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Abstract

Vasileios Α. Tatsis, Ph.D., Department of Computer Science and Engineering, Univer-
sity of Ioannina, Greece, March 2019.
Online Parameter Adaptation Methods for Population-Based Metaheuristics.
Advisor: Konstantinos E. Parsopoulos, Associate Professor.

Optimization problems lie in the core of scientific and technological development.
They appear in almost every decision-making process, under various types and forms.
A multitude of algorithms have been proposed in relevant literature to solve opti-
mization problems. However, theoretical evidence suggests that the development of
an overall optimal algorithm is impossible. For this reason, problem-specific optimiza-
tion algorithms have been developed, incorporating a variety of features and ad hoc
operations that exploit specific properties of the corresponding optimization problem.

Typically, optimization algorithms have control parameters that adjust their dy-
namic with critical impact on their performance. Thus, proper parameter tuning
becomes the cornerstone of efficient problem solving. There is a continuous line of
research on parameter tuning methods since the early development of optimization
algorithms. The majority of these methods addresses the tuning problem offline, i.e.,
prior to the algorithm’s execution. Established offline methods are based on statistical
methodologies to identify promising parameter configurations, and their results may
be reusable in problems of similar type. However, they neglect the algorithm’s feed-
back and performance fluctuations during its run. The alternative approach is the
use of online methods that dynamically adapt the parameters during the algorithm’s
run. These methods exploit real-time performance data and, hence, they can make
informative decisions on the parameter adaptation. This usually comes at the cost of
non-reusable decisions.

The main goal of the present thesis is the development of new online parame-
ter adaptation methods that can be particularly useful for the class of metaheuristic
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optimization algorithms. The first part of the dissertation comprises the necessary
background information on the current state-of-the-art and the optimization algo-
rithms that will be used for demonstration purpose. In the second part of the the-
sis, two new online parameter adaptation methods are proposed. The first method,
called Grid-based Parameter Adaptation Method, is based on grid search in the pa-
rameter space. The proposed method can be used on any algorithm and tackles
both scalar and discrete parameters (including categorical ones). The new method
is demonstrated on two state-of-the-art metaheuristics. For this purpose, two estab-
lished benchmark suites are also considered. The second proposed method, called
Gradient-based Parameter Adaptation Method with Line Search, replaces the grid
search with approximate gradient search in the parameter space. The search proce-
dure is further equipped with a recently proposed gradient-free line search technique.
These modifications offer additional performance improvement with respect to the
grid-based method, as revealed by the relevant performance assessment.
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Ε Π

Βασίλειος Τάτσης, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο
Ιωαννίνων, Μάρτιος 2019.
Online Μέθοδοι Προσαρμογής Παραμέτρων σε Πληθυσμιακούς Μεταευρετικούς αλ-
γορίθμους.
Επιβλέπων: Κωνσταντίνος Ε. Παρσόπουλος, Αναπληρωτής Καθηγητής.

Τα προβλήματα βελτιστοποίησης βρίσκονται στον πυρήνα της επιστημονικής και
τεχνολογικής έρευνας. Εμφανίζονται σχεδόν σε κάθε διαδικασία λήψης αποφάσεων,
υπό διάφορους τύπους και μορφές. Για την επίλυση προβλημάτων βελτιστοποίησης
έχουν προταθεί πολλοί αλγόριθμοι στη σχετική βιβλιογραφία. Ωστόσο, θεωρητικές
μελέτες έδειξαν ότι είναι αδύνατη η ανάπτυξη ενός καθολικά βέλτιστου αλγορίθμου.
Για το λόγο αυτό, η έρευνα επικεντρώνεται στην ανάπτυξη αλγορίθμων βελτιστο-
ποίησης για συγκεκριμένα προβλήματα, οι οποίοι ενσωματώνουν ποικίλα χαρακτη-
ριστικά και ad hoc λειτουργίες που εκμεταλλεύονται συγκεκριμένες ιδιότητες του
αντίστοιχου προβλήματος βελτιστοποίησης.

Τυπικά, οι αλγόριθμοι βελτιστοποίησης έχουν παραμέτρους ελέγχου που προ-
σαρμόζουν τη δυναμική τους με κρίσιμο αντίκτυπο στην απόδοσή τους. Έτσι, η σω-
στή προσαρμογή παραμέτρων αποτελεί ακρογωνιαίο λίθο για την αποτελεσματική
επίλυση προβλημάτων. Για το λόγο αυτό, υπάρχει συνεχές και αυξανόμενο ερευνη-
τικό ενδιαφέρον για τις μεθόδους προσαρμογής παραμέτρων. Η πλειονότητα αυτών
των μεθόδων αντιμετωπίζει το πρόβλημα προσαρμογής παραμέτρων offline, δηλαδή
πριν από την εκτέλεση του αλγορίθμου. Καθιερωμένες μέθοδοι αυτού του τύπου
βασίζονται σε στατιστικές μεθοδολογίες και τα αποτελέσματά τους δύνανται να
επαναχρησιμοποιηθούν σε παρόμοια προβλήματα. Ωστόσο, δεν λαμβάνουν υπόψη
δεδομένα που προκύπτουν κατά την εκτέλεση του αλγορίθμου, καθώς και πιθανές
διακυμάνσεις στην απόδοσή του. Η εναλλακτική προσέγγιση είναι η χρήση online
μεθόδων που προσαρμόζουν δυναμικά τις παραμέτρους κατά την εκτέλεση του αλ-
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γορίθμου. Αυτές οι μέθοδοι εκμεταλλεύονται δεδομένα απόδοσης του αλγορίθμου
που προκύπτουν σε πραγματικό χρόνο και, ως εκ τούτου, μπορούν να ενημερώνουν
άμεσα τις παραμέτρους. Ωστόσο, τα αποτελέσματα αυτών των μεθόδων συνήθως
δεν είναι επαναχρησιμοποιήσιμα σε παρόμοια προβλήματα.

Ο κύριος στόχος της παρούσας διατριβής είναι η ανάπτυξη νέων online μεθόδων
προσαρμογής παραμέτρων, με ιδιαίτερη στόχευση στις μεταευρετικές μεθόδους βελ-
τιστοποίησης. Το πρώτο μέρος της διατριβής περιλαμβάνει τις απαραίτητες βασικές
πληροφορίες σχετικά με το τρέχον state-of-the-art και τους αλγορίθμους βελτιστο-
ποίησης που θα χρησιμοποιηθούν για την επίδειξη των νέων μεθόδων. Στο δεύτερο
μέρος της διατριβής προτείνονται δύο νέες μέθοδοι προσαρμογής παραμέτρων. Η
πρώτη μέθοδος, που ονομάζεται Grid-based Parameter Adaptation Method, βασίζε-
ται στην αναζήτηση πλέγματος στο χώρο των παραμέτρων. Η προτεινόμενη μέθοδος
μπορεί να χρησιμοποιηθεί σε οποιονδήποτε αλγόριθμο και αντιμετωπίζει τόσο τις
πραγματικές όσο και τις διακριτές παραμέτρους (συμπεριλαμβανομένων των κα-
τηγορικών παραμέτρων). Η νέα μέθοδος εφαρμόζεται σε δύο δημοφιλείς μεταευ-
ρετικούς αλγορίθμους. Για το σκοπό αυτό, χρησιμοποιούνται δύο βασικές σουίτες
δοκιμαστικών προβλημάτων. Η δεύτερη προτεινόμενη μέθοδος, η οποία ονομάζεται
Gradient-based Parameter Adaptation Method with Line Search, αντικαθιστά την
αναζήτηση πλέγματος με προσεγγιστική αναζήτηση παραγώγων στο χώρο των πα-
ραμέτρων. Η διαδικασία αναζήτησης είναι επιπλέον εφοδιασμένη με μια πρόσφατη
τεχνική ευθύγραμμης αναζήτησης χωρίς παραγώγους. Οι παραπάνω τροποποιήσεις
προσφέρουν πρόσθετη βελτίωση απόδοσης σε σχέση με τη μέθοδο πλέγματος, όπως
αποκαλύπτεται από τη σχετική πειραματική αξιολόγηση.
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Chapter 1

Introduction

1.1 Overview

1.2 Motivation

1.3 Thesis Contribution

1.4 Thesis Layout

1.1 Overview

The continuous technological evolution has created the need for more enhanced algo-
rithmic tools in every aspect of scientific research. During the past decade, Optimiza-
tion has been placed in the center of scientific research. Optimization problems are
met literally everywhere, requiring diverse optimization algorithms to tackle them.
Theoretical results such as the No Free Lunch theorem [1] suggest that there is no
universal algorithm that can tackle all problems equally well.

The parameter tuning problem has been a central research topic for many years,
resulting in a variety of tuning methods distinguished in two categories: offline and
online methods. In early approaches, offline parameter tuning was applied, prior
to the algorithm’s execution on the studied problem. This approach requires deep
knowledge of the studied problem as well as experience from the practiotioner’s side.
The good performance of such approaches is strongly connected to resource-intensive
preprocessing, based on trial-and-error experimentation. Usually, this requires the
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Figure 1.1: Convergence regions of the Newton-Raphson method for the problem
z3 − 1 = 0 in the complex plane.

execution of large number of algorithm variants under alternative parameters, and
performance comparisons based on statistical methodologies. Very often, this proce-
dure requires more time than the solution of the studied problem itself. However, it
can produce results that may be reusable in problem of similar type.

On the other hand, online parameter adaptation, also called parameter control,
does not require preprocessing although at the cost of hardly reusable results. Various
ad-hoc procedures have been proposed for this purpose in the literature. The present
thesis proposes two general-purpose online parameter adaptation methods, which are
also algorithm-independent.

Metaheuristics have been frequently used to tackle optimization problems where
good (sub-)optimal solutions are needed in reasonable time. However, they have
proved to be rather sensitive on their parameter settings. For this reason, they consti-
tute an excellent testbed for the developed methods that are presented in the present
thesis.

1.2 Motivation

Early motivation for the developments presented in the present thesis comes from
deterministic optimization and, specifically, from the Newton-Raphson convergence
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Figure 1.2: Convergence regions of the DE algorithm for various parameter values.

fractal depicted in Fig. (1.1). This image refers to the covergence regions of Newton-
Raphson applied on the problem z3 − 1 = 0 in the complex plane. The three main
colors, (red, green, blue) are associated with the detected roots respectively. We can
clearly distinguish solid regions in which, initialization of the algorithm leads to the
closest root, as well as fractal-like regions where convergence is unpredictable. Clearly,
these regions show that the choice of the starting point is very crucial.

Simiraly, the performance of metaheuristics is also strongly connected to their pa-
rameterization, as it is illustrated in Fig. (1.2). This figure illustrates the performance
of the Differential Evolution (DE) algorithm in its scalar parameter space, for various
problems and dimensions. Specifically, for each pair of parameter values (P1, P2), DE
was executed 100 times and its performance in terms of solution quality was recorded.
Each color refers to a specific solution precision, with black corresponding to the best
one. The clear appearance of solid regions containing promising parameters set was
the main motivation for the development of the online parameter adaptation methods
presented in the thesis.
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1.3 Thesis Contribution

In the first part of the dissertation, motivation for the use of parameter adaptation
methods is provided. Then, in Chapter 3, a novel online parameter adaptation method
for population-based metaheuristics is proposed. The core idea is based on grid search
in the parameter domain, aiming at discovering promising regions of parameter values
that are associated with enhanced performance. For this purpose, different quality
criteria are considered in terms of solution quality and diversity. Different variants
are proposed for handling continuous and discrete parameters in a single-objective
or multi-objective manner. The derived methods are demonstrated on two popular
metaheuristics, using two state-of-the-art test suites that include high-dimensional
and low-dimensional problems. Experimental evidence reveals the effectiveness of
the proposed approach and its competitiveness against other state-of-the-art adaptive
algorithms. The following contributions are achieved by the proposed method:

• It is completely autonomous from the user during the algorithm’s execution.

• Three quality criteria are considered.

• It can handle both continuous and discrete (including categorical) parameters.

• It does not require preprocessing, sparing significant amount of computational
time and resources.

• It can ameliorate the performance of the algorithm even when unsuitable initial
parameter values are selected by the user.

• It has sound performance on a large number of test problems.

• It has competitive performance against other state-of-the-art adaptive or self-
adaptive algorithms.

• It does not depend on the algorithm, but offers a rather generic parameter
adaptation scheme.

In Chapter 4, a more sophisticated method is proposed. Its core mechanism is based
on performance gradient estimations while it is also equipped with line search. The
use of the gradient-based approach for parameter adaptation results in significant
improvement in convergence speed. Similarly to its predecessor, the gradient-based
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method is highly autonomous. Following the same experimental configuration as
for the grid-based approach, the method is applied on the two test suites, revealing
its performance superiority against other state-of-the-art algorithms. The following
contributions are obtained from the the proposed approach:

• It is completely autonomous from the user during its application.

• It does not depend on the algorithm.

• It does not require preprocessing, thereby sparing significant amount of com-
putational time and resources.

• It is less sensitive to initial parameter values selected by the user.

• It has better convergence properties than the grid-based predecessor.

• It promotes more fine-grained parameter adaptation.

• It is favorably compared to other state-of-the-art adaptive or self-adaptive al-
gorithms.

1.4 Thesis Layout

The thesis is organized as follows: Chapter 2 provides a brief description of parameter
adaptation methods as well as the necessary background in metaheuristics. Chapter
3 presents a novel online parameter adaptation method based on grid-search esti-
mations, demonstrated on two metaheuristics and benchmarked on two established
test suites. Chapter 4 presents an enhanced method equipped with gradient based
estimations and line search. Finally, Chapter 5 concludes the dissertation and outlines
directions for future work.
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Chapter 2

Background Information

2.1 Introduction

2.2 Population-based Metaheuristics

2.3 General Population-based Algorithm Model

2.4 Parameter Adaptation Methods

2.5 Literature review

2.6 Benchmark Suites

2.7 Synopsis

2.1 Introduction

Metaheuristics are widely acknowledged as essential tools for solving difficult op-
timization problems in diverse scientific fields [2]. Albeit solution optimality is not
guaranteed, they can provide (sub-)optimal solutions of real-world problems in rea-
sonable time. This renders metaheuristics a valuable alternative especially in cases
where traditional optimization tools or analytical approaches fail.

The performance of metaheuristics typically depends on their control parameters
as well as on the particular problem instance [3–5]. The calibration and fine-tuning
of the control parameters is a major issue in metaheuristics design.
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2.2 Population-based Metaheuristics

Without loss of generality, consider the general form of the n-dimensional bound-
constrained continuous optimization problem,

min
x∈X⊂Rn

f(x), (2.1)

where the search space X is defined as a hypercube,

X = [l1, u1]× · · · × [ln, un] ,

with li and ui denoting the lower bound and the upper bound of the i-th direction
component, respectively. Let also the sets of indices

D ≜ {1, 2, . . . , n}, I ≜ {1, 2, . . . , N}, (2.2)

where D refers to the set of direction components and I refers to the indices of
population members, respectively. The objective function value of a vector xi ∈ X ,
i ∈ I , will be simply denoted also as

fi = f (xi) .

Finally, the function rand( ) denotes the pseudo-random number generator that pro-
duces uniformly distributed real numbers in the range [0, 1].

2.2.1 Differential Evolution

Differential Evolution (DE) was introduced by R. Storn and K. Price [6] as a population-
based, stochastic optimization algorithm for numerical optimization problems. Al-
thought DE has flexible search operators, which are very convenient for the user,
it is also characterized by sensitive dynamics with respect to its control parame-
ters [7]. Nevertheless, its adaptability, simplicity, and efficiency has placed it among
the most popular metaheuristics, counting a significant number of relevant works [8].
DE employs a different mechanism for producing new candidate solutions than the
dominant probabilistic mechanisms of Evolutionary Algorithms (EAs). Specifically, it
uses differences of the population’s members to perturb existing candidate solutions.
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Algorithm 2.1 Pseudocode of the DE algorithm.
1: INPUT: Population P ; Population size N ; Parameters F , CR; Maximum iterations

tmax

2: initialize(P )
3: while t < tmax do
4: for i = 1 : N do
5: Choose mutually different indices rs, 2 ⩽ s ⩽ 5

6: u
(t+1)
i ← mutation

(
x
(t)
rs , F

)
/* Use Eqs. (2.3)-(2.7) */

7: v
(t+1)
i ← crossover

(
x
(t)
i , u

(t+1)
i , CR

)
/* Use Eq. (2.8) */

8: evaluate
(
v
(t+1)
i

)
9: x

(t+1)
i ← selection

(
x
(t)
i , v

(t+1)
i

)
/* Use Eq. (2.9) */

10: end for
11: Update index g of best individual
12: t← t+ 1
13: end while

Similarly to EAs, mutation, crossover, and selection operators are applied to evolve
the population.

The standard DE algorithm assumes a fixed-size population of size N,

P = {x1, x2, . . . , xN} ,

to probe the search space. Each individual xi is an n-dimensional vector,

xi = (xi1, xi2, . . . , xin)
⊤ ∈ X, i ∈ I,

and constitutes a candidate solution of the problem at hand. The population is ran-
domly initialized in X , typically following a uniform distribution.

The population P is iteratively evolved by applying two operators, namely mutation
and crossover, on each individual. Then, a selection phase takes place, where each
individual of the new population competes with its corresponding original individual,
and the best one passes to the next iteration. These operators are iteratively applied
until a termination condition is satisfied.

The steps of DE are outlined in Algorithm 2.1. Let t denote the iteration counter.
According to the mutation operator, a new vector u(t+1)

i is derived for each individual
x
(t)
i at iteration t, through combinations of existing individuals. A variety of mutation

operators have been proposed in the relevant literature. The most common ones are
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the following:

DE/Best/1
u
(t+1)
i = x(t)

g + F
(
x(t)
r1
− x(t)

r2

)
, (2.3)

DE/Rand/1
u
(t+1)
i = x(t)

r1
+ F

(
x(t)
r2
− x(t)

r3

)
, (2.4)

DE/Current-to-Best/2

u
(t+1)
i = x

(t)
i + F

(
x(t)
g − x

(t)
i + x(t)

r1
− x(t)

r2

)
, (2.5)

DE/Best/2
u
(t+1)
i = x(t)

g + F
(
x(t)
r1
− x(t)

r2
+ x(t)

r3
− x(t)

r4

)
, (2.6)

DE/Rand/2
u
(t+1)
i = x(t)

r1
+ F

(
x(t)
r2
− x(t)

r3
+ x(t)

r4
− x(t)

r5

)
, (2.7)

where F ∈ (0, 1] is a fixed, user-defined parameter also called the scale factor [8]; g

denotes the index of the best individual, i.e., the one with the lowest function value;
and rs are mutually different integers selected from the set I , also different than i.

After mutation, crossover is applied to produce a trial vector,

vi = (vi1, vi2, . . . , vin)
⊤ , i ∈ I,

for each individual xi. There are two main types of crossover operator. The most
popular one is the binomial crossover where,

v
(t+1)
ij =


u
(t+1)
ij , if R ⩽ CR or j = RN(n),

x
(t)
ij , otherwise,

(2.8)

where j ∈ D; R is the realization of a uniformly distributed random variable in the
range [0, 1]; CR ∈ (0, 1] is the second control parameter of the algorithm, called the
crossover rate; and RN(n) is an integer randomly selected from the set D. The two
conditions in the first branch of Eq. (2.8) ensure that at least one component of the
mutated vector u

(t+1)
i is inherited to the trial vector.

The alternative exponential crossover operator initially copies x(t)
i into the trial vector

v
(t+1)
i . Subsequently, it randomly selects a component index k ∈ D and sets the cor-
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Algorithm 2.2 Pseudocode of the PSO algorithm.
1: INPUT: Swarm S; Population size N ; Parameters c1, c2, w; Maximum iterations

tmax

2: initialize(S)
3: while t < tmax do
4: for i = 1 : N do
5: Update index g of best particle
6: u

(t+1)
i ← update_velocity

(
p
(t)
i , u

(t)
i , x

(t)
i , c1, c2, w

)
/* Use Eq. (2.10) */

7: x
(t+1)
i ← update_position

(
x
(t)
i , u

(t+1)
i

)
/* Use Eq. (2.11) */

8: evaluate
(
x
(t+1)
i

)
9: p

(t+1)
i ← update_best_position

(
x
(t+1)
i , p

(t)
i

)
/* Use Eq. (2.12) */

10: end for
11: t← t+ 1
12: end while

responding component v(t+1)
ik = u

(t+1)
ik . Then, starting from the index k + 1, a number

of components of v
(t+1)
i are assigned the corresponding component values of u

(t+1)
i ,

according to a stochastic condition. After the first failure of the condition, the rest of
the components retain the values initially copied from x

(t)
i [9].

Finally, selection takes place where the trial vector v(t+1)
i competes with x

(t)
i and the

new individual for the next iteration of the algorithm is selected as follows,

x
(t+1)
i =


v
(t+1)
i , if f

(
v
(t+1)
i

)
⩽ f

(t)
i ,

x
(t)
i , otherwise.

(2.9)

The algorithm iteratively applies the same procedure until a termination condition is
reached. Eventually, the individual xg is reported as the best detected solution.

The parameters of DE (including its crossover operator) have been shown to
be crucial for its convergence [10]. While proper parameter values can render DE a
very efficient algorithm, mild perturbations may result in significantly inferior perfor-
mance. Taking into consideration that proper parameter values are typically problem-
dependent, it is reasonable to expect that parameter tuning of DE can be a laborious
task.

2.2.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a popular metaheuristic proposed by J. Kennedy
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and R. Eberhart [11]. Its robustness and efficiency in a variety of complex optimiza-
tion problems, as well as its easy implementation and minor requirements on the
problem’s model, has placed it among the most popular algorithms.

The main concept of PSO is based on a swarm of search points called particles.
The particles cooperatively probe the search space through adaptable position shifts,
while retaining in memory their best visited positions. PSO employs a swarm of search
points,

S = {x1, x2, . . . , xN},

which is randomly and uniformly initialized in the search space X. Each particle,

xi = (xi1, xi2, . . . , xin) ∈ X, i ∈ I,

represents a candidate solution of the problem. Its objective value will be simply
denoted as fi = f (xi). The particle iteratively moves in X according to an adaptable
position shift, called the velocity, which is denoted as,

vi = {vi1, vi2, . . . , vin},

and its best visited position stored in memory is denoted as,

pi = {pi1, pi2, . . . , pin} ∈ X.

The dynamic of PSO is strongly dependent on exchange of information among the
particles. Specifically, the particles communicate their best positions to other particles
through communication channels that define their neighborhoods. This socially shared
information is then used to guide their move.

There are two major PSO models with respect to the extent of information sharing.
In the global (gbest) model each particle is aware of the overall best position of the
whole swarm. In the local (lbest) model, information is shared only among a restricted
number of predefined particles. The communication channels among the particles are
determined by the employed neighborhood topology. The most popular neighborhood
topology is the ring, where the i-th particle takes into account the findings of particles
with indices belonging in a set,

NBi = {i−m, . . . , i− 1, i, i+ 1, . . . , i+m}.
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Figure 2.1: Popular neighborhood topologies: ring (left) and star (right).

This neighborhood topology can be depicted as a ring-shaped graph (hence the name)
where particles lie on the nodes and each one is connected with its two immediate
neighbors only. The parameter m defines the size of the neighborhood and it is
called the neighborhood’s radius. The ring and star topologies are graphically illustrated
in Figure 2.1, in which the nodes denote the particles and the edges denote the
communication channels.

