
Automated Representation, Quality Assessment,
Visualization, and Adaptation to Change for

Data Intensive Ecosystems

A Dissertation

submitted to the designated

by the General Assembly of Special Composition

of the Department of Computer Science and Engineering

Examination Committee

by

Petros Manousis

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

University of Ioannina

February, 2019

Advisory Committee:

• Panos Vassiliadis, Assoc. Professor, Department of Computer Science and en-
gineering, University of Ioannina (Advisor)

• Evaggelia Pitoura, Professor, Department of Computer science and engineering,
University of Ioannina

• Apostolos Zarras, Assoc. Professor, Department of Computer Science and en-
gineering, University of Ioannina

Examining Committee:

• Panos Vassiliadis, Assoc. Professor, Department of Computer Science and en-
gineering, University of Ioannina

• Evaggelia Pitoura, Professor, Department of computer Science and engineering,
University of Ioannina

• Apostolos Zarras, Assoc. Professor, Department of Computer Science and en-
gineering, University of Ioannina

• Nikos Mamoulis, Assoc. Professor, Department of Computer Science and engi-
neering, University of Ioannina

• Diomidis Spinellis, Professor, Department of Management Science and Tech-
nology, Athens University of Economics and Business

• Spiros Skiadopoulos, Professor, Department of Informatics and Telecommuni-
cations, University of Peloponnese

• Alkis Simitsis, Research Director, Research Center “Athena” – Research & In-
novation Information Technologies

Dedication

This book is dedicated to my friends and family.

Acknowledgements

First and foremost, I would like to thank my advisor Panos Vassiliadis for giving me
the opportunity to broaden my knowledge and pursue this “trip” of research. His
guidance was helpful not only in research field but in life too! Thank you very much
Panos.

I would also like to thank George Papastefanatos who spent hours helping me
with his insightful and kind comments during my research.

A special thank goes to Apostolos Zarras, Nikos Mamoulis and Aristidis Likas
who were always there to help and encourage me.

I am also grateful to have been surrounded by colleagues such as Efthimia Konto-
giannopoulou, Dimitrios Gkesoulis, Maria Zerva, Athanasios Pappas, Ioannis Skoulis,
Konstantinos Semertzidis, Nikolaos Papanikos, Spiros Ν. Agathos and George Z. Za-
chos that helped in various ways when there were ups and downs during the years
of my research. Thank you all.

Finally, I would like to express my gratitude to my family, for their support all of
these years of my academic studies.

Table of Contents

List of Figures v

List of Tables ix

List of Algorithms xi

Glossary xii

Abstract xiii

Εκτεταμένη Περίληψη xv

1 Introduction 1
1.1 Objectives of this Thesis . 2
1.2 Contributions . 4
1.3 Structure . 7

2 Related work 8
2.1 Introduction . 8
2.2 Database Evolution . 9

2.2.1 Empirical Studies on Database Evolution 9
2.2.2 State of Practice . 17
2.2.3 Techniques for managing database and view evolution 21
2.2.4 Techniques for managing data warehouse evolution 32

2.3 Query Extraction . 40
2.4 Software Metrics . 42
2.5 Query rewriting . 43
2.6 Visualization of Data Intensive Ecosystems 44
2.7 Comparison to the state of the art . 47

i

3 Query Extraction 49
3.1 Introduction . 49
3.2 Source Code to Query Variants Graph 54

3.2.1 Query Variants Graph Construction 54
3.2.2 Query Variants Graph Path Identification 61

3.3 From QVG Paths to Abstract Query Representations 68
3.4 From Abstract Query Representations to Concrete Query Representations 73

3.4.1 From AQR to SQL . 74
3.4.2 From AQR to MongoDB . 76

3.5 Cross-layer method: from source code to execution paths 80
3.6 Evaluation . 84
3.7 Conclusion . 88

4 A Metric to Assess the Coupling of Software to the Database 90
4.1 Introduction . 90
4.2 Evaluating Data-Software Coupling Quality 92

4.2.1 Using Abstract Query Representation for API and Embedded
SQL techniques . 97

4.2.2 Formal (graph-based, uniform) model of Software & Data . . . 98
4.2.3 Describing a well designed Data Intensive Information Systems . 101
4.2.4 Data-Software Coupling Quality 102
4.2.5 AQR in our model and metrics 107

4.3 Data-Software Coupling Quality Experiments 108
4.3.1 Research question 1: Does Data-Software Coupling Quality met-

ric indicate which files change, using the rolled up per file value?111
4.3.2 Research question 2: Does Data-Software Coupling Quality met-

ric follow the Lehman’s Lows of evolution, when a set of soft-
ware maintenance steps occurred in the projects life? 112

4.4 Query Rewriting . 114
4.5 Query Rewriting Experiments . 117
4.6 Conclusions . 120

5 Regulation of Schema Evolution with Policies 121
5.1 Introduction . 121
5.2 Formal Background . 128

ii

5.2.1 Architecture graph . 128
5.2.2 Events . 135
5.2.3 Policies . 137

5.3 Impact Assessment and Adaptation of Ecosystems 146
5.3.1 Topological sort . 146
5.3.2 Detection of affected nodes and status determination 147
5.3.3 Query and view rewriting to accommodate change 153

5.4 Theoretical Guarantees . 163
5.4.1 Language Properties . 163
5.4.2 Theoretical Guarantees for the Status Determination Algorithm . 169
5.4.3 Theoretical Guarantees for the Path Check Algorithm 173
5.4.4 Theoretical Guarantees for the Graph Rewrite Algorithm 173

5.5 Experiments . 176
5.5.1 Effectiveness and Effort Metrics 177
5.5.2 Replaying the Evolution of Drupal 178
5.5.3 Controlled experiment with TPC-DS 182

5.6 Conclusions . 190

6 Data-Intensive Ecosystem Visualization 191
6.1 Introduction . 191
6.2 Graph Layout Methods for Data-Intensive Ecosystems 194

6.2.1 Clustering of Modules . 195
6.2.2 Cluster Preprocessing . 196
6.2.3 Layout of Cluster Circle(s) . 196
6.2.4 Layout of Nodes inside a Cluster 199

6.3 Visualization of impact analysis and zoom in of queries 200
6.4 Experiments . 202

6.4.1 Experimental Method . 202
6.4.2 Assessment of Objective Criteria 203
6.4.3 Aesthetic criteria . 205
6.4.4 Comparison to general purpose graph visualizations 206

6.5 User study evaluation . 210
6.5.1 Effectiveness . 212
6.5.2 User Satisfaction . 213

iii

6.5.3 Code understanding . 215
6.5.4 Threats to validity . 216

6.6 Conclusions . 217

7 Conclusions and Future Work 218
7.1 Conclusions . 218
7.2 Future work . 220

Bibliography 223

iv

List of Figures

2.1 A example of a rewrite process when the policies of Q1 and Q2 queries
are conflicting [34]. 24

3.1 Embedded queries of Drupal-7.39; string (top) and object based (bottom) 51
3.2 The steps of our method . 52
3.3 The reference example of Listing 3.1 (down) in two representations: a)

text and b) graph. 60
3.4 Host language class diagram: Loops are treated as branches. QVGNode

is used to create the graph representation of Query Variants Graph as
described in Definition 3.1 . 61

3.5 Execution paths of our object-based reference example of Listing 3.1
that are not database-related. The paths are described by “next” arrows
(non dashed arrows) that start from the first non dashed node and
move to the final one. The dashed nodes do not provide any project
related statements for our execution path representation, therefore we
omit them from the path representation. The dashed arrows are there
to describe the content relationship between the nodes and the project
source code statements. 63

3.6 Execution paths of our object-based reference example of Listing 3.1
that are database-related. 64

3.7 Abstract query representation of the path presented in Fig. 3.6a. On
the left we have the source code that constracts the query and on the
right we have the AQR nodes with their parameters. 73

v

3.8 Class diagram of classes that are related with the Abstract Query Rep-
resentation and their connection to the database-related project we ex-
amine. Since the pallet is extensible, one may add other classes that
only need to implement the AbstractQueryPart interface. 74

3.9 Steps of Algorithm 3.7 with the resulting query-related execution paths 83

4.1 Typical Data Intensive Information Systems project organization 94
4.2 Extension of graph for DIS . 98
4.3 Abstract Query Representation of API and Embedded SQL query . . . 99
4.4 Data Intensive Information Systems understandability and maintenance

requirements. 102
4.5 Translation of Data Intensive Information Systems requirements to cou-

pling metric requirements. 103
4.6 Translation of Data-Software Coupling Quality metric requirements to

Architecture Graph properties. 104
4.7 Abstract Query Representation of API created query extended to depict

the database connections of the operators 108
4.8 Average Data-Software Coupling Quality metric of each folder. 113
4.9 Average Data-Software Coupling Quality metric of each folder. 113
4.10 A “cluster” of queries using the same input providers. Blue nodes

represent queries and the outermost cirlce is of queries that use more
than one providers. Gray nodes are the providers, each one anotated
with their name. 117

5.1 An exemplary University-DB Ecosystem, annotated with policies. . . . 122
5.2 Impact analysis (left) and ecosystem rewriting (right) for an event on

our exemplary ecosystem . 126
5.3 A subset of the graph structure for the University-DB Ecosystem. . . . 130
5.4 The graph of the semantics schema for the Q_pass2courses query . . . 133
5.5 The graph of a group-by query. To avoid confusion, we depict the edges

in two snapshots of the graph: provider edges (left) and filtering and
grouping edges (right). 134

5.6 The Summary Graph of the University-DB Ecosystem. 135
5.7 The 33 combinations of events and node types that provide complete

graph coverage; policy can be either BLOCK or PROPAGATE 143

vi

5.8 Application of default rules for our reference example 144
5.9 Overriding the default rules for a view in our reference example 145
5.10 Overriding the default rules for an attribute in our reference example . 145
5.11 Simplified policy language example . 145
5.12 Status determination example . 153
5.13 Block rewriting example . 154
5.14 Rewriting for the example of Fig. 5.12 163
5.15 Drupal 4.1.0 cluster with queries asking same tables as arcs. 180
5.16 Efficiency assessment for different policies, graph sizes and phases . . . 189

6.1 Alternative visualizations for Drupal. Upper Left: Circular layout; Up-
per Right: Concentric circles; Lower Left: Concentric Arches. Lower
Right: zoom in a cluster of Drupal . 193

6.2 Circular cluster placements (left) and the BioSQL ecosystem (right) . . 197
6.3 Concentric cluster placement for BioSQL: circles (left), arcs (right) . . . 199
6.4 Zoom in a rename attribute impact analysis event of BLOCK_ROLE

relation. 201
6.5 Zoom in a remove attribute impact analysis event of SEARCH_NODE_LINKS

relation. 201
6.6 Examples of ZenCart (upper) and OpenCart (lower) 204
6.7 BioSql visualized via a circular algorithm by Jung. 208
6.8 BioSql visualized via the FR algorithm by Jung. 208
6.9 BioSql visualized via the Self-organizing algorithm by Jung. 209
6.10 BioSql visualized via the KK algorithm by Jung. 209
6.11 BioSql visualized via the spring layout algorithm by Jung. 209
6.12 Effectiveness measured via correct and unnecessary files retrieved for

maintenance by the users. Five of the users did not notice the infor-
mation area of Hecataeus that stated which files changed, and used the
highlight event of Hecataeus tool to find the files, by clicking on the
COMMENT node, therefor they gave one additional file in their answer. 212

6.13 Time needed (in minutes) for other tools and Hecataeus. Tie was only
in one situation where the result was wrong (6 additional files were
reported that need maintenance). 213

vii

6.14 User satisfaction in 0 to 5 scale on how helpful was Hecataeus and the
tool of their choice to perform complex changes in the files that use a
specific table. 214

6.15 Time needed (in minutes) for Task 2, which is to change a number of
files but leave one unmodified, due to a database schema alteration. . . 215

6.16 Task 3 measurements. The users evaluated on how useful the visual-
ization technique is, when they want to identify specific parts of the
code that change (impact analysis). 216

6.17 Task 4 measurements. The concentric methods are more useful on code
understanding, regarding the evolution of a database related project. . 216

viii

List of Tables

2.1 SSMS Report . 20
2.2 Summary table for Section 2.2.3 . 28
2.3 Summary table for Section 2.2.3 . 31
2.4 Summary table for multidimensional model evolution 39
2.5 A structured overview of the state of the art 42

3.1 Block types of host language, with their descriptions and components
of Query Variants Graph . 59

3.2 Abstract Data Manipulation Operator with a description of the part of
a query that they represent . 69

3.3 Projects’ descriptions and queries distribution per project 84
3.4 Time measurements (in seconds) for each project, in single and multiple

thread combinations . 85
3.5 Max memory needed (measured in GB) for each project, in single and

multiple thread combinations . 85
3.6 Breakdown of generated queries per query class. 87
3.7 User effort (Number of functions to translate / Lines Of Code) 88

4.1 Evaluation Projects . 109
4.2 Changes of database schema between Drupal 4.1.0 and 4.7.11 110
4.3 Files of module folder affected by the changes of Table 4.2 111
4.4 Rolled up metric values . 112
4.5 Rolled up metric values . 114
4.6 Data Intensive Information Systems projects 118

ix

4.7 Data Intensive Information Systems project measurements. Due to pars-
ing issues we were unable to rewrite all the queries. The corresponding
column depicts the number of queries we failed to rewrite. The The
developer gain column describes in percentage how many queries the
developer avoids to examine due to views existence. 118

5.1 The space of events that can be received by each node type 139
5.2 The space of events that can be received by each node type according

to the line number in the rules of the policy file 164
5.3 Query policies with the addressed events 166
5.4 View policies with the addressed events 166
5.5 Relation policies with the addressed events 166
5.6 Drupal dataset from ver. 4.1.0 to ver. 4.7.11 180
5.7 Results of the original evolution scenario of Drupal 181
5.8 Results of the modified evolution scenario of Drupal 182
5.9 Drupal project times (in microseconds) for “original” setup 183
5.10 Drupal project times (in microseconds) for “modified” setup 183
5.11 Experimental configuration for the TPC-DS ecosystem 184
5.12 Effectiveness assessment as fraction of affected modules (%AM) and

number of rewritten modules (RM) of the “controlled” experiment . . . 185
5.13 Modules and rules for policy annotation effort. 187

6.1 Datasets Used (R: Relations, V: Views, Q: Queries, E: Edges) 202
6.2 Objective measures for all four data sets 205
6.3 Area occupied by graph . 205
6.4 Tasks that the participants of user study were asked to complete. . . . 211

x

List of Algorithms

3.1 Method overview using developer’s input. For each of the Algorithms
(3.3, 3.4, and 3.5) we mention the parts of the developer’s input that is
needed. 53

3.2 Callable Unit Extraction: extraction of database-related Callable Units of
a project . 56

3.3 Creation of Query Variants Graph . 66
3.4 Creation of QVG paths for a Callable Unit CU 67
3.5 Transforming a QVG path to its AQR representations 70
3.6 Abstract Query Representation to MongoDB representation 79
3.7 Creation of execution paths of a Callable Unit 82

4.1 Rewrite of queries with views . 116

5.1 Topological sort . 147
5.2 Status determination . 149
5.3 Path check . 155
5.4 Graph Rewrite . 157

xi

Glossary

Data-intensive ecosystems: are conglomerations of databases surrounded by appli-
cations that depend on them for their operation. The main characteristic of a data-
intensive ecosystem is the co-existence of (a) a central repository of data, typically
in the form of a relational database, and (b) a set of software applications that re-
quire access to the central database, typically via queries to its views and relations.
Data-intensive ecosystems differ from the typical information systems in the sense
that the management of the database profoundly takes its surrounding applications
into account.

Embedded query:An embedded query is a progressively constructed query via a
sequence of source code statements that is modified according to user choices (e.g. in
a GUI form).

Architecture Graph: a map of the source code modules to the database schema
modules of a Data Intensive Ecosystems. This map is a directed graph where the
source code modules represent the queries, and the database schema modules repre-
sent the views and tables. All those modules are the nodes of the graph. The edges
of the graph represent the data provision of one module to another.

xii

Abstract

Petros Manousis, Ph.D., Department of Computer Science and Engineering, Univer-
sity of Ioannina, Greece, February, 2019.
Automated Representation, Quality Assessment, Visualization, and Adaptation to
Change for Data Intensive Ecosystems.
Advisor: Panos Vassiliadis, Associate Professor.

Software evolution is the most demanding part of software development, since the
60% of the resources (time, money, etc.) of a company is consumed in order to
evolve its software so as to meet the new requirements of its users. Database-related
software also needs to evolve, but since a database is a software part that many other
parts rely on it, the difficulty of evolving a database-related project increases because
changing a small part of the database schema could result in failures in many different
parts of the application’s code. Additionally, the problem becomes even more difficult
due to the scarcity of tools that help the developers evolve the database in sync
with the software. In this research, we introduce principles, constructs, algorithms
and metrics that help the database administrators and the software developers write
easier to comprehend, adapt and maintain database related code. To achieve all that,
we introduce a mapping between the software code of the projects that are related to
a database, with the database schema. Initially, we locate the database queries in the
software. Since the queries are embedded in a hosting language (PHP, C++, Java, etc.),
we produce every possible variant of a query, based on the branches and loops of the
hosting language providing abstract representations for each of the queries. Then, we
come up with a language-independent representation of the queries and based on it,
we translate the queries to concrete ones in more than one query languages (e.g. SQL,
MongoDb). Second, to describe how well constructed a data-intensive ecosystem is,
we propose a metric that describes the quality of the written query in the code of
the project regarding the database schema of the project. Our experiments reveal that

xiii

our metric is in sync with the Lehman’s low of evolution. Whenever it is possible to
propose a better way to use the database schema, we propose the introduction of views
along with the rewriting of queries over them, so as to achieve better metric values
and less developer effort for future schema evolution maintenance. Third, we employ
a rigorous formal modelling of host code queries, tables and views in the form of a
graph, called Architecture Graph, to facilitate diverse tasks related to the management
of a Data Intensive Ecosystems. The first task facilitated by Architecture Graph is the
identification of the impact that a schema change can have. We introduce algorithms
to (a) identify and (b) adapt (via the appropriate rewritings) the impacted queries.
We employ a regulation of the propagation of changes in the Architecture Graph via
appropriate policies. Finally, the Architecture Graph can be exploited for visualizing the
Data Intensive Ecosystems. We explore alternative ways of visualization, following [1],
and we extend them via proposing a “what-if” visualization method, and we conduct
a user study for all the visualizing algorithms.

xiv

Ε Π

Πέτρος Μανούσης, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστήμιο
Ιωαννίνων, Φεβρουάριος, 2019.
Αυτοματοποιημένη Αναπαράσταση, Αξιολόγηση Ποιότητας, Οπτικοποίηση και Προ-
σαρμογή στις Αλλαγές για Οικοσυστήματα Βάσεων Δεδομένων.
Επιβλέπων: Παναγιώτης Βασιλειάδης, Αναπληρωτής Καθηγητής.

Η εξέλιξη των εφαρμογών είναι ένα από τα πιό απαιτητικά ζητήματα στην ανά-
πτυξη λογισμικού, μια και οι περισσότεροι πόροι των εταιριών (κοντά 60% των
χρημάτων, του χρόνου και άλλων πηγών) δαπανούνται για την εξέλιξη του λογισμι-
κού ώστε αυτό να συνεχίζει να ικανοποιεί της εξελισσόμενες ανάγκες των χρηστών
του. Το ίδιο συμβαίνει και με τις εφαρμογές που σχετίζονται με βάσης δεδομένων,
όπου η δυσκολία της εξέλιξης είναι ακόμη μεγαλύτερη διότι πολλά τμήματα λογι-
σμικού χρησιμοποιούν της βάσης δεδομένων για να αποθηκεύουν, να ενημερώνουν
και να ρωτούν για δεδομένα. Αυτοί λοιπόν οι λόγοι, δύναται να προκαλέσουν την
κατάρρευση του λογισμικού σε μια ενδεχόμενη αλλαγή στο σχήμα της βάσης δε-
δομένων μιας εφαρμογής. Επιπλέον το γεγονός ότι δεν υπάρχουν πολλά εργαλεία
που να μπορούν να κάνουν ταυτόχρονα εξέλιξη και στα δύο κομμάτια (κώδικας
εφαρμογής και βάση δεδομένων) αυτών των εφαρμογών, κάνει το έργο της εξέ-
λιξης των εφαρμογών που σχετίζονται με βάσεις δεδομένων ακόμη δυσκολότερο.
Στη διατριβή αυτή μελετούμε εφαρμογές που σχετίζονται με βάσεις δεδομένων και
παρουσιάζουμε μια σειρά αλγορίθμων και μετρικών που μπορούν να βοηθήσουν
τους προγραμματιστές αυτού του είδους των εφαρμογών καθώς επίσης και τους
διαχειριστές των βάσεων δεδομένων, ώστε να δημιουργήσουν πιο κατανοητό, πιο
εύκολο να αναπτυχθεί και να συντηρηθεί κώδικα. Για να το επιτύχουμε αυτό, χρεια-
ζόμαστε μια διασύνδεση μεταξύ της βάσης δεδομένων και των εφαρμογών που τη
χρησιμοποιούν. Έχοντας αυτή τη διασύνδεση, μπορούμε να μετρήσουμε το πόσο κα-
λός είναι ο κώδικας μιας εφαρμογής σε σχέση με τη βάση δεδομένων, να εξελίξουμε

xv

τη βάση αλλά και τον κώδικα της εφαρμογής κ.ά. Το αρχικό ζήτημα που θα ασχολη-
θούμε είναι η εύρεση των ερωτήσεων που χρησιμοποιούν τη βάση δεδομένων στον
πηγαίο κώδικα. Δοθέντος ότι οι ερωτήσεις γράφονται σε μια προγραμματιστική
γλώσσα υποδοχής, που έχει διακλαδώσεις και επαναλήψεις, προτείνουμε ένα τρόπο
ώστε να έχουμε κάθε διαφορετική εκδοχή της συγκεκριμένης ερώτησης, σε μια πιο
αφαιρετική αναπαράσταση που στη συνέχεια μπορούμε να την εξάγουμε σε πολλές
συγκεκριμένες μορφές γλωσσών ερωτήσεων. Στη συνέχεια, προτείνουμε μια μετρική
που περιγράφει το πόσο καλά είναι δομημένος ο κώδικας σε σχέση με το σχήμα
της βάσης δεδομένων και εξετάζουμε το κατά πόσον η μετρική αυτή εξελίσσεται
με βάση τις αλλαγές που συμβαίνουν στον πηγαίο κώδικα. Επιπλέον προτείνουμε,
εφόσον είναι δυνατό, αλλαγές στη δομή των ερωτήσεων και της βάσης δεδομένων
ώστε να επιτυγχάνεται καλύτερη χρήση του σχήματος της βάσης από τον πηγαίο
κώδικα. Έπειτα, εξετάζουμε τη δομημένη εξέλιξη εφαρμογών που σχετίζονται με
βάσεις δεδομένων. Για το λόγο αυτό προτείνουμε μια δομή συσχέτισης των δύο κομ-
ματιών και χρησιμοποιούμε κανόνες για κάθε πιθανή αλλαγή που μπορεί να συμβεί
στα κομμάτια αυτής της δομής συσχέτισης. Κλείνοντας, χρησιμοποιούμε αλγορίθ-
μους οπτικοποίησης ώστε να δούμε τα αποτελέσματα των αλλαγών μας στο σύνολο
αλλά και στο επιμέρους κομμάτι που αφορά τις αλλαγές ενός προγράμματος και
της συσχετιζόμενης βάσης δεδομένων και διερευνούμε κατά πόσο αυτές οι μορφές
οπτικοποίησης είναι αρεστές μέσω μιας μελέτης χρηστών.

xvi

Chapter 1

Introduction

1.1 Objectives of this Thesis

1.2 Contributions

1.3 Structure

According to Darwin’s Origin of Species, it is not the most intellectual of the species that
survives; it is not the strongest that survives; but the species that survives is the one that
is able best to adapt and adjust to the changing environment in which it finds itself.1

In the struggle for survival, the fittest win out at the expense of their rivals because they
succeed in adapting themselves best to their environment.2

The two previous statements –that are mistakenly attributed to Charles Darwin–
describe that in real life, the species that manage to survive are the ones that evolve.
What actually happens is that the faster the species evolve to handle new situations
that try to eliminate their existence and / or occupy their supplies, the likelier that
those species will survive. Likewise to the species evolution, software companies need
to evolve their products too in order to retain, or even better grow, their position in
the market.

Software needs to change so as to accommodate the new requirements their users
have. As Meir M. Lehman introduced in 1970’s, the complexity of the software that

1Megginson, ‘Lessons from Europe for American Business’, Southwestern Social Science Quarterly
(1963) 44(1): 3-13, at p. 4.

2The Living Clocks (1971) by Ritchie R. Ward.

1

evolves without maintenance increases. This increased complexity makes it more
difficult for the developers to add newer features in the next round. The addition
of new features and their integration in the software is a re-occurring procedure.
Therefore, if the software changes without any maintenance, there comes a point
that no more features can be added because of the high complexity. The developers,
then, need to restructure their code, or, in even worse cases, they need to rewrite the
software nearly from scratch.

Likewise to the software, the database schema changes to facilitate the new features
the users want. So, if it is difficult to evolve the software, even though there exist
tools to help the developers, consider the difficulty on the evolution of data-intensive
ecosystems, where there is nearly no tool to help!

Evolution of software and data is a fundamental aspect of their life-cycle. In the
case of data management, evolution concerns changes in the contents of a database
and, most importantly, in its schema. Database evolution can concern (a) changes
in the operational environment of the database, (b) changes in the content of the
databases as time passes by, and (c) changes in the internal structure, or schema, of the
database. Schema evolution, itself, can be addressed at (a) the conceptual level, where
the understanding of the problem domain and its representation via an ER schema
evolves, (b) the logical level, where the main constructs of the database structure
evolve (for example, relations and views in the relational area, classes in the object-
oriented database area, or (XML) elements in the XML/semi-structured area), and,
(c) the physical level, involving data placement and partitioning, indexing, compres-
sion, archiving etc. Likewise to the schema evolution, the software (that is represented
via the queries that use a database in our search field) might also change in order
to satisfy the changing user requirements, producing (a) syntactical, or (b) semantic
failures. This work focuses on the evolution of database related software, providing
ways to help both software developers and database administrators.

1.1 Objectives of this Thesis

The objective of this work is to help software developers write code that will be
easily understandable and maintainable. To achieve this, one may have to work in
conjunction with the software developers as well as the database administrators of a

2

project, since a change in any of the involved parts could become an issue for the
other part.

The main thread behind this work is the need to identify and represent how the
host applications relate to the underlying databases via a rigorous “map”. To this
end, we introduce such a map, in the form of a graph, which we call Architecture
Graph that captures how the software part of a Data Intensive Ecosystems connects to
the database part. We first need to solve the problem of constructing the map, given
the source code of the Data Intensive Ecosystems.

In this research we propose a map that connects the software part of the data-
intensive ecosystems to the database part. Having that map, we can have metrics that
are related to both data and software, which metrics could then help us evaluate
the quality, understandability, and maintainability of the project we are interested
in. Additionally, when this is applicable, we also suggest restructures in both parts
(software and database) to achieve higher software and database schema quality in
the project we examine. Those suggestions fully describe what the new structure of
what the code, and the database are going to be after the imminent change.

To achieve our goal we have split our research in a number of sub-problems:

• Initially, we locate the embedded queries in the software we want to examine
(this could be just a small program or a number of programs, webpages, etc.)
and represent them in a language-independent way.

• Then, we evaluate the quality of the source code, with respect its relationship
to the schema of the database, based on metrics fulfilling a set of principles and
requirements that we propose. Moreover, we provide a methodology to rewrite
parts of the software code and database schema in an automatic way, when we
locate parts of the software that are not “well” written.

• We introduce a fully automated method to perform “what-if” analysis for the
evolution of the schema, by identifying the affected queries and automatically
suggesting reparations to them, in the event of a change to the underlying
schema.

• Finally, we visualize the results of our work in a way without visual clutter that
will help anyone understand how the code is connected to the database schema
and what / how any parts of the database or software has changed.

3

1.2 Contributions

Query Extraction

Regarding the query extraction problem that we examine, what we want to achieve is to
correctly identify the embedded queries within the source code of an information system and
represent them in a generic, language independent way. This is a significant aid to develop-
ers and administrators, as it can facilitate the visualization of a map of the information
system, the identification of areas affected by schema evolution, code migration, and
the planning of the joint maintenance of code and data. In this line of research, we
provide a solution to the problem of identifying the location and semantics of embed-
ded queries with a generic, language-independent method that identifies the embedded
queries of a data-intensive ecosystem, regardless of the programming style and the host
language, and represents them in a universal, also language-independent manner that
facilitates the aforementioned maintenance, evolution and migration tasks with min-
imal user effort and significant effectiveness.

This is because the state of the art provides solutions that help developers identify
where the database queries of their software rely, but since the queries change during
runtime due to the user selections that happen during user interaction. Additionally
these solutions work with only one programming language and we failed to identify
any solution that works with all the query programming styles we encountered. The
programming styles are: (a) the embedded SQL string statements style, (b) the ORM
query style (where classes are generated and interact with only one table for inserting,
updating, deleting and querying data), and (c) the object based query style (where
an API is used to create a query object and the functions called upon it, perform the
insertions, filters, joins etc.).

On our research on the other hand, we propose a 4 step method where we initially
discard all the database unrelated code, then we create an abstract representation of
the code that interacts with the query which we call Query Variants Graph (QVG).
A QVG is a graph where the branch and loop statements of the host language are
consumed. Then traversing the QVGs we create every possible query that might exist
during runtime, which we call QVG paths. Next, we use the QVG paths to create an
abstract representation of a query that we call Abstract Query Representation (AQR).
The nodes of the AQR are part of en extensible pallet that now contains data trans-
formation and filtering operators. This provides a way to represent a query of every

4

existing query language in an independent way. Finally, we reconstruct the AQR rep-
resentation to a concrete query environment such as SQL and MongoDB.

In the experiments we conducted, we examined two projects, one written in a
scripting language (PHP) and another written in a procedural language (C++). On
the projects we encountered a mixed style of queries, where the traditional embedded
SQL string representations, and the object based (with the help of an API) were
present. We were unable to locate any other query that existed in the project, besides
the ones that our methods located, and we managed to reconstruct at least the 80%
of those queries in their original form.

A Metric to Assess the Coupling of Software to the Database

Moving on, we propose a metric to assess the Coupling of Software to the Database.
Software metrics evaluate how well-designed, understandable and maintainable a
software system is. Regarding the software projects with access to data sources, the
state of the art demonstrates an observable gap in providing metrics to describe the
quality of the connection between the source code of the software, the data sources
queries, and the data sources schema.

To address this shortcoming, in this line of research, we introduce, in a principled
manner, the fundamental ideas, properties and constraints for objectively evaluating a
well-designed Data Intensive Information Systemsproject, and we propose a data-to-software
coupling metric based on this foundation. We use the proposed framework and metric
over a set of projects to assess their applicability and effectiveness. Finally, we propose
software and database schema changes, when applicable, to achieve higher metric
values.

We have applied our metric to the evolution of a project and we observe that our
metric is in sync with the Lehman’s Lows of evolution, since when new features are
inserted in the project, our metrics value decreases, while when maintenance steps
occur in the project, our metrics value increases. Next, since the majority of the projects
we tried to examine had no changes in their database schema, or only small ones, we
propose an algorithm that suggests schema changes so as to increase the metric value,
producing an easier to comprehend and maintain software. Using this algorithm, we
additionally increased the developers gain, since he would have less parts of code to
examine in order to adapt his code for a new feature. The minimum developer gain
was 14% while the average was above 50%, meaning that the developer would need

5

to check only half of the files / queries.

Regulation of Schema Evolution with Policies

Having identified and extracted the queries of a data-intensive ecosystem and their
location in the source code, we can finally present the “skeleton” of the data-intensive
ecosystem as a graph (called Architecture Graph), uniformly covering relations, views
and queries as nodes and their internal structure and interdependencies as the edges
of the graph. The Architecture Graph is useful for many tasks and the first that we
address is the “what-if” analysis for the evolution of the database part of a data-
intensive ecosystem, in order to identify all the parts of the ecosystem that are affected
by a potential change in the database schema. Additionally we want to see how will
the ecosystem look like once the change has been performed, while, at the same time,
retaining the ability to regulate the flow of events.

To do so, we provide a simple language to annotate the modules of the graph
with policies for their response to evolutionary events in order to regulate the flow
of events and their impact by (i) vetoing (“blocking”) the change in parts that the
developers want to retain unaffected and (ii) allowing (“propagating”) the change in
parts that we need to adapt to the new schema.

Our method for the automatic adaptation of ecosystems is based on three algo-
rithms that automatically (i) assess the impact of a change, (ii) compute the need of
different variants of an ecosystem’s components, depending on policy conflicts, and
(iii) rewrite the modules to adapt to the change. We theoretically prove the cover-
age of the language, as well as the termination, consistency and confluence of our
algorithms, and experimentally verify our methods‘ effectiveness and efficiency.

Data-Intensive Ecosystem Visualization

Finally, since we used a graph to depict the data-intensive ecosystems we examined,
we need a proper way to visually demonstrate the structure of the data-intensive
ecosystems. In particular, in the context of this thesis, we have explored the evolution
of projects based on visual representation methods introduced in [1], and we extended
this work with a “what-if” analysis visualization of the affected nodes with reduced
visual clutter. Finally, we evaluated of all the methods presented in [1] and our
“what-if” visualization with a user study.

6

1.3 Structure

The text is organized in 6 chapters. In Chapter 2 we present the current state of the
art on the evolution of database related software for each one of our sub-problems
described in Section 1.1.

Then, in Chapter 3 we focus on our findings on query extraction from the source
code of the data intensive ecosystems, where we present the different forms of queries
that we found on the projects we examined, the universal way we proposed in order
to represent every query and some experiments that describe that our method can
be used in order to migrate a software query from one querying language to another
(e.g. from SQL to MongoDb).

Following, in Chapter 4 we present a metric for identifying whether a database
related software code is well defined over a database schema or not, as well as an
algorithm that using query rewrites through views, helps us achieve higher metric
measurement values.

After that, in Chapter 5 we present the benefits of our methodology (presented in
Chapter 4) on the evolution of a real case software and we describe how the software
can smoothly operate despite the database schema changes that occur, using policies
on evolution events.

Finally, in Chapter 6 we present a visualization approach of database related
projects that depicts the parts of the data intensive ecosystem in a way that any project
related person (database administrator, software developer, software architect) or not,
will easily understand how the code is constructed, and when any change occurs
which parts of the ecosystem are affected.

7

Chapter 2

Related work

2.1 Introduction

2.2 Database Evolution

2.3 Query Extraction

2.4 Software Metrics

2.5 Query rewriting

2.6 Visualization of Data Intensive Ecosystems

2.7 Comparison to the state of the art

2.1 Introduction

In this chapter we discuss the state of the art works that are related to the evolution
of the source code and the database schema. In the first section we discuss the about
the evolution of database-related software in general, and following, we discuss the
state of the art for the query extraction problem, followed by works that are related to
metrics of software and databases. Then, we discuss works that are related to rewrites
of source code or database schema and finally, we explore works that are related to
the visualization of graphs, that we use in our model, so as to produce easier to
comprehend representations.

8

2.2 Database Evolution

Evolution of software and data is a fundamental aspect of their lifecycle. In the
case of data management, evolution concerns changes in the contents of a database
and, most importantly, in its schema. Database evolution can concern (a) changes
in the operational environment of the database, (b) changes in the content of the
databases as time passes by, and (c) changes in the internal structure, or schema, of the
database. Schema evolution, itself, can be addressed at (a) the conceptual level, where
the understanding of the problem domain and its representation via an ER schema
evolves, (b) the logical level, where the main constructs of the database structure
evolve (for example, relations and views in the relational area, classes in the object-
oriented database area, or (XML) elements in the XML/semi-structured area), and, (c)
the physical level, involving data placement and partitioning, indexing, compression,
archiving etc.

In this section, we will focus on the evolution of the logical schema of relational
data and also extend our survey to the special case of data warehouse evolution.
For the rest, we refer the interested reader to the following very interesting surveys.
First, it is worth visiting a survey by Roddick [2], which appeared 20 years ago and
summarizes the state of the art of the time in the areas of schema versioning and
evolution, with emphasis to the modeling, architectural and query language issues
related to the support of evolving schemata in database systems. Second, 16 years later,
a comprehensive survey by Hartung, Terwilliger and Rahm [3] appeared, in which
the authors classify the related tools and research efforts in the following subareas: (a)
the management of the evolution of relational database schemata, (b) the evolution
of collections of XML documents, and (c) the evolution of ontologies. In the web site
http://dbs.uni-leipzig.de/en/publications one may also find a comprehensive list
of publications in the broader area of schema and data evolution.

2.2.1 Empirical Studies on Database Evolution

In this section, we survey empirical studies in the area of database evolution. These
studies monitor the history of changes and report on statistical properties and recur-
ring phenomena. In our coverage we will follow a chronological order, which also
allows us to put the studies in the context of their time.

9

http://dbs.uni-leipzig.de/en/publications

Statistical profiling of database evolution via real world studies

Studies during the 90’s. The first account of a sizable empirical study, by Sjoberg [4],
discusses the evolution of the database schema of a health management system over
a period of 18 months, monitored by a tool specifically constructed for this purpose.
A single database schema was examined, and, interestingly, the monitored system
was accompanied by a metadata dictionary that allowed to trace how the queries
of the applications surrounding the database relate to the tables and attributes of
the evolving database. Specific numbers for the evolution of the system, during this
period of 18 months, include:

• There was a 139% increase of the number of tables and a 274% increase of the
number of attributes (including affected attributes due to table evolution), too.

• All (100%) the tables were affected by the evolution process.

• Additions were more than deletions, by an 28% tables and a 42% for attributes.

• An insignificant percentage of alterations involved renaming of relations or
merge/split of tables.

• Changes in the type of fields (i.e., data type, not null, unique constraints) proved
to be equal to additions (31 both) and somehow less than deletions (48) for a
period of 12 months, during which this kind of changes were studied.

• On average, each relation addition resulted in 19 changes in the code of the ap-
plication software. At the same time, a relation deletion produced 59.5 changes
in the application code. The respective numbers for attributes were 2 changes
for attribute additions and 3.25 changes for attribute deletions, respectively.

• The evolution process was characterized by an inflating period (during con-
struction) where almost all changes were additions, and a subsequent period
where additions and deletions where balanced.

Revival in late 00’s. In terms of empirical studies, and to the best of our knowl-
edge, no developments took place for the next 15 years. This can be easily attributed
to the fact that the research community would find it very hard to obtain access to
monitor database schemata for an in-depth and long study. The proliferation of free
and open-source software changed this situation. So, in the last few years, there are

10

more empirical studies in the area that report on how schemata of databases related
to open source software have evolved.

The first of these studies came fifteen years later after the study of Sjoberg. The
authors of [5] made an analysis on the database back-end of MediaWiki, the software
that powers Wikipedia. The study conducted over the versions of four years, and
came with several important findings. The study reports an increase of 100% in
the number of tables and a 142% in the number of attributes. Furthermore, 41.5%
of the attributes of the original database were removed from the database schema,
and 25.1% of the attributes were renamed respectively. The major reasons for these
alterations were (a) the improvement of performance, which in many cases induces
partitioning of existing tables, creation of materialized views, etc., (b) the addition of
new features which induces the enrichment of the data model with new entities, and
(c) the growing need for preservation of database content history. A very interesting
observation is that around 45% of changes do not affect the information capacity of the
schema, but they are rather index adjustments, documentation, etc. A statistical study
of change breakdown revealed that attribute addition is the most common alteration,
with 39% of changes, attribute deletion follows with 26%, attribute rename was up
to the 16% and table creation involved a 9% of the entire set of recorded changes.
The rest of the percentages were insignificant.

Special mention should be made to this line of research [6], as the people involved
in this line of research should be credited for providing a large collection of links1

for open source projects that include database support. Also, it is worth mentioning
here that the effort is related to PRISM (later re-engineered to PRISM++ [7]), a change
management tool, that provides a language of Schema Modification Operations (SMO)
(that model the creation, renaming and deletion of tables and attributes, and their
merging and partitioning) to express schema changes (see Section 2.2.3 for details).

Shortly after, two studies from the Univ. of Riverside appear. In [8], Lin and
Neamtiu study two aspects of database evolution and their effect to surrounding ap-
plications. The first part of the study concerns the impact that schema evolution has
on the surrounding applications. The authors work with two cases, specifically the
evolution of Mozilla, between 2005 and 2009 and the evolution of the Monotone ver-
sion control system between 2003 and 2009, both of which use a database to store
necessary information for their correct operation. The authors document and exem-

1http://yellowstone.cs.ucla.edu/schema-evolution/index.php/Benchmark_Extension

11

plify how the developers of the two systems address the issue of schema evolution
between different versions of their products. The authors also discuss the impact of
erroneous database evolution, even though there exists software that is responsible
for the migration of the system’s modules to the new database schema. One very
interesting finding is that although the applications can include a check on whether
the database schema is synchronized to the appropriate version of the application
code, this check is not omnipresent; thus, there exist cases where the application can
operate on a different schema than the one of the underlying database, resulting in
crashes or data loss. At the same time, the authors have measured the breakdown
of changes during the period that they have studied. The second part of the study
concerns DBMS evolution (attention: DBMS, not database) from the viewpoint of file
storage. The authors study SQLite, MySQL and Postgres on how different releases
come with different file formats and how usable old formats can be under a new
release of the DBMS. Also, the authors discuss how the migration of stored databases
should be performed whenever the DBMS is upgraded, due to the non-compatibility
of the file formats of the different releases.

