware
based on their abstract manifestations such as their behavior. Since, as we mentioned
in chapter 3, graphs are from their nature quite adequate to represent such repre-
sentations we proceed by presenting the application of graphs in malware’s behavior
representation and their use in automated classification of unknown malware sam-
ples to malware families. Similarly to section 3.3, next we will present two indicative
examples from the use of Function Call Graphs (FCGs) and System Call Dependency

22



Graphs for the depiction of malware’s behavior in order to classify a given sample.

D.1 Malware Classification using Function Call Graphs

In [3] Function Call graphs (FCGs) are utilized in order to compare and classify
malware samples, according to their structural similarity, to malware families. To this
point we ought to remind that Function Call Graphs Are directed graphs that their
vertices represent the functions of an executable, while their edges represent their
calls (see section 3.3.2). Specifically, having composed the CFGs from two executables
the the computation of similarity may include the search for graph isomorphism
or the maximum common sug-graph (MCS) or the minimum edit distance (GED).
The classification of an unknown sample can be achieved by computing the distance
between the sample and each cluster’s center µCi

, assigning the sample to the cluster
with the minimum distance.

D.2 Malware Classification using System-Call Dependency Graphs

Another graph-based method for classifying malware is that of leveraging execu-
tion trace in order to construct a behavioural graph, actually by representing system
call dependencies. In [46] is presented an approach that utilizes behavioral graph
matching in order to classify an unknown malware sample into a malware family.

Specifically, the behavior graph, also called Dynamic System Call Dependence
Graph (DSCDG), is extracted during the suspicious program’s execution, represent-
ing the system call sequences and their in between dependencies. Individual system
calls are captures by intercepting every SYSENTER instruction while the sequence is
obtained by their traces when matching their arguments comparing both their type
and value [46]. The focusing in arguments is mostly centralized in specific ones such
as handles. Thus, when a handle produces as output from one system call (S1) and
then is feeded as input to another one (S2) then an edge is added from node S1 to
node S2.

Thus, the behavioral graph (DSCDG) is defined as : G = (N,E, µ, u), where N is
the vertex set (System Call : Si ϵ N), E is the edge set (dependency: Si → Sj ϵ E), µ is
a node labeling function defined as µ : N −→ LN assigning system calls to nodes and
u is an edge labeling function respectively, that is defined as u : E −→ LE. The main
difference between µ and u is that u also describes the dependence of two system
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calls according to their arguments.
Finally, in order to compute the similarity between two behavioral graphs and

hence utilize it to classify an unknown malware sample the maximal common sub-graph
hs to be computed before they proceed with the computation of the similarity formula.
So, assuming that are given two behavioral graphs G1 and G2 as G = (N1, E1, µ1, u1)

and G = (N2, E2, µ2, u2), then the G′ = (N ′, E ′, µ′, u′) is called common sub-graph of
G1, G2 iff there exists sub-graph isomorphism from G′ to G1 and from G′ to G2, while
is called maximal common sub-graph (MCS) when there is no other common sub-graph
of G1 and G2 that include more nodes that G′ [46].

Next we present an overview of the fundamental elements that rule the concept
of malware mutation procedures, and how the properties of the whole concept could
be leveraged in order to develop robust and global detection techniques that based
on the procedure of malware classification would be able to efficiently be applied to
detect any variation (i.e., mutated strain) of a malware sample.

• Mutations: As it was discussed previously, malware authors in order to avoid
traditional signature based detection techniques tend to mutate their produced
malware samples through various mutations techniques (i.e., polymorphic or
metamorphic engines etc.). The produced mutated malware samples actually
are generated through a technique that is deployed over an initial (ancestor)
malware sample that inherits to the new strain its main functionality but with
a differentiated structure regarding mostly its implementation.

• Phylogeny: The tree structure generated over several evolution on various ini-
tial malware samples is called Philogenetic Tree and provides valuable informa-
tion concerning the development of generalized malware detection techniques
that would be able to leverage the shared functional commonalities of malware
strains that have been generated sharing a common ancestor malware sample.

• Family Indexing: Investigating the previous approach, it easily follows that,
since several malware strains that have been produced as evolution of a previous
seen, and hence already known, malware specimen, are produced based on this
ancestor, they can construct a group of functionally similar siblings (i.e., malware
family).

• Generalization Models: Leveraging the properties exhibited so far, the approach
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of developing detection techniques that utilize functional commonalities shared
among the malware strains produced from a common ancestor malware strain,
would result to techniques that actually would detect any malware strain pro-
duced from any previously known malware sample, degrading hence the ability
of malware authors to avoid detection through the deployed mutations tech-
niques.

1.3.4 Epidemic Models and Digital Epidemiology

Epidemic models can be applied to any network structures to describe the propagation
of a disease despite of its type (i.e., biological virus or computer virus) between a set
of entities. The overall propagation can be described as a branching process, e.g., a
tree that its root is the initial infected population and every level contains child nodes
representing the population infected by the nodes of the previous level.

Compartmental Models

Briefly speaking, such epidemic models describe the nodes - entities by a set of po-
tential states or conditions they can go through the course of the epidemic, namely
Susceptible, Infected, Repaired, Removed, Immune. In the Susceptible state a node
is potentially vulnerable to a disease, while when the node gets infected (probably
by its neighbors) then it goes to Infected state. On the other hand, depending on
the modeled cases, if the disease is destructive for its host then after a period of time
the infected node goes to Removed state, while if a cure exist and is been applied to
an infected node then after a period of time (throughout this paper we shall call it
sanitize-time) the node goes to Repaired state, where, depending again on the model-
ing demands, it can be either Immune or not. Next, we briefly present various epidemic
models that can be deployed according to the needs of the simulated problem.

A. Epidemic Model SI

It the most trivial model containing only two states (Susceptible, Infected). Once a
node is susceptible and gets infected (and hence infectious), then it remains forever
in this state. The following epidemic models considered as variations of the SI model
[54, 55, 56, 57].
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B. Epidemic Model SIRp

In this model an infected node can be repaired in some fashion [54, 55, 57]. To this
point, it is worth noting that a node repair may provide immunization to the host
against the disease or not. Depending on this fact, the following specifications arise
as special cases of SIRp model:

B.1. Epidemic Model SII

The SII model (last I stands for Immune) results as a solution when we need to
formally describe the propagation of a disease where there exists a cure that immu-
nizes/sanitizes [58] the infected hosts after their treat [57, 59, 60].

B.2. Epidemic Model SIS

On the other hand, the SIS model (last S stands for Susceptible) is suitable for the
cases where even though exists a cure for the infected node, it still stays susceptible
on getting the disease again [57]. Another extension of the SIS epidemic model is the
SIRS Epidemic Model where an infected host may get cured by a repair and get
susceptible again. More precisely, the SIS model is also referred as SIRS where the ‘R’
stands for Repaired (i.e. ‘Rp’ in our case). A further specification may be appeared
extending SIS model depending on the case and the demands of the situation under
modeling.

C. Other Epidemic Models

Other epidemic models may contains less common states (i.e., compartments), e.g.,
Removed or Exposed like the ones presented below.

C.1. Epidemic Model SEIS

Finally, if the modeled disease is destructive for the infected host, i.e., no cure exists,
then SIRm model (last Rm stands for Removed) is suitable for application in such
case to model the epidemic.
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C.2. Epidemic Model SEIS

The SEIS model introduces a new state (i.e. Exposed)takeing into account the latent
period of a disease where a node may be exposed to the disease by, for example, a
close contact with an infected node. In this model, any immunity has been left to an
infected node leaving an infected node to be susceptible again in the time after the
infection.

C.3. Epidemic Model SEIR

However, similarly to the case of SIRp model, the SEIR epidemic model formally
describes the propagation of a disease where there exists a cure that immunizes or
simply repairs an infected host, once has been firstly exposed and then infected by
the disease.

Control of Malware Spread and Pandemic Prevention

In the wider area of epidemic models there are several properties that rule the prop-
agation of both a biological or digital threat regarding the Susceptible population
over the compartmental model that describes the behavioral characteristics of an epi-
demic. Some of them, exhibiting a greater impact on affecting the spread, are the so
called “birth rate” which describes the rate on which the Susceptible population gets
Infected, as also the initial Infected population.

Combining these two properties, and trying to manipulate the factors that affect
the spread on a greater magnitude, it follows that the propagation of a spreading
threat (in this case a malicious software that spreads between mobile devices) could
be avoided if there would exist a method, or an approach in general, that would
give the ability to manipulate in some fashion so the rate on which the Susceptible
population turns to Infected as also the initial Infected population. In both cases,
the critical situation is indicated at the point where the Infected population gets an
extremely high exponential grow, the so called “grow-level”, which leads to either
a faster grow of the Infected population in the next time as also, if it is located
chronologically at the start of the epidemic, to an increase of the initial Infected
population, which rationally also increase the rate of infections.

The main goal on attempting to prevent pandemic situations is to investigate,
propose and finally implement graph based strategies that will be able, by leveraging
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the aforementioned properties, to prevent pandemic outbreaks, specifically for the
case of digital threats, e.g., a malicious software spreading between proximal mobile
devices. Hence, concentrating over the reduction of the initial Infected population it
is rational to expect that early warning, or in other words a quick response time,
would significantly reduce the initial Infected population, or at least to delay the
appearance of “grow-level”, and through this achievement, would significantly affect
malware’s spread leading finally to pandemic prevention. Specifically, in this thesis,
the effect of response time in terms of the maximum permitted period of time need
by a counter-measure (i.e., AntiVirus or removal tool) to take effect by sanitizing the
Infected population (i.e., mobile devices) is investigated and a graph based model for
this purpose is proposed, implemented and experimentally tested.

1.4 Related Work

In the following, there are presented the related works regarding the proposed ap-
proaches on malware detection and malware classification as also the literature rele-
vant to malware pandemics.

1.4.1 Related Work on Malware Detection

Next there are presented several graph-based and non-graph based malware detection
techniques proposed through the literature over the last years and have consisted the
base of the theoretical background on this work regarding the malware classification
procedure.

Graph-based Malware Detection Techniques

Kolbitch et al. [4] proposed an effective and efficient approach for malware detection,
based on behavioral graph matching by detecting string matches in system-call se-
quences, that is able to substitute the traditional anti-virus system at the end hosts.
The main drawback of this approach is the fact that although no false-positives where
exhibited, their detection rates are too low compared with other approaches.

Luh and Tavolato [61] presented one more detection algorithm based on behav-
ioral graphs that distinguishes malicious from benign programs by grading the sample
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based on reports generated from monitoring tools. While the produced false-positives
are very close to ours, the corresponding detection ratio is even lower.

Babic et al. [5] propose an approach to learn and generalize from the observed
malware behaviors based on tree automate interference where the proposed algorithm
infers k-testable tree automata from system-call data flow dependency graphs in order
to be utilized in malware detection.

Christodorescu et al. [37, 14] propose an algorithm that automatically constructs
specifications of malicious behavior needed by AV’s in order to detect malware. The
proposed algorithm constructs such specifications by comparing the execution behav-
ior of a known malware against the corresponding behaviors produced by benign
programs.

In [6], Fredrikson et al. proposed an automatic technique for extracting optimally
discriminative behavioral specifications, based on graph mining and concept analysis,
that have a low false positive rate and at the same time are general enough, when
used by a behavior based malware detector, to efficiently distinguish malicious from
benign programs.

In [62], Makandar and Patrot focus on detection and classification of the Tro-
jan viruses using image processing techniques. In their proposed algorithm Gabor
wavelet is used for key of feature extraction method and their experimental results
are analyzed compared with two classifications such as KNN and SVM.

In [63], Hassen and Chan investigate a linear time function call graph (FCG) vector
representation based on function clustering that has significant performance gains in
addition to improved classification accuracy. They also show how this representation
can enable using graph features together with other non-graph features.

Recently, Sikora and Zelinka [64] investigate how behavior of malicious software
can be connected with evolution and visualization of its spreading as the network.
Their approach is based on hypothetical swarm virus and its dynamics of spread in
PC and they show that its dynamics can be then modeled as the network structure
and thus likely controlled and stopped, as their experiments suggest.

Later, Souri and Hosseini [27] present a systematic and detailed survey of the mal-
ware detection mechanisms using data mining techniques. Additionally, it classifies
the malware detection approaches in two main categories including signature-based
methods and behavior-based detection.

Based on the dependency graphs of malware samples, Ding et al. [65] propose
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an algorithm to extract the common behavior graph for each known malware, which
is used to represent the behavioral features of a malware family. In addition, a graph
matching algorithm that is based on the maximum weight subgraph is used to detect
malicious code.

In [66], Mukesh et al. propose a machine learning based architecture to distinguish
existing and recently developing malware by utilizing network and transport layer
traffic features.

Non Graph-based Malware Detection Techniques

In malware detection, there have been proposed similar models utilizing different
non graph-based techniques like the one proposed by Alazab et al. [13], who de-
veloped a fully automated system that disassembles and extracts API-call features
from executables and then, using n-gram statistical analysis, is able to distinguish
malicious from benign executables. The mean detection rate exhibited was 89.74%
with 9.72% false-positives when used a Support Vector Machine (SVM) classifier by
applying n-grams.

In [67], Ye et al. described an integrated system for malware detection based on
API-sequences. This is also a different model from ours since the detection process
is based on matching the API-sequences on OOA rules (i.e., Objective-Oriented As-
sociation) in order to decide the maliciousness or not of a test program.

In [67], Ye et al. described an integrated system for malware detection based on
API-sequences. This is also a different model from ours since the detection process
is based on matching the API-sequences on OOA rules (i.e., Objective-Oriented As-
sociation) in order to decide the maliciousness or not of a test program.

Finally, an important work of Christodorescu et al., presented in [14], proposes a
malware detection algorithm, called AMD, based on instruction semantics. More pre-
cisely, templates of control flow graphs are built in order to demand their satisfiability
when a program is malicious. Although their detection model exhibits better results
than the ones produced by our model, since it exhibits 0 false-positives, it is a model
based on static analysis and hence it would not be fair to compare two methods that
operate on different objects.
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1.4.2 Related Work on Malware Classification

Next there are presented several graph-based and non-graph based malware clas-
sification techniques proposed through the literature over the last years and have
consisted the base of the theoretical background on this work regarding the malware
classification procedure.

Graph-based Malware Classification Techniques

In [38] Bayer et al., propose a scalable clustering approach to identify and group mal-
ware samples that exhibit similar behavior, serving as input to an efficient clustering
algorithm profiles that characterize programs activity in more abstract terms. Since
they also use control flow dependencies between system-calls, their work is proper to
be compared with ours, even if they do not use direct use of System-Call Dependency
Graphs. However, the model proposed in [38] mainly aims on clustering malware
samples rather that classifying unknown ones to known malware families, that is a
slightly different process.

Hu et al. in [68], design implement and evaluate the Symantec’s Malware Indexing
Tree (SMIT), that classifies malwares based on their function call graphs using k

nearest-neighbor search. While, as referred in [68], their success rate reaches the
91.3%, it is worth mentioning that this classification rate refers in the case where the
actual labeling of test samples family in included in the k nearest families resulted
by the model. Hence, since our model returns only one dominant family we compare
our results (i.e., 83.47%) with the results referred in [68] as Dominant Family Rate
(i.e., 69.9%), that is defined as the percentage where the most prevalent family among
k returned nearest neighbors is also the family to which the query malware belongs.

A model for malware classification utilizing discriminative behavior specifications
extracted by the samples is presented by Rieck et al. in [39]. Specifically, by monitoring
malware samples in sandbox, they collect behaviors, and based on a corpus of malware
labeled by an anti-virus scanner a malware behavior classifier is trained using learning
techniques. Finally, discriminative features of the behavior models are ranked for
explanation of classification decisions. To this point we ought to mention that, despite
the fact that their classification results for known malware samples are almost 5%
higher that ours, we recall that, as in [69] their experiments are performed using 14

malware families, where the impact of philogeny among different malware families
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is decreased the less different malware families in the training are.
In [42] Tian et al. present a scalable method of classifying Trojans based only

on the lengths of their functions. The results achieved by the proposed technique
indicate that function length may play a significant role in classifying malware, and
combined with other features, may result in a fast, inexpensive and scalable method
of malware classification. However, while their results are comparable to our model’s,
the main difference is the fact that in [42] the model has been evaluated using only
Trojans.

In [63], Hassen and Chan investigate a linear time function call graph (FCG)
vector representation based on function clustering that has significant performance
gains in addition to improved classification accuracy. They also show how this rep-
resentation can enable using graph features together with other non-graph features.
Recently, Sikora and Zelinka [64] investigate how behavior of malicious software
can be connected with evolution and visualization of its spreading as the network.
Their approach is based on hypothetical swarm virus and its dynamics of spread in
PC and they show that its dynamics can be then modeled as the network structure
and thus likely controlled and stopped, as their experiments suggest. Later, Souri
and Hosseini [27] present a systematic and detailed survey of the malware detection
mechanisms using data mining techniques. Additionally, it classifies the malware de-
tection approaches in two main categories including signature-based methods and
behavior-based detection.

Based on the dependency graphs of malware samples, Ding et al. [65] propose
an algorithm to extract the common behavior graph for each known malware, which
is used to represent the behavioral features of a malware family. In addition, a graph
matching algorithm that is based on the maximum weight subgraph is used to detect
malicious code.

Non Graph-based Malware Classification Techniques

In malware classification, there have been proposed other non graph-based malware
classification models. Among them, a scalable automated approach for malware clas-
sification using pattern recognition algorithms and statistical methods, is presented
by Islam et al. in [69], utilizing the combination of static features extracted by func-
tion length and printable strings. While their evaluation results are very high(i.e.,
98.8% classification accuracy), however it is worth mentioning the fact that their ex-
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periments include samples from 13 malware families, while the classification accuracy
of the model proposed in this paper has been evaluated over 48 malware families.
Hence, concerning the impact of philogeny among different malware families the
comparative difference between the classification rates achieved by these two models
is totally justified, while increasing the number of families in the training set increases
the chances of misclassifications.

Recently, Nataraj et al. [70] classify malware samples using image processing tech-
niques. Visualizing as gray-scale images the malware binaries, they utilize the fact
that,for many malware families, the images belonging to the same family appear very
similar in layout and texture. Obviously the results are better than the ones pro-
duce by our model however they use at most 25 malware families for their large
scale experiments, where the impact of philogeny among different malware families
is decreased the less different malware families in the training are. Finally, in [71]
Nataraj et al. utilize a static analysis technique called binary texture analysis in order
to classify malicious binary samples into malware families. They achieve a 72% rate
of consistent classification when performing their evaluation on a data set of 60K to
685K samples comparing their labels with those provided by AV vendors, proving
both the accuracy and the scalability of their model.

In the most recent literature, Makandar and Patrot [62] focus on detection and
classification of the Trojan viruses using image processing techniques. In their pro-
posed algorithm Gabor wavelet is used for key of feature extraction method and their
experimental results are analyzed compared with two classifications such as KNN and
SVM.

In [66], Mukesh et al. propose a machine learning based architecture to distinguish
existing and recently developing malware by utilizing network and transport layer
traffic features.

1.4.3 Related Work on Pandemic Prevention

Epidemic models that are applied to biological threats are also applied to describe the
spread of digital security threats like malicious software. The motivation behind the
research is triggered by the enormous grow and spread on the number of malicious
software and, much more, on mobile devices. The main difference between networks
formed by devices connected via Ethernet [72, 73, 74, 75, 76, 77] and networks formed
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by mobile devices, is that the former are static while the later ones are dynamic
networks (i.e., networks that their representing graph changes during time - ad-
hoc networks). The structure of ad-hoc networks [72, 73, 74, 75, 76, 77] as also the
diversity of the nodes concerning so the protection software heterogeneity as the
device capabilities [78, 79, 80, 81] are motivating us to investigate the effect of counter-
measure’s (i.e., security software) response-time on the spread of malware and more
precisely on pandemic avoidance. In other words, through this work we focus on
investigating how the counter-measure’s response time could be crucial on preventing
a potential pandemic of a spreading malware, concerning the underlying epidemic
model and other factors that affect the spread.

Modern Approaches on Malware Pandemic Prevention

In [82], Chen and Ji focus on modeling the spread of topological malware (spreads
based on topology information), as to understanding its potential damages, and
developing countermeasures to protect the network infrastructure. Their model is
motivated by probabilistic graphs, using a graphical representation to abstract the
propagation of malware samples that employ different scanning methods. Utilizing a
spatial-temporal random process they describe the statistical dependence of malware
propagation in arbitrary topologies. Finally, their results show that the indepen-
dent model outperforms the previous models, whereas the Markov model achieves a
greater accuracy in characterizing both transient and equilibrium behaviors of mal-
ware propagation.

In [83], Bose and Shin investigate the propagation of mobile worms and viruses
that spread primarily via SMS/MMS messages and short-range radio interfaces such
as Bluetooth. In that work, they study the propagation of a mobile virus similar
to Commwarrior in a cellular network using data from a real-life SMS customer
network, modeling each handheld device as an autonomous mobile agent capable of
sending SMS messages to others (via an SMS center) and capable of discovering other
Bluetooth equipped devices. Their results show that hybrid worms that use SMS/MMS
and proximity scanning (via Bluetooth) can spread rapidly within a cellular network.

Fleizach et al. [84], evaluate the effects of malware propagating using communi-
cation services in mobile phone networks. Although self-propagating malware is well
understood in the Internet, mobile phone networks have very different characteristics
in terms of topologies, services, provisioning and capacity, devices, and communi-
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cation patterns. To investigate malware in mobile phone networks, they developed
an event-driver simulator that captures the characteristics and constraints of mobile
phone networks, modeling realistic topologies and provisioned capacities of the net-
work infrastructure, as well as the contact graphs determined by cell phone address
books.

An interaction-based simulation framework to study the dynamics of worm prop-
agation over wireless networks developed by Channakeshava et al. [85]. This frame-
work is constructed by their proposed methods for generating synthetic wireless net-
works using activity-based models of urban population mobility. With this framework
they study how Bluetooth worms spread over realistic wireless networks.

Recently, Liu et al. [78] investigate malware’s spread taking into account the level
of secure protection, in terms of users’ security awareness. They develop a new com-
partmental model concerning heterogeneous immunization, partitioning the tradi-
tional susceptible compartment into two sub-compartments, weakly-protected and
strongly-protected (weakly-protected susceptible computers have a higher rate of be-
ing infected than strongly-protected susceptible computers). The qualitative properties
of their model are analyzed through Lyapunov method (taking quadratic functions
of independent variables as the candidate Lyapunov functions), and a collection of
effective measures for controlling malware spread is proposed, such as keeping as
many systems strongly-protected as possible, through numerical simulations.

Latter, Liu et al. [79] investigate the spreading behavior of malware across mobile
devices. Modeling mobile networks with complex networks (follow the power-law
degree distribution) incorporating the model proposed in [78], and by using the
mean-field theory, they propose a novel epidemic model for mobile malware propa-
gation. They calculate the spreading threshold, and analyze the influences of different
model parameters as well as the network topology on malware propagation. Through
theoretical studies and numerical simulations they show that networks with higher
heterogeneity conduce to the diffusion of malware, and complex networks with lower
power-law exponents benefit malware spreading. Additionally, malware epidemics
over complex networks are greatly different from the previously studied epidemics
in fully-connected networks, and the epidemic threshold was found to be density de-
pendent and for all densities considered significantly higher than the value predicted
by the previous model.

In [80], Hosseini et al. propose a discrete-time (SEIRS) epidemic model (i.e.,
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Susceptible - Exposed - Infected - Repaired - Susceptible) of malware propagation
in scale-free networks (SFNs) considering software diversity. To prevent malware
spreading, they use as a parameter the number of diverse software packages in-
stalled on nodes, which are calculated using a coloring algorithm. Investigating the
existence of equilibria, they compute the basic reproductive ratio and the critical
number of software packages for the proposed discrete-time SEIRS model under var-
ious conditions, analyzing moreover the local and global stability of the malware-free
equilibrium of the model. Through a series of numerical simulations they show that
defense mechanisms of software diversity and immunization have important roles in
reducing malware’s propagation, and that the proposed model is more effective than
other existing epidemic models. Finally considering the immunization rate for the
cases of uniform immunization and targeted immunization in the proposed epidemic
model they show that the targeted immunization is more appropriate than random
immunization for controlling malware spreading in SFNs.

Recently, Zema et al. investigate the case of defending against a spreading prox-
imity malware in a network of wireless sensor (WSN) [86]. Using an autonomous
flying robot they notify the spread of malicious software over the wireless sensors, by
locate, track, access and cure the infected ones. Additionally they propose a mathe-
matical model to decide the optimal path that should be followed by the flying robot
as to repair as quick as possible the infected wireless sensors. The authors benchmark
their proposed model by the results provided over extended simulations, where their
model is compared against classic solutions in different network scenarios.