Let the index gi denote the best particle in NBi, i.e.,

gi = argmin
k∈NBi

f(pk),

and let t denote the iteration counter. Then, the update equations of plain PSO are
given as follows [12]:

v
(t+1)
ij = w v

(t)
ij + c1 rand()

(
p
(t)
ij − x

(t)
ij

)
+ c2 rand()

(
p
(t)
gij
− x

(t)
ij

)
, (2.10)

x
(t+1)
ij = x

(t)
ij + v

(t+1)
ij , (2.11)

where i ∈ I and j ∈ D; w is a velocity clamping parameter called inertia weight; and
c1, c2, are two scalars called the cognitive parameter and social parameter, respectively.

Finally, each particle updates its best position at every iteration as follows,

p
(t+1)
i =


x
(t+1)
i , if f

(t+1)
i ⩽ f

(
p
(t)
i

)
,

p
(t)
i , otherwise.

(2.12)

13



The algorithm iterates until a user-defined termination condition is satisfied. The steps
of PSO are outlined in Algorithm 2.2, while the reader can find thorough presentation
of PSO and its variants in [12, 13].

2.3 General Population-based Algorithm Model

A general population-based algorithm model will be henceforth considered to describe
the proposed online parameter adaptation algorithms in the following chapters. Ac-
cording to the presented population-based algorithms in the previous sections, the
general model assumes a fixed-size population,

P = {x1, x2, . . . , xN} ,

of size N to probe the search space. Each individual xi is an n-dimensional vector,

xi = (xi1, xi2, . . . , xin)
⊤ ∈ X, i ∈ I,

and constitutes a candidate solution of the problem. The population is randomly
initialized in the search sapce X , following a uniform distribution. Also, the scalar
parameters of the algorithm will be henceforth denoted as ρ1, ρ2, . . . , ρnp.

2.4 Parameter Adaptation Methods

There are two major categories of parameter setting methods that dominate the rel-
evant literature, namely offline and online methods [3,4].

2.4.1 Offline

Offline parameter tuning is based on existing performance data of the algorithm col-
lected from previous applications on similar problems. If such data is unavailable, it is
collected through a preprocessing phase based on preliminary experimentation with
different parameter settings on the problem at hand. The best-performing parameter
values are then adopted in the algorithm. Typically, this approach requires significant
computational effort. The current experience with numerous metaheuristics suggests
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that this effort can be comparable or even higher to the effort needed for solving
the problem itself. Most offline parameter tuning approaches are based on statistical
methodologies. Typical examples are the Design of Experiments [14], which provides
a sound statistical methodology to analyze, compare and learn from experiments,
F-Race [5], which is a racing algorithm based on statistical comparisons for select-
ing the best configuration out of a predefined set of candidate configurations; the
Sequential Model-Based Optimization [15], which uses explicit regression models to
describe the dependence of target algorithm performance on parameter settings; and
ParamILS [16], which conducts an iterated local search in parameter configuration
space. Such approaches can offer promising results at the cost of additional imple-
mentation and experimentation effort. Nevertheless, their outcome is often reusable
in a wide range of similar problems. Relative works can be found also in [17, 18].

2.4.2 Online

In contrast to the offline tuning approaches, online methods aim at dynamically
adapting the parameters of the algorithm, based on feedback during its run [3, 16].
The popularity of such methods can be attributed to the lack of preliminary experi-
mentation and the limited user intervention. On the other hand, online methods often
exhibit two major weaknesses:

1. Overspecialization: they are usually based on ad hoc procedures developed for a
specific algorithm or problem type.

2. New control parameters: the number of new parameters introduced by the tuning
method may significantly expand the parameter domain.

The overspecialization issue renders the outcome of online methods hardly reusable
even in different runs of the same algorithm on a specific problem. Moreover, increas-
ing significantly the number of parameters by introducing new ones may increase the
sensitivity of the algorithm and, concurrently, impose the necessity for tuning the tun-
ing procedure itself. These weaknesses have offered motivation for the development
of new online methods during the past decades.
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2.5 Literature review

There is a number of adaptive online approaches with respect to the two meta-
heuristics described in the previous section, namely DE and PSO. In [19] Brest et
al. proposed a self-adaptive algorithm that probabilistically assigns control param-
eter values. Zhao et al. [20] proposed a self-adaptive scheme with multi-trajectory
search. Also, a distributed adaptive scheme with scale factor inheritance was proposed
in [21] by Weber et al., where subpopulations are connected in a ring topology, each
one having its own scale factor. Moreover, a self-adaptive algorithm learning from
previous experiences was proposed in [22], while in [23] a parallel multi-population
model with random connection topology was proposed. A survey paper revising the
terminology, as well as the classification of control mechanisms, was provided in [24].

Polakova et al. [25] introduced a controlled restart DE in which the restarting
conditions are derived from the difference of extremal values of the objective function
and the estimated maximum distance among the points in the current population.
Moreover, the jDElscop variant was introduced in [26], combining three strategies
and a population-reduction mechanism. A generalized adaptive scheme that is based
on probability distribution was proposed in [27].

Zhang and Sanderson in JADE [28] algorithm use an external archive to adapt the
control parameters. In the same vein, in [29] Tanabe and Fukunaga proposed a new
parameter adaptation technique (called SHADE), which uses historical memory of
successful control parameter settings to guide the selection of future values. Moreover,
in [30] Tanabe et al. introduced an enhanced version of SHADE, called L-SHADE,
which incorporates success-history based parameter adaptation.

Tvrdík et al. also adapt the control parameters of the DE in [31] through com-
petition within the algorithm, while a new adaptive variant with twelve competing
strategies was proposed in [32]. A comparative analysis of the binomial and expo-
nential crossover variants was conducted in [33] and [34], providing also theoretical
results. Brest et al. in [35] proposed a self-adaptive DE with small, varying population
size.

LaTorre et al. in [36] have analyzed the behavior of a hybrid algorithm that com-
bines two heuristics. An adaptive memetic DE with global and local neighborhood-
based mutation operators was proposed by Piotrowski in [37]. Finally, in [38] Segura
et al. studied the relation between exploration and exploitation with respect to the
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Table 2.1: Summary of the SOCO test problems

No. Functions Range f∗

1 Shifted Sphere Function [−100, 100]n −450
2 Shifted Schwfel’s Problem 2.21 [−100, 100]n −450
3 Shifted Rosenbrock’s Function [−100, 100]n −390
4 Shifted Rastrigin’s Function [−5, 5]n −330
5 Shifted Griewank’s Function [−600, 600]n −180
6 Shifted Ackley’s Function [−32, 32]n −140
7 Schwefel’s Problem 2.22 [−10, 10]n 0
8 Schwefel’s Problem 1.2 [−65.536, 65.536]n 0
9 Extended f10 [−100, 100]n 0
10 Bohachevsky [−15, 15]n 0
11 Schaffer [−100, 100]n 0
12 Hybrid Composition Function [−100, 100]n 0
13 Hybrid Composition Function [−100, 100]n 0
14 Hybrid Composition Function [−5, 5]n 0
15 Hybrid Composition Function [−10, 10]n 0
16 Hybrid Composition Function [−100, 100]n 0
17 Hybrid Composition Function [−100, 100]n 0
18 Hybrid Composition Function [−5, 5]n 0
19 Hybrid Composition Function [−10, 10]n 0

scale factor in DE.
In the same vein, a number of PSO variants with dynamically adjusted parameters

have been proposed in literature. In [39] the inertia weight of PSO is automatically
controlled based on the swarm’s distribution and particles’ fitness values. Moreover,
in [40] an adaptable PSO algorithm was proposed based on a stability criterion, while
in [41] a fuzzy system was employed for the same purpose.

2.6 Benchmark Suites

It is reasonable to expect that parameter adaptation methods, such as the ones pro-
posed in the present thesis, can be beneficial for an algorithm particularly in cases
of demanding optimization problems. Undoubtedly, large-scale problems consisting
of hundreds of decision variables constitute an appropriate testbed for investigat-
ing the potential benefits. Nevertheless, problems of lower dimension can verify the
wide applicability of the method. The solution quality criterion for all the considered
problems is the objective value error defined as,

ε∗ = f (x∗)− f
(
xopt

)
, (2.13)

17



Table 2.2: Summary of the CEC-2013 test problems

No. Functions Range f∗

1 Sphere Function [−100, 100]n −1400
2 Rotated High Conditioned Elliptic Function [−100, 100]n −1300
3 Rotated Bent Cigar Function [−100, 100]n −1200
4 Rotated Discus Function [−100, 100]n −1100
5 Different Powers Function [−100, 100]n −1000
6 Rotated Rosenbrock’s Function [−100, 100]n −900
7 Rotated Schaffers Γ7 Function [−100, 100]n −800
8 Rotated Ackley’s Function [−100, 100]n −700
9 Rotated Weierstrass Function [−100, 100]n −600
10 Rotated Griewank’s Function [−100, 100]n −500
11 Rastrigin’s Function [−100, 100]n −400
12 Rotated Rastrigin’s Function [−100, 100]n −300
13 Non-Continuous Rotated Rastrigin’s Function [−100, 100]n −200
14 Schwefel’s Function [−100, 100]n −100
15 Rotated Schwefel’s Function [−100, 100]n 100
16 Rotated Katsuura Function [−100, 100]n 200
17 Lunacek Bi-Rastrigin Function [−100, 100]n 300
18 Rotated Lunacek Bi-Rastrigin Function [−100, 100]n 400
19 Expanded Griewank’s plus Rosenbrock’s Function [−100, 100]n 500
20 Expanded Scaffer’s Γ6 Function [−100, 100]n 600
21 Composition Function 1 (n = 5, Rotated) [−100, 100]n 700
22 Composition Function 2 (n = 3, Unrotated) [−100, 100]n 800
23 Composition Function 3 (n = 3, Rotated) [−100, 100]n 900
24 Composition Function 4 (n = 3, Rotated) [−100, 100]n 1000
25 Composition Function 5 (n = 3, Rotated) [−100, 100]n 1100
26 Composition Function 6 (n = 5, Rotated) [−100, 100]n 1200
27 Composition Function 7 (n = 5, Rotated) [−100, 100]n 1300
28 Composition Function 8 (n = 5, Rotated) [−100, 100]n 1400

where x∗ is the solution achieved by the algorithm and xopt is the known globally
optimal solution of the problem.

2.6.1 SOCO Test Suite

For large-scale problems, the test suite provided in the special issue on large-scale con-
tinuous optimization problems of the Soft Computing journal [42] (henceforth denoted as
SOCO) is considered. This test suite consist of 19 large-scale continuous optimization
problems, henceforth denoted as f1-f19, of dimension n = 50, 100, 200, 500. Among
them, f1-f6 come from the CEC-2008 test suite [43], accompanied by 13 shifted and
hybrid test problems of high complexity, including separable and non-separable prob-
lems, which are reported in Table 2.1. The main goal determined by the test suite is
the detection of the known global minimizers of the test problems within the tight
limit of qmax = 5000×n function evaluations (FEs). Also, a number of 25 experiments
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is required for the derivation of statistical results.
The test suite is provided on the internet1 along with complementary material.

This includes complete results for three base algorithms, namely DE with exponen-
tial crossover, CHC [44], and GCMAES [45], along with the average solution values
for 13 additional algorithms, namely SOUPDE [46], DE-D40+Mm [47], GaDE [48],
jDElscop [26], SaDE-MMTS [20], MOS [49], MA-SSW-Chains [50], RPSO-vm [51],
Tuned IPSOLS [52], EvoPROpt [53], EM323 [54], VXQR1 [55], and GODE [56].
Note that adaptive and self-adaptive algorithms are included among them. Beside
the exponential DE, the most popular binomial DE is additionally considered as a
base algorithm in the experiments presented later in the present thesis. The source
code of the test problems is available online [57].

2.6.2 CEC-2013 Test Suite

In addition to the large-scale problems, the mainstream CEC-2013 test suite from
the special session on real-parameter single-objective optimization [58] is also con-
sidered. It consists of 28 benchmark problems denoted as f1-f28, including unimodal,
multimodal, and composite functions, all reported in Table 2.2. Only the dimensions
n = 30 and n = 50 are considered, since problems of lower dimension can hardly
offer useful information for approaches such as the proposed ones. According to
this test suite, the search space is equal to [−100, 100]n for all test problems. Also,
the maximum number of function evaluations is equal to qmax = 10000 × n. This is
in contrast to the SOCO test suite where non-symmetrical search spaces and half the
number of function evaluations are considered for problems of larger dimension. The
optimal solutions for all test problems are known, and the suggested number of runs
per problem is 51 as dictated by the test suite.

Complementary material provided by the test suite is also available on the inter-
net [59]. This includes complete results for one of the most competitive DE variants,
namely L-SHADE [30] and SHADE [29], as well as for DEcfbLS [60], jande [61],
DE_APC [62], and PVADE [63]. Note that all the provided DE algorithms are adap-
tive and self-adaptive.

1http://sci2s.ugr.es
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2.6.3 Further Implementation Details

At this point, it shall be underlined that the algorithms used for comparisons with
the proposed methods of this thesis were already tuned for the corresponding test of
problems. However, the required computational budget for their tuning is typically
neglected in all relevant studies, although it can be comparable or even higher than
the reported budgets required for solving a problem. The method introduced in
the present thesis do not require such preliminary experimentation. Although a fair
comparison would require to allocate to the proposed approaches this additional
preprocessing budget, it was decided to push their performance to the limit and
assess them under exactly the same computational budget as for the competitor tuned
algorithms.

All implementations of the proposed methods in this thesis were made in the C

programming language. The results for the competitor algorithms were either adopted
from the publicly available data or obtained through the available sources in the cor-
responding references of the test suites. The OpenMPI library2 was used for paral-
lelization. The parallelization does not interfere with the method’s dynamic but only
expedites the experiments. Thus, the same results are received with the serial version
of the method under identical initial conditions and seeding. All experiments were
conducted on a Beowulf cluster consisting of Intel® i7 machines with 8GB RAM,
providing 8 CPUs each, and running under Ubuntu Linux.

2.7 Synopsis

In this chapter, the required background information regarding the employed state-
of-the-art metaheuristics was outlined. A general population-based optimization al-
gorithm model was defined in order to be used for the general descriptions of the
proposed methods in the following chapters. Additionally, the description of the test
problems used in the dissertation was outlined. Finally, implementation details were
provided.

2http://www.open-mpi.org
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Chapter 3

New Grid-Based Parameter Adaptation
Method

3.1 Introduction

3.2 Proposed Method

3.3 Application on Differential Evolution

3.4 Preliminary Sensitivity Analysis

3.5 Application on Particle Swarm Optimization

3.6 Synopsis

In this chapter, the novel grid-based parameter adaptation method is proposed and
demonstrated on two state-of-the-art metaheuristics. The presentation includes a gen-
eral description of the method’s basic scheme, as well as specialization for the cases
of Differential Evolution and Particle Swarm Optimization. Experimental assessment
is offered on the two benchmark suites, SOCO and CEC-2013, including the relevant
statistical analysis.
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3.1 Introduction

Dynamic parameter adaptation allows the algorithm to identify suitable parameter
settings during its run. Existing approaches are based on the algorithm’s previous
performance, as well as on current performance estimations [3, 16]. Typically, these
methods need minimal user intervention, although at the cost of additional compu-
tational requirements in terms of running time.

The main goal of the proposed grid-based method is the dynamic adaptation of
the control parameters of the corresponding algorithm during its run with minimal
additional computational cost and user intervention. For the scalar parameters, this
is achieved by discretizing the parameter space, forming a grid. Then, local search is
conducted on the parameter grid, based on estimations of the algorithm’s performance
under different neighboring parameter settings. The most promising parameter setting
is then adopted from the algorithm for a number of iterations. The same steps are
iteratively applied in order to identify promising parameter settings in different stages
of the optimization procedure. The search can be conducted either serially or in
parallel, taking advantage of modern computer systems.

The grid-based method is demonstrated on two state-of-the-art metaheuristics,
namely Differential Evolution (DE) and Particle Swarm Optimization (PSO), for dy-
namically adapting their control parameters. However, proposed method is applicable
with any optimization algorithm. DE was selected mainly due to its recognized sen-
sitivity in parameter values and operator type [10], which results in challenging pa-
rameter control problems. In the same vein, PSO was selected for further verification
on different population-based metaheuristics.

3.2 Proposed Method

In the following paragraphs, the proposed grid-based parameter adaptation method,
henceforth called Grid-based Parameter Adaptation Method (GPAM) is presented in detail.
The basic scheme for scalar parameter adaptation of population-based metaheuristics
is initially exposed, followed by an updated variant that dynamically adjusts also
discrete parameters.
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3.2.1 Basic Scheme

The first step in the proposed method is the discretization of the scalar parameter
space. Let the parameters of the algorithm be ρ1, ρ2, . . . , ρnp, and a specific range
[lρi , uρi ] be defined for each one. Discretization step sizes λ1, λ2, . . . λnp are specified
for the each parameter, respectively. Small step sizes offer more fine-grained search
in parameter space, although the convergence to good parameter values may become
slow. On the other hand, large discretization steps may result in overshooting ap-
propriate parameter values. The optimal step size depends always on the algorithm
and, specifically, its parameter sensitivity. Nevertheless, previous experience with an
algorithm often provides useful insight for this purpose.

The discretized np-dimensional parameter space,

G = {(ρ1, ρ2, . . . , ρnp); ρi ∈ {lρi , lρi + λi, lρi + 2λi, . . . , uρi}, ∀i = 1, . . . , np} ,

is henceforth called the grid. Each interior point in G has 3np−1 immediate neighboring
points. The proposed method assumes that the algorithm is initialized to a random
population Ppri, called the primary population, and assumes an initial parameter vector
at the center of the grid, i.e.,

ρi =
lρi − uρi

2
, i = 1, . . . , np. (3.1)

Then it evolves for tpri iterations. The selection of initial parameters on the grid
center is reasonable in lack of additional domain knowledge suggesting better choice.
Naturally, if such information is available, it can be easily exploited to accelerate the
detection of suitable parameter values. For example, consider the case where data is
available a priori, suggesting that the objective function has a multitude of minimizers
densely concentrated in specific parts of its domain. In view of such information, the
initial parameters may be set accordingly to promote exploitation over exploration.
On the other hand, small number of sparsely distributed minima may need initial
parameters that promote exploration. Thus, domain knowledge can be beneficial for
the algorithm’s efficiency.

After the tpri iterations, the primary population is copied into 3np secondary popu-
lations, each one evolved using a neighboring parameter vector. The secondary pop-
ulations are independently evolved using their assigned parameter values for a small
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number of iterations, tsec ≪ tpri, in order to locally estimate the performance of the
current population with the corresponding parameter values. The best-performing
secondary population is then adopted as the new primary population along with
its parameter vector. These steps constitute a full cycle of the method, which con-
tinues with new cycles until the available computational budget (usually function
evaluations) is exceeded. The main phases of the method are analyzed below:

Cloning Phase

The primary population Ppri is copied into 3np secondary populations Psecj with j ∈
{1, 2, . . . , 3np}, one for each neighboring parameter vector in the grid, including the
current one. If (ρ1, ρ2, . . . , ρnp) is the current parameter vector for the primary popu-
lation, then the secondary population Psecj has a parameter vector (ρ1j, ρ2j, . . . , ρnp,j)

with,
ρij = ρij + γ λi, γ ∈ {−1, 0, 1}, i ∈ {1, 2, . . . , np}. (3.2)

Obviously, the case γi = 0 corresponds to the current parameter vector of the primary
population.

Performance Estimation Phase

Each secondary population is evolved for tsec ≪ tpri iterations. This is called the
performance estimation phase of the method, and provides a local estimation of the
algorithm’s performance for the current primary population, using the specific neigh-
boring parameter vectors. This step can be executed either serially or in parallel using
one master node (primary population) and 3np slave nodes (secondary populations).
Modern desktop computers offer adequate resources for such implementations.

Subsequently, the primary and the secondary populations are compared in terms
of their average objective values (AOV). For a population P of size N , this is defined as
the average function value of its members:

f̄P =
1

N

N∑
i=1

f (xi) . (3.3)

The best population among the primary and the secondary ones, along with its
parameters vector, are adopted, as thew new primary population.

The presented procedure produces a trajectory of parameter vectors in the grid
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Figure 3.1: A complete cycle of the proposed GPAM method.

by tracking local improvements of estimated performance. This way, even marginal
improvements achieved by a secondary population would result in adopting new
parameter vectors that may be recalled in subsequent cycles of the procedure. This
effect can produce undesirable cyclic or oscillating trajectories, which can be alleviated
by imposing a minimal improvement threshold εmin for accepting a new primary
population. Thus, the best secondary population P ∗

sec and its parameters (ρ∗1, . . . , ρ∗np)
replace the primary population Ppri and its current parameters (ρ1, ρ2, ..., ρnp) only if
it holds that,

f̄pri − f̄sec∗ ⩾ εmin > 0.

The value of εmin can be set taking into consideration the desired solution accuracy.

Dynamic’s Deployment Phase

The new primary population, with its new parameter vector (ρ1, . . . , ρnp), is evolved
according to the implemented algorithm for tpri iterations and this completes a full
cycle of the proposed, grid-based parameter adaptation method.

Analysis and Improvements

The application of the three phases above is henceforth referred as a cycle of the
parameter adaptation method, in order to avoid confusion with the iterations of the
primary and secondary populations. Thus, a cycle c involves tpri iterations of the
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Algorithm 3.1 Pseudocode of the basic GPAM method
1: initialize(Ppri)
2: M ← 3np /* Number of secondary populations */
3: Evolve primary population Ppri for tpri iterations.
4: while (not termination) do
5: /* Performance estimation phase */
6: for i = 1 : M do
7: Copy Ppri to secondary population Psec,i.
8: Assign parameters to Psec,i.
9: Evolve Psec,i for tsec iterations.

10: end for
11: /* Update primary population */
12: Find the best-performing secondary population P ∗

sec.
13: if (f̄pri − f̄sec∗ ⩾ εmin) then
14: Ppri ← P ∗

sec

15: Replace worst individuals of Ppri with the overall best vectors of
16: all Psec,i (if they are better).
17: end if
18: /* Dynamic’s deployment phase */
19: Evolve primary population Ppri for tpri iterations.
20: end while

primary population and 3np× tsec iterations of the secondary populations, i.e., a total
number of,

qc = (tpri + 3np tsec) ×N,

function evaluations, where N stands for the population size. A complete cycle of
the proposed GPAM method is illustrated in Fig. 3.1. The maximum number of
complete cycles that can be performed by the method, given a maximum budget of
qmax function evaluations, can be a priori determined as,

cmax =

⌊
qmax

qc

⌋
, (3.4)

where ⌊.⌋ is the floor function.
Moreover, alternative performance metrics can be used instead of AOV. A typi-

cal alternative is the use of each population’s overall best objective value. However,
this metric may become misleading because, for practical purpose, the number tsec

of performance-estimation iterations shall be typically kept low (5 to 10 iterations)
in order to spare computational budget. Thus, using solely the overall best value as
performance measure renders the procedure vulnerable to temporarily optimal solu-

26



tions that may be rapidly discovered. This was also verified in experimental testing
in early stages of GPAM’s development, and for this reason it was abandoned.