In a similar vein, in [9], Wu and Neamtiu considered 4 case studies of embedded
databases (i.e., databases tightly coupled with corresponding applications that rely on
them) and studied the different kinds of changes that occurred in these cases. Specif-
ically, the authors study the evolution of Firefox between 2004 and 2008, Monotone
(a version management system) between 2003 and 2010, BiblioteQ (a catalog man-
agement suite) between 2008 and 2010 and Vienna (an RSS newsreader) between
2005 and 2010. Comparing their results to previous works, the authors see the same
percentages concerning the expansion of the database, but a larger number of ta-
ble and column deletions. This is attributed to the nature of the databases, as the
databases that are studied by Wu and Neamtiu are embedded within applications,
rather than largely used databases as in the case of the previous studies. Moreover,
the authors performed a respective frequency and timing analysis, which showed
that the database schemata tend to stabilize over time, as the evolution activity calms
down over time. There is more change activity for the schemata at the beginning of
their history, whereas the schemata seem to converge to a relatively fixed structure
at later versions.

A large scale study in 2013. In [10], Qiu, Li and Su report on their study of the
evolution of 10 databases, supporting open source projects. The authors collected the

12

source files of the applications via their SVN repositories and isolated the changes to
the logical schema of each database (i.e., they ignored changes involving comments,
syntax correction, DBMS-related changes, and several others). The remaining changes
are characterized by the authors as valid DB revisions. The authors report that they
have avoided the automatic extraction of changes, as the automatic extraction misses
changes like table split or merge, or renaming and have performed manual checks
for all the valid DB revisions for all the datasets. The study covers 24 types of change
including the additions and deletions of tables, attributes, views, keys, foreign keys,
triggers, indexes, stored procedures, default value and not null constraints, as well as
the renaming of tables, attributes and the change of data types and default values.
We summarize the main findings of the study in four categories.

Temporal and Locality Focus. Change is focused both (a) with respect to time and (b)
with respect to the tables that change. Concerning timing, a very important finding is
that 7 out of 10 databases reached 60% of their schema size within 20% of their
early lifetime. Change is frequent in the early stages of the databases, with inflationary
characteristics; then, the schema evolution process calms down. Schema changes are also
focused with respect to the tables that change: 40% of tables do not undergo any
change at all, and 60%-90% of changes pertain to 20% of the tables (in other words,
80% of the tables live quiet lives). The most frequently modified tables attract 80%
of the changes.

Change breakdown. The breakdown of changes revealed the following catholic pat-
terns: (a) insertions are more than updates which are more than deletions and (b)
table additions, column additions and data type changes are the most frequent types
of change.

Schema and Application Co-evolution. To assess how applications and databases co-
evolve, the authors have randomly sampled 10% of the valid database revisions and
manually analyzed co-evolution. The most important findings of the study are as
follows:

• First, the authors characterized the co-change of applications in four categories
and assessed the breakdown of changes per category. In 16.22% of occasions,
the code change was in a previous/subsequent version than the one where the
database schema change occurred; 50.67% of application adaptation changes
took place in the same revision with the database change, 21.62% of database
changes were not followed by code adaptation and 11.49% of code changes

13

were unrelated to the database evolution.

• A second result says that each atomic change at the schema level is estimated
to result in 10 – 100 lines of application code been updated. At the same time,
a valid database revision results in 100 – 1000 lines of application code being
updated.

A final note: Early in the analysis of results, the authors claim that change is
frequent in schema evolution of the studied datasets. Although we do not dispute
the numbers of the study, we disagree with this interpretation: change caries a lot
between different cases (e.g., coppermine comes with 8.3 changes and 14.2 atomic
changes per year contrasted to 65.5 changes and 299.3 atomic changes per year at
Prestashop). We would argue that change can be arbitrary depending on the case; in
fact, each database seems to present its own change profile.

Recent advances in uncovering patterns in the evolution of databases

A recent line of research that includes [11, 12, 13], reveals patterns and regularities in
the evolution of database schemata. At a glance, all these efforts analyze the evolu-
tion of the database schemata of 8 open source case studies. For each case study, the
authors identified the changes that have been performed in subsequent schema ver-
sions and re-constructed the overall evolution history of the schema, based on Hecate,
an automated change tracking tool developed by the authors for this purpose. The
number of versions that have been considered for the different schemata ranged from
84 to 528, giving a quite rich data set for further analysis. Then, in [11] the authors
perform a macroscopic study on the evolution of database schemata. Specifically, in
this study the authors detect patterns and regularities that concern the way that the
database schema grows over time, the complexity of the schema, the maintenance ac-
tions that take place and so on. To detect these patterns they resort to the properties
that are described in Lehnman’s laws of software evolution [14]. In [12], extend their
baseline work in [11] with further results and findings revealed by the study, as long
as detailed discussions concerning the relevance of the Lehman’s laws in the case of
databases, and the metrics that have been employed. On the other hand, in [13] the
authors perform a microscopic study that delves into the details of the life of tables,
including the tables’ birth, death, and the updates that occur in between. This study
reveals patterns, regularities and relations concerning the aforementioned aspects.

14

The life of a database schema. In the early 70’s, Lehman and his colleagues
initiated their study on the evolution of software systems [15] and continued to refine
and extend it for more than 40 years [14]. Lehman’s laws introduce the properties
that govern the evolution of E-type systems, i.e., software systems that solve a problem,
or address an application in the real world [14]. For a detailed historical survey of
the evolution of Lehman’s laws the interested reader can refer to [16]. The essence
of Lehman’s laws is that the evolution of an E-type system is a controlled process that
follows the behavior of a feedback-based mechanism. In particular, the evolution is driven
by positive feedback that reflects the need to adapt to the changing environment, by
adding functionalities to the evolving system. The growth of the system is constrained
by negative feedback that reflects the need to perform maintenance activities, so as to
prevent the deterioration of the system’s quality.

In more detail, as discussed in [11, 12] the laws can be organized in three groups
that concern different aspects of the overall software evolution process. The first
group of laws discusses the existence of the feedback mechanism that constrains the
uncontrolled evolution of software. The second group focuses on the properties of the
growth part of the system, i.e., the part of the evolution mechanism that accounts for
positive feedback. Finally, the third group of laws discusses the properties of perfective
maintenance that constrains the uncontrolled growth, i.e., the part of the evolution
mechanism that accounts for negative feedback. The major patterns and regularities
revealed in [11, 12] from the investigation of each group of laws are summarized
below:

• Feedback mechanism for schema evolution: Overall, the authors found that schema
evolution demonstrates the behavior of a stable, feedback-regulated system, as
the need for expanding its information capacity to address user needs is con-
trolled via perfective maintenance that retains quality; this antagonism restrains
unordered expansion and brings stability. Positive feedback is manifested as ex-
pansion of the number of relations and attributes over time. At the same time,
there is negative feedback too, manifested as house-cleaning of the schema for
redundant attributes or restructuring to enhance schema quality. In [11, 12] the
authors further observed that the inverse square models [17] for the prediction
of size expansion hold for all the schemata that have been studied.

• Growth of schema size due to positive feedback: The size of the schema expands over

15

time, albeit with versions of perfective maintenance due to the negative feed-
back. The expansion is mainly characterized by three patterns/phases, (i) abrupt
change (positive and negative), (ii) smooth growth, and, (iii) calmness (mean-
ing large periods of no change, or very small changes). The schema’s growth
mainly occurs with spikes oscillating between zero and non-zero values. Also,
the changes are typically small, following a Zipfian distribution of occurrences,
with high frequencies in deltas that involved small values of change, close to
zero.

• Schema maintenance due to negative feedback: As stated in [12] the overall view
of the authors is that due to the criticality of the database layer in the overall
information system, maintenance is done with care. This is mainly reflected
by the decrease of the schema size as well as the decrease in the activity rate
and growth with age. Moreover, the authors observed that age results in a
reduction of the complexity to the database schema. The interpretation of this
observation is that perfective maintenance seems to do a really good job and
complexity drops with age. Also, they authors point out that in the case of
schema evolution, activity is typically less frequent with age.

The life of a table - microscopic viewpoint. In [13], the authors investigated
in detail the relations between table schema size, duration and updates. The main
findings of this study are summarized below:

• From a general perspective, early stages of the database life are more “active”
in terms of births, deaths and updates, whereas, later, growth is still there, but
deletions and updates become more concentrated and focused.

• The life and death of tables is governed by the Gamma pattern, which says
that large-schema tables typically survive. Moreover, short-sized tables (with
less than 10 attributes) are characterized by short durations. The deletions of
these “narrow” tables typically take place early in the lifetime of the project
either due to deletion or due to renaming (which is equivalent from the point
of view of the applications: they crash in both cases).

• Concerning the amount of updates, most tables live quiet lives with few updates.
The main reason is the dependency magnet phenomenon, i.e., table updates
induce large impact on the surrounding dependent software.

16

• The relation between table duration and amount of updates is governed by
the inverse Gamma pattern, which states that updates are not proportional to
longevity, but rather, few top-changer tables attract most of the updates.

– Top-changer tables live long, frequently they are created in the first ver-
sion of the database and they can have large number of updates (both in
absolute terms and as a normalized measure over their duration).

– Interestingly top-changer tables, they are not necessarily the larger ones,
but typically medium sized.

2.2.2 State of Practice

In this section, we discuss how the commercial database management systems handle
schema changes. The systems that we survey are: (a) Oracle, (b) DB2 of IBM, and,
(c) SQL Server of Microsoft. Another part of this research is dedicated to the open
sourced or academic tools that are dealing with the schema changes. Some of those
tools are: (a) Django, (b) South, and, (c) Hecate.

Commercial tools

Oracle - Change Management Pack (CMP). Oracle Change Management Pack ([18])
is part of Oracle Enterprise Manager. CMP enables the management and deployment
of schema changes from development to production environments, as well as the
identification of unplanned schema changes that potentially cause application errors.

CMP features the following concepts:

• Change plans: A change plan is an object that serves as a container for change
requests.

• Baselines: A baseline is a group of database object definitions captured by the
Create Baseline application at a particular point in time.

• Comparisons: A comparison identifies the differences found by the Oracle Change
Management Pack in two sets of database object definitions that you have spec-
ified in the Compare Database Objects application.

17

The Create Baseline application enables users in creating database schema de-
scriptions in a CMP format or plain SQL DDL files. These descriptions are used to
compare, or make changes to other schemata.

The Compare Database Objects application allows DBA users to compare different
“database” versions. This way, in case of an application error produced by a non-
tested schema change applied in the database, the DBA can produce all changes
a-posterior and find the cause of the application failure.

The Synchronization Wizard of CMP supports the user in modifying an item
target to match another item source. The Synchronization Wizard needs a compari-
son of the target and source items, so it works after the Compare Database Objects

application. The Synchronization Wizard orders the “transformation” steps, in order
to produce the target item. This is, for example, to make sure that the foreign keys
will be applied after the primary keys. Besides that, the Synchronization Wizard can
delete items. This happens, when there is no source item. Moreover, if there is no
target item, the Synchronization Wizard initially creates and then synchronizes a new
target item with the source one. Finally, using the Synchronization Wizard, the user
may keep or undo the changes made to a target item.

Another module that works similar to the Synchronization Wizard is the DB

Propagate application of CMP, which allows the user to select one or more object
definitions and reproduce them in one or or more target schemata.

Two other applications of CMP are: DB Quick Change, and, DB Alter. The DB

Quick Change application helps the user in making one change to a single database
item. The DB Alter application helps the user in making one or more changes to one,
or more database items (in comparison to the Synchronization Wizard, here there is
no need of any preceding comparison).

Finally, the Plan Editor of CMP lets the user perform a single change plan on one
or more databases, that he may keep or undo. The Plan Editor can perform a wider
variety of changes, compared to those that Synchronization Wizard, DB Alter, DB

Quick Change, and DB Propagate can perform. The Plan Editor allows the creation
of a change plan that serves as a container for change requests (directives, scoped
directives, exemplars, and modified exemplars), generates scripts for those change
requests and executes them on one or more databases.

IBM - DB2. IBM DB2 provides a mechanism that checks the type of the schema
changes [19] that the users want to perform in system-period temporal tables. A

18

system-period temporal table is a table that maintains historical versions of its rows.
A system-period temporal table uses columns that capture the begin and end times
when the data in a row is valid and preserve historical versions of each table row
whenever updates or deletes occur. In this way, queries have access to both current
data, i.e., data with a valid current time, as well data from the past. Finally, DB2 offers
the DB2 Object Comparison Tool [20]. It is used for identifying structural differences
between two or more DB2 catalogs, DDL, or version files (even between objects with
different names). Moreover, it is able to generate a list of changes in order to transform
the target comparator into a new schema, described by the source comparator. Finally,
it is capable to undo changes that were performed and committed in a version file,
so as to restore it to a given previous version.

Temporal tables prohibit changes that result in loss of data. These changes can be
produced by commands like DROP COLUMN, ADD COLUMN, and, ALTER COL-
UMN. All the changes, applicable to temporal tables, can be propagated back to the
history of the schema, with only two exceptions, the renaming of a table and the
renaming of an index.

Microsoft - SQL Server. Change management support for Microsoft SQL Server
comes with the SQL Server Management Studio [21] (SSMS). SSMS allows the user to
browse, select, and manage any of the database objects (e.g., create a new database,
alter an existing database schema, etc.) as well as visually examine and analyze query
plans and optimize the database performance. SSMS provides data import
export capabilities, as well as data generation features, so that users can perform
validation tests on queries. Regarding the evolution point of view, it is capable of
comparing two different database instances and returning their structural differences.
The tool may also provide information on DDL operations that occurred, through the
reports of schema changes. An example of such a report from https://www.mssqltips.

com/sqlservertip/4057/capture-sql-server-schema-changes-using-the-default-trace/

is displayed in Table 2.1.
Another set of tools that Microsoft offers for the validation of SQL code is the

SQL Server Data Tools [22] (SSDT). SSDT follows a project-based approach for the
database schema and SQL source code that is embedded in the applications. A de-
veloper can use SSDT to locally check and debug SQL code (by using breakpoints in
his SQL code).

19

https://www.mssqltips.com/sqlservertip/4057/capture-sql-server-schema-changes-using-the-default-trace/
https://www.mssqltips.com/sqlservertip/4057/capture-sql-server-schema-changes-using-the-default-trace/

database
name

start time
login
name

user
name

application
name

ddl
operation

object

msdb
2015-08-27
14:08:40.460

sa sa
SSMS -
Query

CREATE DDL_History

TestDB
2015-08-26
11:32:19.703

sa sa SSMS ALTER SampleData

Table 2.1: SSMS Report

Open source or academic tools

Django. Django [23] uses the model-view-controller idea for the database schema
manipulation. In Django, the user defines classes that represent the columns of
an RDBMS’s table. The classes are mapped to relational tables and created in the
database.

Regarding evolution, Django uses an automatic way to identify which columns
were added or deleted from the tables between two versions of code and migrate
these changes to the database schema. Django identifies the changes in the attributes
of a class and then produces the appropriate SQL code that performs the changes to
the underlying database schema.

South. South [24] is a tool operating on top of Django, identifying the changes in
the Django’s models and providing automatic migrations to match the changes. South
supports five database backends (PostgreSQL, MySQL, SQLite, Microsoft SQL Server,
and, Oracle), while Django officially supports four (PostgreSQL, MySQL, SQLite, and,
Oracle). South also supports another five backends(SAP SQL Anywhere, IBM DB2,
Microsoft SQL Server, Firebird, and, ODBC) through unofficial third party database
connectors.

In South, one can express dependencies of table versions so as to have the correct
execution order of migration steps and void inconsistencies. For example, in a case
where a foreign key references a column that is not yet a key, this kind of problem
can be identified and avoided.

The Autodetector part of South can extend the migrations that Django offers.
Specifically, South can automatically identify the following schema modifications:
model creation and deletion (create/drop a table), field changes (type change of
columns) and unique changes, while Django can only identify the addition or deletion

20

of columns.
Hecate. Hecate [25] is a tool that parses the DDL files of a project and compares

the database schemata between versions. Hecate also exports the transitions between
two versions, describing the additions and deletions that occurred between the ver-
sions (renames are treated as deletions followed by additions). Hecate also provides
measures such as size and growth of the schema versions.

Hecataeus. Hecataeus [26] is a what-if analysis tool that facilitates the visualiza-
tion and impact analysis of data-intensive software ecosystems. As these ecosystems
include software modules that encompass queries accessing an underlying database,
the tool represents the database schema along with its dependent views and queries
as a uniform directed graph. The tool visualizes the entire ecosystem in a single rep-
resentation and allows zooming in and out its parts. Most related to the topic of this
survey, the tool enables the user to create hypothetical evolution events and examine
their impact over the overall graph. Hecataeus does not simply flood the event over
the underlying graph; it also allows users as to define “veto” rules that block the
further propagation of an evolutionary event (e.g., because a developer is adamant in
keeping the exact structure of a table employed by one of her applications). Hecataeus
also rewrites the graph, after the application of the event so that both the syntactical
and the semantic correctness of the affected queries and views are retained.

2.2.3 Techniques for managing database and view evolution

Impact Assessment of Database Evolution

In this section, we discuss the impact of changes in a database schema to the appli-
cations that are related to that schema. Given a set of scripts, the methods proposed
in this part of the literature identify how database and software modules are affected
by changes that occur at the database level. Techniques for query rewriting are also
discussed. Closely to this topic is the topic of view adaptation: how must the defini-
tion (and the extent, in case of materialization) of a view adapt whenever the schema
of its underlying relations changes?

Early Attempts towards facilitating Impact Assessment. Maule, Emmerich and
Rosenblum [27] propose a technique for the identification of the impact of relational
database schema changes upon object-oriented applications. In order to avoid a high
computational cost, the proposed technique uses slicing, so as to reduce the size

21

of the program that is needed to be analyzed. At a first step, the authors use a
prototype slicing implementation that helps them identify the database queries of the
program. Then, with a data-flow analysis algorithm, the authors estimate the possible
runtime values for the parameters of the query. Finally, the authors use an impact
assessment tool, Crocopat, coming with a reasoning language (RML) to describe the
impacts of a potential change to the stored data of the previous step. Depending on
the type of change, a different RML program is run, and this eventually isolates the
lines of code of the program that are related to the queries affected by the change.

The authors evaluated their approach on a C# CMS project of 127000 lines of
code, and a primary database schema of up to 101 tables, with 615 columns and 568
stored procedures. The experiments showed that the method needed about 2 minutes
for each execution, where they found that there were no false negatives. On the other
hand, there were false positives in the results, meaning that the tool was able to find
all the lines of code that were affected, leaving none out, but also falsely reported that
some lines of code would be affected, whilst this was not really happening.

Architecture Graphs. Papastefanatos et al. [28, 29, 30] introduced the idea of
dealing with both the database and the application code in uniform way. The results
of this line of research are grouped in the areas of (a) modeling, (b) change impact
analysis, and (c) metrics for data intensive ecosystems (data intensive ecosystems are
conglomerations of data repositories and the applications that depend on them for
their operations). This line of work has been facilitated by the Hecataeus tool (see
[28], [31]).

Concerning the modeling and the impact analysis parts, in [28], the authors pro-
posed the use of the Architecture Graph for the modeling of data intensive ecosys-
tems. The Architecture Graph is a directed graph where the nodes represent the
entities of the ecosystem (relations, attributes, conditions, queries, views, group by
clauses, etc), while the edges represent the relationships of these entities (schema re-
lationships, operand relationships, map-select relationships, from relationships, where
relationships, group by relationships, etc). In the same paper, the authors proposed
an algorithm for the propagation of the changes of one entity to other related entities,
using a status indicator of whether the imminent change is accepted, blocked or if
the user of the tool should be asked.

In [29], the authors proposed an extension for the SQL query language, that
introduced policies for the changes in the database schema. The users could define

22

in the declaration of their database schema whether a change should be accepted,
blocked or if the user should be prompted. In this work, the policies were defined
over: (a) the database schema universally, (b) the high level modules (relations, views
and queries) of the database schema, and, (c) the remaining entities of the database,
such as attributes, constraints and conditions.

Regarding the metrics part, a first attempt to the problem was made by Papaste-
fanatos et al, on ways to predict the maintenance effort and the assessment of the
design of ETL flows of data warehouses under the prism of evolution in [30]. In [32],
the same authors used a real world evolution scenario, which used the evolution of
the Greek public sector’s data warehouse maintaining information for farming and
agricultural statistics. The experimental analysis of the authors is based in a six-month
monitoring of seven real-world ETL scenarios that process the data of the statistical
surveys. The Architecture Graph of the system was used as a provider of graph met-
rics. The findings of the study indicate that schema size and module complexity are
important factors for the vulnerability of an ETL flow to changes.

In a later work [33], Manousis et al., redefine the model of the Architecture Graph.
The paper extends the previous model by requiring the high level modules of the graph
to include input and output schemata, in order to obtain an isolation layer that leads
to the simplification of the policy language. The method is based on the annotation
of modules with policies that regulate the propagation of events in the Architecture
Graph; thus, a module can either block a change or adapt to it, depending on its
policy. The method for impact assessment includes three steps that: (a) assess the
impact of a change, (b) identify policy conflicts from different modules on the same
change event, and (c) rewrite the modules to adapt to the change. It is noteworthy that
simply flooding the evolution event over the Architecture Graph in order to assess the
impact and perform rewrittings, is simply not enough, as different nodes can react
with controversial policies to the same event. Thus, the three stages are necessary,
with the middle one determining conflicts and a “cloning” method, for affect paths
on the graph, in order to service conflicting requirements, whenever possible.

In Figure 2.1, we depict a situation that exemplifies the above. In the Architecture
Graph that is displayed in the left part of Fig. 2.1, a change happens in view V0 and
affects the view V1, which, in turn, affects the two queries Q1 and Q2 of the example.
The first query (Q1) accepts the change, whereas the second one (Q2) blocks it. This
means that Q2 wants to retain its semantics and be defined over the old versions of

23

Figure 2.1: A example of a rewrite process when the policies of Q1 and Q2 queries
are conflicting [34].

the views of the Architecture Graph. Therefore, the query that accepted the change
will get a new path, composed of ”cloned”, modified versions of the involved views
that abide by the change (depicted in light color in the left part of the figure and
annotated with a superscript c), whereas the original views and their path towards
Q2 retain their previous definition (i.e., they decline the change).

Schema Modification Operators. In this section, we review a work that produces –
when it is possible– valid query rewritings of old queries over a new database schema,
as if the evolution step of the database schema never happened. This way, the results
that the user receives, after the execution of the rewritten query, are semantically
correct.

An approach that supports the ecosystem idea, to a certain extent, is [35]. In this
approach, the authors propose a method that rewrites queries whenever one of their
underlying relations changes with the goal of retaining the same query result as if
the evolution event never happened, using Schema Modification Operators (SMOs). The
Schema Modification Operators that PRISM/PRISM++ tool uses are:

• CREATE TABLE R(a, b, c)

• DROP TABLE R

• RENAME TABLE R INTO T

• COPY TABLE R INTO T

24

• MERGE TABLE R, S INTO T

• PARTITION TABLE R INTO S WITH condition, T

• DECOMPOSE TABLE R INTO S(a, b) T (a, c)

• JOIN TABLE R, S INTO T WHERE condition

• ADD COLUMN d [AS constant | function(a, b, c)] INTO R

• DROP COLUMN r FROM R

• RENAME COLUMN b IN R TO d

The R, S, and T variables represent relations. The a, b, c, d, and r variables represent
attributes. The constant variable stands for a fixed value, while the function is used
in ADD COLUMN in order to express simple tasks as data type and semantic conversions
are. Besides the schema modification operators, PRISM/PRISM++ uses the integrity
constraints modification operators ICMO and policies (which will be described later
on) for this kind of rewrites. The ICMOs are:

• ALTER TABLE R ADD PRIMARY KEY pk1(a, b) <policy>

• ALTER TABLE R ADD FOREIGN KEY fk1(c, d) REFERENCES T (a, b) <policy>

• ALTER TABLE R ADD VALUE CONSTRAINT vc1(c, d) AS R.e=“0” <policy>

• ALTER TABLE R DROP PRIMARY KEY pk1

• ALTER TABLE R DROP FOREIGN KEY fk1

• ALTER TABLE R DROP VALUE CONSTRAINT vc1

The R and T variables represent relations. The a, b, c, d, and e variables represents
attributes. The pk1 represents the primary key of the preceding relation. The fk1

represents the foreign key of a relation. Finally, the vc1 represents a value constraint.
The ICMOs have, also, a <policy> placeholder, where the policy can be one of the
following:

1. CHECK, where the PRISM/PRISM++ tool verifies that the current database satisfies
the constraint, otherwise the ICMO is rolled back,

25

2. ENFORCE, where the tool removes all the data that violate the constraint, and,

3. IGNORE, where the tool ignores if there exist tuples that violate the constraint or
not, but informs the user about this.

When the ENFORCE policy is used and tuples have to be removed, the tool creates
a new database schema and inserts all the violating tuples in order to help the DBA
carry out inconsistency resolution actions.

Regarding the rewrite process of queries through SMOs, the Chase & Backchase
algorithm uses as input the SMOs and a query that is to be rewritten. The algorithm
rewrites the query through an inversion step of the SMO’s (for example, the inversion
of a JOIN is the DECOMPOSITION), in order to retain the query’s results unchanged,
independently of the underlying schema. This way, the resulting tuples of the query
will be the same as if the database schema never changed. The rewrite process of
queries through ICMOs is done with the help of policies.

So, the steps that describe the algorithm of the rewriting that the authors proposed,
are:

1. Get the SMOs from the DBA

2. Inverse the SMOs, in order to guarantee –if it is possible– the semantic correct-
ness of the new query

3. Rewrite the query and validate its output.

The authors also describe a rewrite process of updates statement queries (“UP-
DATE table SET…”) through SMOs and ICMOs, based in the ideas described in the
previous paragraph. If the rewrite is through SMOs, the UpdateRewrite algorithm
tries to invert the evolution step, while if the rewrite is through ICMOs, the policies
ask the tool to check the tuples of the database and either guarantee or inform the
user about the contents of the database.

To improve their rewrite time the authors try to minimize the input of the Chase
& Backchase algorithm, by removing from the input all the mappings and constraints
that are not related with the evolution step. Moreover, the proposed method uses only
the version of the relation in which the query was written, leaving all the previous
modifications out, as they are unrelated to the query. This is the backchase optimizer
technique that the authors proposed, which produced bigger execution times in the

26

chase and backchase phase of higher connected schemata because of the foreign keys
that lead to higher input in chase phase, in the experiments that were conducted. In
order to achieve even better execution time, the authors propose the use of a caching
technique, since from the observations they made on their datasets, they noticed that
there is a number of common query/update templates, which is parametrized and
reused multiple times. These patterns are:

Join pattern type 1. In this pattern, a new table is created to host joined data from
the desired column of two or more tables and migrates the data from the old
tables to the new one.

Join pattern type 2. In this pattern, the data of a column are moved from the source
table to the destination table.

Decompose pattern. In this pattern, a table is decomposed to two new tables. In
order to be correct, both tables should have the key of the table.

Partition pattern. In this pattern, a part of the data of a table is moved into a new
table and deleted from the original one.

Merge pattern. In this pattern, all the tuples of a table are moved into another table.

Copy pattern. In this pattern, an existing table is cloned.

The authors validated the PRISM/PRISM++ tool using the Ensembl project, includ-
ing 412 schema versions, and the Mediawiki project, which is part of the Wikipedia
project and had 323 schema versions. The authors used 120 SQL statements (queries
and updates) from those two projects, tested them against SMO and ICMO operators
and their tool found a correct rewriting, whenever one existed.

In a later work [7], the authors provide an extended description of the tool that
performs the rewrites of the queries (PRISM/PRISM++) and its capabilities. Moreover,
the authors introduce two other tools of which the first one collects and provides
statistics on database schema changes and the other derives equivalent sequences of
(SMOs) from the migration scripts that were used for the schema changes.

Summary
In Table 2.2 we summarize what are the problems that the selected works are

dealing with. For example the first two works are dealing with the impact analysis
problem, which is to identify which parts of the code is affected by a change, and the

27

Works Problem Input Output Method

[27] Impact of
DB schema
changes to
C# OO apps

DB schema and
source code; an
imminent change

The lines of
code that
are affected
by the DB
schema
change

Slicing technique to
identify the DB re-
lated lines of C#
code, and estimation
of values so as to
further slice the C#
code.

[28, 29] Propagation
of DB
schema
changes

DB schema and ap-
plication’s queries
abstracted as Ar-
chitecture Graph;
policies for of
the nodes; an
imminent change

The Archi-
tecture Graph
and a set
of affected
nodes.

Language for node
annotation. Propa-
gation of a change,
based on the node’s
policy for the change.

[33] Rewrite of
DB schema
and applica-
tions

DB schema and ap-
plication’s queries
abstracted as Ar-
chitecture Graph;
policies for of
the nodes; an
imminent change

New DB and
queries that
acquired the
change

Rewrite via cloning
the queries that
want to acquire the
change and leave
intact the ones that
block the change.

[35, 7] Hiding the
DB schema
change via
rewriting

SMOs and ICMOs
of the modification,
and queries that
use the modified
table/view

Rewritten
queries that
“hide” the
DB schema
change

The 1 hop away
queries are rewrit-
ten as if the schema
change never hap-
pened, using the
Chase & Backchase
algorithm

Table 2.2: Summary table for Section 2.2.3

other two works are dealing with the rewriting of the code in order to obtain or hide
the schema changes.

28

Views: rewriting views in the context of evolution

A view is a query expression, stored in the database dictionary, which can be queried
again, just as if it was a regular relation of the database. A view, thus, retains a dual
nature: on the one hand, it is inherently a query expression; yet, on the other hand,
it can also be treated as a relation. A virtual view operates as a macro: whenever
used in a query expression, the query processor incorporates its definition in the
query expression and the query is executed afterwards. Materialized views are a special
category of views, that persistently store the results of the query in a persistent table of
the DBMS. In this section, we survey research efforts that handle two problems. First,
we start with the problem of materialized view redefinition: the expression defining
the view is altered and the stored contents of the view have to be adjusted to fit the
new definition (ideally, without having to fully recompute the contents of the view
from scratch). Second, we survey efforts pertaining to how views should be adapted
when the schema of their defining tables evolves.

In [36], Mohania deals with the problem of maintaining the extent of a material-
ized view that is under redefinition, by proposing methods that try to avoid the full
re-computation of the view. The author uses expression trees, which are binary trees,
the leaf nodes represent base relations that are used for defining the view, while the
rest of the nodes contain binary relational algebraic operators. Unary operators such
as selection and projection are associated with the edges of the tree. In a nutshell, the
author proposes that making use of these expression trees, it is easy to find common
subexpressions between the new and old view statements and thus, if applicable,
make use of the old view to get the desired results of the redefined view, without
recomputing the new definition. Due to its structure, the tree allows to avoid inter-
fering with the result of the view computation: (a) the height of the trees is no more
than two levels, and, (b) a change is either a change to a unary operator associated
with the edge of the tree, or a change to a binary node. This way, when the change
is made at the root node, then the expression corresponding to the right hand child
in the tree has to be evaluated only, while when the change is made at level d=1,
the view re-computation becomes a view maintenance problem. Finally, when the
change is made at any other node, it is only the intermediate results of the nodes
that have to be maintained.

Gupta, Mumick, Rao and Ross [37] provide a technique that redefines a material-

29

ized view and adapts its extent, as a sequence of primitive local changes in the view
definition, in order to avoid a full re-computation. Moreover, on more complex adap-
tations –when multiple simultaneous changes occur on a view– the local changes are
pipelined in order to avoid intermediate creations of results of the materialized view.
The following changes are supported as primitive local changes to view definitions:

1. Addition or deletion of an attribute in the SELECT clause.

2. Addition, deletion, or modification of a predicate in the WHERE clause (with and
without aggregation).

3. Addition or deletion of a join operand (in the FROM clause), with associated
equijoin predicates and attributes in the SELECT clause.

4. Addition or deletion of an attribute from the GROUP BY list.

5. Addition or deletion of an aggregate function to a GROUP BY view.

6. Addition, deletion or modification of a predicate in the HAVING clause. Addition
of the first predicate of deletion of the last predicate corresponds to addition
and deletion of the HAVING clause itself.

7. Addition of deletion of an operand to the UNION and EXCEPT operators.

8. Addition or deletion of the DISTINCT operator.

Concerning the problem of adapting a view definition to changes in the relations
that define it, Nica, Lee and Rundensteiner [38] propose a method that makes legal
rewritings of views affected by changes. The authors primarily deal with the case of
relation deletion which (under their point of view) is the most difficult change of a
database schema, since the addition of a relation, the addition of an attribute, the
rename of a relation and the rename of an attribute can be handled in a straight-
forward way (the attribute deletion, according to the authors, is a simplified version
of the relation deletion). To attain this goal one should find valid replacements for
the affected components of the existing view, so, in order to achieve that, the au-
thors of [38] keep a Meta-Knowledge Base on the join constraints of the database
schema. This Meta-Knowledge Base (MKB) is modeled as a hyper-graph that keeps
meta-information about attributes and their join equivalence attributes on other ta-
bles. The proposed algorithm, has as input the following: (a) a change in a relation,

30

(b) MKB entities, and, (c) new MKB entities. Assuming that valid replacements exist,
the system can automatically rewrite the view via a number of joins and provide
the same output as if there was no deletion. The main steps of the algorithm are:
(a) find all entities that are affected for Old MKB to became New MKB, (b) mark
these entities and for each one of them find a replacement from Old MKB, using
join equivalences, and, (c) rewrite the view over these replacements. Interestingly, the
authors accompany their method with a language called E-SQL that annotates parts
of a view (exported attributes, underlying relations and filters) with respect to two
characteristics: (a) their dispensability (i.e., if the part can be removed from the view
definition completely) and (b) their replaceability with an another equivalent part.

Work Problem Input Output Method

[36] Maintenance
of redefined
materialized
views

Definition
and re-
definition
of a ma-
terialized
view

Recomputed
content of
the re-
defined
view

Use of expression trees that
identify common subexpres-
sions between the input and
output of their method, thus
helping to avoid the full re-
computation of a materialized
view

[37] Maintenance
of redefined
materialized
views

Definition
and re-
definition
of a ma-
terialized
view

Recomputed
content of
the re-
defined
view

The redefinition takes place
as a sequence of primitive
local changes (in complex
adaptations this sequence is
pipelined to avoid temporal
results).

[38] View adap-
tation on
column
deletion

Hypergraph
that con-
tains the
join con-
straints of
the DB
schema

Valid re-
placement
of column
that is to be
deleted

Search in the hypergraph
(named MKB) for a replace-
ment of the column that is to
be deleted, and replace that
column in the view with the
replacement

Table 2.3: Summary table for Section 2.2.3

31

2.2.4 Techniques for managing data warehouse evolution

A research area where the problem of evolution has been investigated for many years
is the area of data warehouses. In this section, we concentrate on works related on
evolution of both schema and data modifications in the context of data warehouses,
and we review methods and tools that help on the adaptation of those changes. We
also refer the reader to two excellent surveys on the issue, specifically, [39] and [40].

Data warehouses and views. At the beginning of data warehousing, people
tended to believe that data warehouses were collections of materialized views, de-
fined over sources. In this case, evolution is mostly an issue of adapting the views
definitions whenever sources change.

Bellahsene, in two articles, [41] and [42], proposed a language extension to anno-
tate views with a HIDE clause that works oppositely to SELECT (i.e., the idea is to
project all attributes except for the hidden ones and an ADD ATTRIBUTE clause to
equip views with attributes not present in the sources (e.g., timestamps or calcula-
tions). Then, in the presence of an event that changes the schema of a data warehouse
source (specifically, the events covered are attribute/relation addition and deletion),
the methods proposed by the author for the adaptation of the warehouse handle
the view rematerialization problems i.e., how to recompute the materialized extent
via SQL commands. The author also proposes a cost model to estimate the cost of
alternative options.

In [43], the author proposes an approach on data warehouse evolution based on a
meta-model, that provides complementary metadata that track the history of changes
(in detail, changes that are related to data warehouse views) and provide a set of
consistency rules to enforce when a quality factor (actual measurement of a quality
value) has to be re-evaluated.

Evolution of multidimensional models. Multidimensional models are tailored to
treat the data warehouse as a collection of cubes and dimensions. Cubes represent clean,
undisputed facts that are to be loaded from the sources, cleaned and transformed,
and eventually queried by the client application, Cubes are defined over unambiguous,
consolidated dimensions that uniquely and commonly define the context of the facts.
Dimensions comprise levels, which form a hierarchy of degrees of detail according
to which we can perform the grouping of facts. For example, the Time dimension
can include the levels (1) Day, that can be rolled up to either (2a) Week or (2b)

32

Month, both of which can be rolled up to level (3) Year. Each level comes with a
domain of values that belong to it. The values of different levels are interrelated via
rollup functions (e.g., 1/1/2015 can be rolled up to value 1/2015 at the Month level).
As levels construct a hierarchy that typically takes the form of a lattice, evolution is
mainly concerned with changing (i) the nodes of the lattice, or (ii) their relationship,
or (iii) the values of the levels and their interrelationship.

The authors of [44] present a formal framework, based on a formal concep-
tual description of an evolution algebra, to describe evolutions of multi-dimensional
schemata and their effects on the schema and on the instances. In [44], the au-
thors propose a methodology that supports an automatic adaptation of the multi-
dimensional schema and instances, independently of a given implementation. The
main objectives of the proposed framework are: (i) the automatic adaptation of
instances, (ii) the support for atomic and complex operations, (iii) the definition
of semantics of evolution operations, (iv) the notification mechanism for upcoming
changes, (v) the concurrent operation and atomicity of evolution operations, (vi) the
set of strategies for the scheduling of effects and (vii) the support of the design and
maintenance cycle.

The authors provide a minimal set of atomic evolution operations, which they
use in order to present more complex operations. These operations are: (i) insert
level, (ii) delete level, (iii) insert attribute, (iv) delete attribute, (v) connect attribute to
dimension level, (vi) disconnect attribute from dimension level, (vii) connect attribute
to fact, (viii) disconnect attribute from fact, (ix) insert classification relationship, (x)
delete classification relationship, (xi) insert fact, (xii) delete fact, (xiii) insert dimension
into fact, and, finally, (xiv) delete dimension.

In [45], the authors suggest a set of primitive dimension update operators that
address the problems of: (i) adding a dimension level, above (generalize) or below
(specialize) an existing level, (ii) deleting a level, (iii) adding or deleting a value from a
level (add/delete instance), or (iv) adding (relate) or removing edges between parallel
levels (unrelate). In [45], the authors also suggest another set of complex operators,
that intend to capture common sequences of changes in instances of a dimension
and encapsulate them in a single operation. The set of those operators consists of:
(i) reclassify (used, for example, when new regions are assigned to salespersons as
a result of marketing decisions of a company), (ii) split (used, for example, when a
region is divided into more regions and more salespersons must be assigned to those

33

regions due to the population density), (iii) merge (the opposite of split), and, (iv)
update (used, for example, when a brand name for a set of items changes but the
corporation as well as the set of products related to the brand remain unchanged).

The mappings that the authors propose, for the transitions from the multidi-
mensional to the relational model, support both the de-normalized and normalized
relational representations. In the de-normalized approach, the idea is to build a single
table containing all the roll-ups in the dimension while in the normalized approach,
the idea is to build a table for each direct roll-up in the dimension.

Finally, in the experiments that the authors conducted, they found that the struc-
tural update operators in the de-normalized representation are more expensive. The
instance update operators in the normalized representation are more expensive be-
cause of the joins that have to be performed, whilst both representations are equally
good for the operators that compute the net effect of updates.

In a later work, the authors of [46] suggest a set of operators which encapsulate
common sequences of primitive dimension updates and define two mappings from
the multidimensional to the relational model, suggesting a solution on the problem
of multidimensional database adaptation.

The effects of evolution to alternative relational logical designs is explored in [47].
Specifically, the authors explore the impact of changes to both star and snowflake
schemata. The changes covered include (i) the addition of deletion of attributes to
levels, (ii) the addition/deletion of dimension levels, (iii) the addition/deletion of mea-
sures, and (iv) the addition/deletion of dimensions into fact tables. A notable, albeit
expected, result is that comparison of the effect of changes to the two alternative
structures, reveals that the simplest one, star schema, is more immune to change than
the more complicated one.

Multiversion querying over data warehouses Once the research community had
obtained a basic understanding of how multidimensional schemata can be restruc-
tured, the next question that followed was: “what if we keep track of the history of all
the versions of a data warehouse schema as it evolves?” Then, we can ask queries that
span several versions having different structure, also known as multiversion queries.
The essence of multi-version queries involves transforming the data of previous ver-
sions (that obey a previous structure) to the current version of the structure of the
data warehouse, in order to allow their uniform querying with the current data.

In this section, we discuss the adaptation of multiversion data warehouses [48], the

34

use of data mining techniques in order to detect structural changes in data warehouses
[49, 50, 51], and, the use of graph representations (directed graphs) [52], in order to
achieve correct cross version queries.

Eder and Koncilia [51] propose a multidimensional data model that allows the
registration of temporal versions of dimension data in data warehouses. Mappings
are provided to transfer data between different temporal versions of instances of
dimensions. This way, the system can answer correctly queries that span in periods
where dimension data have changed. The paper makes no assumption on dimension
levels, so when referring to a dimension, the paper implies a flat structure with a
single domain. The mappings are described as transformation matrices. Each matrix
is a mapping of data from version Vi to version Vi+1 for a dimension D. Assume, for
example a 2-dimensional cube, including dimensions A and B with domains {a1, a2}
and {b1, b2} respectively. Assume that in a subsequent version: (i) a1 is split to a11 and
a21 and (ii) b1 and b2 are merged into a single value b. Then, there is a transformation
matrix for dimension A, with one row for each old value {a1, a2} and one column for
each new value {a11, a21, a2} expressing how the previous values relate to the new ones.
For example, one might say that a11 takes 30% of a1 and a21 takes the other 70%. The
respective matrix is there for dimension B. Then, by multiplying any cube with A

and B as dimensions with the respective transformation matrices, we can transform
an old cube defined over {a1, a2} × {b1, b2} to a new cube defined over {a11, a21, a2}
× {b}.