1.5 Structure of the Thesis

The structure of the thesis is organized as follows. In Section 2 the main principles
and properties concerning the scope of the thesis are extensively described. More
precisely the fundamental structural components required for the performance of
malware detection and classification procedures as also for pandemic prevention are
presented, analyzed and discussed over the aspect of their utilization as also how they
are combined to consist the basis of this thesis. In Section 3 there are presented the
preliminaries regarding the theoretical background (i.e., graph-based representations
of malicious software) that has been extensively studied and consists the main cor-
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pus over which the proposed models have been developed. Additionally in the same
section, it is presented the main contributions of this work, and maybe the one of the
major importance, the design and the proposal of the Group Relation Graphs, that
actually consist a generalized mutation resilient evolution of the System-call Depen-
dency Graphs, the Coverage Graphs that consist an extension of the Group Relation
Graphs as also the Temporal Graphs that depict the temporal structural evolution of
the aforementioned graph structures. In Section 4, there are proposed, presented and
discussed the similarity metrics utilized by the proposed model for malware detec-
tion and classification and are also based upon the commonalities along the features
of behavioral graphs. In Section 5 there are presented the proposed procedures for
malicious software detection based on the proposed similarity metrics when applied
over the proposed graph-based representations of malware’s behavior. We discuss
the architectural design regarding the setup of an eco-system that incorporates the
proposed graph-based representations as also the proposed similarity metrics for dis-
tinguishing malicious from benign samples. In Section 6, there are presented the
proposed procedures and the wider methodology for malicious software classification
based on the proposed similarity metrics when applied over the proposed graph-
based representations of malware’s behavior regarding their previous indexing into
malware families (i.e., sets of malware samples that share common functional char-
acteristics), and following the same structure as in the previous section, we discuss
the architectural design regarding the setup of an eco-system that incorporates the
proposed graph-based representations as also the proposed similarity metrics for the
classification of a test sample that previously has been detected as malicious. Next, in
Section 7, it is presented the proposed approach for preventing a pandemic spread of
a malicious software that propagates among proximal mobile devices. The main theo-
retical assumptions regarding the graph-based models for the modeling of the towns-
planning, the mobility patterns of the devices as also the underlying compartmental
epidemic are all described and extensively discussed, followed by the implementation
aspects focusing on the preformed investigation on how the counter-measure’s re-
sponse time affects the malware’s spread and leads (or not) to pandemic prevention.
In Section8 There are presented the experimental results taken from the evaluation
of the proposed models for malware detection and classification, deploying various
of the proposed graph-based representations and similarity metrics. Additionally, on
the same section are provided experimental results taken from Monte Carlo simula-
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tions that achieved through the implementation of the proposed pandemic prevention
model regarding various factors that affect the spread across different response-time
intervals. In Section 9 there is presented a discussion over the results and a further
comparison against other graph-based and non graph-based models for both malware
detection and classification procedures, where there have been proven the potentials
of the proposed model at its greater extent, as also a few limitations regarding mostly
specific implementations aspects. More over, on the same section, beyond the discus-
sion concerning the evaluation of the detection and classification procedures there has
been presented a discussion over the simulation results taken from the experiments
during the performed study on pandemic prevention. Additionally, another approach
has been presented on the same section regarding the deployment of trusted com-
puting (TC) on the side of defense countermeasures. However, in order to integrate
the parts of this thesis, the section provides an alignment of the proposed approaches
over which a framework that deploys the whole extent of the models presented in
this thesis is designed, integrating the proposed graph-based algorithmic techniques
into sub-systems in order to incorporate them to construct a robust line of defense
to ensure the security against the threat of malicious software. Finally, in Section 10
the thesis concludes discussing the potentials and the limitations exhibited from the
proposed models and by presenting specific extensions of the proposed models as
also improvements that could be done on the horizon of further research.
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Chapter 2

Conceptual Model

2.1 Representing Malicious Behaviors through Graph Structures

2.2 Knowledge-Base

2.3 Similarity Metrics

2.4 Building the Defense Line against Malicious Software

The main scope of this thesis is to develop a set of graph-based techniques that
consisting the fundamental components of the proposed model will define the prin-
ciple countermeasures against malware spread. Next there are presented the main
principles that construct the basis of the conceptual model over which this thesis is
built.

2.1 Representing Malicious Behaviors through Graph Structures

Next there are presented the basic theoretical background regarding the representation
of digital object, and especially software, through graph structures.

2.1.1 Control Flow Graphs

Control flow describes the possible execution paths of a program or a procedure and
is represented as a directed graph the so called Control-Flow Graph (CFG) or simply
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flow-graph . Consequently, when such an abstract representation depicts the internal
control flow of a procedure is generated a flow-graph, while when depicts the control
flows between procedures is generated a call graph respectively [2].

As referred in [18, 14], most automatic analysis tools utilize an abstract represen-
tation of malware’s structure such as the Control Flow Graphs (CFGs). According to
[1], a Control Flow Graph is composed of linked nodes of one of the following types
jmp (non-conditional jump), jcc (conditional jump), call (function call), ret (function
return), inst and end, constructing the graph as presented in Figure 3.6. More pre-
cisely as referred in [87], each node of the Control-Flow Graph represent a sequence
of instructions that are not interrupted from any jump instructions, the so called basic
blocks. Accordingly, an edge from block u to block v represents the flow of control
from block u to block v. Summing, as defined in [18], a basic block B is a maximal
sequence of instructions ⟨i, ..., Im⟩ containing at least one control flow instruction at
its end. Let V be the set of Bs for a program P and E ⊆ V × V × {T, F} , be the
set of control flow transitions between basic blocks. then the directed graph CFG(P)
=⟨V,E⟩ is called control flow graph.

Figure 2.1: Control Flow Graph Representation [1].

The graph-based representations are of major importance since they are able to
capture different execution paths of the program under inspection [88]. Addition-
ally, the nodes of the graph can store the instructions and values while they can be
interpreted according to more generic semantics [2].

The use of CFGs as signatures for malware detection is based on sub-graph iso-
morphism that is theoretically NP-complete. However its complexity can be reduced
in the detection context. Actually, except the indirect jumps and the returns all the
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other nodes of a CFG have a bounded number of typically one or two successors [88].
Additionally, isomorphism remains sensitive in morph techniques as code permuta-
tion or injection that impact the graph, however these limitations can be addressed
by compiler optimizations as referred in [88].

A typical approach for signature creation is presented in [2]. In order to generate a
signature from a CFG, depth first order can be utilized, consisting thus a signature by
listing the graph edges for the ordered nodes using ordering as node labels and finally
representing the signature as a string (see Figure 2.2). Additionally approximate
matches of flow-graph based characteristics can be used in order to detect a broader
range of malware variants. Finally, in order to proceed to malware detection the
proposed approach make use of the malware database that stores the string signature
produced as described above together with a normalized weight computed for each
procedure.

1
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(2 → 3), ()
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Figure 2.2: String signature derived by CFG [2].

2.1.2 Function Call Graphs

A Function Call Graph (FCG) is a directed graph that its vertices depict the functions
that an executable binary includes and its edges represent the interconnection between
the functions according to their calls (see Figure 2.3). As referred in [3], the call
graph can be gathered from a binary executable through static analysis. Actually,
disassembly tools like IDA Pro are utilized after the removal of the obfuscation layers
(i.e. unpacking).
To this point we ought to notice that the functions, represented by the vertices may be
either local functions, i.e. functions wrote by the malware author, or external functions
like System or Library calls invoked during the execution of the binary.
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Figure 2.3: Function Call Graph (local and external functions) [3].

2.1.3 Behavioral and Dependency Graphs

The behavior of a program can be modeled based upon system-call dependencies
as the capture its interaction with its hosting environment, the operating system. As
easily one can understand, a representation that captures a sequence of system calls
would be liable since any reorder or addition of one or more system calls could change
the sequence, so a more flexible representation that would capture their in between
relations , as a graph in example, would satisfy that demand [4] Thus a program’s
behavior can be modeled by a behavior graph. A behavior graph is a directed graph
generated from system call traces collected during the execution of the program under
inspection, while their arguments indicate their relations [46].

To start with, we should define the term behaviour as its effect on operating sys-
tem’s state. As referred in [6] most malware relies on system calls in order to deliver
their payload, and thus system calls are able to representations of malwares intent
omitting useless implementation artifacts. In almost all of the works the program’s
under inspection behavior is represented as a graph, the so called behaviour graph.

As easily someone can suppose, the nodes of this graph are the system calls
captured by the programs trace during its execution time utilizing taint analysis. The
most usual approach to define an edge in a behavioral graph is the one discussed in
[4] where an edge introduced from node x to node y when the system call referenced
by y uses as input argument the argument produced as output from system call
referenced by x. As a result the existence of an edge in such a graph represents the
data dependency between two system calls. Such dependencies can be monitored as
we mentioned above through the tainting of data during taint analysis. In Figure 2.4
we cite the behavior graph depicting the dependencies between system calls captured
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Figure 2.4: Behavior Graph from malware NetSky [4].

through taint analysis during the execution of NetSky malware as presented in [4].
Now, let us proceed with some proper definitions about the behavioral graphs as

they are presented in [4, 37, 6, 46]. Compiling the definitions of behavioral graph
presented in [4, 37, 6] we concluded at a global structure that we present next.
Generally speaking, the behavioral graph includes, except from its basic components
that are its vertex-set V and its edge-set E, two labeling function that are responsible
for the association, the first one of vertices and edges with system-calls and their in
between dependencies respectively, and the second one of vertices and edges with
some constraints on operations and dependencies. Before we start we ought to refer
some preliminaries about the vertices and edges as the fact that such graphs are
Directed Acyclic Graphs (DAG) as defined a malicious specification -malspec [4] where the
nodes are labeled using system-calls from an alphabet and edges labeled using logic
formulas from a logic LDep. Thus, we proceed by citing the definitions of malicious
specification and the corresponding behavior grarph and as they are presented in
[37] and [6] respectively.

Definition 3.1: A malicious specification is a Directed Acyclic Graphs (DAG), with
nodes labeled using system calls from an alphabet Σ and edges labeled using logic
formulas from a logic LDep. The malicious specification (malpsec) M is written as
M = (V,E, γ, ρ), where:
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• V is the vertex-set and E is the edge-set, E ⊆ V × V ,

• γ associates vertices with symbolic system calls, γ : V → Σ× 2V ars and

• ρ associates constraints with nodes and edges, ρ : V ∪ E → LDep.

Definition 3.2: A behavior graph is a data dependence graph G = (V,E, α, β), where:

• the set of vertices V corresponds to operations from Σ,

• the set of edges E ⊆ V × V corresponds to dependencies between operations,

• the labeling function α : V → Σ associates nodes with the name of their corre-
sponding operations and

• the labeling function β : V ∪ E → LDep associates vertices and edges with
formulas in some logic LDep capable of expressing constraints on operations
and the dependencies between their arguments.
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The dependencies we referred above are classified into three categories [6, 37]:

• def-use dependence: A def-use dependence expresses that a value output by one
system call is used as input argument to another system call.

• value dependence: A value dependence is a logic formula that expresses the condi-
tions placed on an argument (values) of one or more system calls, describing any
non trivial data manipulations performed by the program between system-calls.

• ordering dependence: Finally, an ordering dependence between two system calls
expresses that the first system call must precede the second system call.

2.2 Knowledge-Base

In order to perform the main procedures of malware detection and classification,
regarding its indexing into families of known malicious software samples, actually we
need to proceed by implementing particular methods to compare digital object. More
precisely, it is needed to be developed a method that would compare a digital object,
regardless of its representation, against another one that its intent has to be known.
Given that in our case the digital objects refers to an unknown software sample,
the target is to compare it against something that is known to be malicious. Hence,
in order to define the field of comparison it is selected to compare representations
of software’s behavior (i.e., graph based representations) against known malicious
ones that should be stored into a knowledge database. However, note that such a
knowledge data base should include also benign behaviors in order to be utilized as
a false positive measurement. Hence the knowledge database consists the fundamental
component on the processes of malware detection and classification, as it defines what
is known to be malicious and what is not.

2.2.1 Storing Behaviors

As we discussed previously the representation that will be used to compare the soft-
ware samples (malicious software) is a graph-based structure that depicts the inter-
action exhibited over the execution of software during its execution time with its host
environment (i.e., the Operating System). Particularly, such representations depict the
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behavioral profile of a software sample, that can be utilized later in order to com-
pare any two given digital objects of this class. Hence, in the proposed approach it is
needed to construct a knowledge base of such behavioral profiles, as it is discussed
later behavioral graphs, where a set of such graph will represent the behavior of ma-
licious software sample, and another subset of the base will refer to non-malicious,
or, in other words benign software samples. The later category of samples are of
major importance, since they will be utilized over the evaluation procedure in order
to compute the false positive rates of the proposed model.

Several storing approaches could be adopted in order to store, retrieve and process
the behavior, however despite their spatial complexity, in the proposed method the
adjacency tables have been chosen as the leading technique to store the graph repre-
sentations of software sample’s behavior due to the efficiency exhibited during their
process, in terms of accessibility and rational manageability. However, to this point it
is worth noting that a n× n matrix can be deployed to depict the adjacency relations
among the nodes of such graphs, where on the same fashion, several matrices, let m
can be stored into a uniform structure such as a n× n×m matrix, where the relative
positions of such matrices should not be left at random as we discuss next.

2.2.2 Organization and Indexing

Malicious software sample tend to exhibit similarities across their structures. More as
it is referred through the introduction there exist mutation techniques that given an
initial sample of a digital object (in our case a malicious software) they can produce
a large set of functionally similar but structurally different copies of this sample (i.e.,
mutated malicious software samples). However, based on the functionality of these
samples a grouping of them can be deployed by merging malicious software sample
of similar functionality into groups, the so called malware families.

As we referred previously, several adjacency matrices that represent the behavior
graphs of malicious software samples can be stored into a uniform structure, e.g., a
three-dimensional matrix in order to create a knowledge database of what is known
to be malicious (set of graphs that represent the behavior of a software sample -
malware). However, since malicious samples tend to exhibit similar behaviors, in the
proposed model it is preferred to group graph representations that depict malicious
behaviors of malware samples of similar functionality in to families that in the model
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correspond to proximal region according to the third dimension (i.e., m) of the n ×
n×m matrix that consists the knowledge database.

2.3 Similarity Metrics

In order to perform the processes of malware detection and classification, beyond
the utilization of a knowledge base to compare the unknown sample with something
that is known to be malicious, it is needed to establish a comparison method. In the
case of comparing digital object, and in this case malicious software sample, the most
applicable, efficient and effective method is the utilization of similarity metrics.

2.3.1 Digital Object Comparison

The computation of the similarity between any two given digital objects (in this case
malicious software samples) refers to the measurement of structural, functional, or
any other kind of closeness of the two specimens. The method used to perform the
procedure of computation of the similarity between any given digital objects is called
similarity metric.

Most similarity metrics are constructed based on the characteristics of the similarity
settings the need to evaluate, and correspondingly the deploy such values over their
computation formulas. Similarity metrics have been designed in a way such that the
result returned after their computation to be in the range of [0, 1] or [0, 100] through
the use of various normalization methods. Computing the similarity metric between
digital objects, a return value closer to 0 indicates that the specimens are not similar,
while, on the other hand, returned values closer to the upper bound indicate a greater
similarity between the samples.

2.3.2 Graph Similarity

In order to perform the computation of similarity between the digital objects (in our
case unknown test and known malicious software samples) the proposed model pro-
ceed with the computation of graph similarity between a pair of graph representations
(i.e., one depicting the behavior of the test sample and one depicting the behavior of
the malicious sample).
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Several methods could be deployed in order to compute the similarity between
a pair of graph representations, however, the vast majority of them is based on the
comparison of the edge sets of the two given graphs. Since the vertex set of a behavior
graph represents the structural entities that exhibit a behavior pattern, the relations
between such entities (i.e., edge set) consists the fundamental element, and hence, the
one that should be noticed and examined extensively.

In the proposed model, as we will discuss to a greater extent on th correspond-
ing chapters, there a re proposed various techniques deployed later by the proposed
similarity metrics in order to compute the graph similarity. Particularly, specific char-
acteristics of the graph structures, namely relational, quantitative, qualitative, and evo-
lutional characteristics have been leveraged as to measure the similarity by assigning
somehow different weights on different types of factors that characterize the nature
of an edge of a behavioral graph, taking into account various information resulted
over the inspection of the graph’s properties.

2.4 Building the Defense Line against Malicious Software

As it has been discussed throughout the previous chapter, the principles of building a
defense line against the spread of malicious software are mainly focused in detection
and prevention. In other words, an ideal framework proposed for establishing the
defense guidelines against malicious software, should include on the one side the
definition of a set of techniques for detecting and to a further extent classifying a
malicious sample, while on the other, a set of abstract strategies or policies that when
deployed over a topology of networked devices would be able to avoid the pandemic
spread of a probing malware.

2.4.1 Distinguishing Malicious from Benign Samples utilizing Be-

havioral Graphs

In the proposed model, the graph similarity procedure is performed over a pair of
behavioral graphs, that as will be discussed later, corporate a set of specific charac-
teristics of graph’s structure in order to distinguish graphs that represent malicious
behaviors from the ones that represent benign behaviors. To this point it is worth
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Figure 2.5: Architecture of the proposed system for detection and classification of
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Figure 2.6: The deployment of malware detection and malware classification processes in
our model.

nothing that such procedures demand the utilization of a knowledge base of repre-
sentations of what is “a priori” known to be malicious as also at least one similarity
measurement method (i.e., a similarity metric), in order to compute the percentage
of “how close” the test sample is, to what is known to be malicious (see, Figure 2.5).
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The main scope of this procedure is that, given a graph-based representation
of an unknown software sample’s behavior (i.e., a behavior graph that depicts its
interaction during its execution with its hosting environment - Operating System)
and a set of graph-based representations that depict the behaviors exhibited during
the execution of known malware samples, to decide based on a similarity metric, if
the unknown test sample is actually a malicious or a benign program.

2.4.2 Indexing Malicious Samples into Malware Families utilizing

Behavioral Graphs

On the second phase of the development of the proposed countermeasures for de-
fense against malicious software, another procedure, the one of malware classification,
or as also referred malware indexing, takes place (see, Figure 2.6). Over this proce-
dure, a software sample under consideration that has been distinguished as malicious
according to the preceding detection procedure, has to be classified, or equivalently
indexed, to a one of a set of known malware families. Such procedures take into
account, beyond the functional similarities exhibited through the execution of the
grouped samples, various other characteristics that can be utilized according to a
classifier to group a number of samples under the same set.

As it is discussed over the previous chapter, antivirus vendors leverage several
heuristic rules in order to group malware samples under the same set. This proce-
dure is performed under the perspective that if a group of samples shares a set of
commonalities, with respect to any set of factors, then such commonalities should also
be shared over an abstract level of their structures, and hence, at a lower level, more
global or, in other words “family level” signature could be also produced in order
to cover with one signature a whole malware family, and probably sa few mutations
of them. So, to a greater extent, the general scope of indexing malware samples into
malware families point to the creating of more generalized signatures that would lead
finally to the application of a more effective and efficient detection. Such a considera-
tion leads to the conclusion that the methods of malware detection and classification
are actually two procedures that are interacting throughout their execution, where
the detection phase should be based upon indexing principles, while the classification
phase has as a prerequisite a correct detection decision in order to not distort the
quality of the set of known malware samples.
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2.4.3 Preventing Malware Pandemics in Mobile Devices

On the second part of the wider framework proposed over this thesis, the main target
is to define graph based principles that when applied to the greater extent of the
context of mobile devices, is able to avoid or prevent a probable pandemic case of a
malware that spreads among mobile devices.

The conceptual model of this approach, contains, among other implementation
assumptions, a graph based model for transforming an image taken from Google
Maps that represents the town-planning from a region of a city, to an edge-weighted
undirected graph, a model for simulation mobile device mobility through the city
area (i.e., implementation of shorted path algorithms between points set over the
graph that simulates towns-planning), as also e propagation model that simulates the
probe of malicious software between proximal mobile devices following the underly-
ing compartmental epidemic model.

Over the above approach, the main concern is to investigate the effect of a fac-
tor that represents the time demanded from a countermeasure (antivirus product,
removal tool. etc.) to sanitize an infected device. As we will discuss over the corre-
sponding Chapter, in the proposed model, this factor is called “response-time”. In
this concept, the effect of response-time is investigate on how the non homogene-
ity among the mobile devices, leading hence to ranges of response-time, affect the
malware’s spread and to a further extent to the prevention of a pandemic spread. In
particular, beyond the range of response-time intervals, there are also investigated the
effects of the size of the spreading malicious software, the underlying compartmental
epidemic model as also the initially infected population (i.e., infected devices at the
start of the simulation) and the density of the network (i.e., number of mobile devices
coexisting in a specific area).
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Chapter 3

Malware Representation through
Behavioral Graphs

3.1 Dependency Graphs

3.2 The System-call Dependency Graph (ScDG)

3.3 The Group Relation Graph (GrG)

3.4 The Coverage Graph (CvG)

3.5 Temporal Graphs

3.1 Dependency Graphs

Driven by observation, it is noticed that behavioral graphs representing malware
samples tend to share some characteristics. With the term characteristics we reference
the structural commonalities they have, concerning their graph representations, as
they are spread among the behavioral graphs of the members in a malware family.
So, we distinct three types of characteristics, namely relational, quantitative and
qualitative characteristics. Briefly speaking, the term characteristic refers to a property
that an edge has among a set of graphs, i.e., its existence (or not), its weight, and the
significance of that edge. Next we present the aforementioned types of characteristics,
describing to a greater extent each one of them.
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◦ Relational Characteristics: This type of characteristics refers to the existence or
not of an edge. In other words, during the computation of a similarity metric
between two GrG graphs we take into account if a specific edge co-exists or not
in the two GrG graphs.

◦ Quantitative Characteristics: This type of characteristics concerns the weight of
an edge. This means that, measuring the similarity of two GrG graphs, we take
into account the difference on the weights of the same edge between the two
GrG graphs independently of the co-existence of that edge.

◦ Qualitative Characteristics: This type of characteristics describes the significance
of an edge. With the term significance we refer to the percentage of the members
in a malware family that have the specific edge. Hence, this type of characteristic
is mainly utilized in our model for malware classification, as a set of edges with
a greater significance can indicate a whole malware family, constituting thus her
identity.

◦ Evolutional Characteristics: The final type of graph characteristics distinguished
throughout the investigation of dependency graph properties, is the evolutional
characteristics. This type of characteristics represents the structural modifica-
tions evolved through the construction in therms of edge modification (i.e.,
edge creation) of the graph. To this point is critical to refer that the evolution of
the structure of a graph takes place over a period of time, which actually refers
to the execution time of the represented software sample.

Hence, having described these types of characteristics we can now utilize them through
specific similarity metrics so to detect if a given sample is malicious or not, as to decide
the malware family of an unclassified malware sample.

3.2 The System-call Dependency Graph (ScDG)

The core works that we base our intuition in the use of system-call dependency
graphs are [14, 37, 6] and [5]. To this point, we ought to underline that our work
is totally complement to the aforementioned ones, while we have developed a totally
novel intermediate graph representation that exhibits an auxiliary functionality in
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our model while it can capture and represent a much more abstract depiction of
malware’s behavior. As we will describe later in this section, we use the well known
classification of system-calls into classes of similar functionality, constructing finally a
graph that its vertices actually are super-vertices containing the system-calls captured
in the system-call dependency graph and are from the same class. This sophisticated
hyper-abstraction of malware’s system-call dependency graph provides us with the
ability of a wider generalization depicting what actually performs in general.

As we referred in previous chapters, the use of traditional string signature-based
detection is inadequate in detecting morphed malware. So, in order to develop more
elaborate techniques for malware detection and also for classification, the use of more
abstract structures need to be utilized. Thus, we leverage the use of graphs, since as
referred in the literature there have been widely used for this purpose. Indicative and
also quite successful examples constitute the Function Call Graphs (FCGs), the Control
Flow Graphs (CFGs) from the aspect of static malware analysis and also the System-
call Dependency Graphs (ScDGs) or behavioral graphs from the aspect of dynamic
analysis. To this point we ought to notice that we will utilize the use of System-Call
Dependency Graphs since we want to leverage the depiction of the behavior of a
malware concerning its environment. Additionally, System-call Dependency Graphs
provide us with information about the real behavior (actions) performed by the testing
malware instead of the other kinds of graphs that provide information about probable
actions since in static analysis the sample has not been executed.

3.2.1 System-call Dependency Graph Construction

Generally speaking, the actions performed by a program depicting its behavior, rely on
system-calls in order to be executed. So, capturing the system-calls performed during
the execution of a malware we can represent its behavior interpreting this information
with a graph while we are able to determine malware’s intent independently of any
implementation artifacts.

In order to result in the construction of a System-call Dependency Graph primar-
ily some operation need to be performed. First the suspicious sample needs to be
executed in a contained environment (i.e. a virtual machine). During its execution
time taint analysis is performed in order to capture system-call traces. Particularly,
three types of dependence are involved in order to connect system calls. Specifically in
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order to create the edges of a System-Call Dependency Graph, through taint analysis
are captured the system calls and the arguments they exchange as input/output where
the output arguments of one system call are used as input arguments to another one.

So, the constructed System-call Dependency Graph has as its vertex set all the
system-calls that took place during the execution of the suspicious sample while its
edge set consists from the pairs of system call that passed argument the one to the
other during the execution.

Next, we proceed by citing a simple example that includes the system-call trace
obtained through taint analysis during the execution of a sample from malware family
Hupigon, and we explain how the ScDG is constructed after the whole process. As
we will also refer in the next chapters, the data-set we utilize in order to evaluate
the implementation of our proposed model is the same data-set utilized in [5] for
the evaluation of the corresponding model. So, next we describe how is constructed
a graph according to the description provided in the data-set. Before we continue we
ought to explain the contents of each column in Table 3.1. In the first column there
is placed the ID of each system-call captured during the analysis, while in column 2
is placed the name of each System-call. Finally, in column 3 are cited the number (in
terms of cardinality) of input arguments for each system-call, while in column 4 are
cited the number of output arguments for each system-call.

Having already captured the system-calls that took place utilizing taint analysis
and hence having composed the vertex set, the next step is to create the edge set
by connecting each pair of system-calls that exchange arguments. As depicted in the
next table a tuple of type {sc1:I , sc2:III} indicates that the system-call sc2 takes as
her fourth input argument the second output argument of system-call sc1.