Furthermore, in order to take full advantage of the discoveries of all secondary
populations, the utilization of the overall best individual of each unselected secondary
population in the new primary population is also considered. Thus, the worst 3np in-
dividuals of the new primary population are replaced by the 3np overall best members
of the secondary populations, if they have better objective values.

The proposed GPAM approach with the modification discussed above is outlined
in Algorithm 3.1. Steps 3-19 constitute a complete cycle of the method. The number
of iterations tpri and tsec for the primary and secondary populations, respectively, can
be set to fixed values. As previously mentioned, small values of 5 to 10 iterations
are suggested for tsec since only rough performance estimations are required for the
secondary populations. Contrary to this, tpri shall take higher values in order to allow
the primary population with the selected parameter vector to deploy its dynamic.
Based on suggestions in literature [6], the value tpri = 10 × n, with n being the
problem’s dimension can be considered as default value.

An alternative strategy is the dynamic adaptation of tpri from a minimum value
tmin
pri to a maximum value tmax

pri during the method’s execution. The rationale behind
it lies on the fact that at the latest stages of optimization the population is expected
to have already identified promising regions of the search space and, hence, longer
running time for the dynamic’s deployment phase can be beneficial. The simplest
strategy is the linear adaptation. Thus, if c denotes the current cycle of the method
and cmax denotes the maximum number of cycles determined by Eq. (3.4), then tpri

can be linearly adapted between tmin
pri and tmax

pri as follows:

tpri(c) =
(
tmax
pri − tmin

pri

) c

cmax
+ tmin

pri . (3.5)

The extremal values tmin
pri and tmax

pri can be set by the user taking into consideration
the problem at hand (especially its dimension). The current experience on numerous
problems has shown that setting tmax

pri at values 40% to 50% higher than tmin
pri is a good

default choice. Thus, the following default setting:

tmin
pri = 10× n, tmax

pri = 14× n,

is suggested, where n is the problem’s dimension. Note that these parameters as well
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Figure 3.2: Bridging populations define multiple grids.

as the εmin threshold for accepting a new primary population are optional. Hence, they
do not contradict the main goal of the proposed approach to unburden the user from
the effort of finding proper parameter values for the algorithm. The proposed ap-
proach can be straightforwardly parallelized in modern desktop computers by using
a master node for the primary population and 3np slave nodes for the concurrent evo-
lution of the secondary populations. Naturally, additional nodes can further expedite
the procedure, especially when denser grids are used.

3.2.2 Handling discrete parameters

The handling of discrete parameters is straightforward for the case of numerical val-
ues with ordering (e.g., integer parameters). In this case, the parameter space for
these parameters is already discretized and the previously presented procedures can
be applied without modification. However, this is not the case for discrete parame-
ters without ordering (e.g., categorial parameters). For such cases, a new concept of
bridging populations is introduced, which defines multiple grids of scalar parameters,
one for each discrete parameter. This modification formulates a multi-grid parameter
space, as the one illustrated in Fig. 3.2. For example, in the general algorithm model,
the primary population would be copied in the 3np secondary populations for adapt-
ing the np scalar parameters, as well as in dp bridging populations, which inherit the
same scalar parameters as the primary population but different discrete parameters.
Here, dp stands for the number of discrete parameters without ordering.

After that, each secondary and bridging population is evolved for tsec iterations
(performance estimation phase). The best secondary or bridging population is selected
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Algorithm 3.2 Pseudocode of the GPAM* method
1: initialize(Ppri)
2: M ← 3np + dp /* Number of secondary populations */
3: Evolve primary population Ppri for tpri iterations.
4: while (not termination) do
5: /* Performance estimation phase */
6: for i = 1 : M do
7: if (i ⩽ 3np) then
8: /* Secondary population */
9: Copy Ppri to secondary population Psec,i.

10: Assign scalar parameter vector to Psec,i.
11: else
12: /* Bridging secondary population */
13: Copy Ppri to secondary population Psec,i.
14: Inherit scalar parameters of Ppri to Psec,i.
15: Assign discrete parameters to Psec,i.
16: end if
17: Evolve Psec,i for tsec iterations.
18: end for
19: /* Update primary population */
20: Find the best-performing secondary population P ∗

sec.
21: if (f̄pri − f̄sec∗ ⩾ εmin) then
22: Ppri ← P ∗

sec

23: Replace worst individuals of Ppri with the overall best vectors of
24: all Psec,i (if they are better).
25: end if
26: /* Dynamic’s deployment phase */
27: Evolve primary population Ppri for tpri iterations.
28: end while

to replace the primary population along with its parameters. This procedure can
be viewed as jumping from one scalar parameter grid to another. The rest of the
parameter adaptation procedure is identical to the GPAM method presented in the
previous sections. The modified approach is outlined in Algorithm 3.2, and it is
henceforth denoted as GPAM*.

3.3 Application on Differential Evolution

The proposed GPAM method is demonstrated on the state-of-the-art DE algorithm,
initially for adapting its scalar parameters. The derived algorithm is henceforth de-
noted as DEGPA (Differential Evolution with Grid-Based Parameter Adaptation). Ad-
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Figure 3.3: The parameter grid for λF = λCR = 0.1. Each interior point (gray node)
has 8 immediate neighbors (black nodes).

ditionally, the GPAM* method is demonstrated on DE for adapting also its crossover
or mutation operator along with the two scalar parameters. The experiments are
conducted on the two established benchmark suites described in Section 2.6.

3.3.1 Online Adaptation of Scalar Parameters and Crossover Op-

erator

The first step in DEGPA is the discretization of the scalar parameter space [64]. Recall
that both parameters F and CR (scale factor and crossover rate) assume real values
in the range (0, 1]. Although different ranges for F have been studied, the specific one
appears to be the most common choice in relevant literature [8] and in the available
source codes [65,66]. Nonetheless, adaptation for different ranges is trivial.

Discretization step sizes λF and λCR are specified for the two parameters, respec-
tively. The current experience has shown that performance differences are marginal
under parameter differences smaller than 0.1. For this reason, λF = λCR = 0.1 was
selected, as a reference step size to build a discretized 2-dimensional parameter space
(grid),

G = {(F,CR); F,CR ∈ {0.0, 0.1, . . . , 1.0}} ,

Each interior point in G has 8 immediate neighbors as illustrated in Fig. 3.3.
The algorithm starts with a randomly initialized primary population, which is

assigned the parameter pair at the center of the grid, i.e., (F,CR) = (0.5, 0.5). The
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primary population Ppri is then copied in 9 secondary populations P a,b
sec , with a, b ∈

{−1, 0, 1}, one for each neighboring parameter pair in the grid. If (F,CR) is the current
parameter pair for the primary population Ppri, then the secondary population P a,b

sec

has a parameter pair (F ′, CR′) with,

F ′ = F + a λF , CR′ = CR + b λCR, a, b ∈ {−1, 0, 1}. (3.6)

Obviously, the case a = b = 0 corresponds to the primary population itself.
Following the GPAM workflow, each secondary population is evolved according to

the standard DE procedure for tsec ≪ tpri iterations. This step can be executed either
serially or in parallel using one master node (primary population) and 9 slave nodes
(secondary populations). Subsequently, the primary and the secondary populations
are compared in terms of their average objective values (AOV), f̄pri, f̄sec, defined in
Eq. (3.3). The best-performing secondary population P ∗

sec, i.e., the one with minimum
AOV value, and the corresponding parameter set are selected and replace the primary
population Ppri and its current parameters if it holds that,

f̄pri − f̄sec∗ ⩾ εmin > 0.

Then, the new primary population and its parameter set, is evolved according to
the corresponding algorithm’s procedure for tpri = 10× n, iterations, where n stands
for the problems dimension. The alternative dynamic adaptation of tpri defined in
Eq (3.5) can be used, following the guidelines of Section 3.2.1.

A cycle c of the method includes tpri iterations of the primary population and
9× tsec iterations of the secondary populations, i.e., a total number of,

qc = (tpri + 9 tsec) ×N,

function evaluations, where N stands for the population size. Thus, the maximum
number of complete cycles that will be performed by the algorithm, can be a priori
determined,

cmax =

⌊
qmax

qc

⌋
, (3.7)

for a prescribed maximum computational budget of qmax function evaluations as de-
scribed in Section 3.4.
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Moreover, the worst 8 individuals of the new primary population are replaced by
the 8 overall bests of the secondary populations, if they have better values.

In addition to the scalar parameters adaptation, the basic DEGPA scheme can
be further enhanced by adapting also the crossover operator type between binomial
and exponential. This can be achieved by using an additional bridge population
in the performance-estimation phase of the method, as described in Section 3.2.2.
More specifically, the bridge population executes tsec iterations (as the rest of the
secondary populations) with the primary population, assuming the scalar parameter
pair of the primary population but with different crossover type. Thus, if the pri-
mary population Ppri uses binomial crossover operator and parameters (F,CR), the
bridge population Pbri is initially a copy of Ppri with parameters (F,CR) but uses
the exponential crossover operator. After evolving Pbri for tsec iterations, the resulting
population competes with the rest of the secondary populations and the primary one,
according to the GPAM* scheme presented in Section 3.2.2. If the bridge population is
the winner, it becomes the primary population and its crossover operator is adopted
for the following cycles of the method, until the next possible change. This procedure
can be simply considered as a jump from the grid of the binomial variant to the grid
of the exponential one and vice versa, as illustrated in Fig. 3.4.

This new DEGPA variant is henceforth called enhanced DEGPA (eDEGPA) and
offers additional flexibility to DEGPA by further reducing the number of user-defined
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parameters in DE. The reason for presenting both DEGPA and eDEGPA is that, as
will be seen in the experimental assessment, there are problem types where the most
efficient crossover operator type has been a priori identified. Thus, it is interesting and
challenging to compare the performance between DEGPA exploiting this information
and eDEGPA with no prior problem-dependent information.

The performance of DEGPA and eDEGPA was initially assessed on the SOCO test
suite described in Section 2.6.1. The main goal in the experiments was to achieve
competitive average performance against algorithms reported in the test suite, espe-
cially the ones with the exponential DE approach that was optimally tuned on the
specific test problems. The tested DEGPA adopted the exponential crossover operator
as well the mutation of Eq. (2.4), according to the setting of the base DE algorithm.
On the other hand, eDEGPA was let to dynamically select between binomial and
exponential crossover, while its mutation operator was the same with DEGPA.

Experiments were conducted with both DEGPA and eDEGPA on all test prob-
lems of the SOCO suite, for dimension n = 50, 100, 200, and 500. The available
computational budget was determined according to the test suite’s requirements as
qmax = 5000×n function evaluations [42]. Note again that the proposed algorithms did
not use the additional time claimed by the competitor algorithms for their preliminary
experimentation and optimal tuning.

The master-slave model was adopted for the parallel implementation, of DEGPA
and eDEGPA,assigning one secondary population per slave node, while the master
node was running the main procedure of the method. The considered performance
measure was the objective value error defined in Eq. (2.13). For each algorithm,
25 independent experiments were conducted and the average errors were recorded.
Following the setting of the DE algorithm in the SOCO test suite, the population size
for both DEGPA and eDEGPA was set to N = 60.

Although the test suite includes only the exponential DE variant, for completeness
reasons the corresponding binomial DE variant using the provided settings and source
codes in [67] was also considered as a competitor algorithm. The control parameters
for the two base DE variants were set to (F,CR) = (0.7, 0.5) as suggested in the
reported results in [67]. The two base DE variants are henceforth denoted as DEexp

and DEbin. On the other hand, both DEGPA and eDEGPA were initiated at the central
parameter pair (F,CR) = (0.5, 0.5), and the initial crossover operator type for eDEGPA
was the exponential one (dynamically changing during execution).
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The experimental analysis was divided in two phases [64]. In the first phase,
DEGPA and eDEGPA were compared against the base algorithms, namely DEexp,
DEbin, CHC, and GCMAES. The available source code for each base algorithm was
used for conducting 25 independent experiments per problem, using the exact set-
tings reported in the SOCO test suite [57]. The achieved objective value errors were
recorded for each algorithm and experiment. The means and standard deviations of
the obtained errors for the proposed and the base algorithms are reported in Ta-
bles A.1 and A.2 of Appendix A. In the 500-dimensional case, results could not be
obtained with the provided GCMAES source code due to excessive computation time
(this is reported as “n/a” in the two Tables).

A close inspection of the results offers interesting information. Both the pro-
posed approaches have competitive performance the base algorithms. In fact, they
clearly outperform DEbin, CHC, and GCMAES, in almost all test problems, especially
for higher dimension. Also, they exhibit competitive performance against the best-
performing base algorithm DEexp. This achievement worths further attention because
DEexp was used with its optimal parameter setting and crossover type provided in the
SOCO test suite, for the same computational budget with the proposed approaches.

For the lower dimensions (n = 50 and n = 100) eDEGPA attained superior average
performance than DEGPA. This can be attributed to eDEGPA’s ability to automatically
select the most proper crossover type operator, since binomial crossover appears to be
more beneficial in some test problems. We can also see that eDEGPA’s performance
gradually declines as dimension increases. This is anticipated, since eDEGPA needs
additional effort to evolve the extra (bridge) populations, in order to dynamically
decide on the crossover operator type. Thus, as the problems become harder, eDEGPA
exceeds the available budget more rapidly than DEGPA.

In order to statistically verify the observed performance differences between each
pair of algorithms, Wilcoxon rank-sum tests at confidence level 95% were conducted
for all test functions. Each positive comparison where DEGPA or eDEGPA outper-
formed another algorithm with statistical significance was counted as a win. The
corresponding negative comparisons were counted as loses. The lack of statistical sig-
nificance was considered as a tie. The results for all statistical comparisons are given
in Table 3.1, where wins, loses, and ties are denoted as “+”, “−”, and “=”, respec-
tively. The reported results verify the previous findings. Specifically, both DEGPA
and eDEGPA achieved statistically better or equivalent performance with the rest of
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Table 3.1: Number of wins (denoted as “+”), loses (denoted as “−”), and ties (denoted
as “=”) of DEGPA and eDEGPA against the base algorithms of the SOCO test suite.

DEGPA eDEGPA
Dimension Algorithm + − = + − =

50 DEbin 14 3 2 14 3 2
DEexp 9 6 4 9 7 3
CHC 19 0 0 19 0 0
GCMAES 16 3 0 16 3 0
eDEGPA 6 10 3

100 DEbin 17 1 1 17 1 1
DEexp 11 6 2 11 6 2
CHC 19 0 0 19 0 0
GCMAES 16 3 0 16 3 0
eDEGPA 6 8 5

200 DEbin 17 1 1 17 1 1
DEexp 12 7 0 10 8 1
CHC 19 0 0 19 0 0
GCMAES 16 3 0 16 3 0
eDEGPA 8 4 7

500 DEbin 19 0 0 19 0 0
DEexp 11 7 1 7 6 6
CHC 19 0 0 19 0 0
GCMAES n/a n/a n/a n/a n/a n/a
eDEGPA 8 4 7

the base algorithms in most of the test problems. Moreover, their numbers of wins
exhibited increasing trend with dimension. Another interesting observation is that
the best competitor, namely DEexp, achieved in all cases less wins than DEGPA or
eDEGPA.

Excluding DEexp, eDEGPA had equal number of wins, loses, and ties with DEGPA
against the other algorithms, despite the fact that eDEGPA has additional self-adaptation
capabilities. Finally, the last line per dimension block in Table 3.1 reports the wins,
loses, and ties of eDEGPA against DEGPA. These comparisons verify the previous
observations on the superior performance of eDEGPA in lower dimension and its
decline in higher dimension as a result of the extra effort imposed by the dynamic
adaptation of the crossover operator type.

Figure. 3.5 illustrates some indicative trajectories of the parameter pairs in the
grid for four test problems (corresponding to lines of different colors). In the case
of eDEGPA, solid lines correspond to exponential crossover operators while dashed
lines correspond to binomial operators.

In the second phase of experimentation on the SOCO suite, DEGPA and eDEGPA
were compared to a number of different algorithms [42, 67]. The comparisons were
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Figure 3.5: Trajectories of parameter pairs for DEGPA (up) and eDEGPA (down) for
four test problems indicated with different colors. All trajectories start on the grid
center (F,CR) = (0.5, 0.5). For eDEGPA solid line indicates exponential crossover,
while dashed line stands for binomial crossover.

based on the average error values per algorithm and test function, which are re-
ported in Tables A.3 and A.4. The corresponding error values for the rest of the
algorithms are reproduced from the original sources [67]. Also, the results of DEGPA
and eDEGPA appear in both Tables A.3 and A.4 to facilitate comparisons.

The number of test problems where DEGPA and eDEGPA achieved non-inferior
(equal or better) or inferior (worse) average errors than the other algorithms is graph-
ically illustrated in Fig. 3.6 and reported in Table 3.2, offering some interesting
information. On the one hand, we can see that DEGPA and eDEGPA have similarly-
shaped lines, which implies consistent performance against the rest of the algorithms.
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Figure 3.6: Number of test problems where DEGPA (up) and eDEGPA (down)
achieved equal or better average error than different algorithms on the SOCO suite,
for dimension n = 50, 100, 200, and 500.

Nevertheless, it can be observed that DEGPA retains its performance as dimension in-
creases (overlapping lines), while eDEGPA exhibits declining behavior, with plot lines
of higher dimension being enclosed by the lines of lower dimensions. This verifies
the previous interpretation that it is the outcome of additional computational require-
ments. Nevertheless, it worths noting that the proposed approaches achieved highly
competitive performance also to non-DE algorithms, such as PSO-based approaches,
MA-SSW-Chains, EvoPROpt, EM323, and VXQR1, in all dimensions.
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Table 3.2: Number of problems where DEGPA/eDEGPA exhibited inferior or non-
inferior average error values than the competitor algorithms.

Non-Inferior Inferior
Dim. Dim.

Algorithm 50 100 200 500 50 100 200 500
DEGPA

EvoPROpt 18 18 18 17 1 1 1 2
EM323 13 13 12 17 6 6 7 2
SOUPDE 8 8 9 8 11 11 10 11
DE-D40+Mm 11 11 11 10 8 8 8 9
GODE 8 9 8 9 11 10 11 10
MA-SSW-Chains 14 15 17 16 5 4 2 3
GaDE 9 9 8 8 10 10 11 11
RPSO-vm 17 16 17 17 2 3 2 2
jDElscop 8 8 7 9 11 11 12 10
SaDE-MMTS 11 11 11 12 8 8 7 5
MOS 9 8 7 8 10 11 12 11
Tuned IPSOLS 13 12 12 13 6 7 7 6
VXQR1 15 16 15 16 4 3 4 3

eDEGPA
EvoPROpt 17 17 16 15 2 2 3 4
EM323 13 13 12 10 6 6 7 9
SOUPDE 10 8 7 4 9 11 12 15
DE-D40+Mm 13 10 9 6 6 9 10 13
GODE 10 8 7 4 9 11 12 15
MA-SSW-Chains 13 13 13 10 6 6 6 9
GaDE 11 9 6 4 8 10 13 15
RPSO-vm 18 17 17 11 1 2 2 8
jDElscop 10 8 6 4 9 11 13 15
SaDE-MMTS 12 11 9 8 7 8 10 11
MOS 11 8 6 3 8 11 13 16
Tuned IPSOLS 13 12 11 7 6 7 8 12
VXQR1 15 16 15 10 4 3 4 9

3.3.2 Online Adaptation of Scalar Parameters and Mutation Op-

erator

In a second round of experiments with DE on the SOCO suite, the mutation operator
was adapted along with the scalar control parameters using the GPAM* method [68].
The mutation operator defines the scheme that generates new search directions, hence,
affecting the sampling dynamics of DE. For example, operators that involve the best
individual, xg, have been associated with rapid convergence but they are also more
prone to get stuck in local minimizers. On the other hand, operators with purely
random selection of the involved vectors have been shown to promote diversity.
Also, the use of one or two difference vectors may have impact on the algorithm’s
performance.

38



Auxi
liary

Primary

Bridg
e

Auxi
liary

Bridg
e

Auxi
liary

Bridg
e

Auxi
liary

Bridg
e

Figure 3.7: Bridging parallel grids through populations with different mutation op-
erators.

In this framework, the eDEGPA scheme was considered with the exception that
the adapted discrete parameter is the mutation operator, selected among the five
operators defined in Eqs. (2.3)-(2.7). This requires the use of additional bridging
populations besides the one defined in the previous eDEGPA implementation. The
additional populations inherit the primary population and its parameters, but assume
different mutation operator. Thus, they allow for exploration on multiple parallel grids
of the scalar parameters, each one corresponding to a different mutation operator as
illustrated in Fig. 3.7.

The proposed variant is henceforth called DE with Grid-based Parameter and Op-
erator Adaptation (DEGPOA), and it closely follows the general GPAM* scheme of
Algorithm 3.2. DEGPOA requires 9 secondary populations for the performance es-
timation under different parameter pairs (F,CR), as well as 4 additional secondary
(bridging) populations that carry the same scalar parameter pair as the primary one,
but with different mutation operators. Thus, a total of 13 secondary populations are
needed for the application of DEGPOA.

The algorithm is initialized with a primary population assuming the initial pa-
rameters (F,CR) = (0.5, 0.5) and a random initial mutation operator. The primary
population is evolved for tpri iterations (dynamic’s deployment phase). Then, it is
copied to the 9 secondary populations of its own scalar parameter grid, exactly as
for eDEGPA in the previous section. However, in DEGPOA the primary population
is also copied in the 4 bridging populations, which assume same scalar parameters
but different mutation operator than the primary population. For example, if the pri-
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mary population has the initial parameters mentioned above and uses the DE/Rand/1
operator, then the bridging populations would assume the same scalar parameters
(F ′, CR′) = (F,CR) = (0.5, 0.5), but the DE/best/1, DE/Current-to-Best, DE/Rand/2,
and DE/best/2 operators, respectively.

After that, each secondary population is evolved for tsec iterations (performance
estimation phase). The best secondary population is selected to replace the primary
population along with its parameters and mutation operator. This procedure can
be viewed as jumping from the one mutation operator’s grid to another. The new
primary population initiates a new cycle of the algorithm with a new dynamic’s
deployment phase and so on.

The selection of the primary population’s initial mutation operator can be done
in two ways. If an operator is known to perform well in the given problem, it is a
reasonable choice to prefer it as the initial one. On the other hand, the initial operator
can be randomly selected in absence of any relevant information.

Another issue that requires further investigation is the performance measure used
for the assessment of the secondary populations. In [64] the AOV measure of Eq. (3.3)
was used, because it is less sensitive to temporary performance improvements that
may be caused by the rapid convergence to local minimizers (especially from the
greedier operators). However, AOV exploits solely the objective value and neglets di-
versity, which is the main aspect of DE affected by the adapted mutation operator.
In order to include diversity in the evaluation criteria, an additional, diversity-based
performance measure, namely the objective value standard deviation (OVSD) was con-
sidered. For a population P of size N , OVSD is defined as:

σP =

√√√√ 1

N

N∑
i=1

(
f(xi)− f̄P

)
, xi ∈ P, (3.8)

where f̄P is the AOV defined in Eq. (3.3). OVSD measures the diversity of the ob-
jective values of the population and can be used as a rapidly calculated indicator of
population’s diversity. Higher values of OVSD can be associated to higher diversity,
which is preferable for alleviating premature convergence.