So at the end, the resulting factual cube maps the data of the previous version
to the dimension values of the current version; this way, both the current and the
previous version can be presented uniformly to the user.

Eder, Koncilia and Mitsche [49] propose the use of data mining techniques for
the detection of structural changes in data warehouses, in order to achieve correct
results in multi-period data analysis OLAP queries. Making use of three basic op-
erations (INSERT, UPDATE and DELETE), the authors are able to represent more
complex operations such as: SPLIT, MERGE, CHANGE, MOVE, NEW-MEMBER, and
DELETE-MEMBER. The authors propose several data mining techniques that detect
which is the schema attribute that changed. In the experiments that were conducted,
the authors observed that the quality of the results of the different methods depends
on the quality and the volatility of the original data.

The same authors continue their previous work on data mining techniques for

35

detection of changes in OLAP queries in [50]. Since their previous approach was
incapable of detecting some variety of changes, the authors propose data mining
techniques in form of multidimensional outlier detection to discover unexpected de-
viations in the fact data, which suggests that changes occurred in dimension data. By
fixing a dimension member they get a simple two-dimensional matrix where the one
axis is the excluded dimension member. From that matrix, a simple deviation matrix
with relative differences is computed. In this deviation matrix, the results are nor-
malized to get the probability of a structural change that might have occurred. The
authors propose the 10% as a probability threshold for the change to have occurred.
From the conducted experiments, the authors found that this method analyzes the
data in more detail and gives a better quality of the detected structural changes.

Some years later, Golfarelli et al. [52] propose a representation of data warehouse
schemata as graphs. The proposed graph represents a data warehouse schema, in
which the nodes are: (i) the fact tables of the data warehouse, and (ii) the attributes
of fact tables (including properties and measures), while the edges represent simple
functional dependencies defined over the nodes of the schema. The authors also
define an algebra of schema graph modifications that are used to create new schema
versions and discuss of how cross-version queries can be answered with the help
of augmented data warehouse schemata. The authors finally show how a history of
versions for data warehouse schemata is managed.

Since the authors’ approach is based on a graph, the schema modification algebra
uses four simple schema modification operations (M): (i) AddF that adds an arc
involving existing attributes, (ii) DelF that deletes an existing arc, (iii) AddA that adds
a new attribute –directly connected by an arc to its fact node– and (iv) DelA that
deletes an existing attribute. Besides those simple operators, the authors define the
New(S,M) operator that describes the creation of a new schema, based on the existing
schema S when a simple schema modification M is applied.

The authors introduce augmented schemata to serve multiversion queries. Each
previous version of the data warehouse schema is accompanied by an augmented
schema whose purpose is to translate the old data under the old schema to the current
version of the schema. To this end, the augmented schema keeps track of every new
attribute (say A), or new functional dependency (say f). In order to translate the
old data to the new version of the schema, the system might have to: (i) estimate
values for A, (ii) disaggregate or aggregate measure values depending on the change

36

of granularity, (iii) compute values for A, (iv) add values for A, or, (v) check if f
holds.

The set of versions of the schemata is described by a triple (S, SAUG, t), where S

is a version, SAUG is the related augmented schema and t is the start of the validity
interval of S. This way, the history of the versions of the data warehouse can be
described as a sequence of changes over changes, starting from the initial schema
of the history: H = S0, S

AUG
0 , t0. Since every previous version is accompanied by an

augmented schema that transforms it to the current one, it is possible to pose a query
that spans different versions and translate the data of the previous versions to a
representation obeying the current schema, as explained above.

Practically around the same time, Wrembel and Bebel [48] deal both with cross-
version querying and with the problems that appear when changes take place at the
external data sources (EDS) of a data warehouse. Those problems can be related
to a multi-version data warehouse which is composed of a sequence of persistent
versions that describe the schema and data for a given period of time. The authors
approach has a meta-data model with structures that support: (i) the monitoring
of the external data sources on content and structural changes, (ii) the automated
generation of processes monitoring external data sources, (iii) the adaptation of a
data warehouse version to a set of discovered external changes, (iv) the description of
the structure of every data warehouse version and (v) the querying of multiple data
warehouse versions (cross version querying), and (vi) the presentation of the output
as an integrated result.

The schema change operations that the authors support are: (i) the addition of
a new attribute to a dimension level table, (ii) the removal of an attribute from a
dimension level table, (iii) the creation of a new fact table, (iv) the association of a fact
table with a dimension table, (v) the renaming of a table, and three more operations
that are applicable to snowflake schemata, (vi) the creation of a new dimension level
table with a given structure, (vii) the inclusion of a parent dimension level table into
its child dimension level table, and, (viii) the creation of a parent dimension level
table based on its child level table.

The instance change operations that the authors have worked on, are: (i) the
insertion of a new level instance into a given level, (ii) the deletion of a level instance,
(iii) the change of the association of a child level instance to another parent level
instance, (iv) the merge of several instances of a given level into one instance of the

37

same level, and (v) the split of a given level instance into multiple instances of the
same level.

In order to query multiple versions, the authors’ method is based on a simple and
elegant idea: the original query is split to a set of single version queries. Then, for each
single version query, the system does a best-effort approach: if, for example, attributes
are missing from the previous version, the system omits them from the single version
query; the system exploits the available metadata for renames; it can even, ignore a
version, if the query is a group by query and the grouping is impossible. If possible,
the collected results are integrated under the intersection of attributes common to all
versions (if this is the case of the query); otherwise, they are presented as a set of
results, each with its own metadata.

Regarding the detection of changes in external data sources, the authors pro-
pose a method that uses wrappers (software modules responsible for data model
transformations). Each wrapper is connected to a monitor (software that detects pre-
defined events at external data sources). When an event is detected, a set of actions
is generated and stored in data warehouse update register in order to be applied to
the next data warehouse version when the data warehouse administrator calls the
warehouse refresher. The events are divided into two categories: (i) structure events
(which describe a modification in the schema of the data warehouse) and (ii) data
events (which describe a modification in the contents of a data warehouse). For each
event, an administrator defines a set of actions to be performed in a particular data
warehouse version. The actions are divided in two categories: (i) messages (which
represent actions that cannot be automatically applied to a data warehouse version)
and (ii) operations (for events whose outcomes can be automatically applied to a data
warehouse version). Both categories of actions do not create a new data warehouse
version automatically but require either the administrator to apply them all in an ac-
tion definition of an explicitly selected version, or the actions are logged in a special
structure for manual application of the ones the administrator wants to apply.

38

Works Problem Input Output Method

[51] Data trans-
fer between
versions of a
Data Ware-
house

Data
Ware-
house
over time

Queries that
are correct
over the
time span
changes
of a Data
Warehouse

Transformation matrices
that are mappings between
the different versions of
the Data Warehouse

[49, 50] Data trans-
fer between
versions of a
Data Ware-
house

Data
Ware-
house
over time

Queries that
are correct
over the
time span
changes
of a Data
Warehouse

Data mining techniques
that identify Data Ware-
house schema changes and
dimension changes, using a
normalized matrix

[52] Correct
queries over
the changes
of a Data
Warehouse

Data
Ware-
house
over time

Queries that
are correct
over the
time span
changes
of a Data
Warehouse

Graphs with a simple alge-
bra that describes changes
and augmented schemata
to “find” the values of
columns that didn’t exist

[48] Cross ver-
sion queries
and changes
of external
data sources

Data
Ware-
house
over time,
with
their data
provider

Queries that
are correct
over the
time span
changes
of a Data
Warehouse

Decompose a query to
queries that are correct at
each schema version. For
the EDS use of wrappers
that “signal” software mon-
itors to perform rules set by
the administrator on what
to do for the specific change

Table 2.4: Summary table for multidimensional model evolution

39

2.3 Query Extraction

The query extraction problem covers the problem of reverse engineering and recon-
structing the queries that are embedded in an application written in a host language
(like Java, PHP, etc.). In this section, we review the state of the art on the problem
of the query extraction. The presented methods are mostly used for the error check-
ing/testing of database-related projects, for examining the impact of database schema
changes to the database-related applications, or for identifying the bottlenecks of the
applications’ code.

Several previous works identify database accesses by extracting dynamically con-
structed SQL queries (JDBC-based database accesses) from the bytecode of a Java
program. Those works deal with the problem of error checking or fault diagnosis,
query testing prior to execution, as well as, the impact analysis for database schema
changes problem.

Regarding the string concatenation query construction for error detection there is
a work of Christensen et al. [53], which proposes a static string analysis technique
that uses as input a Java program. This program is translated into a flow graph, and
analysed to generate a finite state automaton. The authors evaluate their approach on
Java classes with at most 4 kLOC. In the same problem (typographical and syntactical
errors because of queries that are constructed through string concatenation), there is
also another method of Gould et al., presented in [54, 55]. The proposed method
is based on an data-flow analysis and includes the following steps. First, the Java
source code is sliced to identify the SQL related parts and produce a finite state
automaton. Then, from those string parts and the automaton, via a DFS traversal,
all the variations of a query are formed. Those variations are finally tested for type
(using the DB schema description) and syntax errors.

The method described Annamaa et al. in [56] presents a way of testing the DB
queries before their execution. The proposed method identifies the SQL queries em-
bedded into Java source code via searching for functions that the user indicated.
Using that as input, the proposed method constructs Abstract Syntax Trees. Those
ASTs produce statements of a grammar that is later on used by a lexical analyser and
syntactic parser for finding if any errors exist.

Van den Brink et al. present a quality assessment approach for SQL statements
embedded in PL/SQL, COBOL and Visual Basic code in [57]. The initial phase of

40

their method consists in extracting the SQL statements from the source code using
control and data-flow analysis techniques. They evaluate their method on COBOL
programs with at most 4 kLOC.

Ngo and Tan [58] make use of symbolic execution to extract database interaction
points from web applications. Their research consists of a case study of PHP appli-
cations with sizes ranging 2 to 584 kLOC. Their method is able to extract about 80%
of those interactions.

The method presented in [27] by Maule et al. uses a k-CFA algorithm and a soft-
ware dependence graph to identify the impact of relational database schema changes
upon object-oriented applications. The method identifies the parts of the source code
that are affected by a change in the DB schema. The proposed method has as first
step the slicing of the C# source code of a project to identify SQL related lines of
code. In the next step, data-flow analysis is performed, to compute a possible set of
run-time values that may occur at a given point of the running program. Finally, the
parts of the source code that will be affected, when a database schema change occurs
are given as output.

In another line of research, Cleve et al. perform a research on query extraction
using the traces of the queries that were executed in the DBMS during the execution
of a program. In [59], the authors try to identify the file name and the line number at
that file where a query was executed. The authors, using the traces, try to identify the
specific location in the source code of a project that a query was executed. The main
goal of this work is to identify which parts of the code are responsible for database
downtime when a query is executed on the server. To do so, the authors propose a tree
based query representation of the queries that were found in the source code, and use
a “joker” node in the parts of the query that there are host language variables. Then,
they use the traces of the DBMS that contain the “problematic” queries, to represent
those queries to trees too. In the next step, the authors perform a comparison of the
trees and each line of the source code that matches is presented to the source code
developers.

41

Host languages Query Type #Variants

Christensen et al. [53] Java String-based
Gould et al. [54, 55] Java String-based
Annamaa et al. [56] Java String-based ASTs
Van den Brink et al. [57] PL/SQL, COBOL, V. Basic String-based
Ngo and Tan [58] PHP String-based
Maule et al. [27] C# String-based
Cleve et al. [59] Java String-based Partial

Table 2.5: A structured overview of the state of the art

2.4 Software Metrics

The Software Metrics are a way to describe when the software is easily understandable,
and maintainable. In this section, we survey the related work that pertains to the
Software metric issue. We discuss works related to coupling and cohesion metrics
in software, we move on to works that examine metrics in other areas such as web
services and data warehouses.

The well-known LCOM metrics (Lack of Cohesion of Methods) for measuring
the cohesion of object-oriented software was proposed in [60] which describes all
the fundamental ideas that are related to cohesion and coupling measurements. The
LCOM metrics are generally based on bipartite graphs where the first group contains
the subroutines of the examined class and the second group contains the variables.
The general idea of LCOM is that using that graph, LCOM measures the number of
pairs of subroutines that have none common variable minus the number of pairs that
have common variables.

Coupling is usually contrasted with cohesion, where high cohesion means low
coupling and vice versa. In coupling metric one examines whether a class is dependent
on another class, thus a change on the first would probably result a change on the
second class too.

In [61] the authors performed a study where they examined C++ object-oriented
projects to assess the metrics that were introduced in [60], and they concluded that
those metrics could predict dificult to maintain code during the early phases of the
projects, compared to other metrics that could be collected only at later phases of the
projects’ lifecycle. The interested reader may refer to [62] and [63] for two detailed

42

surveys of the cohesion metrics that have been proposed since [60].
In another line of research [64], the authors examine a number of coupling and

cohesion metrics and their correlation on the quality of three open source programs
written in Java programming language. The authors via their evaluation concluded
that cohesion and coupling are inversely proportional and that high cohesive classes
probably need decoupling.

Another method of measuring code quality is via using Function Points [65].
Function Points are used as the measurement unit of the software development in
business logic. This way, one may use Function Points to express that a great amount
of money will be needed for a new project or for the maintenance of a project since
the amount of Function Points is high.

Metrics in other areas: Besides the object oriented software measurements, there
have been approaches on other areas, such as measuring the cohesion in web services
([66], [67], [68]). The first efforts for measuring cohesion in services have been made
in [69]. Finally, another interesting work that concerns the cohesion of services is
presented in [70]. Finally, in [71] the authors propose a catalogue of 13 “bad smells”
in data-intensive ecosystems, and evaluate the 9 of them using a survey. Those smells
are of one of the following categories: either schema issues (e.g. god table), or query
e.g. misused null, or data (e.g. intermingled data types) related. To detect those smells,
the authors had to extract the query statements that were embedded in the source
code of the projects they examined using regular expressions.

2.5 Query rewriting

The query rewriting problem covers the problem of smoothly evolving from a database
schema to a new schema, without having syntactic or semantic problems. Most works
of this area are related to query rewriting using materialized views.

The latest algorithm that is related to query rewriting using views is Minicon,
presented in [72]. The authors based their work on Bucket Algorithm ([73]). In
Bucket Algorithm, the new query (NQ) is subdivided to subgoals. Any view that
produces a result for a subgoal is inserted into the subgoal’s bucket. Finally, the
Bucket Algorithm combines every possible combination of views in the buckets to
produce the answer of NQ query. Minicon Algorithm uses the same technique, but

43

instead of inserting every possible view of a subgoal in its bucket, it checks and uses
only the views that can also be used to solve the NQ query, thus having a Cartesian
product to search of smaller size.

Besides Bucket and Minicon algorithms, there exists another work ([74]) that is
called Inverse-Rules Algorithm. In Inverse-Rules Algorithm, the authors propose a
way of inverting the view definitions. This way, the authors can write a new query as if
they use the view sources instead of the views. The results produced by the inversion
step of the algorithm can be reused, compared to the previous two algorithms which
produce only a valid writing of a new query in each algorithm run, but since the
results are more general, one may have as result view sources that are irrelevant to
the new query.

2.6 Visualization of Data Intensive Ecosystems

The visualization of data intensive ecosystems problem covers the problem of repre-
senting an ecosystem in a way that provides as much information as possible, without
disturbing the viewer of the representation with visual clutter. Related work concerns
aspects of software visualization, visualization fundamentals, recent advances in graph
drawing and visualization for analysis tools/methods.

Software visualization. Diagrammatic representation and software visualization
support the work of the developers in many ways. A survey over 400 Microsoft
employees [75] has distilled 3 main reasons where a diagrammatic representation is
essential for the developers’ tasks: (a) code understanding, (b) code design and re-
factoring, and (c) ad-hoc meetings. In the field of software engineering there are plenty
of methods for visualizing object-oriented systems; we constrain the discussion in
classic and recent advances only. Tree-maps [76] is a classic method, extensively used
–see, for example, http://www.makelinux.net/kernel_map for the visual representation
of the Linux kernel. Treemaps allow the recursive splitting of the screen’s area in
nested rectangles to represent the hierarchical structure of a data set (e.g., a directory
with source code files). SeeSoft [77] is another classic method, relying on the idea of
file “thumbnails” (where each line of code is represented by a small line or some pixels
on the screen and different colors corresponding to different statistics of the code, e.g.,
age, developer). Recently, the Code Canvas system [75] has been based on the idea of

44

http://www.makelinux.net/kernel_map

having a master “map” of the information system, that serves as a starting point for the
developers to interactively browse the code via alternative views of the master map,
customized to their needs. Code Bubbles [78] is a similar effort providing a reference
canvas where the users can incrementally build a personalized map according to
the needs of the current session. Despite the plethora of approaches in software
engineering (see [79] for a recent survey), to the best of our knowledge, there are no
similar efforts in the field of data-intensive information systems engineering.

Diagramming fundamentals. The fundamental concepts that govern user percep-
tion of visually demonstrated information have been investigated by the Gestalt school
of psychology founded in 1912 and can be summarized as follows [80]:(i) proximity
(objects close to each other tend to be perceived as similar), (ii) similarity (objects of
the same shape, color, orientation and size are perceived similar by individuals), (iii)
connectedness (to express semantic relationship among visually connected objects), (iv)
closure (the eye tends to create perceptions of closed space, even if they do not exist –
best served when the depicted objects tend to create a “border” around similar objects
along with blobs of whitespace), (v) continuity (as the eye tends to perceive as related
objects that are aligned together), (vi) symmetry (as a means to emphasize non-typical
behavior or emphasis when symmetry is broken by an object), (vii) contrast, achieved
in terms of chromatic, size or shape choices, (viii) proportion (where an object placed
in a area of the visualization is scaled according to its semantic significance, as the
difference in proportion creates a visual attraction to the eye). We also take into con-
sideration best practices [81] closely related to the above Gestalt principles like (ix)
clutter avoidance (i.e., the avoidance of noise on the diagram via uninterrupted areas
of white-space that act as separators of the groups of objects), (x) isolation, to promote
emphasis for an object in sharp antithesis to the continuity of the vast majority of the
“regular” objects, (xi) visual hierarchy, to denote a semantic hierarchy in the depicted
objects, (xii) focal points to guide visual flow (i.e., objects that intentionally stand out in
the representation and whose sequence guides the eye in the visual flow of exploring
the diagram). In [82] the author proposes a model for the nested visualization design
and validation that is based in four layers. The four levels are: (a) characterize the
tasks and data in the vocabulary of the problem domain, (b) abstract into operations
and data types, (c) design visual encoding and interaction techniques, and (d) cre-
ate algorithms to execute these techniques efficiently. Having this model, the author
presents a number of examples, and how those examples pertain to the proposed

45

model.
Graph drawing. In terms of drawing techniques, the research that mostly pertains

to our method involves circular graph drawing. This is due to the increased ability of
circular methods to clearly demonstrate natural group structures – clusters – within
the overall graph. In [83] the authors propose a technique for producing circular
drawings, using fixed angles on biconnected graphs with the goal of minimizing edge
crossings. The method places (a) edges towards the circumference of the embedding
circle and (b) the neighbors of a node as close as possible to the node. [84] proposes
a technique that uses fixed angles to place disks on the circumference of a circle. The
disks are either touching the circumference, or in case their size is greater than the
angle that is predefined for them, they are moved further from the circle, till they fit
in the predefined angle. In [85] the authors propose a visualization technique using
circular layouts. In this method, the nodes of the graph are divided into two groups,
the “anchor nodes” that are arranged on the circumference of a circle in fixed angles,
and the “free nodes” that are positioned inside the circle. The final position of the
“free nodes” depends on how similar they are to the nodes of the circumference. For
example, if we have 3 “anchor nodes” and a “free node” that depends equally on
each one of the three, then this node will be placed in the center of the circle. In
[86] the authors propose a similar to [85] method for drawing bipartite graphs in
circular layouts. In this proposal, the “free nodes” are positioned in the circular disk
in relation to the adjacent anchor maps. A simulated annealing algorithm provides
the final graph arrangement via the iterative computation of a cost for misplacing free
nodes with respect to anchor nodes. In [87] the authors present a number of circular
visualization methods, such as pie chats, star plots, spirals, etc. The majority of those
methods, does not contain any dependency information between the nodes, except
the connected ring pattern, which contains cross edges between the nodes that are
placed in the circumference of a circle, which provides much visual noise. A method
to reduce the visual clutter is by bundling the edges.

Visualization for analyzing. Since there is a majority of data available (Big Data),
there is a need of tools to properly retrieve those data, and visualize them. DIVE [88]
is data-agnostic framework for big data analysis, which uses pipelines in order to
retrieve the data from the sources, and via an object oriented approach to locate the
data that the user wants to see. DIVE is extensible through script language (DIVE
mostly is .NET oriented) and includes some pipelines for 2D and 3D representations.

46

Another approach [89] is the DOSA tool where the authors let the user have an
overview of all the available data and the connections between them, and they provide
an info-graphic style of visualization. The user of DOSA selects specific areas that he
wants to see as a group (e.g. New York and California, in a geographical dataset)
and he has the detailed view in one area of his screen and the info-graphic style
in another area. A work that is related to visualization and analysis of changes that
occur in the graph that is depicted is GraphDiaries [90]. This tool, highlights with
color the nodes that are to be deleted, or inserted to the examined graph at a specific
moment. The tool also provides three layout methods: (a) fixed (globally optimized)
for all the examined steps, (b) locally optimized layout per step, and (c) any possible
combination of the two previous. From the user study the authors performed, they
observed that the users focus on different changes of the graph, depending on what
layout was used.

2.7 Comparison to the state of the art

Query Extraction. Concerning the topic of query extraction, the state of the art has
been able to provide a solution for the problem of query extraction when one hosting
language is used (if there is any solution that can be used in more than one hosting
language, we were not able to find any experiment describing that). Moreover, the state
of the art works only with string based queries, leaving out the ones that use an API to
get constructed (object-based queries). At the same time, there are issues that remain
unsolved. To the best of our knowledge, there is no principled method to extract
queries of different programming styles in a single, reference language-independent
query representation. To this end, in Chapter 3, we address this shortcoming by
proposing a method that takes the source code of data-intensive ecosystem, and
produces the abstract representation of all the variants of the embedded queries in
a form that is possible to be further exploited by subsequent tasks, such as creating
the Architecture Graph of the ecosystem or migrating to another language.

Metrics. Regarding the topic of metrics, the state of the art provides solutions
concerning the metrics of software, which in most cases is object oriented software.
The provided solutions describe which principles a software metric should have.
Additionally, the metrics are capable to express the different costs of maintenance

47

in an object oriented software application. Moreover, there are works that examine
metrics in other areas, such as services (e.g. web services). Regarding the software-
database metrics area, we were not able to locate any principles that such a metric
should retain. To this end, in Chapter 4, we describe the principles of what a software-
database related metric should have, and we provide such a metric that is in sync
with the Lehman’s Laws of evolution. Additionally, we introduce views and query
rewrites in order to achieve better metric values, which provides lower maintenance
effort for the developers.

Query rewriting. Concerning the query rewriting for evolution issue, the state
of the art is mostly concerned about the rewriting of materialized views. That is
because the rewriting of materialized views is both time and resources consuming.
To achieve that, the state of the art proposes solutions that reverses the schema
evolution in order to keep intact the software part of a data-intensive ecosystem.
In Chapter 5 we introduce the mapping of the source code to the database schema,
using the Architecture Graph. The Architecture Grpah can be used in many tasks, such
as the program comprehension, impact analysis, documentation etc. In this chapter,
we focus on the impact analysis of a change, using policies over the events on the
nodes of the Architecture Graph. This way, we smoothly adapt the database to its new
schema, in sync with the surrounding software.

Visualization. The work presented in [1] contains a set of algorithms that re-
duce the visual clutter that exists when we visualize the Architecture Graph of a data-
intensive ecosystem. This way the Architecture Graph can highlight the correlation of
the code to the database. In extension to [1] we propose a “what-if” visualization
algorithm that was missing from the state of the art, and, additionally, we perform a
user study for the new algorithm, and the ones described in [1], regarding the user
satisfaction, and the code understanding that the visualization methods provide.

48

Chapter 3

Query Extraction

3.1 Introduction

3.2 Source Code to Query Variants Graph

3.3 From QVG Paths to Abstract Query Representations

3.4 From Abstract Query Representations to Concrete Query Representations

3.5 Cross-layer method: from source code to execution paths

3.6 Evaluation

3.7 Conclusion

3.1 Introduction

To operate properly, data-intensive applications rely on embedded queries, that are pro-
grammatically constructed (typically, in progressive, incremental fashion) to facilitate
the retrieval of data from the underlying databases. Identifying the location and seman-
tics of these queries and making them available to developers is very important. In a most
common scenario, database schema migration, refactoring and evolution require the
appropriate visualization and inspection of data-related code, spread across multiple
modules and files, for evaluating the impact of the schema change to the overall soft-
ware ecosystem. As another example, when an administrator wants to modify a part
of the database, it is imperative that the developers of the surrounding applications
are informed on the change and have the means to identify the parts of the code

49

that are going to be affected by that change [27],[33]. In Chapter 6 we demonstrate
that the availability of this information can facilitate the visualization of the internal
code architecture in terms of application-to-database interdependencies [1] and the
management of the impacts of evolution [33].

Yet, obtaining these queries is an extremely painful process. An embedded query is,
typically, progressively constructed via a sequence of source code statements that
modify the query internals according to user choices. In the past, the most popular
way to perform this task was via string-based embedded queries (Listing 3.1 top).
String-based queries were authored in SQL and parts of the query clauses were
added or modified according to the context via if statements.

However, programming practice has departed from the traditional string-based
construction of embedded queries and, developers now employ certain reusable host lan-
guage facilities (e.g., a specific API provided by the host language), to programmatically
construct and execute the respective queries. We call this way of query construction
object-based as queries are formed as objects of the host language that are further
manipulated by functions of an API that is responsible for the integration with the
database. See Listing 3.1 for the construction of such a query; the query is represented
by an object, under the variable $query and further modified by the host PHP code
via calls to the methods of a database-related API.

The state of the art methods and tools on query extraction do not support a
general, easily understood and language-independent method for the identification
of embedded queries, especially when it comes to object-based ones (see Chapter 2).
The current methods and tools work only in specific environments (e.g., Java, or C#)
via translating the object-based queries to string-based ones, or examine only the
queries that are most likely to be generated by the execution flow of the source code
[53, 27].

To address these shortcomings, we propose a language-independent method that is
principled, customizable and is able to (a) identify the embedded queries of a data-intensive
ecosystem, regardless of the programming style and the host language, as well as by finding
all their variations due to branching or looping statements, and at the same time, (b) represent
them in a universal, language - independent manner that can later facilitate migration or
reconstruction, with (c) minimal user effort and significant effectiveness.

Our method consists of four parts, depicted in Fig. 3.2. As discussed in Section 3.2,
we start with source code files as input. Initially, we decompose the input files to their

50

1 $result = db_query('SELECT source, alias FROM {url_alias} WHERE source in (:system) AND

language = :language_none ORDER BY pid asc;', $args);

1 /* Modified example of object-based embedded query. */

2 function _profile_get_fields($category,$register=FALSE) {

3 // Modification: addition of if statements.

4 if (isEmpty($category)) {

5 if(loggingIsEnabled) {

6 log('Error: you did not provide any category.');

7 }

8 return;

9 }

10 else {

11 $query = db_select('profile_field');

12 if ($register) {

13 $query->condition('register',1);

14 }

15 else {

16 $query->condition('category',db_like($category),'LIKE');

17 }

18 while (!user_access('administer users')) {

19 // Some comments

20 $query->condition('visibility',PROFILE_HIDDEN,'<>');

21 }

22 return $query

23 ->fields('profile_field')

24 ->orderBy('category','ASC')

25 ->orderBy('weight','ASC')

26 ->execute();

27 }

28 }

Figure 3.1: Embedded queries of Drupal-7.39; string (top) and object based (bottom)

structural parts (functions/methods) and we keep only these parts of the code that
host queries. In the context of our language-independent approach, we uniformly will
hereafter refer to functions/methods/procedures/routines as Callable Units. In general,
a Callable Unit is: “a sequence of program instructions that perform a specific task,

51

Code Queries

Language
specific

Source code of files
/ Callable Units

Concrete Query
Representation

Abstract
representation

Query Variants
Graph / QVG paths

Abstract Query
Representation

1
2

3

Figure 3.2: The steps of our method

packaged as a unit”1. For those Callable Units we create an abstract representation of
their code that we call Query Variants Graph (QVG). A QVG is a tree-like graph repre-
sentation of a function/method that uses the database, where we consume the branch
and loop statements of the host language. Due to the existence of branch and loop
statements in the code, our next task is to traverse the Query Variants Graph and find
every possible variation of a query that could occur at runtime. The result is a set of
QVG paths, i.e., path traversals from the root of the QVG till one of its leafs. Observe
that our representation has crossed the border of language specific details and is now
language-independent, depending only on premises like Callable Units, and branch
and loop statements that are practically universal. Our next step is the extraction
of queries from the QVG paths and their representation into a generic, language-
independent model. To represent queries in our model, we introduce an extensible
pallet of Abstract Data Manipulation Operators with fundamental data transformation
and filtering operators. This facilitates a universal representation of queries, indepen-
dently of the source language (thus the need for extensibility). So, in Section 3.3 we
present how queries are represented as combinations of these operators, via a model
of representation which we call Abstract Query Representation (AQR). An AQR is
a directed acyclic graph with nodes that describe the database-related parts of the
code and its purpose is to formally represent the queries. Finally, we can exploit the
Abstract Query Representation for various purposes, by converting the abstract repre-
sentation to a specific, target language, a facility useful both for the understandability
of the queries and for different kinds of migrations – e.g., either between database
engines (e.g. from MySQL to Oracle) or to completely different environments, like
MongoDB. This part is discussed in Section 3.4.

1https://en.wikipedia.org/wiki/Subroutine

52

https://en.wikipedia.org/wiki/Subroutine

Algorithm 3.1: Method overview using developer’s input. For each of the
Algorithms (3.3, 3.4, and 3.5) we mention the parts of the developer’s input
that is needed.
Input: Project’s folder pf , Files to exclude excl, Beginners begins, API

functions apiF , Language specifics lspecs
Output: The Abstract Query Representations of the project.

1 paths = ∅;
2 files2search = Recursively search the project′s folder;
3 foreach file f : files2search do
4 if f ∈ excl then
5 files2search− = f ; ▷ Remove files w/o queries

end

end
6 CallableUnits = split file into Callable Units;
7 foreach CallableUnit ∈ CallableUnits do
8 QVGs += create a Query Variants Graph (QVG) per Callable Unit;

end
9 foreach QV G ∈ QV Gs do

10 paths+ = to transform each QVG to a set of QVG paths;

end
11 foreach path ∈ paths do
12 AQRs+ = extract the embedded queries into an Abstract Query

Representation (AQR);

end
13 foreach AQR ∈ AQRs do
14 export AQR to a target language;

end

In Figure 3.2 we present a macroscopic overview of our method and we can see
that the parts of our method are related with the “concrete” and “abstract” represen-
tations of the source code (left) and database queries (right). The arrows describe the
input and output of each step. Algorithm 3.1 describes those steps.

Concluding, with this method:

53

• we provide a customizable way of extracting queries from a specific source
project,

• we provide a language-independent abstract representation of database-related
source code,

• done with minimal effort and significant effectiveness.

We have tested our method with systems built in different source languages (PHP
and C++) and achieve very high numbers of recall and correctness with quite low
user effort.

In Section 3.2 we will see how we locate the functions/methods that contain
database queries in their source code, and how we decompose those methods to Query
Variants Graphs. Then, how we construct Abstract Query Representations from the
Query Variants Graphs, so as to move from abstract code to abstract queries. Next
in Section 3.3, we will see a universal representation of the queries which is used to
create concrete queries for specific target environments (which is discussed in Section
3.4). Additionally, in Section 3.5 we present a cross layer method for the first two
steps of our method. Finally, in Section 3.6 we present our experimental evaluation.

3.2 Source Code to Query Variants Graph

In this section, we address the problem of identifying all the variants of the queries
that exist in the source code of a given information system. To do so, we initially
abstract the input of this step, which is the source code of the information system, to
a Query Variants Graph that removes the language-specific control statements such
as branch and loop statements of the host language. Next, we generate every possible
query variant via traversing the QVG paths. Thus, the result of this step is a set of
QVG paths for every Callable Unit of the information system that generates a query.

3.2.1 Query Variants Graph Construction

In this subsection, we address the problem of abstracting the source code from the
branch and loop statements that exist in the host language via an abstract represen-
tation (Query Variants Graph).

54

Our input is a Project that consists of a set of Files which may include functions
or methods (depending on the host language). Both functions and methods are el-
ementary building blocks of software, and, therefore we need to represent them in
our analysis. Specifically, starting from a set of files that constitute the source code
of an information system, our first step is to identify the database-related files and
skip everything else. Then, we decompose these files to their Callable Units and we
perform a second layer filtering keeping only the database-related Callable Units.
The Callable Units shown at Listing 3.1 are database-related ones, since they are
querying two database tables (url_alias and profile_field respectively). The Callable
Units typically consist of branch and loop statements that interact with the objects of
the Callable Units, and the query objects also get modified, therefore we also represent
the branch and loop statements in our analysis too.

Extraction of Callable Units The first intermediate step towards abstracting the
source code in language-independent format is the extraction of Callable Units. We
initially check whether a file contains any database-related code statement either
checking for query-related statements through string-based pattern matching or for
query-related object initializations. If there is no such statement, we skip the file.
Otherwise, we split it to its Callable Units. To end up working only with query-
embedding Callable Units, significantly reducing the amount of work and resources
needed to be invested in the subsequent steps, we perform a second layer filtering,
at Callable Units level, since in the first filtering we only excluded the files that had
no database connection. We do that in a second step because the Callable Unitsde-
composition step is time consuming so we avoid it for every file and we perform it
only when necessary. The second layer filtering is done as the first layer filtering: via
checking whether any of the code statements of the Callable Unit is database-related
or not. Algorithm 3.2 formally describes those steps.

The price to pay To extract the appropriate information from the source files, we
need to perform simple extractions from the source code. This requires (a) physical
level information like the location of the source code and the parts of it that are to be
ignored (e.g., binary files), (b) query-related information denoting the terms signifying
a query, and, (c) language specific information.

Concerning the query-related information, as already mentioned, we discern be-
tween two categories of hosting. In the first case, where queries are handled as strings,
we need to know the API functions that use that string, so as to perform slicing in

55

Algorithm 3.2: Callable Unit Extraction: extraction of database-related
Callable Units of a project

Input: A set of source files, F , of the project;
Output: The database-related Callable Units (U);
Variables: The set of Callable Units of f (fCU);

1 The set of Callable Units of the project, U = ∅;
2 forall files f ∈ F do
3 if f does not call DB-related functions then
4 continue; ▷ early prune for time measurement reasons

end
5 fCU is created by splitting f to Callable Units via the grammar’s tokenizer;
6 forall Callable Units: cu ∈ fCU do
7 if cu calls any DB-related function then
8 U ∪ cu; ▷ only DB-related Callable Units

end

end

end

order to find the query strings (in our example of Listing 3.1 the function contains
the complete query string). In the second case, where queries are handled as objects
and their definition is manipulated via a dedicated API for query construction, we
need to know the API functions that construct an object-based query.

The way we do this is by splitting the original project to Callable Units on the
basis of a formally specified grammar that requires the user to enter once per language:
(i) how the comments start and end (both single-line and multiple-line comments),
(ii) how the string values are described in the host language (e.g., in C++ this is done
by using the character: ‘"’), (iii) if there are characters that “escape” the string value
markers (eg. in C++ the character: ‘\’), (iv) finally how to treat the branch and loop
statements of the host language. In this grammar, we treat nearly all loop statements
similarly to branch statements. Remember that we are doing static analysis to dig out
the query semantics. As loops are typically populating filters with values produced at
runtime, we only need to handle the contents of the loop once, to identify the used
expression along with the usage of an artificial set-valued pseudo-constant without

56

practically misrepresenting the query’s semantics.
Having the previously stated input, we can treat each source code file with the

grammar that is described in Listing 1. We treat nearly all loop statements as branch
statements with only one exception. That is the do…while loop that is executed at least
once, therefore, when we encounter such a loop, we just add its statements to our
representation (QVG).

Query Variants Graphs Having explained our meta-model for the input and the
method for the extraction of its Callable Units, we now move on to describe the
abstract representation of the code, which is the first step in Fig. 3.2.

Table 3.1 contains the host language block types that are used in this meta-model
as input, with a description of what they represent in the host language. A block is
used to describe the scope validity of the statements of the host language. Note that
each block may contain internal blocks, e.g. loop blocks inside other loop blocks for
a two dimensional array iteration. Therefore we decompose them to their parts. Also,
since there can be code statements before and after an internal block, we split the
code of the Callable Unitinto two parts: one before and another after the block we
examine. Those blocks are used to create the nodes of the Query Variants Graph.

Our fundamental structure for abstracting a Callable Unit is the Query Variants
Graph. A Query Variants Graph is a graph (almost a tree) with nodes the blocks of
the source code, without branch and loop statements. The edges correspond to the
control flow of the code (aka they “consume” the branch and loop statements). A
formal definition of the Query Variants Graph is described in Definition 3.1.

Definition 3.1. Query Variants Graph - a directed rooted graph QV G(V,E, r), where
V is the set of nodes of the graph corresponding to elements of a Callable Unit, E, the
set of directed edges connecting elements of the Callable Unit together, and r belongs
to V is the root node, with the following properties:

1. The root of the graph corresponds to the entire Callable Unit CU .

2. Sibling nodes have the following properties:

• they share the same code both among them and also with their parent,
both before and after the branching/looping statement of their parent

• each sibling replaces the branching/looping block (including the branch/loop
statement) of their parent with exactly one alternative execution block

57

<Callable Unit> ::= <function type> <function name> '(' <parameters definition list> ')' '{' <

block contents> '}'

<function type> ::= <chars> | e

<function name> ::= <chars>

<parameters definition list> ::= <parameter definition> | <parameters definition list> ',' <

parameter definition>

<parameter definition> ::= <chars> | <chars> <chars> | e

<block contents> ::= <statement> | <block contents> ';' <statement>

<statement> ::= <string> | <for statement> | <foreach statement> | <while statement> | <do

while statement> | <switch statement> | <if statement> | <function call> | e

<string> ::= <start string symbol><string content><end string symbol>

<for statement> ::= if (<condition>) <block>

<foreach statement> ::= if (<condition>) <block>

<while statement> ::= if (<condition>) <block>

<do while statement> :: <block>

<switch statement> ::= switch (variable) <case blocks>

<case blocks> ::= case <block> break | <case blocks> default <block> break | e

<if statement> ::= if '(' <condition> ')' <block> [else <block>]

<block> ::= <start block symbol> <block contents> <end block symbol>

<function call> ::= <function name> (<function parameters>)

<function parameters> ::= <parameter> | <function parameters> <parameter>

<parameter> ::= <chars> | e

<chars> ::= <char> | <char><alnums>

<char> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" |

"O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" | "a" | "b" | "c" | "

d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s

" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

<alnums> ::= <alnum> | <alnum><alnums>

<alnum> ::= <char> | "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | e

Listing 1: Host language grammar example for C++ programming language

58

Name Description

Loop Loop blocks contain a group of statements that is repeated
while a condition is met.

Branch Branch blocks contain statements that get executed after
a condition is examined and is found true.

QVGNode Nodes that are used for the creation of the Query Vari-
ants Graph, and specifically are one of the following
types: QVGNModule, QVGNStatements, QVGNStart, or
QVGNEnd.

QVGNModule QVGNModule represents the beginning of a Callable Unit.
QVGNStatements QVGNStatements component contain the code statements

that are to be executed the one after the other, without
any branch or loop statement between them.

Q
VG
N
od
es QVGNStart QVGNStart represents the beginning of a Branch or Loop

block. As already mentioned, the Branch and Loop blocks
lead to different Statement blocks. Even the simpler “if”
statement, leads to two Statement blocks, one that contains
the code that is to be executed when the condition is true,
and another that does not contain that extra code.

QVGNEnd QVGNEnd represents where a Branch or Loop block ter-
minates.

Table 3.1: Block types of host language, with their descriptions and components of
Query Variants Graph

• for every alternative branching/looping block there is exactly one sibling
node.

Algorithm 3.3 serves the creation of the Query Variants Graph tree. A Callable
Unit is decomposed to its blocks, starting with the first branch or loop block. The
code of that block is split to its components and each one of them becomes a “sibling”
node of the QVG. After that, the remaining code is checked again for branch/loop
blocks, and, of course, the “siblings” are checked for branch/loop blocks too.

In Fig. 3.3 we have the example of the Query Variants Graph for the object-based
query presented in Listing 3.1. On the left side we have the source code denoted with

59

the blocks of the code. On the right we have the graph representation of the Query
Variants Graph.

Callable
U
nit

1
1.11.1.1

1.2

1.3

1.4

1.4.1

1.4.2

1.5
1.5.1

1.6

/* Modified example of object−based embedded query. */
function _profile_get_fields ($category, $register=FALSE) {
// Modification: addition of if statements.
if (isEmpty($category)) {
if (loggingIsEnabled) {
log(’Error: you did not provide any category.’);
}
return;
}
else {
$query = db_select(’ profile_field ’) ;
if ($register) {
$query−>condition(’register’,1);
}
else {
$query−>condition(’category’,db_like($category),’LIKE’);
}
while (!user_access(’administer users’)) {
// Some comments
$query−>condition(’visibility’,PROFILE_HIDDEN,’<>’);
}
return $query
−>fields(’ profile_field ’)
−>orderBy(’category’,’ASC’)
−>orderBy(’weight’,’ASC’)
−>execute();

}
}

(a) Object-based query, annotated with black

horizontal labels on sequential blocks, and

dashed vertical on loop and branch blocks.