Now, let us give an easy and quite simple example. Let us suppose that we have
a System-call with ID =10 and has 3 input arguments and 2 output argument, then
when it appears as 10:1 in the from side of an edge it indicates that the System-call
10 passes as output her second (because this number is a zero-based index) output
argument to another System-call, while when appears 10:1 in the to side of an edge it
indicates that the system-call 10 receives as her second input argument the argument
produced from another System-call. In other words if we have two System-calls
the previous one and another one with ID=12 and who has 2 input and 5 output
argument then the expression (10:0, 12:1) is interpreted as the first output argument
of System-call 10 is passed as the second input argument to System-call 12, while the
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ID System-call Name InArgs OutArgs
0 NtOpenSection 2 1
1 ACCESS-MASK 0 1
2 POBJECT-ATTRIBUTES 0 1
3 NtQueryAttributesFile 1 1
4 NtQueryAttributesFile 1 1
5 NtQueryAttributesFile 1 1
6 NtQueryAttributesFile 1 1
7 NtQueryAttributesFile 1 1
8 NtQueryAttributesFile 1 1
9 NtQueryAttributesFile 1 1
10 NtQueryAttributesFile 1 1
11 NtQueryAttributesFile 1 1
12 NtQueryAttributesFile 1 1
13 NtRaiseHardError 5 0
14 NTSTATUS 0 1
15 ULONG 0 1
16 PULONG-PTR 0 1
17 HARDERROR-RESPONSE-OPTION 0 1

Table 3.1: System Call Traces.

expression (12:4, 10:2) is interpreted as the fifth output argument from system-call 12
is passed as the third input argument to System-call 10.

In Table 3.2 the first column (trace) represents the tuple as captured from the
analysis, next from column 2 to column 5 we analyze to a further extent the col-
umn one disassembling the aforementioned tuple to its components, in column 6
we present the corresponding tuple as an assignment of the values from the output
argument of the one system call to the input argument of the other one. Finally, in
the column 7 we represent the resulting edges that has been created from this trace.
So, in example, observing the data from Table 3.2 we can proceed by constructing the
System-Call Dependency Graph that is a directed acyclic graph (DAG). The vertex set
of this graph is consisted from the system-call that took place during the execution of
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Trace From out.idx To in.idx assign type edge type
1:0,0:0 1 0 0 0 sc0.in(0)←− sc1.out(0) sc1 −→ sc0

2:0,0:0 2 0 0 1 sc0.in(1)←− sc2.out(0) sc2 −→ sc0

2:0,3:0 2 0 3 0 sc3.in(0)←− sc2.out(0) sc2 −→ sc3

2:0,4:0 2 0 4 0 sc4.in(0)←− sc2.out(0) sc2 −→ sc4

2:0,5:0 2 0 5 0 sc5.in(0)←− sc2.out(0) sc2 −→ sc5

2:0,6:0 2 0 6 0 sc6.in(0)←− sc2.out(0) sc2 −→ sc6

2:0,7:0 2 0 7 0 sc7.in(0)←− sc2.out(0) sc2 −→ sc7

2:0,8:0 2 0 8 0 sc8.in(0)←− sc2.out(0) sc2 −→ sc8

2:0,9:0 2 0 9 0 sc9.in(0)←− sc2.out(0) sc2 −→ sc9

2:0,10:0 2 0 10 0 sc10.in(0)←− sc2.out(0) sc2 −→ sc10

2:0,11:0 2 0 11 0 sc11.in(0)←− sc2.out(0) sc2 −→ sc11

2:0,12:0 2 0 12 0 sc12.in(0)←− sc2.out(0) sc2 −→ sc12

14:0,13:0 14 0 13 0 sc13.in(0)←− sc14.out(0) sc14 −→ sc13

15:0,13:1 15 0 13 1 sc13.in(1)←− sc15.out(0) sc15 −→ sc13

15:0,13:2 15 0 13 2 sc13.in(2)←− sc15.out(0) sc15 −→ sc13

16:0,13:3 16 0 13 3 sc13.in(3)←− sc16.out(0) sc16 −→ sc13

17:0,13:4 17 0 13 4 sc13.in(4)←− sc17.out(0) sc17 −→ sc13

Table 3.2: System-call Dependencies.

the sample and we have captured their trace (Table 3.2) and its edge set is consisted
by their in-between dependencies (Table 3.2)

In Figure 3.1 we observe how the taint data are exchanged through the captured
system calls and actually how the system call dependencies are created. So, in order
to simplify this abstraction and to conclude to a final System-Call Dependency Graph,
specific information is eliminated from the scheme resulting to the graph presented in
Figure 3.2. In the resulting graph the vertex names are composed by the SC (stands
fo System-call) followed by the corresponding System-call’s ID.

To this point we ought to refer that the all the distinct dependencies to system-
call NtQueryAttributesFile have been merged to one edge leading to one single vertex.
However, we need to explain that we represent the graph in this way just for simplicity,
because as we will refer next, the information of the number of edges from one system
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Figure 3.1: System Call Dependency Graph.

call to another (independently of if it is repeated) is quite valuable since we will
need to use it for our model in the computation of similarity either for detection or
classification.

SC15

SC13

SC16

SC17SC14

SC2SC0

SC1 SC3:12

Figure 3.2: Simplified System Call Dependency Graph.
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Figure 3.3: A system-call dependency graph D[P ] of a program P .

As we discussed previously, the actions performed by a program, depicting its
behavior, rely on System-calls. Tracing the System-calls invoked during the execution
of a malware program P , we can represent its behavior interpreting this information
with a graph, so called System-call Dependency Graph (or, ScDG for short); throughout
the paper, we shall denote a ScDG by D[P ] and the System-calls invoked by P by
Si, 1 ≤ i ≤ n. The vertex set of a ScD-graph D[P ] is consisted by all the system-calls
invoked during the execution of a program P , i.e., S1, S2, . . ., Sn, while its edge set
contains the pairs of System-calls that exchanged arguments during the execution
representing data-flow dependencies between System-calls. Thus, an edge of ScDG
D[P ] is a tuple of type (Si:k, Sj:ℓ) indicating that the system-call Si invokes Sj and
the kth output argument of Si is passed as the ℓth input argument in Sj.

Recalling that the suspicious sample needs to be executed in a contained envi-
ronment (i.e., a virtual machine), where during its execution time, dynamic taint
analysis is performed in order to capture system-call traces, next we illustrate a sim-
ple example that includes the system-call traces obtained, constructing the ScDG of a
program. In Figure 3.3, it is easy to see that the vertex set of this graph is consisted
from the system-calls invoked during the execution of the sample and its edge set is
consisted by their in between data-flow dependencies, constructing a directed acyclic
graph (dag). To this point we ought to notice that a dependency graph is by its def-
inition acyclic, since each node (System-call in our case) uses as its input the output
from another system call (so the first system call depends on the second) and so on,
constructing hence an acyclic graph.
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3.3 The Group Relation Graph (GrG)

The key idea of our detection and classification model is based on the fact that
sSystem-calls of similar functionality can be gathered into the same group, as firstly
presented in [89]. For a proper System-call grouping, we utilize the 30 System-call
groups provided by Microsoft’s documentation for MS-Windows, where each System-
call has a detailed description indicating the group it belongs to; hereafter, we denote
by C∗ the set of system-call groups for a given operating system and by C1, C2, . . .,
Cn∗ the groups of C∗.

Group Name Size Group Name Size

ACCESS_MASK 1 PHANDLE 1

Atom 5 PLARGE_INTEGER 1

BOOLEAN 1 Process 49

Debug 17 PULARGE_INTEGER 1

Device 31 PULONG 1

Environment 12 PUNICODE_STRING 1

File 44 PVOID_SIZEAFTER 1

HANDLE 1 PWSTR 1

Job 9 Registry 40

LONG 1 Security 36

LPC 47 Synchronization 38

Memory 25 Time 5

NTSTATUS 1 Transaction 49

Object 19 ULONG 1

Other 36 WOW64 19

Table 3.3: The 30 System-call groups - Total Groups.

Thus, if a System-call Dependency Graph D[P ] of a given program P is composed
by n system-calls S1, S2, . . ., Sn, then each system-call Si, 1 ≤ i ≤ n, belongs to exactly
one group Cj , 1 ≤ j ≤ n∗. In Table 3.3, we present the groups of system-calls C1, C2,
. . ., Cn∗ and the number of System-calls inside each group.

Having the grouping C∗ and a ScDG D[P ], we next construct the key component
of our model that is the Group Relation Graph (or, for short, GrG). The graph GrG,
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which we denote by D∗[P ], is a directed weighted graph on n∗ nodes u1, u2, . . ., un∗;
it is constructed as follows:

(i) we define a bijective function f : V (D∗[P ]) −→ Ci from set V (D∗[P ]) = {u1, u2, . . . , un∗}
to the set of groups Ci = {C1, C2, . . . , Cn∗};

(ii) for every pair of nodes {ui, uj} ∈ V (D∗[P ]), we add the directed edge (ui, uj) in
E(D∗[P ]) if (Sp, Sq) is an edge in E(D[P ]) and, Sp ∈ Ci and Sq ∈ Cj , 1 ≤ i, j ≤ n∗;

(iii) for each directed edge (ui, uj) ∈ E(D∗[P ]), we assign the weight w if there are
w invocations from a System-call in group f(ui) = Ci to a System-call in group
f(uj) = Cj , 1 ≤ i, j ≤ n∗.

ID System-call Group

0 NtOpenSection Memory

1 ACCESS_MASK ACCESS_MASK

2 POBJECT_ATTRIBUTES Object

3 NtQueryAttributesFile File

4 NtRaiseHardError Process

5 NTSTATUS NTSTATUS

6 ULONG ULONG

7 PULONG_PTR Process

8 HARDERROR_RESPONSE_OPTION Process

Table 3.4: The 9 system-calls of Figure 3.3 and their corresponding groups - Active
Groups.

We point out that the number of non-isolated nodes of graph D∗[P ] equals the
number of groups formed by the system-call of graph D[P ]; note that, the total
number of nodes of D∗[P ] is always n∗. For example, the 9 System-calls of ScDG
graph belong to 7 groups (see, Table 3.4), the ScDG graph D[P ] of Figure 3.3 contains
9 nodes, while its corresponding GrG graph D∗[P ] contains 7 non-isolated nodes and
thus 23 isolated nodes in Iset; see, Figure 3.4.
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Figure 3.4: The GrG graph D∗[P ] of the graph of Figure 3.3.

Figure 3.4 depicts the GrG graph D∗[P ] of the ScDG graph D[P ] of Figure 3.3; the
set Iset contains all the isolated nodes of D∗[P ]. We point out that while the ScDG
D[P ] is by definition an acyclic directed graph, the produced GrG D∗[P ] is not in
general acyclic, since by grouping nodes in D[P ] it is very likely to create directed
circles and/or self-loops; see, Figure 3.4.

Observing the Figure 3.4, we ought to refer that the number of non-isolated
nodes of graph D∗[P ] equals the number of groups formed by the System-calls of
graph D[P ]; note that, the total number of nodes of D∗[P ] is always n∗, namely Total

Groups. For example, the 9 system-calls of ScDG belong to 7 groups (see, Table 3.4),
the ScDG D[P ] of Figure 3.3 contains 9 nodes, while its corresponding GrG D∗[P ] con-
tains 7 non-isolated nodes, namely Active Groups and thus 23 isolated nodes, namely
Inactive Groups in Iset; see, Figure 3.4, obviously, Active Groups+ Inactive Groups =

Total Groups. We mention that, we name a System-call group as Active Group if it con-
tains a System-call that is invoked in a data-flow dependency with another System-call
(the node corresponding to this group has non-zero in- or out-degree), or Inactive

Group otherwise.
Finally, notice that while the ScDG graph D[P ] is by definition an acyclic directed

graph, the produced GrG graph D∗[P ] is not, in general, acyclic. As easily one can
see that by grouping nodes in D[P ] it is very likely to create directed circles and/or
self-loops; an indicative example appears in graph D∗[P ] of Figure 3.4.

Properties of Group Relation Graphs. Driven by observation, we noticed that GG
graphs representing malware samples tend to share some characteristics. With the
term characteristics we reference the structural commonalities they have, concerning
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their graph representations, as they are spread among the GrG graphs of the members
in a malware family. So, we distinct three types of characteristics, namely relational,
quantitative and qualitative characteristics. Briefly speaking, the term characteristic
refers to a property that an edge has among GrG graphs, i.e., its existence (or not), its
weight, and the significance of that edge. Next we present the aforementioned types
of characteristics, describing to a greater extent each one of them.

3.4 The Coverage Graph (CvG)

As we described previously, the System-calls invoked during the execution of a pro-
gram can be traced through taint analysis, and hereafter the behavior of a program
can be represented with a directed acyclic graph (dag), the so called System-call De-
pendency Graph see, Figure 3.5(a). The vertex set of a ScDG is consisted by all the
System-calls invoked during the execution of a program and its edge set represents
the communication between System-calls as described in [89, 5, 6].

Then, given a graph representation of malware’s behavior such a ScDG, a more
abstract graph representation of a program’s behavior can be constructed based on the
fact that System-calls of similar functionality can be classified into the same group. The
produced graph representation is a directed weighted graph called Group Relation
Graph; see, Figure 3.5(b).

As described previously, having the grouping of system-calls and a system-call
dependency graph ScDG, the GrG graph D∗[P ] is a directed edge-weighted graph on
n vertices v1, v2, . . ., vn constructed as follows:

(ii) for every pair of vertices {vi, vj} ∈ V (D∗[P ]), a directed edge (vi, vj) is added in
E(D∗[P ]) if the two system-calls communicating with each other, let (Sp, Sq), is
an edge in E(D[P ]) and, Sp belongs to the i-th system-call group and Sq belongs
to the j-th system-call group;

(iii) for each directed edge (vi, vj) ∈ E(D∗[P ]), a weight w(vi, vj) ∈ ℜ is assigned
on it if there are w(vi, vj) invocations from a system-call in the i-th group to a
system-call in the j-th group.

Having defined the GrG graph D∗[P ], we also define the underlying vertex-weighted
graph D+[P ] of the graph D∗[P ] having vertex-weights w(vi) =

∑
vj∈Adj(vi)

w(vi, vj),
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Figure 3.5: (a) The System-call Dependency Graph of a program; (b) The corresponding
Group Relation Graph of a program.

for every vi ∈ V (D+[P ]).
As mentioned previously, a GrG graph D∗[P ] is a edge-weighted directed graph

which, in our approach, we transform it to its underlying vertex-weighted undirected
graph D+[P ]. We first define domination relations on the vertices of the graph D+[P ]

and then utilizing these relations we construct the Coverage Graph of the GrG graph
D∗[P ], denoted by C[p].

Next, it is also presented a 2D-representation of the underlying vertex-weighted
graph D+[P ] of the graph D∗[P ] utilizing the degrees and the vertex-weights of its
vertices and show a different way to compute the domination relations on the graph
D+[P ].

Definition 1 Let D+[P ] be the underlying vertex-weighted graph of a GrG graph
D∗[P ] and let vi, vj ∈ V (D+[P ]). We say that vi dominates vj , denoted by vi

dom−−→ vj ,
if deg(vi) ≥ deg(vj) and w(vi) ≥ w(vj), where deg(v) and w(v) denote the degree and
the weight of the vertex v ∈ V (D+[P ]), respectively.
The domination set Di of a vertex vi ∈ V (D+[P ]) is the set of all the vertices vj :

vi
dom−−→ vj. If vi

dom−−→ vj we say that vertices vi and vj are in a domination relation.

Definition 2 Let D+[P ] be the underlying vertex-weighted graph of a GrG graph
D∗[P ] with vertices V (D+[P ]) = {v1, v2, · · · , vn}. The Coverage Graph (CvG) of the
GrG graph D∗[P ], denoted also C[P ], is a directed graph defined as follows:

(i) V (C[P ]) = {v∗1, v∗2, · · · , v∗n} and {v∗1, v∗2, · · · , v∗n} ↔ {v1, v2, · · · , vn};
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Figure 3.6: (a) A GrG graph D∗[P ]; (b) Its underlying vertex-weighted graph D+[P ]; (c)

The CvG graph C[P ] produced by the graph D+[P ] through its vertex domination relations.

(ii) v∗i v
∗
j ∈ E(C[P ]) if vi

dom−−→ vj , where vi and vj correspond to v∗i and v∗j , respectively.

In Figure 3.6(a) we show a GrG graph D∗[P ] which is isomorphic to the GrG graph
D∗[P ]\Iset of Figure 3.5(b), in Figure 3.6(b) we depict its underlying vertex-weighted
graph D+[P ] with w(vi) =

∑
vj∈Adj(vi)

w(vi, vj), ∀vi ∈ V (D+[P ]), where w(vi, vj) is the
weight of the edge (vi, vj) ∈ E(D∗[P ]), while in Figure 3.6(c) we show the Coverage
Graph C[P ] constructed from the graph D+[P ] by utilizing its vertex domination
relations. Note that the vertices of each graph in Figure 3.6 correspond the System-
call groups of Figure 3.5(b).

3.5 Temporal Graphs

Throughout the development of our research, we have noticed that, to the best of
our knowledge, there does not exist any approach on the literature that references
or leverages the factor of the temporal evolution of a graph. Similarly to philogeny
that examines the temporal evolution of malware families, the key component of
our proposed detection and classification model, leverage the temporal evolution of
graphs (i.e., GrG and CvG graphs) in order to depict the structural modifications
performed on the graph and that could distinguish either a malware sample or to a
further extent a malware family.

In our model, we define two types of graphs that depict the temporal evolution
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of our initial graph structures (i.e., Group Relation Graphs and Coverage Graphs),
namely Group Relation Temporal Graphs or, for short, GrTG and Coverage Temporal
Graphs or, for short, CvTG, respectively. In order to implement such graph structures
we approach this modeling by creating instances of the initial GrG and CvG graphs
during their construction. As we mentioned above, GrG graphs are constructed by
the sum of the system-calls invoked interconnecting pairs of system call groups, and
correspondingly CvG are constructed by they respective dominating relation (i.e.,
by their supremacy regarding degree and weight) between the system-call groups.
Hence, since we are given the system-call dependencies in a series that depicts the
time correlation among (i.e., an edge sequence of the System-call Dependency Graph
that shows the system-call invocations during execution time), such constructions can
be obtained by creating an instance of the produced graphs (i.e., GrG, CvG) at specific
steps.

Formalizing our previous claim, we can define that for a set of time-slots, let
t1, t2, . . . , tn we can construct n instances of graphs GrG and CvG and denote them as
T1(D

∗[P ]), T2(D
∗[P ]), . . . , Tn(D

∗[P ]) and T1(C[P ]), T2(C[P ]), . . . , Tn(C[P ]), respectively,
that depict the structure in terms of edges, vertex-degrees and vertex-weights of the
corresponding graphs at specific time slots. Through this approach we can maintain
information about the temporal evolution of the graph thorough its construction
procedure,and further leverage such information in order to perform more elaborated
graph similarity techniques.

3.5.1 Partitioning Time

The factor of time actually does not represent the actual quantum of run-time, but
each time-quantum corresponds to one system-call dependency or, equivalently, rela-
tion between two System-call Groups (i.e., edge of the Group Relation Graph). Hence,
the total time-line depicts the slots or time-partitions from the appearance of the first
to the last group relation.

Additionally, in our model, we define as epochs the set of time-partitions, i.e.,
t1, t2, . . . , tn, and an epoch, let ti, contains the structural modifications (i.e., edges
added on the corresponding GrG or CvG graph) from the begin to the end of the ith

epoch, where 1 < i < n, ∀n ∈ K , and K = {n : |E(G)| mod n = 0,∀n ∈ N}.
As we described throughout the paper, the conceptual substance of Temporal
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Figure 3.7: The temporal evolution of a GrG graph D∗[P ] represented by its Discrete Mod-

ification Temporal Graph T f (D∗[P ]) over n epochs: (a) T f
1 (D

∗[P ]), (b) T f
2 (D

∗[P ]) and (c)

T f
n (D∗[P ]).
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Figure 3.8: The temporal evolution of a CvG graph C[P ] represented by its Discrete Modifi-

cation Temporal Graph T f (C[P ]) over n epochs: (a) T f
1 (C[P ]), (b) T f

2 (C[P ]) and (c) T f
n (C[P ]).

Graphs is to depict the structural evolution of the GrG and CvG graphs through the
time. However, the structural modification on the instances of the graph over the
time can be described either discretely as addition of edges over the exact previous
graph instance, or cumulatively as successive additions of edges performed on all
the previous graph instances. Next, we discuss the construction of the corresponding
Temporal Graphs according to the two approaches.
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Figure 3.9: The temporal evolution of a GrG graph D∗[P ] represented by its Cumulative

Modification Temporal Graph TF (D∗[P ]) over n epochs: (a) TF
1 (D∗[P ]), (b) TF

2 (D∗[P ]) and

(c) TF
n (D∗[P ]).
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Figure 3.10: The temporal evolution of a CvG graph C[P ] represented by its Cumulative

Modification Temporal Graph TF (C[P ]) over n epochs: (a) TF
1 (C[P ]), (b) TF

2 (C[P ]) and (c)

TF
n (C[P ]).

Discrete Modification Temporal Graphs.

In the first approach of our proposed scheme, the construction of the Temporal Graph,
that represents the evolution of GrG or CvG graphs during time, constructs the in-
duced subgraph of GrG and CvG, respectively, including only the edges that where
added on a specific epoch. So, let the epoch ti we construct the Temporal Graphs
GrTGi, CvTGi of the graphs GrG and CvG, denoting them with T f

i (D
∗[P ]), T f

i (C[P ]),
respectively, where f denotes the cardinality of edges added on this epoch. In Fig-
ure 3.7 and Figure 3.8, we depict the discrete structural modification (i.e., temporal
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evolution) of graphs GrG and CvG over the construction of their corresponding Tem-
poral Graphs T f (D∗[P ]) and T f (C[P ]) during n epochs.

Cumulative Modification Temporal Graphs.

In this type of Temporal Graphs, the evolution of the graph is represented as an
additive procedure, since once an edge has been created at a given time, let i, on
the graph between two system-call groups on the GrG graph, or a domination re-
lation has been resulted on the CvG graph, it will remain permanent on the ances-
tor Temporal Graphs (i.e., if {u, v} ∈ E(Ti(D

∗[P ])) → {u, v} ∈ E(Tj(D
∗[P ]) and if

{u, v} ∈ E(Ti(C[P ])) → {u, v} ∈ E(Tj(C[P ])), ∀i < j < n), since it consists a prede-
cessor of the following temporal graphs. In the second approach of our proposed
scheme, the construction of the Temporal Graph, that represents the evolution of GrG
or CvG graphs during time, actually extends the graphs GrG and CvG, respectively,
during time, by adding on them the edges that where added on a specific epoch. So,
let the epoch ti we construct the Temporal Graphs T (D∗[P ]), T (C[P ]) of the graphs
GrG and CvG, denoting them with T F

i (D∗[P ]), T F
i (C[P ]), respectively, where F de-

notes the cardinality of edges added from epoch t1 until epoch ti. In Figure 3.9 and
Figure 3.10, we depict the cumulative structural modification (i.e., temporal evolu-
tion) of graphs GrG and CvG over the construction of their corresponding Temporal
Graphs T F (D∗[P ]) and T F (C[P ]) during n epochs.
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Chapter 4

Comparing Digital Objects through
Graph-based Similarity Metrics

4.1 ∆-Similarity Metric

4.2 ∆-Similarity Metric

4.3 Cover Similarity Metric

4.4 SaMe Similarity Metric

4.5 NP Similarity Metric

Next ewe present the proposed similarity-metrics that will be utilized further for
malware detection and classification.

4.1 ∆-Similarity Metric

Next we present the δ-distance, that utilizing the Euclidean distance measures the
structural likeness between two given GrG graphs.

It is well known that the Euclidean Distance between two points, say, p = (p1, p2, ..., pn)

and q = (q1, q2, ..., qn) in Rn space, is defined as follows:

E(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + . . .+ (pn − qn)2. (4.1)
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Having defined the Euclidean distance in Rn space, then we proceed by defining
our ∆-Similarity metric and presenting the process of computing it.

As we mentioned above, we focus on the computation of similarity between two
GrG graphs based on characteristics that reveal their structural likeness. Specifically,
for each node x of the GrG graph, we utilize the in-degree din(x) and the out-degree
dout(x), along with the corresponding averaged weights win(x) and wout(x) respectively,
in order to represent it on the 2D plane by points with coordinates the aforementioned
characteristics.
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Figure 4.1: (a) The Cartesian representation of the corresponding nodes vi and ui of the GrG

graphs D∗[P1] and D∗[P2], respectively; (b) Two GrG graphs D∗[P1] and D∗[P2].

We first compute the δ-distance between two GrG graphs D∗[P1] and D∗[P2] by
summing the Euclidean distances of each pair of corresponding nodes; note that,
GrG graphs are labeled graphs as their nodes correspond to System-call groups (see,
Table 3.3) and hence we can select all the pairs of corresponding nodes of two such
graphs.

More precisely, for a pair of programs, say, P1 and P2, let D∗[P1] = (V1, E1) and
D∗[P2] = (V2, E2) be their corresponding GrG graphs and let V1={v1, v2, . . . , vk} and
V2={u1, u2, . . . , uk}.
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Then, we define the δ-distance on D∗[P1] and D∗[P2], as follows:

δ(D∗[P1], D
∗[P2]) =

k∑
i=1

[α · Ein(vi, ui) + β · Eout(vi, ui)] (4.2)

where,
α + β = 1 and

Ez(vi, ui) =
√

(dz(vi)− dz(ui))2 + (wz(vi)− wz(ui))2 , z ∈ {in, out}.

note that, x is the i-th node in both GrG graphs D∗[P1] and D∗[P2].