The concurrent use of two performance measures is rather simple and draws
ideas from the concept of Pareto dominance in multi-objective optimization. Specifi-
cally, after the execution of tsec iterations by all secondary populations (including the

40



bridging populations), their (AOV, OVSD) pairs,

(f̄sec, σsec),

are recorded and stored in an external archive. Then, the non-dominated pairs, in
terms of Pareto dominance, are identified. The non-dominated pairs are incomparable
among them, since they are superior in the one performance criterion but inferior in
the other. The final selection can be made either randomly among the non-dominated
pairs or with respect to the overall best value of the corresponding secondary pop-
ulations. The required time complexity for this procedure is negligible since there
are only 13 (AOV, OVSD) pairs in the archive. The DEGPOA variant with the two
performance measures will be henceforth denoted as eDEGPOA.

The DEGPOA and eDEGPOA algorithms were initially evaluated on the SOCO
test suite, following closely the settings previously described for DEGPA. Specifically,
a fixed population size N = 60 was assumed, and the initial parameter pair in all runs
was set to the center of the grid, (F,CR) = (0.5, 0.5). Both approaches used exponential
crossover, which was proved to be the best one also in [42,64]. Regarding the rest of
the parameters, the values,

tsec = 10, εmin = 10−2,

were used, while tpri was linearly adapted between its minimum and maximum val-
ues:

tmin
pri = 10× n, tmax

pri = 14× n,

according to the suggestions in Section 3.2.1 [64].
The experimental assessment consisted of two phases. In the first phase, full sta-

tistical comparisons between DEGPOA, eDEGPOA, and the base algorithms of the
SOCO suite were conducted. In the second phase, comparisons of the average per-
formance were made against the rest of the algorithms reported in the test suite.
The base algorithms were applied again using the source codes and settings reported
in Section 3.3.1. The obtained solution errors were recorder for all algorithms and
test problems. The mean and standard deviations of solution values are reported in
Tables A.5 and A.6.

The results clearly show that both DEGPOA and eDEGPOA are very competitive
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Table 3.3: Number of wins (+), losses (−), and draws (=) of DEGPOA and eDEGPOA
against the base algorithms.

DEGPOA eDEGPOA
Dimension Algorithm + − = + − =

50 DEbin 14 3 2 13 3 3
DEexp 7 5 7 4 6 9
CHC 18 0 1 19 0 0
GCMAES 16 3 0 16 3 0

100 DEbin 17 1 1 17 1 1
DEexp 7 5 7 5 7 7
CHC 19 0 0 19 0 0
GCMAES 16 3 0 16 3 0

200 DEbin 17 1 1 17 1 1
DEexp 8 6 5 8 5 6
CHC 19 0 0 19 0 0
GCMAES 16 3 0 14 3 2

500 DEbin 19 0 0 19 0 0
DEexp 8 7 4 11 6 2
CHC 19 0 0 19 0 0
GCMAES n/a n/a n/a n/a n/a n/a

against the base algorithms. They outperformed DEbin, CHC, and GCMAES in almost
all test problems and dimensions. Also, they exhibited remarkable competitiveness
against DEexp, which was recognized as the best-performing base algorithm in the
SOCO suite [42].

In order to statistically verify the observed performance differences with the base
algorithms, pairwise Wilcoxon rank-sum tests at confidence level 95% were conducted
again for all test functions. Each favorable comparison was counted as a win for the
algorithm and denoted as “+”. Negative comparisons were counted as losses and
denoted as “−”, while draws were denoted as “=”. Table 3.3 summarizes the number
of wins, losses, and draws of DEGPOA and eDEGPOA against the base algorithms.

An interesting observation is that, as dimension increases, both DEGPOA and
eDEGPOA exhibit higher number of wins against the best-performing competitor
algorithm, namely DEexp. Moreover, the diversity-promoting eDEGPOA variant has
marginal differences with DEGPOA, although it improves its performance as dimen-
sion increases. This is an indication that the online adaptation mechanism of DEGPOA
is capable of preserving diversity even without the use of specialized mechanisms or
diversity-oriented performance measures.

The second phase of experimental analysis included comparisons of expected
performance against the rest of the SOCO suite’s algorithms [42,67]. The comparisons
were based on the algorithms’ average errors provided in their original sources [67].
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Table 3.4: Number of problems where DEGPOA and eDEGPOA exhibited inferior
and non-inferior average solution values against different algorithms for the SOCO
suite.

Non-Inferior Inferior
(Dim.) (Dim.)

50 100 200 500 50 100 200 500
DEGPOA

EvoPROpt 17 17 17 16 2 2 2 3
EM323 9 9 10 12 10 10 9 7
SOUPDE 6 6 7 7 13 13 12 12
DE-D40+Mm 6 7 8 8 13 12 11 11
GODE 6 6 7 7 13 13 12 12
MA-SSW-Chains 11 13 16 16 8 6 3 3
GaDE 7 7 8 7 12 12 11 12
RPSO-vm 13 13 16 16 6 6 3 3
jDElscop 6 6 7 7 13 13 12 12
SaDE-MMTS 7 7 9 11 12 12 10 8
MOS 7 6 7 7 12 13 12 12
Tuned IPSOLS 11 10 12 12 8 9 7 7
VXQR1 12 13 15 15 7 6 4 4

eDEGPOA
EvoPROpt 17 17 16 17 2 2 3 2
EM323 9 10 12 16 10 9 7 3
SOUPDE 6 6 8 9 13 13 11 10
DE-D40+Mm 7 8 9 11 12 11 10 8
GODE 6 7 8 9 13 12 11 10
MA-SSW-Chains 11 13 16 16 8 6 3 3
GaDE 7 7 8 7 12 12 11 12
RPSO-vm 14 14 16 16 5 5 3 3
jDElscop 6 6 7 9 13 13 12 10
SaDE-MMTS 7 8 9 12 12 11 10 7
MOS 7 7 7 7 12 12 12 12
Tuned IPSOLS 11 9 12 12 8 10 7 7
VXQR1 13 14 15 15 6 5 4 4

Table 3.4 reports the number of test problems were DEGPOA and eDEGPOA exhibited
non-inferior or inferior average error values from the rest of the algorithms. Again, it
is confirmed that both algorithms have similar non-inferior performance. However, as
dimension increases, eDEGPOA has marginally better performance. It worths noting
that both algorithms outperform also non-DE algorithms, such as EvoPROpt, MA-
SSW-Chains, RPRSO-vm, Tuned IPSOLS and VXQR1, in all dimensions.

Since the selection of mutation operator is a central topic even for low-dimensional
problems, the study was extended by applying the proposed DE approaches on the
established CEC-2013 suite [69]. Although lower dimensions are also included in the
test suite, only the challenging n = 30 and n = 50 cases were considered. The available
computational budget, as dictated by the test suite, was equal to q = 10000×n, function
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Table 3.5: Statistical comparisons between DEGPOA and standard DE on the CEC-
2013 test problems.

Dimension
30 50

DEGPOA0.2 vs + − = + − =
DE1 16 4 8 15 4 9
DE2 12 8 8 14 8 6
DE3 19 3 6 20 6 2
DE4 12 6 10 12 8 8
DE5 12 7 9 14 9 5
DEGPOA0.5 vs + − = + − =
DE1 18 1 9 18 2 8
DE2 18 5 5 22 3 3
DE3 17 5 6 17 5 6
DE4 19 4 4 20 3 5
DE5 19 5 4 24 3 1
DEGPOA0.8 vs + − = + − =
DE1 13 6 9 14 9 5
DE2 15 6 7 18 6 4
DE3 13 7 8 16 7 5
DE4 20 4 4 19 5 4
DE5 20 3 5 22 2 4

“+” denotes wins; “−” denotes losses; “=” denotes ties.

evaluations. The performance criterion for the algorithms was the objective value
error defined in Eq. (2.13). Following the CEC-2013 setting [58], fixed population
size N = 60 was used for the algorithms, and 51 independent experiments were
conducted per problem and algorithm. The settings of the test suite were closely
followed in order to achieve results comparable to the rest of the algorithms reported
in [58, 70].

The initial primary parameter pair of DEGPOA and eDEGPOA was set as previ-
ously at the central grid point (F,CR) = (0.5, 0.5), while the initial mutation operator
at each experiment was randomly selected from the ones in Eqs. (2.3)-(2.7). These
variants are henceforth denoted as DEGPOA0.5 and eDEGPOA0.5, respectively. In
addition, the cases of different initial pairs closer to their bound, namely, (F,CR) =

(0.2, 0.2), (F,CR) = (0.8, 0.8), were also considered to investigate possible performance
fluctuations related to the initial setting. The corresponding algorithms are henceforth
denoted as DEGPOA0.2, eDEGPOA0.2, DEGPOA0.8, and eDEGPOA0.8, respectively. In
all cases, exponential crossover was used according to the previous analysis. Also, the
values tsec = 5, and εmin = 10−2 (optional parameter) were adopted [64], along with
the linearly increasing tpri in the range [10× n, 14× n].
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Table 3.6: Statistical comparisons between eDEGPOA and standard DE on the CEC-
2013 test problems.

Dimension
30 50

eDEGPOA0.2 vs + − = + − =
DE1 14 2 12 21 2 5
DE2 12 7 9 20 4 4
DE3 20 3 5 21 6 1
DE4 13 7 8 20 2 6
DE5 12 9 7 21 4 3
eDEGPOA0.5 vs + − = + − =
DE1 16 1 11 15 1 12
DE2 18 4 6 20 3 5
DE3 15 3 10 14 5 9
DE4 21 3 4 18 3 7
DE5 20 5 3 23 3 2
eDEGPOA0.8 vs + − = + − =
DE1 15 2 11 19 1 8
DE2 19 1 8 21 1 6
DE3 16 2 10 17 1 10
DE4 25 1 2 25 1 2
DE5 23 1 4 26 1 1

“+” denotes wins; “−” denotes losses; “=” denotes ties.

All DEGPOA and eDEGPOA variants were applied on the CEC-2013 test suite
according to the aforementioned settings. Their results were recorded and statis-
tically analyzed in order to facilitate comparisons with a number of adaptive and
non-adaptive algorithms. The results of the competitor algorithms were adopted di-
rectly from the relevant sources [59]. It shall be noted that these results refer to
already tuned versions of the competitor algorithms. On the other hand, DEGPOA
and eDEGPOA do not apply any preprocessing procedure or preliminary experi-
mentation. Moreover, the computational budget for the CEC-2013 problems is quite
restrictive. This renders the benchmarking even more challenging.

The performance comparisons were based on Wilcoxon rank-sum tests at confi-
dence level 95% of the achieved solution errors between DEGPOA, eDEGPOA, and
the following ten algorithms: SMADE [71], TLBSaDE [72], JANDE [73], DE_APC [74],
TPC-GA [75], PVADE [76], CDASA [77], and PLES [78]. For completeness purpose,
all standard variants of DE with mutation operators reported in Eqs. (2.3)-(2.7) were
also included in the competitor algorithms. For each comparison, a win was counted
for DEGPOA or eDEGPOA whenever it achieved statistically superior performance
than the competitor algorithm. In the opposite case, a loss was counted. Statistically
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insignificant differences between algorithms were considered as ties.
Tables 3.5 and 3.6 report the number of wins, losses, and ties for DEGPOA and

eDEGPOA, respectively, against the corresponding standard DE algorithms. Note that
each standard DE algorithm adopted the same parameter values as the initial parame-
ter setting of the competing DEGPOA/eDEGPOA approach. As we can see in Table 3.5,
the DEGPOA approaches outperformed all standard DE algorithms regardless of the
initial parameter setting. This indicates that the observed improvements from the use
of the grid-based parameter adaptation are not highly affected by the initial param-
eter setting. Instead, DEGPOA was capable of tuning the algorithm regardless of the
initial parameters and operator, achieving far better results than the corresponding
DE algorithm with the same configuration.

Interestingly, we can notice that the average number of wins for DEGPOA increases
with dimension. Indeed, for the 50-dimensional problems the average numbers of
wins for the three DEGPOA algorithms was equal to 15.0, 20.2, and 17.8, while the
corresponding numbers for the 30-dimensional problems were 14.2, 18.2, and 16.2.
This evidence suggests that the search stagnation of DE in higher dimensions can be
ameliorated through the proposed parameter tuning. Similar results were obtained
for eDEGPOA, with average numbers of wins equal to 14.2, 18.0, and 19.6 for the
30-dimensional problems, and 20.6, 18.0, and 21.6, for the 50-dimensional cases. All
average numbers of wins are graphically illustrated in Fig. 3.8.

In the same vein, Tables 3.7 and 3.8 report results from statistical comparisons
of DEGPOA and eDEGPOA with other algorithms. Among them are included top-
performing algorithms for the CEC-2013 test suite, with their parameters being al-
ready tuned. Especially the (e)DEGPOA0.2 and (e)DEGPOA0.5 approaches were able
to achieve same or higher number of wins than half or more of the rest of the algo-
rithms, with better results being achieved in problem of higher dimension. Indeed, for
the three DEGPOA algorithms the average numbers of wins were equal to 10.9, 11.5,
and 8.0, in the 30-dimensional problems, while the corresponding numbers for the
50-dimensional case were 12.5, 13.1, and 9.4. Similarly, eDEGPOA variants achieved
10.6, 11.2, and 9.6 wins on average in the 30-dimensional case, and 11.5, 11.6, and
10.8 wins on average for the 50-dimensional case. For completeness purposes, the av-
erage solution errors achieved by the best-performing DEGPOA0.5 and eDEGPOA0.5

approaches are reported in Tables A.7-A.9.
Finally, the six variants of the proposed approach were compared among them.
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Figure 3.8: Average number of wins of DEGPOA and eDEGPOA against the standard
DE algorithms.

For visualization purpose, a rank was calculated for each algorithm, defined as the
difference between its total number of wins, walg, and its total number of losses, lalg,
achieved in all comparisons, i.e.,

rank(alg) = walg − lalg.

Since each algorithm is compared to five other algorithms on 28 test problems, it
holds that

0 ⩽ walg, lalg ⩽ 140,

and, hence,
−140 ⩽ rank(alg) ⩽ 140.

Figure 3.9 illustrates the ranks for all DEGPOA and eDEGPOA algorithms, where we
can see that DEGPOA0.5 and eDEGPOA0.5 clearly dominated the rest. This is a direct
consequence of their better initial parameter pair, (F,CR) = (0.5, 0.5), which proved
to be better than the other two (distant) initial pairs. Note that the standard DE with
these parameters exhibited inferior performance than all DEGPOA and eDEGPOA
approaches. This implies that, even under defective initial parameters, the grid-based
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Table 3.7: Statistical comparisons between DEGPOA and other algorithms on the
CEC-2013 test problems.

Dimension
30 50

DEGPOA0.2 vs + − = + − =
SMADE 6 16 6 9 15 4
TLBSaDE 8 13 7 11 14 3
JANDE 6 18 4 9 17 2
DE_APC 11 12 5 12 12 4
TPC-GA 11 9 8 13 10 5
PVADE 10 14 4 13 13 2
CDASA 13 8 7 11 12 5
PLES 22 1 5 22 4 2
DEGPOA0.5 vs + − = + − =
SMADE 7 15 6 9 15 4
TLBSaDE 9 12 7 9 13 6
JANDE 6 17 5 13 13 2
DE_APC 11 12 5 11 12 5
TPC-GA 11 9 8 13 9 6
PVADE 11 12 5 15 11 2
CDASA 14 8 6 14 11 3
PLES 23 1 4 21 2 5
DEGPOA0.8 vs + − = + − =
SMADE 5 21 2 5 19 4
TLBSaDE 6 17 5 8 18 2
JANDE 0 21 7 4 16 8
DE_APC 10 15 3 10 15 3
TPC-GA 10 15 3 12 12 4
PVADE 8 15 5 10 14 4
CDASA 9 12 7 9 13 6
PLES 16 7 5 17 8 3

“+” denotes wins; “−” denotes losses; “=” denotes ties.

adaptation method is highly beneficial for the algorithm. On the other hand, when
starting from a favorable parameter pair the proposed approach can significantly
boost performance.

Summarizing the experimental findings, although DEGPOA and eDEGPOA are
more suitable for computationally demanding high-dimensional problems, they both
exhibited very competitive performance against some of the most competitive adaptive
DE approaches such as SMADE, TLBSaDE, and JANDE. Moreover, all DEGPOA and
eDEGPOA approaches proved to be competitive against other DE-based approaches
such as DE_APC and PVADE, as well as against different algorithms such as TPC_GA,
CDASA, and PLES. This is a very promising result given that the proposed approaches
were assigned only the computational budget specified by the test suite with no addi-
tional preprocessing or preliminary experimentation. Moreover, previous observations
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Table 3.8: Statistical comparisons between eDEGPOA and other algorithms on the
CEC-2013 test problems.

Dimension
30 50

eDEGPOA0.2 vs + − = + − =
SMADE 6 16 6 7 15 6
TLBSaDE 8 13 7 11 13 4
JANDE 5 18 5 8 16 4
DE_APC 11 12 5 12 12 4
TPC-GA 11 10 7 12 10 6
PVADE 10 15 3 11 13 4
CDASA 12 9 7 11 13 4
PLES 22 2 4 20 5 3
eDEGPOA0.5 vs + − = + − =
SMADE 6 17 5 9 15 4
TLBSaDE 8 14 6 9 13 6
JANDE 6 18 4 12 13 3
DE_APC 11 11 6 11 12 5
TPC-GA 11 10 7 13 9 6
PVADE 11 14 3 15 12 1
CDASA 15 9 4 13 12 3
PLES 22 1 5 21 3 4
eDEGPOA0.8 vs + − = + − =
SMADE 5 18 5 7 16 5
TLBSaDE 6 15 7 8 16 4
JANDE 4 19 5 7 17 4
DE_APC 10 13 5 11 13 4
TPC-GA 10 11 7 13 11 4
PVADE 11 12 5 12 10 6
CDASA 12 9 7 11 11 6
PLES 19 5 4 17 5 6

“+” denotes wins; “−” denotes losses; “=” denotes ties.

regarding performance improvement as dimension increases [64, 68] were also ver-
ified for the CEC-2013 test suite. This is observed especially for the 50-dimensional
test problems regardless of the initial parameter pair.

3.4 Preliminary Sensitivity Analysis

Similarly to all parameter adaptation methods, GPAM has a few user-defined parame-
ters. In this section, a preliminary sensitivity analysis of the method on its parameters
is offered [79]. For this purpose, the DEGPOA approach and the established CEC-
2013 suite were used, which offers an abundant variety of test problems. Several
levels of DEGPOA’s parameters are considered and their impact on the algorithm’s
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Figure 3.9: Ranks of the proposed algorithms in comparisons among them for the
30-dimensional case (upper figure) and the 50-dimensional case (lower figure).

performance is statistically analyzed, offering interesting conclusions.
Regarding the grid search parameters, the following values were adopted as default

choices in previous experiments:

tsec = 5, tpri = 10× n, λ = λF = λCR = 0.1, (3.9)

while the initial parameter vector was placed at the center of the grid, i.e., (F,CR) =

(0.5, 0.5), and the initial mutation operator was randomly selected from the ones in
Eqs. (2.3)-(2.7). This DEGPOA variant is henceforth denoted as DEGPOAbase.
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For the sensitivity study, we define the following sets for the three parameters:

Wtsec = {5, 10, 15, 20}, Wtpri = {5×n, 10×n, 15×n, 20×n}, Wλ = {0.05, 0.1, 0.15, 0.2}.

The values of Eq. (3.9) were considered as the baseline for assessing the new settings.
DEGPOA was validated by changing one of its parameters to a different level from
the sets above, while keeping the rest of the parameters fixed to the baseline values.
This results in 12 new DEGPOA instances.

All experiments were conducted on the CEC-2013 test suite for the common cases
n = 10 and n = 30, following the guidelines of the test suite. In order to avoid bias
imposed by the initial parameters, the central parameter (F,CR) = (0.5, 0.5) was used
in all cases.

Henceforth, the DEGPOAbase is the baseline version of the algorithm, and the
rest are denoted with corresponding subscripts that reveal the parameter setting.
For example, the instance with ts = 5, tp = 5 × n, and λ = 0.05 is denoted as
DEGPOA5s_5p_0.05λ.

The considered DEGPOA instances were compared among them using Wilcoxon
rank-sum tests at confidence level 95%, in terms of solution error. For each compar-
ison of a new instance with the baseline variant, a win was counted if it achieved
statistically superior performance than the baseline approach. In the opposite case, a
loss was counted, while statistically insignificant differences between algorithms were
considered as ties.

Table 3.9 reports the number of wins, losses, and ties of the new DEGPOA in-
stances against DEGPOAbase. The fourth column denoted as “W-L” stands for the
difference between the number of wins and loses, which provides a general perfor-
mance trend of algorithm against the baseline. High positive values correspond to
an instance that has far better performance than the baseline, while negative values
imply inferior performance of the new instance. The next column denoted as ID

reports the index value
ID = 28 + (W − L),

which characterizes the relevant performance of the corresponding DEGPOA instance
against the baseline over all 28 test problems. The last column of the table denoted
as NI is the normalized index,

NI =
ID
28

, (3.10)
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Table 3.9: Comparisons of new DEGPOA instances with DEGPOAbase.

n W L D W-L ID NI

ts modified
DEGPOA5s_10p_0.1λ 10 0 0 28 0 28 1.00
DEGPOA5s_10p_0.1λ 30 0 0 28 0 28 1.00
DEGPOA10s_10p_0.1λ 10 1 5 22 -4 24 0.86
DEGPOA10s_10p_0.1λ 30 1 2 25 -1 27 0.96
DEGPOA15s_10p_0.1λ 10 0 11 17 -11 17 0.61
DEGPOA15s_10p_0.1λ 30 2 3 23 -1 27 0.96
DEGPOA20s_10p_0.1λ 10 1 12 15 -11 17 0.61
DEGPOA20s_10p_0.1λ 30 4 7 17 -3 25 0.89

absolute sum: 31
tp modified
DEGPOA5s_5p_0.1λ 10 0 4 24 -4 24 0.86
DEGPOA5s_5p_0.1λ 30 0 2 26 -2 26 0.93
DEGPOA5s_10p_0.1λ 10 0 0 28 0 28 1.00
DEGPOA5s_10p_0.1λ 30 0 0 28 0 28 1.00
DEGPOA5s_15p_0.1λ 10 1 1 26 0 28 1.00
DEGPOA5s_15p_0.1λ 30 1 0 27 1 29 1.04
DEGPOA5s_20p_0.1λ 10 2 1 25 1 29 1.04
DEGPOA5s_20p_0.1λ 30 3 1 24 2 30 1.07

absolute sum: 10
λ modified
DEGPOA5s_10p_0.05λ 10 1 3 24 -2 26 0.93
DEGPOA5s_10p_0.05λ 30 1 2 25 -1 27 0.96
DEGPOA5s_10p_0.1λ 10 0 0 28 0 28 1.00
DEGPOA5s_10p_0.1λ 30 0 0 28 0 28 1.00
DEGPOA5s_10p_0.15λ 10 0 2 26 -2 26 0.93
DEGPOA5s_10p_0.15λ 30 2 0 26 2 30 1.07
DEGPOA5s_10p_0.2λ 10 0 6 22 -6 22 0.79
DEGPOA5s_10p_0.2λ 30 4 7 17 -3 25 0.89

absolute sum: 16

which offers a straightforward comparison measure between the competing algo-
rithms (rounded to 2 decimal digits). Obviously, NI = 1.00 when the two compared
algorithms have statistically equivalent performance (only ties in statistical tests),
while NI > 1.00 holds whenever the new DEGPOA instance is superior than the
baseline, and NI < 1.00 when it is inferior. Since 0 ⩽ ID ⩽ 56, the normalized index
is bounded in 0 ⩽ NI ⩽ 2.