Callable Unit

Block Start 1If

Block Start 1.1

Block 1.1.1

Block End 1.1

Block 1.2

Else

Block 1.3

Block Start 1.4

Block 1.4.1 Block 1.4.2

Block End 1.4

Block Start 1.5
Loops as
branches

Block 1.5.1

Block End 1.5

Block 1.6

Block End 1If end Else end

(b) Query Variants Graph of modified

reference example.

Figure 3.3: The reference example of Listing 3.1 (down) in two representations: a)
text and b) graph.

Next, we describe the class diagram for the classes that get involved in the Callable
Unit extraction as well as the Query Variants Graph construction. To represent a
Callable Unit as a graph, we need to use nodes. These nodes represent the blocks of
Table 3.1. In order to identify where an internal block begins and ends, we used the
Start and End components of Table 3.1. Regarding the implementation aspect, all
the nodes implement the abstract class QV GNode. The root of the QVG graph is the
QV GNModule class.

60

Figure 3.4: Host language class diagram: Loops are treated as branches. QVGNode
is used to create the graph representation of Query Variants Graph as described in
Definition 3.1

3.2.2 Query Variants Graph Path Identification

In this subsection we address the problem of identifying the different variants of a
query that may occur during the execution of the code. This is done via a DFS-like
algorithmic approach, where we traverse every Query Variants Graph path, regardless
of whether the path contains database-related code or not. Algorithm 3.4 formally
describes how we identify the variants of a query.

We perform a top-down traversal of the graph and we keep all code statements
encountered from the root to each visited node, in a variable, called QP in our
algorithm.

Initially, we start from the root node of the QVG (CU.Block), with an empty list of
query variants (named queryV ariants) and an empty “up to now” string statement
(named codeUpToNow). For each node that we visit, we append in QP the code
statements of the visited node. Then, we check if the visited node has any children
nodes. If the node has no children nodes and QP is not empty, then we have finished
with a traversal and we add the contents of QP to the queryV ariants list. The contents
of QP are the code statements from the CU.Block node up to a “leaf” node of QVG. If
the node we visited has children nodes, then for each one of them we recursively call
the TraversePaths procedure, giving as starting node the child node that we want to
visit, as “up to now” string statements the QP variable and as list, the queryV ariants

61

list of paths.
The difference of TraversePaths procedure to the well known DFS algorithm is that

we do not mark the nodes we visit. This is because we may encounter a node in
more than one traversals, coming from different ancestor nodes, thus having different
codeUpToNow value, which is the information that is kept in a node. So, marking a
node as visited would produce wrong results. Observe the Query Variants Graph of
Figure 3.3b: the bottom Block 4 node is used in four different traversals, marking it as
visited after the first traversal would result in ignoring its statements in the remaining
three traversals.

Coming back to our reference example, we can see that the Query Variants Graph of
Figure 3.3b provides six different traversals. The traversals we are interested in are
the ones that contain non dashed boxes, since the dashed nodes are used for aux-
iliary purposes, and they do not contain any project related statements as their at-
tributes. The six different traversals of Algorithm 3.4 for the Query Variants Graph of
_profile_get_fields Callable Unit are displayed in Figures 3.5a, 3.5b, 3.6a, 3.6b, 3.6c
and 3.6d. Each figure contains the traversal as graph (with its contents on the right
side) that are used in the abstract representation described later in Section 3.3.

The first one uses only the 1.2 node, and it is described by Figure 3.5a.
The second one, uses –in addition to 1.2 node– the 1.1.1 node, and is described

by Figure 3.5b.
An observant reader may notice that the previous two traversals of Figure 3.5 do

not contain any kind of database interaction. The statements of the nodes participat-
ing in those traversals are for log purposes and termination of _profile_get_fields
Callable Unit. Therefore, since we are interested only in the database-related Callable
Units, those traversals are considered as false positive results in our research. To
avoid having such results, our method initially included a check point of the node’s
statements whether the node contains database-related code or not. What we noticed
in our efficiency evaluation regarding the time measurement is that this kind of check
at TraversePaths method, slowed down our method up to 4 times compared to the
presented approach of non checking! Therefore, we add those traversals to our list,
and we deal with them later on, in Section 3.3.

Returning to our example, we move on to the third traversal of Algorithm 3.4.
This traversal uses the 1.4.1 node and does not use the 1.5.1 node. The 1.3 and 1.6
nodes are also used in this traversal. The code depicted in Fig. 3.6a describes the

62

1.2 return;

(a) First path

1.1.1

1.2

log(’Error: you did not provide any category.’);

return;

(b) Second path

Figure 3.5: Execution paths of our object-based reference example of Listing 3.1 that
are not database-related. The paths are described by “next” arrows (non dashed
arrows) that start from the first non dashed node and move to the final one. The
dashed nodes do not provide any project related statements for our execution path
representation, therefore we omit them from the path representation. The dashed
arrows are there to describe the content relationship between the nodes and the
project source code statements.

1.3

1.4.1

1.6

$query = db_select(’ profile_field ’) ;

$query−>condition(’register’,1);

return $query
−>fields(’ profile_field ’)
−>orderBy(’category’,’ASC’)
−>orderBy(’weight’,’ASC’)
−>execute();

(a) Third path

1.3

1.4.2

1.6

$query = db_select(’ profile_field ’) ;

$query−>condition(’category’,db_like($category),’LIKE’);

return $query
−>fields(’ profile_field ’)
−>orderBy(’category’,’ASC’)
−>orderBy(’weight’,’ASC’)
−>execute();

(b) Fourth path

63

1.3

1.4.1

1.5.1

1.6

$query = db_select(’ profile_field ’) ;

$query−>condition(’register’,1);

$query−>condition(’visibility’,PROFILE_HIDDEN,’<>’);

return $query
−>fields(’ profile_field ’)
−>orderBy(’category’,’ASC’)
−>orderBy(’weight’,’ASC’)
−>execute();

(c) Fifth path

1.3

1.4.2

1.5.1

1.6

$query = db_select(’ profile_field ’) ;

$query−>condition(’category’,db_like($category),’LIKE’);

$query−>condition(’visibility’,PROFILE_HIDDEN,’<>’);

return $query
−>fields(’ profile_field ’)
−>orderBy(’category’,’ASC’)
−>orderBy(’weight’,’ASC’)
−>execute();

(d) Sixth path

Figure 3.6: Execution paths of our object-based reference example of Listing 3.1 that
are database-related.

64

database-related code that is to be executed from this traversal during runtime.
The fourth traversal differs to the previous one only in one place: instead of 1.4.2

node, this traversal uses the 1.4.2 node. The code of the fourth path is depicted in
Fig. 3.6b.

The next two traversals of Query Variants Graph of _profile_get_fields Callable
Unit are based on the previous two traversals, but now they both additionally use the
1.5.1 node that was previously excluded from the traversals. Their codes are depicted
in Fig. 3.6c and Fig. 3.6d, respectively. The previous four traversals of Figure 3.6
are all database-related and provide four different variants for the database query of
_profile_get_fields Callable Unit.

Concluding, the Algorithm 3.4 added a new variant to the list of query variants
(queryV ariants) for the examined Callable Unit (_profile_get_fields), for each one of
the previous six traversals of Figures 3.5 and 3.6.

The next step in our method is to use those variants, and to create a universal
representation for each one of the database-related query variants. This way, we
can compare the queries and find duplicates, we can also notice queries that are
frequently used in different files/Callable Units, and finally we can use that universal
representation to translate the query variants to more than one target languages (e.g.
such as SQL for a specific DBMS, or MongoDB).

65

Algorithm 3.3: Creation of Query Variants Graph
Input: A Callable Unit (CU)
Output: The root node for the Query Variants Graph of CU Callable Unit’s

source code (along with the rest of the tree that is constructed).
1 Block = new node;
2 Block =CreateGraph(CU , Block);
Procedure CreateGraph(CU, Parent)

1 Block = new node;
2 branches = code of the first branch/loop block;
3 if branches ̸= ∅ then
4 if branches ̸= contain final alternative then
5 branches += empty branch statement;

end
6 BlockStart = new node;
7 preceding = code before the start of first branch block;
8 if preceding ̸= ∅ then
9 Block = preceding;

10 link BlockStart to Block;
11 link Block to Parent;

else
12 link BlockStart to Parent;

end
13 BlockEnd = new node;
14 foreach sibling ∈ branches do
15 link BlockEnd to CreateGraph(sibling, BlockStart);
16 remove examined code;

end
17 return CreateGraph(M, BlockEnd); ▷ Code after 1st branch

else
18 Block = all CU code; ▷ Block without branch/loop

19 link Block to Parent;
20 return Block;

end

66

Algorithm 3.4: Creation of QVG paths for a Callable Unit CU

Input: A Callable Unit (CU)
Output: The database-related QVG paths of a Callable Unit (queryV ariants).
Variables: queryV ariants = ∅, codeUpToNow = ∅;

1 TraversePaths(CU.Block, codeUpToNow, queryV ariants);
Procedure TraversePaths(v, codeUpToNow, queryV ariants)

1 QP = codeUpToNow + statements of v;
2 if v has no children then
3 if QP ̸= ∅ then
4 queryV ariants+ = QP ;

end

else
5 forall w : children of v do
6 TraversePaths(w, QP , queryV ariants);

end

end

67

3.3 From QVG Paths to Abstract Query Representations

In this section, we introduce a universal way to represent the query variants that we
obtained from the QVG traversals. Moreover, since this is an abstract query represen-
tation, it should be able to describe any database query, despite of how it was created
(object-based or string-based queries).

To represent queries, we use an extensible pallet of Abstract Data Manipulation
Operators (ADMO) that represent the different parts of a query. Our operators cover
the relational algebra, therefore we are able to represent queries embedded in rela-
tional database management systems. The operators are given in Table 3.2. The Ab-
stract Data Manipulation Operator pallet is extensible; new operators can be added
to cover cases of non relational databases.

So, to represent a query, we need: (i) to tokenize the string query to query parts
(which is a straight forward procedure), when the string-based creation method is
used, (ii) to identify the parts of the source code that pertain to the specified query
object variable (i.e. in Fig. 3.3a the $query object variable), when the object-based
creation method is used. For both cases we use the Abstract Data Manipulation
Operators to represent the queries.

Algorithm 3.5 formally describes the AQR construction from QVG paths. For the
string-based constructed queries, the mapping of the SQL parts to the AQR nodes is a
straightforward procedure. Using as reference example of Listing 3.1 we tokenize the
first parameter of db_query function (which is our input) to the parts that are between
the keywords of SQL query language (the capitalized words with blue color). Then,
we add Projector operators for each of the values that follow the SELECT keyword
as a parameter to each node. We add a Source operator for the value that follows the
FROM keyword, with its parameter (url_alias in our example). We add comparator
operators (with their parameters) for the values that follow the WHERE, and AND
keywrods. Finally, we add an orderding operator (with its parameters) for the value
that follows the ORDER BY keyword. Table 3.2 describes all possible keyword -
ADMO combinations for the SQL queries.

In Definition 3.2, we have a formal way to describe our Abstract Query Repre-
sentation.

Definition 3.2. Abstract Query Representation (AQR) - An abstract query repre-
sentation AGR = (V,E) is a directed acyclic graph whose nodes, V , are Abstract

68

Source Describes a provider of information in a
query

A table in SQL.

Projector Describes an output attribute The SELECT attributes in
SQL.

Comparator Describes a filter that the output of the
query should fulfil

The conditions of the
WHERE clause in SQL.

Grouper Used for summarizing of the output
(used for grouping the incoming data
in groups, each group identified by a
unique combination of grouper values)

The attributes of the
GROUP BY clause in
SQL.

Ordering Used for sorting of the output The attributes of the OR-
DER BY clause in SQL.

Limiter Used for restricting the size of the output The TOP/LIMIT clauses
of an SQL query

Aggregator Used for applying an aggregate function
to a input attributes

The MIN, MAX, COUNT,
SUM, AVG functions in
SQL

Table 3.2: Abstract Data Manipulation Operator with a description of the part of a
query that they represent

Data Manipulation Operators that describe a part of the query. An edge e ∈ E

from a node vi to a node vj specifies that the execution of the statement represented
by vi precedes the execution of the statement represented by vj. The set of nodes
V = Start ∪Nodes ∪ End, is a union that comprises the following nodes:

• A node Start that specifies the beginning of a query variant q.

• A set of nodes Nodes that represent Abstract Data Manipulation Operators
which serve for generating the different parts of the query variant q. Each one
of the nodes is an Abstract Data Manipulation Operator (ADMO) as described
in Table 3.2.

• A node End that serves for concluding the generation of q.

Observe that since a string-based query might be modified in the source code,
we may need to perform slicing (forward slicing, as mentioned in [91]) to find out

69

Algorithm 3.5: Transforming a QVG path to its AQR representations
Input: A QVG path of a Callable Unit (P), a mapping (M) of the API

functions to ADMOs
Output: The Abstract Query Representation of P .

1 Add Start node for AQR ;
2 foreach QV GNode N ∈ P.nodes do
3 functionsOfNode = split contents of N to its functions;
4 foreach F ∈ functionsOfNode do
5 FAMDOs = M(F); ▷ Find the ADMO nodes for function F

6 foreach fadmo ∈ FAMDOs do
7 Set function’s F parameters to fadmo’s ADMO parameters;
8 Add fadmo to AQR ;

end

end

end
9 Add End node for Abstract Query Representation ;

whether our query was modified or not (in our example it is not happening). In our
approach, we perform slicing only on the code of the Callable Unit that we examine.
Inter slicing techniques that use dependency graphs to identify the parts of the queries
that are constructed in other Callable Units that use the one that we examine (e.g.,
see [92]) have not proved to be necessary in our experiments; of course, they are a
clear extension for future work.

In the case of object-based constructed queries, we need some additional input
in order to construct the AQR out of the variants we obtained from Algorithm 3.4.
We initially retrieve the contents of the variants and we decompose the statements
of those variants to the API functions of the project we examine, as we need to map
the functions of the project’s API to the Abstract Data Manipulation Operators of
Table 3.2. This is work performed exactly once, and it is project-related (since each
project has it’s own API). In Section 3.6 we discuss the developer’s effort for this
task.

In Listing 2 we can see how the source code statements of the object-based Query
Variants Graph paths and string-based queries are transformed to Abstract Query
Representations.

70

<AQR> ::= <object based> | <string based>

<object based> ::= <function call list>

<function call list> ::= <function call> |

<function call list> delimiter <function call>

<function call> ::= <function name> (<function parameters>)

<function name> ::= mapping of function to <ADMO nodes list>

<function parameters list> ::= <function parameter> |

<function parameters list> delimiter <function parameter>

<function parameter> ::= <parameter>

<ADMO nodes list> ::= <ADMO node> | <ADMO nodes list> <ADMO node>

<ADMO node> ::= <Source> | <Projector> | <Comparator> | <Grouper> | <Ordering> | <Limiter> | <

Aggregator>

<Source> ::= Source with a mapping of parameter to <ADMO parameter>

<Projector> ::= Projector with a mapping of parameter to <ADMO parameter>

<Comparator> ::= Comparator with a mapping of parameters to <par1><operand><par2>

<Grouper> ::= Grouper with a mapping of parameter to <ADMO parameter>

<Ordering> ::= Ordering with a mapping of parameter to <ADMO parameter> [<ordinance>]

<Limiter> ::= Limiter with a mapping of parameter to <ADMO parameter>

<Aggregator> ::= Aggregator <aggr function> with a mapping of parameter to <ADMO parameter>

<operand> ::= < | > | <> | != | = | <= | >=

<par1> ::= <par>

<par2> ::= <par>

<par> ::= <ADMO parameter> | <Aggregator>

<ordinance> ::= ASC | DESC

<aggr function> ::= "MIN" | "MAX" | "COUNT" | "SUM" | "AVERAGE"

<ADMO parameter> ::= <parameter>

<parameter> ::= <chars>

<chars> ::= <char> | <char><alnums>

<char> ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" | "N" |

"O" | "P" | "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" | "a" | "b" | "c" | "

d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s

" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

<alnums> ::= <alnum> | <alnum><alnums>

<alnum> ::= <char> | "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" | e

<string based> ::= <SELECT> <FROM>

[<WHERE> <GROUP BY> <ORDER BY> <HAVING> <LIMITend>] |

<SELECTwithLimitbegin> <FROM>

[<WHERE> <GROUP BY> <ORDER BY> <HAVING>]

<SELECT> ::= " SELECT " <SELECT params>

<SELECT params> ::= <SELECT param> | <SELECT params><SELECT param>","

71

<SELECT param> ::= <Projector>

<FROM> ::= " FROM " <FROM parms>

<FROM params> ::= <FROM param> | <FROM params><FROM param>","

<FROM param> ::= <Source>

<WHERE> ::= " WHERE " <WHERE parms>

<WHERE params> ::= <WHERE param> | <WHERE params><CONNECTOR><WHERE param>

<CONNECTOR> ::= " AND " | " OR "

<WHERE param> ::= <Comparator>

<GROUP BY> ::= " GROUP BY " <GROUP BY params>

<GROUP BY params> ::= <GROUP BY param> |

<GROUP BY params><GROUP BY param>","

<GROUP BY param> ::= <Grouper>

<ORDER BY> ::= " ORDER BY " <ORDER BY params>

<ORDER BY params> ::= <ORDER BY param> |

<ORDER BY params><ORDER BY param>","

<ORDER BY param> ::= <Ordering>

<LIMITend> ::= " LIMIT " <LIMIT param>

<LIMIT param> ::= <Limiter>

<LIMITbegin> ::= " SELECT TOP(" <LIMIT param> ")" <SELECTwithLimitbegin>

<LIMIT param> ::= <Limiter>

<SELECTwithLimitbegin> ::= <SELECT params>

<HAVING> ::= " HAVING " <HAVING params>

<HAVING params> ::= <HAVING param> | <HAVING params><HAVING param>","

<HAVING param> ::= <Aggregator>

Listing 2: Abstract Query Representation grammar (with italics in the parts that need
user input

Finally, in Figure 3.7 we see the creation of an AQR that comes from the first traversal
of _profile_get_fields Callable Unit (which comes from an object-based Query Vari-
ants Graph path of Fig. 3.6a that was presented in Section 3.2.2). The project’s API
functions are translated to Abstract Data Manipulation Operators.

The AQR representation allows us to compare queries on the similarity of their
structure. That is useful because from the Query Variants Graph traversals we might
obtain query variants (in the Callable Units that we examine) with identical structure
(albeit, possibly with different values). Since we consider all query variants as valid
for our research, we need to identify the duplicate representations of such query
variants here (these duplicates are due to branch/loop blocks in the source code of a
Callable Unit that are unrelated to the query-object). Therefore, we use the Abstract

72

Start

Source (profile_field)$query = db_select(’ profile_field ’) ;

Comparator (register, =, 1)$query−>condition(’register’, 1);

Projector (profile_field.*)−>fields(’ profile _field ’)

Ordering (category, ASC)−>orderBy(’category’, ’ASC’)

Ordering (weight, ASC)−>orderBy(’weight’, ’ASC’)

End−>execute();

Figure 3.7: Abstract query representation of the path presented in Fig. 3.6a. On the
left we have the source code that constracts the query and on the right we have the
AQR nodes with their parameters.

Query Representation, and see if there are any AQRs with the exact same operators,
in the exact same order, carrying the exact same ADMO parameters in the same
position of the Callable Unit. Since we need only one of those queries, we eliminate
the AQR duplicates. This is a rather simple task, since a simple walk over the Abstract
Data Manipulation Operators of the Abstract Query Representation can provide us
the information needed for the comparison.

3.4 From Abstract Query Representations to Concrete Query Rep-

resentations

The Abstract Query Representation would be of small use, if we could not translate
the AQRs to concrete queries for a specific query environment, so, the next step of
our method is to be able to transform the model representation of AQR to a text-
based representation of a concrete query environment. In Figure 3.8 we depict the
classes that are responsible for the creation of the Abstract Query Representation and
how the AQR is connected to the project class. Each query consists of a number
of query parts. Regarding the output of a query, we use the Projector class that is
used by the Computation, Transformation, Column, and Aggregation classes. That is
because a query might output the data that unmodified, or transformed (using simple

73

expressions, or combined with aggregation functions etc.). Another issue is that one
might also set a new name for an output attribute of a query via an alias identifier,
therefore some of the classes that manipulate the data also need to implement the
Aliasing interface. The query environments on which we have up to now performed
this model-to-text transformation are SQL (Section 3.4.1) and MongoDB (Section
3.4.2).

Figure 3.8: Class diagram of classes that are related with the Abstract Query Rep-
resentation and their connection to the database-related project we examine. Since
the pallet is extensible, one may add other classes that only need to implement the
AbstractQueryPart interface.

3.4.1 From AQR to SQL

In this part, we are going to describe the way we translate the AQRs to SQL queries.
Initially, we gather the nodes of the AQR in groups. Those groups are:

• The “projection” group: for the Projector and Aggregator Abstract Data Manip-
ulation Operators, described in Table 3.2

74

SELECT <the contents of the projection group, separated with ','> or '*' if no such node exists

FROM <the contents of the input group, separated with ','>

{WHERE <the contents of the filter group, separated with ' AND '> or nothing if no such node

exists}

{GROUP BY <the contents of the group by group, separated with ','> or nothing if no such node

exists}

{HAVING <the contents of the having group, separated with ','> or nothing if no such node

exists}

{ORDER BY <the contents of the order by group, separated with ','> or nothing if no such node

exists}

{LIMIT <the contents of the limit group, separated with ','> or nothing if no such node exists}

;

Listing 3: SQL description

• The “input” group: for the Source Abstract Data Manipulation Operators, de-
scribed in Table 3.2

• The “group by” group: for the Grouper Abstract Data Manipulation Operators,
described in Table 3.2

• The “order by” group: for the Ordering Abstract Data Manipulation Operators,
described in Table 3.2

• The “limit” group: for the Limiter Abstract Data Manipulation Operators, de-
scribed in Table 3.2

• The “having” group: for the Comparator Abstract Data Manipulation Operators,
described in Table 3.2, when the Comparator performs a comparison of an
Aggregation function of SQL (MIN, MAX, COUNT, SUM, AVG)

• The “filter” group: for the Comparator Abstract Data Manipulation Operators,
described in Table 3.2 (the remaining ones).

Those groups are used so as to export the Abstract Query Representation to a
file, using the description that is depicted in Listing 3. The groups that are embraced
with ‘{’ and ‘}’ characters are optional for the creation of the SQL queries, therefore
if there are no Abstract Data Manipulation Operator nodes in these groups of AQR,
these groups are omitted from the output.

75

3.4.2 From AQR to MongoDB

Likewise, we gather the nodes to groups in MongoDB export too. Those groups are:

• The “projection” group: for the Projector Abstract Data Manipulation Operators,
described in Table 3.2

• The “input” group: for the Source Abstract Data Manipulation Operators, de-
scribed in Table 3.2

• The “group by” group: for the Grouper Abstract Data Manipulation Operators,
described in Table 3.2

• The “order by” group: for the Ordering Abstract Data Manipulation Operators,
described in Table 3.2

• The “limit” group: for the Limiter Abstract Data Manipulation Operators, de-
scribed in Table 3.2

• The “filter” group: for the Comparator Abstract Data Manipulation Operators,
described in Table 3.2

• The “having” group: for the Comparator Abstract Data Manipulation Operators,
described in Table 3.2, that are using one of the following functions: sum, avg,
min, and, max

• The “aggregation” group: for the Aggregator Abstract Data Manipulation Op-
erators, described in Table 3.2

As previously, those groups are used to export the Abstract Query Representa-
tion to a file. In MongoDB there are two ways (using find and aggregate functions)
of asking a query, of which one (the aggregate) is subdivided to two versions. There-
fore we need three descriptions on how to ask MongoDB queries. Those ways are
presented in: Listing 4, Listing 5, and Listing 6. The final export depends on the
following:

1. If the input group has more than one items, then it can not be exported to
MongoDB.

2. If all the group by, order by, limit, and, having groups are empty, then the output
form that is used is described in Listing 4.

76

3. If the group by group of nodes is not empty, then we append all the nodes of
the aggregate group to the group by group, and the output form that is used is
described in Listing 5.

4. If the group by group of nodes is empty, then the output form that is used is
described in Listing 6.

As previously stated, the groups that are embraced with ‘{’ and ‘}’ characters are
optional. Although one may observe that there could be empty queries, there is no
such case since there is at least one group of Abstract Query Representation that
contains some Abstract Data Manipulation Operator nodes.

db.<input value>.find(

{ <the contents of filter group> },

{ <the contents of projection and aggregation groups> }

)

Listing 4: MongoDB form description when none of the GROUPER, ORDERING,
LIMITER or COMPARATOR (using any of the SUM, AVG, MIN, and, MAX functions)
nodes is used

db.<input value>.aggregate([

{ $match: <the contents of filter and having groups> }, // if exists

{ $group: { _id: <the contents of group by group> } },

{ $sort: <the contents of order by group> }, // if exists

{ $limit: <the contents of the limit group> } // if exists

])

Listing 5: MongoDB form description when the GROUPER nodes exist in the AQR
representation

db.<input value>.aggregate([

{ <the contents of aggregation group> }, // if exists

{ $match: <the contents of filter and having groups> }, // if exists

{ $sort: <the contents of order by group> }, // if exists

{ $limit: <the contents of the limit group> } // if exists

])

Listing 6: MongoDB form description when at least one of the ORDERING, LIMITER
or COMPARATOR (using any of the SUM, AVG, MIN, and, MAX functions) nodes is
used

77

A formal description of Abstract Query Representation expression to MongoDB
expression is described in Algorithm 3.6.

In cases where a query can not get exported from AQR to MongoDB, we produce
a message stating the Callable Unitand the file which contain the examined query
that we failed to export. This mechanism exists in SQL too, but it is of no use in
our evaluation since both the projects we examined have their queries written in SQL
query language.

78

Algorithm 3.6: Abstract Query Representation to MongoDB representation
Input: An Abstract Query Representation (AQR) of a path of a function.
Output: MongoDb query.

1 projection = ∅, input = ∅, groupby = ∅, orderby = ∅;
2 limit = ∅, filter = ∅, having = ∅, aggregation = ∅; ▷ Initialize node groups

3 foreach Node N ∈ AQR do
4 switch N.type do
5 case ”Comparator” do
6 if Any of N parameters contain Aggregate function then
7 Add N to having;

else
8 Add N to filter;

end

end
9 case … do

10 Add N to its node group;

end

end

end
11 if input.size > 1 then
12 return(”Error”);

end
13 if groupby == ∅ AND orderby == ∅ AND limit == ∅ AND having == ∅ then
14 Use Listing 4 output;

end
15 if groupby! = ∅ then
16 groupby+ = aggregate;
17 Use Listing 5 output;

end
18 if groupby == ∅ then
19 Use Listing 6 output;

end

79

3.5 Cross-layer method: from source code to execution paths

As the reader may have already noticed, the creation of the graph is a procedure
where for each block of code you need to keep its beginning and end. One difficult
part of the graph creation procedure is to make all the needed connections between
the code blocks, in order to produce every possible execution path.

In this algorithmic approach we will construct the output of the Query Variants
Graph (aka the execution paths) without the need of the Query Variants Graph. After
all, what we needed from the Query Variants Graph were the execution paths that
describe the different variants of a query located at a Callable Unit’s source code.
Moreover, this algorithmic approach (Algorithm 3.7) is easily parallelizable, thus it
produces a slightly faster result, and due to “pruning” that we perform in the database
unrelated parts, we also need less main memory too (in Section 3.6 we will see more).

As previously, the Callable Unit that we examine is checked for branch and loop
blocks (as already mentioned, we treat –nearly all– the loop blocks as if they were
branch blocks). In this approach, the first occurrence of those code blocks is split
into the parts that construct it. For each one of those construction parts, we prepend
the sequential code blocks that existed till the appearance of that first block and we
append the code that follows that branch/loop block. This way, we produce a new set
of Callable Units. In the next step, we take this new set of Callable Units and for each
one of those Callable Units we perform the same procedure: we search for the first
branch/loop block and we split it to its construction code parts, pre-pending the code
that existed and appending the code that follows. At the end of the examined code
(when we have no more branch/loop blocks), we have a set of Callable Units that is
an execution path of the initial Callable Unit.

Both algorithms (Algorithm 3.4 and Algorithm 3.7) can be memory and time
demanding if there exist many branch and/or loop statements in the code of a Callable
Unit. In order to speed up our procedure and to reduce memory consumption (since
we want to find only the query-related Callable Units), in Algorithm 3.7 we prune
as soon as possible the Callable Units that are not database-related. This is done by
checking the variant of the source code right away if it is database-related. Moreover,
we check the code that follows a branch statement to see if it has any database-related
functions. If none such function exists in the remaining source code it means that we
already have all the database-related code that we want, so we stop examining the

80

source code of the Callable Unit for further branch and loop statements.
In Algorithm 3.7 we have a formal definition of our algorithm, where we use the

CreateQueryVariants procedure which is responsible:

• for the recognition of DB related Callable Units, and,

• for the identification of the first branch statement of a Callable Unit in order to
create as many different “children” Callable Units as the conditions of this first
branch (the “children” Callable Units are equivalent to the “sibling” nodes of
the Query Variants Graph).

The steps of the creation of the “variant” Callable Units contain host language
dependent parts which can be summarized in the following:

1. find the first branch/loop statement keyword,

2. find all different conditions of this branch statement (as already mentioned, loop
statements are treated as branch statements with two different conditions: either
not run at all, or run until a condition is met –exception is the do…while loop
that runs at least once),

3. for each of those conditions create a different Callable Unit, if and only if the
Callable Unit contains database-related text (vertical prune),

4. in each of those Callable Units, prepend the code that existed before the branch
statement,

5. in each of those Callable Units, append the code that exists after the branch
statement, if and only if it is database-related (horizontal prune).

This way, a new set of Callable Units is created, based on the original one. The
benefit of this approach is that we can prune non database-related paths as soon as
possible, saving both execution time, from the unnecessary traversals of Query Vari-
ants Graph paths, and main memory consumption from Query Variants Graph rep-
resentation. Moreover, due to the parallelization of this method we gain some extra
time as we will see in Section 3.6.

Returning to our reference example, Figure 3.5 (which the Algorithm 3.4 was
unable to identify) are pruned. To be more precise: using Algorithm 3.7 the Fig. 3.5b
execution path would never exist, since we already knew that it was a child of a path

81

Algorithm 3.7: Creation of execution paths of a Callable Unit
Input: A Callable Unit (M).
Output: The database-related execution paths of a Callable Unit.

1 The set of query variants of the project, QV = M ;
2 forall Callable Units m ∈ QV do
3 execP lans(m) = CreateQueryVariants(m);
4 QV ∪ execplans(m);

end
Procedure CreateQueryVariants(M)

1 execP lans = ∅;
2 if M contains database-related code and not checked then
3 if M contains branch statements then
4 variants = create variants of M ’s first branch;
5 forall var ∈ variants do
6 if var contains db-related code after the first branch then
7 execP lans += var; ▷ ``else'' is Horizontal prune

end

end

else
8 mark M as checked;
9 execP lans = M ; ▷ DB related without branches

end

end
10 return execP lans;

that does not contain any database-related code (as a sub-graph of the Fig. 3.5a
execution path, which we checked for database-related code and we did not find
any such function). Moreover, Algorithm 3.7 prunes the code statements that follow
after a query end, when there is no other query-related function to follow (e.g. for
a new query). Therefore, we speed up our execution time, since we do not have to
deal with irrelevant to database source code statements, and additionally we save the
main memory needed for the QVG representation.

In Figure 3.9 we describe the steps of Algorithm 3.7 using our reference example

82

(Fig. 3.3a).

root

1 Start

×
×

If root

1 Start

Else

(a) Callable Unit starts with a branch block and it will provide two “children” Callable Units,

one for the “if” and another for the “else” statement, but we will keep only the database-

related one.
root

1.3

1.4 Start

(b) We search for the first branch block on the database-related “child” Callable Unit.
root

1.3

1.4.1

1.5 Start

root

1.3

1.4.2

1.5 Start

(c) The Callable Unit creates “children” Callable Units that cover all the possible values of the

branch block and keeps only the DB related Callable Units, and searches for the next first

branch block at those “childern” Callable Units.
root

1.3

1.4.1

1.6

root

1.3

1.4.1

1.5.1

1.6

root

1.3

1.4.2

1.6

root

1.3

1.4.2

1.5.1

1.6

(d) Loop blocks are treated as branch blocks, so we create two new “children” Callable

Units that: the first contains the loop block statements, whilst the second does not contain

the loop block statements. When no more branch and loop statements exist, the paths are

complete.

Figure 3.9: Steps of Algorithm 3.7 with the resulting query-related execution paths

83

3.6 Evaluation

We have evaluated our method using two ecosystems written in different programming
languages. The first ecosystem we used is the Clementine2 music player project, which
is written in C++ and it stores the information of the tracks of the music library of
its users in a database. The second ecosystem is Drupal3, which is the most popular
CMS on sites with heavy traffic4. Drupal is written in PHP and it stores the contents
of the web pages it manages in a database. Table 3.3 contains more details, such as
the number of lines of code, the number of files, and the number of subfolders of the
projects we used for our evaluation.

Project
Code
lines

Files Folders
Variant
queries

Fixed
queries

Total

Clementine 210053 3072 159 10 14 24
Drupal 325421 1096 137 10 84 94

Table 3.3: Projects’ descriptions and queries distribution per project

For parsing purposes, in both projects we changed the source code and we trans-
formed the “(condition) ? (true) : (false)” Branch statements to “if (condition) { (true)
} else { (false) }” statements.

We assess our method for its efficiency, effectiveness and user effort. First, we
measure the necessary time and memory (since we produce every possible execution
path) for the extraction and reconstruction to take place. Next, our main research
goal is to evaluate the extent to which our method actually detects the queries of an
ecosystem’s applications and correctly reconstructs them. Moreover, we measured the
code writing effort of the developer who wants to use our tool.

All experiments were conducted on a typical PC with an Intel Core i5-4570S CPU
clocked at 2.90GHz. During time and memory measurements, we used either 1 or all
4 available cores. The main memory of the PC rises to 32 GB (clocked at 1333Mhz).

Time-Memory consumptionWe have measured the time and the memory needed
to recover all the queries for each of the involved data sets. Each experiment was con-
ducted three times and we report the average values for each metric. Our results are

2https://www.clementine-player.org/
3http://ftp.drupal.org/files/projects/drupal-7.39.tar.gz
4See http://w3techs.com/technologies/market/content_management

84

https://www.clementine-player.org/
http://ftp.drupal.org/files/projects/drupal-7.39.tar.gz
http://w3techs.com/technologies/market/content_management

depicted in Tables 3.4 and 3.5 respectively. Based on these observations, we can say
that for both case studies the time and memory required to the query extraction
is reasonable. Due to the fact that we do not perform any pruning in the Princi-
pled method, we receive a memory error (heap space error) during the execution of
the Drupal project, therefore the time measurement is set to infinity. That error is due
to a database-related Callable Unit that contains an excessive number of branch and
loop statements causing the heap space error for the recursive Algorithm 3.4. In order
to have a valid measurement in our tables, we modified our ecosystem excluding the
file that was causing that problem.

Principled Cross-layer

Project 1 thread 4 threads 1 thread 4 threads

Clementine 150 127.3 150 127
Drupal ∞ ∞ 136 89.6
Drupal modified 154.3 92.3 133.6 86.6

Table 3.4: Time measurements (in seconds) for each project, in single and multiple
thread combinations

Principled Cross-layer

Project 1 thread 4 threads 1 thread 4 threads

Clementine 1.67 2.586 1.326 2.586
Drupal ∞ ∞ 1.69 2.13
Drupal modified 2.89 2.73 1.52 1.713

Table 3.5: Max memory needed (measured in GB) for each project, in single and
multiple thread combinations

Drilling in to our results: in the Clementine project that was able to run for both
algorithms described earlier, we observe that there is no time or max memory dif-
ference between the two methods. This is because the Clementine project had only a
small number of queries (24), coming from 6 source code files. In Drupal project on
the other hand, we notice that there is a drop on both time and main memory mea-
surements. Actually in the modified Drupal project we notice that the main memory
drops to nearly half values! That is because due to our pruning technique which keeps
only the database-related stuff. As we have seen in Table 3.3 there were not many

85

queries that had variants. If there were existing, the Cross-layered method would have
better times for the time measurement too, since the CreateQueryVariants procedure is
parallelized.

Effectiveness We need to verify the extent to which our method retrieves and
correctly reconstructs queries from the application scripts of the ecosystem. The per-
formance measures for this kind of assessment are recall and correctness. Recall is
defined as the fraction of the retrieved queries of each file over the actually existing
ones. Correctness is defined as the fraction of the correctly reconstructed queries over
the retrieved ones. A correct reconstruction of a query involves (a) retrieving all its
structural parts and (b) assembling them correctly, in order to result in a correct
and complete query. Table 3.3 depicts the distribution of queries that were either
single path (fixed) queries or produced due to branch and loop statements of the
host language (variant queries).

Recall To assess recall, we need to manually verify the percentage of queries that
our method extracts with respect to the queries that actually exist in the code. Due
to the vastness of the task, we have sampled the 10% of the database-related files.
This is a standard practice in the software engineer community whenever the size of
a project is too large for full manual inspection. We manually inspected the code of
the evaluated files and we were unable to find any other query, besides the ones that
our tool reported. In the functions that were repeating a query in one or more places
in their source code, we reported only one occurrence of the query, since there was
no variation. If a query changes, then we report the “new” query (the modified one)
as well. Our manual inspection was further supported by automated searches in the
source code. For Clementine, we decided to focus on a single table of the database.
Then, we can search for all occurrences of the table’s name. For Drupal, we took
advantage of the fact that there are specific functions for querying the database,
as prescribed by its manual (both for string-based and for object-based queries):
https://api.drupal.org/api/drupal/includes!database!database.inc/function/.

Correctness

Regarding the correctness of our method, we examined the sample files on whether
the queries that were translated to SQL query environment were correct or not. The
correctness for the Drupal project is 95.6% and for the Clementine project is 79.1%.
To explain what we considered as a correct query we created the following taxonomy

86

https://api.drupal.org/api/drupal/includes!database!database.inc/function/

Query class Drupal-7.39 Clementine 1.2.3

Valid: all parts fixed 28/94 (29.7%) 5/24 (20.8%)
Valid: variable values 61/94 (64.9%) 14/24 (58.3%)

overall 89/94 (95.6%) 19/24 (79.1%)
Invalid: variable structure 05/94 (04.4%) 05/24 (20.9%)

Table 3.6: Breakdown of generated queries per query class.

of query classes:

1. Fixed structure: This class has the queries that can be translated to one of our
concrete query environments and run without issues.

(a) All parts fixed: queries that have no variable at all

(b) Variable values in “filtering”: queries that contain a variable that gets its
value at execution time but does not intervene with the query structure.
In most cases this is a variable that is the second part of a comparison. In
our reference example of Fig. 3.1, Line 16 contains the $category variable
which can be replaced by a value, producing a valid query.

2. Variable structure: in this class we have variables that alter the query structure.
This means that the data providers are unknown to us, so in order to produce
a valid query we needed to know in advance the values of the parameters that
were given to the calls of those Callable Units.

Table 3.6 contains the number of queries that belong to each classification for each
one of our case studies, which consequently provide the correctness measurement for
our method. Observe that the internal breakdown for the different categories (rows in
the table) is quite different for the two cases. However, we do achieve 100% correctness
and recall for the two first categories. For the last category, we fail to produce an abstract
representation due to the fact, that many times the variable structure refers to a
variable table in the FROM clause that is assigned at runtime. A flexible handling of
such occurrences (with variable tables involved) is part of future work.

User effort

As previously stated at Section 3.3, there is a preprocessing step that is needed in order
to translate the projects API database-related functions to Abstract Data Manipulation

87

Operators. In Table 3.7 we describe the user’s effort for the two projects that we
examined. The effort is measured in the number of functions that needed translation
from the project’s API, and in the lines of code that were written for the translation
of those API functions to Abstract Data Manipulation Operator. Additionally, we
present the number of functions and lines of code that were needed to use the code
of a host language (C++ and PHP respectively) and functions and lines of code that
were needed to translate a string based query to a set of Abstract Data Manipulation
Operators (which is a fixed code for all projects).

Project
API

func./LOC
Host language
func./LOC

String based
func./LOC

Clementine (C++) 4/59 9/341 7/195
Drupal (PHP) 11/251 9/347 q

Table 3.7: User effort (Number of functions to translate / Lines Of Code)

3.7 Conclusion

As we have already seen in Chapter 2, there have been a number of works that tried
to extract the embedded in the host code queries, but the problem was still open,
since the queries got modified from the host language branch and loop statements.
Additionally, most of the state of the art works were only capable to produce results
when they examined only one host language, or they were just using the database
query logs that were available in the database server that responded to the queries.
In this chapter, we have set the properties on how to extract the embedded queries
of a project in a host language independent way. In the projects that we examined we
noticed that the developers were using two different programming styles to query
a database. With the algorithms that we proposed, we have extracted queries in a
programming style independent way.

Using the Query Variants Graph representation we were able to create every pos-
sible database query that might occur during the execution time of the software. Then, we
proposed a way to represent those “text based” queries, using the Abstract Query
Representation with the extensible palette of Abstract Data Manipulation Operators
that are capable to describe not only the operators of the relational algebra but more.

88

Finally, we export the Abstract Query Representation to more than one concrete query
language environments (in this work we described how an AQR query can become an
SQL or MongoDB query).