We point out that α, β ∈ ℜ are two factors experimentally determined and Ez(vi, ui) is
the Euclidean distance between the two points (nodes) vi and ui. Having described the
δ-distance, let us next define the ∆-similarity metric which is the decision component
of our detection model. Since ∆-similarity utilizes the δ-distance metric, we compute
it as follows:

∆(D∗[P1], D
∗[P2]) =

Γ

Γ + δ(D∗[P1], D∗[P2])
(4.3)

where, Γ ∈ N+ and 0 ≤ ∆() ≤ 1.
Finally, we ought to refer that our choice of using Γ is driven by the fact that

∆-similarity metric should return values in the range [0, 1]. So, reversing its distance
properties, for two GrG graphs (let D∗[P1], D

∗[P2]) a ∆-similarity value between them
that is close to 0 indicates that the graphs are dissimilar, or identical when this value is
close to 1. Hence, as the usage of Γ is exclusively for reversing the distance properties
of ∆-similarity metric, the value of Γ can be set experimentally as any positive integer.

4.2 ∆-Similarity Metric

The ∆-Similarity Metric follows the perspective of ∆-similarity metric, since using
the δ-distance previously defined, computes the distance of each vertex of the graph
of the test sample from the corresponding “median-vertex” of the graphs of the
known malware samples belonging to the same malware family. Next, we present the
procedure of constructing the “median-vertex”, for each node of a given graph and
how it is represented on te Cartesian plane by its degree and averaged weight.

In order to construct for each vertex let vi of a set of graphs, let G1, G2, . . . Gm
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that correspond to the GrG graphs of the m members of a malware family, the
“median-vertex”, that we shall denote by vi, it should be computed the mean in-
degree (resp. out-degree) as also the corresponding mean of the averaged in-weights
(resp. mean averaged out-weights) by each of the corresponding vertices vi of the
graphs G1, G2, . . . Gm.

To this point we ought to notice that since the procedure of averaging a value is
weak against outlier values, it is preferred to utilize the median value computed by
the ⌊(n+ 1)/2⌋ ordinate statistic.

In particular, the i-th ordinate statistic of a set S of a plurality of n is the i-th
smaller component of the S-set. For example, the minimum in a set of elements is
the 1st ordinate statistic (i = 1), and the maximum is n ordinate statistics (i = n).
The median of a set S is the ⌊(n+ 1)/2⌋ ordinate statistic, i.e., the element e ∈ S that
is greater than just ⌊(n + 1)/2⌋ − 1 elements of S or, equivalently the element e ∈ S

has exactly ⌊(n+ 1)/2⌋ − 1 smaller elements than this in S.
Hence, using the method described above we compute on this way the median for

the degrees and the averaged weights of each corresponding vertex vi from each of the
graphs G1, G2, . . . Gm utilizing respectively both the in- and out-degrees and averaged
weights. In Figure 4.2, we represent the construction of the “median-vertex” for a set
of 4 graphs (i.e., four vertices vi1 , vi2 , vi3 , and vi4 are utilized for the computations of
the medians of the in/out degrees and averaged weights) and how we measure the
δ-distance between the vertex ui, which belongs to the vertex set of the GrG of a test
sample and the constructed vi produced from the corresponding vertices vi1 , vi2 , vi3 ,
and vi4 that belong to the GrG graphs of known malware samples belonging to the
same malware family.

Focusing on the computation of similarity between two GrG graphs based on
characteristics that reveal their structural likeness the similarity between each vertex
ui of the test sample’s graph and the “median-vertex” produced as the vertex with
the mean in/out degree and averaged in/out weights of each corresponding vertices
vi1 , vi2 , vi3 , and vi4 that belong to the GrG graphs of known malware samples of a
malware family. These two factors, i.e., in/out degree and averaged in/out weight of
each vertex are plotted on the the Cartesian plane and a modification of δ-distances
between the vertices of the two GrG graphs are computed by summing the Euclidean
distances of each pair of corresponding nodes.

More precisely, for a set of known malware programs, let, P1, P2, . . . Pm of a mal-
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Figure 4.2: (a) The construction of the “median-vertex” vi from a set of corresponding

vertices and the computation of δ-distances between the vertex ui and vi; (b) A node ui from

the vertex set of test sample’s GrG and the corresponding vi1 , vi2 , vi3 , and vi4 that belong to

the GrG graphs of known malware samples belonging to the same malware family.

ware family F , let D∗[P1] = (V1, E1), D
∗[P2] = (V2, E2), . . . D

∗[Pm] = (Vm, Em) be their
corresponding GrG graphs and let V1 = {v11 , v12 , . . . , v1k}, V1 = {v21 , v22 , . . . , v2k} . . . V1 =

{vm1 , vm2 , . . . , vmk
} be the corresponding vertex set of these graphs and, respectively,

for a unknown program let, Pt, let D∗[Pt] = (Vt, Et) be its GrG graph and let Vt =

{u1, u2, . . . , uk} its corresponding vertex set..
Then, we define the δ-distance on {D∗[P1], D

∗[P2], . . . D
∗[Pm] belonging on a malware

family F and D∗[Pt], as follows:

δ(F,D∗[Pt]) =
k∑

i=1

[α · Ein(vi, ui) + β · Eout(vi, ui)] (4.4)

where,
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α + β = 1 and

Ez(vi, ui) =
√

(dz(vi)− dz(ui))2 + (wz(vi)− wz(ui))2 , z ∈ {in, out}.

note that, vi and ui correspond to the i-th nodes in both GrG graphs.

Similar to ∆-similarity metric next is defined the ∆-similarity metric, which utilizes
the δ-distance, as follows:

∆(F,D∗[Pt]) =
Γ

Γ + δ(F,D∗[Pt])
(4.5)

where, Γ ∈ N+ and 0 ≤ ∆() ≤ 1.

4.3 Cover Similarity Metric

In order to perform the malware detection process, we actually compute graph sim-
ilarity between pairs of CvG graphs: the CvG graph of an unknown sample and a
graph of a set of CvG graphs from known malware specimens. The graph similarity
is computed over the edge set of each pair of CvG graphs using the Jaccard similarity
metric.

Let C[P1] be the CvG graph of an unknown sample and C[P2] be a CvG graph of
the set of known malware samples. The Cover-Similarity CS(·) of the graphs C[P1]

and C[P2] is computed as follows:

CS(C[P1], C[P2]) =
E(C[P1]) ∩ E(C[P2])

E(C[P1]) ∪ E(C[P2])
, (4.6)

where E(C[P1]) and E(C[P2]) are the edge sets of the two tested CvG graphs; note that,
the vertices v∗1, v

∗
2, . . . , v

∗
n of the graph C[P1] correspond to the vertices u∗

1, u
∗
2, . . . , u

∗
n

of the graph C[P2].

4.4 SaMe Similarity Metric

In order to measure the similarity between the test sample T and any member M

of a malware family F ∈ Q we compute the satisfiability of relational characteristics,
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in terms of edge co-existence in both GrG graphs, utilizing the Jaccard similarity J

and the satisfiability of quantitative characteristics, in terms of edge weight, utilizing
both the Bray-Curtis similarity BC and the Cosine similarity CS. Next, describe the
computation of SaMe similarity between a test sample T and each member M of a
family Fk.

Jaccard similarity. Describing the Jaccard similarity we ought to refer that since it
operates on binary values we perform a casting in the adjacency matrices representing
the corresponding GrG graphs D∗[T ] and D∗[M ] by turning any non-zero values to
1s. Hence, in order to measure the similarity concerning the edge co-existence, we
compute the Jaccard similarity J(TC ,MC) between the test sample’s casted adjacency
matrix TC and the member’s casted adjacency matrix MC , as follows:

J(T c,M c) =
|T c ∩11 M c|

|T c ∩11 M c|+ |T c ∩10 M c|+ |T c ∩01 M c|
. (4.7)

Bray-Curtis similarity. Bray-Curtis similarity is mostly applied for the computation
of diversity between two objects represented by vectors of continuous values. More
precisely, this metric measures the similarity of quantitative characteristics in terms of
edge weights, between the test sample’s adjacency matrix T and a member’s adjacency
matrix M . However, since Bray-Curtis is known as a dissimilarity metric referring to
the distance between two objects, we reverse this property performing a subtraction
from 1. Hence, utilizing their initial adjacency matrices, we compute the Bray-Curtis
similarity between T and M denoting it with BC(T,M) as follows:

BC(T,M) = 1−

n∑
i=1

n∑
j=1

(T (i, j)−M(i, j))

n∑
i=1

n∑
j=1

(T (i, j) +M(i, j))
. (4.8)

Cosine similarity. The Cosine similarity between the test sample and the current
member of a family, is computed taking into account the quantitative characteristics,
utilizing their initial adjacency matrices as presented below:

CS(T,M) =

n∑
i=1

n∑
j=1

(T (i, j)×M(i, j))√
n∑

i=1

n∑
j=1

T (i, j)2 ×
√

n∑
i=1

n∑
j=1

M(i, j)2

. (4.9)
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SaMe-similarity Computation. Having already computed the aforementioned sim-
ilarity metrics between T and a member Mℓ (1 ≤ ℓ ≤ mk) of a malware family Fk

(1 ≤ k ≤ N), next we define the corresponding SaMe similarity between the unknown
test sample T and a known malware family Fk by computing the maximum value
that appears among all the members of the family as follows:

SaMe(T, Fk) = max
1≤ℓ≤mk

[J(TC ,MC
ℓ )×BC(T,Mℓ)× CS(T,Mℓ)] (4.10)

where, mk is the size of the kth malware family Fk in set Q, 1 ≤ k ≤ N = |Q|.

4.5 NP Similarity Metric

The NP-similarity metric focuses on the computation of similarity between the test
sample T and any malware family Fk using the family’s ID-Matrix that we describe
next, as also the initial GrG graphs, operating on them using similarity metrics that
take into account different types of characteristics (i.e., qualitative, relational and
quantitative).

Next, we provide a description of the family’s ID-Matrix construction and what
we call qualitative characteristics proceeding by the presentation of the components
of NP-similarity metric. Briefly speaking, the similarity metrics Family.to.Test Cover
similarity metric FT , and its complement Test.to.Family Cover similarity metric TF ,
compute the rate of satisfiability of the strong qualitative characteristics of a family
Fk by the casted adjacency matric T c of test sample T and vice versa using the
family’s ID-Matrix. On the other hand, mean Jaccard similarity metric J and mean
Bray-Curtis similarity metric BC , measure the mean values of similarity in terms of
relational and quantitative characteristics respectively, between T and the members
of a known malware family Fk.

Family ID-Matrix. We next define the family ID-matrix which focuses on storing
valuable information about the significance of an edge across the members of a mal-
ware family. Thus, we focus on edges that exist in most of GrG graphs D∗[P ] of the
members in a family, constituting hence a qualitative characteristic of their family.
More precisely, we are based on the notion that, if a specific edge appears in the ma-
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· · ·

· · ·

Family F1

Family F2 Family F3
Family F48

F1(i, j) = S
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6 (p, q) = 60

M1

7 (p, q) = 0

M1

8 (p, q) = 0

Figure 4.3: The ID-Matrix.

jority of the members’ GrG graphs inside the malware family, then this edge exposes
a greater significance, in contrast with another one that exists in the minority of them.

Hence, in order to represent the significance of an edge, we take into account the
percentage of the members in a family in which this edge has a non-zero value, and
assign a significance tag to the corresponding cell of family’s ID-Matrix as shown
in Figure 4.3. The significance tags are assigned, partitioning the values of edge ap-
pearance percentage (ranging from 0 to 100) to three categories, namely SIGNIFICANT,
FUZZY, and INSIGNIFICANT, or, for short, S, F, and I, respectively.

In our model, the SIGNIFICANT tags cover cells containing values in the range
[0.95 − 1] (i.e. Fk(i, j) = S), the FUZZY tags cover cells containing values in the range
(0.05− 0.95) (i.e. Fk(i, j) = F), while the INSIGNIFICANT tags cover the ones containing
values in the range [0 − 0.05] (i.e. Fk(i, j) = I). Hence, the Family ID-Matrix is a
30×30 (i.e., cardinality of system-call groups) matrix, one per malware family, where
its cells have tags representing the significance of each edge in this family.

Below, we show an accumulative view of the aforementioned partitioning on the
edge-appearance percentage ranges.
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Fk(i, j) =



S, if |Mℓ(i,j)>0|
mk

∈ [0.95, 1]

I, if |Mℓ(i,j)=0|
mk

∈ [0.95, 1]

F, otherwise

(4.11)

where, Mℓ (1 ≤ ℓ ≤ mk) is the ℓ-th member of malware family Fk, |Mℓ(i, j) > 0| is the
number of members of family Fk in which the edge (i, j) (i.e. relation from System-
call group i to System-call group j) has a non-zero value (0 ≤ |Mℓ(i, j) > 0| ≤ mk),
and mk is the size of malware family Fk.

It is worth noting that, in order to compare the test sample’s adjacency matrix T

with the ID-Matrix Fk of the kth family of the set Q, we first need to make a cast on
test sample’s adjacency matrix T . Recall that, the cells of the test sample’s adjacency
matrix T have either zero or non-zero values. Thus, we cast any non-zero values
existed in test sample’s adjacency matrix T into 1s resulting the casted matrix T c.

Finally, we ought to notice that the approach presented above, as also the selection
of the corresponding percentage ranges, are based on the intuition that we mostly take
into account the edges of GrGs that exist in the majority of the members in a malware
family, as it depicts a strong qualitative characteristic for that family. So, since a value
close to 1 would allow only a few edges to be tagged as significant, reducing so our
field of appliance where only the most frequent edges would be tagged as significant,
we experimentally tuned optimally this range to [0.95, 1]. Hence, the most significant
edges are those who exist in at least 95% of the members of a malware family, while,
on the other hand, the least significant ones (insignificant) are those that do not exist
in at least 95% of the members of a malware family.

Family.to.Test Cover. The main process of this similarity metric is to compute the
satisfiability of the strong qualitative characteristics of a malware family Fk (i.e.,
Fk(i, j) = S) by the edges of test sample T ’s GrG graph (i.e., Fk(i, j) = S∧T c(i, j) = 1).
In order to compute such a quantity by a percentage we divide by the total number
of cells in family’s ID-Matrix Fk that have a SIGNIFICANT tag (i.e., Fk(i, j) = S). Thus,
the formula that gives the Family.to.Test cover similarity metric is the following:

FT (T c, Fk) =
|Fk ∩S→1 T

c|
|Fk = S|

(4.12)
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where, Fk is the ID-Matrix of the kth family of the set Q and T c is the test sample’s
casted adjacency matrix.

Test.to.Family Cover. In contrast with Family.to.Test Cover similarity metric, Test.to.Family
Cover similarity metric aims on computing the satisfiability of the edge existence of
T ’s GrG graph by the strong qualitative characteristics in the ID-Matrix of malware
family Fk (i.e., T c(i, j) = 1 ∧ Fk(i, j) = S). In order to compute such a quantity by a
percentage we divide by the total number of cells edges in T ’s GrG graph. Thus, the
formula that gives the Test.to.Family Cover similarity metric is the following:

TF (T c, Fk) =
|T c ∩1→S Fk|
|T c = 1|

(4.13)

where, again Fk is the ID-Matrix of the kth family of the set Q and T c is the test
sample’s casted adjacency matrix.

Mean Jaccard similarity. This metric measures the mean value of similarity in terms
of relational characteristics, regarding the edge co-existence, between the test sample’s
casted matrix T c and the casted matrices of the members of a malware family Fk.
So, for a malware family Fk, containing mk members, let M c

1 ,M
c
2 , . . . ,M

c
mk

be the
casted matrices of the members of Fk, we then compute the mean Jaccard similarity
as follows:

J (T c, Fk) =

mk∑
ℓ=1

J(T c,M c
ℓ )

mk

(4.14)

where, Fk is the kth malware family of a set Q, T c is the test sample’s casted adjacency
matrix, and mk is the size of the family Fk.

NP-similarity Computation. Having already computed the Mean Jaccard J (·), Fam-
ily.to.Test Cover FT (·) and Test.To.Family Cover TF (·) similarity metrics, we next
define their corresponding NP-similarity as follows:

NP (T, Fk) = J (T c, Fk)× TF (T c, Fk)× FT (T c, Fk). (4.15)

where, T is the test sample and Fk is a known malware family.
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Chapter 5

Detecting Malicious Behaviors

5.1 Computing ∆-Similarity between Group Relation Graphs

5.2 Computing Cover Similarity between Coverage Graphs

5.3 Computing ∆-Similarity between Temporal Graphs

Next there is presented the utilization of the proposed similarity techniques for dis-
tinguishing malicious from benign samples.

5.1 Computing ∆-Similarity between Group Relation Graphs

We implement our malware detection model by first performing a transformation
to the initial ScD-graphs, converting them to GrG graphs as we described in the
previous section, and then computing the ∆-similarity metric in order to measure
the structural similarities between two given GrG graphs. Next, we describe the main
process of determining if an unknown sample is malicious or benign based on the
result of ∆-similarity metric when applied on its GrG graph and a set of GrG graphs
that represent known malicious software samples organized into malware families.
In Figure 5.1 we depict the total architecture of our proposed model for detecting
malicious software samples.

In the example of Figure 5.1 we suppose we are given an unknown test sample T
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∆(D∗[T ], D∗[Mkl]) < λ

∆(D∗[T ], D∗[Mkl]) ≥ λ

T ∈ Malware

Figure 5.1: Architecture of the detection model.

that we do not know if it is malicious, and we are asked to decide if T is malicious or
benign. Having a data-base with the GrGs of known malware samples organized into
families, firstly we proceed by constructing the GrG representing T using its ScDG.
Once D∗[T ] is been constructed, we compute the ∆-Similarity metric between D∗[T ]

and any D∗[Mij] (i.e., the j-th member of the i-th malware family), or, in other words,
between the GrG representing T and any GrG representing a known malware into
our data-base. So, let S the total number of malware samples in our date-base, we
result to S values of ∆-Similarity, one per pair (T , Malware Sample), where if the
maximum value appeared is greater that a threshold λ indicates that T is malicious.

Hence, formulating the whole process, in order to determine if the GrG graph
D∗[T ], which represents an unknown software sample T , is malicious or benign we
compute the ∆-Similarity between D∗[T ] and every graph representing a known mali-
cious software from any malware family. More precisely, for each malware family we
store, as a representative, the maximum result of ∆-Similarity exhibited by a member
of her (i.e., the minimum distance). Finally, we compare the maximum result of ∆-
Similarity produced among all the representatives with a predefined experimentally
tuned threshold λ, and if this value is above that threshold we claim that the GrG
graph D∗[T ] represents a malicious software.
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Figure 5.2: (a) The 2D-representation of the graph D+[P ] of a GrG graph D+[P ] produced

by the ScDG of an unknown software; (b) The 2D-representation for the case where the ScDG

graph is a known malicious software.

5.2 Computing Cover Similarity between Coverage Graphs

In order for a program P to construct its corresponding CvG graph C[P ] from the
underlying vertex-weighted graph D+[P ] of a GrG graph D∗[P ], we present a different
way to compute the domination relations defined on the vertices of D+[P ]. In fact, we
utilize the degrees and the vertex-weights of the graph D+[P ] and we map the vertices
v1, v2, . . . , vn of D+[P ] to points p1, p2, . . . , pn on the Cartesian plane; for a point pi, we
denote by x(pi) and y(pi) the x− and y−coordinate of pi, respectively. More precisely,
given the graph D+[P ] of a GrG graph D∗[P ], we represent each vertex vi ∈ V (D+[P ])

as a point on the Cartesian plane based on the mapping:

vertex vi → point pi = (deg(vi), w(vi)).

In Figure 5.2 we show a 2D-representation of the underlying vertex-weighted graph
D+[P ] of a GrG graph D∗[P ]. The 2D-representation in Figure 5.2(a) depicts the
domination relations on the vertices of the test sample’s GrG, while the one in Fig-
ure 5.2(b) depicts the domination relations on the vertices of the malware sample’s
GrG. As we can observe, according to the definition of the domination relation, in
Figure 5.2(a) the domination sets of the vertices vi, vj , vk, and vl are Di = {vj},
Dj = ∅, Dk = {vj}, and Dl = {vk, vj}, respectively, while in Figure 5.2(b) the vertex
domination sets of the corresponding vertices ui, uj , uk, and ul are D′

i = {ul, uj},
D′

j = ∅, D′
k = {ul, uj}, and D′

l = {uj}, respectively.
As we described previously, we represent a GrG graph D∗[P ] on the Cartesian

plane through the use of its underlying vertex-weighted graph D+[P ] of D∗[P ]. How-
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ever, despite the fact that the degree of a vertex is uniquely defined, its corresponding
weight may be computed in various ways. Hence, in our model we follow two ap-
proaches namely the sum and the mean vertex weights. For a vertex vi ∈ V (D∗[P ]),
the former is defined as ws(vi) =

∑
vj∈adj(vi) w(vi, vj), while the later is defined as

wm(vi) = ws(vi)/deg(vi).
Through the implementation of our graph-based malware detection model, we

first convert the initial ScDG graphs to GrG graphs, and then compute the domination
relations, utilizing the weight and the degree of each vertex of the underlying vertex-
weighted graph D+[P ] of GrG graph D∗[P ], to construct the corresponding CvG graph
C[P ] as described previously.

In order to perform the malware detection process, we actually compute graph
similarity between pairs of CvG graphs: the CvG graph of an unknown sample and a
graph of a set of CvG graphs from known malware specimens. The graph similarity
is computed over the edge set of each pair of CvG graphs using the Jaccard similarity
metric.

Let C[P1] be the CvG graph of an unknown sample and C[P2] be a CvG graph of
the set of known malware samples. The Cover-Similarity CS(·) of the graphs C[P1]

and C[P2] is computed as follows:

CS(C[P1], C[P2]) =
E(C[P1]) ∩ E(C[P2])

E(C[P1]) ∪ E(C[P2])
, (5.1)

where E(C[P1]) and E(C[P2]) are the edge sets of the two tested CvG graphs; note that,
the vertices v∗1, v

∗
2, . . . , v

∗
n of the graph C[P1] correspond to the vertices u∗

1, u
∗
2, . . . , u

∗
n

of the graph C[P2].

5.3 Computing ∆-Similarity between Temporal Graphs

Next we discuss the operation of our proposed graph based malware detection model,
and present an overview on its constructional principles alongside with a brief dis-
cussions over its implementation aspects.

Model Overview. We implement our malware detection model by first performing a
transformation to the initial ScDG graphs, converting them to GrG graphs, computing
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Figure 5.3: Architecture of the detection model.

then their corresponding Temporal Graphs (i.e., T f (D∗[P ])orT F (D∗[P ])), while, for
any given test sample we follow the same procedure as to conclude with the compu-
tation of ∆-Similarity metric in order to measure the structural similarities between
the graphs of the two objects.

Next, we describe the main process of determining if an unknown sample is
malicious or benign based on the results of our similarity metrics when applied on
the corresponding Temporal Graph of a test sample and a set of Temporal Graphs
that represent known malicious software samples. In Figure 5.3 we depict the total
architecture of our proposed model for detecting malicious software samples.

Implementation Aspects. In the example of Figure 5.3 we suppose we are given an
unknown test sample τ that we do not know if it is malicious, and we are asked
to decide if τ is malicious or benign. Having a database with the Temporal Graphs
of known malware samples. Once the corresponding Temporal Graphs have been
constructed, we compute the our similarity metrics between the Temporal Graph of τ
and each Temporal Graph that represents a malware sample in our database. So, let
S the total number of malware samples in our database, we result to S values in our
measurements on our similarity metrics, one per pair (τ, Si), where if the maximum
value exhibited is above a predefined threshold λ it indicates that τ is malicious.

So, formalizing the above implementation of the proposed approach, firstly for each
member of each malware family, it is computed the “median-vertices” represented on
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the Cartesian plane by the medians of in/out degrees and averaged in/out weights for
each node. Next, we compute the δ-distance between these vertices and each of the
corresponding vertices of the test sample’s behavioral graph. Note that, in order to
compute an similarity metric utilizing the Temporal Graphs, it is required to iterate
over all the epochs of the segmented graph in order to compute the average similarity
exhibited throughout the epochs. Finally, the distances are summed up and the ∆-
Similarity is computed, where compared to a previously tuned threshold λ the test
sample is distinguished as malicious or not.
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Chapter 6

Classifying Malicious Samples

6.1 Malware Classification computing SaMe and NP Similarity Metrics between

Group Relation Graphs

6.2 Malware Classification Computing ∆-Similarity between Temporal Graphs

Next there is presented the utilization of the proposed similarity techniques for in-
dexing malicious samples into known malware families.

6.1 Malware Classification computing SaMe and NP Similarity Met-

rics between Group Relation Graphs

Our classification method is based on the application of the proposed similarity
metrics described above. More precisely, our method selects those families of Q
that are most similar to sample T according to SaMe-similarity metric, calling them
SaMe-dominant families and denoting this subset of Q as DSaMe(Q). Next, we pro-
ceed by measuring the similarity between the malware sample T and all the families
in the set DSaMe(Q) produced in the previous step, computing the NP-similarity
as to select, respectively, the NP-dominant family denoting this subset of DSaMe(Q)
as DNP (DSaMe(Q)). This subset (DNP (DSaMe(Q)) ⊆ DSaMe(Q) ⊆ Q) is consisted by
solely one malware family, let Fk, into which the malware sample T will be classified.
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Figure 6.1: Architecture of the classification model computing the SaMe and NP similarity
metrics between GrG graphs.