In order to facilitate comparisons, Fig. 3.10 illustrates NI for the different param-
eter levels and dimensions. The gray bar stands for the performance of DEGPOAbase,
while the blue bars refer to the corresponding new instances. The figures offer some
interesting conclusions. Firstly, we can see that tsec can have significant impact on the
algorithm’s performance in lower dimension (n = 10) as illustrated in Fig. 3.10(a).
Specifically, smaller values of tsec offer better overall performance, which implies that
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Figure 3.10: Values of the normalized index NI of Eq. (3.10) per dimension for the
parameters ts (cases (a) and (b)), tp (cases (c) and (d)), and λ (cases (e) and (f)).
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the estimations of the secondary populations are adequately accurate, sparing com-
putational budget for the dynamic’s deployment phase. On the other hand, in the
high-dimensional case (n = 30) depicted in Fig. 3.10(b), this effect becomes milder
as a direct consequence of the increased complexity of the problems, which requires
longer estimation runs. Nevertheless, the value tsec = 5 that was used in previous
works [64] verifies its superiority for the specific dimensions.

Regarding the parameter tpri, as we see in Figs 3.10(c) and 3.10(d), values lower
than 10 × n produce inferior performance, implying that the number is inadequate
to reveal the primary population and parameters’ dynamic. Instead, higher values
are beneficial especially for the high-dimensional case. However, the effect remains
bounded within 10% of the corresponding baseline value even after doubling the value
of tpri. This indicates that the effect of tpri is not very significant for the algorithm’s
performance if the estimation evaluations tsec retain a proper value. Recall that in all
experiments for different tpri values, the default value tsec = 5 was used.

For both tsec and tpri, the performance trend (improving or worsening) was ob-
served for both dimensions. However, this is not the case for the third parameter
λ. Changing the discretization step from 0.1 to either lower or higher values pro-
duces inferior performance in the 10-dimensional case as illustrated in Fig. 3.10(e).
This motif changes in the high-dimensional case as illustrated in Fig. 3.10(f), where
slightly increasing λ to 0.15 improves performance up to 7%, while different values
produce inferior performance of comparable magnitude. Notice that λ determines
the search accuracy in the parameter space and has actual dependence both on the
algorithm as well as on the problem at hand. Thus, there is no clear explanation for
this behavior, which is probably the outcome of the interplay between the algorithm’s
dynamic with the specific parameters and the complexity of the problem itself.

The results show that DEGPOA can achieve stable performance under mild per-
turbations of the proposed default parameters. In order to identify the overall most
influential parameter for all DEGPOA instances, the sum of the absolute differences
W − L for each parameter were considered, as they are reported in Table 3.9. Then,
these three values were normalized by dividing with their sum, and the percentages
that are graphically represented in Fig 3.11 were received. Each normalized value
shows the participation of the corresponding parameter in the observed differences.
The blue color refers to the tsec parameter, which proves to be the most influential
one, followed by λ and tpri.
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3.5 Application on Particle Swarm Optimization

The proposed method is further demonstrated on the state-of-the-art PSO algo-
rithm [80]. The experiments were conducted using the high-dimensional SOCO suite.
GPAM is used to dynamically adapt the scalar parameters w, c1, c2, and the neigh-
borhood radius m of the lbest PSO model during its run. The proposed approach is
henceforth called Particle Swarm Optimization with Parameter and Neighborhood Adapta-
tion (PSOPNA).

Initially, the search space of the scalar parameters of PSO defined. The ranges,

w ∈ (0, 1], c1, c2 ∈ (0, 3],

commonly used in various applications are adopted from the relevant literature. These
ranges are discretized with predefined step sizes,

λw = λc1 = λc2 = 0.1. (3.11)

Also, a set of possible (integer) values for the neighborhood radius m is defined. In
the current case, we consider,

m ∈ {1, 3, 5, 7, 9}.

The GPAM* approach is used to handle m. Specifically, for each value of m, a 3-
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dimensional grid parameter space is defined as follows,

Gm = {(w, c1, c2); w ∈ {0.0, 0.1, . . . , 1.0}, c1, c2 ∈ {0.0, 0.1, 0.2, . . . , 3.0}} .

The grid’s density can be increased by decreasing the step sizes in Eq. (3.11) if more
fine-grained parameter search is desirable. Each triplet (w, c1, c2) in the interior of Gm
has 6 immediate neighboring points along the 3 orthogonal directional axes.

The algorithm starts by randomly initializing a swarm, called the primary swarm
and denoted as Spri, assuming an initial neighborhood radius m and a set of param-
eters (w, c1, c2) ∈ Gm. A reasonable initial choice is,

m = 1, (w, c1, c2) = (0.5, 1.5, 1.5),

but the algorithm works also for different choices as it will be shown later. The pri-
mary swarm is evolved for tpri = 10×n iterations, following the setting of Section 3.2.1.
Then, the three main phases of GPAM* take place, namely cloning, performance estima-
tion, and dynamic deployment.

The primary swarm, along with its best positions, is copied into 7 secondary swarms,
S1, . . . , S7, of same neighborhood radius m, each one assuming different scalar pa-
rameters as follows,

w′ = w + sw λw, c′1 = c1 + s1 λc1 , c′2 = c2 + s2 λc2 ,

sw, s1, s2 ∈ {−1, 0, 1}, |sw|+ |s1|+ |s2| = 1 or 0.
(3.12)

Obviously, the case sw = s1 = s2 = 0 corresponds to the parameter setting of the
primary swarm. Besides the 7 secondary swarms of same radius m, four additional
secondary (bridging) swarms, S8, . . . , S11, are considered, adopting the scalar param-
eters (w, c1, c2) of the primary swarm but for different neighborhood radius values,
i.e., for m = 3, 5, 7, and 9. Intuitively, these secondary swarms define the bridges
from the 3-dimensional grid of m = 1 to the other grids, aiming at identifying a more
beneficial neighborhood radius for the algorithm.

All the 11 secondary swarms are then evolved for a small number of iterations,
tsec ≪ tpri, according to the standard PSO procedure, updating also their best posi-
tions. These short runs reveal performance trends of the secondary swarms with their
assigned parameter settings. For time-efficiency purpose, the short runs can be ex-
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tended in parallel by evoking a separate thread for each individual secondary swarm,
thereby taking full advantage of modern multi-core computer systems. Following the
guidelines provided in previous sections, typical values for tsec lie between 5 and 10

iterations.
After the short runs, for each secondary swarm Sj the AOV performance measure

is computed on the best positions along with the OVSD defined in Eqs. (3.3) and (3.8),
respectively. The obtained performance pairs,

(f̄j, σj), j = 1, . . . , 11,

are then compared in terms of Pareto dominance and the non-dominated ones are
selected. In order to further decide on one among the non-dominated secondary
swarms but also reduce the possibility of being misled due to temporarily extremal
(high or low) objective values, an additional diversity-oriented performance measure
computed for each non-dominated swarm can be considered.

Specifically, the secondary swarm that has the highest interquartile range (IQR) is
selected. IQR is a common statistical measure of variability, based on the division of
a data set into four equal quartiles. The data is sorted and the IQR is defined as,

IQR = Q3−Q1,

where Q1 and Q3 specify the 1st and 3rd quartile of the data, respectively. In our case,
IQR is computed on the best positions’ values f (pi) of the non-dominated secondary
swarms. The secondary swarm with the highest IQR value is then selected in order
to retain search diversity.

The selected secondary swarm along with all its parameters becomes the primary
swarm, replacing the existing one. In order to make complete use of newly detected
best positions in the short runs, the overall bests of all the unselected secondary
swarms are also inserted into the new primary swarm, replacing equal number of
worst individuals. The new primary swarm is then evolved for tpri iterations to fully
exploit the new parametrization.

The experimental evaluation of PSOPNA was conducted on the SOCO test suite
for dimensions n = 50, 100, 200, and 500, following the guidelines of the test suite as
in previous experiments with DE. Besides, the central point of the grid that was used
as the initial parameter vector, two extremal initial vectors, closer to the boundaries
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Table 3.10: Statistical comparisons of PSOPNA against plain PSO in SOCO suite.

PSOPNA0.5/1.5 PSOPNA0.2/1.0 PSOPNA0.8/2.0

Dimension Algorithm + − = + − = + − =

50 PSO 7 6 6 15 0 4 12 3 4

100 PSO 8 6 5 14 1 4 16 3 0

200 PSO 8 3 8 15 1 3 17 2 0

500 PSO 8 7 4 8 3 8 16 2 1

“+” denotes wins, “−” denotes losses, and “=” denotes ties

Table 3.11: Statistical comparisons of PSOPNA0.5/1.5 against the base algorithms in
SOCO suite.

Dimension
50 100 200 500

+ − = + − = + − = + − =

DEbin 6 12 1 6 10 3 7 8 4 9 5 5

DEexp 3 13 3 2 17 0 1 15 3 6 12 1

CHC 10 4 5 11 4 4 9 5 5 17 1 1

GCMAES 14 3 2 13 4 2 13 5 1 n/a n/a n/a

“+” denotes wins, “−” denotes losses, and “=” denotes ties

of the grid, were also considered:

(w, c1, c2) = (0.2, 1.0, 1.0), (w, c1, c2) = (0.8, 2.0, 2.0).

The corresponding PSOPNA instances for the three initial parameter settings are
henceforth denoted as PSOPNA0.5/1.5, PSOPNA0.2/1.0, and PSOPNA0.8/2.0.

The experimental assessment consisted of two phases. In the first phase, the three
PSOPNA instances were compared against their PSO counterparts with the corre-
sponding (fixed) parameter sets and neighborhood radius m = 1. Wilcoxon rank-sum
tests were conducted for each pair of algorithms at confidence level 95% for all test
problems. Similarly to previous analysis, a favorable comparison was counted as a
win for the PSOPNA approach and denoted with “+”. Respectively, negative compar-
isons are denoted with “−”, and ties (no statistical difference between the algorithms)
are denoted as “=”.

Table 3.10 summarizes the results. We can see that for the two extremal initial
points PSOPNA dramatically improved the performance over the corresponding PSO
approaches. Note that the improvement was achieved without any additional prepro-
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cessing or preliminary experimentation. Even for the case of the near-optimal initial
parameter setting, the proposed approach achieved better or equivalent performance
in more than 60% of the problems. Also, we can see that increasing the dimension
from 50 to 500 does not radically change the observed performance, which is a trait
of nice scaling properties.

Table 3.11 reports the results of the second experimentation phase where the
PSOPNA0.5/1.5 version is compared against the base algorithms of the test suite. The
specific PSOPNA approach was considered as it constitutes a common parameter
setting. PSOPNA was competitive against two of the base algorithms, namely CHC
and GCMAES, while it was outperformed by the DE variants. However, it shall be
noted that plain PSO was completely out of competition against all base algorithms,
while the dominant DE algorithm was shown to be the best one for the specific test
suite [67].

Moreover, it shall be emphasized that all base algorithms assumed their tuned
parameter settings for the considered test suite, while PSOPNA did not spend any
function evaluations on fine-tuning. Thus, in a completely fair comparison, PSOPNA
should be receiving also the additional computational budget that is spent by the
rest of the algorithms for their laborious fine-tuning. For completeness purpose, the
achieved averages and standard deviations of the obtained solution values of PSOPNA
and the base algorithms are reported in Tables A.10-A.11 for all test problems.

3.6 Synopsis

In this chapter, a general online parameter adaptation method based on grid search
was introduced. The verification of the proposed method was established on two state-
of-the-art metaheuristics, namely DE and PSO, attaining competitive performance
against other methods. DE was selected due to its known sensitivity on parameter
values   that rendered their dynamic adaptation a challenging task, while PSO was
selected in order to demonstrate the method’s applicability on similar algorithms. The
efficiency of the proposed method was established on the two widely used test suites
that include both low-dimensional and high-dimensional problems, with significant
results. The results suggested that the proposed approaches can relieve the user from
the burden of parameter setting without loss in average performance. Furthermore,
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the proposed grid-based adaptation can be straightforwardly parallelized resulting in
significant gain in terms of running time.

A number of different performance criteria were also proposed in this chapter
in order to promote diversity and deter premature convergence of the grid-based
method. Similarly to other methods, the grid search has also a few (mostly optional)
user-defined parameters. In the last part of this chapter, a preliminary sensitivity
study of these parameters were examined. The results verify experimental evidence
regarding the method’s tolerance on its parameters as well as the efficiency of the
default proposed parameters.
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Chapter 4

New Gradient-Based Parameter
Adaptation Method with Line Search

4.1 Introduction

4.2 Proposed Method

4.3 Application on Differential Evolution

4.4 Application on Particle Swarm Optimization

4.5 Synopsis

This chapter presents an enhanced dynamic parameter adaptation method, motivated
by the grid-based approach presented in the previous chapter. It is based on estima-
tions of the algorithm’s performance using approximate gradients in the parameter
space and line search. The new method offers significant advantages compared to the
grid-based method and it is demonstrated on the two test suites previously used.

4.1 Introduction

A new general-purpose online parameter adaptation method that refines and im-
proves the grid-based approach is introduced. Its core mechanism lies in the re-
placement of the grid search presented in Chapter 3 with an approximate gradient
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search with line search in the parameter domain. This approach offers two signifi-
cant advantages against the grid. First, the search mechanism is allowed to perform
informative large steps in the parameter domain based on the line search procedure.
Second, the scalar parameters are not confined in a discretized subset of their do-
main, but they can assume continuous values. Moreover, this approach has inherent
parallelization properties. The proposed method is demonstrated on DE [9] on the
SOCO and CEC-2013 suites, as well as on PSO [11].

4.2 Proposed Method

The proposed approach, henceforth called Gradient-based Parameter Adaptation with
Line Search (GPALS) [81], draws inspiration from the GPAM parameter adaptation
method GPAM proposed in Chapter 3. In that case, the scalar parameter domain
is discretized forming a grid. In the general population-based algorithm model the
grid consists of all scalar parameter vectors (ρ1, ρ2, . . . , ρnp) in their corresponding
domains, using a fixed discretization step λ > 0.

A limitation of the grid-based method is the constant step size λ for the dis-
cretization of the parameter space. If λ is small and better parameter values exist in a
specific direction in the parameter space, GPAM may need a large number of steps to
reach them. Conversely, if λ is too large then promising values may be overshot. Also,
the search directions are always restricted to the main axes directions and diagonal
moves. These issues motivated the development of the proposed GPALS approach,
where the grid is replaced by a dense parameter search space. In this framework,
trajectories of scalar parameter vectors are produced by following approximate gra-
dient directions in the parameter domain, while line search is used to determine a
suitable step size.

These procedures require estimations of the algorithm’s performance under dif-
ferent parameter settings. Similarly to GPAM, the estimations are based on short runs
of the algorithm under the corresponding parameter vectors. The runs can be con-
ducted either serially or in parallel. The main scheme of GPALS can be generalized
to any algorithm and arbitrary number of parameters.

The general population-based algorithm presented in Section 2.3 is used as an
example to describe a complete cycle of the proposed GPALS method. Consider the
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general optimization problem of Eq. (2.1), let N be the population size, and [lρi , uρi ] be
prescribed ranges for the parameters ρ1, ρ2, . . . , ρnp, respectively. Then, the parameter
domain is defined as

G = [lρ1 , uρ1 ]× [lρ2 , uρ2 ]× · · · ×
[
lρnp , uρnp

]
.

GPALS assumes a primary population Ppri, sampled in the search space X of the
problem at hand. The primary population is assigned an initial parameter vector
ρ̄0 = (ρ1,0, ρ2,0, . . . , ρnp,0), which can be either the central point of G or a randomly se-
lected one. Naturally, if additional information is available regarding the most promis-
ing parameter values (e.g., due to previous experimentation), the initial vector can be
properly adjusted.

After initialization, the primary population is evolved for tpri iterations. According
to the presentation in the previous chapter, the default choice:

tpri = 10× n,

is suggested, where n is the dimension of the optimization problem. In general, tpri
shall be adequate for the algorithm to deploy its dynamic, but not too large in order
to avoid rapidly consuming the available computational budget.

For the evolved primary population with the current parameter vector ρ̄c, the AOV
performance measure of Eq. (3.3) is computed. Then, three main procedures take
place, namely performance gradient estimation, line search, and dynamic deployment, which
are described below.

Performance Gradient Estimation

The gradient estimation phase aims at detecting a direction in the scalar parameter
space G at which promising parameters of the algorithm exist. Such parameters shall
improve the current population in terms of the AOV performance criterion. For better
presentation, let us denote the AOV measure of population P after it has been evolved
for t iterations with parameter vector ρ̄c = (ρ1,c, . . . , ρnp,c), as:

H(P [ρ̄c, t]) =
1

N

∑
x∈P [ρ̄c,t]

f(x) (4.1)
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Then the negative of the approximate gradient of H at ρ̄c is estimated by using the
symmetric difference formula

−∇H (Ppri[ρ̄c, t]) = −


∂H(Ppri[ρ̄c,t])

∂ρ1,c

...

∂H(Ppri[ρ̄c,t])

∂ρnp,c

 , (4.2)

where the partial derivatives for the i-th parameter are defined as:

∂H (Ppri[ρ̄c, t])

∂ρi,c
=

H (Ppri[ρ̄c + λei, t]))−H (Ppri[ρ̄c − λei, t]))

2λ
, i = 1, 2, . . . , np,

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the i − th row of the np × np identify matrix.
The central difference estimation is preferred against the simple forward difference
formula due to its better accuracy, despite its requirement for two function evaluations
per estimation. In practice, the estimated quantities in the nominators are computed
by copying the primary population Ppri into 2np secondary populations, each one
assigned one of the 2np parameter vectors:

ρ̄c + iλe1, . . . , ρ̄c + iλenp, i ∈ {−1,+1}.

Each secondary population is evolved for a small number of iterations, t = tsec, using
its assigned parameters. Based on the previous experience with GPAM (see Chapter
3), setting tsec ∈ [5, 10] is suggested. The estimation of derivatives is adequate since
only local performance trends of the algorithm are needed. Moreover, the computed
gradient vectors are normalized to become unit vectors, in order to alleviate scaling
issues in the forthcoming steps.

The gradient estimation phase can be conducted either serially or in parallel.
In the serial case, the 2 × np secondary populations are sequentially evolved for
tsec iterations each, and their final AOV values are recorded. In the parallel case,
the procedure becomes more efficient by evolving each secondary population on a
different CPU. Obviously, further parallelization within each secondary population
(e.g., through fork-join procedures) can be used if additional CPUs are available.
Note that modern desktop systems usually offer eight CPUs or more.
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An arguable issue in the above procedure is the comparability of the estimated
performance (AOV) values of the secondary populations, This is due to the small
tsec number of iterations and the different sequences of random numbers used in
each. This may render questionable whether the observed performance differences
are the outcome of the different parameters or random fluctuations due to the different
sequences of randomly selected numbers. Such performance fluctuations may distort
the computed gradient directions in the parameter domain. In order to ameliorate
this effect, the secondary populations assume exactly the same sequence of random
numbers by seeding their random number generators with the same random seed
prior to each performance estimation phase. Thus, the parameter pairs become the
sole source of variability among the secondary populations in the simulations, thereby
providing comparable estimations.

Naturally, even in this case the performance estimations do not provide exact gra-
dient directions. However, the stochastic nature of population-based metaheuristics
shall be taken into consideration. Hence, possible advantages of using more accurate
gradient directions are most probably absorbed in the long-run due to the algorithm’s
stochasticity. Instead, the main purpose of using the gradient estimations is the identi-
fication of directions (or trends) in the parameter domain that seem to locally improve
the algorithm’s performance.

Line Search

The gradient estimation phase determines a direction in the parameter domain
that locally improves the algorithm’s performance. Given this direction, a mechanism
is needed to determine the corresponding step size. In mathematical optimization
this is typically addressed through line search. An estimation-based analogue of line
search is adopted in the proposed GPALS approach to refine the outcome of the
procedure described above.

Specifically, line search is used to determine the appropriate step size s > 0, in
the direction of the estimated gradients, which is used for the production of new
parameter vectors as follows:

ρ̄c+1 = ρ̄c − s∇H (Ppri[ρ̄c, t]) . (4.3)

For this purpose, the derivative-free line search algorithm proposed in [82] is adopted.
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Algorithm 4.1 Pseudocode of Bracketing and Bisection
1: Input: x (current point); l, u (bracketing scalars); g (gradient vector); G (param-

eters domain);
2: /* Bracketing */

3: l← 0, u← 0.5
4: y ← x− u g
5: while (y ∈ G) do
6: l← u, u← u+ 0.5
7: y ← x− u g
8: end while
9: /* Bisection */

10: while (u > l) do
11: µ← 0.5 (l + u)
12: y ← x− µ g
13: if (y /∈ G) then
14: u← µ
15: else
16: l← µ
17: end if
18: end while
19: s4 ← 0.5 (l + u) g
20: return s4

The specific approach is based on the Golden Section method and has rapid conver-
gence properties. For its application, four step size values are required,

s1 < s2 < s3 < s4,

each one defining a different point in the parameter domain through Eq. (4.3). The
first value is taken as s1 = 0 and corresponds to the current parameter vector ρ̄c. The
rest are defined according to the Golden Section approach as

s2 = s4 − γ∆, s3 = s1 + γ∆,

where ∆ = s4−s1, and γ = (
√
5−1)/2. The step size s4 corresponds to the intersection

point of the estimated direction with the boundary of the parameter domain G. Thus,
it is determined through a bracketing and bisection procedure, which is reported in
Algorithm 4.1 following the instructions in [82]. Note that this procedure does not
add any computational overhead in terms of function evaluations.

The line search iterates on the step sizes until a termination condition is met. This
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condition is related to the distance 0.5 (s4−s1). A reasonable choice is to terminate line
search when this quantity becomes smaller than the reference step size λ used for the
gradient estimation. For a more thorough description of the line search procedure,
the reader is referred to [82].

The parameter vectors that correspond to the four step sizes in the line search
procedure are evaluated through short runs of four secondary populations, similarly
to the gradient estimation phase. Thus, four secondary populations, Ps1 , . . . , Ps4 , are
initiated as copies of the primary population Ppri. Then, each step size si is evaluated
by performing tsec iterations on Psi , using the parameter vector:

ρ̄si = ρ̄c − si∇H (Psi [ρ̄c, tsec]) .

Eventually, line search provides a step size s∗ that corresponds to an improving
parameter pair:

ρ̄∗ = ρ̄c − s∗∇H (Ps∗ [ρ̄c, tsec]) , (4.4)

where Ps∗ is the corresponding secondary population. This parameter pair ρ̄c and its
corresponding secondary population Ps∗ are used in the next phase of the method.

If all the estimated partial derivatives are almost zero within a prescribed tolerance
δ > 0 (10−8 is a typical value) for a parameter vector, then a local minimizer in the
parameter domain may have been reached. In this case, line search is temporarily
abandoned until at least one partial derivative becomes again higher than the pre-
scribed tolerance δ. Note that, the gradients are still computed in every cycle of the
method because the evolved primary population may perform better with different
parameter values after some iterations. Alternatively, the parameter search procedure
can be restarted if adequate computational budget is still available.