In the experiments we conducted, we were able to fully locate the queries in the
projects we examined, and we fully or partially recover an 80% of those queries, with
small user effort.

Having found the queries of a project, we move on to describe the fundamentals
of a well constructed query based on the database schema of an ecosystem, and a
metric that will help us evaluate the quality of a project’s queries, so as to evaluate
the understandability and maintainability of the project’s database related code.

89

Chapter 4

A Metric to Assess the Coupling of
Software to the Database

4.1 Introduction

4.2 Evaluating Data-Software Coupling Quality

4.3 Data-Software Coupling Quality Experiments

4.4 Query Rewriting

4.5 Query Rewriting Experiments

4.6 Conclusions

4.1 Introduction

There is a great need of software companies and organizations to be able to adapt
to the new requirements of their users. To do so, they need to have a well-written
and easy to maintain and understand code. Using quality metrics is a way to identify
whether a program is easily understandable and maintainable [61, 60, 64].

A vast set of metrics that describe the quality of (mostly object oriented) software
exist in the literature. Those metrics show –early enough– how easy it is for developers
to modify their code when needed (for example in order to avoid a full rewrite of a
project), or how easy a new programmer could get into the source code and extend
or fix it.

90

A metric that has been widely used in object oriented programming is coupling
in order to describe the quality of software.

The coupling metric is used to describe the connection of a software module to
another software module. For example, when a class classA has a high coupling to
class classB, it means that when a change occurs in classB, then there is a high
probability that classA should change too.

Our objects of study are Data Intensive Information Systems (DIIS) software.
DIIS are applications that use data sources in order to save, retrieve, or query-and-
aggregate data that come from various sources (e.g., the entire data processing support
of a company or an organization, content management systems like Twitter streams,
personal music play lists, invoices of a company, etc.). DIIS projects have their source
code organized in a software module hierarchy and a data source hierarchy.

The software hierarchy –briefly– is: the packages, the classes, and the subroutines
of the classes (in non object oriented software these are the folders, the files and the
subroutines respectively). The data source hierarchy is: the data entities, the attributes
of the tables and the data views. In relational databases –since this is where we focus
via our examples and experiments– the data entities are represented by the database
tables, the attributes are represented by the columns of the tables and the data views
are represented by the views of the database schema.

In Data Intensive Information Systems applications, the software uses the under-
lying database schema to provide information to the users of the application. The
issue is that since there is a variety of ways to use the database schema, for example
i) via using Object-relational mapping (ORM) between the database tables and the
software, or ii) via using Application Programming Interfaces (API) that construct
the parts of the queries, or iii) via embedded query statements in the code, there is
no clear way to identify whether the software is well-written or not. The question
that rises is: given the database schema and the code that contains the queries that act as
a bridge between them, is it possible to assess whether this bridge is constructed in a way
that minimizes the unnecessary coupling and increases the maintainability of the code with
respect to the database schema? Our goal is to come up with the means to evaluate
the quality of the relationship between the source code of the application and the
underlying database schema, and to propose a way to increase that quality, when
applicable. Therefore, following the software engineering theory, we propose a metric
for DIIS applications since the state of the art does not provide adequate answers.

91

During our research we found that using one metric is adequate enough to provide
information on whether the source code is not well-written, although more metrics
might be even more helpful. Additionally, we provide a number of principles that all
metrics (proposed of future ones) should follow that are Data Intensive Information
Systems related.

With this work:

• we describe what the fundamental properties of a good database related software
is,

• we propose a metric that will identify badly constructed database schemata and
software as soon as possible,

• when it is possible to rewrite part of the code and the database schema, we
propose how this should be done to obtain better quality metrics

.
Therefore, we propose a metric that is scalable regarding the levels of abstraction

of the software. We start via checking the proposed metric (Data-Software Coupling
Quality) between the subroutines that contain database queries, and we move on to
higher layers where those subroutines are used. To evaluate the proposed metric, we
use the results of Chapter 3 and we examine our metric in conjunction to the evolution
of a project, as well as the evolution of Data-Software Coupling Qualitymetric, after
the code rewrites.

4.2 Evaluating Data-Software Coupling Quality

Our goal is to develop metrics for Data Intensive Information Systems that could
provide information on how tightly or loosely coupled is the source code of such a
project to its database schema. Providing such a metric would benefit the developers
in maintaining their code and would provide a way to identify whether the changes
the developers suggest and apply to the source code help on the project’s evolution
and sustainability macroscopically. When the metrics are good, it is expected to have
code that is easier to maintain, test and debug compared to a project with bad metric
measurements. Additionally, a project with good measurements is easier for new

92

developers to understand it, thus the developers can move faster from the training
on the job part to the production part of their job.

Before we move on to propose such metrics, we need to define what a Data
Intensive Information Systems project is and how we represent it on our proposal.
As already mentioned, Data Intensive Information Systems are applications that use
databases to work with data that either want to store, update, or query. Since there
exist two different parts (the database and the software one) that work together to
achieve whatever the developers need, we have to represent both parts in a uniform
way.

Having a closer look on the database related part, we have the tables with their
columns that describe where those data are stored, and the views that query those
tables in order to provide easier access on the data to the developers. On the other
hand, we have database queries that are used in the software part and either (rarely)
use the views of the database, or directly use the tables, in order to aggregate, retrieve,
store, modify or even remove data. Since the software part is frequently related to
the user preferences (via a GUI or a terminal input etc.) the queries are generally not
strictly fixed but parameterized. Therefore we need to represent the Data-Software
metrics in a way that will let us identify not only on a low level but on different levels
of a hierarchy the connection of the software to the database.

Figure 4.1 briefly depicts the Data Intensive Information Systems hierarchy that
we mentioned. On the left side of we depict the software related part and on the right
side we depict the database related part.

To further explain the hierarchy we discuss the software level, typically, where we
have packages that are sub-folders that contain the source code files of each package.
Those files, contain subroutines that may interact with the Database via database
queries. Those subroutines might be organized in classes (when we refer to object-
oriented software) or not, when we have procedural or other programming language
styles.

Regarding the Database part, it consists of Tables that contain columns that the
users use in order to store and update data to them, or to delete and retrieve data
from them. Additionally the users might use aggregate functions (such as SUM,
AVERAGE, MIN, MAX, COUNT, in order to acquire aggregated values from all or
from specific parts of the stored data.

In the literature exist works ([93], [94]) that examined a great number of Data In-

93

 Project

 package 1

 File 0

≡ Subroutines

 File 1

≡ Subroutines

 File 2

≡ Subroutines

DBQ Queries

 File 3

≡ Subroutines

DBQ Queries

…

 package 2

…

…

Database

Table 1
Attr 1
Attr 2
Table 2
Attr 1

Figure 4.1: Typical Data Intensive Information Systems project organization

tensive Information Systems projects of a specific programming language (for example
Java) and describe how those projects use the tools provided by the programming
language to write queries. During our research we have encountered three different
styles, regarding the software side, that a developer may use in Data Intensive In-
formation Systems to create a database query in the subroutines that pertain to the
project. These styles are programming language independent and they are described
in the following list:

• A technique called Object-Relational Mapping (https://en.wikipedia.org/wiki/
Object-relational_mapping) is when functions perform the Create, Read, Update
and Delete (CRUD) task of data for each table of the database. Those functions
let the developers work with main memory objects and whenever they want to
perform a task such as to update an object to the database, they simply call
the appropriate Update function (in many cases called “save”). Those functions
might be user defined or generated by software such as Hibernate (http://
hibernate.org/). Listing 7 describes the way the ORM querying method works.

• Via using custom made APIs1 that create classes which are responsible for the
database communication. Those classes need as input from the subroutines that
use them the specific tables that are going to use. The API technique is more

1https://en.wikipedia.org/wiki/Application_programming_interface

94

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
http://hibernate.org/
http://hibernate.org/
https://en.wikipedia.org/wiki/Application_programming_interface

public class ManageEmployee {

private static SessionFactory factory;

public static void main(String[] args) {

factory = new Configuration().configure().buildSessionFactory();

ManageEmployee ME = new ManageEmployee();

Integer empID1 = ME.addEmployee("Zara", "Ali", 1000); // Add employee

Integer empID2 = ME.addEmployee("Daisy", "Das", 5000); // records in

Integer empID3 = ME.addEmployee("John", "Paul", 10000); // database

ME.updateEmployeeSalary(empID1, 5000); // Update salary

ME.deleteEmployee(empID2); // Remove employee

}

public Integer addEmployee(String fname, String lname, int salary){

Session session = factory.openSession();

Transaction tx = session.beginTransaction();

Integer employeeID = null;

Employee employee = new Employee(fname, lname, salary);

employeeID = (Integer) session.save(employee);

tx.commit(); session.close();

return employeeID;

}

public void updateEmployeeSalary(Integer EmployeeID, int salary){

Session session = factory.openSession();

Transaction tx = session.beginTransaction();

Employee employee = (Employee)session.get(Employee.class, EmployeeID);

employee.setSalary(salary);

session.update(employee);

tx.commit(); session.close();

}

public void deleteEmployee(Integer EmployeeID){

Session session = factory.openSession();

Transaction tx = session.beginTransaction();

Employee employee = (Employee)session.get(Employee.class, EmployeeID);

session.delete(employee);

tx.commit(); session.close();

}

}

Listing 7: ORM example usage (Java programming language)

95

function _profile_get_fields($category,$register=FALSE) {

$query = db_select('profile_field');

if ($register) {

$query->condition('register',1);

}

while (!user_access('administer users')) {

$query->condition('visibility',PROFILE_HIDDEN,'<>');

}

return $query->fields('profile_field')

->orderBy('category','ASC')

->orderBy('weight','ASC')

->execute();

}

Listing 8: Queries that use an API to retrieve the database data (PHP programming
language)

versatile compared to ORM, since it may add functions that join many tables to
get the desired results etc. Listing 8 describes a query using the API method.
The semantics of the methods are as follows:

db_select: creates a query for the database table that is given as parameter

condition: creates a filter for the query (when two parameters follow, the filter
is for equality ‘=’, otherwise the third parameter describes what is the
condition)

fields: describes which attributes are the output of the query (if it is the name
of the queried table, then as output we have all the attributes of the table

orderBy: performs a sorting on the output, based on the second parameter
(ascending, descending)

The order of the invocation of the API methods sometimes has an impact on
the query itself: in the example of Listing 8 the ordering is first by ‘category’
and then by ‘weight’.

• Finally, the classic way of embedding SQL queries on the source code of the
subroutines is the one that is found in the majority of the Data Intensive Infor-
mation Systems. Listing 9 depicts an example of embedded SQL technique.

96

$result = db_query('SELECT source, alias FROM {url_alias} WHERE source in (:system)

AND language = :language_none ORDER BY pid asc;', $args);

Listing 9: Queries that use embedded SQL to retrieve the database data (PHP
programming language with embedded SQL)

Regarding the querying techniques, an interesting finding is that we have en-
countered projects where the developers used more than one techniques to express a
database query. Via examining the evolution of the code of those projects, we found
that the developers are moving from the traditional way of writing embedded SQL
to more agile ways, such as APIs.

Summarizing, in Fig. 4.2 we depict the three ways a database query may be
formed. In the first part we can see that a set of subroutines used in a class that
interact with the database each one for a single table (ORM technique). In the middle
part we can see that all queries are executed using an API. Finally, in the last part we
depict the oldest way that someone may use to query a database, which is via using
embedded SQL statements inside the subroutines of the source code files.

Although the middle and last part (API and Embedded SQL) look different, using
the method described in Chapter 3, we can represent both ways uniformly with the
Abstract Query Representation (AQR). Via AQR, we are able to model Data Intensive
Information Systems on the grands of a graph-based model that we use for the metric
we propose.

4.2.1 Using Abstract Query Representation for API and Embedded

SQL techniques

In our model, we treat both the API and the embedded SQL ways of query creation
uniformly. As we already have seen in the formal definition of AQRs in Chapter 3,
AQR is a way to describe each query as a sequence of operators that follow each other,
and those operators contain information about the specific parts of the query. The
Abstract Query Representation of a query for both API and Embedded SQL querying
techniques is depicted in Fig. 4.3. The upper part depicts the API way of querying
while the lower part depicts the Embedded SQL technique. What we focus on, for our
purpose, is the rightmost part that contains the operators with their information. The
rightmost part is the same since both ways create the same database query, fetching

97

 File 0RM ≡ Subroutine 1 Query 1
≡ Subroutine 2 Query 2

Database

Table 1
Attr 1
Attr 2
Table 2
Attr 1

(a) via ORM subroutines

 File API ≡ Subroutine 0
≡ Subroutine 1
≡ Subroutine 2

Queries
Database

Table 1
Attr 1
Attr 2
Table 2
Attr 1

(b) via API reconstruction

 File SQL ≡ Subroutine 0 Query 1
≡ Subroutine 1
≡ Subroutine 2 Query 2

Database

Table 1
Attr 1
Attr 2
Table 2
Attr 1

(c) Embeded SQL queries

Figure 4.2: Extension of graph for DIS

sorted per “category” and “weight” all the columns of “profile_field” table that have
“register” equal to 1.

Having explained the way that we can represent the API and Embedded SQL
querying methods to a uniform way, we move on to describe how we can represent
a Data Intensive Information Systems project via a graph-based model.

4.2.2 Formal (graph-based, uniform) model of Software & Data

We model the Data Intensive Information Systems as graphs. The nodes of the graph
represent the hierarchies of software and database parts of DIIS projects. The nodes
related to the software hierarchy represent:

• the database queries as these are formed in the source code

• the subroutines that contain the database queries

98

Start

Source (profile_field)$query = db_select('profile_field');

Comparator (register, =, 1)$query->condition('register', 1);

Projector (profile_field.*)->fields('profile_field')

Ordering (category, ASC)->orderBy('category', 'ASC')

Ordering (weight, ASC)->orderBy('weight', 'ASC')

End->execute();

(a) API query

Start

Projector (profile_field)SELECT profile_field.*

Source (profile_field)FROM profile_field

Comparator (register, = , 1)WHERE register = 1

Ordering (category, ASC)ORDER BY category ASC

Ordering (weight, ASC)ORDER BY weight ASC

End;

(b) Embedded SQL query

Figure 4.3: Abstract Query Representation of API and Embedded SQL query

• the files that contain the subroutines

• the folders that contain the files

• the project that contains the folders.

As above, the database hierarchy related nodes represent:

99

• the columns (attributes) of a database table

• the table that contains those columns

• the database that contains the tables.

As one may observe, there is a “contains” relation between each line on those hierar-
chies. Additionally, there is another relationship that describes that parts of the graph
are “used as parts” (components) of other parts. Given the “contains” hierarchy we
can compute induced graphs at different abstraction levels. As we will demonstrate
in the sequel, our proposed metric is multigranular and can be computed for any
induced graph at arbitrary levels of abstraction. This way, we can, for example, de-
scribe the metric of a query of the source code, as well as the metric of the package
that contains the file that contains that query.

The edges of our graph are used to describe relationships between the nodes.
As already mentioned, we have a “contains” relationship already described in the
hierarchies of our nodes. Those hierarchies are also related via the queries of the
source code. These two relationships describe the edges we have in our graph:

• the “contains” relationship, as previously defined

• the “uses as part” relationship, as previously described.

We define a Data Intensive Information Systems as a graph G(V,E), whose com-
ponents we are going to detail right away. We will start by presenting the nodes and
then move on to present the edges of the graph. Regarding the nodes of the graph
have a hierarchy H = (T , L) (a strict partial order of node types), and in our case
it is defined over a set of node types T (where T = {T1 . . . Tn}) and an extension of
Tlow < Thigh is interpreted as Tlow is contained in Thigh.

In the case of software we assume the hierarchy Tsw = {project, package, script,

embedded query} and in the case of relational database we assume the hierarchy
Tdb = {database, relation, column}. Our definitions are generic and extensible with
respect to the particular node types, however, what we care about is the existence of
a structured hierarchy of nodes.

Since our hierarchy is a strict partial ordered set, the following properties of a
structural partial order hold for the members of H:

• T ≮ T

100

• Tlow < Thigh ⇒ Thigh ≮ Tlow

• Ta < Tb ∧ Tb < Tc ⇒ Ta < Tc

Given a graph G(V , E) of a Data Intensive Information Systems we discriminate
the following kinds of nodes and edges:

• Vdb the set of nodes pertaining to the database

• Vsw the set of nodes pertaining to the software applications

• Econt the set of edges denoting “is contained within” relationships

• Eprov the set of edges denoting “part of” relationships.

Regarding G, V is the union of the Vdb and Vsw, and E is the union of the Econt and
Eprov.

Then, a hierarchy Hdb(Tdb,L) practically splits the nodes of Vdb into equivalence
classes. Given the set of nodes Vdb each type of Tdb has an active domain dom(Tdb|Vdb)

which is the subset of the nodes of the graph G (hereafter Architecture Graph)
that pertain to this type. Then the edges of Econt materialize the relationship Ldb.
In other words if Tlow < Thigh then ∀Vlow ∈ dom(Tlow|Vdb)∃Vhigh ∈ (Thigh|Vdb) such that
∃E(Vlow,Vhigh) ∈ Econt. The respective property holds for Hsw ∧ Econt.

4.2.3 Describing a well designed Data Intensive Information Sys-

tems

Having explained all the theoretical background that we use to represent the Data In-
tensive Information Systems projects, we move on to provide the fundamental prop-
erties that the DIIS metrics should have. Briand et al in [62] –where the object
oriented metrics were originally introduced– proposed a set of properties for the
software metrics that if none is met then the proposed metric is not well defined.
Those are: i) non-negativity and normalization, ii) null value and maximum value,
iii) monotonicity, and iv) cohesive modules.. In a similar vein to that work, we pro-
pose an additional (to object oriented) set of requirements for the Data Intensive
Information Systems that describe whether a software that is related to a database
schema is easily understandable and maintainable. Additionally, those requirements

101

• P1. A Data Intensive Information Systems project should try to minimize the
number of subroutines intervening with a database table, since this would produce
too much effort to resolve inconsistencies incurred by schema changes.

• P2. A Data Intensive Information Systems project should try to minimize the
number of relations accessed by a subroutine, to minimize the probability of
having to be maintained due to schema evolution actions.

• P3. A Data Intensive Information Systems project should not employ mul-
tiple (nested) subroutines to construct a database query, to avoid having
variety of source code parts that need to get examined in the event of main-
tenance.

• P4. A Data Intensive Information Systems project should be able to adapt
easily the database schema to changes that occur to data provider changes
(persistent storage of JSON streams is a common example).

Figure 4.4: Data Intensive Information Systems understandability and maintenance
requirements.

request the database to be able to adapt to software changes. Those requirements are
presented in Fig. 4.4.

Moving on, we present the Data-Software Coupling Quality metric that follows the
requirements of Fig 4.4.

4.2.4 Data-Software Coupling Quality

In this Section, we introduce the Data-Software Coupling Quality metric of Data In-
tensive Information Systems projects. Before we propose any metric, we discuss how
the requirements of Fig. 4.4 can be translated in to metric requirements regarding
the coupling metric and then, how those are applicable to our graph-based represen-
tation.

The list of Fig. 4.5 describes how each one of the requirements of list of Fig.
4.4 becomes a Data-Software Coupling Quality metric related requirement, alongside
with the properties of each requirement. We additionally mention any requirements

102

we need Data-Software Coupling Quality metric to follow.

• The first requirement (not many subroutines intervening with a relation) can
be translated in to having the best possible value when there is only one
subroutine using a database table.

• The second requirement (a subroutine not querying many relations) can be
translated in to having the best possible value when there is only one
database table used, and the value should worsen when there are more
tables used.

• The third requirement (not many levels of dependency to create a query) can
be translated into having a stable or worsening value of the metric when
we merge the ancestors. That is a case where there exist nested queries at a
subroutine to perform a query.

• The fourth requirement (adapt database schema to providers changes) can be
translated in to the same metric requirement as the first requirement of this
list.

• Finally, a metric should also be multigranular for different abstraction
ground, both for software and data.

Figure 4.5: Translation of Data Intensive Information Systems requirements to cou-
pling metric requirements.

Having explained the coupling metric requirements, we move on to discuss how
these requirements can be used in the graph-based model we proposed in the begin-
ning of this section. The list of Fig. 4.6 describes how each one of the requirements
of list of Fig. 4.5 becomes a graph related requirement and is therefore applicable to
our graph-based representation.

Next, we propose a coupling metric that we name Data-Software Coupling Qual-
ity and we explain how this metric meets the requirements we earlier described.

Assume a bipartite graph G(R, S, E) with R representing a set of database
constructs (e.g. tables, sub-schemata, etc.), S representing a set of software modules
and E representing a set of directed edges, where an edge (s, r) starts from a software

103

• The minimization of the number of subroutines intervening with a relation, can
be translated to having each Relation ideally with only one incoming edge,
since, the minimum amount Data-Software Coupling Quality occurs when
there is only one data provider used.

• The minimization of the number of relations queried by a subroutine can be
translated to ideally having only one outgoing edge at each subroutine of
a projects file (that is complementary to the previous one, since there could
be a subroutine that uses 3 relations that no one else uses). Likewise to the
previous bullet, having a minimum amount of Data-To-Software Coupling
value on a higher level of abstraction (for example a project file, instead of
a query) occurs when there is only one data provider for the file.

• Avoiding multiple (nested) subroutines to construct a database query can be trans-
lated in to needing only one node to create a query (no subroutines at all).

• Adapting easily the database schema to providers changes can be translated to the
same graph requirement as the first requirement.

• Extra to Fig. 4.4: Multigranularity for different abstraction levels is done via
recursively rolling up from queries to subroutines, from subroutines to files,
from files to packages, and from packages to project, as we show in Fig.4.1

Figure 4.6: Translation of Data-Software Coupling Quality metric requirements to
Architecture Graph properties.

construct s and targets a database construct r. Assume that each module s ∈ S has
an out degree δoτ (s) ∈ N ∧ 0 ≤ δoτ (s) ≤ τ .

Definition 4.2.1. The Data-Software Coupling Quality CDB(s|τ) of a software construct s
to a set of database constructs τ is defined as

CDB(s|τ) =

1− log 1
|τ |

(
δoτ (s)

|τ |

)
|s|

τ > 1 ∧ 0 < δoτ (s)

0 τ = 1

undefined δoτ (s) = 0

(4.1)

104

Properties of equation 4.1

1. CDB(s|τ) is monotone.

2. CDB(s|τ) ∈ [0 . . . 1]

3. CDB(s|τ) = undefined, if there is no dependency of s over the database (δoτ (s) =
0).

4. CDB(s|τ) = 1, if there is only one dependency of s over the database tables
(δoτ (s) = 1).

5. CDB(s|τ) = 0, if the s depends on (has an edge to) all the nodes of τ when
τ > 1.

6. when δoτ (s) = 1 due to only one edge (s, r), with r ∈ τ , then CDB(s|τ) has the
maximum possible value.

Proofs of Properties of equation 4.1

1. Proof. We know that any logarithm logβx is monotone.

• If β > 1 then the logarithm is monotonically increasing.

• If 0 < β < 1 then the logarithm is monotonically decreasing.

In our case, when τ = 1, the equation is always 0. When the δoτ (s) = 0 the
equation is undefined. The remaining case is where β = 1

|τ | . Therefore, since
our β is always < 1 the log 1

|τ |
x is a monotonically decreasing function. Thus, if

x < y =⇒

log 1
|τ |

(x) > log 1
|τ |

(y) =⇒

1− log 1
|τ |

(x) < 1− log 1
|τ |

(y) =⇒

CDB(x|τ) < CDB(y|τ)

Therefore, CDB(δoτ (s)|τ) is a monotone function.

2. Proof. If δoτ (s) = 0 the equation 4.1 is undefined. Then, since δoτ (s) ∈ [1 . . . τ]

–because δoτ (s) ∈ N– the minimum value for CDB(δoτ (s)|τ) is CDB(1|τ) which
(using the equation 4.1) is 1, and the maximum value is CDB(τ |τ) which is 0,
when τ > 1. Therefore we make sure that CDB(s|τ) ∈ [0 . . . 1]

105

3. Proof. Obvious, using the equation 4.1 with δoτ (s) = 0.

4. Proof. Obvious, using the equation 4.1 with δoτ (s) = 1.

5. Proof. Obvious, using the equation 4.1 with δoτ (s) = τ .

6. Proof. Obvious, since CDB(s|τ) is monotonous.

Proof of well defined metric of equation 4.1
We have already proved that Data-Software Coupling Quality metric complies

with the additional requirements that we have set for the Data Intensive Information
Systems projects. Finally, we need to prove that the proposed metric also meets (at
least some of) the Briand et al. properties.

• The non-negativity and normalization property is met, since we can not have
negative numbers because the values of equation CDB(s|τ) ∈ [0 . . . 1], as we
proved in proof 2.

• The null value and maximum value property is met, since when we have 0 de-
pendency then we have 0 coupling as we proved earlier in proofs 3 and 4, and
also our maximum value is 1, as we proved in proofs 2 and 5.

• The monotonicity property is met, because we use a monotonous function in our
equation, and we have proved that in proof 1.

• The cohesive modules property is not met. Take for example a database with
two tables (Ta and Tb) and two queries in different subroutines (Qa and Qb),
where both queries use both tables. The sum of equation 4.1 is 0 + 0 = 0. The
equation 4.1 for the merged modules is 0. Therefore, the sum of the un-merged
couplings is not grater than the coupling of the merged modules.

Why not use a simpler equation?

An observant reader would suggest that a simpler equation would perform as good as
equation 4.1, without the need of logarithms. For example a simple equation would
be to divide the out degree δoτ (s) with the total number of tables available τ in the
database schema. Equation 4.2 describes such a metric.

CDB(s|τ) = δoτ (s)

|τ |
(4.2)

106

This simpler equation (4.2) is actually the base of our approach (equation 4.1). The
benefits of our approach are that we can easily locate the subroutine queries that use
only one relation, which is a good query as stated in the requirements of Fig. 4.4.
That is because the simple approach would provide a different value on each database
schema (or version of a database schema), depending on the size of the database.

For example: a database schema started with 38 relations but eventually, since
the users required more features, it reached 57 relations. The simple approach for
a query of a subroutine that only uses one relation, would provide for as a metric
value a fraction of 1

|38|
= 0.0263157894737. In case this subroutine’s query did not

change, the value for the new version would be 1

|57|
= 0.0175438596491. In both cases

the query is considered as a good one, based on the requirements described in Fig.
4.4. Now, using the equation 4.1, the result would be in both cases an easily to locate
number: “1”.

Nevertheless, the idea of Data-Software Coupling Quality metric is to count the
number of providers a query has. The more the providers, the less good the value.
This is actually a common sense, since when a developer wants to separate a num-
ber of tuples that meet his criteria, he has to write complex comparisons probably
containing all the providers included. Moreover, in cases where aliases are used, the
query is besides longer, also harder to understand, since one has to search what the
alias represents.

4.2.5 AQR in our model and metrics

As already mentioned, we used the AQR to represent the queries of API and Embed-
ded SQL methods. Having this representation, we use it on our graph-based model
to link the AQR operator nodes to the database table nodes. Fig. 4.7 depicts how the
Abstract Query Representation is used in our graph-based model.

Regarding the metrics of Data Intensive Information Systems, the AQR provides
an advantage on measuring Data-Software Coupling Quality metric. Via traversing
the Fig. 4.7 horizontally we have an indication of the query’s coupling. For example,
via counting the number of Source operators we can count the coupling of Queries to
Tables –which is our Data-Software Coupling Quality metric).

107

Start

Source (profile_field)

Comparator (register, =, 1)

Projector (profile_field.*)

Ordering (category, ASC)

Ordering (weight, ASC)

End

profile_field Database

register

…

category

weight

Figure 4.7: Abstract Query Representation of API created query extended to depict
the database connections of the operators

4.3 Data-Software Coupling Quality Experiments

As already mentioned, our metric is measuring a value that is common sense that
when it is bad, the queries are harder to follow, maintain, etc. Nevertheless, to eval-
uate our metric, we used the first and last versions of Drupal 4.x.x project that had a
number of changes in its database schema, compared to other projects that we exam-
ined and had only minor (or no changes at all). In the earlier versions, the developers
of the examined project used the Embedded SQL technique to query tables, while
on the later ones, they started moving on to the API technique. The versions that
we examine are in between, containing both styles: the first version contains only
Embedded SQL technique queries while the last contains both Embedded and API
technique queries. Table 4.1 contains information on the database related folders and
files of each project, of the Drupal versions that we examined, and also depicts that
the database related software increased both in number of folders and files (from 2
database related folders to 3 and from 28 files to 40). Additionally, Table 4.1 contains
the number of database queries of each version, which also increased.

Regarding the research question, we examine two:

• does the Data-Software Coupling Quality metric indicate which files change when we
examine its rolled up per file value in a folder?

• does the Data-Software Coupling Quality metric follow the Lehman’s Lows [17] know-
ing that a set of software maintenance steps occurred in the life of the project?

108

Project information Query related

Version Lines of code Files Folders Folders Files Queries #

Drupal 4.1.0 21.198 107 13 2 28 240
Drupal 4.2.0 23.499 95 13 2 28 247
Drupal 4.3.1 24.678 102 13 2 29 260
Drupal 4.4.3 25.911 115 13 3 32 263
Drupal 4.5.8 35.312 132 12 3 35 284
Drupal 4.6.11 37.992 135 14 3 36 332
Drupal 4.7.11 47.936 172 14 3 40 358

Table 4.1: Evaluation Projects

For answering the questions, we check the rolled up metric value of the project.
Regarding the first question, we examine the changes of the value of our metric in
the files that are common in both minor and major versions. What we would ideally
want to encounter is that the files that have small values in the minor version, will be
affected by the changes of the database schema and increase their metric values in the
major version. This would mean that the changes performed were meant for the files
that were not in such a good quality condition. Moving on to the next question, we
check whether the metric value of each version of the project increased or decreased,
having in mind that:(i) the project adapted to new user requirements but eventually
(ii) there occurred maintenance steps in the development (at latest versions). What
we expect (based on Lehman’s Lows of evolution) is that the average value will drop
due to adaptation, but eventually rise due to maintenance.

Finally, as we mentioned in Section 4.2.1, the Abstract Query Representation could
be used to measure the Data-Software Coupling Quality of the projects, but we have
not performed any experiments using the AQR representation.

Before we move on, in Table 4.2 we present the changes that occurred between
the versions we examine, grouped by type of change (addition, deletion, rename, type
change, primary key change, others) per relation.

109

Relation Change Type Involved attributes

accesslog
addition aid, path, sid, timer, title
deletion nid

type change url

blocks
addition pages, theme, throttle, visibility
deletion path

type change delta, region

book
addition vid
deletion format, log

primary key change nid removed from primary key

boxes
addition format
deletion type

bundle deletion complete deletion of relation
cache addition created

comments
addition format, homepage, mail, name, thread
deletion link

directory deletion complete deletion of relation
feed deletion complete deletion of relation

forum
addition tid, vid
deletion icon, shadow

primary key change nid removed from primary key
item deletion complete deletion of relation
locales deletion complete deletion of relation

moderation_filters deletion complete deletion of relation
moderation_roles deletion complete deletion of relation
moderation_votes deletion complete deletion of relation

node
addition sticky
deletion attrs, body, revisions, score, static, teaser

type change type
page deletion complete deletion of relation
poll deletion voters

search_index
addition fromsid, fromtype, score, sid
deletion count, lno

site deletion complete deletion of relation
statistics rename relation renamed to node_counter
system addition bootstrap, schema_version, throttle, weight

term_hierarchy primary key change parent and tid removed from primary key
term_node primary key change nid and tid removed from primary key

users
addition access, created, login, picture
deletion homepage, hostname, rating, rid, session, sid, timestamp

type change language
variable type change name

vocabulary
addition help, module, tags
deletion types

watchdog
addition link, referer, severity

type change location

Table 4.2: Changes of database schema between Drupal 4.1.0 and 4.7.11

110

4.3.1 Research question 1: Does Data-Software Coupling Qual-

ity metric indicate which files change, using the rolled up

per file value?

In each project, we measured the Data-Software Coupling Quality metric for each
query, and we followed the changes that occurred in its value at the source code files
contained in module folder. Additionally, we measured the number of queries in the
files since they also changed -either increased or decreased. Notice that only two files
of module folder have the same number of queries: blog.module and tracker.module,
where the Data-Software Coupling Quality metric increased for both. Combining those
metrics, we measure the average value of Data-Software Coupling Quality metric for
each source code file, and we search whether it increased or not. If the majority of
the project’s files have an increased Data-Software Coupling Quality metric value at
the major version, then we shall have an indication that our metric depicts the files
that contain queries that are to change.

Drupal 4.1.0 Drupal 4.7.11

File # Q
Perf.
coupl.

AVG
coupl.

Q
Perf.
coupl.

AVG
coupl.

blog.module 6 2 0.87296 6 3 0.88085
book.module 15 4 0.86026 19 3 0.85566

comment.module 31 18 0.92009 25 15 0.93142
forum.module 16 4 0.75887 13 6 0.87683
locale.module 3 3 1 6 4 0.94285
node.module 7 4 0.91833 18 16 0.97537
poll.module 5 3 0.90148 7 4 0.91219

statistics.module 22 20 0.97760 12 7 0.91185
taxonomy.module 24 10 0.91266 23 7 0.87637
tracker.module 4 0 0.80944 4 1 0.98034

user.module 36 31 0.97353 29 24 0.97044
watchdog.module 2 0 0.80945 3 1 0.88570

Table 4.3: Files of module folder affected by the changes of Table 4.2

Using bold we depict the files that their metric increased and italics the files

111

that their metric decreased. Apparently there were 7 out of the 12 files that their
Data-Software Coupling Quality metric increased and 5 that their metric decreased.
Because of that, we can not clearly state that the metric value performed as we
expected. Nevertheless, we encountered some files that had a great increase on their
values (more than 0.1) while the decrease was at max 0.06.

4.3.2 Research question 2: Does Data-Software Coupling Qual-

ity metric follow the Lehman’s Lows of evolution, when

a set of software maintenance steps occurred in the projects

life?

Moving on, we further roll up of our metric. Figure 4.8 depicts the average Data-
Software Coupling Quality metric value per project’s folder. We can clearly state that
the folder with the lowest value is the one that the changes of Table 4.3 pertain to.
Those changes managed to increase the rolled up average value of the metric of the
specified folder (modules), even-though the number of the queries involved was quite
high (and furthermore increased), as Table 4.4 describes.

Queries of folder Drupal 4.1.0 Drupal 4.7.11

./includes 8 40

./modules 218 294

./database 0 24
. 13 1

Table 4.4: Rolled up metric values

Moving on, we examine the overall roll up value of our metric, Table 4.5 depicts
the values of perfect coupling queries and the average value of the projects, using all
the queries present in the project’s subfolders.

Figure 4.9 depicts the average value of the Data-Software Coupling Quality metric,
over all the queries of the project. The Drupal project had been expanding for quite
some time until major maintenance effort took place. Observe the behaviour of the
metric at the points in which the developers started their code maintenance (4.6.11
(https://www.drupal.org/project/drupal/releases?api_version%5B%5D=80), where the
developers mention: “Latest and greatest of the 4.6 releases. Also probably the last.

112

https://www.drupal.org/project/drupal/releases?api_version%5B%5D=80

./i
nc
lu
de
s

./m
od
ul
es

./d
at
ab
as
e .

0.9

0.92

0.94

0.96

0.98

1
D
at
a-
So
ftw
ar
e
Co
up
lin
g
Q
ua
lit
y

Drupal 4.1.0
Drupal 4.7.11

Figure 4.8: Average Data-Software Coupling Quality metric of each folder.

4.1.0 4.2.0 4.3.1 4.4.3 4.5.8 4.6.11 4.7.11
0.92

0.93

0.94

0.95

Latest and greatest of the 4.6 releases.
Also probably the last. Consider upgrading.

The eleventh maintenance and security release of the Drupal 4.7 series.
Only fixes for security vulnerabilities and other bugs have been committed.

New features are only being added to the forthcoming Drupal 7.0 release.

Drupal version

AVG Drupal Data-Software Coupling Quality

Figure 4.9: Average Data-Software Coupling Quality metric of each folder.

113

Version #Q Perf. coupl. AVG coupl.

Drupal 4.1.0 239 163 0.93189
Drupal 4.2.0 246 168 0.927699186992
Drupal 4.3.1 259 244 0.927806949807
Drupal 4.4.3 262 247 0.926480916031
Drupal 4.5.8 283 267 0.920886925795
Drupal 4.6.11 331 228 0.93550755287
Drupal 4.7.11 359 256 0.94558

Table 4.5: Rolled up metric values

Consider upgrading.” and 4.7.11 (https://www.drupal.org/project/drupal/releases?
api_version%5B%5D=79), where the developers mention: “The eleventh maintenance
and security release of the Drupal 4.7 series. Only fixes for security vulnerabilities and
other bugs have been committed. New features are only being added to the forthcoming
Drupal 7.0 release.”). Lehman’s Law holds here, and in sync with it, our metric
increases too.

4.4 Query Rewriting

In this section we propose an algorithm, that given a project and the queries that use
that project, proposes database schema changes so as to produce easier to compre-
hend, maintain and debug queries.

The main idea is that the existing queries can be rewritten using views to perform
the same tasks. The views do not have to be materialized as we have seen in Chapter
2, but simple view definitions, used for writing simpler, more reliable, and easier
to understand code regarding the software developer point of view. Our algorithm
starts by separating the queries by the number of the providers they use into different
“buckets”. Then, we sort those “buckets” on the number of the providers of each
“bucket”. After that, we traverse the “buckets” and rewrite the queries contained in
the “bucket”. To do so, we use any existing views and we also use the views that we
created during the rewrite of a previous query (of the same or not “bucket”). This
way, a view produced for a query of two providers, might be used in the rewrite
of another query of two providers or it could even be a partial solution for a query

114

https://www.drupal.org/project/drupal/releases?api_version%5B%5D=79
https://www.drupal.org/project/drupal/releases?api_version%5B%5D=79

that uses three or more providers etc. The final step is when we reach the “bucket”
with the queries with the most number of providers. This technique is based on an
observation we made in [1] where the projects are depicted in clustered graphs in
circular layouts. In [1] we observed that the more “complex” queries are placed in
the outer part of the circles clusters but the providers that were used were only a
small part of heavily used providers.

The proposed algorithm (Alg. 4.1) is using the following steps:

1. Grouping the queries based on the number of inputs the have.

2. Starting with group of queries with number of providers > 1, we examine
whether those queries can be rewritten with any existing view. This check is
performed via inspecting the providers of the query and the providers of the
view and we have a “positive” when and only when the two sets match. If any
of the two sets (query providers and view providers) differs (not only having
different providers, but also if the size of the providers is different), then we
conclude that the query cannot be rewritten with the examined view.

3. When we find such a view, we rewrite the query using that view and we add
the query to our output.

4. If no, the query is rewritten, using a simple view we create. The simple view
performs just one task: it joins the inputs of the query, without using any
filter besides the one given on the join equation, and provides all the available
output via a simple to understand renaming: ⟨TABLE⟩_⟨COLUMN⟩. This way,
the developers will only have to read the beginning of the output attribute to
understand what they will use. Using the same logic, the name of the new view
is the concatenation of the joined tables: ⟨TABLE⟩_⟨TABLE⟩…. Then, using the
new provided view, the query is rewritten and we add it to the output of the
queries. Apparently the query uses only one view for its task, therefore, the
Data-Software Coupling Quality value will be a perfect “1”.

This technique reuses the views that exist from previous execution steps. This way,
when we examine the “clusters” that were introduced in [1] and further discussed in
Chapter 6 (depicted in Fig. 4.10) we provide the smallest number of views for the
given queries in a stratified way.

115

Algorithm 4.1: Rewrite of queries with views
Input: A set of existing views (V), and a set of queries (Q) with some

coupling value.
Output: A final set of views (V f), and a final set of rewritten queries (Qf)

with a better Data-Software Coupling Quality value.
1 Map⟨Integer, List⟨Query⟩⟩ mapJQ = ∅ ; ▷ Queries grouped by joins num.

2 Qf = ∅ ;
3 foreach q ∈ Q do
4 mpJQ[CountJoinsNumber(q)]+ = q ;

end
5 mpJQ.sort() ; ▷ Start with least number of joins and grow.

6 V f = V ;
7 foreach qs ∈ mapJQ do
8 foreach q ∈ qs do

V iew viewtoUse = CanBeRewritten(q, V f);
9 if viewToUse ̸= ∅ then

10 Qf+ = Rewrite(q, viewToUse) ; ▷ Rewrite with existing view.

else
11 viewToUse = CreateSimpleV iewForQuery(q) ; ▷ New view.

V f+ = viewToUse ;
12 Qf+ = Rewrite(q, viewToUse) ; ▷ Rewrite using new view.

end

end

end
Procedure CanBeRewritten(Query q, V iews V)

1 foreach v ∈ V do
2 if v.input == q.input then
3 return v ; ▷ Providers of q exactly match those of v.

end

end
4 return ∅ ;

116

Figure 4.10: A “cluster” of queries using the same input providers. Blue nodes repre-
sent queries and the outermost cirlce is of queries that use more than one providers.
Gray nodes are the providers, each one anotated with their name.

4.5 Query Rewriting Experiments

In this section we discuss the complexity that our method causes to the database
schema. Via complexity we refer to the number of the additional views that are
needed in order to achieve the best possible Data-Software Coupling Quality metric
using the method described in Section 4.4.