In Figure 6.1 we show a representation of the procedure for classifying an un-
known test sample T to a known malware family utilizing the proposed methods (i.e.,
SaMe-similarity and NP-similarity). Our classification technique proceeds as follows:
given a set Q = {F1, F2, . . . , FN} of known malware families and an unclassified mal-
ware sample T , we compute the SaMe-similarity between T and each family, keeping
the maximum result (representative) for each family resulting to Q results, one per
family. In this step, we select those families that their representatives are more simi-
lar to test sample T according to SaMe-similarity (SaMe-dominant families), consisting a
subset of Q of families denoting it with DSaMe(Q). Next,we compute the NP-similarity
between T and each family of the set DSaMe(Q). In this step, we select the family that
is more similar to test sample T according to NP-similarity (NP-dominant family),
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consisting a subset of DSaMe(Q) of families denoting it with DNP (DSaMe(Q). The set
that contains the family into which the test sample T will be classified is denoted by
I(Q) containing this family. Finally, as we mentioned above, the set DNP (DSaMe(Q)
contains only one family let Fk, so, if I(Q) = {Fk} then we classify test sample T to
malware family Fk.

6.2 Malware Classification Computing ∆-Similarity between Tem-

poral Graphs

Next we discuss the operation of our proposed graph based malware classification
model, and present an overview on its constructional principles alongside with a brief
discussions over its implementation aspects.

6.2.1 Model Overview.

Our proposed method is based on application our proposed similarity metrics over the
set of known malware families in order to classify on them an unclassified malware
sample, let τ . More precisely, our method selects the family that is most similar to τ

according to the similarity results exhibited by the measurement of ∆-Similarity met-
ric, calling that family dominant family. More precisely, using our proposed similarity
metrics, we iterate over all the members of all the known malware families measuring
the similarity between each pair of τ , Mik, where Mik is the ith member of the kth

malware family. Then, for each family we select a member that is the most similar
to τ , according to ∆-Similarity metric, and denote this member as representative

sample for this specific family. Finally, among all the representative samples for all
the known malware families, we select to classify the unclassified test sample τ to the
malware family that its representative sample exhibits the maximum similarity with
τ according to ∆-Similarity metric, denoting this family as dominant family.

6.2.2 Implementation Aspects.

In the example of Figure 6.2 we show a representation of the procedure for classi-
fying an unknown test sample τ to a known malware family utilizing the aforemen-
tioned methods (i.e., ∆-Similarity and Cover-Similarity metrics). More formally, our
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Figure 6.2: Architecture of the classification model computing the ∆ similarity metric be-

tween temporal instances of GrG Graphs.

classification technique proceeds as follows: given a set of known malware families
F1, F2, . . . , FN} and an unclassified malware sample τ , we measure the ∆-Similarity
and Cover-Similarity metrics over all the members of each family, keeping the max-
imum result (i.e., representative sample) for each family resulting to N results (i.e.,
N representative samples), one per family. Then, we classify the test sample to the
family that exhibited the maximum value among all results. In other words, we com-
pute the aforementioned similarity metrics between τ and all the malware families
of the data-set, selecting as the dominant family, the one that has the representative

sample that exhibits the maximum value in our similarity measurements.
So, formalizing the above implementation of the proposed approach, firstly for each

member of each malware family, it is computed the “median-vertices” represented on
the Cartesian plane by the medians of in/out degrees and averaged in/out weights
for each node. Next, we compute the δ-distance between these vertices and each
of the corresponding vertices of the test sample’s behavioral graph. Note that, in
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order to compute an similarity metric utilizing the Temporal Graphs, it is required to
iterate over all the epochs of the segmented graph in order to compute the average
similarity exhibited throughout the epochs. Finally, the distances are summed up and
the ∆-Similarity is computed, where the test sample is set to be closer to a member
of a malicious family (i.e., representative sample and dominant family, respectively),
where the representative sample that exhibits the major similarity according to ∆-
Similarity indexes the test sample to its malware family.
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Chapter 7

Spread Prevention

7.1 Background and Assumptions

7.2 Simulating Town’s Planning through Weighted Graphs

7.3 Modeling the Transporting of Mobile Nodes Through Shortest Paths Algorithms

7.4 Implementing the Epidemic Models

7.1 Background and Assumptions

Our proposed system, for investigating the effect of counter-measure’s response time
on malware’s spread, is consisted by our propagation model that simulates the spread
of a malware to proximal mobile devices, as well as the mobility model and its main
principles concerning the motion of the devices in a city. Additionally, we incorporate
a city-representation model to draw the town-planning through an n × m matrix
consisted by 0s and 255s, where 0 denotes a point on a road of the city and 255

denotes any obstacle (e.g., buildings) produced by an image taken from Google Maps.
Our malware propagation model incorporates two of the most applied extensions

of the SIR epidemic model, namely SIRpI and SIRpS epidemic models where each
device can be either in Susceptible, Infected or Repaired (Immunized) state. On the
other hand, our device mobility model generates traces, utilizing shortest path algo-
rithms, for the mobile devices which are moving inside a city. Note that the city is
represented by its image taken from Google Maps and its town-planning is modeled
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by an n×m matrix of 0s and 255s, where 0 denotes a point on a road while 255 de-
notes any obstacle. We utilize our malware propagation and device mobility models
to develop a simulator that we use to study the spread of malware in mobile devices
with respect to response-time of a counter-measure.

As far as the architecture of the proposed system, our main consideration is to
model the user awareness and the capability of a security software to provide up to
date and reasonably fast protection through response-time gradation. We implement
and simulate the selected epidemic models SIRpI and SIRpS and, through a series
of experiments, we investigate the behavior of the spread in each case, taking into
account the presence of a counter-measure activated on its corresponding response
time. Given an initially infected population, we perform a series of simulations for
various response-time intervals, concerning also other factors which affect the mal-
ware’s propagation, i.e., initially infected population, network density and malware’s
size, establishing upper bounds on the response-time needed by a counter-measure,
such as a malware detector [7], in order to prevent pandemic. In other words, through
our model we determine the maximum permitted time for a counter-measure to be
activated when a specific percentage of the population is infected in order to guar-
antee that not all the susceptible devices in the city get infected and some (or, all)
infected ones get sanitized. We finally present experimental results for the pandemic
prevention provided by our simulations for various response-time intervals, where
the contribution of this work extends to the interpretation of the provided results.

It is worth noting that, given any town’s planning and an epidemic model that de-
scribes the spread, our model can efficiently simulate the procedure and consecutively
establish for that case an upper bound on the maximum response-time permitted for
a counter-measure to be activated in order to prevent the pandemic.

7.2 Simulating Town’s Planning through Weighted Graphs

Our model simulates malware propagation to mobile devices that are changing their
positions, or geological coordinates, according to a town-planing. In order to make our
simulation closer to reality we used images of real towns-planning from Google Maps.
We transform these images from RGB to gray-scale color system and then to black
and white using an appropriate threshold. Hence, having an image of dimensions

93



n×m representing the town-planing of the city, we transform it to an n×m matrix
Mmap with values 0s and 255s, where 0 represent a free space (i.e., road) and 255

represents any obstacle (i.e., building). So, in our simulation, we permit a mobile
device to move into a position with coordinates (x, y) if the corresponding cell (i, j)
of matrix Mmap has value 0. In Figure 7.1 we illustrate the construction of the town-
planning representation.

In our model,we compute the attraction level of each cell based on its distance from
a set of points that we call Attraction and we denote them with A (see, Figure7.2(c)).
Hence the higher the distance of a cell from an attraction point A the lower its
attraction level. For the non-zero cells of Mmap it holds that its attraction level is
computed by its closest attraction point A. More precisely, for a given city town-
planning we define a set of points A1, A2, . . ., Ak, called attractions, from which the
attraction level ℓi of each map-cell ui is computed with respect to its distance from
the closest attraction Aj to this cell, 1 ≤ i ≤ |V (Gmap)| and 1 ≤ j ≤ k; the less the
distance the higher the attraction level of ui map-cell. To represent the attraction level
of each cell with value 0 in Mmap matrix, we define intervals of values [1− 3], [4− 7]

and [8 − 10] to depict cold-, warm-, or hot- spots reflecting the attraction level of its
point according to the distance of each cell from its closest attraction point A. In our
model, the range [1 − 3] represents in descending order cold-spots, the range [4 − 7]

represents nearly warm-spots, while [8− 10] represents in ascending order hot-spots
(i.e., the coldest spot has value 1 while the hottest one has value 10). So, if a cell
has attraction level w ∈ [1 − 3] (i.e., cold-spot) it is a distant cell according to its
closest attraction point. Respectively, if w ∈ [4 − 7] then the corresponding cell is in
a medium distance from its closest attraction point nearly (i.e., warm-spots), while if
w ∈ [8 − 10] then the cell has a very close attraction point. In other words with this
10-value scale we represent the cold-spots with values near to 1, the warm-spots with
values around 5, and the hot-spots with values near 10. Finally, having the attraction
levels of each cell, we compute the weight w of an edge (ui, uj) in Gmap is computed
as 10 − ℓui

+ 10 − ℓuj
+ 1, where ℓui

and ℓuj
are the attraction levels of nodes ui and

uj , respectively.

94



(a) Initial image from Google Maps (b) Gray-scale image

(c) Black and White image (d) Grid-view of the Black and White image

Figure 7.1: (a) − (c) The transformation of a Google Maps image to a Black and White

matrix; (d) Zoom-in to a part of a Black and White image.

7.3 Modeling the Transporting of Mobile Nodes Through Shortest

Paths Algorithms

In our model, we simulate the movements of a mobile device by changing the coordi-
nates of a node taking into account the corresponding cells (i, j) in the Mmap matrix
with values 0 and 255 that represents the town-planning. More precisely, we permit
a device to move on a point in the map if the corresponding cell (i, j) in Mmap matrix
has value 0 since such a cell represents a road or, equivalently, we do not allow a de-
vice to move on a cell with value 255 since it represents any obstacle such as building.
To make our simulation more realistic, we propose and implement a trace generator
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for device mobility, that is, for each node we generate a trace between an initial posi-
tion and a target position. In particular, we set each node at a pre-defined point with
coordinates (i, j) on the grid and then a destination point (i′, j′) is assigned on that
as to be reached through a path computed by a shortest path algorithm computed
on the weighted directed graph we define next, and which we shall call it Gmap.

Definition 7.1. The weighted directed graph Gmap represents the town’s planning
using its Mmap representation; it is constructed as follows:

◦ its vertices V (Gmap) correspond to the cells of matrix Mmap with value 0, and

◦ two vertices are joined by an edge if their corresponding cells with value 0 are
adjacent in the Mmap matrix; note that, a cell (i, j), with value 0 in the Mmap

matrix, is adjacent to every cell with value 0 in its 8-neighborhood.

In Figure 7.2, we show in detail the construction of the graph Gmap from the Mmap

matrix. In particular, in Figures 7.2(a) and 7.2(b) we show the black/white repre-
sentation of an example map representing each point of a road with value 0 (black)
and any obstacle (building) with value 255 (white), in Figure 7.2(c) we show the at-
traction level matrix which is constructed by assigning to its cells values in the range
[1, 10] depicting the cold-, warm- and hot- spot of the city, in Figure 7.2(d) we assign
an ID on each point, indicating a node on the Gmap graph, while in Figure 7.2(e) we
present the resulting graph Gmap.

The proposed device mobility model is developed in such a way to reflect in some
fashion the behavioral motion of pedestrians. More precisely, by the start of each
experiment we define for each mobile device a start-destination set of points. Posed
initially at random they try to reach the destination following a shortest path between
them preserving the pass of specific points of the city with different attraction level
(in our terminology: cold-, warm- and hot-spots). Once a mobile device reaches the
assigned destination a new one is randomly assigned, and so on, until the end of the
experiment. The reasons we chosen to approximate the selection process of destination
points, are indicated in the fact that while mobile devices have a destination assigned
to be in the boundary areas of the city (not the one they are located at that time) the
probability to cross the center of the city area is increased. Scaling up the view, we
observe that the orbits of all devices is more probable to be crossed around the city
area’s center. A congestion occurs around the city center increasing the probability
of any pair of nodes to appear close enough to probe the malware.
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(a) The matrix Mmap
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(e) The graph Gmap

Figure 7.2: Map representation and undirected weighted graph construction.

To this point, it is worth noting to refer that the destination points are not ran-
domly assigned as for each device we select a destination that is located to the NW,
N, NE, W, E, SW, S, SE boundaries of the map, where once a mobile device reaches the
assigned destination, then a new destination point is assigned and thus we guarantee
that always the devices change their positions.

Finally, deepen into the relation between the graphs Gmap and Gdev we can claim
that the structure of Gdev strongly dependents on the structure of Gmap. The relation
between these two graphs relies on the property that the density of Gdev (by means
of sparse or dense graphs) is affected by the cardinalities of vertex sets V (Gdev) and
V (Gmap), as the cardinality of edge set E(Gdev), which determines the density of Gdev,
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is inversely analogous to cardinality of V (Gmap).

Definition 7.2. For a given set of mobile devices, say, dev, that are moving inside a
city represented by its corresponding Gmap we define the density of this network (i.e.,
Gdev), denoting it with D as follows:

D(Gdev, Gmap) =
|V (Gdev)|
|V (Gmap)|

, (7.1)

where |V (Gdev)| = |I| + |S| correspond to the number of infected and susceptible
devices respectively, and from which it follows that for a given number of devices,
say, n, the higher the cardinality of |V (Gmap)|, the less the density of Gdev.

7.4 Implementing the Epidemic Models

Focusing on investigating the effect of counter-measure’s response time on proximity
malware’s spread between mobile devices, we decompose the requirements of the
modeled settings concerning mainly the malware propagation procedure as also the
behavioral characteristics of the network formed among the mobile devices. Addition-
ally, the proposed malware propagation model takes into account factors that affect
the spread such as the range of mobile devices, the size of the spreading malware,
and the velocity of mobile devices.

In order to simulate malware’s propagation to proximal mobile devices, we take
into account that the underlying network is formed on-the-fly between the devices
while they are moving inside the city. This network can be represented by an undi-
rected graph (we shall denote it Gdev throughout the paper) that is modifying its
structure (i.e., topology by means of edge creations and deletion among its nodes -
devices). So, we could claim that during a specific period of time, let [t1, tn] this graph
can be referenced by its structurally different instances as G1

dev, G
2
dev, ..., G

n
dev.

Definition 7.3. We define Gdev = (I, S, E) to be a bipartite graph whose vertices
correspond to the devices of the network and an edge between two vertices occur if
their corresponding devices have distance less than r at time t.

In Figure 7.3 we illustrate the process of constructing the bipartite graph Gdev. In
Figure 7.3(a) we depict how the mobile devices are moving inside a city represented
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Figure 7.3: Mobile devices moving inside a city represented by its Mmap matrix, constructing

the bipartite graph Gdev by the links formed among them.

by its Mmap matrix; recall that cells with value 0 correspond to roads while cells
with value 255 correspond to obstacles. The circles around the mobile devices show
the range of them while their colors, blue or red, correspond to transmissions by
susceptible or infected devices respectively. Then, in Figure 7.3(b), we illustrate how
we create the bipartite graph Gdev: for any pair of mobile devices (i.e., vertices in the
Gdev), we add an edge between them in Gdev if their distance is less than r. Concerning
the above network represented by Gdev, next we provide some definitions about its
characteristics.

Definition 7.4. Let τ1, τ2, ..., τk be the k states of a given epidemic model M. We
define the state-cover C(τ ∗) of state τ ∗ ∈ {τ1, τ2, ..., τk} as the rate of the objects (i.e.,
mobile devices) that are in state τ ∗ by the sum of the objects that are in any state of
the epidemic modelM, that is

C(τ ∗) =
|τ ∗|∑k
i=1 |τi|

. (7.2)

In our model a state τi ∈ {S, I, Rp, Im}. Additionally, for the infected state I and the
susceptible state S, the Infected-cover and the Susceptible-cover are defined as follows:

C(I) =
|I|

|S|+ |I|+ |Rp|+ |Im|
and C(S) =

|S|
|S|+ |I|+ |Rp|+ |Im|

, (7.3)
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respectively, where |Rp| is the number of devices in the repaired state Rp of our
model.

Definition 7.5. Let τ ∗1 , τ ∗2 ∈ {τ1, τ2, ..., τk} be two states of a given epidemic model E.
We define the state-rate R(τ ∗1 τ

∗
2 ) of states τ ∗1 and τ ∗2 as the rate of the number of the

objects belonging to τ ∗1 state over the number of objects that belong to τ ∗2 state, that
is:

R(τ ∗1 , τ
∗
2 ) =

C(τ ∗1 )

C(τ ∗2 ) + 1
, (7.4)

where the addition of 1 in the denominator avoids a division with 0. By definition it
follows that R(τ ∗1 , τ

∗
2 ) =

|τ ∗1 |
|τ ∗2 |+ 1

.

The state-rates IS-rate and SI-rate referring the infected state I and the susceptible

state S, respectively, are defined as follows:

R(I, S) =
|I|
|S|+ 1

and R(S, I) =
|S|
|I|+ 1

. (7.5)

In our model, in order to simulate the propagation of malware we allow the activation
of a counter-measure to remove the malicious software from the infected devices. This
feature is adapted to our model in order to remove, or clean in some fashion, the
malicious software from the device. Specifically, in our model, if a device remains for
a period of time (i.e., simulation steps demanded for the transmission of all packets of
the malware) within a specific radius from an infected device then it gets infected too.
However, if this device moves out of range then it would need more time, in terms of
simulation steps, in order to get infected. Upon the activation of a counter-measure,
it sanitizes the device by removing the malware. However, different epidemic settings
provide the counter-measure with the ability to immunize or not the infected mobile
device.

Concerning the practical infection, a susceptible mobile device gets infected, when
the entire malicious software is located in it. On the implementation of our model
we abstract the constructive representation of malicious software that is partitioned
to packets in order to be transmitted. By design, we refer to a packet as the unit that
could represent any given number of PDU packets. So, in our model a susceptible
mobile device is defined as infected when has caught by its nearby mobile devices all
the packet units of the spreading malware.
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Based on the property that if the pandemic is prevented for a given number n

of packets, then it is also prevented for any number m > n; this is not always true
for m < n. Following an opposite argument, it follows that if the pandemic is not
prevented for a given number of packets n, then it is also not prevented for any
number l < n; similarly, this is not always true for l > n. Since we are interested in
investigating the spread of a proximity malware in its worst case scenarios we start by
simulation an as small as possible one, and then to explore its propagation behavior
by increasing its size.

On the other hand, regarding the repair process that depends on the implemen-
tation of the epidemic models utilized (i.e., SIRpI or SIRpS epidemic models), the
counter-measure’s reaction in our proposed model removes at once all the packet
units consisting the malware from the infected mobile devices. Particularly for the
SIRpI epidemic model, an after-repair immunization process guarantees that the de-
vices is no longer susceptible to the spreading malware. To this end we ought to make
clear that the counter-measure’s reaction refers to the process of its activation after a
period from the time where the susceptible device gets infected, while the period of
time need by a counter-measure from the time a susceptible device is considered as
infected until the start of the repair process is called Response-Time (throughout the
paper we shall denote it as Rt).

101



Chapter 8

Evaluation

8.1 Experimental Setup for Malware Detection and Classification

8.2 Preventing Malware Pandemics

8.1 Experimental Setup for Malware Detection and Classification

In order to evaluate our proposed malware detection and classification techniques we
use a data-set of 2631 malware samples from 48 malware families, each containing
from 3 to 317 malware samples, and also a set of 35 benign samples that cover
a wide variety of commodity software types including editors, office suites, media
players, etc. To this point, it is of major importance to mention that, for evaluation
purposes, we use the same data-set of malicious and benign ScDG graph samples
as in [5] transforming each sample’s ScDG graph D[P ] into GrG graph D∗[P ], based
on the grouping of system-calls as described in the corresponding chapter. The set
Q of the 48 malware families along with their sizes (i.e., number of members) are
listed in Table 8.1, note that the abbreviations DNSCGR stands for DNSChanger and
OLG stands for OnLineGames. On the other hand, in Table 8.2 we present the set of
benign software samples used for the evaluation of the detection phase, concerning
the false positive rates. Additionally, we ought to notice that even the number of the
benign samples is not comparable to the number of malware samples, the diversity
of them covers the full range of the commodity software products can be deployed
in any computer. So, in other words, we can say that we use 48 malware families
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Family Name Size Family Name Size Family Name Size

ABU, Banload 16 DNSCGR, DNSCGR 22 OLG, Mmorpg 19

Agent, Agent 42 Downloader, Agent 13 OLG, OLG 23

Agent, Small 15 Downloader, Delf 22 Parite, Pate 71

Allaple, RAHack 201 Downloader, VB 17 Plemood, Pupil 32

Ardamax, Ardamax 25 Gaobot, Agobot 20 PolyCrypt, Swizzor 43

Bactera, VB 28 Gobot, Gbot 58 Prorat, AVW 40

Banbra, Banker 52 Horst, CMQ 48 Rbot, Sdbot 302

Bancos, Banker 46 Hupigon, ARR 33 SdBot, SdBot 75

Banker, Banker 317 Hupigon, AWQ 219 Small, Downloader 29

Banker, Delf 20 IRCBot, Sdbot 66 Stration, Warezov 19

Banload, Banker 138 LdPinch, LdPinch 16 Swizzor, Obfuscated 27

BDH, Small 5 Lmir, LegMir 23 Viking, HLLP 32

BGM, Delf 17 Mydoom, Mydoom 15 Virut, Virut 115

Bifrose, CEP 35 Nilage, Lineage 24 VS, INService 17

Bobax, Bobic 15 OLG, Delf 11 Zhelatin, ASH 53

DKI, PoisonIvy 15 OLG, LegMir 76 Zlob, Puper 64

Table 8.1: The set Q of the 48 malware families F1, F2, . . . , F48 provided by Babic,
along with their sizes (i.e., number of members), as used in [5]

with various number of members in each one, against 35 benign families with one
member per family.

Benign Software Products

Adobe_Reader Freecell MSN_Messenger Skype

Apple_Software_Update Freeciv-(server) Netcat_port_listen-(scan) Solitaire

Autoruns GIMP NetHack Sys_information

Battle_for_Wesnoth Google_Earth Notepad-WordPad Task_Manager

Chrome Hello_world OpenOffice_Writer Tux_Racer

Chrome_Setup Internet_Explorer Outlook_Express uTorrent

Copy_to_sys_folder iTunes ping VLC

Firefox Minesweeper Self_extracting_archive Media_Player

Table 8.2: The set of benign software samples used for the evaluation of false positive
of the detection phase, as used in [5]
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Finally, before we proceed with the presentation of the detection and classification
results achieved by our model, we ought to clarify some issues concerning the data-
set used for evaluation and the presentation of results achieved by other detection
or classification models. As we will discuss later in this section, we present various
results concerning the detection rates and the classification accuracy from various
graph-based and non graph-based models that implement different algorithms and
use different data-set for their evaluation. Hence, a straight comparison between our
model and other detection or classification models (noting that they implement differ-
ent algorithms and evaluate with different data-sets) is not applicable, we just present
the results achieved by these models and provide a discussion on them. However,
we ought to notice that in the cases of [6] and [5] where the data-set used for the
evaluation of the detection rates is the same with the one used in this work we can
proceed with a straight comparison. So, summarizing, next in 8.1 we present the
detection results of our model, and compare them against [6] and [5] which use the
same data-set (see, Table8.3).

8.1.1 Detection Results over the Proposed Techniques

Next there are presented the experimental results exhibited when evaluating the detec-
tion accuracy of the proposed model. The detection results achieved by the proposed
model, utilizing the proposed similarity metrics (i.e., Delta-Similarity and Cover Sim-
ilarity metrics) and the graph-based representations (i.e., Group Relation Graph and
Coverage Graph) of the software samples.

Detection Ratio over GrG and ∆-Similarity

In order to evaluate the potentials of our model concerning its ability to distinguish
a GrG graph that represents a malware sample from a GrG graph that represents a
benign one, we perform 5-fold cross validation utilizing the data set we described
above. Additionally, we set up the detection threshold λ = 0.97, the parameters α = 1

and β = 0, while Γ = 103, in order to maximize the ratio of true-positives by the false-
positives. We next present our results after performing a set of 5-fold cross validation
experiments partitioning the data set described above into 5 buckets, using in each
experiment one bucket as test-set and the other four as train-set. Our results provide
us with the performance of the detection rates or, equivalently, true-positives (TP) and
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Figure 8.1: Detection rate and false-positives for multiple values of λ archived by applying
∆-similarity.

the corresponding false-positives (FP) of our proposed model according to various
values of threshold λ as we described previously; see, Figure 8.1 and Figure 8.2.
Note that due to the 5-fold cross validation process the percentage values below are
averaged over the 5-folds.

In our evaluation experiments, in order to maximize the ratio of true-positives by the
false-positives, we tune the detection threshold λ = 0.97 and the parameters α = 1

and β = 0, while Γ = 103. Hence, our model, among the various values depending
on the aforementioned tuning (see, Figure 8.1 and Figure 8.2), achieved a 94.70%
detection rate with 13.10% false positives; see, Figure 8.1 and Figure 8.2.
In Table 8.3, we present the results from other works presenting similar graph-based
models for malware detection and proceed with a discussion about the true-positives
and false-positives achieved by these models. More precisely, the first column refers
to the result’s host, the second one refers to the utilized technique, while the third
and fourth columns refer to the true-positive and false-positive rates, respectively.

Fredrikson et al. [6] proposed an automatic technique for extracting optimally
discriminative specifications based on graph mining and concept analysis that, when
used by a behavior based malware detector, it can efficiently distinguish malicious
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Figure 8.2: The true-positive and false-positive rates achieved for multiple values of λ when
applying ∆-similarity.

In: Technique True Positives False Positives

[6] Graph Mining (ScD) 92.40 % 06.10%

[5] Tree Automata Inference (ScD) 80.00% 05.00%

[this paper] ∆-similarity (GrG graphs) 94.70% 13.10%

Table 8.3: Detection results; note that [this paper] uses the same dataset as[6] and
[5].

from benign programs. The proposed technique’s results range from an 86.5% de-
tection rate with 0 false-positives to a detection rate of 99.4% which however exhibits
higher false-positives (57.14%). However,someone can observe that our model reaches
the detection rates of the proposed model presented in [6], proving its potentials for
further improvements.