Dynamic Deployment Phase

In this phase, the best-performing secondary population Ps∗ becomes the primary
population, and its parameter vector ρ̄∗ replaces the current parameter vector ρ̄c if
adequate performance improvement is achieved, i.e.,

H (Ppri[ρ̄c, t])−H (Ps∗ [ρ̄∗, t]) > θmin ⩾ 0,

where θmin is the smallest acceptable improvement (this is an optional parameter) and
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Algorithm 4.2 Workflow of the proposed GPALS method
1: Initialize( )
2: Evolve-Population( )
3: while (not termination) do
4: /* Performance Gradient Estimation */

5: Gradient-Estimation( )
6: Normalization( )
7: /* Line Search */

8: Bracketing( )
9: Golden-Section( )

10: /* Dynamic Deployment */

11: Update-Population( )
12: Evolve-Population( )
13: end while

t equals to either tsec or tpri. This step completes the GPALS cycle, and a new cycle
begins by performing tpri iterations on the new primary population with the new
parameter pair. In case of insufficient improvement from the secondary poulations,
the new cycle retains the previous primary population and parameter pair. In any
case, the new primary population inherits the best individuals of all secondary popu-
lations. Thus, good solutions that may be sampled during the performance estimation
procedure are not neglected.

The GPALS workflow is outlined in Algorithm 4.2 and graphically illustrated
in Fig. 4.1. If N denotes the population size and n the problem dimension, the
general population-based algorithm requires N × n memory positions while GPALS
require 5×N × n. For a typical population size of hundreds (or even thousands) of
individuals, this increase is bearable in modern desktop systems. Moreover, the new
approach does not add in terms of computational burden since it is desired to use
exactly the same budget of function evaluations as the plain algorithm. The gradient
estimation and the line search add a fixed amount of operations, while the ratio of
calls to the random number generator over the function evaluations is the same as for
the standard algorithm. Thus, there are no time-consuming procedures introduced
by GPALS.

Presumably the most critical part of the method is the estimation phase, especially
the length of the short runs, followed by the dynamic deployment phase. Both these
procedures are strongly based on the available computational budget. Subsequently
follows the gradient step size λ, which is completely related to the algorithm and
the desirable level of search granularity in the parameter domain. In the following
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Figure 4.1: Graphical illustration of the GPALS method.

paragraphs, the general GPALS scheme demonstrated on DE and PSO, providing
interesting results.

4.3 Application on Differential Evolution

The proposed GPALS method is demonstrated on the state-of-the-art DE algorithm
for adapting its scalar parameters. The derived algorithm is henceforth denoted as
GPALS-DE. The experiments were conducted on the two established test suites SOCO
and CEC-2013 [81].

Consider the general optimization problem of Eq. (2.1), and N be the population
size. Then, the parameter domain for the parameters F and CR, with prescribed
ranges [Fmin, Fmax], [CRmin, CRmax] respectively, is defined as:

G = [Fmin, Fmax]× [CRmin, CRmax] .

The primary population is assigned a current parameter pair (Fc, CRc) ∈ G.
After initialization, the primary population is evolved for t = tpri iterations. The

suggested value tpri = 10×n, where n is the dimension of the considered optimization
problem, is used. For the evolved primary population with the current parameter
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pair, the AOV performance measure H (Ppri[(Fc, CRc), t]) is computed according to
Eq. (4.1).

Then, the negative approximate gradient of H at (Fc, CRc) is computed as:

−∇H (Ppri[(Fc, CRc), t]) = −

 ∂H(Ppri[(Fc,CRc),t])

∂Fc

∂H(Ppri[(Fc,CRc),t])

∂CRc

 , (4.5)

where the partial derivatives are given as:

∂H (Ppri[(Fc, CRc), t])

∂Fc

=
H (Ppri[(Fc + λ,CRc), t])−H (Ppri[(Fc − λ,CRc), t])

2λ
, (4.6)

and

∂H (Ppri[(Fc, CRc), t])

∂CRc

=
H (Ppri[(Fc, CRc + λ), t])−H (Ppri[(Fc, CRc − λ), t])

2λ
. (4.7)

according to Eq. (4.3). Τhe estimated quantities in the nominators are computed by
copying the primary population P into four secondary populations, each one assigned
one of the four parameter pairs

(Fc + i λ, CRc), (Fc, CRc + i λ), i ∈ {−1,+1}.

Each secondary population is then evolved for a small number of iterations, t =

tsec, using its assigned parameter pair. In the current implementation, tsec = 10 was
used following the suggestion in the previous chapter. Also, λ = 0.1 was used as
the standard step size for the gradient estimation, since DE gives only marginal
performance differences under smaller perturbation of its parameters [64, 79].

Following the general form of GPALS, line search is used to determine the appro-
priate step size s > 0. Specifically, in GPALS-DE the new parameter pair is generated
as follows:

(F,CR) = (Fc, CRc)− s∇H (P[(Fc, CRc), t]) . (4.8)

For the application of the derivative-free line search algorithm, four step size values
are required,

s1 < s2 < s3 < s4,

each one defining a different point in the parameter domain through Eq. (4.8). The
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step sizes are determined following the procedure described in the previous section.
The line search iterates on the step sizes until a termination condition is met. The

condition is related to the distance 0.5 (s4 − s1), and specifically when this becomes
lower than the step size λ. The four secondary populations, Ps1 , . . . , Ps4 , are initiated as
copies of the primary population P. Then, each step size si is evaluated by performing
tsec iterations on Psi , using the parameter pair:

(Fsi , CRsi) = (Fc, CRc)− si∇H (Psi [(Fc, CRc), tsec]) .

Eventually, line search provides a step size s∗ that corresponds to the improving
parameter pair:

(F ∗, CR∗) = (Fc, CRc)− s∗∇H (Ps∗ [(Fc, CRc), tsec]) . (4.9)

This parameter pair and its corresponding secondary population Ps∗ become the
primary population if adequate performance improvement is achieved, i.e.,

H (Ppri[(Fc, CRc), t])−H (Ps∗ [(F
∗, CR∗) , t]) > θmin ⩾ 0,

where θmin is the smallest acceptable improvement and t equals to either tsec or tpri.
This step completes the GPALS-DE cycle, and a new cycle begins by performing tpri

iterations with the new primary population and the new parameter pair. In case
of insufficient improvement from the secondary populations, the new cycle retains
the previous primary population and parameter pair. In any case, the new primary
population inherits the best individuals of all secondary populations.

Sample trajectories of DE’s scalar parameters for two test problems are illustrated
in Fig. 4.2. The estimated gradient directions are shown in red dashed lines, while
two different parameter trajectories appear in darker colors with different markers
denoting different problems.

The first experimental assessment was conducted on the SOCO test suite. Accord-
ing to the suggestions in previous sections, the parameters of GPALS assumed the
following values in all experiments:

tpri = 10× n, tsec = 10, λ = 0.1, δ = 10−8.
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Figure 4.2: Sample trajectories of the DE’s parameters for two test functions.

The available computational budget, as dictated by the test suite, was equal to qmax =

10000 × n function evaluations, while the performance criterion for the algorithms
was the objective value error as defined in Eq. (2.13).

The GPALS-DE algorithm adopted the exact settings of the base DE algorithm in
the test suite [57]. Specifically, it was based on the exponential crossover operator with
the DE/rand/1 mutation operator (see Eq. (2.4)), and population size N = 60. For
each test problem, 25 independent experiments were conducted, recording the best
solution that was detected within the available computational budget qmax. Following
the experimental setup of GPAM in the previous chapter, the initial parameters were
selected in the center of the search space. However, additional experiments with
extremal parameter pairs were also conducted. It shall be noted that the competitor
algorithms were again already tuned for the test suite, while the proposed GPALS-DE
algorithm assumed no prior information.

The DE parameters F and CR are usually set in the range (0, 1] [8], hence, the
parameter domain is defined as:

G = (0, 1]× (0, 1]. (4.10)

GPALS-DE was initially tested using the central initial parameter pair (F,CR) =

(0.5, 0.5). The extreme initial pairs (F,CR) = (0.2, 0.2) and (F,CR) = (0.8, 0.8) were
subsequently investigated. These approaches are henceforth denoted as GPALS-DE0.5,
GPALS-DE0.2, and GPALS-DE0.8, respectively.
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Table 4.1: Statistical comparisons between the three GPALS-DE variants and the base
algorithms for the SOCO test suite.

GPALS-DE0.5 GPALS-DE0.2 GPALS-DE0.8

Dim. Algorithm + − = + − = + − =

50 DEbin 15 3 1 14 3 2 13 3 3

DEexp 10 5 4 11 6 2 4 8 7

CHC 19 0 0 19 0 0 19 0 0

GCMAES 16 3 0 16 3 0 16 3 0

100 DEbin 17 1 1 17 1 1 17 1 1

DEexp 13 4 2 12 4 3 10 6 3

CHC 19 0 0 19 0 0 19 0 0

GCMAES 16 3 0 16 3 0 16 3 0

200 DEbin 17 1 1 17 1 1 17 1 1

DEexp 13 4 2 14 4 1 13 6 0

CHC 19 0 0 19 0 0 19 0 0

GCMAES 16 3 0 17 2 0 16 3 0

500 DEbin 19 0 0 19 0 0 19 0 0

DEexp 13 5 1 11 4 4 13 6 0

CHC 19 0 0 19 0 0 19 0 0

GCMAES n/a n/a n/a n/a n/a n/a n/a n/a n/a

The average error and the standard deviation per test problem for the three
GPALS-DE variants and the base algorithms of the test suite are reported in Ta-
bles B.1-B.4 of Appendix B for all dimensions. In order to verify the significance
of the observed performance differences and facilitate the extraction of sound con-
clusions, Wilcoxon rank-sum tests were conducted, according to the settings in the
previous chapter.

The obtained results are reported in Table 4.1 where wins, losses, and ties are
denoted as “+”, “−”, and “=”, respectively. The GPALS-DE variants clearly outper-
formed the base algorithms in all dimensions with one exception, namely GPALS-
DE0.8 which slightly deviated from this performance only for the lowest dimension
n = 50. In that case, it was outperformed by the fine-tuned DEexp algorithm, which is
reported to be the best-performing algorithm in the test suite repository. This short-
coming of GPALS-DE0.8 can be attributed to the specific initial parameter pair, which
reduces the convergence speed of DE in the specific test problems (similar findings
were discovered for GPAM in the previous chapter). Thus, GPALS needs additional
effort to reach appropriate parameter values that lead the algorithm to optimal so-
lutions. Nevertheless, it offers clear evidence that even under defective parameter
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Figure 4.3: Number of test problems where GPALS-DE0.5 achieved equal or better
average error than the competitor algorithms.

initialization, and without any additional experimentation, GPALS-DE can be highly
effective.

The GPALS-DE0.5 approach exhibited better or equivalent performance than the
rest of the GPALS-DE variants, and it was further compared against the rest of the
algorithms of the test suite in terms of the average error values [42]. The results are
reported in Tables B.5 and B.6 of Appendix B. The data for the rest of the algorithms
are reproduced from the original sources [67]. Figure 4.3 illustrates the number of
problems (out of 19 problems) where GPALS-DE0.5 was not outperformed by other
algorithms. It is easily perceived that GPALS-DE was highly competitive also against
non-DE algorithms for all dimensions.

Moreover, Wilcoxon rank-sum tests were conducted between GPALS-DE0.5 and the
previously proposed DEGPA approach presented in the previous chapter [64]. The
percentage of wins, losses, and ties between GPALS-DE0.5 and DEGPA are graphically
illustrated in Fig. 4.4. Clearly, GPALS-DE0.5 achieved better or equivalent performance
in almost all test problems, particularly for higher dimensions. This observation veri-
fies the additional benefits of using the approximate performance gradients with line
search against the simpler grid-based DEGPA approach.

Besides the comparisons with the competitor algorithms of the test suite, GPALS-
DE0.5 was additionally compared with three state-of-the-art adaptive DE algorithms,
namely GaDE [27], SHADE [29] and L-SHADE [30], on the SOCO test problems.
For this purpose, source codes available on the test suites’ repositories were used.
The provided source code of GaDE was already tuned on the specific test suite,
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Figure 4.4: Wins, losses, and ties of GPALS-DE0.5 against the DEGPA approach.

requiring no further modification. SHADE and L-SHADE are based on an adaptive
scheme that employs a special mutation operator, which differs from the one in the
standard DE, which is also used in the GPALS-DE approach. Also, their available
codes came with proposed parameters that were tuned on the CEC-2013 test suite.
Thus, in a head-to-head comparison with the GPALS approaches, it would be difficult
to identify whether the observed good or bad performance trends can be attributed
to the main parameter adaptation procedure of these algorithms or to their special
mutation scheme, which is irrelevant to the parameter adaptation. For this reason,
both the original versions of SHADE and L-SHADE were considered, as well as a
modified version of each one, denoted as mSHADE and mL-SHADE, respectively. In
these modified versions, the DE/rand/1 operator with exponential mutation that is
used in GPALS-DE was adopted in SHADE and L-SHADE instead of their special
mutation operator.

Moreover, the test suite requires populations of size N = 60. However, the proposed
size for SHADE is N = 100 [29]. Thus, both population sizes were considered in the
comparisons and denoted with a subscript, i.e., SHADE60 and SHADE100. Moreover,
L-SHADE assumes linearly decreasing population size during its run, starting from
a fixed value N = 18× n. This scheme was also retained in the experiments.

The results of the Wilcoxon rank-sum tests of GPALS-DE0.5 against GaDE, SHADE
and the L-SHADE variants are reported in Table 4.2. In the 500-dimensional case,
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Table 4.2: Number of wins, losses, and ties of the GPALS-DE0.5 algorithm against
GaDE, SHADE, and L-SHADE for the SOCO test problems.

Dimension
50 100 200 500

GPALS-DE0.5 vs. + − = + − = + − = + − =

GaDE 7 3 9 8 3 8 8 4 7 7 4 8
SHADE60 7 1 11 13 1 5 15 1 3 17 1 1
SHADE100 5 3 11 13 1 5 13 1 5 16 1 2
mSHADE60 6 2 11 6 1 12 8 1 10 16 1 2
mSHADE100 13 1 5 13 1 5 14 1 4 14 1 4
L-SHADE 9 2 8 13 2 4 14 2 3 n/a n/a n/a
mL-SHADE 18 1 0 18 0 1 19 0 0 n/a n/a n/a

the provided source codes of L-SHADE failed to execute due to excessive memory
demand. The results show that GPALS-DE0.5 is highly competitive to all competitor
algorithms, with evident superiority as dimension increases. It is interesting to no-
tice that, despite the significant number of function evaluations spared by L-SHADE
due to its decreasing population size, GPALS-DE0.5 was superior. For completeness
purpose, the corresponding average errors for SHADE and L-SHADE are reported
in Tables B.7 and B.8 of Appendix B.

In order to gain further insight on the impact of population size on the perfor-
mance of GPALS-DE0.5, additional experiments were conducted for N = 40 and 80

and compared to the base algorithms. The obtained results are reported in Table 4.3,
where the corresponding population size is denoted as superscript. As can be seen,
GPALS-DE40

0.5 and GPALS-DE60
0.5 exhibited similar and superior performance than the

competitor algorithms, while GPALS-DE80
0.5 slightly deviated from this performance

especially for lower dimensions against the best base algorithm, namely DEexp. Nev-
ertheless, this effect is ameliorated as dimension increases. This is a consequence of
using higher population sizes in easier problems of smaller dimension, which results
in futile spending of additional function evaluations in the performance estimation
phase. The same effect can also be observed against the SHADE variants in Table 4.4.

Finally, the running time of GPALS-DE0.5 against SHADE was also recorded. Run-
ning time is not a measure that can offer sound conclusions regarding the algorithm’s
performance, because it depends on many external factors such as implementation
quality, machine configuration, employed compilers, and machine workload at the
moment of experimentation. Nevertheless, it is an indication that the nice performance
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Figure 4.5: Running time for the serial version of GPALS-DE0.5 and SHADE in the
SOCO test suite for dimension (a) n = 50, (b) n = 100, (c) n = 200, and (d) n = 500.
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Table 4.3: Statistical comparisons between the GPALS-DE0.5 algorithms with different
population size and the base algorithms for the SOCO test suite.

GPALS-DE40
0.5 GPALS-DE60

0.5 GPALS-DE80
0.5

Dim. Algorithm + − = + − = + − =

50 DEbin 14 4 1 15 3 1 11 5 3

DEexp 11 5 3 10 5 4 3 15 1

CHC 19 0 0 19 0 0 19 0 0

GCMAES 16 3 0 16 3 0 16 3 0

100 DEbin 17 1 1 17 1 1 16 1 1

DEexp 13 5 1 13 4 2 6 8 5

CHC 19 0 0 19 0 0 19 0 0

GCMAES 16 3 0 16 3 0 16 3 0

200 DEbin 17 1 1 17 1 1 17 1 1

DEexp 12 4 3 13 4 2 6 9 4

CHC 19 0 0 19 0 0 19 0 0

GCMAES 16 3 0 16 3 0 16 3 0

500 DEbin 19 0 0 19 0 0 19 0 0

DEexp 11 4 4 13 5 1 11 6 2

CHC 19 0 0 19 0 0 19 0 0

GCMAES n/a n/a n/a n/a n/a n/a n/a n/a n/a

of an algorithm is not achieved in excessively higher time than another algorithm. In
this case, the available SHADE source code was serial, so 25 serial experiments were
conducted on the same machine for each algorithm. The recorded running times are
illustrated in Fig. 4.5. Obviously, the proposed approach achieves lower execution
time than the competitor SHADE algorithm in all dimensions. In addition, differ-
ences in running times were statistical evaluated with Wilcoxon rank-sum tests, and
wins, losses, and ties are reported in Table 4.5, verifying the observations.

The performance of GPALS-DE0.5 was further investigated on the CEC-2013 test
suite [58]. The parameters of GPALS-DE were the same as for the SOCO test suite.
For comparison purposes, SHADE and L-SHADE were considered as the baseline
algorithms for comparisons. Both have been shown to be among the most efficient
adaptive DE algorithms for the specific test suite [70]. For notation simplicity, GPALS-
DE0.5 is henceforth denoted simply as GPALS-DE.

The main goal remained the investigation of GPALS as a general parameter adap-
tation method, using DE for demonstration purposes. Thus, in order to achieve a fair
comparison between GPALS-DE and the parameter adaptation scheme of SHADE,
GPALS-DE with the special mutation operator with population archive was also
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Table 4.4: Number of wins, losses, and ties of GPALS-DE against SHADE for different
population sizes in the SOCO test problems.

Dimension
50 100 200 500

GPALS-DE40
0.5 vs. + − = + − = + − = + − =

SHADE40 13 2 4 16 1 2 18 1 0 18 1 0
mSHADE40 3 8 8 5 5 9 13 5 1 18 1 0
GPALS-DE80

0.5 vs. + − = + − = + − = + − =

SHADE80 5 13 1 12 6 1 13 5 1 18 1 0
mSHADE80 15 3 1 14 4 1 14 4 1 18 1 0

Table 4.5: Statistical comparisons of running times between the serial version of
GPALS-DE0.5 and SHADE for the SOCO test problems.

Dim. GPALS-DE vs. + − =

50 SHADE 16 2 1

100 SHADE 17 0 2

200 SHADE 19 0 0

500 SHADE 18 1 0

considered. Note that the corresponding modification was made for SHADE and
L-SHADE previously in the SOCO test suite, resulting in mSHADE and mL-SHADE.
Thus, two GPALS-DE approaches was considered, namely GPALS-DE that uses the
original DE/rand/1 mutation operator with exponential crossover, and mGPALS-DE
that uses SHADE’s mutation operator with population archive. Whenever a mutant
vector component of the GPALS approach was violating the boundary of the search
space, the SHADE correction [29] was applied. Besides the original SHADE and L-
SHADE algorithms, the mSHADE and mL-SHADE defined in the previous section
were also considered for the CEC-2013 test suite. This was motivated by the necessity
to investigate whether the efficiency of the parameter adaptation scheme of SHADE
and L-SHADE is intimately related to its special mutation operator or it can work
equally good with the plain DE mutation operator as well. The population size for all
algorithms was equal to N = 60. In all runs, GPALS-DE assumed as initial parameter
pair the central point of the search space, namely (F,CR) = (0.5, 0.5). The rest of the
settings followed closely those of the test suite.

Table 4.6 reports the results of the Wilcoxon rank-sum tests between GPALS-
DE, SHADE, and L-SHADE. We can see that SHADE and L-SHADE dominated the
mGPALS-DE algorithm in most of the test problems. However, this was not the case
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Table 4.6: Statistical comparisons between GPALS-DE, SHADE, and L-SHADE on the
CEC-2013 test suite.

Dimension
30 50

+ − = + − =

mGPALS-DE vs SHADE 3 21 4 3 19 6
GPALS-DE vs mSHADE 8 9 11 12 9 7
mGPALS-DE vs L-SHADE 1 23 4 1 22 5
GPALS-DE vs mL-SHADE 5 12 11 5 18 5

Table 4.7: Statistical comparisons between GPALS-DE and other adaptive DE-based
algorithms on the CEC-2013 test suite.

Dimension
30 50

GPALS-DE vs. + − = + − =

DEcfbLS 10 12 6 11 11 6
jande 12 7 9 14 12 2
DE_APC 12 7 9 11 10 7
PVADE 14 8 6 18 4 6

when the standard DE operator was used in SHADE, as revealed by the comparisons
against GPALS-DE. Especially when dimension increases to 50, GPALS-DE shows
superior performance compared to SHADE. On the other hand, L-SHADE achieves
better performance than GPALS-DE, which obviously stems from the population size
reduction, that spares computational budget. These results suggest that the parameter
adaptation scheme of SHADE and L-SHADE, although very effective in the low-
dimensional CEC-2013 test suite, seems to be intimately related to its special mutation
operator.

Further comparisons of GPALS-DE were conducted with various other adaptive
DE algorithms. Table 4.7 reports the results for four adaptive DE-based algorithms,
which can be found in [59–63]. Obviously, GPALS-DE exhibited competitive perfor-
mance even for the low-dimensional problems.

Finally, running time analysis was conducted for the serial version of the algo-
rithms, following the same methodology as in the previous section. The corresponding
results are illustrated in Fig. 4.6. The GPALS-DE approach achieved again better run-
ning times than SHADE. These findings are confirmed in the statistical tests reported
in Table 4.8.
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Figure 4.6: Running time for the serial version of GPALS-DE and the baseline SHADE
algorithm in the CEC-2013 test suite, for dimension (a) n = 30, and (b) n = 50.

Table 4.8: Statistical comparisons of the running times between GPALS-DE and the
SHADE algorithm for the CEC-2013 test suite.

Dim. GPALS-DE vs. + − =

30 SHADE 20 7 1

50 SHADE 20 7 1

4.4 Application on Particle Swarm Optimization

The proposed GPALS method is further demonstrated on the state-of-the-art PSO
algorithm for adapting its scalar control parameters. The derived algorithm is hence-
forth denoted as GPALS-PSO. The experiments were conducted on the the SOCO test
suite. PSO has three real-valued parameters, namely w, c1, and c2, while it exhibits
moderate performance in the SOCO test suite. This fact offered additional motivation
in order to investigate whether the proposed approach could render the plain PSO
more competitive.