Table 4.6 describes the characteristics (Relations, Views, Queries, Queries that use
more than one Relations) of each of the Data Intensive Information Systems projects
that we examined. The differences of the database schemata on those projects were
minor (e.g. a rename of a table column, or a movement of a column from table A
to table B). This is something expected, since the database schema is the part of the
software that every other part relies on in order to gain access to data. Therefore,
even a minor change of the schema could result into faults at the software. Those
faults might be during the execution time, where the software might halt, or even
worse, the faults could be semantic ones, meaning that the code runs without halting
issues, but the results of the queries are faulty, which are harder to locate and fix. An
example of such an error is the following: a provider table has the classes that the

117

students passed (having >= 5 grade), and the developer wants the average of each
student. When for some purpose (eg. for space issues) the provider table is dropped,
the developer has to use another one that contains grades, which is the one that
contains all the classes (passed or not). The developer has to adapt his code so as to
provide the correct results (via crossing out the results that have grade < 5).

Project Relations Views Queries Queries to rewrite

Drupal 4.1.0 38 0 240 76
Drupal 4.2.0 38 0 247 83
Drupal 4.3.1 40 0 260 90
Drupal 4.4.3 40 0 263 92
Drupal 4.5.8 52 0 284 71
Drupal 4.6.11 55 0 332 107
Drupal 4.7.11 57 0 358 101
OpenCart 115 0 651 122
ZenCart 106 0 150 7

Table 4.6: Data Intensive Information Systems projects

Project Views Rewrite failures Project metric increase Developer gain

Drupal 4.1.0 28 1 6.7% 62%
Drupal 4.2.0 26 1 7.1% 67%
Drupal 4.3.1 29 1 7.2% 67%
Drupal 4.4.3 29 1 7.2% 67%
Drupal 4.5.8 26 11 4.2% 48%
Drupal 4.6.11 37 3 6% 63%
Drupal 4.7.11 40 2 8% 58%
OpenCart 53 4 3.2% 53%
Zencart 4 2 0.6% 14%

Table 4.7: Data Intensive Information Systems project measurements. Due to parsing
issues we were unable to rewrite all the queries. The corresponding column depicts the
number of queries we failed to rewrite. The The developer gain column describes in
percentage how many queries the developer avoids to examine due to views existence.

In Table 4.7 we depict the number of the views we added to the database schema,
using Algorithm 4.1. Due to limitations in our query parsing software, there were

118

occasions where the produced view, or the rewritten query was unable to be parsed.
We were able to catch those exceptions and we stopped our algorithm as soon as
we encountered such an exception, leaving the query in its original state. Table 4.7
depicts the number of the queries that we failed to rewrite and remained intact.
Additionally, Table 4.7 depicts the gain of a developer who has to adapt his queries
when a schema change occurs. The definition of the developer gain is described in
equation 4.3.

Definition 4.5.1. The Developer Gain DG(q|v) of a rewritten Data Intensive Information
Systems is defined as

DG(q|v) = 1− (CostWithV iew/CostWithoutV iews) →

= 1− ((FailedRewrites+ V iews)/QueriesNeedingRewrite)
(4.3)

Without the views the developer would have to check all the queries that use a re-
lation, when the relation changes. Using Algorithm 4.1 we observe that the developer
would always need a smaller amount of effort since Alg. 4.1 creates new views only
if the existing ones cannot be used to rewrite the queries that have non perfect Data-
Software Coupling Quality metric value. Having the views, a developer / database
administrator examines a significantly smaller number of code parts that might pro-
duce errors due to schema changes. The developer gain measurement (query checking
and rewriting) is at worst case 14%, while at best case it is 67%. A 50% developer gain
measurement describes that each one of the views of a Data Intensive Information
Systems project is used by two queries, while a 67% developer gain measurement de-
scribes that each one of the views of this Data Intensive Information Systems project
is used by three queries more or less! In most cases, the examined projects provided
a developer gain measurement above 50%. The worst case scenario would be having
always failure to rewrites (where the V iews would be 0, and FailedRewrites equal
to QueriesNeedingRewrite) which would give a DG equal to 0, or when each one of
the QueriesNeedingRewrite would produce a unique view (never used by any other
query), which would produce as many V iews as QueriesNeedingRewrite so the DG

would also be 0.
Returning to the schema / graph of Fig. 4.1, we conclude that using Alg. 4.1 we

managed to minimize the edges that come from software part (left of figure), since
we have only 1 edge for each query, via adding edges internally to the database part
(right of figure), via adding intermediate representations of providers.

119

4.6 Conclusions

The problem of metrics in areas other than object oriented software is still open.
In this chapter, we have just done the first steps to describe such a metric for the
data-intensive ecosystems.

More particularly, we described the fundamental properties of what a well structured
database related code is, and we proposed a scalable metric that identifies badly constructed
database related software. In the experiments we conducted, we observed that our metric
follows the software evolution maintenance steps of the code (when the developers maintain
their code, our metric increases, when the developers insert new features without
maintenance, our metric decreases).

Additionally, since the database schema does not change easily because it is a
part of the ecosystem that many components rely on, we proposed a rewriting algo-
rithm for the software parts (queries) and the database schema (view) of a project.
The algorithm changes the database schema via adding –only when it is absolutely
necessary– views to the schema joining more than one relations, and then rewrites
the queries that depended on those relations, to depend on the newly created views.
As we observed in the experiments we conducted, the proposed algorithm provided bet-
ter Data-Software Coupling Quality metric measurements and we additionally managed to
increase the developer’s evolution gain, since there exist less points a developer has to
check when a schema change occurs.

As next step, we check whether the rewriting solution (of view creations and
query rewrites) can help the developers and the database administrators regulate an
evolution step in a data-intensive ecosystem, and provide a smooth transaction from
one database schema to another, avoiding either syntactic or semantic inconsistencies
that a schema change could produce.

120

Chapter 5

Regulation of Schema Evolution with
Policies

5.1 Introduction

5.2 Formal Background

5.3 Impact Assessment and Adaptation of Ecosystems

5.4 Theoretical Guarantees

5.5 Experiments

5.6 Conclusions

5.1 Introduction

A data-intensive ecosystem is a conglomeration of software modules that includes
(a) at least one central database (typically, but not obligatorily, relational), and, (b)
a set of software applications that require access to the central database via queries
embedded in their code. The distinctive feature of data-intensive ecosystems is the
cohesive management of databases and applications – plainly put, the management
of the database has to profoundly take its surrounding applications into account (and
vice versa). In this chapter, we deal with the problem of facilitating the evolution of
an ecosystem without impacting the smooth operation or the semantic consistency of
its components.

121

To operate smoothly, an ecosystem must withstand change gracefully. Software
maintenance comprises 60% of the resources spent on building and operating a
software system [95] and thus, it is of utmost importance for a system’s life-cycle. In
this context, the management of changes in a data-centric ecosystem is an important
problem. In this chapter, we extend the state of the art concerning several research
questions in the area of managing the evolution of data-intensive ecosystems.

What does evolution of data-intensive ecosystems comprise? We start by example – here
are a few examples of possible changes:

• A certain attribute of the schema of a view is about to be deleted, as the ad-
ministrator wants to simplify the definition of the view

• A new attribute is added to a relation, because new content is available

• The WHERE clause of a view is modified with an extra condition, to account
for a new definition of the view’s contents

Figure 5.1: An exemplary University-DB Ecosystem, annotated with policies.

Taking the aforementioned examples at a more abstract level, we claim that evo-
lution is of significance if it affects the syntactic correctness, the semantic validity, the

122

operational effectiveness, or the administrative overhead of a data-intensive ecosystem. The
most disordering (and also visible) type of impact is syntactic impact: in this case, a
change might drive parts of the ecosystem to be syntactically inconsistent and thus
fail. A deleted attribute might cause applications using it to crash. In this case, the
applications’ developers have to take care of the change: pinpoint its impact in their
code, assess the necessity for the existence of this information in the applications and
modify their applications accordingly. If things go wrong, this might even require
negotiations with the DBAs to restore the deleted attribute. Second, applications can
be affected semantically. If a new attribute is added to a relation it is possible that
it contains important information that applications should be exploiting (and thus,
have to be synchronized to the new contents of the relation). If the semantics of a
view change, then the data delivered at the view’s clients are different than the ones
delivered before: in this case, the developers of the affected queries and applications
would have to be notified and decide on whether the queries have to adapt to the
new semantics of the view, or, they would have to retain the old semantics (again
leading to the problem of compensating the change performed by the DBAs). A third
type of impact (that falls outside the scope of this chapter) involves the effect of a
change to the performance and administrations of the ecosystem. Dropping an index
may result in a large number of queries running unacceptably slow or moving a table
may result in making less space for other tables to perform their insertions.

In all these occasions, we observe that a change performed by the DBA team can
have several side-effects both for the team itself, the developers of applications of the
ecosystem and the end-users. The problem in all the aforementioned events is that the
change is performed before assessing its impact over the ecosystem. Therefore, addressing the
impact assessment problem in advance of a potential change can be really valuable.

How can we assess the impact of a change in a data intensive ecosystem? Is it possible
to regulate change in a data-intensive ecosystem? In this chapter, we improve the state
of the art with concrete results for the problem of impact assessment. We follow the
model of Architecture Graphs [28, 31] that capture all the inter-dependencies between
the constructs of databases and the application queries via a graph. The graph models
constraints, attributes, relations, views and queries along with their internal structure
as the nodes of the graph. The edges of the graph denote dependency for data
provision (e.g., between a view and a relation that populates it with data), part of
relationships (e.g., between a relation and its attributes) and semantic relationships

123

(e.g., the construction of the WHERE clause of a query as a tree of expressions).
This way, the Architecture Graph models all the components of a data-intensive
ecosystem in a uniform way. One of the main utilities of the Architecture Graph is
that it facilitates impact assessment for potential changes in the ecosystem: whenever a
potential change is tested over the Architecture Graph, the graph allows us to identify
the area of impact by recursively following edges between affected nodes. Practically
speaking, each node has to assume a status concerning its reaction to an event that
we test; once a status is assumed, subsequent nodes of the graph have to be notified
too.

At the same time, we are not helpless in managing potential changes in the core of
the ecosystem. If an application developer is really adamant on retaining the structure
and semantics of a database view, is it possible that this requirement is incorporated
in the Architecture Graph, to prevent possible modifications? As previous research
[29, 28] has demonstrated, it is possible to regulate the flow of events by annotating
the modules of the Architecture Graph with policies, i.e., rules for handling events.
Specifically, we can annotate a module (i.e., relation, view or query) with a policy
for each possible event that it can withstand, in one of two possible modes: (a) block,
to veto the event and demand that the module retains its previous structure and
semantics, or, (b) propagate, to allow the event and make the module adapt with
an updated internal structure. Once the adaptation is complete, the module is also
responsible for igniting the recursive notification of all the affected software modules
in the graph.

To make the discussion a little more concrete, we present an evolving data-
intensive ecosystem in Figure 5.1. On the left, we depict a small part of a university
database with three relations and two views, one for the information around courses
and another for the information concerning student transcripts. On the right, we iso-
late two queries that the developer has embedded in his applications, one concerning
the statistics around the database course and the other reporting on the average grade
of each student. If we were to delete attribute C_NAME, the ecosystem would be af-
fected in two ways : (a) syntactically, as both the view V_TR and the query on the
database course would crash, and, (b) semantically, as the latter query would no longer
be able to work with the same selection condition on the course name. Similarly, if an
attribute is added to a relation, we would like to inform dependent modules (views or
queries) for the availability of this new information. Observe the two policy rules at

124

the bottom of the figure. The first one dictates that every node of the graph adapts to
any evolutionary event that appears in the future. The rule uses two shorthands: the
term NODE refers to all the nodes of the graph and the term ∗ refers to any potential
event that arrives. The second rule overrides the first global policy by stating that
the report on the upper right has a veto over the deletion of one of the attributes
exported by the view on student transcripts (V_TR). In Figure 5.1, we have used a
lightly shaded box to show how these rules are assigned to each module.

Once the impact of a change has been assessed, is it possible to see how the ecosystem
will look like if the change is eventually performed? Even with the presence of policies,
it is possible that a potential modification in the database affects several queries and
views that are willing to accept it and adapt to the new structure or semantics of
the database. The problem becomes more complicated whenever a change ignites
different reactions – e.g., some of the affected queries are willing to adapt whereas
others assume a vetoing status. Then, the question that has to be answered is “what
will the new structure and semantics of all the affected modules look like?”. As we will
show, the answer to the question is not straightforward and unfortunately, the state
of the art in ecosystem adaptation is not sufficient to address it. Specifically, although
previous work in ecosystem adaptation has provided us with techniques for view
adaptation [38], [37], [96], the existing works do not allow the definition of policies for
the adaptation of the ecosystem modules. At the same time, our own previous work
[28] has proposed algorithms for impact assessment with explicit policy annotation
but without the mechanisms to perform the rewriting of the ecosystem. Overall, to
the best of our knowledge, there is no method that allows both the impact assessment
and the rewriting of the ecosystem’s modules along with correctness guarantees.

To address this shortcoming, the core result of this chapter is the provision of algorithms
that identify which parts of the ecosystem are affected by a potential change and perform the
rewriting of affected modules to adapt to it, while fulfilling all the constraints imposed by the
-possibly conflicting- policies of all affected modules. Specifically, our method works in the
following three steps:

1. Impact assessment. Given a potential event, a status determination algorithm
makes sure that the nodes of the ecosystem are assigned a status concerning
(a) whether they are affected by the event or not and (b) what their reaction to
the event is (block or propagate).

125

2. Conflict resolution and calculation of variants. Assume a view used by two
queries is altered. Assume also that the first query vetoes the change and re-
quires the structure and semantics of the old view to remain, whereas the second
concedes to the change and states it will adapt to the new structure and seman-
tics of the view. The co-existence of blocker and adapter data consumers of an affected
module signifies the need to retain both the old and the new version of the module,
whenever this is possible. To this end, we introduce an algorithm that checks the
affected parts of the graph in order to highlight affected nodes with whether
they will adapt to a new version or retain both their old and new variants.

3. Module Rewriting. Once the status and number of variants has been determined
for the modules of the graph, we need to implement the rewritings. This is
heavily dependent upon the nature of the event (obviously, a query adapts
differently to the removal of an attribute and differently to the addition of an
attribute, let alone changes in semantics). Our algorithm visits affected modules
sequentially and performs the appropriate restructuring of nodes and edges.

Figure 5.2: Impact analysis (left) and ecosystem rewriting (right) for an event on our
exemplary ecosystem

Coming back to our motivating example, let’s see what happens when the DBA of
the ecosystem tries to delete attribute C_NAME from the intermediate view V_COURSE.
As instructed by its policy, the view ”agrees” to adapt to the event and adopts a
Propagate status. Then, it notifies its consumer V_TR which also agrees and pushes
the event to its consumers, specifically, Q_pass2courses which vetoes the event and

126

assumes a Block status and Q_allStudentGPA which is actually unaffected by the
event after it self-examines whether it is affected. The rest of the modules of the graph,
and specifically, the source relations, have a status NO_STATUS as the propagation
of the event has never reached them. The depiction of the status determination part
is shown in the left part of Figure 5.2. Then, our method detects a conflict, as the
view V_TR decides to adapt to the event in contrast to the veto from the application
developer of the query Q_pass2courses. Once this conflict is detected, a cloning
mechanism is initiated to satisfy both requirements. The result is depicted in the
right part of Figure 5.2. The query Q_pass2courses retains the old definition of
both views (i.e., the entire backwards path till the node initiating the event), whereas
the two views are cloned and these clones (depicted in darker colors in the figure)
are adapted to satisfy the requirement set by the DBA.

We have implemented our method in a what-if analysis tool, Hecataeus1 where
all stakeholders can pre-assess the impact of possible modifications before actually
performing them, in a way that is loosely coupled to the ecosystem’s components.
We have assessed our method (Sec. 6.4) over ecosystems of increasing size and com-
plexity and also varied the policy assignments in order to assess the method’s scale
up with size and the effect of the policy annotation to the method’s usefulness. Our
first experimental goal involved assessing the effectiveness of our method, i.e., the
benefits introduced by our method concerning the effort performed by the applica-
tion developers and administrators of the ecosystem. The results indicate that in the
absence of our system, the typical developer would have to perform at least 21% of
routine, useless checks to views and queries that are not related to the event at all; on
average, the number of useless checks is located in the area of 90%-97%. A second
observation has to do with the amount of rewriting: in all occasions, there have been
several modules that had to be rewritten. Although the average numbers are not par-
ticularly high, ranging from 2 to 13 modules depending on the experimental setup,
the maximum numbers are quite high and, in any case, the automation of the work,
equips the involved stakeholders with correctness guarantees that would otherwise
be non-existent. Another significant observation has to do with the conciseness of the
policy annotation rules. The number of policy rules is practically equivalent to the
number of the exceptions to the default policies (resulting in just a handful of rules
in our experiments). In terms of efficiency, all the experiments show a completion of

1http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

127

http://www.cs.uoi.gr/~pvassil/projects/hecataeus/

the tested changes as small fractions of a second. At the same time, the chosen policy
significantly affects the spreading of the impact of a change over the ecosystem: a
policy with early containment of the event (by blocking it inside the database) can be
an order of magnitude faster than a policy that blocks changes at the queries only.
At the same time, the graph size is linearly related to the time needed to complete
the impact analysis and rewriting task. Overall, our experimentation with ecosystems
of different policies and sizes indicates that our method offers significant effort gains
for the maintenance team of the ecosystem and, at the same time, is executed fast
and scales gracefully.

5.2 Formal Background

To assess the impact of a potential change over the data centric ecosystem, we con-
struct a graph of modules (relations, queries and views) where data consuming nodes
are linked with edges to their providers. Whenever an event is applied over a module,
the module has to assess the impact of the event and notify its consumers. This re-
cursive process allows us to assess the impact of the event over the entire ecosystem.
Naturally, to facilitate this process, we need to establish a formal model for the main
constituents of the problem and its solution. So, before proceeding with the algorith-
mic parts of the adaptation process, in this Section, we present the formal background
for the modeling of Architecture Graphs, along with the space of possible events and
policy annotations. First, we present how relations, views and queries construct the
Architecture Graph of the ecosystem. Then, we move on to present the space of pos-
sible events that can be applied to the nodes of the graph, either directly by the user
(initiating the entire process of assessing the impact of an event) or transitively, as
modules affected by the event notify other modules that depend on them for the
change. Moreover, in order to regulate the propagation of events over the graph, we
present the language for policy annotations, along with its semantics and the rules
for policy overriding.

5.2.1 Architecture graph

Our modeling technique, following [97], represents all the aforementioned database
constructs as a directed graph G = (V,E), which we call the Architecture Graph of the

128

ecosystem. For the reader who is not interested in all the formalities, the following
quick summary along with Figures 5.2 and 5.3 should be sufficient to allow the
understanding of our graph modeling.

• Relations, views and queries (or else modules) come with a subgraph, that includes
(a) a node for the module itself, (b) a set of input schemata for views and queries, used
for linking these modules with their data providers, (b) an output schema for the data
exported by the module and (d) a semantics schema for any filtering or restructuring
taking place inside a view or a query (WHERE, GROUP BY, etc).

• Input and output schemata include their respective attributes; semantics schemata
include a tree representing the logical expression of the WHERE clause and a list of
groupers for the GROUP-BY clause, in case these exist in a query or view.

• Edges of the graph signify dependency on data provision: at the schema level, input and
output schemata are linked with data dependency edges from data consumers towards
data providers; the respective holds for attributes of the schemata too. Note that this
mechanism applies both between modules (inter-module edges) and within the same
module (intra-module edges). Semantic-related edges are also used for the constructs
related to the semantics schema within views and queries.

The reader who wants to skip the detailed description of the graph can jump to
Section 5.2.2. If this is not the case, our deliberations proceed with a presentation of
the components of the Architecture Graph as follows. We start with the high level
constructs, such as relations and queries, which we call modules of the Architecture
Graph, and then we move on to discuss their main properties. Fig. 5.3 visually rep-
resents the internals of the modules of Fig. 5.1. To avoid overcrowding the figure, we
omit different parts of the structure in different modules; the figure is self-explanatory
on this.

Modules. A module is a semantically high level construct of the ecosystem; specif-
ically, the modules of the ecosystem are relations, views and queries. Every module
defines a scope recursively: every module has one or more schemata in its scope (de-
fined by part-of edges), with each schema including components (e.g., the attributes
of a schema or the nodes of a semantics tree) linked to the schema also via part-of
edges. In our model, all modules have a well defined scope, “fenced” by input and
output schemata.

129

Figure 5.3: A subset of the graph structure for the University-DB Ecosystem.

130

Relations. Each relation R (A1, A2,…, An) in the database schema is represented
as a directed graph, which comprises:

1. a node, R, representing the relation;

2. an output schema node, R_SCHEMA, representing the relation’s output schema;

3. n attribute nodes Ai=1...n, one for each of the attributes and,

4. n+1 schema relationships Ei=1...(n+1), directing from the schema node towards
the attribute nodes, indicating that the attribute belongs to the relation’s output
schema and one directing from the relation node towards the output schema
node indicating that the output schema belongs to the relation.

In our reference examples, we have the following relations, whose graphs are depicted
in Fig. 5.3): relation Semester(MID,MDescr) standing for information on semesters,
relation CourseStd(csid, csname, cspts) standing for information on courses, relation
Course(cid, csid, mid) standing for information on courses on semesters, relation
Student(sid, sname) standing for information on students,and relation Transcript(cid,
sid, tgrade) standing for information on the enrolment of students to courses and their
grades.

Queries and Views. The graph representation of a Select - Project - Join - Group
By (SPJG) query involves:

1. a new node representing the query, named query node,

2. a set of input schemata nodes (one for every table appearing in the FROM clause).
Each input schema includes the set of attributes that participate in the syntax
of the query (i.e., SELECT, WHERE clause, etc.)

3. an output schema node comprising the set of attributes present in the SELECT
clause.

4. a semantics node as the root node for the sub-graph corresponding to the se-
mantics of the query (specifically, the WHERE and GROUP-BY part), and,

5. attribute nodes belonging to the various input and output schemata of the query.

The query graph is therefore a directed graph connecting the query node with the
high level schemata and semantics nodes. The query node contains an edge towards

131

every schema it possesses. The schema nodes are connected to their attributes via part-
of relationships. In order to explain the internal structure of a query, we structure
our presentation of the query’s graph in terms of its SQL parts: SELECT, FROM,
WHERE, and GROUP BY, each of which is eventually mapped to a sub-graph.

Select part. Each query is assumed to own an output schema that comprises the
attributes, either with their original or with alias names, appearing in the SELECT
clause. In this context, the SELECT part of the query maps the respective attributes of
the input schemata to the attributes of the query’s output schema through map-select
edges, directing from the output attributes towards the input schema attributes.

From part. The FROM clause of a query can be regarded as the relationship be-
tween the query and the relations (or views) involved in this query. Thus, the relations
included in the FROM part are combined with the input schemata of the query node
through from edges, directing from the nodes of the appropriate input schemata to-
wards the output schema nodes of the relation/view nodes. The input schemata of the
query comprise only the attributes of the respective relations that participate in any
way in the query; the attributes of the input schemata are connected to the respective
attributes of the provider relations or views via map-select relationships.

Where part. We assume that theWHERE clause of a query is in conjunctive normal
form. Thus, we introduce a directed edge, called where edge, starting from the seman-
tics node of a query towards an operator node corresponding to the conjunction of the
highest level. Then, there is a tree of nodes hanging from this conjunction involving
condition nodes (to be defined right away). The edges are operand relationships as
mentioned above among binary comparators, boolean operators, input attributes and
constants. In Fig. 5.4, we depict the graph of query Q_pass2courses, which performs
a self-join over view V _TR and presents a report of the students that enrolled in both
DB_I and DB_II courses, and their grades. A tree, starting from the SMTX node,
describes the conditions of the selected tuples. Initially, we take the tuples where the
name of the first course is equal to DB_I , then we filter them and take the ones that
have the same SID for V 1 and V 2. Finally, we filter those results and take the ones
having the name of the second course equal to DB_II.

We consider three classes of atomic conditions that are composed through the
appropriate usage of an operator op belonging to the set of classic binary operators,
op (e.g., <, >, =, ≤, ≥, ̸=, IN , EXISTS, ANY): (i) Ω op constant, (ii) Ω op Ω’, and
(iii) Ω op Q where Ω, Ω’ are attributes of the underlying relations and Q is a query. A

132

Figure 5.4: The graph of the semantics schema for the Q_pass2courses query

condition node is used for the representation of the condition. Graphically, the node
is tagged with the respective operator and it is connected to the operand nodes of the
conjunct clause through the respective operand relationships, O. Composite conditions
are easily constructed by tagging the condition node with a Boolean operator (e.g.,
AND or OR) and the respective edges to the conditions composing the composite
condition.2

Group By part. The GROUP BY part is mapped in the graph via (i) a node GB, to
capture the set of attributes acting as the aggregators and (ii) one node per aggregate
function labeled with the name of the employed aggregate function; e.g., COUNT,
SUM, MIN. For the aggregators, we use edges directing from the semantics node
towards the GB node that are labeled group-by. The GB node is linked to the respec-
tive input attributes acting as aggregators with group-by edges, which are additionally
tagged according to the order of the aggregators; we use an identifier i to represent
the i-th aggregator. Moreover, for every aggregated attribute in the query’s output

2Well-known constraints of database relations – i.e., primary/foreign key, unique, not null, and
check constraints – can also be captured by this modeling technique. Foreign keys are subset relations
of the source and the target attribute, check constraints are simple value-based conditions. Primary
keys, which are unique-value constraints, are explicitly represented through a dedicated node tagged
by their names and a single operand node.

133

schema, there exists a map-select edge directing from this attribute towards the aggre-
gate function node as well as an edge from the function node towards the respective
input attribute. In Fig. 5.5, we depict the graph of query Q_allStudentGPA. In the
left part, we have the edges that connect the output attributes with their providers in
the input schemata. We have SID and SName that are using as their providers the
SID and SName of Semester relation, whilst the GPA is the AV ERAGE aggregate
function of TGrade coming from V _TR view. In the right part of the figure, we have
the GB node, which is used to describe the “group by” clause of the query. The
numbers on the edges depict the order of the groupers, meaning that first we group
by SID and then with SName columns. Additionally, in MSTX node, we have a
node that describes that in the resulting tuples of the query, the SID that comes from
V _TR view and the SID that comes from Semester relation should be equal to each
other.

Figure 5.5: The graph of a group-by query. To avoid confusion, we depict the edges
in two snapshots of the graph: provider edges (left) and filtering and grouping edges
(right).

Views. Views are treated as queries; however the output schema of a view can be
used as input by a subsequent view or query module.

Summary. A summary of the architecture graph is a zoomed-out variant of the
graph at the schema level with provider edges only among schemata (instead of

134

attributes too). Formally, a summary graph is a directed acyclic graph Gs = (Vs, Es),
with Vs comprising the graph’s module nodes (relations, views and queries) and Es

including an edge e(v,u) from a consumer module v to a provider module u if and
only if there is an edge between an input schema of v and the output schema of
u in the Architecture Graph. We can formally define different levels of zooming via
summary graphs (i) at the schema level with input/output schemata, (ii) the module
level as in Fig. 5.6.

Figure 5.6: The Summary Graph of the University-DB Ecosystem.

5.2.2 Events

In this section we list the set of possible events that our method handles. We organize
our discussion by classifying these events in three classes: (a) events pertaining to
relations, (b) events pertaining to views or queries, and (c) events that occur as one
module notifies another for the event it just received.

We can classify the impact of an event as structuralwhenever the exported schemata
and their attributes are changed in terms of structure or naming. At the same time,
the impact of an event is semantic whenever the internals of the semantics schema
(i.e., the WHERE or the GROUP-BY clause of the respective SQL query) change.

Events that pertain to relations. The first class of events comprise changes on
the schema of relations:

135

• ADD_ATTRIBUTE: in this case, a relation should obtain another column

• DELETE_ATTRIBUTE: in this case, a relation should drop a column

• RENAME_ATTRIBUTE: in this case, a relation should rename a column

• DELETE_SELF: in this case, a relation will be deleted

• RENAME_SELF: in this case, a relation will be called with a new name from
now on.

Events that pertain to views and queries. The second class of events involve
changes on the definitions of Views/Queries:

• ADD_ATTRIBUTE: in this case, a query or a view should have a new attribute
(column, aggregate function or value) in its output

• DELETE_ATTRIBUTE: in this case, a query or a view should have less at-
tributes in its output

• RENAME_ATTRIBUTE: in this case, an attribute is going to be called with a
new name from now on

• DELETE_SELF: in this case, a view will be deleted (deleting queries is of no
impact to the ecosystem anyway)

• RENAME_SELF: in this case, a view will be called with a new name from now
on

• ALTER_SEMANTICS: in this case, a view is going to have another WHERE
clause or another GROUP BY clause.

Events that pertain to the notification of a change between modules. As we
will see in Section 5.3, whenever a module has decided on its reaction against the
incoming events, it assumes a status and notifies subsequent modules. Thus, besides
the aforementioned events, we need to support the following list of events that accrue
from the flow of an event to the graph.

• ADD_ATTRIBUTE_PROVIDER: this event is generated by a module in order
to inform its consumers that the module has added an attribute to its output
schema.

136

• DELETE_PROVIDER: this event is generated by a module in order to inform
its consumers that this module has deleted one or all its attributes.

• RENAME_PROVIDER: this event is generated by a module to inform its con-
sumers that the module itself or one of the attributes that exist in output schema
of the module want to change their name.

• ALTER_SEMANTICS: this event is generated by a module to inform its con-
sumers that the semantics (as described previously: change of WHERE or/and
GROUP BY clause) of a module have changed.

5.2.3 Policies

Our basic tool for the regulation of the propagation of an event’s impact to the entire
ecosystem is the ability to block further propagation at certain modules which veto
the event. To achieve this, we employ policies that annotate the ecosystem’s mod-
ules with predefined reactions to all possible incoming events they can receive. This
way, whenever a node receives an event that concerns either itself or its constituents
(e.g., the attributes of a schema), the node has already been instructed by the ecosys-
tem’s administrator on its reaction to the incoming event. The policy of a node for
responding to an incoming event can be one of the following:

• PROPAGATE, which means that the node accepts the change and will adapt to
the new reconfiguration of the ecosystem, or,

• BLOCK, which means that the node wants to retain the previous structure and
semantics.

Requirements for policy annotation. We wish to provide a language that annotates
nodes with policies and addresses the following usability requirements:

• Completeness: how can we be sure that we can define annotations for all the
possible events that can arrive to a node, for all the nodes of the ecosystem?

• Conciseness: can we achieve this easily and correctly with respect to the user’s
intentions, without having the user going to great lengths of coding in order to
annotate the ecosystem with policies?

137

Completeness. To achieve completeness, we need to be sure that we can provide
an annotation for all the nodes of the graph and for all the events that each node can
receive. To achieve this, we proceed in two steps: (a) we explicitly define the node-event
space, i.e., the space of all valid combinations of nodes and incoming events, and (b)
for each node-event combination, we define the respective policy rule that characterizes
the reaction of the node to this event.

To implement the first of the aforementioned steps, we exhaustively enumerate all
combinations of events and nodes (see Table 5.1). Observe, that Table 5.1 provides
a complete characterization of events that can arrive to a node organized per event type.
In Table 5.1, the rows (actually corresponding to the <receiver node> part of the
above rule) are explained as follows:

1. [QUERY|VIEW].[OUT|IN].SELF standing for the node representing the output
(input) schema of all queries (views)

2. [QUERY|VIEW].[OUT|IN].ATTRS standing for the nodes representing the at-
tributes of the output (input) schema of all queries (views)

3. [QUERY|VIEW].SMTX.SELF standing for the root node of the semantics tree of
all queries (views)

4. RELATION.OUT.[SELF|ATTRS] standing for the node representing the output
schema of all relations (or its attributes)

Language for policies. Then, to implement the translation of the node-event space
to policy rules, we need to provide a language that determines the policy for each event
that appears to each node. The language that we introduce is used to assign policies
to all the nodes of the ecosystem with guarantees for the complete coverage of all the
graph’s nodes along with syntax conciseness and customizability. In a nutshell, the
main idea is the usage of rules of the form <receiver node [type]> : on <event>
then <policy>, both at the default level –e.g.,

VIEW.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;

and at the node-specific level (overriding defaults) –e.g.,

V_TR_OUT.SELF: on ADD_ATTRIBUTE then BLOCK;

138

ADD DELETE RENAME ALTER

ATTR

ATTR

PROV SELF PROV SELF PROV SMTX

QUERY

OUT
SELF ✓ ✓ ✓ ✓

ATTRS ✓ ✓ ✓ ✓

IN
SELF ✓ ✓ ✓ ✓

ATTRS ✓ ✓

SMTX SELF ✓

VIEW

OUT
SELF ✓ ✓ ✓ ✓

ATTRS ✓ ✓ ✓ ✓

IN
SELF ✓ ✓ ✓ ✓

ATTRS ✓ ✓

SMTX SELF ✓

RELATION OUT
SELF ✓ ✓ ✓

ATTRS ✓ ✓

Table 5.1: The space of events that can be received by each node type

Before formally specifying the syntax of the policy language, we first discuss the
issues of language conciseness and rule overriding.

Conciseness. The observant reader might wonder on the reasoning behind pro-
viding rules both at the node type and the node level. The reason is conciseness: we
want to avoid annotating the graph in a node per node, event per event basis. To
this end, we provide a language that comes with the simple semantics that unless
otherwise specified (see the next paragraph), each node-event pair implements the
respective node type - event type policy. The default, fixed list, comprising 33 rules that
can be derived from the entries of Table 5.1 is depicted in Fig. 5.7. In Section 5.4,
we provide a proof for the language completeness in Theorem 5.1.

Still, even so, the number of rules needed for completeness could be considered

139

too large by some users. To this end, we provide some additional rules that simplify
our policy language. These rules come as syntactic sugar to our language. Specifically,
we introduce two syntactic sugar extensions as follows:

• the * notation for events allows the user to specify that a specific module type
(i.e., all relations/views/queries of the ecosystem) of a specific node is annotated
with the same policy for all the events that occur to it. In other words, the *
notation signifies “for any incoming event”

• the NODE notation specifies that all nodes of the ecosystem, independently of
their type, are annotated with the specified policy for the specified event (if, of
course, the event pertains to the node).

Of course, the combination of the two syntactic shorthands is also allowed. Thus, we
end up with the following list of syntactic sugar extensions:

<moduleType>: ON * THEN <policy>; This rule groups the events that a module
type (RELATION, VIEW, QUERY) can receive and sets the policy for all these
events to <policy>.

<namedNode>: ON * THEN <policy>; This rule finds the node that is specified by
name <namedNode> and sets the policy for all these events to <policy>.

NODE: ON <event> THEN <policy>; This rule annotates all the nodes of the graph
that can receive the specified event (named <event>) with the same policy,
namely <policy>.

NODE: ON * THEN <policy>; This rule actually replaces the group of the 33 rules
to one simple rule, saying that regardless of the event, the policy is uniformly
set to <policy>.

Theorem 5.3 in Section 5.4 describes why these extra rules correctly cover up the
needed events and correctly assign the policies to the nodes.

Customizability and Rule Overriding. Whereas our small list of generic, default
rules can cover all possible combinations of events and node types, it is quite possible
that we want to define a different reaction to the same event for different modules.
For example, we might wish a certain view to block attribute addition, whereas we
would allow another view to adapt to the same event. To facilitate this possibility we
allow three layers of rules:

140

1. Layer 0: Rules that are applied to all the nodes of the Architecture Graph via
the <NODE> notation.

2. Layer 1: General rules at the node type level, about all modules and their at-
tributes.

3. Layer 2: Rules that apply to all the attributes of a specific schema.

4. Layer 3: Rules that apply to specific attribute nodes.

In our approach, the semantics of the layers of rules state that each layer overrides
the policy of its previous layers. This way, if we have a default policy for all relations
(layer 1) for a certain event, we can customize the behavior of a specific relation to be
different than the default by defining a specific rule for it (layer 2). Theorem 5.2 in
Section 5.4 proves that our overriding mechanism assigns the correct policy to each
node. Within each of the layers, the following ordering is imposed:

1. First, the * notation is transformed to the appropriate list of rules.

2. Second, any more specific rules override the * notation with their designated
policies.

Language Syntax. The language’s syntax comprises rules that abide to the fol-
lowing structure:

<receiver> : on <event> then <policy>

where:

1. <receiver> can be any of the ecosystem’s node types

2. <event> can be any of the events that can arrive to an instance of this node
type, either because the user initiated this as the starting event, or due to the
propagation of the event in the ecosystem

3. <policy> can be either PROPAGATE or BLOCK

The above list of possible rules covers the node type layer (Layer 0), but not the
two others. To this end, we introduce two extra kinds of potential values for the
<receiver> part of the rules of our language.

141

1. <NAMED SCHEMA NODE>.ATTRIBUTES standing for the nodes representing
the attributes of the <named schema node> of the graph.

2. <NAMED NODE> standing for the <named node> node of the graph.

The first of the two extra rules refers to all the attributes of a specific schema (layer
2), and, the second one refers to individual nodes of the graph (layer 3).

Reference Example. Returning to our reference example, the following text rep-
resents a set of rules of how policy rules should be written in order to have all nodes
of the graph propagating all possible events for all modules, except for V_TR view,
in which only the CID attribute will propagate any of its incoming events. Fig. 5.8
covers the first set of completeness-ensuring rules mentioned previously.

Assuming now that the user wanted for the view V_TR to have a BLOCK policy
for all possible events, Fig. 5.9 describes the set or rules needed to be issued after the
general rules of Fig. 5.8.

Finally, the user decided that there is an exception to the rules of Fig. 5.9, and the
attribute CID of the output schema of the V_TR module should have again a different
policy than its siblings (switching again to PROPAGATE instead of BLOCK that was
set in the previous set of rules), for its deletion. This is achieved by the set of policies
depicted in Fig. 5.10.

Using the additional rules that simplify our policy language, the same example
could be written as Fig. 5.11 describes.

142

1. QUERY.OUT.SELF: on ADD_ATTRIBUTE then <policy>;

2. QUERY.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>;

3. QUERY.OUT.SELF: on DELETE_SELF then <policy>;

4. QUERY.OUT.SELF: on RENAME_SELF then <policy>;

5. QUERY.OUT.ATTRIBUTES: on DELETE_SELF then <policy>;

6. QUERY.OUT.ATTRIBUTES: on RENAME_SELF then <policy>;

7. QUERY.OUT.ATTRIBUTES: on DELETE_PROVIDER then <policy>;

8. QUERY.OUT.ATTRIBUTES: on RENAME_PROVIDER then <policy>;

9. QUERY.IN.SELF: on DELETE_PROVIDER then <policy>;

10. QUERY.IN.SELF: on RENAME_PROVIDER then <policy>;

11. QUERY.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>;

12. QUERY.IN.ATTRIBUTES: on DELETE_PROVIDER then <policy>;

13. QUERY.IN.ATTRIBUTES: on RENAME_PROVIDER then <policy>;

14. QUERY.SMTX.SELF: on ALTER_SEMANTICS then <policy>;

15. VIEW.OUT.SELF: on ADD_ATTRIBUTE then <policy>;

16. VIEW.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>;

17. VIEW.OUT.SELF: on DELETE_SELF then <policy>;

18. VIEW.OUT.SELF: on RENAME_SELF then <policy>;

19. VIEW.OUT.ATTRIBUTES: on DELETE_SELF then <policy>;

20. VIEW.OUT.ATTRIBUTES: on RENAME_SELF then <policy>;

21. VIEW.OUT.ATTRIBUTES: on DELETE_PROVIDER then <policy>;

22. VIEW.OUT.ATTRIBUTES: on RENAME_PROVIDER then <policy>;

23. VIEW.IN.SELF: on DELETE_PROVIDER then <policy>;

24. VIEW.IN.SELF: on RENAME_PROVIDER then <policy>;

25. VIEW.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>;

26. VIEW.IN.ATTRIBUTES: on DELETE_PROVIDER then <policy>;

27. VIEW.IN.ATTRIBUTES: on RENAME_PROVIDER then <policy>;

28. VIEW.SMTX.SELF: on ALTER_SEMANTICS then <policy>;

29. RELATION.OUT.SELF: on ADD_ATTRIBUTE then <policy>;

30. RELATION.OUT.SELF: on DELETE_SELF then <policy>;

31. RELATION.OUT.SELF: on RENAME_SELF then <policy>;

32. RELATION.OUT.ATTRIBUTES: on DELETE_SELF then <policy>;

33. RELATION.OUT.ATTRIBUTES: on RENAME_SELF then <policy>;

Figure 5.7: The 33 combinations of events and node types that provide complete
graph coverage; policy can be either BLOCK or PROPAGATE

143

QUERY.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
QUERY.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.OUT.SELF: on DELETE_SELF then PROPAGATE;
QUERY.OUT.SELF: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
QUERY.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
QUERY.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
QUERY.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;
VIEW.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
VIEW.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.OUT.SELF: on DELETE_SELF then PROPAGATE;
VIEW.OUT.SELF: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.OUT.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on RENAME_PROVIDER then PROPAGATE;
VIEW.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on DELETE_PROVIDER then PROPAGATE;
VIEW.IN.ATTRIBUTES: on RENAME_PROVIDER then PROPAGATE;
VIEW.SMTX.SELF: on ALTER_SEMANTICS then PROPAGATE;
RELATION.OUT.SELF: on ADD_ATTRIBUTE then PROPAGATE;
RELATION.OUT.SELF: on DELETE_SELF then PROPAGATE;
RELATION.OUT.SELF: on RENAME_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on DELETE_SELF then PROPAGATE;
RELATION.OUT.ATTRIBUTES: on RENAME_SELF then PROPAGATE;

Figure 5.8: Application of default rules for our reference example

144

V_TR_OUT.SELF: on ADD_ATTRIBUTE then BLOCK;
V_TR_OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then BLOCK;
V_TR_OUT.SELF: on DELETE_SELF then BLOCK;
V_TR_OUT.SELF: on RENAME_SELF then BLOCK;
V_TR_OUT.ATTRIBUTES: on DELETE_SELF then BLOCK;
V_TR_OUT.ATTRIBUTES: on RENAME_SELF then BLOCK;
V_TR_OUT.ATTRIBUTES: on DELETE_PROVIDER then BLOCK;
V_TR_OUT.ATTRIBUTES: on RENAME_PROVIDER then BLOCK;
V_TR_IN_TRANSCRIPT.SELF: on DELETE_PROVIDER then BLOCK;
V_TR_IN_TRANSCRIPT.SELF: on RENAME_PROVIDER then BLOCK;
V_TR_IN_TRANSCRIPT.SELF: on ADD_ATTRIBUTE_PROVIDER then BLOCK;
V_TR_IN_TRANSCRIPT.ATTRIBUTES: on DELETE_PROVIDER then BLOCK;
V_TR_IN_TRANSCRIPT.ATTRIBUTES: on RENAME_PROVIDER then BLOCK;
V_TR_IN_V_COURSE.SELF: on DELETE_PROVIDER then BLOCK;
V_TR_IN_V_COURSE.SELF: on RENAME_PROVIDER then BLOCK;
V_TR_IN_V_COURSE.SELF: on ADD_ATTRIBUTE_PROVIDER then BLOCK;
V_TR_IN_V_COURSE.ATTRIBUTES: on DELETE_PROVIDER then BLOCK;
V_TR_IN_V_COURSE.ATTRIBUTES: on RENAME_PROVIDER then BLOCK;
V_TR_SMTX.SELF: on ALTER_SEMANTICS then BLOCK;

Figure 5.9: Overriding the default rules for a view in our reference example

V_TR_OUT.CID: on DELETE_SELF then PROPAGATE;
V_TR_OUT.CID: on DELETE_PROVIDER then PROPAGATE;

Figure 5.10: Overriding the default rules for an attribute in our reference example

NODE: on * then PROPAGATE;
V_TR: on * then BLOCK;
V_TR_OUT.CID: on DELETE_SELF then PROPAGATE;
V_TR_OUT.CID: on DELETE_PROVIDER then PROPAGATE;

Figure 5.11: Simplified policy language example

145

5.3 Impact Assessment and Adaptation of Ecosystems

The goal of our method is to assess the impact of a hypothetical event over an
Architecture Graph annotated with policies and to adapt the graph to assume its new
structure after the event has been propagated to all the affected modules. Before any
event is tested, we topologically sort the modules of the architecture graph (always
feasible as the summary graph is acyclic: relations have no cyclic dependencies and
no query or view can have a cycle in their definition). This is performed once, in
advance of any impact assessment. Then, in an on-line mode, we can perform what-
if analysis for the impact of changes in two steps that involve: (i) the detection of
the modules that are actually affected by the change and the identification of a status
that characterizes their reaction to the event, and, (ii) the rewriting of the graph’s
modules to adapt to the applied change.