Babic et al. [5] achieved the malware detection by k-testable tree automata in-
ference from system-call data flow dependence graphs. To this point we ought to
underline that in this work the authors use the same data-set that we used in our
work, provided by Babic. Thus, this work provides a fair instance to compare our
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model’s results. However, while Babic et al. perform 2-fold cross validation using the
first half of data-set as train-set and the second one as test-set, we perform 5-fold
cross validation. Comparing the results exhibited in [5] with ours, easily we can claim
that our proposed model is quite competitive especially for specific values of λ (i.e.,
0.99) achieving less false positives for the same detection rate.

Detection Ratio over CvG and Cover-Similarity

In this section we present our experimental setup and discuss the performance of our
proposed graph-based model for malware detection while altering the approach of
measuring the weight on each vertex (i.e., by the sum or by the mean value of the
weights). Then, we describe how we divide our data set into train-set and test-set
and how we tune our threshold parameters according to feedback taken by a series
of experiments to evaluate our model’s potentials on detecting malicious software
samples using the Cover-Similarity.

Through the evaluation of our proposed graph-based model for malware detection
we use a data-set of 2631 malware samples from 48 distinct malware families, and
also a set of 35 benign samples that cover a wide range of commodity software
types. Additionally, it is of major importance to mention that the data-set is the one
provided by D. Babic and also used in [5], transforming each sample’s ScDG into
GrG and then to CvG, based on the methodology described in the previous section.
We implemented our proposed model in Java and performed the experiments on a
commodity computer with 4-th generation Intel i3 with 4Gb of RAM detecting almost
600 test samples in less than 10 minutes.

We next present our results after performing a set of 5-fold cross validation ex-
periments partitioning the data-set into 5 compartments, using in each experiment
80% of samples as training set and 20% as test set. Our results provide us with the
performance of the detection accuracy or, equivalently, true-positives rates (TP) and
the corresponding false-positives rates (FP).

In Figure 8.3 we show our detection results, when measuring the weight of each
vertex by summing all the weights on it, for various threshold values. Note that due to
the 5-fold cross validation process the percentage values below are averaged over the
k-folds, (i.e., 5 folds in our experiments). Our experimental results show that, despite
that the FP rates where not behaved as expected, achieving less than 50% detection
accuracy for 0% FP, our proposed graph-based model for malware detection exhibited
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Figure 8.3: True-positive rate and false-positive rates for multiple values of threshold
archived by applying the sum on domination measuring.
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Figure 8.4: True-positive rate and false-positive rates for multiple values of threshold
archived by applying the mean on domination measuring.

high rates of detection ability, with TP rates ranging from 27.3% for threshold value
0.53 to 100% for threshold value 0.4.

In Figure 8.4 we show our detection results, when measuring the weight of each
vertex by computing the mean value of all the weights on it over its degree, for
various threshold values. Note that due to the 5-fold cross validation process the
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percentage values below are averaged over the k-folds, (i.e., 5 folds in our experi-
ments). The measuring of weight by its mean exhibited a slightly different behavior
on the detection ability of our proposed graph-based model for malware detection.
Our experimental results show that, that the FP rates have been reduced where the
detection accuracy for 0% FP has been increased. Our model exhibited high rates of
detection ability, with TP rates ranging from almost 40% for threshold value 0.5 to
100% for threshold value 0.4.

8.1.2 Classification Results over the Proposed Techniques

Next there are presented the experimental results exhibited when evaluating the clas-
sification accuracy of the proposed model. The classification results achieved by the
proposed model, utilizing the proposed similarity metrics (i.e., SaMe and NP) and
the graph-based representation (i.e., Group Relation Graph) of the software samples.

Classification Accuracy over GrG and SaMe and NP Similarity Metrics

In order to evaluate our proposed malware classification model we use the same
data-set of 2631 malware samples pre-classified into 48 malware families F1, F2, . . .,
F48 of the set Q. We evaluate the classification accuracy of our model performing a set
of 5-fold cross validation experiments partitioning the data set described above into
5 buckets (i.e., 20% test-set and 80% train-set). Evaluating our model’s classification
rates we defined three types of correct classification, the so called partial matching,
directed matching and exact matching. So, in case we are given test of malware family
(x, y) and our model classifies it to the family (a, b), then if (a = x) ∨ (a = y) ∨ (b =

x)∨ (b = y) the partial matching returns a successful classification, if (a = x)∨ (b = y)

the directed matching returns a successful classification, and if (a = x) ∧ (b = y) the
exact matching return a successful classification.

Evaluating our model’s classification accuracy, our model achieved a mean of 82.39%
correct classifications with directed matching, a mean of 69.28% correct classifications
with exact matching, and a mean of 83.42% correct classifications with partial match-
ing, classifying each bucket of 526 malware samples in 500 seconds, performing the
experiments on a commodity desktop equipped with an Intel core i3 processor at 3.2
GHz and 4 GB of RAM. In Table 8.4 we provide a straight comparison of the results
achieved by our model for classifying malware samples to malware families using the
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Similarity Metric: Exact Direct Partial
SaMe and NP 69.28% 82.39% 83.42%

Bray-Curtis 65.83% 80.42% 82.15%

Cossine 65.26% 79.08% 80.81%

Jaccard 52.90% 71.40% 74.09%

Test.to.Family Cover 20.15% 22.60% 27.26%

Family.to.Test Cover 02.05% 06.72% 11.71%

Table 8.4: Classification results from SaMe-NP similarity compared to those achieved
by each single similarity metric.

SaMe- and NP-similarity metrics, to the results achieved by our model using single
similarity metrics without combining them as to test the similarity concerning dif-
ferent types of characteristics (i.e., relational, quantitative and qualitative). Observing
Table 8.4, it is obvious that the combination of various similarity metrics that take
into account different types of characteristics, when utilized by our model achieves
higher classification results.

8.2 Preventing Malware Pandemics

In the framework of our work, we are interested in investigating the effect of the
time a counter-measure needs to be activated after the infection (i.e., response-time)
on the malware’s propagation and also, in a second level, how other factors such as
the size of a malware, the density of the network and the initial infected population
affect the spread of malware. The experiments are organized into two categories
developed over two axes, concerning the SIRpI and SIRpS epidemic models. The
experiments are categorized into two categories, where the first contains experiments
oriented to the effect caused by the response-time intervals, note that throughout the
paper we shall denote them as Rt-intervals, and the second contains a sub-set of the
previous experiments where we have modified other factors as the size of the initial
infected population and the density of the formed network. Regarding the simulation
environment, we implemented the whole system, including the city-representation
model and the malware-propagation and device mobility models, in Matlab.
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8.2.1 Experimental Design over the Series of Simulations

In our experiments, we utilize the image of a city taken from Google Maps, transform-
ing it to a black and white matrix, as we described in the previous section. Within this
approach, we assign weights (attraction levels) to each cell (i, j) with value 0; recall
that, cells with such values represent points on a road. By the start of the simulation
the mobile devices are set randomly to any point in the city area, with each point
having equal probability to host a mobile device. Then, a destination point is assigned
to each device as to be reached following the proposed mobility model computing
shortest paths for a set of start-destination points utilizing a shortest path algorithm.

Due to the probabilistic aspect of our device mobility model concerning the target-
point assignment, we performed a series of experiments for each case of settings and
plot the mean values for each simulation step. More precisely, due to the stochastic
behavior of mobile device paths, in each experiment we lock in some fashion the
attraction points A and hence the attraction level of each cell and perform each
experiment several times with the same setting in order to present statistically our
results.

Next we present results for a series of experiments for malware consisted by 3

and 6 packets for various response time intervals and IS-rate R(I, S) = 0.25 having
an initially infected population consisted by 20 devices and initial susceptible pop-
ulation consisted by 80 devices, i.e., I = 20 and S = 80. So, next, we present the
results achieved by our simulator implementing the proposed models for malware
propagation and device mobility, where in sub-sections 3.2 − 3.3 and 3.4 − 3.5 we
discuss the experimental results for pandemic prevention on different response time
intervals and other factors that affect the spread for the SIRpI and SIRpS epidemic
models respectively.

In the two categories of experiments presented, we study different intervals of
values concerning the response-time of a counter-measure; note that, not all the
devices have the same response-time but on each one is assigned a response-time of
the interval under consideration. Specifically, we are interested in exploring the the
effect of Rt in pandemic prevention and the behavior of malware’s spread concerning
both the early and late activated counter-measures and the heterogeneity among
a wide range of different types of divides. To this end, we selected five response-
time intervals, i.e., [1, 5], [6, 10], [11, 20], [21, 40] and [41, 80], covering cases from early
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activated counter-measures applied on devices with low heterogeneity to late ones
applied on devices with high heterogeneity. So, in each experiment a value Rt is
uniformly selected from a response-time interval [a, b] and assigned on each device.
In our experiments where, e.g., Rt ∈ [1, 5], each device has a counter-measure which is
activated after a period (i.e. simulation steps passed after its infection) that is between
1 and 5 simulation steps.

Additionally, using the same categories of experiments we investigate the effect
of the malware size, expressed in packets, and show how it can affect the result on
both categories. In both categories of experiments, we perform a set of simulations
on malware spread between moving devices in a city region. In the first category we
keep the same ratio of the initial infected population and susceptible devices varying
the counter-measure response time, while in the second one we increase the initial
infected population and the network’s density.

Throughout the paper, we shall denote the initial infected population by I , the
susceptible devices by S, the counter-measure response time by Rt and the malware’s
size by p. To this point we ought to notice that the Rt = t does not actually corresponds
to t simulation steps but in the case where the size p of the malwere (in terms of
packs) is greater than 1 it holds Rt = t × p, that means, the infected device will
propagate t times the full malware, and thus t × p simulation steps are required
before its counter-measure has been activated. In Figures 8.5, 8.6, 8.7, 8.8, 8.9 and
8.10 the x − axis refers to the simulation steps taken up to the end of simulation,
while the y − axis refers to the number of infected devices.

Preventing Pandemics that follow the SIRpI Epidemic Model

Pandemic Prevention for Various Rt-intervals As we can observe in Figures 8.5(a)
and 8.5(b), the size of the spreading malware does not affect the spread at all since
the response time is low. That means, the propagation of malware to neighboring
susceptible devices fails, despite its size, due to the early activation of the counter-
measure. However, the duplication of the size of the malware leads to the duplication
on the time required for all the susceptible devices in the city to avoid the infection
and all infected ones get sanitized. Moreover, increasing the counter-measure response
time inside the same order of magnitude, we observe that still there is no significant
increase on the number of the infected population, (see, Figures 8.5(c) – 8.5(d) and
8.5(e) – 8.5(f)) where the pandemic has been prevented due to the early activation
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Figure 8.5: Simulation experiments implementing the properties of SIRpI epidemic model,
for different values of malware packets (p), on a network with R(I, S) = 0.25 for various

counter-measure response-time intervals (Rt).

of counter-measure on rational response-time intervals.
Leaving the rest parameters unchanged and increasing only the response-time of

the counter-measure, we observe a global maximum of the spread in both experi-
ments (see, Figures 8.5(g) – 8.5(h) and Figures 8.5(i) – 8.5(j)) where on all cases
the counter-measure’s activation in such larger response time intervals nearly avoids
pandemic. In these cases the maxima are due to the multiplication of the response-
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time Rt by a factor f that causes the infected devices to propagate the full malware f
times more than in the previous experiments. However in all cases the malware failed
to spread to all the population since for such settings the counter-measure is acti-
vated adequately early preventing successfully the pandemic. Finally, in Figure 8.5(j)
we can observe that further increase on the response-time interval, could lead to a
pandemic, as nearly 90% of all susceptible devices have been infected.

Other Results on SIRpI Next we present results for a series of experiments for
malware consisted by 3 and 6 packets for various response time intervals for pandemic
prevention of an epidemic that follows the properties of the SIRpI epidemic model.
We change some factors concerning the characteristics of the network (i.e., Gdev) and
firstly perform a series of experiments for a different IS-rate R(I, S) = 0.66 having an
initially infected population consisted by 40 devices and initial susceptible population
consisted by 60 devices, i.e., I = 40 and S = 60, while then we increase the density
D of our network by duplicating the number of devices keeping the IS-rate equal to
that of Figure 8.5; recall that, R(I, S) = 0.25, where I = 40 and S = 160.

The results of the second category of our experiments are depicted in Figures 8.6
and 8.7. In this category, we modify the experiments of Figures 8.5(a) – 8.5(b),
8.5(e) – 8.5(f) and 8.5(i) – 8.5(j), changing the ratio I/S from 0.25 to 0.66 (see,
Figure 8.6) and the density D of the network by duplicating the number of devices
(see, Figure 8.7); recall that, I and S denote the numbers of the initial infected and
susceptible population, respectively.

It is rational to expect that in presence of an early activated counter-measure
(i.e., response-time intervals close to 0) a quick response is crucial for the immediate
repression of malware’s propagation. So, response-time intervals close to 0, act the
same for pandemic prevention despite the size of the initial infected population,
as shown in the results contrasting Figures 8.6(a) and 8.6(b) with Figures 8.5(a)
and 8.5(b), where the prevention of a pandemic needs almost the same number of
simulation steps for this set of experiments (see, Figures 8.6(a) – 8.5(a) and 8.6(b) –
8.5(b)).

Comparing Figures 8.6(c) and 8.6(d) with Figures 8.5(e) and 8.5(f), respectively,
we observe that in case of R(I, S) = 0.25 the flow of the propagation follows a de-
crease, with less or none grows (see, Figure 8.5(e) and Figure 8.5(f)) that is attributed
to the number of low initially infected population. However, observing Figures 8.6(c)
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Figure 8.6: Simulation experiments implementing the properties of SIRpI epidemic model,
for the cases of a malware with p = 3 and p = 6, on a network with R(I, S) = 0.66 and double

initially infected devices.

and 8.6(d) we can see that in both cases a grow-level is expressed through relatively
early steps, which is a fact that respectively is attributed to the higher initially in-
fected population, i.e. R(I, S) = 0.66. Moreover comparing Figures 8.6(c) and 8.5(e)
we observe that due to the application of immunization procedure (applying SIRpI
epidemic model) the whole pandemic prevention lasts less as more susceptible de-
vices, including the initially infected population, have been early enough sanitized
and hence immunized, leaving no space for farther infection.

Contrasting Figures 8.6(e) – 8.6(f) with Figures 8.5(i) – 8.5(j), respectively, we
observe interesting evidences about our intuition that the number of initially infected
devices could significantly speed up the propagation of malware in such a network.
So, in the experiments depicted in Figure 8.6(e) and 8.6(f) we observe that in both
cases the counter-measure’s activation, due to its larger response time against a larger
initially infected population, failed to prevent pandemic, in contrast to the case of
experiments presented in Figure 8.5(i) and 8.5(j).

In the second set of experiments for malware propagation in a network of mobile
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Figure 8.7: Simulation experiments implementing the properties of SIRpS epidemic model,
for the cases of a malware with p = 3 and p = 6, on a network with R(I, S) = 0.25 and double

density.

devices with double density of the network on which the experiments of Figure 8.5
performed we observe that for an early activated counter-measure the pandemic is
quickly prevented (see, Figures 8.5(a) – 8.7(a) and Figures 8.5(b) – 8.7(b)).

On the other hand observing Figures 8.5(e) – 8.7(c) and Figures 8.5(f) – 8.7(d),
similarly to the experiments presented on Figures 8.6(c) – 8.6(d), we can see that in
both cases the grow-level of the epidemic is expressed through relatively early steps,
which is attributed to the higher initially infected population and once again that the
application of immunization procedure causes the whole pandemic to be prevented
in less time by a counter-measure activated on the same response-time interval, as
more infected devices get immunized. Hence, comparing Figure 8.5(e) and 8.5(f)
with Figure 8.7(c) and 8.7(d), we observe that the network’s density (as also the
initial infected population, see Figures 8.6(c) and 8.6(d)) do not affect the prevention
of a pandemic when a properly activated counter-measure exists.

Finally, comparing Figures 8.7(e) and 8.7(f) with Figures 8.5(i) and 8.5(j), re-
spectively, also interesting evidences arise about our intuition that an increase on
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the density of the network could significantly speed up the propagation of malware.
More precisely, in Figures 8.7(e) and 8.7(f) we observe that in both cases the counter-
measure’s activation, due to its larger response time, failed to prevent pandemic, in
contrast to the case of experiments presented in Figures 8.5(i) and 8.5(j).

Preventing Pandemics that follow the SIRpS Epidemic Model

Next, we present the two categories of experiments concerning the SIRpS epidemic
model, investigating the effect of the counter-measure’s response-time on the spread
of the malware concerning the activation of the counter-measure on each device by
setting the response-time to various intervals, as also the effect of other factors, such as
the initial size of the infected population and the density of the network. Finally, we
present some comparative results taken by our simulator implementing our device
mobility and malware propagation models, related to the properties of SIRpI and
SIRpS epidemic models.

Pandemic Prevention for Various Rt-intervals
As we can observe in Figures 8.8(a) and 8.8(b), the size of the spreading malware

does not affect the spread at all since the response time is low. That means, the
propagation of malware to neighboring susceptible devices fails, despite its size, due
to the early activation of the counter-measure. However, as in the corresponding
experiments of the SIRpI epidemic models (see, Figures 8.5(a) and 8.8(b)), duplicating
the size of the malware the time required for all the susceptible devices in the city to
avoid the infection and all infected ones get sanitized is also duplicated. Moreover,
increasing the counter-measure response time inside the same order of magnitude,
we observe that still there is no significant increase on the number of the infected
population, where in both cases (see, Figures 8.8(c) and 8.8(d)) the number of infected
population, from the start of simulation, is decreasing since the cure has started once
the counter measure has been activated, while the effect made by the duplication
of spreading malware’s size is the duplication on the time needed by the counter-
measure to prevent the pandemic successfully.

Similarly to the experiments on the SIRpI epidemic model (see, Figures 8.5(e)
through 8.5(h)), leaving the rest parameters unchanged and increasing only the
response-time of the counter-measure, we observe that even if there do not yield
any maxima of the spread that could lead to pandemic, still all of them (see, Fig-
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Figure 8.8: Simulation experiments implementing the properties of SIRpS epidemic model,
for different values of malware packets (p), on a network with R(I, S) = 0.25 for various

counter-measure response-time intervals (Rt).

ures 8.8(e) through 8.8(h)) follow a similar propagation behavior. As we can ob-
serve, contrary to the corresponding experiments of SIRpI epidemic model, in the
experiments presented on figures Figures 8.8(e) through 8.8(h), the properties of the
SIRpS epidemic model lead the whole malware’s propagation to a stabilized state
concerning the IS-rate through time. This means that, despite the adequately early
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counter-measure activation time (concerning the properties of SIRpI epidemic model),
a counter-measure response-time bound established to work properly over an epi-
demic that follows the properties of SIRpI model would not prevent the pandemic
when applied on epidemics that follow the properties of SIRpS epidemic model, as
the portion of infected population seems to converge to a stabilized value if we extent
the observation time.

Finally, observing the behavior of the propagation, a pandemic prevention failure
results in a further increase on the counter-measure’s response time. We can clearly
see that, in contrast to the experiments presented in Figures 8.8(e) through 8.8(h), no
fluctuations on the spread are exhibited as a non-adequately early activated counter-
measure is applied. The behavior of the propagation is straightly differentiated from
the previous ones where the spread follows the well-known in epidemics sigmoid
curve (see, Figures 8.8(i) and 8.8(j) respectively), where, as previously, the dupli-
cation of spreading malware’s size leads to a duplication on the time needed by the
spreading malware to infect all the susceptible devices.

Other Results on SIRpS
Next we present results for a series of experiments for malware consisted by 3

and 6 packets for various response time intervals for pandemic prevention of an
epidemic that follows the properties of the SIRpS epidemic model. The design of
the experiments discussed in this section follows the design of those presented in
Section 3.2. We change some factors concerning the characteristics of the network (i.e.,
Gdev) and firstly perform a series of experiments for a different IS-rate R(I, S) = 0.66

having an initially infected population consisted by 40 devices and initial susceptible
population consisted by 60 devices, i.e., I = 40 and S = 60, while then we increase the
density D of our network by duplicating the number of devices keeping the IS-rate
equal to that of Figure 8.5; recall that, R(I, S) = 0.25, where I = 40 and S = 160.

Following the experimental design presented in Section 3.2, the results of the
second category of our experiments are depicted in Figures 8.9 and 8.10. In this
category, we modify the experiments of Figures 8.8(a) – 8.8(b), 8.8(e) – 8.5(f) and
8.8(i) – 8.5(j), changing the ratio I/S from 0.25 to 0.66 (see, Figure 8.6) and the den-
sity D of the network by duplicating the number of devices (see, Figure 8.10); recall
that, I and S denote the numbers of the initial infected and susceptible population,
respectively.

119



0 80 160 240 320 400 480
0

40

80

(a) p = 3, Rt ∈ [1,5]

0 200 400 600 800
0

40

80

(c) p = 3, Rt ∈ [11,20]

0 80 160 240 320 400 480
0

40

80

(e) p = 3, Rt ∈ [41,80]

0 80 160 240 320 400 480
0

40

80

(b) p = 6, Rt ∈ [1,5]

0 200 400 600 800
0

40

80

(d) p = 6, Rt ∈ [11,20]

0 80 160 240 320 400 480
0

40

80

(f ) p = 6, Rt ∈ [41,80]

Figure 8.9: Simulation experiments implementing the properties of SIRpS epidemic model,
for the cases of a malware with p = 3 and p = 6 on a network with R(I, S) = 0.66 and double

initially infected devices.

It is rational to expect that in presence of an early activated counter-measure (i.e.,
response-time intervals close to 0), even in case of an epidemic that follows the prop-
erties of the SIRpI epidemic model, the response-time of an adequately early activated
counter-measure is crucial to achieve a successful pandemic prevention. So, response-
time intervals close to 0, act the same for pandemic prevention despite the size of the
initial infected population, as shown in the results contrasting Figures 8.9(a) and
8.9(b) with Figures 8.8(a) and 8.8(b), where the prevention of a pandemic needs
almost the same number of simulation steps for these couples of experiments (see,
Figures 8.9(a) – 8.8(a) and 8.9(b) – 8.8(b)).

Comparing Figures 8.9(c) and 8.9(d) with Figures 8.8(e) and 8.8(f), respectively,
we observe that they express almost the same behavior. However, for the case where
the initial IS-rate is duplicated, we observe (see Figures 8.9(c) and 8.9(d)) that the
grow level is more higher and also it has been expressed over earlier steps when
compared to the one of Figures 8.8(e) and 8.8(f), an observation that is definitely
attributed to the increased initial infected population. Additionally, similarly to Fig-
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Figure 8.10: Simulation experiments implementing the properties of SIRpS epidemic model,
for the cases of a malware with p = 3 and p = 6, on a network with R(I, S) = 0.25 and double

density.

ures 8.5(e) through 8.5(h)) in these classes of response-time intervals (i.e., [11, 20] and
[21, 40]) the properties of SIRpS epidemic model lead the whole malware’s propaga-
tion to a stabilized state concerning the IS-rate, as the portion of infected population
seems to converge to a stabilized value if we extent the observation time.

However, comparing Figures 8.9(e) and 8.9(f) with Figures 8.8(i) and 8.8(j),
respectively, we observe a rational speed-up on the propagation rate w.r.t the simu-
lation steps demanded by the spreading malware to infect all the Susceptible devices
in the area, where the duplication of the initial Infected population leads to a faster
spread, with a pandemic to be expressed, demanding half time needed by the one
with the half IS-rate.

In the second set of experiments for malware propagation in a network of mo-
bile devices with double density of the network on which the experiments of Fig-
ure 8.8 performed, similarly to the case of Figures 8.5(a)–8.7(a) and 8.5(b)–8.7(b)
we observe that the behavior of the propagation on presence of an early activated
counter-measure is almost the same.
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However, similarly to previous cases, comparing Figures 8.8(e) and 8.8(f) with
Figures 8.10(c) and 8.10(d), we observe that in the second case there is a greater grow
level on the number of Infected devices in the early steps. Comparing the correspond-
ing results of previous cases we conclude that, regardless the underlying epidemic
model, the success or not of a pandemic (or, respectively, pandemic prevention) in
presence of a counter-measure of moderate response-time is strongly connected to the
density of the network. Moreover, throughout the experiments we can observe that
such response-time intervals even if they are not directly able to prevent pandemic by
cleaning all susceptible devices, end hence eliminating the spreading malware from
the network, they tend to exhibit a behavior of stabilizing the IS-rate over a spe-
cific value. Additionally, comparing Figures 8.10(c)–8.9(c) and 8.10(d)–8.9(d), where
both have the same initial Infected population, we conclude that in the first case (see,
Figures 8.10(c) and 8.10(d) respectively) a denser network could act beneficially on
the failure of a pandemic prevention.