Closely following the previous analysis for DE, a 3-dimensional search space G

was considered for the PSO parameters. Specifically, both c1 and c2 were assumed to
lie in the range [0, 3], while the range [0, 1] was considered for w. Thus, the search
space was defined as,

G = [0, 1]× [0, 3]× [0, 3]. (4.11)

The experiments were conducted by initializing GPALS-PSO at the central parame-
ter point (w, c1, c2) = (0.5, 1.5, 1.5), as well as the more extremal points (w, c1, c2) =
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(0.2, 1.0, 1.0) and (w, c1, c2) = (0.8, 2.0, 2.0). These approaches are denoted as GPALS-
PSO0.5, GPALS-PSO0.2, and GPALS-PSO0.8, respectively. The swarm size was set to
N = 100 and the computational budget was equal to qmax = 5000 × n, as dictated by
the test suite. Each competenting PSO variant assumed the same parameter set with
the corresponding GPALS-PSO. Note that all PSO variants were based on the lbest
PSO model with ring neighborhood topology of radius r = 1.

For the evolved primary population with the current parameter triplet, the per-
formance measure H (Ppri[(wc, c1,c, c2,c), t]) is computed according to Eq. (4.1) and the
approximate gradient of H closely follows the same approach as for DE described in
the previous section, according to Eqs. (4.2) and (4.3).

Τhe estimated quantities in the gradient are computed by copying the primary
population P into six secondary populations, each one assigned one of the four pa-
rameter pairs

(wc + i λ, c1,c, c2,c), (wc, c1,c + i λ, c2,c), (wc, c1,c, c2,c + i λ), i ∈ {−1,+1}.

Each secondary population is evolved for tsec iterations, using its assigned parameters.
In the current implementation, tsec = 10 and λ = 0.1 was used similarly to the DE
case.

The best-performing secondary population Ps∗ becomes the primary population,
and its parameter triplet (w∗, c1,∗, c2,∗) replaces the current one (wc, c1,c, c2,c) if adequate
performance improvement is achieved, i.e.,

H (Ppri[(wc, c1,c, c2,c), t])−H (Ps∗ [(w∗, c1,∗, c2,∗) , t]) > θmin ⩾ 0,

where θmin is the smallest acceptable improvement and t equals to either tsec or tpri.
This step completes the GPALS-PSO cycle, and a new cycle begins by performing
tpri iterations with the new primary population and the new parameter triplet. In
case of insufficient improvement from the secondary populations, the new cycle re-
tains the previous primary population and parameters. In any case, the new primary
population inherits the best individuals of all secondary population.

The experiments on the SOCO test suite were conducted using the same parameters
for GPALS-PSO as for GPALS-DE, namely,

tpri = 10× n, tsec = 10, λ = 0.1, δ = 10−8.
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Table 4.9: Statistical comparisons between GPALS-PSO, the base algorithms, and the
plain PSO for the SOCO test suite. The symbols “+”, “−”, and “=”, denote wins,
losses, and ties of GPALS-PSO against the competitor algorithms.

GPALS-PSO0.5 GPALS-PSO0.2 GPALS-PSO0.8

Dim. Algorithm + − = + − = + − =

50 DEbin 6 12 1 2 16 1 4 14 1

DEexp 3 13 3 2 17 0 2 17 0

CHC 13 4 2 8 9 2 9 3 7

GCMAES 14 3 2 9 6 4 11 4 4

PSO 3 5 11 19 0 0 19 0 0
100 DEbin 4 10 5 1 16 2 5 13 1

DEexp 1 16 2 1 18 0 1 17 1

CHC 14 4 1 7 6 6 11 3 5

GCMAES 13 5 1 8 5 6 11 6 2

PSO 3 5 11 19 0 0 19 0 0
200 DEbin 4 7 8 4 10 5 5 12 2

DEexp 1 18 0 1 18 0 1 18 0

CHC 10 5 4 10 8 1 7 9 3

GCMAES 12 6 1 5 8 6 6 10 3

PSO 4 2 13 18 0 1 19 0 0
500 DEbin 12 5 2 3 15 1 3 11 5

DEexp 1 18 0 1 18 0 1 18 0

CHC 9 6 4 3 13 3 7 11 1

GCMAES n/a n/a n/a n/a n/a n/a n/a n/a n/a
PSO 9 2 8 9 0 10 19 0 0

The available computational budget, as dictated by the test suite, was equal to qmax =

1000×n, function evaluations, while the performance criterion for the algorithms was
again the objective value error as defined in Eq. (2.13).

The average and standard deviation of the obtained solution errors of GPALS-
PSO are reported in Tables B.9–B.12 of Appendix B along with the results of the
base algorithms. Wilcoxon rank-sum tests at confidence level 95% were conducted
between the GPALS-PSO algorithms and the base algorithms. Table 4.9 reports the
corresponding numbers of wins, losses, and ties. We see, the GPALS-PSO approach
was competitive against two out of four base algorithms, while it was outperformed
by the rest. However, it shall be underlined that GPALS-PSO does not use any kind
of preprocessing, contrary to the tuned base algorithms.

The benefits from using GPALS become evident when GPALS-PSO is compared
against the plain PSO with fixed parameters equal to the initial parameters of the
GPALS-PSO. As revealed in Table 4.9, two of the GPALS-PSO approaches outper-
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Table 4.10: Statistical comparisons between GPALS-PSO, plain PSO and SPSO 2011
on the CEC-2013 test problems.

Dimension
30 50

GPALS-PSO vs + − = + − =

PlainPSO 10 5 13 10 5 13
SPSO2011 9 5 14 14 6 8

formed the corresponding standard PSO algorithm. However, this was not the case
for GPALS-PSO0.5. The reason is that the parameter set w = 0.5, c1 = c2 = 1.5, was
near-optimal in the experiments for the plain PSO on the specific problems and, thus,
the dominant result between GPALS-PSO and plain PSO was the tie. Although, even
for this case, PSO outperformed GPALS-PSO only in 2 out of 19 problems for the
highest dimensional problems. This comes in line with the results observed for the
GPALS-DE algorithms, suggesting that GPALS can be beneficial in higher dimensions
even for the well-performing algorithms.

The performance of GPALS-PSO0.5 was investigated also on the CEC-2013 suite [58].
The GPALS-PSO algorithm assumed in all experiments the initial parameter set

(w, c1, c2) = (0.5, 1.5, 1.5) but with swarm size increased to 100, similarly to its DE-
based counterpart. Comparisons were conducted with the plain PSO approach and
the new PSO variant, namely SPSO2011 [83]. The results are reported in Table 4.10.
Evidently, GPALS-PSO is very competitive to both approaches. However, it shall be
noticed that SPSO2011 is tuned for the specific test suite, while GPALS-PSO determines
its parameters on the run. The average errors achieved for all algorithms for the CEC-
2013 test suite are reported in Tables B.13-B.15 of Appendix B.

4.5 Synopsis

The grid-base parameter adaptation method presented in the previous chapter admits
improvements in two points. The first one is the restricted number of search directions
in the discretized parameter domain, and the second one is the limited step size
allowed on these directions. These weaknesses may result in rather slow adaptation
of the algorithm’s parameters.

The proposed GPALS method addresses these issues by extending the parameter
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search procedure from the simplistic grid-based search to the more sophisticated
gradient search with line search. While gradient estimations enhance the number
of search directions, line search tackles the step size problem. All estimations of
the underlying mathematical quantities are based on short-runs of the algorithm,
similarly to the grid-based method.

The proposed GPALS method was illustrated on the two state-of-the-art algo-
rithms, namely, DE and PSO. The effectiveness of the corresponding GPALS-DE
approach was shown on the two established test suites that include a variety of high-
dimensional and low-dimensional test problems. The results suggested that GPALS
can disburden the user from the need of finding proper parameter settings, while it
can significantly improve the algorithm’s performance. Very competitive performance
was observed also against other already fine-tuned algorithms from the relevant lit-
erature, despite the fact that GPALS neither undergoes fine-tuning nor is assigned
the additional computational budget spent by the rest of the algorithms for their op-
timal tuning. Moreover, compared to other methods, GPALS has shown satisfactory
running time performance on the specific test problems.
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Chapter 5

Concluding Remarks and Future Work

Parameter tuning is a laborious task in metaheuristics, intimately related to the cor-
responding optimization problem. The rising popularity of metaheuristics rendered
parameter tuning a central problem, since their performance has been shown to be
highly dependent on their proper parameterization. Inappropriate parameters may
render the algorithm incapable of detecting solutions of good quality. On the other
hand, parameter tuning through trial-and-error procedures expands the necessary
experimentation time and consumes valuable computational resources. Up-to-date, a
number of adaptive algorithms have been proposed, mostly based on ad-hoc proce-
dures especially designed for the specific algorithm.

In the present thesis, two novel and general-purpose online parameter adaptation
methods for population-based metaheuristics were proposed. First, a general-purpose
parameter adaptation method based on grid search in the parameter domain was pro-
posed. The parameter adaptation is conducted on a grid defined over the parameter
space. Performance estimations of the algorithm are used to guide the adaptation pro-
cedure. The method was successfully demonstrated on two metaheuristics, namely
Differential Evolution and Particle Swarm Optimization, attaining competitive perfor-
mance against other state-of-the-art methods. Two test suites that include a variety of
high-dimensional and low-dimensional test problems were used for the experimen-
tal evaluation. The proposed approaches do not require any preprocessing phase,
contrary to the competitor algorithms. The reported results verified the competitive-
ness of the proposed methods. This was achieved despite the fact that the dictated
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experimental setting of both test suites are rather restrictive due to the limited com-
putational budget, and the fact that the parameters of the competitor algorithms were
already tuned.

Similarly to other methods, the grid-based search has a few user-defined param-
eters. A preliminary study of its sensitivity on these parameters was also conducted.
The results offered evidence of the method’s tolerance on its parameters. The analysis
revealed that the performance estimation phase is the most sensitive one, while the
rest of the parameters have only mild influence on the algorithm’s dynamic. Also, it
revealed that the proposed default parameters are very efficient.

A more sophisticated version of the grid-based method, inspired by deterministic
gradient-based optimization, was also developed. In this method, gradient estimations
replace the core mechanism of the grid-based method, offering an abundance of
search directions, while line search tackles the step size problem. The effectiveness of
the proposed approach was successfully verified on the two test suites for the same
metaheuristics, namely DE and PSO. The reported results verified the superiority of
the proposed method against other already fine-tuned algorithms from the relevant
literature, despite the fact that the proposed approach was neither fined-tuned nor
using the additional computation budget spent by the rest of the algoirthms for their
fine tuning. Finally, compared to other methods, the proposed approach exhibited
satisfactory running-time performance on the specific test problems, and mild memory
requirements.

The research reported in the present thesis has offered strong motivation for
further elaboration on different metaheuristics and test suites, especially ones con-
taining real world problems. Additionally, it would be interesting to further extend
the methods with different adaptation techniques, e.g., different search methods or
online learning algorithms. Finally, the proposed method could benefit from the use
of modern computing infrastructures, such as GPU-based hardware and parallel pro-
gramming tools.
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Appendix A

Average errors of GPAM and GPAM*

Average errors of GPAM and GPAM* for the SOCO and CEC-2013 test suites.
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Table A.1: Average errors and standard deviations of the DEGPA, eDEGPA, and the
base algorithms in the SOCO suite, for dimension n = 50 and 100.