5.3.1 Topological sort

In order to make sure that the messages between modules are transferred in the right
order from providers to consumers, we perform a topological sorting of the graph’s
modules prior to any other step. As Theorem 5.4 in Section 5.4 indicates, this is
always feasible as the Architecture Graph does not contain cycles.

We follow a traditional approach to our topological sorting, which proceeds as
follows: first we find the modules with zero incoming edges. These modules are re-
moved from the examination set along with their outgoing edges, after being assigned
a unique ID. This gives as a result a new set of modules with zero incoming edges.
The algorithm stops when there are no more modules to visit. Relations have the
smallest IDs, followed by views and queries.

Observe that topological sorting of the graph is necessary, as opposed to a simple
flooding of messages with events over the graph, due to the existence of multiple
paths from data providers to their consumers (e.g., observe in Fig. 5.3 how the query
Q_pass2Courses is fed by view V_TR via two paths, as it performs a self-join). Also,
the existence of policies (which we detail in Section 5.3.3) require a strict order for
visiting the nodes of the graph. Apart from the termination of our algorithms, we
also want to guarantee the following properties:

• Confluence: each module in the graph will assume the same status, independently
from the order of processing the incoming messages.

146

Algorithm 5.1: Topological sort
Input: A summary of an architecture graph Gs(Vs,Es) that comprises the

modules of an architecture graph G(V,E).
Output: A topologically sorted architecture graph summary Gs(Vs,Es), i.e. an

annotation of the modules of Gs with a sequential id’s, via a
mapping Y : Vs → N.

1 notY etV isited = (Relation ∪ V iew ∪Query);
2 algoID = size(notY etV isited);
3 module = null;
while notY etV isited > 0 do

4 find module with zero incoming edges from notY etV isited;
5 remove module from notY etV isited;
6 remove edges starting from module;
7 module.ID = algoID;
8 algoID = algoID − 1;

end

• Consistency: all the modules will be correctly rewritten.

In Theorem 5.6 and Theorem 5.11 in Section 5.4, we demonstrate why we need
the principled visit of the nodes of the graph in a manner obeying the topological sort;
had we not followed the topological sort it would be impossible to guarantee these
correctness properties. Therefore, in the rest of our deliberations, unless explicitly
mentioned, the propagation of the impact of events follows the topological sort.

Once the topological sort has been completed, we are ready to interactively work
with the user towards highlighting the impact of a change and rewriting the graph
accordingly. These two tasks are explained in the following two subsections.

5.3.2 Detection of affected nodes and status determination

The assessment of the impact of an event to the ecosystem is a process that results
in assigning every affected module with a status that characterizes its policy-driven
response to the event. In contrast to the policy, which is an annotation of each module
with a directive on how to respond to a potential future event, a status is the decided
reaction to an actual event, after it has reached the module. The status determina-

147

tion task is reduced in (a) determining the affected modules in the correct order,
and, (b) making them assume the appropriate status. Algorithm Status Determination
(Alg. 5.2) details this process. In the following, we use the terms node and module
interchangeably.

1. Before assessing the event, all modules are set to status NO_STATUS. At the
end of the algorithm’s execution, the modules that will have retained this status
will be the ones that have not been affected by the event.

2. Whenever an event is assessed, we start from the module over which it is
assessed and visit the rest of the nodes by following the topological sorting of
the modules to ensure that a module is visited after all of its data providers
have been visited. A visited node assesses the impact of the event internally (cf.,
”intra-module processing”) and, if there is reason to change its NO_STATUS
status, due to incoming notifications from its providers, it obtains a new status,
which can be one of the following: (a) BLOCK, meaning that the module is
requesting that it remains structurally and semantically immune to the tested
change and blocks the event (as its immunity obscures the event from its data
consumers), (b) PROPAGATE, meaning that the module concedes to adapt and
propagate the event to any subsequent data consumers.

3. If the status of the module is PROPAGATE, the event must be propagated to
the subsequent modules. To this end, the visited module prepares messages for
its data consumers, notifying them about its own changes. These messages are
pushed to a common global message queue (where messages are sorted by their
target module’s topological sorting identifier).

4. The process terminates when there are no more messages and no more modules
to be visited.

Intra-module processing. A module starts by retrieving from the global queue
all the messages containing the events that concern it. For message processing within
each module, a local queue is used. The processing of the messages is performed as
follows:

1. First, the module probes its schemata for their reaction to the incoming event,
starting from the input schemata, next to the semantics and finally to the output
schema. Naturally, relations deal only with the output schema.

148

Algorithm 5.2: Status determination
Input: A topologically sorted architecture graph summary Gs(Vs,Es), a global

queue Q that facilitates the exchange of messages between modules.
Output: A list of modules Affected Modules ⊆ Vs that were affected by the

event and acquire a status other than NO_STATUS.
1 Q={original message}, Affected Modules = ∅;
forall node ∈ Gs(Vs,Es) do

2 node.status = NO_STATUS;

end
while size(Q) > 0 do

3 visit module (node) in head of Q;
4 insert node in Affected Modules list;
5 get all messages, Messages, that refer to node;
6 SetStatus(node, Messages);

if node.status == PROPAGATE then
7 insert node.Consumers Messages to the Q;

end

end
8 return Affected Modules Procedure SetStatus (Module, Messages)
1 Consumers Messages = ∅;

forall Message ∈ Messages do
2 decide status of Module;
3 put messages for Module’s consumers in Consumers Messages;

end

2. Within each schema, the schema probes both itself and its contained nodes
(attributes) for their reaction to the incoming event. At the end of this process,
the schema assumes a status as previously discussed.

3. Once all schemata have assumed status, the output schema decides the reaction
of the overall module; if any of the schemata raises a veto (BLOCK) the module
assumes the BLOCK status too; otherwise, it assumes the PROPAGATE status.

4. Finally, in case a PROPAGATE status is assumed, it prepares and inserts into
the global queue appropriate messages for all its consumers.

149

Observe that a module may receive multiple messages. Typically this is due to
the following two reasons: (a) cases of self-join, where a provider feeds (directly or
indirectly) a consumer via multiple one paths (and thus, a change in the provider
concerns more than one schemata of the consumer – observe here that it is not
obligatory that these schemata have identical reaction towards the event) and (b) a
deletion of an attribute in a view might affect both the semantics and the output
schema of the view, producing thus, two messages to its consumers: one that notifies
that output attributes have changed and another notifying that the semantics of the
view has changed (e.g., a part of the SELECT clause has been dropped due to the
attribute deletion).

Message structure and content. Each message msg is a quadruple msg(n, s, e, p)

with the following parts:

• n is the recipient module of the message.

• s is the specific schema of n, to which the message is sent (note that due to
this information, we can also find who the sender of the message was, since an
input schema has exactly one provider)

• e is the event that this message carries.

• p are message parameters containing additional information needed for some
events (e.g., the new name of an attribute for attribute addition or renaming
events).

All possible evolution events (as presented in Section 2.2) performed on relations,
views and queries generate initial messages that fall into the following types:

• DELETE_ATTRIBUTE: the user deletes an attribute from the output schema

• RENAME_ATTRIBUTE: the user renames an attribute from the output schema.

• ADD_ATTRIBUTE: the user adds another attribute to the output schema of a
module.

• DELETE_SELF: the user deletes a whole module.

• RENAME_SELF: when the user renames a whole module.

• ALTER_SEMANTICS: the user changes the semantics of a module.

150

Once the module has determined its reaction, it constructs messages for its data
consumers. The contents of the messages depend on the type of event. Here, we list
some examples of such cases.

• When a message is processed saying that an attribute is going to be deleted, the
input schema of the consumers that are connected to that attribute is informed
that the attribute will be deleted.

• If the whole module is going to be deleted then the consumers of this module
will receive a message in their input schema saying that the provider of that
input schema is going to be deleted.

• Likewise, when an attribute is going to be renamed, the input schema of the
consumers that are connected to that attribute is informed that the attribute will
have a new name from now on.

• If the whole module is going to be renamed, then the consumers of this module
will receive a message in their input schema saying that the provider of that
input schema is going to be renamed.

• When a module processes a message saying that a new attribute is going to be
added to its output schema, it informs all of its consumers in their input schema
that a new attribute was added to their provider.

• Finally when a module processes a message saying that its semantics have
changes, it informs all its consumers that it changed its semantics.

Maestros for the local processing. To facilitate the local, independent nature of
message processing by the modules, each module awakes a maestro that handles the
probing of schemata as well as the decision making on what status will the schema
assume. A maestro is a simple piece of software (implemented as an abstract interface,
later materialized on a case by case basis) that is specialized on the combination
type of event × module type. For each type of module, there is a specialized maestro
that takes care of status determination and rewriting for each possible event that can
be received.

In terms of software architecture, the decision for this structuring of the code
was done in order to decentralize event processing. It allows the reasonably smooth
extension of the architecture with new types of events or modules at the price of some

151

code reusability. In terms of algorithmic principles, we gain the benefits of module
independence at the price of a common queue of messages.

In [98], we present how events are processed inside modules, organized by the
type of the incoming message that the module is called to handle. For each event, we
explain the structure of the incoming message and the list of steps that have to take
place (organized per schema, if more than one schemata of the module are involved).

Assume a message with a provider attribute deletion event for the attribute named
A1.2, that a view module V1 receives, as depicted in Figure 5.12 (a).

• Initially, the maestro of the V1 module will find the attribute with name A1.2

in the input schema that fetched the message to the module, denoted as A1.2,
too. Then, A1.2 checks its policy for the event (provider attribute deletion) and
acquires a status. The same status is assumed for the input schema node of the
module V1 as well. If there is any connection between A1.2 and the semantics
schema, then the semantics schema checks its policy for the alter semantics
event, assumes a status, and creates messages for V1’s consumers, that describe
that the semantics of V1 will change. The newly created messages are kept in a
local message queue of the maestro, as depicted in Figure 5.12 (b).

• Then, if there are attributes in the output schema of V1 that are connected with
A1.2 (denoted as V1.2), the maestro checks their policy for the event and acquires
for each one a status. The output schema node of the module V1 acquires a
status as well. Finally, the maestro, for each of the V1.2 attributes finds their
consumers so as to notify them that their provider attributes are to be deleted.
Those messages are also kept in the local message queue of the maestro, as
depicted in Figure 5.12 (c).

• When all the above reach to an end, the V1 module checks the statuses of
the input, semantics, and output nodes. If none of them has acquired a BLOCK
status, then the module acquires status PROPAGATE and notifies the consumers
of V1 about the change, by inserting all the messages of the local message queue
in the global message queue, as depicted in Figure 5.12 (d).

Theoretical guarantees. Previous models of Architecture Graphs ([28]) allow
queries and views to directly refer to the nodes representing the attributes of the
involved relations. Due to the framing of modules within input and output schemata

152

Figure 5.12: Status determination example

and the topological sorting, in Theorem 5.4, and Theorem 5.5 we prove that the
process (a) terminates and (b) correctly assigns statuses to modules.

5.3.3 Query and view rewriting to accommodate change

Once the first step of the method, Status Determination, has been completed and each
module has obtained a status, their rewriting would intuitively seem straightforward:
each module gets rewritten if the status is PROPAGATE and remains the same if
the status is BLOCK. This would require only the execution of the Graph Rewrite
step – in fact, one could envision cases where Status Determination and Graph Rewrite
could be combined in a single pass. Unfortunately, although the decision on Status

153

Determination can be made locally in each module, taking into consideration only the
events generated by previous modules and the local policies, the decision on rewriting
has to take extra information into consideration. This information is not local, and
even worse, it pertains to the subsequent, consumer modules of an affected module,
making thus impossible to weave this information in the first step of the method,
Status Determination. The example of Fig. 5.13 is illustrative of this case.

Figure 5.13: Block rewriting example

Figure 5.13 depicts our reference example, which consists of 5 relations, 2 views
and 2 queries. We have omitted the full names of the nodes, for illustration pur-
poses. Assume now that the database administrator wants to change V0, which is
the V _Course view of our reference example, in a way that all modules depending
on V0 are going to be affected by that change (e.g., attribute addition, or attribute
deletion/rename for an attribute common to all the modules of the example). Assume
now that all modules except Q2 accept to adapt to the change, as they have a PROPA-
GATE policy annotation. Still, the vetoing Q2 must be kept immune to the change; to
achieve this we must retain the previous version of all the nodes in the path from the
origin of the evolution (V0) to the blocking Q2. As one can see in the figure, we now
have two variants of V0 and V1: the new ones (named V c

0 and V c
1) that are adapted

to the new structure of V0 (now named V c
0), are depicted in the leftmost part of the

right figure, with lighter color, and the old ones, that retain their name, are depicted
in the rightmost part of the figure. The latter are immune to the change and their
existence serves the purpose of correctly defining Q2.

154

Algorithm 5.3: Path check
Input: An architecture graph summary Gs(Vs,Es), a list of modules

Affected modules, affected by the event, and the Initial Event of the
user.

Output: Annotation of the modules of Affected modules on the action
needed to take, and specifically whether we have to make a new
version of it, or, implement the change that the user asked on the
current version

foreach Module ∈ Affected modules do
if Module.status == BLOCK then

1 CheckModule(Module, Affected modules, Initial Event);
2 mark Module not to change; ▷ Blockers do not change

end

end
Procedure CheckModule (Module, Affected modules, Initial Event)

if Module has been marked then
return; ▷ Notified by previous block path

end
if Initial Event == ADD_ATTRIBUTE then

1 mark Module to apply change on current version; ▷ Blockers ignore

provider addition

else
2 mark Module to keep current version as is and apply the change on a

clone;

end
foreach Module provider ∈ Affected modules feeding Module do

3 CheckModule(Module provider, Affected modules, Initial Event);
▷ Notify path

end

The crux of the problem is as follows: if a module has PROPAGATE status and
none of its consumers (including both its immediate and its transitive consumers)
raises a BLOCK veto, then both the module and all of these consumers are rewritten

155

to a new version. However, if any of the immediate consumers, or any of the transitive
consumers of a view module raises a veto, then the entire path towards this vetoing node
must hold two versions of each module: (a) the new version, as the module has accepted
to adapt to the change by assuming a PROPAGATE status, and, (b) the old version
in order to serve the correct definition of the vetoing module. Exceptionally, if the
event vetoed involves a relation, the veto freezes any other change and the event is
blocked.

To correctly serve the versioning purpose, the adaptation process is split in two
steps. The first of them, Path Check, works from the consumers towards the providers
in order to determine the number of variants (old and new) for each module. When-
ever the algorithm visits a module, if its status is BLOCK, it starts a reverse traversal
of the nodes, starting from the blocker module towards the module that initialized
the flow and marks each module in that path (a) to keep its present form and (b)
prepare for a cloned version where the rewriting will take place. A cloned version is
an identical copy of a module’s subgraph, with the same providers but with different
name. For example, if we already have a view in SQL as:

CREATE VIEW vn AS SELECT c FROM t;

then its clone would be

CREATE VIEW vn_Clone AS SELECT c FROM t;

The only exception to this rewriting is when the module of the initial message
is a relation module and the event is an attribute deletion, in which case a BLOCK
signifies a veto for the adaptation of the relation.

Finally, all nodes that have to be rewritten are getting their new definition accord-
ing to their incoming events. Unfortunately, this step cannot be blended with Path
Check straightforwardly: Path Check operates from the end of the graph backwards,
to highlight cases of multiple variants; rewriting however, has to work from the be-
ginning towards the end of the graph in order to correctly propagate information
concerning the rewrite (e.g., the names of affected attributes, new semantics, etc.).
So, the final part of the method, Graph Rewrite, visits each module and rewrites the
module as follows:

156

Algorithm 5.4: Graph Rewrite
Input: A list of modules Affected modules, knowing the number of versions

they have to retain, initial messages of Affected modules

Output: Architecture graph after the implementation of the change the user
asked

if any of Affected modules has status BLOCK then
if initial message started from Relation module type AND event ==
DELETE_ATTRIBUTE then

return;
else

foreach Module ∈ Affected modules do
if Module needs only new version then

1 proceed with rewriting of Module;
2 connect Module to new providers ; ▷ new version goes to new

path

else
3 clone Module; ▷ clone module, to keep both versions

4 connect cloned Module to new providers; ▷ clone is the new

version

5 proceed with rewriting of cloned Module;

end

end

end
foreach Module ∈ Affected modules ; ▷ no blocker node

do
6 proceed with rewriting of Module ; ▷ all modules fix their edges

internally

end

end

• If the module must retain only the new version, once we have performed the
needed change, we connect it correctly to the providers it should have.

• If the module needs both the old and the new versions, we make a clone of the

157

module to our graph, perform the needed change over the cloned module and
connect it correctly to the providers it should have.

• If the module retains only the old version, we do not perform any change.

One could possibly argue that we could have used a principled way to mark the
paths of the blocker modules, starting from the blocker module and visiting all the
affected modules with ID smaller than the blocker’s ID, marking them to have two
versions in the new schema. Unfortunately, this method would have been insufficient
as it would not be able to guarantee that the affected modules that are not in the path
of a blocker module will not be marked to obtain two versions too. For example, in
Figure 5.13, the Q1.ID could be either 8 or 9 after the topological sorting. If Q1.ID

is 9, then the aforementioned ID based traversal could be used. If Q1.ID is 8, then
Q2.ID is 9 and the aforementioned ID based traversal would mark the Q1 module
to obtain two versions, which is wrong.

How much cloning is required? Each execution of the Path Check and the Graph Rewrite
algorithms involves one event only. For each such event, a cloning is required when-
ever (a) the event involves deletion or semantics update, (b) a view module initiates
the propagation of an event due to its PROPAGATE policy, and, (c) some of its (pos-
sibly transitive) data consumers raises a veto. In this case, the entire path till the
blocker (blocker excluded) must be cloned. If there are two blockers that have the
same provider, then there is no extra duplication. For a given event that fulfils the
aforementioned conditions, assuming n blockers in an event, and m paths, m ≤ n,
involving M nodes (excluding the blockers), we need M extra cloned modules. If the
graph contains V views and Q queries, the maximum impact is when all of them
are affected by an event. A worst case scenario can be conceived when there is a
root view and all other views and queries defined over this view either directly or
transitively. Assume now that the root view is affected in a way that all views and
queries are affected (e.g., change of semantics) and all queries are blockers, although
all views are propagators (because if another view is a blocker, its queries are pro-
tected). Then, we need to clone V views, which is the maximum amount of cloning
that can happen in an event. Our reference example is in fact such a worst case (see
Fig. 5.13). Practically speaking, this possibility is rare (observe for example Fig. 5.15
on how a large subset of the Drupal ecosystem is constructed).

Returning to the rewriting process of modules with a PROPAGATE status, we can

158

summarize this process as follows:

• Whenever the attributes of a modules output schema are deleted, renamed or
inserted, the subsequent consumer schemata are adopted accordingly;

• Whenever entire modules are deleted or renamed, the respective schemata are
deleted or renamed accordingly.

In the following paragraphs, we are going to discuss the way the rewriting process
is performed within each module. Initially, we need to distinguish two categories,
depending on the type of the module that is rewritten: (a) the rewriting processes
that apply to Relation modules, and, (b) the processes that apply to Query/View
modules. This differentiation is mainly due to the fact that, in contrast to the Relation
modules that contain only an output schema, the Query/View modules additionally
contain a semantics schema and a set of input schemata (one per provider). Therefore,
queries and views require a different treatment.

In the following two subsections, we are going to briefly describe for each event,
the steps that are followed in the module rewriting mechanism, when the module is
accepting the change (its status is PROPAGATE). Naturally, if the status is BLOCK,
no rewriting is required at the internals of the module.

Relation module rewriting

For each of the events applied to a relation (as presented in Table 5.1), we perform
the following steps for rewriting the affected relation module and propagating the
event towards the rest of the graph:

Attribute addition When a new attribute is added to a relation module, the user
is prompted for the name of the new attribute and the module checks if it is
available or already in use by another attribute. If all conditions are met then the
new attribute is added to the output schema of the module and a message with
the addition along with the new attribute name is propagated to all dependent
modules.

Attribute deletion When an attribute is deleted, the output schema searches for the
specific attribute and deletes it. Similarly, a message for the deletion is propa-
gated to all dependent modules.

159

Attribute rename When an attribute is renamed, the output schema searches for the
specific attribute and renames it with the name provided by the user, unless
there is conflict with any attribute having the same name in the output schema
of the module; in this case the user is prompted to change it. Again, a message
for the renamed attribute is generated.

Self (module) deletion When a relation module is deleted, its output schema with all
its attributes are deleted and the module node itself is also deleted. A message
for the deletion is propagated to all dependent modules.

Self (module) rename When a relation module is renamed, the user is prompted for
the new name of the module. If it is unique, the module and its output schema
are renamed accordingly. Moreover, a message with the renamed relation is
propagated to all connected query/view modules, in order to update their input
schemata with the new name.

Query/View module rewriting

Query and View modules have the same events, thus we do not separate their rewrit-
ing methods. The steps for rewriting (a PROPAGATE status is assumed) are as fol-
lows:

Attribute addition The user adds a new attribute by selecting it out of the list of
attributes belonging in the output schemata of the query/view providers and
sets a unique alias name for this attribute. In case there is a GROUP BY clause
in the semantics schema, the user is prompted for adding the new attribute to
the groupers or using any aggregate function. In any case, the new attribute
is directly added to the output schema of the module. If the attribute was not
used before in the query/view, it is added in the respective input schema and
finally all the needed connections between the output node and the semantics
(if applicable) and input node are set. Moreover, its name is propagated to the
modules that are connected, in order to let them know the name of the new
attribute.

Attribute provider addition When an attribute is added in a provider of the module,
the input schema of the module adds a new attribute node with the specified
name. If there is any connection to the semantics schema due to a GROUP BY

160

clause, the user is again prompted for adding the new attribute to the groupers
or using any aggregate function. Finally, when all conditions are met, the new
attribute is added to the output schema of the module (checking to see if there
are any conflicts with the name of the new attribute and if so, the user is
prompted accordingly). Moreover, the name of the new attribute is propagated
to the modules that are connected, in order to update their input schemata
accordingly.

Attribute deletion For the case that an output attribute is deleted, it is first removed
from the output schema. All connections of the output attribute with the seman-
tics schema are removed and finally, if the attribute is not used in the semantics
tree, it is removed from the respective input schema.

Attribute provider deletion When an attribute of a provider module is deleted, it
is initially removed from the corresponding input schema of the module. If it
is used in a condition in the semantics tree, then this condition is set to true
or false, depending on the operator which connects this condition with the
semantics tree (true if the condition was connected to an AND operator and
false if it was connected to an OR operator). Finally, if this attribute is part of
the SELECT clause of the query, it is removed from the output schema. See
Fig. 5.14 for how the aforementioned example of Fig. 5.12 is rewritten.

Attribute rename When an attribute is renamed, the output schema searches for the
specific attribute and renames it with then name provided by the user, unless
there is conflict with any attribute already present in the output schema of the
module, having the same name with the one chosen for renaming (in this case
the user is prompted again). Moreover, its name is propagated to the modules
that are connected, in order to let them know the new name of the attribute in
order to update their schemata.

Attribute provider rename When an attribute is renamed in one of the providers
of the module, the attribute is initially renamed in the corresponding input
schema of the module. If there is a connection between any attribute of the
output schema with the same name, this attribute is also renamed, unless the
name is already used by any attribute of the output schema, in which case, the
user is prompted for a new name. Finally, this new name is further propagated

161

to the modules that are connected to this current one.

Module deletion When a query/view module is deleted, the schemata nodes of the
module with all their attributes are deleted and the module node itself is also
deleted.

Module rename When a query/view module is renamed, the user is prompted for
the new name of the module and if it is unique in the graph, then the module
and its output, semantics and input schema nodes are renamed accordingly.
Moreover, the new name is propagated to the modules that are connected to
this query/view, in order to know the new name of the module and update their
input schemata.

Provider module deletion When a provider module is deleted, the respective input
schema of the module that receives this notification is deleted. The steps applied
to the deletion of a provider attribute are performed for all attributes of the the
deleted provider module.

Provider module rename When a provider module is renamed, the module that
receives this notification initially checks if its input schema that corresponds
to the renamed provider had the same name with the old provider name (not
always the case, since there could be an AS rename in the query/view definition).
If this is the case, the input schema of the module is renamed accordingly (unless
the new name conflicts with an AS rename of any other input schema of the
module). If the new name due to conflicts cannot be set to the input schema,
the user is prompted for a new one.

Alter of semantics When a query/view module changes it semantics, the user is
prompted to alter the where and the group by clause of the module and the
semantics tree is rewritten from this input. When an alter of semantics message
arrives from any of the module’s providers, and the module has PROPAGATE
semantics, then, as we have already discussed in the previous subsection, there
is no rewriting at all at the module.

162

Figure 5.14: Rewriting for the example of Fig. 5.12

5.4 Theoretical Guarantees

In this section, we provide a set of theoretical guarantees regarding the correct an-
notation of the graph with events and policies and the termination and confluence
properties of our proposed algorithms.

5.4.1 Language Properties

Theorem 5.1. The entries of Table 5.1 cover completely the space of node types with the
events they can sustain.

Proof. The table that contains the events that each node type can receive was described
earlier in Section 5.2 (Table 5.1). In Table 5.2 we have replaced the ✓ symbols of the
table’s cells with the numbers of the default policy rules, according to the numbering
scheme of Figure 5.7. Two cells in the ALTER_SEMANTICS column are annotated
with a ✓ and without a reference to a rule; we explain why in the following text.

The events that are user generated and pertain to views and queries are:

UQV.1 ADD_ATTRIBUTE

UQV.2 DELETE_ATTRIBUTE

UQV.3 RENAME_ATTRIBUTE

163

ADD DELETE RENAME ALTER

ATTR

ATTR

PROV SELF PROV SELF PROV SMTX

QUERY

OUT
SELF 1 2 3 4

ATTRS 5 7 6 8

IN
SELF 11 9 10 ✓

ATTRS 12 13

SMTX SELF 14

VIEW

OUT
SELF 15 16 17 18

ATTRS 19 21 20 22

IN
SELF 25 23 24 ✓

ATTRS 26 27

SMTX SELF 28

RELATION OUT
SELF 29 30 31

ATTRS 32 33

Table 5.2: The space of events that can be received by each node type according to
the line number in the rules of the policy file

UQV.4 DELETE_SELF

UQV.5 RENAME_SELF

UQV.6 ALTER_SEMANTICS

As mentioned previously in Section 5.2.2, the events that are user generated and
pertain to relations are:

UR.1 ADD_ATTRIBUTE

UR.2 DELETE_SELF

164

UR.3 RENAME_SELF

UR.4 DELETE_ATTRIBUTE

UR.5 RENAME_ATTRIBUTE

Our policy language covers all these events that are related with the user interaction
and are the marks of Table 5.1 that are in the lines that contain the OUT and SMTX
keywords on queries, views and relations.

Due to the message propagation mechanism, additional events occur. These events
(also described in Section 5.2.2) are received by the IN nodes of the query and view
modules. These events are:

MP.1 ADD_ATTRIBUTE_PROVIDER

MP.2 DELETE_PROVIDER

MP.3 RENAME_PROVIDER

MP.4 ALTER_SEMANTICS

For our policy language to cover the three of the four previous events (MP.1, MP.2,
and MP.3) that are related to the message propagation mechanism, additional policies
are needed. The exception of MP.4 is due to the fact that the IN schema node who
receives such an event forwards it to the respective SMTX node who is actually the
one responsible for the handling of this event. Therefore, there is no need to define
a policy at the IN schema node, as the event will be appropriately handled at the
SMTX node.

In Table 5.2 we have all the above combinations of events and node types, thus, our
default 33 rule have completely covered the space of node types with their incoming
events.

Precisely, lines 1 to 14 concern queries.
As previously stated at the exception of MP.4, the 14 rule (QUERY.SMTX.SELF: on

ALTER_SEMANTICS then <policy>;) covers two events, since the IN node forwards
this message to the SMTX node which is the only responsible for the policy over the
ALTER_SEMANTICS event.

Likewise, lines 15 to 28 concern views.
The 28 rule (VIEW.SMTX.SELF: on ALTER_SEMANTICS then <policy>;) covers

two events just like 14 rule does, for the exact same reasons.

165

1 QUERY.OUT.SELF: on ADD_ATTRIBUTE then <policy>; which is for UQV.1
2 QUERY.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>; // which is for MP.1 in output schema node
3 QUERY.OUT.SELF: on DELETE_SELF then <policy>; which is for UQV.4
4 QUERY.OUT.SELF: on RENAME_SELF then <policy>; which is for UQV.5
5 QUERY.OUT.ATTRIBUTES: on DELETE_SELF then <policy>; which is for UQV.2
6 QUERY.OUT.ATTRIBUTES: on RENAME_SELF then <policy>; which is for UQV.3
7 QUERY.OUT.ATTRIBUTES: on DELETE_PROVIDER then <policy>; which is for MP.2
8 QUERY.OUT.ATTRIBUTES: on RENAME_PROVIDER then <policy>; which is for MP.3
9 QUERY.IN.SELF: on DELETE_PROVIDER then <policy>; which is for MP.2
10 QUERY.IN.SELF: on RENAME_PROVIDER then <policy>; which is for MP.3
11 QUERY.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>; which is for MP.1 in input schema node
12 QUERY.IN.ATTRIBUTES: on DELETE_PROVIDER then <policy>; which is for MP.2
13 QUERY.IN.ATTRIBUTES: on RENAME_PROVIDER then <policy>; which is for MP.3
14 QUERY.SMTX.SELF: on ALTER_SEMANTICS then <policy>; which is for both UQV.6 and MP.4

Table 5.3: Query policies with the addressed events

15 VIEW.OUT.SELF: on ADD_ATTRIBUTE then <policy>; which is for UQV.1
16 VIEW.OUT.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>; which is for MP.1 in output schema node
17 VIEW.OUT.SELF: on DELETE_SELF then <policy>; which is for UQV.4
18 VIEW.OUT.SELF: on RENAME_SELF then <policy>; which is for UQV.5
19 VIEW.OUT.ATTRIBUTES: on DELETE_SELF then <policy>; which is for UQV.2
20 VIEW.OUT.ATTRIBUTES: on RENAME_SELF then <policy>; which is for UQV.3
21 VIEW.OUT.ATTRIBUTES: on DELETE_PROVIDER then <policy>; which is for MP.2
22 VIEW.OUT.ATTRIBUTES: on RENAME_PROVIDER then <policy>; which is for MP.3
23 VIEW.IN.SELF: on DELETE_PROVIDER then <policy>; which is for MP.2
24 VIEW.IN.SELF: on RENAME_PROVIDER then <policy>; which is for MP.3
25 VIEW.IN.SELF: on ADD_ATTRIBUTE_PROVIDER then <policy>; which is for MP.1 in input schema node
26 VIEW.IN.ATTRIBUTES: on DELETE_PROVIDER then <policy>; which is for MP.2
27 VIEW.IN.ATTRIBUTES: on RENAME_PROVIDER then <policy>; which is for MP.3
28 VIEW.SMTX.SELF: on ALTER_SEMANTICS then <policy>; which is for both UQV.6 and MP.4

Table 5.4: View policies with the addressed events

Finaly, lines 29 to 33 concern relations.

29 RELATION.OUT.SELF: on ADD_ATTRIBUTE then <policy>; which is for UR.1
30 RELATION.OUT.SELF: on DELETE_SELF then <policy>; which is for UR.2
31 RELATION.OUT.SELF: on RENAME_SELF then <policy>; which is for UR.3
32 RELATION.OUT.ATTRIBUTES: on DELETE_SELF then <policy>; which is for UR.4
33 RELATION.OUT.ATTRIBUTES: on RENAME_SELF then <policy>; which is for UR.5

Table 5.5: Relation policies with the addressed events

As one may notice the 33 rules cover all the 35 events that may appear in each
one of the nodes. The inequality of the numbers is because of the exception of MP.4.
Therefore, the fact that the 33 rules cover 33 events plus the two events that do not
need any rule proves that all the events (UR.*, UQV.*, and MP.*) are covered by our

166

policy rules.
Moreover, if we override the 33 default rules, then, the most refined policy will

be enforced for each node.

Theorem 5.2. The policy overriding mechanism is correct (assigns the correct policy to each
node).

Proof. One node may have more than one policies for a specific event. This occurs
because a policy over an event may be set in any of the following three rules:

1. Rules about all the nodes of the Architecture Graph.

2. Rules about all modules and their attributes.

3. Rules that apply to all the attributes of a specific schema.

4. Rules that apply to specific attribute nodes.

The golden standard of correctness requires that whenever a node has more than
one policies for the same event, the one that perseveres is the policy defined at the
finest level of detail.

The overriding mechanism is correct because the following sequence of events is
guaranteed: initially, it we apply the most general rules for all the nodes of the graph,
then the rules per module type, then the rules referring to the attributes of specific
schemata, and finally, the rules that apply to specific attributes.

Observe that this is independent on whether the policies are assigned a priori,
during the construction of the graph, or, on demand, whenever a specific node needs
to determine its policy.

Theorem 5.3. The extra rules

• <moduleType>: ON * THEN <policy>;

• <namedNode>: ON * THEN <policy>;

• NODE: ON <event> THEN <policy>;

• NODE: ON * THEN <policy>;

can correctly cover up the events of the Table 5.2 and correctly override each other mechanism
(assign the correct policy to each node).

167

Proof. We need to prove that these rules will cover up all the events that a node
might receive, as well as that these rules correctly override each other. The more
general rules are the ones that contain the keyword NODE. These rules are applied
first. Then the rules that apply to modules and finally the rules that are applied to
specific nodes of the graph. Within each rule, the rules that contain the keyword *
are preceding over the others rules.

The rule: NODE: ON * THEN <policy>; is translated to all the 33 rules described
in Figure 5.7 and prove their correctness in Theorem 5.1. So all the events are covered.
This rule is also the first one to be applied in our graph, regardless of its position.

The rule NODE: ON <event> THEN <policy>; is translated to the rules that
apply for the specified event type. We can follow the columns of the table 5.2 in
order to see that for:

• ATTRIBUTE_ADDITION, the rules of Figure 5.7 that apply are: rule 1 for the
queries, rule 15 for the views and rule 29 for the relations.

• ATTRIBUTE_PROVIDER_ADDITION, the rules of rules of Figure 5.7 that apply
are: rule 2 and 11 for the queries and rule 16 and 25 for the views.

• DELETE_SELF, the rules of Figure 5.7 that apply are: rule 3 and rule 5 for
queries, rule 17 and rule 19 for views, rule 30 and rule 32 for relations.

• DELETE_PROVIDER, the rules of Figure 5.7 that apply are: rule 7, rule 9 and
rule 12 for the queries, rule 21, rule 23 and rule 26 for the views.

• RENAME_SELF, the rules of Figure 5.7 that apply are: rule 4 and rule 6 for the
queries, rule 18 and rule 20 for the views, rule 31 and rule 33 for the relations.

• RENAME_PROVIDER, the rules of Figure 5.7 that apply are: rule 8, rule 10
and rule 13 for the queries, rule 22, rule 24 and rule 27 for the views.

• ALTER_SEMANTICS, the rules of Figure 5.7 that apply are: rule 14 for the
queries and rule 28 for the views.

This rule is the second one that is applied in our graph, in order to correctly override
the more general first rule (NODE: ON * THEN <policy>;).

The rule <moduleType>: ON * THEN <policy>; is translated to the set of rules
that apply to the specific module type. For example,

168

• for the query module type, these rules are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
and, 14,

• for the view module type, these rules are: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, and, 28,

• for the relation module type, these rules are: 29, 30, 31, 32, and, 33.

This rule is the third one that is applied in our graph, in order to correctly override
the two more general rules.

Finally, the rule <namedNode>: ON * THEN <policy>; is translated to the rules
that apply to the module type of the specific <namedNode>. This means that the rules
that are generated have the <namedNode>’s name. For example, for a relation named
TRANSCRIPT,

1. the rules will start with TRANSCRIPT_SCHEMA

• for the ATTRIBUTE_ADDITION event, which is for the rule 29,

• for the DELETE_SELF event, which is for the rule 30,

• for the RENAME_SELF event, which is for the rule 31,

2. and two more rules that are for the attributes of the TRANSCRIPT relation,
starting with TRANSCRIPT_SCHEMA.ATTRIBUTES

• for the DELETE_SELF event of the attributes, which is for the rule 32,

• for the RENAME_SELF event of the attributes, which is for the rule 33.

This rule is applied after the rules per module type have been applied and before
rules with specific events for specific nodes are applied.

5.4.2 Theoretical Guarantees for the Status Determination Algo-

rithm

First, we prove that the mechanism for message propagation works correctly at the
inter-module level.

Theorem 5.4. The message propagation at the inter-module level terminates.

169

Proof. The summary of the architecture graph is a directed acyclic cycle. This is due
to the fact that (i) a query depends only on views and relations, and (ii) relations
do not depend on anything (in the context of this chapter, we do not consider cyclic
foreign key dependencies).

Since the summary graph is a DAG, we can topologically sort it and propagate the
messages according to this topological order. Thus, all that it takes for the message
propagation mechanism to terminate is: (a) each module emits a message only once
for each session to its consumers that are related with the event/parameter; (b) the
graph is finite. Since both assumptions hold, the algorithm terminates.

Theorem 5.5. Each module in the graph will assume a status once the message propagation
terminates; this status is the same, independently from the order of processing the incoming
messages.

Proof. Each module gathers from the common message queue all the messages that
concern it. For each message, the module and its schemata, assume a status. A mod-
ule’s status can change only in the following order: NO_STATUS < PROPAGATE <

BLOCK, meaning that if a module has assumed a PROPAGATE status, it can not
change it to NO_STATUS but it may change it to BLOCK. Therefore, if a message
that will ignite a BLOCK policy is found anywhere in the list of incoming messages,
this BLOCK status will eventually be assumed and not overridden later. Otherwise,
a PROPAGATE status will be assumed. At the end of the message processing, the
module retains the final status it assumed.

Theorem 5.6. Messages are correctly propagated to the modules of the graph.

Proof. For the node that receives the initial event we need to prove that:

1. the node either acquires BLOCK status, therefore the message propagation
mechanism stops, or,

2. the node acquires PROPAGATE status and notifies its consumers about the
change.

For all the other nodes we need to prove that:

3. that a module will not be affected if none of its providers was affected by the
imminent change,

170

4. there is no module that receives a message while its provider has a BLOCK
status,

5. there is no module that should have received a message when it was its turn to
acquire a status but the message was not in its input message list,

The first two propositions stand because of the rewrite maestros mechanism. The
modules communicate using a global list of messages. The rewrite maestro keeps
a local list of all the outgoing messages of the module to its consumers. When the
module finishes processing all its incoming messages, the maestro checks the module’s
status and if it is BLOCK, then returns, without adding the outgoing messages to
the global list, which proves the first proposition. If the status of the module is
PROPAGATE then the output messages are added in the global list, so the consumers
of the module are notified, which proves the second proposition.

For the third proposition: One (or more) input schema node(s) of a consumer
module is connected via directed edges to the output schema node(s) of its providers.
Due to its inherent construction, the modules which are eventually visited by the
message propagation mechanism, have at least one of their providers affected. For
the same reason, the modules that are not visited by the mechanism (a) either do not
have any provider affected, or, (b) a block policy terminated the message propagation
in provider modules, earlier.