Finally, comparing Figures 8.10(e) and 8.10(f) with Figures 8.8(i) and 8.8(j),
respectively, we observe once again that an increase on the density of the network
increases malware’s spread. In both cases the counter-measure’s activation, due to
its larger response time, failed to prevent pandemic, similarly to the experiments pre-
sented in Figures 8.8(i) and 8.8(j). Moreover, in presence of a malware of smaller size,
its propagation is even faster on a denser network where comparing Figures 8.10(e)
and 8.8(i) the propagation of malware in a network of high density demands almost
the half simulation steps, leading us to infer that the higher the density of a network,
the earlier the response-time of a counter-measure should be.
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Chapter 9

Duscussion

9.1 Evaluating the Proposed Model for Malware Detection and Classification

9.2 Discussion on Detection Results

9.3 Discussion on Related Classification Results

9.4 Malware Pandemic Prevention Defining Optimal Response-time Bounds

9.5 Trusted Systems

9.6 System Integration

9.1 Evaluating the Proposed Model for Malware Detection and

Classification

Next, in Table 9.1 we cite the detection rates exhibited by other models utilizing
the dependencies between System-calls and proceed by a discussion on the proposed
techniques the true positives and false positives achieved by each model. Additionally,
in Table 9.2, we present the classification rates exhibited by other models utilizing
the dependencies between System-calls and proceed by a discussion on the proposed
techniques and the classification accuracy results exhibited by each model.
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In: Technique True Positives False Positives

[4] Sequence Matching (ScDG) 64.00% 00.00%

[61] Graph-Grading(ScDG) 80.09% 11.00%

[this thesis] ∆-similarity (GrG graphs) 94.70% 13.10%

Table 9.1: Detection results; note that [this paper] uses the same dataset as[6] and
[5].

In: Technique Classification Ratio
[38] Behavior Profiles (ScDG) 95.90%

[68] K-nearest neighbors (FCG) 69,90%

[39] Discriminative Behaviors 88,00%

[42] Function Length 83.95%

[this thesis] SaMe- and NP-similarity (GrG graphs) 83.42%

Table 9.2: Classification results.

9.2 Discussion on Detection Results

In this section there are discussed the detection results exhibited by other models.
There are presented the results concerning the detection rates exhibited by models
that make use of the dependencies between system-calls independently if they are
graph-based or not.
Non Graph-based Approaches. Kolbitch et al. [4] proposed an effective and efficient
approach for malware detection, based on behavioral graph matching by detecting
string matches in system-call sequences, that is able to substitute the traditional anti-
virus system at the end hosts. The main drawback of this approach is the fact that
although no false-positives where exhibited, their detection rates are too low compared
with other approaches. Luh and Tavolato [61] presented one more detection algorithm
based on behavioral graphs that distinguishes malicious from benign programs by
grading the sample based on reports generated from monitoring tools. While the
produced false-positives are very close to ours, the corresponding detection ratio is
even lower.

Non Graph-based Approaches. In malware detection, there have been proposed
similar models utilizing different non graph-based techniques like the one proposed
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by Alazab et al. [13], who developed a fully automated system that disassembles and
extracts API-call features from executables and then, using n-gram statistical analysis,
is able to distinguish malicious from benign executables. The mean detection rate
exhibited was 89.74% with 9.72% false-positives when used a Support Vector Machine
(SVM) classifier by applying n-grams. In [67], Ye et al. described an integrated system
for malware detection based on API-sequences. This is also a different model from
ours since the detection process is based on matching the API-sequences on OOA rules
(i.e., Objective-Oriented Association) in order to decide the maliciousness or not of a
test program. Finally, an important work of Christodorescu et al., presented in [14],
proposes a malware detection algorithm, called AMD, based on instruction semantics.
More precisely, templates of control flow graphs are built in order to demand their
satisfiability when a program is malicious. Although their detection model exhibits
better results than the ones produced by our model, since it exhibits 0 false-positives,
it is a model based on static analysis and hence it would not be fair to compare two
methods that operate on different objects.

9.3 Discussion on Related Classification Results

In this section there are discussed classification results exhibited by other models.
There are presented the results concerning the classification accuracy exhibited by
models that make use of the dependencies between system-calls independently if
they are graph-based or not.

Graph-based Approaches. In [38] Bayer et al., propose a scalable clustering approach
to identify and group malware samples that exhibit similar behavior, serving as input
to an efficient clustering algorithm profiles that characterize programs activity in more
abstract terms. Since they also use control flow dependencies between system-calls,
their work is proper to be compared with ours, even if they do not use direct use
of System-Call Dependency Graphs. However, the model proposed in [38] mainly
aims on clustering malware samples rather that classifying unknown ones to known
malware families, that is a slightly different process.

Hu et al. in [68], design implement and evaluate the Symantec’s Malware Indexing
Tree (SMIT), that classifies malwares based on their function call graphs using k

nearest-neighbor search. While, as referred in [68], their success rate reaches the
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91.3%, it is worth mentioning that this classification rate refers in the case where the
actual labeling of test samples family in included in the k nearest families resulted
by the model. Hence, since our model returns only one dominant family we compare
our results (i.e., 83.47%) with the results referred in [68] as Dominant Family Rate
(i.e., 69.9%), that is defined as the percentage where the most prevalent family among
k returned nearest neighbors is also the family to which the query malware belongs.

A model for malware classification utilizing discriminative behavior specifications
extracted by the samples is presented by Rieck et al. in [39]. Specifically, by monitoring
malware samples in sandbox, they collect behaviors, and based on a corpus of malware
labeled by an anti-virus scanner a malware behavior classifier is trained using learning
techniques. Finally, discriminative features of the behavior models are ranked for
explanation of classification decisions. To this point we ought to mention that, despite
the fact that their classification results for known malware samples are almost 5%
higher that ours, we recall that, as in [69] their experiments are performed using 14

malware families, where the impact of philogeny among different malware families
is decreased the less different malware families in the training are.

In [42] Tian et al. present a scalable method of classifying Trojans based only
on the lengths of their functions. The results achieved by the proposed technique
indicate that function length may play a significant role in classifying malware, and
combined with other features, may result in a fast, inexpensive and scalable method
of malware classification. However, while their results are comparable to our model’s,
the main difference is the fact that in [42] the model has been evaluated using only
Trojans.

Non Graph-based Approaches. In malware classification, there have been proposed
other non graph-based malware classification models. Among them, a scalable auto-
mated approach for malware classification using pattern recognition algorithms and
statistical methods, is presented by Islam et al. in [69], utilizing the combination of
static features extracted by function length and printable strings. While their eval-
uation results are very high(i.e., 98.8% classification accuracy), however it is worth
mentioning the fact that their experiments include samples from 13 malware families,
while the classification accuracy of the model proposed in this paper has been eval-
uated over 48 malware families. Hence, concerning the impact of philogeny among
different malware families the comparative difference between the classification rates
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achieved by these two models is totally justified, while increasing the number of fam-
ilies in the training set increases the chances of misclassifications. Recently, Nataraj et
al. [70] classify malware samples using image processing techniques. Visualizing as
gray-scale images the malware binaries, they utilize the fact that,for many malware
families, the images belonging to the same family appear very similar in layout and
texture. Obviously the results are better than the ones produce by our model how-
ever they use at most 25 malware families for their large scale experiments, where the
impact of philogeny among different malware families is decreased the less different
malware families in the training are. In [71] Nataraj et al. utilize a static analysis
technique called binary texture analysis in order to classify malicious binary samples
into malware families. They achieve a 72% rate of consistent classification when per-
forming their evaluation on a data set of 60K to 685K samples comparing their labels
with those provided by AV vendors, proving both the accuracy and the scalability of
their model.

Remark. It is worth noting that, although the classification results presented in [69,
70, 39] are better than those achieved by the model proposed in this paper, their
experiments are performed using less malware families, i.e., 13 malware families for
[69], 25malware families for [70], and 13malware families for the [39]; recall that, our
model has been evaluated over 48 malware families. Hence, concerning the impact of
philogeny among different malware families the comparative difference between the
classification rates achieved by these two models is totally justified, while increasing
the number of families in the training-set increases the chances of misclassification.

9.4 Malware Pandemic Prevention Defining Optimal Response-

time Bounds

Next we discuss some comparative results on the behavior of the malware’s spread
concerning the properties of the corresponding epidemic models studied in this paper.
In Table 9.3 we present an accumulative view on our results for pandemic prevention
(or not) while performing a series of repetitive experiments implementing the prop-
erties of either SIRpI or SIRpS epidemic models for various response-time intervals
and for different spreading malware’s sizes.
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IS-rate R(I, S),
Network Density

Response-time
Intervals Rt

SIRpI SIRpS

p = 3 p = 6 p = 3 p = 6

R(I, S) = 0.25

Density D

Rt ∈ [1− 5] yes yes yes yes

Rt ∈ [6− 10] yes yes yes yes

Rt ∈ [11− 20] yes yes no no

Rt ∈ [21− 40] yes yes no no

Rt ∈ [41− 80] yes yes no no

R(I, S) = 0.66

Density D

Rt ∈ [1− 5] yes yes yes yes

Rt ∈ [11− 20] yes yes no no

Rt ∈ [41− 80] no no no no

R(I, S) = 0.25

Density 2D

Rt ∈ [1− 5] yes yes yes yes

Rt ∈ [11− 20] yes yes no no

Rt ∈ [41− 80] no no no no

Table 9.3: Accumulated view on the exhibited results for pandemic prevention

Observing Table 9.3, we can see that as long as the response-time Rt ≤ 10, both
epidemic models fail to infect all the susceptible devices in the area. In rows 1 and
2 of the same table, where Rt ∈ [1 − 5] and Rt ∈ [6 − 10], respectively, despite the
size of the spreading malware, a counter-measure’s activation of low response-time
leads to clean all the infected devices, since in all the cases the number of infected
population has been eliminated demanding simulation steps of the same order of
magnitude. On the other hand, for response-time Rt > 10, we observe that the two
epidemic models SIRpI or SIRpS are differentiated concerning the success or not of
the pandemic prevention. As we can see in rows 3, 4 and 5, where Rt ∈ [11 − 20],
Rt ∈ [21−40] and Rt ∈ [41−80], respectively, the pandemic on a malware’s spread that
follows the properties of SIRpI model, could be successfully prevented in all cases,
otherwise if the spread follows the properties of SIRpS epidemic model in both cases
the pandemic could not be prevented.

Next, rows 6, 7, 8 and 9, 10, 11 of Table 9.3 accumulate the results for pandemic
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prevention (or not) while performing a series of experiments implementing the prop-
erties of either SIRpI or SIRpS epidemic model for various response-time intervals
and different malware’s sizes exploring the impact of IS-rate and network density D,
respectively.

Increasing the IS-rate over the second category of our experiments, in rows 6, 7
and 8 of Table 9.3, we observe that the increase on the IS-rate has a different effect
regarding each epidemic model. More precisely, for the minimum and maximum
response time-intervals (i.e., Rt ∈ [1−5] and Rt ∈ [41−80]), the spread follows the same
behavior despite the malware’s size and the underlying epidemic model. However,
for the median case of a response-time interval (i.e., Rt ∈ [11−20]) the behavior of the
spread is differentiated analogously to the underlying epidemic model. In the case
where the spread follows the properties of SIRpI epidemic model the pandemic is
prevented, contrary to a spread that follows the properties of SIRpS epidemic model.
Comparing now rows 1, 3, 5 and 6, 7, 8, respectively, we can see that the first two
pairs are matched while the third pair is differentiated, inferring that an increase on
the IS-rate regarding the epidemic model finally affects only the cases where the a
lately activated counter-measure is applied.

Similarly to the increase on the IS-rate, in rows 9, 10 and 11 of Table 9.3, we
observe that compared to 1, 3, 5, respectively, an increase on the network’s density D

acts differently across both epidemic models. More precisely, for the minimum and
maximum response time-intervals (i.e., Rt ∈ [1 − 5] and Rt ∈ [41 − 80]) the spread
follows the same behavior, despite the malware’s size and the underlying epidemic
model, while for the median case of a response-time interval (i.e., Rt ∈ [11 − 20])
the behavior of the spread is strictly correlated to the properties of the underlying
epidemic model.

9.5 Trusted Systems

As long as the use of distributed systems and Cloud Computing is significantly in-
creasing, the amount of threats concerning the security of such systems and the data
stored in them set great challenges on the application of Trusted Computing. In this
work, we aim to discuss the Trusted Computing approaches applied on Cloud Com-
puting security and focusing on their drawbacks on hardware verification (i.e., to
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attest hardware’s integrity). We propose a model for hardware integrity attestation
applied on Cloud Computing systems, presenting the main protocol based on the
use of Endorsement Keys (EK) known from Trusted Computing. The validity of our
protocol and its potentials against hardware based attacks is proved by the combined
use of verified Public-Key encryption algorithms.

One of the major challenges on Cloud Computing is the assurance of properties as
confidentiality, integrity, availability, and privacy. Indirectly, such texture indicates the
issues arising from the fact that the data access many entities (multi-tenancy) and the
supply of sensitive data to third entities that are trusted, or not. Thus, as the Cloud
Computing enables handling and inter-operability between major resources which
are owned and managed by different entities, security is the fundamental demand
on the infrastructure of Cloud Computing. Moreover, prerequisite of such demand is
the subsistence of trust between the entities that exchange data composing the Cloud
Computing and so the corresponding Cloud Computing Environment.

As long as Cloud Computing by itself poses important issues on the axes of confi-
dentiality, integrity, availability and privacy, the arising security issues can be divided
into those related to the provider (Infrastructure as a Service - IaaS, Software as a
Service - SaaS and Platform as a Service - PaaS) and those related to the client-
user. Different service models yield different demands on the security of data and
applications. Regarding the case of PaaS model, Cloud Service Providers (CSP) are
responsible to ensure the security of the computing platform as well as the develop-
ment environment, while, users (clients) are required to ensure applications. On the
other hand, in the IaaS model, CSPs are required to provide users with a trusted host
as well as a trusted Virtual Machine Monitoring (VMM) environment, and users must
ensure the trustworthiness of their VMs by themselves. Finally, for the case of SaaS
model, the user is responsible for the applications provided by the CSP, the privacy
of the data, and the wider adoption of data security rules[6].

9.5.1 Trust Threats

Several security issues arise in Cloud Computing security [90, 91, 92, 93]. Cloud
providers in order to ensure the confidentiality and integrity of data provided by
their users, they have deployed a series of mechanisms (i.e., monitoring and auditing
of data access) to prevent the disposal of confidential data to unauthorized third
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entities.
Due to the separation of tasks, a service provider, say SP1, may use another

provider (e.g. infrastructure provider) say SP2, for the required infrastructure. Thus,
since SP1, being unable to access the data center of SP2, leaves the security of his
customer’s data on SP2, and hence SP2 oughts to guarantee data privacy on trans-
fer and access level as also the auditing regardless of whether the application that
manages the data has been compromised or not.

Briefly, the confidentiality of data is achieved through cryptographic protocols,
while the auditing is achieved through the use of remote attestation techniques re-
quiring the use of Trusted Platform Module (TPM) [94, ?, 95, 96], while the remote
attestation techniques may be added as another level on top of the virtualized OS.
Therefore, confidentiality and auditing can be achieved by providing another level,
maintaining a corresponding software. In our work we are mainly interested in in-
vestigating the necessity of such techniques and their applications on virtual envi-
ronments, where VMs can dynamically change their location (migration) from one
host to another. Hence, the major security issue is indicated on Trust consolidation
mechanisms among different levels of cloud.

9.5.2 Establishing Trust

First, concerning the cases of hardware based attacks, we provide a cryptographic
protocol that leveraging measurement lists and based on the use of Endorsement
Keys (EK) in a combination with time-stamps and verified Public-Key encryption
algorithms provides a remote attestation for hardware’s integrity. So, in our work we
propose an applicable cryptographic protocol that is able to ensure hardware-integrity
attestation for devices that need to be remotely attested before being connected to
cloud.
Fundamental approaches [97, 98, 96, 99] proposed in recent years and utilize Trusted
Computing in order to ensure trustworthiness finding application in the form of IaaS
Cloud Computing where the main objective is to secure the virtual machines. Below
we discuss some of them that intrigued our work.
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9.5.3 Routing Trust In Cloud Computing With TVEM

Trusted Virtual Environment Module (TVEM) [100] is a software module that pro-
vides trusted services to a virtual machine or a virtual environment of an IaaS Cloud
Computing environment. More precisely, TVEM provides a set of features for the
virtual environments of Cloud, via virtualization techniques of the existing TPM,
containing an improved API, flexible cryptographic algorithms and a modular ar-
chitecture. TVEM solves one of the major security issues of Cloud Computing, the
establishment of trust relations between the information owner and a service provider
when the former creates and uses a virtual environment on the provided platform.
It easily follows that the aforementioned problem arises mainly in the IaaS form of
Cloud Computing. To ensure that the information provided in the Cloud is protected,
the client should verify the “trustworthiness” of both the platform and the virtual
environment. TVEM as well as Virtual Trust Network (VTN) provide the necessary
mechanisms to verify the trustworthiness of platform and the virtual environment in
IaaS Cloud, providing in addition the corresponding results to information owner.

The Trusted Platform Module (TPM), which is the root of trust on a platform
(i.e., component of the computing platform which explicitly considered trusted), is
designed to support a single operating system on a standard platform and therefore
yields scalability issues in virtualization, due to the existence of several virtual envi-
ronments, which simultaneously try to access the TPM’s resources. TVEM addresses
this demand by a method for virtualization of the TPM functions for sharing among
several virtual environments, reproducing substantially its Trusted Platform Module
resources on software [100].

By Virtual Environment Trust define trust in the cloud that combines the confi-
dence in the platform provider (service provider) and confidence on the part of the
information holder (information owner). So the problem that solves the application
of TVEM is the establishment of trust in a virtual environment (virtual environ-
ment trust) which is unique for each virtual environment and independent from
the platform that hosts it. To obtain the Virtual Environment Trust set the Trusted
Environment Key (TEK) which is used as the Endorsement Key (EC), which we
mentioned in the previous section, for Trusted Virtual Environment Module. The
ECF is created by the owner of the virtual environment and ensure the Platform
Storage Key (PSK) to the service provider (service provider) so am creating ”combi-
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natorial” trust (compound trust) which is unique and independent of the platform.
So, just like the EP TEK has a unique value, which is used as a Root of Trust for
Reporting (RTR) to identify the TVEM and demonstrate the virtual environment.

In order to protect the TVEM, are utilized both VT-d (Intel’s Virtualization Tech-
nology for Directed I/O) and TXT (Trusted eXecution Technology). TVEM supports
attestations as well as trusted data entry for the virtual environment similar to the
one provided by the Virtual Trusted Platform Module (VTPM) [100]. TVEM aims,
using a single TPM via multiplexing, to give the virtual machines the “illusion” that
each one has exclusive access to the TOM [95]. The flexibility and the scalability of
TVEM are indicated on its property that does not require its alignment with the
settings of TPM. The elasticity of TVEM arises from its contained API that actually
carries the Trusted Software Stack (TSS) in TVEM releasing it from its implemen-
tation. The advantages of TVEM enable system designers to modify at will so the
TVEM as the overall virtual environment in order to fulfill the confidentiality and
integrity requirements of information. Definitely TVEM is not stand-alone, including
besides TVEM, a TVEM manager to host hypervisors for accessing the TPM of the
host platform and availability of TVEM, a control level of VTNs serving the overall
management system, as well as a TVEM Factory (TF) which generates the TVEM,
manage keys and provides safely the TVEM to platforms that will use it.

9.5.4 Trusted Cloud Computing Platform (TCCP)

Similarly to TVEM, Trusted Cloud Computing Platform (TCCP) [101] developed to
ensure the IaaS form of Cloud Computing, as its design focuses on node management
and the management of VMs. Describing the situation addressed by TCCP, the prob-
lem is caused by the fact that it is difficult to guarantee the confidentiality of data
calculations provided by the services which are in the upper levels of the software
stack on the SaaS form of Cloud Computing, as the services themselves provide the
software which directly manages customer’s data. Due to this reason, TCCP aims at
the lower levels (IaaS), where the security of customer’s VMs is more manageable
[101].

The application of TCCP aims to ensure the confidentiality and integrity of the
calculations performed by users in IaaS services. Describing the approach abstractly,
TCCP provides the structure of a ”Closed Box Execution Environment” for virtual

133



client machines in order to guarantee that it will not be possible, even for a manager of
the provider service, supervise or skew data used in calculations performed by virtual
machines. A Closed Box Execution Environment, ensures that, in the environment
where the VMs are hosted, even a user with full rights is not able to monitor or
modify a guest-VM [101]. Another important feature of TCCP, is that it allows the
clients of the service to be aware, even remotely, of whether the infrastructure has
an implementation of the TCCP, before launching a VM, extending the concept of
attestation throughout the service.

9.5.5 Security Issues of TVEM and TCCP

Both TVEM and TCCP are intended to secure VMs and virtual environments. One
important difference is that TVEM is a software device, while TCCP is a platform.
TVEM, along with its structural components, with which it interacts, (TVEMManager,
Trusted Factory etc.) are all implemented in software. On the other hand, TCCP,
being a platform has been implemented as a system consisted by computers, and
more precisely by trusted nodes and a node (Trusted Coordinator) that coordinates
all the system. The main difference between TVEM and TCCP is their actual aims.
TVEM aims on establishing trusted relationship among two entities, i.e., information
owner and IaaS provider who will provide the former with a virtual environment.
On the other hand, TCCP by its implementation aims on imposing the “closed box”
execution environment in the back-end of IaaS services to ensure the confidentiality
and integrity of VMs running on the environment of IaaS provider. Despite the
TVEM’s modular design that makes it more customizable and flexible than TCCP,
it is worth noting that, unlike TCCP, TVEM is more susceptible to hardware-based
attacks.

9.5.6 Defending against Hardware-based Attacks: The Hardware

Integrity Attestation Protocol

As we referred previously, a major situation which address the discussed approaches
as many other utilizing Trusted Computing technology to enhance the Cloud Com-
puting security, is that there can not be any guarantee about hardware’s integrity
in provider’s infrastructure, being vulnerable to attacks based on undermining the
operation of the equipment (hardware-based attacks). Thus, we propose a protocol
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i ), 1 ≤ i ≤ n∀λi −→ Ki = hash(λi), 1 ≤ i ≤ n

If Ki = hash(λXP
i ) −→ Send Response

Commodity Computer TCG Member

Send Challenge

Figure 9.1: The Hardware Integrity Attestation Protocol.

which adopts the overall mentality of technology Trusted Computing regarding the
measurements and the expected values of these, as well as exploiting and themselves
the elements of Trusted Computing belonging to TPM. In this chapter we present
two versions of the protocol created and which aims to ensure that hardware is in a
suitable (expected) state when the computer starts.

The main idea behind the protocol is to create a method by which we can collect
and then register information related to changes corresponding to the format and
state of hardware, proceeding then with measurements regarding the configuration
of each hardware component. For example, let n hardware-components {1: CPU, 2:
Network Card, · · · , n: motherboard } we compute the corresponding measurement
lists (Measurement List -ML) by a measurement for each component separately, in
which we register information related to its configuration. Throughout the paper we
shall denote with λi the measurement for the i−th component of clients system, with
λXP
i will denote the expected measurement for the i−th component, while we shall
denote with Ki we shall denote the hash value of a measurement λ.

As we can observe in Figure 9.1 the second entity involved is a member of the
Trusted Computing Platform Alliance (TCG). At this point we demand that each
member (company) of the TCG has the expected (XP) value list {λXP

1 , λXP
2 , · · ·λXP

n }
(those provided by hardware manufacturer) for all kinds of material and their corre-
sponding versions. The aim of the protocol is to ensure that before the Secure Boot
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procedure of a computer (in our case we shall denote this computer as Commodity
Computer, or, for short CC), this should provide an assurance that the hardware used
has not changed its functionality, while retaining its original settings. To achieve this,
we create a unique value used (sec_boot_val) and, after being certified, we try to take
signed by the member of the TCG, the hash value of it as input to launch the Secure
Boot process.

More precisely, since the machine itself knows this value it requires to obtain its
hash value signed by a TCG member. Hence, the only action left to be done by the
TCG member is to compare the current values of each list by the default (expected
ones), which are registered, and if matching the TCG Member sign and return the
the hash of the parameter value.

Concerning the cryptographic notation, in our protocol we shall denote with the
EK the Endorsement Key (public / private) which uniquely defines each TPM and
consequently each computer that has a particular TPM, while p and P denote the
private and public keys used for sign and encryption respectively, with CERT de-
noting its corresponding certificate. Moreover, and ID is used as an identification for
each CC , while TS represents the time-stamp used to avoid replay attacks. At last,
after a computer has been verified that its hardware has not been undermined, the
next step is to proceed to the Secure Boot process. Below we enumerate and discuss
step-by-step our protocol for remote hardware-integrity attestations.

1. The TPM of the computer that needs to be verified by certifying that its hard-
ware components have the anticipated (expected) configuration sends its ID (i.e.,
IDCC),in order for the TCG Member to be able to search its public Endorse-
ment Key (i.e., EKe

CC), signed with its private Endorsement Key (i.e., EKd
CC) the

unique used value (sec_boot_val) of which it expects the signed hash as men-
tioned above, a time-stamp TScc to ensure the freshness of the message and
avoid the potential replay attacks, and measurement lists (i.e., λ1, λ2, · · · , λn)
for each hardware component, all given in a particular order (i.e., CPU, Net-
work Card, Motherboard, ..., etc), and its ID along with the signed message and
its corresponding certificate (CERTCC) are sent to the TCG Member encrypted
with its public Endorsement Key (i.e., EKe

TCG_MB).

2. On the other side, the TPM of TCG Member decrypts the message, verifies the
signature (TPM Signature) and then locate the corresponding expected mea-
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surement list (i.e., λXP
1 , λXP

2 , · · · , λXP
n ) for each hardware component of the

computer. Having a set of expected measurements for each hardware com-
ponent generates as many symmetric keys as the cardinality of the expected
measurement list’s set. The lists are creating each key by calculating the hash
of any expected list as: Ki = hash(λXP

i ) ∀i, 1 ≤ i ≤ n. Then the TPM of TCG
Member creates a challenge (a nonce value, we shall denote its as NTCG_MB)
and sequentially encrypts it using one-by-one all K keys created according to
the above procedure. Then, the TPM of TCG Member signs the sequentially en-
crypted message (encrypts it with EKd

TCG_MB i.e., its private Endorsement Key)
and along with the certificate if its signature (i.e., CERTTCG_MB) and the unique
value sec_boot_val (sends it again to prevent repeat attacks) re-sends them en-
crypted with its public Endorsement Key (EKe

CC)) of its TPM as challenge for
verification of CC’s hardware integrity. Though this challenge-response pro-
cedure it is guaranteed that if and only if the hardware of CC has not been
compromised (i.e., its measurement list will be the expected) then it will be able
to decrypt the message and send the response to TCG member’s challenge.