Problem
D

E
G
PA

eD
E
G
PA

D
E

bin
D

E
exp

CH
C

G
CM

A
E
S

M
ean

StD
M

ean
StD

M
ean

StD
M

ean
StD

M
ean

StD
M

ean
StD

5
0-dim

ensional
F
1

8
.8
7
e
−

1
4

3
.3
1
e
−

1
4

5
.4
6
e
−

1
4

1
.1
4
e
−

1
4

3
.0
0
e
−

1
7

7
.6
9
e
−

1
8

2
.7
8
e
−

1
7

6
.2
9
e
−

3
3

2
.9
0
e
+

0
2

5
.6
9
e
+

0
2

2
.7
8
e
−

1
7

6
.2
9
e
−

3
3

F
2

4
.4
8
e
+

0
0

3
.1
5
e
+

0
0

3
.1
9
e
+

0
0

4
.1
6
e
+

0
0

3
.8
7
e
+

0
1

8
.9
0
e
+

0
0

3
.3
1
e
−

0
1

5
.9
0
e
−

0
2

7
.7
2
e
+

0
1

1
.2
3
e
+

0
1

7
.6
9
e
−

1
1

4
.8
3
e
−

1
1

F
3

4
.5
9
e
+

0
1

1
.1
8
e
+

0
1

5
.5
6
e
+

0
1

2
.5
9
e
+

0
1

6
.9
9
e
+

0
1

3
.5
8
e
+

0
1

3
.1
0
e
+

0
1

8
.6
5
e
+

0
0

5
.6
4
e
+

0
7

1
.4
2
e
+

0
8

6
.3
8
e
−

0
1

1
.4
9
e
+

0
0

F
4

1
.3
0
e
−

1
3

2
.6
0
e
−

1
4

6
.6
0
e
−

1
1

3
.2
9
e
−

1
0

3
.2
1
e
+

0
1

1
.3
8
e
+

0
1

4
.7
9
e
−

0
2

2
.0
1
e
−

0
1

1
.1
2
e
+

0
2

2
.7
4
e
+

0
1

3
.7
2
e
+

0
2

8
.6
8
e
+

0
1

F
5

4
.5
5
e
−

1
4

1
.6
4
e
−

1
4

2
.7
3
e
−

1
4

5
.6
8
e
−

1
5

9
.8
6
e
−

0
4

2
.7
6
e
−

0
3

0
.0
0
e
+

0
0

0
.0
0
e
+

0
0

9
.0
2
e
−

0
1

1
.8
2
e
+

0
0

2
.1
6
e
−

0
1

5
.6
4
e
−

0
1

F
6

2
.0
7
e
−

1
3

7
.3
2
e
−

1
4

1
.4
7
e
−

1
3

9
.8
3
e
−

1
4

7
.1
6
e
−

1
4

1
.8
6
e
−

1
4

1
.3
9
e
−

1
3

9
.4
3
e
−

1
5

3
.2
3
e
+

0
0

2
.4
4
e
+

0
0

1
.9
0
e
+

0
1

1
.0
2
e
+

0
0

F
7

5
.5
3
e
−

1
4

2
.0
9
e
−

1
3

0
.0
0
e
+

0
0

0
.0
0
e
+

0
0

2
.2
2
e
−

1
5

1
.1
7
e
−

1
5

8
.8
8
e
−

1
7

1
.9
6
e
−

1
6

1
.2
3
e
−

0
9

1
.4
5
e
−

0
9

2
.1
0
e
+

0
1

1
.3
8
e
+

0
1

F
8

5
.9
4
e
+

0
1

1
.1
6
e
+

0
2

1
.8
6
e
+

0
2

2
.5
9
e
+

0
2

9
.0
2
e
+

1
0

0
.0
0
e
+

0
0

9
.0
2
e
+

1
0

0
.0
0
e
+

0
0

9
.0
2
e
+

1
0

9
.0
2
e
+

0
6

9
.0
3
e
+

1
0

9
.3
9
e
+

0
7

F
9

1
.3
0
e
−

0
4

6
.0
7
e
−

0
4

6
.5
8
e
−

0
5

2
.9
8
e
−

0
4

2
.8
5
e
+

0
2

5
.3
0
e
+

0
0

2
.7
3
e
+

0
2

7
.4
0
e
−

0
1

3
.1
1
e
+

0
2

4
.9
8
e
+

0
0

3
.1
6
e
+

0
2

7
.0
3
e
+

0
0

F
1
0

3
.3
0
e
−

2
8

1
.0
8
e
−

2
7

9
.1
2
e
−

2
7

2
.6
5
e
−

2
6

1
.5
3
e
+

0
0

1
.2
9
e
+

0
0

6
.5
0
e
−

2
9

3
.6
0
e
−

2
9

7
.7
2
e
+

0
0

2
.9
3
e
+

0
0

9
.2
5
e
+

0
0

2
.8
2
e
+

0
0

F
1
1

6
.9
8
e
−

0
5

2
.8
1
e
−

0
4

7
.2
5
e
−

0
5

3
.0
5
e
−

0
4

9
.6
5
e
−

0
1

2
.0
2
e
+

0
0

6
.2
6
e
−

0
5

1
.3
0
e
−

0
5

1
.0
1
e
−

0
2

1
.2
6
e
−

0
2

1
.9
5
e
+

0
2

3
.6
5
e
+

0
1

F
1
2

1
.0
8
e
−

0
8

5
.3
0
e
−

0
8

1
.7
1
e
−

2
8

6
.5
6
e
−

2
8

5
.8
2
e
+

0
0

1
.0
3
e
+

0
1

5
.2
6
e
−

1
3

1
.6
4
e
−

1
3

8
.2
3
e
+

0
1

1
.5
3
e
+

0
2

1
.1
4
e
+

0
2

1
.0
1
e
+

0
1

F
1
3

2
.9
7
e
+

0
1

4
.7
9
e
+

0
0

5
.0
2
e
+

0
1

3
.2
9
e
+

0
1

5
.9
7
e
+

0
1

2
.2
2
e
+

0
1

2
.4
8
e
+

0
1

1
.3
1
e
+

0
0

1
.4
3
e
+

0
7

3
.2
9
e
+

0
7

1
.1
6
e
+

0
2

1
.4
3
e
+

0
1

F
1
4

3
.1
5
e
−

0
8

8
.4
6
e
−

0
8

3
.3
4
e
−

0
6

1
.3
0
e
−

0
5

3
.3
5
e
+

0
1

1
.8
6
e
+

0
1

3
.5
5
e
−

0
8

2
.2
6
e
−

0
8

6
.7
6
e
+

0
1

1
.3
0
e
+

0
1

2
.7
1
e
+

0
2

7
.3
0
e
+

0
1

F
1
5

3
.9
8
e
−

1
3

1
.9
9
e
−

1
2

0
.0
0
e
+

0
0

0
.0
0
e
+

0
0

2
.2
9
e
−

0
1

6
.0
7
e
−

0
1

1
.9
9
e
−

2
4

3
.2
2
e
−

2
4

3
.0
7
e
+

0
0

5
.3
2
e
+

0
0

3
.9
4
e
+

0
1

1
.2
5
e
+

0
2

F
1
6

1
.0
4
e
−

0
6

4
.9
6
e
−

0
6

2
.7
2
e
−

0
9

1
.3
6
e
−

0
8

5
.6
4
e
+

0
0

8
.4
7
e
+

0
0

1
.5
6
e
−

0
9

2
.8
1
e
−

1
0

5
.6
0
e
+

0
1

5
.1
6
e
+

0
1

2
.2
3
e
+

0
2

1
.5
0
e
+

0
1

F
1
7

2
.3
2
e
+

0
0

2
.8
4
e
+

0
0

7
.4
4
e
+

0
0

3
.1
9
e
+

0
0

1
.5
1
e
+

0
1

1
.4
3
e
+

0
1

8
.5
2
e
−

0
1

4
.9
2
e
−

0
1

7
.6
1
e
+

0
6

2
.4
4
e
+

0
7

3
.4
7
e
+

0
2

2
.1
8
e
+

0
1

F
1
8

9
.5
0
e
−

0
7

2
.9
6
e
−

0
6

4
.6
7
e
−

0
6

9
.9
5
e
−

0
6

5
.7
3
e
+

0
0

5
.2
6
e
+

0
0

1
.2
8
e
−

0
4

4
.6
3
e
−

0
5

6
.7
6
e
+

0
1

3
.4
6
e
+

0
1

3
.5
9
e
+

0
2

8
.4
5
e
+

0
1

F
1
9

9
.4
4
e
−

2
3

4
.7
1
e
−

2
2

0
.0
0
e
+

0
0

0
.0
0
e
+

0
0

1
.2
3
e
+

0
0

9
.2
6
e
−

0
1

2
.0
0
e
−

2
4

1
.5
0
e
−

2
4

1
.9
5
e
+

0
2

5
.0
1
e
+

0
2

1
.7
1
e
+

0
3

5
.8
4
e
+

0
3

1
0
0-dim

ensional
F
1

2
.3
4
e
−

1
3

5
.7
6
e
−

1
4

5
.6
8
e
−

1
4

3
.8
6
e
−

2
9

1
.1
2
e
−

1
6

4
.2
8
e
−

1
7

7
.7
7
e
−

1
7

1
.1
3
e
−

1
7

4
.6
7
e
+

0
2

7
.0
2
e
+

0
2

5
.5
5
e
−

1
7

1
.2
6
e
−

3
2

F
2

1
.6
0
e
+

0
1

7
.5
4
e
+

0
0

2
.9
0
e
+

0
1

1
.5
0
e
+

0
1

7
.7
4
e
+

0
1

7
.7
7
e
+

0
0

4
.6
0
e
+

0
0

4
.2
4
e
−

0
1

9
.9
6
e
+

0
1

1
.1
6
e
+

0
1

2
.6
1
e
−

0
3

1
.3
0
e
−

0
2

F
3

1
.1
0
e
+

0
2

2
.8
5
e
+

0
1

1
.3
6
e
+

0
2

4
.9
6
e
+

0
1

4
.4
3
e
+

0
2

3
.6
3
e
+

0
2

8
.0
1
e
+

0
1

1
.0
3
e
+

0
1

1
.5
2
e
+

0
8

2
.6
9
e
+

0
8

1
.2
3
e
+

0
1

1
.8
0
e
+

0
1

F
4

3
.1
6
e
−

1
3

5
.9
3
e
−

1
4

4
.6
4
e
−

1
3

8
.1
7
e
−

1
3

1
.0
1
e
+

0
2

2
.2
5
e
+

0
1

9
.5
3
e
−

0
3

4
.7
6
e
−

0
2

2
.9
2
e
+

0
2

5
.1
6
e
+

0
1

8
.3
8
e
+

0
2

1
.3
9
e
+

0
2

F
5

1
.1
5
e
−

1
3

2
.9
0
e
−

1
4

3
.3
0
e
−

1
4

1
.3
4
e
−

1
4

2
.9
3
e
−

0
2

5
.3
2
e
−

0
2

2
.5
5
e
−

1
7

5
.1
9
e
−

1
8

5
.9
5
e
+

0
0

1
.2
9
e
+

0
1

2
.6
8
e
+

0
0

1
.0
5
e
+

0
1

F
6

4
.1
2
e
−

1
3

9
.6
1
e
−

1
4

1
.9
6
e
−

1
3

1
.5
0
e
−

1
3

1
.5
5
e
+

0
0

3
.8
8
e
−

0
1

3
.1
0
e
−

1
3

1
.6
2
e
−

1
4

4
.7
9
e
+

0
0

1
.8
7
e
+

0
0

1
.8
6
e
+

0
1

2
.4
5
e
+

0
0

F
7

6
.1
0
e
−

1
5

2
.6
9
e
−

1
4

1
.5
3
e
−

1
5

4
.3
5
e
−

1
5

1
.3
9
e
−

1
4

7
.1
2
e
−

1
5

3
.8
0
e
−

1
7

5
.2
9
e
−

1
7

8
.6
7
e
−

0
2

3
.7
0
e
−

0
1

6
.3
5
e
+

0
1

2
.3
6
e
+

0
1

F
8

9
.8
2
e
+

0
2

1
.4
6
e
+

0
3

2
.5
5
e
+

0
3

3
.3
4
e
+

0
3

1
.7
9
e
+

1
1

0
.0
0
e
+

0
0

1
.7
9
e
+

1
1

0
.0
0
e
+

0
0

1
.7
9
e
+

1
1

1
.9
2
e
+

0
7

1
.8
0
e
+

1
1

3
.5
4
e
+

0
8

F
9

3
.8
5
e
−

0
4

7
.1
1
e
−

0
4

1
.0
7
e
−

0
3

2
.2
9
e
−

0
3

5
.4
3
e
+

0
2

1
.3
6
e
+

0
1

5
.0
6
e
+

0
2

9
.1
6
e
−

0
1

5
.8
7
e
+

0
2

1
.0
1
e
+

0
1

6
.0
8
e
+

0
2

1
.0
7
e
+

0
1

F
1
0

1
.0
8
e
−

2
6

5
.3
9
e
−

2
6

3
.5
3
e
−

3
0

1
.5
5
e
−

2
9

1
.5
4
e
+

0
1

3
.3
1
e
+

0
0

1
.3
5
e
−

2
8

3
.8
6
e
−

2
9

2
.8
9
e
+

0
1

1
.0
1
e
+

0
1

1
.9
3
e
+

0
1

5
.1
0
e
+

0
0

F
1
1

6
.6
0
e
−

0
4

2
.1
7
e
−

0
3

1
.0
1
e
−

0
3

2
.6
5
e
−

0
3

4
.3
1
e
+

0
1

2
.0
9
e
+

0
1

1
.2
5
e
−

0
4

1
.4
3
e
−

0
5

2
.8
0
e
+

0
1

3
.0
2
e
+

0
1

4
.8
2
e
+

0
2

4
.2
7
e
+

0
1

F
1
2

2
.3
1
e
−

0
7

9
.0
0
e
−

0
7

1
.4
3
e
−

0
2

7
.1
5
e
−

0
2

7
.2
1
e
+

0
1

3
.2
1
e
+

0
1

6
.4
4
e
−

1
1

1
.5
2
e
−

1
1

8
.7
2
e
+

0
2

2
.5
5
e
+

0
3

2
.4
1
e
+

0
2

1
.2
3
e
+

0
1

F
1
3

7
.2
3
e
+

0
1

1
.8
9
e
+

0
1

9
.0
7
e
+

0
1

3
.0
9
e
+

0
1

2
.7
6
e
+

0
2

6
.1
8
e
+

0
1

6
.1
3
e
+

0
1

1
.0
0
e
+

0
0

9
.3
7
e
+

0
7

4
.0
2
e
+

0
8

2
.5
9
e
+

0
2

2
.1
6
e
+

0
1

F
1
4

3
.5
8
e
−

0
8

8
.9
9
e
−

0
8

1
.7
8
e
−

0
6

2
.7
8
e
−

0
6

9
.3
7
e
+

0
1

1
.5
6
e
+

0
1

4
.4
8
e
−

0
2

2
.2
4
e
−

0
1

2
.2
5
e
+

0
2

4
.5
9
e
+

0
1

6
.1
9
e
+

0
2

9
.2
5
e
+

0
1

F
1
5

2
.0
9
e
−

1
5

1
.0
4
e
−

1
4

5
.9
7
e
−

1
0

2
.0
7
e
−

0
9

3
.6
7
e
+

0
0

1
.7
6
e
+

0
0

7
.1
0
e
−

2
3

7
.0
0
e
−

2
3

5
.9
9
e
+

0
0

1
.1
9
e
+

0
1

5
.5
7
e
+

0
1

5
.2
2
e
+

0
1

F
1
6

3
.0
5
e
−

0
6

1
.1
6
e
−

0
5

1
.4
8
e
−

0
8

4
.1
7
e
−

0
8

1
.1
0
e
+

0
2

3
.8
0
e
+

0
1

1
.9
4
e
−

0
2

9
.7
0
e
−

0
2

2
.0
8
e
+

0
2

1
.4
9
e
+

0
2

4
.8
4
e
+

0
2

2
.0
8
e
+

0
1

F
1
7

2
.2
7
e
+

0
1

2
.7
6
e
+

0
1

3
.4
3
e
+

0
1

2
.6
4
e
+

0
1

1
.7
8
e
+

0
2

5
.4
9
e
+

0
1

1
.1
9
e
+

0
1

2
.6
2
e
+

0
0

4
.3
6
e
+

0
7

7
.0
9
e
+

0
7

7
.0
4
e
+

0
2

3
.9
2
e
+

0
1

F
1
8

2
.5
6
e
−

0
6

1
.2
3
e
−

0
5

8
.4
0
e
−

0
6

2
.4
0
e
−

0
5

1
.0
4
e
+

0
2

4
.3
9
e
+

0
1

2
.9
2
e
−

0
4

6
.7
7
e
−

0
5

2
.3
7
e
+

0
2

7
.0
2
e
+

0
1

1
.0
9
e
+

0
3

4
.1
5
e
+

0
2

F
1
9

2
.6
9
e
−

2
2

1
.3
4
e
−

2
1

1
.1
8
e
−

3
1

4
.8
3
e
−

3
1

1
.1
7
e
+

0
1

2
.6
1
e
+

0
0

4
.7
9
e
−

2
3

2
.6
5
e
−

2
3

4
.7
0
e
+

0
2

1
.8
4
e
+

0
3

5
.8
3
e
+

0
3

9
.8
5
e
+

0
3

100



Table A.2: Average errors and standard deviations of the DEGPA, eDEGPA, and the
base algorithms in the SOCO suite, for dimension n = 200 and 500.
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4
.3
4
e
+

0
2

1
.2
5
e
−

0
3

1
.8
7
e
−

0
4

2
.7
4
e
+

0
3

3
.5
9
e
+

0
2

n/a
n/a

F
1
9

3
.1
8
e
−

2
7

9
.9
7
e
−

2
7

2
.1
6
e
+

0
0

3
.4
1
e
+

0
0

1
.2
9
e
+

0
2

2
.3
4
e
+

0
1

3
.3
5
e
−

2
1

2
.1
5
e
−

2
1

2
.0
5
e
+

0
3

4
.0
3
e
+

0
3

n/a
n/a
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Table A.3: Average errors of the DEGPA, eDEGPA, and other algorithms provided in
the SOCO test suite.

F1
F2

F3
F4

F5
F6

F7
F8

F9
F10

F11
F12

F13
F14

F15
F16

F17
F18

F19
D

E
G
PA

50
0.00e

+
00

4.48e
+
00

4.59e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

5.94e
+
01

1.30e−
04

0.00e
+
00

6.98e−
05

1.08e−
08

2.97e
+
01

3.15e−
08

0.00e
+
00

1.03e−
06

2.32e
+
00

9.50e−
07

0.00e
+
00

100
0.00e

+
00

1.60e
+
01

1.10e
+
02

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

9.82e
+
02

3.85e−
04

0.00e
+
00

6.60e−
04

2.31e−
07

7.23e
+
01

3.58e−
08

0.00e
+
00

3.05e−
06

2.27e
+
01

2.56e−
06

0.00e
+
00

200
0.00e

+
00

3.67e
+
01

2.17e
+
02

8.00e−
04

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.10e
+
04

9.47e−
05

0.00e
+
00

7.82e−
04

1.49e−
06

1.40e
+
02

1.55e−
08

0.00e
+
00

1.71e−
06

6.24e
+
01

1.06e−
05

0.00e
+
00

500
0.00e

+
00

7.97e
+
01

4.96e
+
02

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

9.55e
+
04

2.32e−
03

0.00e
+
00

2.16e−
03

4.24e−
06

3.71e
+
02

1.60e−
08

0.00e
+
00

1.71e−
05

1.41e
+
02

7.67e−
06

0.00e
+
00

eD
E
G
PA

50
0.00e

+
00

3.19e
+
00

5.56e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.86e
+
02

6.58e−
05

0.00e
+
00

7.25e−
05

0.00e
+
00

5.02e
+
01

3.34e−
06

0.00e
+
00

0.00e
+
00

7.44e
+
00

4.67e−
06

0.00e
+
00

100
0.00e

+
00

2.90e
+
01

1.36e
+
02

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

2.55e
+
03

1.07e−
03

0.00e
+
00

1.01e−
03

1.43e−
02

9.07e
+
01

1.78e−
06

0.00e
+
00

1.48e−
08

3.43e
+
01

8.40e−
06

0.00e
+
00

200
0.00e

+
00

6.22e
+
01

2.56e
+
02

0.00e
+
00

7.21e−
07

0.00e
+
00

0.00e
+
00

2.79e
+
04

6.28e−
03

0.00e
+
00

5.31e−
03

3.72e−
03

1.95e
+
02

1.38e−
07

0.00e
+
00

1.33e−
03

6.29e
+
01

1.67e−
04

4.20e−
02

500
0.00e

+
00

7.31e
+
01

6.22e
+
02

3.98e−
02

0.00e
+
00

1.24e−
01

3.64e−
03

1.77e
+
05

2.10e−
02

0.00e
+
00

2.78e−
03

1.66e−
04

5.77e
+
02

3.30e−
03

5.50e−
01

1.46e
+
01

2.67e
+
02

1.19e−
01

2.16e
+
00

SO
U

PD
E

50
0.00e

+
000

1.18e
+
000

3.10e
+
001

3.98e−
002

0.00e
+
000

1.47e−
014

2.28e−
014

9.69e−
002

3.75e−
006

0.00e
+
000

3.09e−
006

0.00e
+
000

2.06e
+
001

0.00e
+
000

1.38e−
014

0.00e
+
000

2.53e−
001

0.00e
+
000

0.00e
+
000

100
0.00e

+
000

7.47e
+
000

7.92e
+
001

3.98e−
002

0.00e
+
000

3.03e−
014

3.88e−
014

6.55e
+
001

7.82e−
006

0.00e
+
000

6.75e−
006

0.00e
+
000

5.85e
+
001

9.09e−
015

2.79e−
014

0.00e
+
000

8.55e
+
000

0.00e
+
000

0.00e
+
000

200
0.00e

+
000

2.38e
+
001

1.80e
+
002

1.19e−
001

0.00e
+
000

6.40e−
014

7.46e−
014

2.46e
+
003

1.51e−
005

0.00e
+
000

1.43e−
005

0.00e
+
000

1.35e
+
002

3.98e−
002

5.79e−
014

0.00e
+
000

3.31e
+
001

0.00e
+
000

1.91e−
014

500
0.00e

+
000

6.50e
+
001

4.71e
+
002

7.96e−
002

0.00e
+
000

1.67e−
013

1.78e−
013

4.36e
+
004

3.59e−
005

0.00e
+
000

4.66e−
004

0.00e
+
000

3.58e
+
002

1.31e−
012

1.39e−
013

0.00e
+
000

1.09e
+
002

2.82e−
013

4.95e−
014

D
E
-D

4
0
+
M

m

50
3.33e−

018
1.67e−

001
1.34e

+
001

1.99e−
001

0.00e
+
000

4.55e−
014

0.00e
+
000

6.11e−
001

0.00e
+
000

1.89e−
031

6.06e−
004

1.58e−
021

1.39e
+
001

1.19e−
001

0.00e
+
000

1.76e−
016

4.31e−
002

3.98e−
002

0.00e
+
000

100
2.78e−

017
2.24e

+
000

7.61e
+
001

1.99e−
001

1.39e−
017

1.01e−
013

5.33e−
017

4.75e
+
005

4.29e−
004

0.00e
+
000

0.00e
+
000

4.62e−
017

5.33e
+
001

1.19e−
001

0.00e
+
000

8.99e−
015

3.22e
+
000

8.11e−
010

0.00e
+
000

200
6.66e−

017
9.58e

+
000

1.69e
+
002

2.39e−
001

2.78e−
017

2.51e−
013

0.00e
+
000

2.19e
+
008

0.00e
+
000

3.51e
+
001

0.00e
+
000

5.45e−
015

1.23e
+
002

3.98e−
002

0.00e
+
000

2.26e−
013

2.72e
+
001

3.98e−
002

9.47e−
032

500
2.23e−

016
3.72e

+
001

4.54e
+
002

9.15e−
001

1.03e−
016

7.14e−
013

0.00e
+
000

1.41e
+
010

6.78e−
009

2.43e−
031

0.00e
+
000

5.05e−
013

3.48e
+
002

2.39e−
001

0.00e
+
000

4.17e−
012

1.02e
+
002

9.97e−
008

0.00e
+
000

G
aD

E
50

0.00e
+
000

1.46e
+
001

1.18e
+
001

0.00e
+
000

0.00e
+
000

0.00e
+
000

0.00e
+
000

1.08e−
008

6.24e−
007

0.00e
+
000

1.31e−
006

0.00e
+
000

1.19e
+
001

9.78e−
013

0.00e
+
000

4.78e−
012

4.97e−
001

4.82e−
008

0.00e
+
000

100
0.00e

+
000

3.88e
+
001

5.89e
+
001

0.00e
+
000

0.00e
+
000

0.00e
+
000

0.00e
+
000

1.23e−
003

3.87e−
007

0.00e
+
000

4.34e−
007

0.00e
+
000

4.99e
+
001

7.90e−
013

0.00e
+
000

2.45e−
012

3.28e
+
000

1.96e−
008

0.00e
+
000

200
0.00e

+
000

5.76e
+
001

1.61e
+
001

0.00e
+
000

0.00e
+
000

0.00e
+
000

0.00e
+
000

3.02e
+
000

4.53e−
009

4.20e−
002

1.85e−
007

4.92e−
014

1.24e
+
002

2.87e−
012

0.00e
+
000

1.58e−
012

2.45e
+
001

2.53e−
008

0.00e
+
000

500
0.00e

+
000

7.42e
+
001

4.40e
+
002

0.00e
+
000

0.00e
+
000

1.46e−
014

0.00e
+
000

1.33e
+
003

0.00e
+
000

3.78e−
001

0.00e
+
000

1.07e−
012

3.34e
+
002

2.79e−
011

0.00e
+
000

1.67e−
012

9.26e
+
001

5.59e−
008

4.20e−
002

jD
E
lscop

50
0.00e

+
00

3.15e−
02

2.28e
+
01

0.00e
+
00

0.00e
+
00

9.55e−
14

0.00e
+
00

9.97e−
03

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.36e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

7.43e−
03

2.41e−
14

0.00e
+
00

100
0.00e

+
00

1.21e
+
00

6.13e
+
01

0.00e
+
00

0.00e
+
00

2.00e−
13

0.00e
+
00

5.57e
+
00

7.18e−
09

0.00e
+
00

8.17e−
09

0.00e
+
00

5.11e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

3.21e−
01

6.33e−
14

0.00e
+
00

200
0.00e

+
00

7.54e
+
00

1.40e
+
02

0.00e
+
00

0.00e
+
00

4.52e−
13

0.00e
+
00

2.52e
+
02

4.30e−
08

0.00e
+
00

9.58e−
09

0.00e
+
00

1.10e
+
02

4.11e−
16

0.00e
+
00

0.00e
+
00

2.39e
+
01

2.04e−
13

0.00e
+
00

500
0.00e

+
00

3.06e
+
01

4.06e
+
02

1.59e−
01

0.00e
+
00

1.18e−
12

0.00e
+
00

5.66e
+
03

6.10e−
08

0.00e
+
00

4.40e−
08

0.00e
+
00

3.14e
+
02

8.00e−
02

0.00e
+
00

0.00e
+
00

7.65e
+
01

1.11e−
12

0.00e
+
00

SaD
E
-M

M
TS

50
0.00e

+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

4.13e−
09

1.35e−
01

0.00e
+
00

5.19e−
05

0.00e
+
00

4.23e
+
00

3.93e−
08

0.00e
+
00

0.00e
+
00

4.78e−
01

9.38e−
03

0.00e
+
00

100
0.00e

+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

3.05e−
04

3.18e−
01

0.00e
+
00

2.00e−
04

0.00e
+
00

3.30e
+
01

1.02e−
02

0.00e
+
00

0.00e
+
00

1.17e
+
01

4.70e−
02

0.00e
+
00

200
0.00e

+
00

1.34e
+
00

0.00e
+
00

8.08e−
02

0.00e
+
00

0.00e
+
00

0.00e
+
00

2.67e
+
01

1.24e
+
00

0.00e
+
00

2.39e−
04

0.00e
+
00

8.89e
+
01

1.57e−
02

0.00e
+
00

0.00e
+
00

3.50e
+
01

3.35e−
01

0.00e
+
00

500
0.00e

+
00

1.25e
+
01

0.00e
+
00

3.85e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

3.01e
+
02

2.81e
+
01

0.00e
+
00

2.53e
+
01

0.00e
+
00

3.27e
+
02

4.01e−
01

0.00e
+
00

0.00e
+
00

9.80e
+
01

1.18e
+
00

0.00e
+
00

M
O

S
50

0.00e
+
00

4.64e−
13

9.61e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.54e−
08

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

4.55e−
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.40e
+
01

0.00e
+
00

0.00e
+
00

100
0.00e

+
00

2.94e−
12

2.03e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

9.17e−
02

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.75e
+
01

1.68e−
11

0.00e
+
00

0.00e
+
00

1.43e
+
01

0.00e
+
00

0.00e
+
00

200
0.00e

+
00

1.24e−
11

4.01e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.16e
+
02

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

9.03e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

5.03e
+
00

0.00e
+
00

0.00e
+
00

500
0.00e

+
00

5.51e−
04

4.57e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.28e
+
04

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

3.78e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.21e
+
01

0.00e
+
00

0.00e
+
00

M
A

-SSW
-Chains

50
1.67e−

17
7.61e−

02
4.79e

+
01

1.19e−
01

0.00e
+
00

4.89e−
14

9.33e−
17

3.06e−
01

2.94e
+
02

1.67e−
30

4.49e−
03

6.27e−
41

3.02e
+
01

1.37e−
17

3.91e−
16

4.06e−
03

2.60e
+
01

3.88e−
19

4.02e−
31

100
2.78e−

17
7.01e

+
00

1.38e
+
02

1.19e−
01

1.39e−
17

6.03e−
14

8.17e−
16

3.48e
+
01

5.63e
+
02

1.05e−
29

1.09e−
01

3.28e−
03

8.35e
+
01

2.21e−
16

1.59e−
15

1.61e−
02

9.92e
+
01

2.71e−
18

3.15e−
30

200
5.33e−

17
3.36e

+
01

2.50e
+
02

4.43e
+
00

2.72e−
17

1.19e−
13

6.96e−
15

7.23e
+
02

1.17e
+
03

5.41e−
29

3.50e−
01

1.75e−
02

1.68e
+
02

9.76e−
01

5.32e−
15

6.02e−
02

7.55e
+
01

4.29e−
04

1.51e−
16

500
1.01e−

16
7.86e

+
01

6.07e
+
02

1.78e
+
02

7.70e−
17

2.63e−
13

4.69e−
14

1.32e
+
04

2.53e
+
03

2.80e−
01

4.21e
+
01

2.55e
+
01

4.00e
+
02

5.65e
+
01

5.53e
+
00

1.08e−
01

1.38e
+
02

2.41e−
03

7.84e−
17
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Table A.4: Average errors of the DEGPA, eDEGPA, and other algorithms provided in
the SOCO test suite.

F1
F2

F3
F4

F5
F6

F7
F8

F9
F10

F11
F12

F13
F14

F15
F16

F17
F18

F19
D

E
G
PA

50
0.00e

+
00

4.48e
+
00

4.59e
+
01

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

5.94e
+
01

1.30e−
04

0.00e
+
00

6.98e−
05

1.08e−
08

2.97e
+
01

3.15e−
08

0.00e
+
00

1.03e−
06

2.32e
+
00

9.50e−
07

0.00e
+
00

100
0.00e

+
00

1.60e
+
01

1.10e
+
02

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00

9.82e
+
02

3.85e−
04

0.00e
+
00

6.60e−
04

2.31e−
07

7.23e
+
01

3.58e−
08

0.00e
+
00

3.05e−
06

2.27e
+
01

2.56e−
06

0.00e
+
00

200
0.00e

+
00

3.67e
+
01

2.17e
+
02

8.00e−
04

0.00e
+
00

0.00e
+
00

0.00e
+
00

1.10e
+
04

9.47e−
05

0.00e
+
00

7.82e−
04

1.49e−
06

1.40e
+
02

1.55e−
08

0.00e
+
00

1.71e−
06

6.24e
+
01

1.06e−
05

0.00e
+
00

500
0.00e

+
00

7.97e
+
01

4.96e
+
02

0.00e
+
00

0.00e
+
00

0.00e
+
00

0.00e
+
00
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Table A.5: Average errors and standard deviations of the DEGPOA, eDEGPOA, and
the base algorithms in the SOCO suite, for dimension n = 50 and 100.
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Table A.6: Average errors and standard deviations of the DEGPOA, eDEGPOA, and
the base algorithms in the SOCO suite, for dimension n = 200 and 500.
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Table A.7: Average errors of the DEGPOA, eDEGPOA and other algorithms provided
in the CEC-2013 for f1-f9 test problems.
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Table A.8: Average errors of the DEGPOA, eDEGPOA and other algorithms provided
in the CEC-2013 for f10-f19 test problems.
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Table A.9: Average errors of the DEGPOA, eDEGPOA and other algorithms provided
in the CEC-2013 for f20-f28 test problems .
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Table A.10: Average errors and standard deviations of the PSOPNA and the base
algorithms in the SOCO test suite, for dimension n = 50 and 100.
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Table A.11: Average errors and standard deviations of the PSOPNA and the base
algorithms in the SOCO test suite, for dimension n = 200 and 500.
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Appendix B

Average errors of GPALS

Average errors of GPALS for the SOCO and CEC-2013 test suites.
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Table B.1: Average errors and standard deviations of the three GPALS-DE variants
and the base algorithms in the SOCO test suite, for dimension n = 50.
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Table B.2: Average errors and standard deviations of the three GPALS-DE variants
and the base algorithms in the SOCO test suite, for dimension n = 100.
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Table B.3: Average errors and standard deviations of the three GPALS-DE variants
and the base algorithms in the SOCO test suite, for dimension n = 200.
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Table B.4: Average errors and standard deviations of the three GPALS-DE variants
and the base algorithms in the SOCO test suite, for dimension n = 500.
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Table B.5: Average errors of the GPALS-DE, GPALS-PSO and other algorithms for
the SOCO test problems f1 − f9.
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Table B.6: Average errors of the GPALS-DE, GPALS-PSO and other algorithms for
the SOCO test problems f10 − f19.
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Table B.7: Average error of the SHADE and L-SHADE variants for the SOCO test
problems f1 − f9.
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Table B.8: Average errors of the SHADE and L-SHADE variants for the SOCO test
problems f10 − f19.
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Table B.9: Average errors and standard deviations of the GPALS-PSO and the base
algorithms in the SOCO test suite, for dimension n = 50.
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Table B.10: Average errors and standard deviations of the GPALS-PSO and the base
algorithms in the SOCO test suite, for dimension n = 100.
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Table B.11: Average errors and standard deviations of the GPALS-PSO and the base
algorithms in the SOCO test suite, for dimension n = 200.
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Table B.12: Average errors and standard deviations of the GPALS-PSO and the base
algorithms in the SOCO test suite, for dimension n = 500.
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Table B.13: Average errors of the GPALS-DE, GPALS-PSO and other algorithms for
the CEC-2013 test problems f1 − f9.
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Table B.14: Average errors of the GPALS-DE, GPALS-PSO and other algorithms for
the CEC-2013 test problems f10 − f19.
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Table B.15: Average errors of the GPALS-DE, GPALS-PSO and other algorithms for
the CEC-2013 test problems f20 − f28.
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