3. Through the response procedure on CCs site, the TPM of the computer re-
questing authentication of its hardware integrity will decrypt the message us-
ing its private Endorsement Key (i.e., EKd

CC), will verify the signature of the
TCG member, trying then through the procedure we mentioned above to cre-
ate the particular series of K keys but this time using its own measurement
lists ML consisted by the set {λ1, λ2, · · · , λn}. If and only if the measurements
are the expected, CC will be able to create the appropriate K (i.e., computes
Ki = hash(λi) ∀i, 1 ≤ i ≤ n) to decrypt consequently find the “nonce” value
NTCG_MB used as challenge. As expected, in case of failure the CC computer
will not be able to start properly as to enter the session. On the other hand,
in case of successful decryption, the TPM of CC will retrieve the challenge
value (i.e., NTCG_MB) and send it along with a times-tamp (TSCC), to prevent
replay attacks ensuring the freshness of its response,signed with the private En-
dorsement Key (i.e., EKd

CC) and the whole message encrypted with the public
Endorsement Key of TCG Member (i.e., EKe

TCG_MB).

4. Finally, in step 4, when the TCG Member decrypts the reply message sent from
CC on step 3 of our proposed protocol, it can verify (or not) that the computer
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If Ki = hash(λXP
i ) −→ Send Response

Commodity Computer TCG Member

Send Challenge

Figure 9.2: The Two-Step Hardware Integrity Attestation Protocol.

was able to create the correct, or anticipated, K keys, and thus its hardware
is properly formatted having its expected configuration ensuring that its is not
undermined. The TPM of TCG Member signs (encrypts its private Endorsement
Key EKd

TCG_MB) the hash of the sec_boot_val value required for starting the
Secure Boot process and sends encrypted with the public Endorsement Key
(i.e., EKe

CC) of the TPM located in the certified computer CC. Once this process
has been completed, hash(sec_boot_val) signed by the TPM of TCG Member,
is introduced (i.e., passes as input) to the Secure Boot process that verifies
the signature, and having a signature verified by the TCG Member, the TPM
computer can start properly by launching the Secure Boot process.

One improvement we can do in this protocol in order to speed up the whole process
during booting the system by the time protocol is applied, is to integrate / embed
the signed hash value (sev_boot_val) in the challenge procedure of step 2. Since the
computer’s TPM, managed created the appropriate keys K for sequential encryp-
tion/decryption, following that the hardware expresses the expected configuration,
no further authentication is required. So,in Figure 9.2 we present another imple-
mentation of our proposed protocol. The steps (1) and (2) follow the same pattern
except that only the TPM, the computer requesting certification of material integrity,
managed to create the right key will decrypt sequential messages and only then find
the signed the hash value (sec_boot_val). Then passes as input to the Secure Boot
and the procedure followed as before. Below we discuss the procedure followed on
the two-step implementation of our proposed protocol for remote hardware-integrity
attestations.
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1. The TPM computer that need to be verified by certifying that its hardware com-
ponents have the anticipated (expected) configuration sends its ID (i.e., IDCC),in
order for the TCG Member to be able to search its public Endorsement Key (i.e.,
EKe

CC), signed with its private Endorsement Key (i.e., EKd
CC) the unique used

value (sec_boot_val) of which it expects the signed hash as mentioned above, a
time-stamp TScc to ensure the freshness of the message and avoid the potential
replay attacks, and measurement lists (i.e., λ1, λ2, · · · , λn) for each hardware
component, all given in a particular order (i.e., CPU, Network Card, Mother-
board, ..., etc), and its ID along with the signed message and its corresponding
certificate (CERTCC) are sent to the TCG Member encrypted with its public
Endorsement Key (i.e., EKe

TCG_MB).

2. The TPM of TCG member decrypts the message, verifies the signature (TPM
Signature) and locates the corresponding expected measurement list (i.e., λXP

1 ,
λXP
2 , · · · , λXP

n ) for each hardware component of the computer. Having a set
of expected measurements for each hardware component generates as many
symmetric keys as the cardinality of the expected measurement list’s set. The
lists are creating each key by calculating the hash of any expected list as
Ki = hash(λXP

i ) ∀i, 1 ≤ i ≤ n. Then the TPM of TCG Member computes the
hash value (i.e., hash(sec_boot_val)) of the sec_boot_val and signs it with its
private Endorsement Key (i.e, EKd

TCG_MB). Then, the TPM of TCG Member,
sequentially encrypts this signed message using one-by-one all K keys created
according to the above procedure. Then, the TPM of TCG Member signs the
sequentially encrypted message (encrypts it with EKd

TCG_MB i.e., its private En-
dorsement Key) and along with the certificate if its signature (i.e., CERTTCG_MB)
and the unique value sec_boot_val (sends it again to prevent repeat attacks) re-
sends them encrypted with its public Endorsement Key (EKe

CC)) of its TPM
as challenge for verification of CC’s hardware integrity. Though this challenge-
response procedure it is guaranteed that if and only if the hardware of CC has
not been compromised (i.e., its measurement list will be the expected) then it
will be able to decrypt the message and send the response to TCG Member’s
challenge. The CC if and only if has computed the proper K keys implying the
expected configuration on its hardware, can decrypt the message, and pass as
input to the Secure Boot process the hash(sec_boot_val) signed by the TPM of
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TCG Member, launching the Secure Boot process.

9.5.7 Potentials

Throughout this work its is also proposed a protocol to eliminate the possibility of
an attack based on the hardware’s configuration changes (hardware-based attack)
which could undermine the operation of the system and then the security of the data
hosted on this. The solution proposed was the creation of an attestation method for
hardware integrity which enables a commodity computer that has a built-in Trusted
Platform Module (TPM) to prove through a challenge-response procedure that its
hardware has not been compromised.The main points in this protocol is mainly the
configuration of Secure Boot process to expect the signed by a TCG Member hash
value of a unique sec_boot_val required to launch Secure Boot process, i.e., a property
can be ensured by the same TPM since it handles the process, and then to develop
a method which, utilizing hardware measurement lists, is plugged in between of
system’s startup and the launch of Secure Boot process.

9.6 System Integration

The increasing security threats on the protection of privacy, integrity and confiden-
tiality of systems as also of the data stored in them constitute the key incentives for
research and thorough study on information system security. Security of information
systems is one of the most important issues of concern in maintaining the smooth
and persistent operation of IT. This research proposal is developed in the field of
protection against malicious software and the prevention of its spread, which consists
the dominant tactic of cyber-attacks. Therefore, our basic aim is the in-depth and
multi-level study on the protection against malicious software as also the prevention
of its spread by proposing, so inside the scope of this thesis as also through its further
extensions, effective graph-based algorithmic techniques which ensure the protection
of privacy, integrity and confidentiality of the systems.
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9.6.1 An Algorithmic Framework for Protection against Malicious

Software

Considering the continued increase in the use of mobile devices, it is advisable to study
the spread of malware among them. In this direction, we developed epidemiological
models which, using information related to a particular subset of devices (critical
nodes), will aim on coordinated prevention as also on tracking the spread through
graph-based algorithmic techniques.

Approaching the problem, the methodology we follow develops an algorithmic
framework consisting of two axes: protection against malicious software and preven-
tion from its spreading between mobile devices. So, at the first level, it has already
been studied, designed and finally developed a protection system that implement a
set of algorithmic methods for detecting and classifying malware. On the second level,
based on known epidemiological models represented by graphs depicting snapshots
of the networks that are dynamically formed between the mobile devices, we devel-
oped a system to define the maximum permitted response time for a countermeasure
to react in order to suppress the spread of malware between mobile devices, pre-
venting finally its pandemic propagation. In order to achieve this goal, the ongoing
research is developed on two main axes, as shown in Figure 9.3 - initially on the
development of algorithmic techniques for protection against malicious software and
then on the development of algorithmic techniques to prevent its spread between
mobile devices as to avoid pandemics.

9.6.2 Methodology

In the concept of a clearly critical threat on the security of IT operation, we are
called upon to investigate, recommend and implement techniques that, approaching
the problem algorithmically, will provide protection against malicious software and
also suppress to its spread between computing devices.

It is well known that one of the most important challenges in detecting and then
classifying malicious software is the resilience of each technique against its muta-
tions (strain variation), with significant success rates being occupied by the so-called
behavioral techniques. The research team has studied and recently proposed such
malware detection and classification techniques [7], utilizing System-call Dependency
Graphs as representations of its behavior through specific abstractions of these graphs
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Figure 9.3: Architecture of the proposed algorithmic framework for protection against
malware and pandemic prevention.

in mutant-resistant hyper-graphs.
Moreover, tt is widely accepted that prevention is an invaluable tactic, and there-

fore it is clearly intended to be applied in the case of suppressing the spread of
malicious software between mobile computing devices. Having already studied the
phenomenon, from the aspect of the influence of the counter-measure’s response time
to avoid pandemic spread, it is estimated that further study at the level of nodes of
the network with the greatest influence on the spread of malicious software (critical
nodes) would contribute significantly the research level of the field. Therefore, in the
second part of the proposed algorithmic framework, we aim to incorporate innovative
algorithmic techniques that, as an evolution of the already proposed ones, will initiate
the launch of graph-based strategies targeting the immunization of critical nodes of
the network, utilizing the position of computing devices in the dynamic network.

Towards the development of an integrated security framework, the principles de-
veloped so far in designing algorithmic techniques for protection against malicious
software and algorithmic techniques for detecting and classifying digital objects, will
be the components in the development of the proposed protection methods. Addition-
ally, the credible methods of simulation, through graph-based approaches, of the ma-
licious software’s spreading environment developed so far and the study conducted
concerning the effect of counter-measure’s response-time on pandemic prevention
provide the basis for expanding the research into the field of suppressing the spread

142



of malicious software while ensuring the effectiveness of the proposed techniques.

9.6.3 Protection against Malicious Software through Graph-based

techniques

On the first part of the integrated algorithmic framework, malware protection methods
have their basis in algorithmic techniques aimed primarily at addressing the malware
mutations throughout an abstract generalized representation, and then the abilities
of detection and a further classification in a family of known malicious software. To
achieve the primary goal of developing a structure that represents malicious software
remaining unchanged after mutations of the strain, there will be incorporated the
Temporal Graph instances of the Group Relation Graph (GrG) Graphs, as derivatives
of the System-Call Dependency Graph (SCDG). GrG graphs have the ability to detect
malware even if they have been mutated, since in order for the functionality of mal-
ware to be preserved, some system-call functions from specific System-call Groups,
used in its primary form, will also be reused in the mutant strain. Hence, even in the
case of switching/replacing System-calls from the same System-call group (i.e., the
structure of the primary SCDG graph is modified), the interaction and consequently
the association between the System-call Groups depicted by its corresponding GrG
graph will remain unaltered [7]. Hence, evolving the existing research approach, based
on the use of similarities metrics between GrG in order to implement our proposed
malware detection and classification techniques, the research will focus on the uti-
lization of these components and their further integration into a system that would
automatically deploy the corresponding processes of the proposed design are depicted
in Figure ??.

9.6.4 Pandemic Prevention through Graph-based Immunization

Strategies

It is obvious that the most effective defense strategy in the evolution (potentially
pandemic) of an epidemiological phenomenon, in our case the spreading of malicious
software, is the method of prevention. Due to the increased use of mobile devices,
we focus on developing, on the second part of the proposed algorithmic framework,
graph-based strategies that, based on known epidemiological models, aim on the
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immunization of nodes/devices that express a specific set of properties, in order to
prevent a pandemic in cases of malware spreading between mobile devices.

Utilizing real spatial data through satellite images to represent the urban struc-
ture of a city, we assign points of variable attraction to different locations of its urban
composition, representing it as a non-directional weighted graph, in which shortest
path algorithms simulate the movement of mobile devices. Based on such modeling,
we have developed Device Mobility Models and Malware Propagation Models that
simulate the motion of devices and the corresponding dynamic links formed between
them as they move into the city [102]. Additionally, applying epidemiological models
describing different types of spread, we incorporate the proposed algorithmic tech-
nique that, given the total number of devices, the size of the infected and susceptible
population, and the graph representation of a city, determines the upper permit-
ted time limit within which a countermeasure can respond effectively avoiding the
pandemic of malware between susceptible mobile devices.

Graph-based Strategies. In the research area of network security, there is an impor-
tant knowledge basis that describes information concerning the properties of network
nodes as they are expressed by their influence on the dissemination of information
within the network (i.e., adopting an idea, information transmission , spreading an
epidemic, etc.). A set of nodes whose endogenous characteristics define a behavior-
profile suggesting that they have an increased impact on the considered critical nodes
and for the process of finding them have been proposed various algorithmic tech-
niques, mostly adopted and used in the fields of both computer and social networks.
Extending our research approach, we inspect the feasibility of extending the pan-
demic prevention model through the use of additional information concerning the
interconnection between nodes in dynamic networks. In the second part of our pro-
posed algorithmic framework, the study focuses on exploring the scope of protection
of such dynamical networks with respect to the subset of nodes which seem to be
the most influential in the spread of malicious software (critical nodes) and therefore
appear to have higher degree of risk. A key component of this development is the use
of information related to the vulnerabilities that specific nodes present as also related
to their topology regarding its effect on the spread of malicious software. Our main
goal is the development of algorithmic techniques that will control and determine the
coordinated launching of immunization strategies on the critical nodes, utilizing the
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existing graph-based approaches. More specifically, we aim on developing techniques
that, by identifying critical nodes in a network of mobile devices, will coordinate the
deployment of graph-based strategies for the cure and / or immunization against the
spread of malware to ultimately suppress its spread and avoid a pandemic.
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Chapter 10

Conclusion

10.1 Protection against Malicious Software

10.2 Graph-based Techniques for Malicious Software Detection and Classification

10.3 Pandemic Prevention from the Malware spreading to Proximal Mobile Devices

10.4 Model Evaluation: Potentials and Limitations

10.5 Model Alignment and System Integration

10.6 Further Research

10.1 Protection against Malicious Software

In this work there have been proposed several graph-based techniques to build the
defense line against malicious software. In order to perform the elementary task of
detection the maliciousness of an unknown software sample and proceed to its further
classification to a malware family since it has been detected as malicious the main goal
is to compare the unknown object against something that is known to be malicious.
The digital object throughout this thesis is set to be represented by a graph-object
that in some fashion depicts its behavior (i.e., since in that case the digital object is
a software, its behavior is depicted with its interaction with its host environment -
O.S.). The set of what is known so far to be malicious (or not) has been described
as the knowledge base, from which, elements are selected in order to be compared
using the proposed graph-based similarity techniques with the unknown sample.
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The proposed similarity techniques presented on this thesis have been designed over
the scope of the utilization of specific characteristics exhibited in behavioral graphs
and are referenced namely as relational, quantitative, qualitative, and evolutional
characteristics, and have been leveraged as to measure the similarity by assigning
in some fashion different weights on different types of factors that characterize the
nature of an edge of a behavioral graph, taking into account various information
resulted over the inspection of the graph’s properties. Namely, the proposed graph-
based similarity metrics are the ∆-Similarity metric, the ∆-Similarity Metric which are
based on the δ- and δ- distances respectively, the SaMe Similarity Metric and the NP
Similarity Metric. Additionally, the main goals of this work, i.e., malware detection
and classification, and pandemic prevention are discussed in order to make clear the
focus of the research by the aspect of its theoretical background.

10.2 Graph-based Techniques for Malicious Software Detection

and Classification

The core component of this thesis on the axis of development efficient algorithmic
techniques for malware detection and classification, is the proposal of generalized
graph-structures that represent malware’s behavior in such a way that even in extreme
mutation setting they would be able to preserve their structural characteristics that
depict malware’s behavior regarding its functionality, achieving finally high detection
and classification accuracy. In this thesis, there have been proposed three types of
graphs, namely, the Group Relation Graph, the Coverage Graph and the Temporal
Graphs. The Group Relation Graph, or, for short GrG, results after merging disjoint
vertices of its ancestor graph, the so called System-call Dependency Graph, or for
short ScDG, as it is discussed in Section 3 and has the ability (as shown from the
experimental evaluation) to maintain its detection and classification accuracy against
its “not easy to manage” and mutation fragile ancestor ScDG graph. Next, the Coverage
Graph, or, for short CvG, is presented as an evolution of GrG, which represents the
dominating relations exhibited between the vertex set of GrG regarding their in/out
weights and degrees. Finally, an innovative graph representation at the specific field
of malware detection and classification is proposed through this thesis, aiming to
catch the structural evolution of a GrG or CvG graph, the so called Temporal Graphs.
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Such graphs demand the computation of the proposed similarity metrics over all
their instances, that are defined as epochs and due to the resulted space complexity
are hence more difficult to store and manage when compared to GrG or CvG graphs.

In order to perform the procedures of malware detection and classification, through
this thesis there have been designed, implemented and evaluated two graph-based
models for malware detection and classification based on the proposed graph struc-
tures and the corresponding graph-based similarity metrics. In this thesis there have
been presented and implemented the architectural properties demanded to develop
a system that, given an unknown software sample, efficiently and effectively would
detect if it is malicious or not, and then classify it to a malware family. More precisely,
based on the computation of its similarity, (i.e., utilizing the ∆- or the ∆-Similarity
metrics) between the generalized graph representation of the test sample and the set of
known malware samples stored in th knowledge base (i.e., their corresponding GrG,
or CvG, or Temporal Graphs) the proposed system is able to distinguish malicious
from benign unknown software samples and to a further extent, if they have been
detected as malicious, to classify them (i.e., utilizing the SaMe- or the NP-Similarity
metrics) to one of a set of known malware families.

10.3 Pandemic Prevention from the Malware spreading to Proxi-

mal Mobile Devices

In the scope of this thesis, there have been proposed specific models to simulate
the spread of a malicious software between proximal mobile devices and to develop
further an approach to prevent the pandemic of the spreading malware based on the
effect that has on it the time required from a countermeasure to take effect in order
to suppress malware’s propagation, the so called response-time. Specifically, through
the thesis it is proposed a graph-based model to establish the maximum permitted
time interval (i.e., response-time bound) inside which a counter measure may react
effectively in order to prevent pandemic. More precisely there have on the scope
of this thesis there have been proposed a graph-based model for simulating town’s
planning, a graph-based model for simulating the mobility patterns of the mobile
devices over a city area and a graph-based model for simulating the propagation
patterns that follow the underlying compartmental epidemic model. Incorporating
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these three models, it has been proposed an integrated framework to establish the
maximum permitted response-time bound required from a countermeasure to take
effect in order to prevent pandemic. In order to tune the overall system that integrates
the aforementioned models a simulator that incorporates the has been implemented
and by involving several other parameters that affect the spread of the malicious
software between proximal mobile devices (i.e., malware’s size, device range, network
density, initial infected population etc.) is able, given a set of parameters to decide if
the pandemic could be avoided or not.

10.4 Model Evaluation: Potentials and Limitations

The evaluation of the proposed models regarding the accuracy of the detection and
classification procedures have been performed over a data-set of more that 2500 mal-
ware samples pre-classified. or equivalently indexed, according to the widest in use
antivirus industries and their respective heuristic rules into 48 malware families, and
also a set of 35 benign samples ranging to various commodity software type that
cover the wider range of desktop applications. The data-set that actually consists
the knowledge base to evaluate the proposed model is that same as the one used
in [5], and in order to perform the evaluation procedures it has been divided into
5 sub-sets as to proceed by a five-fold cross validation procedure which is the most
applicable and would made the achieved results comparable to the ones exhibited
by other approaches regarding the detection and respectively the classification proce-
dures. The results achieved averaging the detection and classification accuracy over
the five-folds where quite positive since in many cases overcame the ones achieved
from other graph-based and non-graph based approaches proving the potentials of
the proposed detection and classification techniques.

On the other hand, in order to evaluate the proposed model for pandemic pre-
vention over the propagation of a malicious software that spreads between proximal
mobile devices, a series of Monte Carlo simulation experiment where performed in
order to eliminate as much as possible the non deterministic character of the ex-
periments, referencing mostly the probabilistic type of the so called device mobility
model. Particularly, for several values of other factors that also affect the malware’s
spread, namely, malware’s size, device range, network density and the size of the
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initially infected population the proposed model established successfully the upper
bounds concerning the maximum time permitted for a countermeasure to take effect
in order to sanitize the infected devices suppressing the spread and finally achieve
pandemic prevention.

10.4.1 Refining Coverage-Similarity Metric

As we observe from the obtained results, regardless the underlying computation on
the weight of each node and the variances occurred through different values of thresh-
old, the detection rates behave in both case as been almost stabilized. In Figure 10.1
we present an overall comparison of the detection rates achieved by our proposed
graph-based model for malware detection, where the detection accuracy of the two ap-
proaches concerning vertex weight measurement has been shown for selected values
of threshold. As we can observe from this comparative representation the approach
following the sum of the weights on its vertex performs better, regarding the detection
rates, over the one that computes the average value of the weight over the degree of
this vertex despite that the FP rates where even lower. An interesting aspect over the
analysis of our experimental results could be developed on how outlier observations
affect our first approach concerning the measurement of the weight on each vertex
(i.e., sum) and how we could enforce our second approach (i.e., mean) as to be more
resilient to outlier observations that strongly affect the produced domination set for
each vertex.

10.4.2 Deployment and Manageability of Temporal Graphs

Next are discussed the potentials and limitations concerning the deployment of the
Temporal Graphs and their utilization over the proposed similarity metrics as also
their limitations referencing the manageability regarding the required storage when
having unbalanced the trade-off set by the tuning of epoch sizes.

Potentials. Several modeling alternates have been arise during the theoretical con-
struction of our graph-based proposed model regarding the temporal evolution of
behavioral graphs that represent software samples, regarding their structural mod-
ification during time. Our approaches that we discuss briefly next, mostly concern
the representation of the structural modifications on the GrG and CvG graphs during
time, and how they could also be represented with other structures that do not co-
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Figure 10.1: Detection rates for multiple values of threshold achieved by applying the sum
and the mean on the computation of the weight on each vertex.

operate graphs, and consequently deserve the application of different manipulation
methods.

In the first alternate approach, we could denote the structural evolution of a given
by plotting by a discrete distribution of the addition of edges over the graph on specific
time buckets (i.e., similar to epochs) and create patterns that could be utilized in order
to perform pattern-matching over the plot of any given pair of samples (i.e., test and
known malware sample). These plots should be construct for the temporal evolution
of each corresponding edge pair of two given graphs in order for the patterns to be
comparable.

On the other hand, in the second approach of our model, we need to simulate the
structural modification of a given graph during time (i.e., temporal evolution of the
graph). Similarly to our approach, rather than constructing several graph instances
equal to the number of the defined epochs and structurally relevant to the applied
method regarding the discrete or cumulative modification approach, we could also
represent these structural modification (i.e., addition of edges) over the time for each
edge (i.e., edge on either GrG or CvG). More precisely, we could define a binary
sequence for each edge, where 0 denotes absence and 1 denote adition of this edge
on the overall graph, and the length of the sequence equals the size of the ScDG
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(i.e., System-call Depenency Graph). Then, various alignment algorithms could be
adopted in order to retrieve similarity patterns among any pair of such sequences,
that represent corresponding edges on the graphs of the test and the known malicious
samples.

Limitations. Our proposed graph-based model for malware detection and classifi-
cation using temporal graphs, despite its theoretical basis, has also some limitations
concerning any implementation drawbacks that may arise. The main issue encoun-
tered regarding the implementation design concerns the spatial complexity of our
approach. More precisely, defining a fine-grained or a coarse-grained quantization of
time (i.e., number of epochs) would affect to a great extent the space required to store
the corresponding Temporal Graph instances. AS easily someone can understand, an
implementation of our proposed model on a fine-grained time quantization scheme,
would be more precise against a more coarse-grained once. Additionally, further
tuning issues arise over the trade-off between the precision on temporal structural
modifications and the construction of more distinguishing patterns. However, more
sophisticated approaches, such an implementation that utilizes the maximum length
of a binary tree in order to bound the quantization would lead to a more stable,
rational, effective and efficient approach.

10.5 Model Alignment and System Integration

In order to integrated the approaches proposed throughout this thesis, an algorith-
mic framework for ensuring security against malicious software is also proposed.
The framework is designed having its basis on the theoretical background that rules
the proposed graph-based similarity techniques (i.e., the ∆-Similarity metric, the
∆-Similarity Metric, the SaMe Similarity Metric and the NP Similarity Metric) that
compute the similarity between any given pair of digital objects that are represented
utilizing the proposed graph structures (i.e., Group Relation Graphs, Coverage Graphs
and Temporal Graphs) where the detection and classification procedure rely on. On
the other hand the utilization of trusted computing alongside with the implemen-
tations of graph-based strategies for establishing early warning concerning counter
measure’s response-time, cooperates in order to build a set pf graph-based principles
that would deploy effective strategies in order to not only avoid pandemic caused by
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malware’s spread but to a further extent to efficiently suppress malware’s spread.

10.6 Further Research

As a prime further research target there has left the development of the algorithmic
framework for integrated protection against malicious software described on the pre-
vious section. Moreover, on the same goal is embedded the investigation of utilizing
different combinations of similarity metrics over different types of behavioral graphs
as also the evaluation of the proposed similarity metrics over the Temporal Graphs
utilizing both GrG and CvG graphs. Additionally on the same concept several string
alignment algorithms could also be deployed as a result of the evolution of Temporal
Graphs over their corresponding epochs where the exploration of such informative
data would be valuable indeed.
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