For the fourth proposition: The messaging mechanism dictates that each mes-
sage is propagated from the output node of the provider module towards the input
schemata of all consumer modules, unless a BLOCK policy explicitly halts the propa-
gation. Since a BLOCK policy terminates the message propagation from this provider
module, we guarantee that there is no consumer module to receive any message from
provider module.

For the fifth proposition: The messaging mechanism uses a list to transfer the
messages between the modules. This list is sorted by the ID numbers that the mod-
ules have acquired by the topological sort algorithm (described in Figure 5.1). Since
the list is topologically sorted too, we guarantee that there there is no module that
should have received a message when it was its turn to acquire a status but the
message was not in its input message list.

Theorem 5.7. The message propagation at the intra-module level: (i) terminates, with
(ii) each node assuming a unique status according to its policy and the status precedence

171

constraints.

Proof. We visit the schemata of a module in a fixed order: input schemata, semantics
schema, output schema. For each of these schemata, we may visit its attributes too.
All these constructs are finite and visited only once. This is a task that the maestros
perform and the very reason for their existence, otherwise we could have allowed
message propagation via the graph’s edges within the modules too. Therefore, the
algorithm terminates and (i) is proved.

For requirement (ii) we need to prove the following:

1. for all messages, vetoes override adaptation,

2. per message, for all the appropriate nodes (and only them) the status of the most
detailed nodes overrides the decision of the status of the schema,

3. if any of the schemata of a module has status BLOCK, the module assumes
status BLOCK.

Regarding the first proposition: as already stated at the proof of Theorem 5.5, a
node’s status can change only in the following order: NO_STATUS < PROPAGATE
< BLOCK, meaning that if a node has assumed a PROPAGATE status, it can not
change it to NO_STATUS but it may change it to BLOCK.

Regarding the second proposition: every time a schema is probed on an event (a)
the appropriate nodes within a schema are asked about their policy, or/and, (b) the
schema itself is asked about its policy. Table 5.2 describes the relationship between
events and nodes prompted, in the lines that say ATTRS the (a), (b) take place, while
in the lines that say SELF only the (b) takes place. This is the correct and desired
behavior. When an attribute acquires a status, the schema node is prompted to acquire
the same status. The completeness of the language guarantees that all nodes have a
policy for any incoming event that can arrive to them. Therefore, in all occasions
(i) the correct nodes are prompted for a response, (ii) the policy of the appropriate
nodes prevails, (iii) it is impossible that such a policy does not exist. Therefore, for
each message all nodes acquire the correct status.

Regarding the third proposition: the proposition is inherently supported.

172

5.4.3 Theoretical Guarantees for the Path Check Algorithm

We are going to prove that Path Check Algorithm terminates and all modules at the
end have the correct number of versions they need to keep.

Theorem 5.8. The module traversal terminates and the visited modules have the correct
notification of how many versions they need.

Proof. Algorithm Path Check sequentially passes from each of the affected modules
with BLOCK status and for each of them executes method CheckModule. If we can
prove that CheckModule terminates, then the algorithm terminates too.

The algorithm has as input: (i) a finite set of modules (each module with BLOCK
status starts the CheckModule method once), and (ii) the initial event placed by the
user.

In every step, the CheckModule method marks the module to keep two versions,
and finds the providers of this module through which the module was marked about
the change. These provider modules are listed in the set of the affected modules. If
there are no more modules this means that the method reached the module from
which the change started.

Since this is a recursive procedure, the providers of the providers of those modules
are also marked and so on. The condition that inspects whether the visited module
was previously marked, is done by the following line:

If(Module has been marked) Then return;

of the CheckModule method. This condition makes sure that the recursive traversals
of the method terminate as soon as possible –since those modules have already been
marked by a previous traversal– and every module that is part of the path that goes
from a blocker module to the source of the changes has been marked to keep two
versions.

5.4.4 Theoretical Guarantees for the Graph Rewrite Algorithm

We are going to prove that (a) Graph Rewrite Algorithm terminates, (b) when Graph
Rewrite terminates, all modules have the correct connections at the inter-module level,
and (c) all modules are correctly rewritten at the intra-module level.

173

Termination and confluence at inter-module level

First, we prove that the mechanism for graph rewriting works correctly at the inter-
module level.

Theorem 5.9. The graph rewriting at the inter-module level terminates.

Proof. The Graph Rewriting Algorithm terminates when all the notified modules that
accepted the change (meaning that those modules acquired a PROPAGATE status)
are rewritten. The algorithm has as input the list of the affected modules, each one
having its status and the number of versions it needs to keep, and the initial messages
that each affected module received. In the special case of the DELETE_ATTRIBUTE
event coming from a Relation module, the algorithm terminates right away. Otherwise,
each one of the affected modules (which is a finite list of modules) is rewritten once,
so the algorithm terminates.

We need to prove:

1. that each module is rewritten only once for each one of the messages it received,

2. that there is a finite list of messages, and

3. that there is a finite number of modules that are going to be rewritten.

For 1 and 2 since the incoming messages of a module are finite (as proved earlier
in theorem 5.4), and maestros are only once executed per message we are sure that
each module is rewritten once per message received. For 3 the number of modules
that acquired PROPAGATE status is finite, since the graph is finite. Therefore, since
all assumptions hold, the algorithm terminates.

Theorem 5.10. The graph will be in the correct form after the rewrite.

Proof. We need to prove that:

1. All the modules that have no status will not be rewritten.

2. All the modules with BLOCK status will not be rewritten.

3. If there is no vetoer in the graph, then all the modules with PROPAGATE status
will be rewritten.

174

4. If there is any vetoer, then the modules with PROPAGATE status will be rewrit-
ten (i) themselves –since there is only one version needed– if they are not part
of a blocker path, or, (ii) as clones –since there are two versions needed– as
parts of a blocker path. In both cases the modules will be connected to the
appropriate path.

A module is part of a blocker path when the module has PROPAGATE status but
at least one of its descendants acquired status BLOCK.

We need two paths, the “new providers” in which all the nodes accepted the
change, and the “old providers” in which we keep the old definitions of all the
affected modules because a module declined the change. If a module needs to keep
only one version then the path with the “new providers” is the one that this module
belongs to. If a module needs to keep two versions then the path with the “old
providers” that did not want to accept the change is the one that this module belongs
to, while its clone belongs to the path with the “new providers” that accepted the
change, thus providing right essence to the modules that need to keep only one
version. The number of versions a module has to keep is given by the algorithm
depicted in Algorithm 5.3.

If none of the modules vetoed, then the Graph Rewrite Algorithm does a traversal
visiting the affected nodes, in order to apply the change the user asked. The algorithm
works only with the modules that have PROPAGATE status, thus 1, 2 and 3 are
proved. For 4:

1. If the module needs to keep two versions we clone the module, we connect the
cloned module to its new providers (if it is the module that started the event
then we connect it to the providers that the original has), and we proceed with
the rewrite of the cloned module. This way, the cloned modules are all in one
path, and the modules that vetoed are all in the other path.

2. If the module belongs to a path without blocker modules, then it needs to keep
only the new version we connect it to the path of the new providers and we
proceed with the internal rewriting of the module.

175

Termination and confluence at intra-module level

Theorem 5.11. The rewriting of modules at the intra-module level terminates and each
module is rewritten correctly.

Proof. Sections 6 and 6 describe the intra module rewriting process, where we begin
our module rewriting from the input schema, continue to the semantics schema and
terminate to the output schema. There is only one exception at the aforementioned
rule and that is on the attribute addition of query/view modules, where we start
from the output schema of the module and move towards the semantics and input
schemata.

In both cases, we start rewriting from the one border of the module (input or out-
put) and terminate to the other border of the module (output or input, respectively).
Because of the previous statement, we guarantee that our method terminates because:
(a) we perform a single visit per affected node, and (b) we work with a finite number
of nodes. As for the validity of the intra-module rewriting, each event is rewritten as
described in sections 6 and 6 and whenever information is needed, either the mod-
ules passes that information from the provider module to the consumer module, or
prompt the user to provide the needed information.

5.5 Experiments

We assessed our method for its usefulness and scalability with varying graph config-
urations and policies; in this section, we report our findings. As already mentioned,
all the material for this work, including input ecosystems, links to the source code
(publicly available at git) and results can be found in the following web page: http:
//www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html. We have employed a
real-world case, based on 7 major revisions of Drupal in the period 2003 - 2007
as the testbed for our experimentation. To further stress-test our method with more
complicated scenarios, we have also performed a controlled experiment, based on a
widely used benchmark, TPC-DS, to allow the evaluation of the effect of different
problem parameters (like policy annotation and graph size) to the effectiveness, ef-
ficiency and required user effort of our method. Before proceeding, we describe the
fundamental metrics that we employ for the assessment of our experiments.

176

http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html
http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html

5.5.1 Effectiveness and Effort Metrics

In this subsection, we discuss the metrics used to assess the efficiency, the effort spent
for the annotation of the graph and the effectiveness metrics that we employ in our
experiments. Evaluating efficiency is straightforward, as we assess the breakdown of
the time spent for each of the 3 steps of our method. For the rest of the metrics, we
provide a more detailed discussion, right away. We conclude this subsection with a
note on the experimental configuration of each experiment.

Effectiveness: do we gain from annotating the graph with policies and testing
what-if scenarios this way?

How can we assess the effort gain of a developer using the highlighting of affected
modules of Hecataeus? This gain should be contrasted to the effort spent in the case
where he would have to perform all checks by hand. We employ the %AM metric,
measuring the fraction of Affected Modules of the ecosystem as the gain that amounts to
the percentage of useless checks the user would have made. We exclude the object
that initiates the sequence of events from the computation, as it would be counted in
both occasions. Formally, %AM is given by the Equation 5.1.

%AM = 1− #Affected Modules

#(Queries ∪ V iews)
(5.1)

Moreover, to assess the extent of rewritings that are automated by our method,
for each event we measure the number of Rewritten Modules as the sum of the number
of modules that were cloned (new versions of affected modules) with the number of
existing adapted modules. We denote this measurement with the RM metric, given
by the Equation 5.2.

RM = #Adapted Modules + #Cloned Modules (5.2)

Policy annotation effort: how much time does it take to setup the policy rules in
order to work with our what-if analysis tool?

How hard is it to annotate the graph with policies? How much time does the user
have to spend for authoring the rules?

Our method comes with the possibility of using syntactic sugar rules that make
life easy and fast. For the rare occasion when the user does not want to use these

177

syntactic shortcuts, for every specific module that gets into the user’s focus, the user
has to provide as many rules as necessary to override the default policies. In the
worst case, this requires 9 + 5 × |input schemata| rules for a full re-specification of
a query/view module. When the syntactic sugar is used, one rule is sufficient to fully
invert the policy of a module. Of course, rules for more detailed subsets of the module
can also override this default. In any case, in order to write these rules, the user has
to locate the module in the graph and invoke the graphical policy editor; however,
locating the module is actually the difficult part of the annotation. To address this
task, Hecataeus comes with a layout containing the filesystem of the project that the
user investigates. Initially, the user has to find the file that contains the query he
wants to change its policy. When the user selects a file, the queries that are in this
file, are highlighted in the visual representation of the Architecture Graph in our
tool, providing a smaller set of modules that need to be searched. Finally, when the
user finds the module he wants to differentiate from the global policy, he adds only
one line of text to the policy file that says that this query has a specified policy. We
repeatedly monitored the annotation time, using a wristwatch, and this task takes at most 1
minute for each query that the user wants to set a specific policy.

In each experiment, we also discuss the number of rules required for the execution
of the experiment. We believe the annotation effort is practically negligible.

Experimental configuration

In all our experiments, we need to fix the following parameters for our experimental
setup: (a) an ecosystem comprising a database schema surrounded by a set of queries
and possibly a set of views, (b) a workload of events that are sequentially applied to
the above configuration, and, (c) a palette of “profiles” that determine the way the
ecosystem’s architecture graph is annotated with policies towards the management of
hypothetical events; hence, these profiles simulate the intention of the administrating
team for the management of the ecosystem.

5.5.2 Replaying the Evolution of Drupal

Ecosystem. In this experiment, we have employed Drupal, versions 4.1.0 to 4.7.11 3

as our experimental testbed. Drupal is a Content Management System (CMS) that is
3http://ftp.drupal.org/files/projects/

178

written in PHP language, which contains SQL queries in its php script files. We used
some of the major versions of this project that took place between 2003 and 2007.
As one may observe in Table 5.6, there are no views in this project; that is why we
decided to split the experiment in two setups, described in Sections 5.5.2 and 5.5.2
respectively.

Original evolution scenario

In this setup, we replay the original evolution of the Drupal project, raising each one
of the events that really occurred, having no blocker modules.

Events. We have used the actual events that evolved the database schema of
Drupal between the major versions we describe in Table 5.6. For example, in order to
get to version 4.2.0 we had to perform 6 attribute additions and 2 attribute deletions.

Policies. The default reaction for the original scenario was to accept all changes
between two subsequent versions. Thus, the policy for all modules was to propagate
all events that occur on the system; this is expressed by having only one rule in the
policy file (NODE: on * THEN PROPAGATE;).

Modified scenario with view cloning

In the second setup, we replay an alternative evolution case of the Drupal project, in
order to examine the effect of cloning of views on the overall system. Specifically, we
added a view named “UNV iew”, that is used to join the USERS and NODE relations.
Then, we rewrote all queries joining the two tables to use the view instead. Moreover,
we added one extra query that asks for all the attributes of UNview which would act
as a blocker to all events that ultimately reach it. This setting allows us to see how
view cloning operates ”in the microscope”.

Events. We have also used the actual events as in the previous setup. The only
difference to the previous approach is that, when there was an attribute deletion in
USERS or NODE relations, we performed the deletion to the UNview module, instead of
the USERS or NODE relation modules.

Policies. The policy again was to propagate all the changes in all modules except
for the additional query; this is expressed by the following two rules:

• NODE: on * then PROPAGATE; and

• Qadditional: on * then BLOCK;

179

Drupal
Version

Published
at

Relations Queries
Attr.
Add.

Attr.
Del.

Table
Add.

Table
Del.

4.1.0 2003-02-01 38 240 6 2 0 0
4.2.0 2003-08-01 38 247 1 5 3 1
4.3.1 2003-12-01 40 260 8 4 1 1
4.4.3 2005-06-01 40 263 16 5 16 4
4.5.8 2006-03-14 52 284 12 11 4 1
4.6.11 2007-01-05 55 332 14 11 7 5

Table 5.6: Drupal dataset from ver. 4.1.0 to ver. 4.7.11

Figure 5.15: Drupal 4.1.0 cluster with queries asking same tables as arcs.

Experimental Protocol. We have used the following sequence of actions. First, we
annotate the architecture graph with policies. Next, we sequentially apply the events
over the graph – i.e., each event is applied over the graph that resulted from the
application of the previous event. For each event we measure the elapsed time for

180

each of the three algorithms, along with the number of affected, cloned and adapted
modules. The experiment was performed in a typical PC with an Intel i5 CPU at
2.90GHz and 32GB main memory and only one core being used.

Annotation effort

The “real world” experiment was conducted using the syntactic sugar policy anno-
tation rules. When we used the setup that is described in Section 5.5.2 we did not
have to write any rules (the default one is generated by our tool). When we used
the setup that is described in Section 5.5.2, we had to write only one rule, in order
to block the propagation of events to the extra query we deliberately inserted in the
ecosystem.

Effort gains

In both variants of our experiments, we can see that the effectiveness is way too
high for all events. This is because the average number of affected modules is small
compared to the size of the graph. More precise results about this experimental setup
you may see in Table 5.7, where we notice that the minimum benefit for the developers
is 71% while the average benefit ranges between 91% - 98.5%!

Metric
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

%
A
M

min 97.1 88.2 94.2 71 93.1 79.7
avg 98.2 97.3 96.8 91 98.5 97.3
max 99.2 98.8 99.6 99.6 100 99.7

RM

min 2 4 2 2 1 2
avg 5.4 7.8 9.3 24.7 5 10
max 8 30 16 77 20 68

Table 5.7: Results of the original evolution scenario of Drupal

In the experimental setup that is described in Section 5.5.2, we can see that the
metrics have not changed significantly. Also due to the blocker query and the UNview

modules, we now have clones! This way, the query that was marked to block all the
changes remains intact, while the rest of the ecosystem evolves.

181

The minimum number of clones per event is 0. Also, since the height of our tree
is only one level, the maximum number of clones per event can not be greater than
1. Those metrics are displayed in Table 5.8.

Metric
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11
%
A
M

min 97.1 88.5 94.3 70.7 93.2 79.5
avg 98.2 96.8 96.9 91 98.5 97.2
max 99.2 98.8 99.6 99.6 100 99.7

RM

min 3 4 2 2 1 2
avg 5.4 8.4 9.2 24.7 5 10
max 8 30 16 79 20 70∑
Cloned 0 4 1 3 3 5

Table 5.8: Results of the modified evolution scenario of Drupal

Efficiency assessment

The time needed to perform the adaptation of the ecosystem is practically negligible.
Table 5.9 displays the time needed for the original Drupal experimental setup, de-
scribed in Section 5.5.2. Table 5.10 displays the time needed for the modified Drupal
experimental setup, described in Section 5.5.2. The experiments of the Drupal project
were conducted with cold cache (it is interesting to note that in all occasions, the
processing of the first event took an order of magnitude higher than the rest of the
events; here we report the min, max and average of all events for each step).

5.5.3 Controlled experiment with TPC-DS

To better control and assess the behavior of our algorithms, we need a more complex
environment than Drupal. In fact, our experience with several CMS’s reveals that the
internal structure of the database is intentionally kept as simple as possible, obviously
in an attempt to maximize performance. Thus, we have employed a decision support
benchmark, TPC-DS, as the testbed for our controlled experiment. We start with a
description of the experimental setup.

182

Step
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

1
min 110 171 65 56 37 76
avg 1311 1732 1135 913 678 728
max 8048 8913 9035 8498 10426 11888

2
min 2 2 2 1 1 1
avg 4 4 7 7 5 8
max 11 15 25 28 24 64

3
min 105 154 76 48 29 59
avg 362 506 560 659 251 364
max 1282 1947 1773 2830 1812 1328

Table 5.9: Drupal project times (in microseconds) for “original” setup

Step
Version 4.*

1.0 2.0 3.1 4.3 5.8 6.11

1
min 120 323 81 46 40 124
avg 1357 2227 1241 929 632 686
max 8124 10782 9707 8957 87896 9706

2
min 3 3 3 1 1 1
avg 4 19 18 14 10 13
max 13 51 149 68 123 99

3
min 114 801 82 72 25 88
avg 395 8128 1443 2051 1316 2193
max 1364 15244 11917 13103 9177 11713

Table 5.10: Drupal project times (in microseconds) for “modified” setup

Experimental setup for TPC-DS

Ecosystem. We have employed TPC-DS, version 1.1.0 [99] as our experimental testbed.
TPC-DS is a benchmark that involves star schemata of a company that has the ability
to Sell and receive Returns of its Items with the following ways: (a) the Web, or, (b) a
Catalog, or, (c) directly at the Store. Moreover the company keeps data of Customers,
regarding their Income band, or their Demographics data and additionally keep data
about the Promotion of their Items. To handle advanced SQL constructs in the queries

183

of TPC-DS, we had to add views for the handling of WITH clauses and to make
modifications to queries containing keywords as LIMIT, HAVING in order to remove
parser-offending parts that Hecataeus’ parser cannot handle. To test the effect of
graph size to our method’s efficiency, we have created 3 graphs with gradually de-
creasing number of query modules: (a) a large ecosystem,WCS, with queries using all
the available fact tables, (b) an ecosystem CS, where the queries to WEB_SALES have
been removed, and (c) an ecosystem S, with queries using only the STORE_SALES
fact table.

Events. The event workload consists of 51 events simulating a real case study
of the Greek public sector. See Table 5.11, left, for an analysis of the module sizes
within each scenario. In Table. 5.11, right, we present the breakdown of the workload
(listing the percentage of each event type as pct).

Policies. We have annotated the graphs with policies, in order to allow the man-
agement of evolution events. We have used two “profiles”: (a) MixtureDBA, consisting
of 20% of the relation modules annotated with BLOCK policy, and, (b) MixtureAD,
consisting of 15% of the query modules annotated with BLOCK policy. The first pro-
file corresponds to a developer-friendly DBA that agrees to prevent changes already
within the database. The second profile tests an environment where the application
developer is allowed to register veto’s for the evolution of specific applications (here:
specific queries). We have taken care to pick queries that span several relations of the
database.

Graph size
S CS WCS

Queries 27 68 89
Views 25 48 95
Relations 25 25 25
Sum 77 141 218

Event type percentage
Attribute Add 37.3%
Attribute Rename 43.2%
Attribute Del 13.7%
Relation Rename 1.9%
View alter semantics 3.9%

Table 5.11: Experimental configuration for the TPC-DS ecosystem

Experimental Protocol. We have used the following sequence of actions. First, we
annotate the architecture graph with policies. Next, we sequentially apply the events
over the graph – i.e., each event is applied over the graph that resulted from the
application of the previous event. The experiment was performed with hot cache in

184

order to measure the time. For each event we measure the elapsed time for each of the
three algorithms, along with the number of affected, cloned and adapted modules.
The experiment was performed in a typical PC with an Intel Quad core CPU at
2.66GHz and 1.9GB main memory with only one core was being used.

Effectiveness assessment: How useful is our method for the application developers
and the DBA’s?

In this subsection, we discuss the evaluation of the effort gain metrics for our con-
trolled experiment. We evaluated the %AM metric for each of the 51 events of the
workload, performed over all three ecosystems (S, CS, WCS) and for both the policy
annotation profiles (MixtureDBA and MixtureAD). In the upper part of Table 5.12
we demonstrate the minimum, average and maximum value of the %AM metric for
all these 51 runs, organized annotation policy and ecosystem. The results demonstrate
that the effort gains compared to the absence of our method are significant, as, on
average, the effort is around 90% in the case of the AD mixture and 97% in the case
of the DBA mixture. As the graph size increases, the benefits from the highlighting of
affected modules that our method offers, increase too. Observe that in the case of the
DBA case, where the flooding of events is restricted early enough at the database’s
relations, the minimum benefit in all 51 events ranges between 60% - 84%.

%AM - Mixture AD
S CS WCS

min 21% 35% 30%
avg 89% 91% 92%
max 100% 100% 100%

%AM - Mixture DBA
S CS WCS

60% 78% 84%
97% 96% 97%
100% 100% 100%

RM - Mixture AD
S CS WCS

min 1 0 0
avg 6.22 10.00 13.47
max 38 66 117

RM - Mixture DBA
S CS WCS
0 0 0

2.47 5.00 6.22
22 27 30

Table 5.12: Effectiveness assessment as fraction of affected modules (%AM) and num-
ber of rewritten modules (RM) of the “controlled” experiment

Likewise, we evaluated the RM metric for each of the 51 events of the workload.

185

The results demonstrate that the minimum number of modules needing a rewrite
is 0 for almost all combinations of mixture and graph size for the event workload.
This happened in both the MixtureDBA and the MixtureAD cases for different
reasons – still both related to a veto. In the case of MixtureDBA, if a relation vetoes
a possible change to it, then the event is immediately blocked and no rewriting or
cloning takes place. Similarly, if a query vetoes a change in a relation (eg. attribute
deletion), again, the event is frozen no rewriting or cloning takes place. At the same
time, observe that the average and maximum number of modules needing a rewrite
increases as the size of the graph increases. This is expected, as the increase in the
graph size signifies that the new queries can possibly use some of the tables/views of
the smaller graph (remember that the graphs are constructed by adding views and
queries each time). Then, every event affects more modules as the graph increases.
Another worth-mentioning fact is that when the MixtureDBA policy is used, the
number of the modules needing rewrite drops, since the flooding of events is restricted
early enough, inside the database.

Policy annotation effort: how many rules does one have to write in order to work
with our what-if analysis tool?

In this subsection, we discuss the effort of the user for the annotation of the Architecture
Graph ecosystem with policies, over the conducted controlled experiments. We have
worked with both policy mixtures and observed the effort needed as the number
of blockers increases. Remember that in the MixtureDBA policy of the “controlled”
experiment we block events at relations; we have set 20% of our relation modules
to block the events that they receive and kept the size of the relation modules is the
same in all three experiments (S, CS, and WCS). In the MixtureAD policy –in the
same experimental setup– we set about 15% of the query modules as blockers. Here,
the number of the blockers depends on the numbers of the query modules, which is
different for each one of the S, CS, and WCS experiments.

Table 5.13 displays our results. We have one column for the MixtureDBA and
one column per size (S, CS, WCS) for the MixtureAD policy. The first rows explain
the annotation policy, the nature and number of interesting modules (relations in
the first case and queries in the latter) and the number of blockers within each
configuration. The next three rows explain the effort spent to annotate the ecosystem
without the syntactic sugar: we list the number of default rules that have to be

186

Mixture DBA AD AD AD
Size all S CS WCS

Modules of
interest

Relations Queries Queries Queries

Modules 25 27 68 89
Blockers 5 4 10 12

W
ith
ou
t

sy
nt
ac
tic

su
ga
r Default 33 33 33 33

Extra 25 36 90 118
Total 58 69 123 151

W
ith

sy
nt
ac
tic

su
ga
r Default 1 1 1 1

Extra 5 4 10 12
Total 6 5 11 13

Table 5.13: Modules and rules for policy annotation effort.

defined for completeness reasons, the extra rules that pertain to the individual blocker
modules and the sum of these two measures. Finally, the last group of columns,
refers to the case where the syntactic sugar was available, in a manner similar to the
previous.

For the case where the syntactic sugar was not used, we have to mention the
following observations and clarifications. At first, the number of default rules (33)
seems quite high. However, we should also mention that Hecataeus supports the
user gracefully by offering the template list ready to the user. At the same time, the
number of extra rules per blocking module is about 9 rules per module. Although the
numbers for the entire ecosystem reach to a high level, in the regular case where the
annotation is performed in an incremental fashion, the ratio of 9 rules per module
seems quite tolerable.

For the case where we have exploited the syntactic sugar, the set of rules needed
decreases dramatically. This is due to the dramatic decrease in both the default rules
(1 rule only) and the necessary rules per module (again one rule only). Specifically,
observe that we can annotate with PROPAGATE policies the entire graph using only
one rule (NODE: ON * THEN PROPAGATE;), and for each one of the blocker mod-
ules, we need to use, again, only one rule (<namedNode>: ON * THEN BLOCK;).
Overall, the savings in effort and the speedup are too high both in batch and incre-

187

mental ways of using our method.

Efficiency: how fast can we interact with our what-if analysis tool?

In this subsection, we evaluate the time needed to complete the process of what-if
analysis with our tool. Efficiency plays an important role in the design and admin-
istration process of an ecosystem, if we wish to allow the involved stakeholders to
interactively test alternative configurations and scenarios for policy annotations or
restructuring of the ecosystem’s architecture to accommodate forthcoming changes
gracefully. To this end, we investigate the effect of policy annotation and graph size
to the completion time and its breakdown in the three phases of our method.

Effect of policy to the execution time. In the case of Mixture DBA we follow an
aggressive blocking policy that stops the events early enough, at the relations, before
they start being propagated in the ecosystem. On the other hand, in the case ofMixture
AD, we follow a more conservative annotation approach, where the developer can
assign blocker policies only to some module parts that he authors. In the latter case,
it is clear that the events are propagated to larger parts of the ecosystem resulting in
higher numbers of affected and rewritten nodes. If one compares the execution time
of the three cases of the AD mixture in Fig. 5.16 with the execution time of the three
cases of the DBA mixture, the difference is in the area of one order of magnitude. It
is however interesting to note the internal differences: the status determination time
is scaled up with a factor of two; the rewriting time, however is scaled up by a factor
of 10, 20 and 30 for the small, medium and large graph respectively!

Another interesting finding concerns the internal breakdown of the execution
time in each case. A common pattern is that path check is executed very efficiently: in all
cases it stays within 2% of the total time (thus practically invisible in the graphic).
In the case of the AD mixture, the analogy between the status determination and
the graph rewriting part starts from a 24% - 74% for the small graph and ends to a
7% - 93% for the large graph. In other words, as the events are allowed to flow within
the ecosystem, the amount of rewriting increases with the size of the graph; in all cases, it
dominates the overall execution time. This is due to the fact that rewriting involves
memory management (module cloning, internal node additions, etc) that costs much
more than the simple checks performed by Status Determination. In the case of the
DBA mixture, however, where the events are quickly blocked, the times are not only
significantly smaller, but also equi-balanced: 57% - 42% for the small graph (Status

188

Determination costs more in this case) and 49% - 50% for the two other graphs. Again,
this is due to the fact that the rewriting actions are the time consuming ones and
therefore, their reduction significantly reduces the execution time too.

Figure 5.16: Efficiency assessment for different policies, graph sizes and phases

Effect of graph size to the execution time. To assess the impact of graph size
to the execution time one has to compare the three different graphs to one another
within each policy. In the case of the AD mixture, where the rewriting dominates
the execution time, there is a linear increase of both the rewriting and the execution
time with the graph size. On the contrary, the rate of increase drops in the case of
the DBA mixture: when the events are blocked early, the size of the graph plays less
role to the execution time.

Overall, the main lesson learned from these observations is that the annotation of few
database relations significantly restricts the rewriting time (and consequently the overall
execution time) when compared to the case of annotating modules external to the database.
In case the rewriting is not constrained early enough, then the execution cost grows linearly
with the size of the ecosystem.

189

5.6 Conclusions

In this chapter we have addressed the problem of adapting a data-intensive ecosys-
tem in the presence of policies that regulate the flow of evolution events. Our method
allows (a) the management of alternative variants of views and queries, and, (b) the
rewriting of the ecosystem’s affected modules in a way that respects the policy an-
notations and the correctness of the rewriting (even in the presence of policy con-
flicts). Our experiments confirm that the adaptation is performed efficiently as the
size and complexity of the ecosystem grow. All the material for this work, including
input ecosystems, links to the source code (publicly available at git) and results can
be found in the following web page: http://www.cs.uoi.gr/~pmanousi/publications/
2013_ER/index.html.

We continue with the visualization of the Architecture Graph, and a number of
circular placement algorithms that depict the graph, as well as the affected nodes
when a “what-if” scenario has run.

190

http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html
http://www.cs.uoi.gr/~pmanousi/publications/2013_ER/index.html

Chapter 6

Data-Intensive Ecosystem Visualization

6.1 Introduction

6.2 Graph Layout Methods for Data-Intensive Ecosystems

6.3 Visualization of impact analysis and zoom in of queries

6.4 Experiments

6.5 User study evaluation

6.6 Conclusions

6.1 Introduction

So far, we have described a method to obtain the queries of a data-intensive project
from it’s source code, proposed a set of properties to describe a well constructed data-
intensive ecosystem, based on the database schema of the project, and, provided a way
to provide better formed queries so as to achieve higher maintainability in a project.
To achieve those tasks, we have introduced a number of rigorous constructs, one of
which is the Architecture Graph that was introduced in Chapter 5 and describes the
map of how software is coupled to the database schema. As we are using a graph, a
necessity is to be able to depict it, hiding any visual clutter that exists due to the great
number of edges, and if applicable to depict extra information of the projects’ structure
via its visualization. In this chapter we describe a set of visualization algorithms that
perform the aforementioned tasks and an evaluation of those algorithms with a user
study.

191

Developers of data-intensive ecosystems construct applications that rely on un-
derlying databases for their proper operation, as they typically represent all the nec-
essary information in a structured fashion in them. The symbiosis of applications
and databases is not balanced, as the latter act as “dependency magnets” in these
environments: databases do not depend upon other modules although being heavily
depended upon, as database access is performed via queries specifically using the
structure of the underlying database in their definition.

On top of having to deal with the problem of tight coupling between code and
data, developers also have to address the disperse location of the code with which
they work, in several parts of the code base. To quote [78] (the emphasis is ours):
“Programmers spend between 60-90% of their time reading and navigating code and
other data sources …Programmers form working sets of one or more fragments corresponding
to places of interest …Perhaps as a result, programmers may spend on average 35% of their
time in IDEs actively navigating among working set fragments…, since they can only easily
see one or two fragments at a time.”

The aforementioned two observations (code-data dependency and contextualized
focus in an area of interest) have a natural consequence: developers would greatly
benefit from the possibility of jointly exploring database constructs and source code
that are tightly related. E.g., in the development and maintenance of a software
module, the developer is interested in a specific subset of the database tables and
attributes, related to the module that is constructed, modified or studied. Similarly,
when working or facing the alteration of the structure of the database (e.g., attribute
deletions or renaming, table additions, alteration of view definitions), the developer
would appreciate a quick reference to the set of modules impacted by the change.

This locality of interest presents a clear call for the construction of a map of the
system that allows developer to understand, communicate, design and maintain the
code and its internal structure better. However, although (a) circular graph drawing
methods have been developed for the representation general purpose graphs [83],
[86], [84], and, (b) visual representations of the structure of code have been used for
many decades [76], [75], [78], [79], the representation of data-intensive ecosystems
has not been adequately addressed so far.

The research question that this chapter addresses is the provision of a visual map of the
ecosystem that highlights the correlation of the developed code to the underlying database in
a way that supports the locality of interest in operations like program comprehension, impact

192

Figure 6.1: Alternative visualizations for Drupal. Upper Left: Circular layout; Upper
Right: Concentric circles; Lower Left: Concentric Arches. Lower Right: zoom in a
cluster of Drupal

193

analysis (for potential changes at the database layer), documentation etc.
Our method visualizes the ecosystem as a graph where all modules are modelled

as nodes of the graph and the provision of data from a database module –e.g., a table–
to a software module is denoted by an edge. To automatically detect “regions” of the
graph with dense interconnections (and to visualize them accordingly) we cluster the
ecosystem’s nodes. Then, we present three circular graph drawing methods for the
visualization of the graph (see Fig. 6.1). Our first method places all clusters on a
embedding “cluster” circle, our second method splits the space in layers of concentric
circles and our last method employs concentric arcs. In all our methods, the internal
visualization of each cluster involves the placement of relations, views and queries in
concentric circles, in order to further exploit space and minimize edge crossings.

This Thesis extends the work of [1] that describes the Section 6.2 with the results
of the visualization of impact analysis and the user study evaluation of the three
methods of [1] plus the “what-if” visualization.

6.2 Graph Layout Methods for Data-Intensive Ecosystems

The fundamental modeling pillar upon which we base our approach is the Architecture
Graph G(V,E) of a data-intensive ecosystem. The Architecture Graph is a skeleton,
in the form of graph, that traces the dependencies of the application code from the
underlying database. In our previous research [33], we have employed a detailed
representation of the queries and relations involved; in this paper, however, it is
sufficient to use a summary of the architecture graph as a zoomed-out variant of the
graph that comprises only of modules (relations, views and queries) as nodes and edges
denoting data provision relationships between them. Formally, a Graph Summary is a
directed acyclic graph G(V,E) with V comprising the graph’s module nodes and E

comprising relationships between pairs of data providers and consumers.
In terms of visualization methods, the main graph layout we use is a circular layout.

Circular layouts are beneficial due to a better highlight of node similarity, along with
the possibility of minimizing the clutter that is produced by line intersections. We
place clusters of objects in the periphery of an embedding circle or in the periphery
of several concentric circles or arches. Each cluster will again be displayed in terms
of a set of concentric circles, thus producing a simple, familiar and repetitive pattern.

194

Our method for visualizing the ecosystem is based on the principle of clustered
graph drawing and uses the following steps:

1. Cluster the queries, views and relations of the ecosystem, into clusters of related
modules. Formally, this means that we partition the set of graph nodes V into
a set of disjoint subsets, i.e., its clusters, C1, C2, . . . , Cn.

2. Perform some initial preprocessing of the clusters to obtain a first estimation of
the required space for the visualization of the ecosystem.

3. Position the clusters on a two-dimensional canvas in a way that minimizes visual
clutter and highlights relationships and differences.

4. For each cluster, decide the positions of its nodes and visualize it.

6.2.1 Clustering of Modules

In accordance with the need to highlight locality of interest and to accomplish a
successful visualization, it is often required to reduce the amount of visible elements
being viewed by placing them in groups. This reduces visual clutter and improves
user understanding of the graph as it applies the principle of proximity: similar nodes
are placed next to each other. To this end, in our approach we use clustering to group
objects with similar semantics in advance of graph drawing.

We have implemented an average-link agglomerative clustering algorithm [100]
of the graph’s nodes, which starts with each node being a cluster on its own and
iteratively merges the most similar nodes in a new cluster until the node list is
exhausted or a sued-defined similarity threshold is reached.

The distance function used in our method evaluates node similarity on the grounds
of common neighbours. So, for nodes of the same type (e.g., two queries, or two
tables), similarity is computed via the Jaccard formula, i.e., the fraction of the number
of common neighbours over the size of the union of the neighbours of the two
modules. When it comes to assessing the similarity of nodes of different types (like,
e.g., a query and a relation), we must take into account whether there is an edge
among them. If this is the case, the nominator is increased by 2, accounting for the
two participants. Formally, the distance of two modules, i.e., nodes of the graph, Mi,
Mj is expressed as:

195

dist(Mi,Mj) = 1−

|neighborsi ∩ neighborsj|
|neighborsi ∪ neighborsj|

, if ̸ ∃ Edge(i, j)

|neighborsi ∩ neighborsj|+ 2

|neighborsi ∪ neighborsj|
, if ∃ Edge(i, j)

(6.1)

6.2.2 Cluster Preprocessing

Our method requires the computation of the area that each cluster will possess in
the final drawing. In our method, each cluster is constructed around three bands of
concentric circles: an innermost circle for the relations, an intermediate band of circles
for the views (which are stratified by definition, and can thus, be placed in strata)
and the outermost band of circles for the queries that pertain to the cluster. The latter
includes two circles: a circle of relation-dedicated queries (i.e., queries that hit a single
relation) and an outer circle for the rest of the queries. This heuristic is due to the fact
that in all the studied datasets, there was a vast majority of relation-dedicated queries;
thus, the heuristic allows a clearer visualization of how queries access relations and
views.

In order to obtain an estimation of the required space for the visualization of
the ecosystem, we need to perform two computations. First, we need to determine
the circles of the drawing and the nodes that they contain (this is obtained via a
topological sort of the nodes and their assignment to strata, each of which is assigned
to a circle), and second, we need to compute the radius for each of these circles
(obtained via the formula Ri = 3∗ log(nodes)+nodes). Then, the outer of these circles
gives us the space that this cluster needs in order to be displayed.

6.2.3 Layout of Cluster Circle(s)

We propose three alternative circular layouts for the deployment of the graph on a
2D canvas.

Circular cluster placement with variable angles.

In this method, we use a single circle to place circular clusters on. As already men-
tioned, we have already calculated the radius r of each cluster. Given this input, we

196

can also compute R, the radius of the embedding circle. We approximate the contour
of the inscribed polygon of the circle, computed via the sum of twice the radius of the
clusters by the perimeter of the embedding circle, which is equal to 2π ∗R (Fig. 6.2).
We take special care that the layouts of the different clusters do not overlap; to this
end, we introduce a white space factor w that enlarges the radius R of the cluster

circle (typically, we use a fixed value of 1.8 for w). Then, R =
|C|∑
i=0

2 ∗ ϱi
2π ∗ w

, where C is
the set of clusters, and ϱi the radius of cluster i. As the arc around which each cluster
will be placed is expanded, this leaves extra whitespace between the actually exploited
parts of the clusters’ arcs. Given the above inputs, we can calculate the angle ϕ that
determines the sector of a given cluster, as well as its center coordinates (cx, cy) via
the following equations:

ϕ = 2 ∗ arccos
(
2 ∗R2 − ϱ2

2 ∗R2

)
, cx = cos

(
ϕ

2

)
∗R ∗ w, cy = sin

(
ϕ

2

)
∗R ∗ w (6.2)

Figure 6.2: Circular cluster placements (left) and the BioSQL ecosystem (right)

Concentric cluster placement.

This method involves the placement of clusters to concentric circles. Each circle in-
cludes a different number of segments, each with a dedicated cluster. The proposed
method obeys the following steps:

1. Sort clusters by ascending size in a list LC

197

2. While there are clusters not placed in circles

(a) Add a new circle and divide it in as many segments as S = 2k, with k being
the order of the circle (i.e., the first circle has 21 segments, the second 22

and so on)

(b) Assign the next S fragments from the list LC to the current circle and
compute its radius according to this assignment

(c) Add the circle to a list L of circles

3. Draw the circles from the most inward (i.e., from the circle with the least seg-
ments) to the outermost by following the list L.

Practically, the algorithm expands a set of concentric circles, split in fragments of
powers of 2 (Fig. 6.3). As the order of the introduced circle increases, the number
of fragments increases too (S = 2k), with the exception of the outermost circle, where
the segments are equal to the number of the remaining clusters. By assigning the
clusters in an ascending order of size, we ensure that the small clusters will be placed
on the inner circles, and we place bigger clusters on outer circles since bigger clusters
occupy more space.

Radius Calculation. We need to guarantee that clusters do not overlap. This can be
the result of two problems: (a) clusters of subsequent circles have radii big enough,
so that they meet, or, (b) clusters on the same circle are big enough to intersect. To
solve the first problem, we need to make sure that the radius of a circle is larger
than the sum of (i) the radius of its previous circle, (ii) the radius of its larger
cluster, and (iii) the radius of the larger cluster of the current circle. For the second
problem, we compute Ri as the encompassing circle’s periphery (2 ∗ π ∗ Ri) that can
be approximated the sum of twice the radii of the circle’s clusters. Then, to avoid
the overlapping of clusters, we set the radius of the circle to be the maximum of
the two values produced by the aforementioned solutions and we use an additional
whitespace factor w to enlarge it slightly (typically, we use a fixed value of 1.2 for w).

Ri = w ∗max

Ri−1 + bi−1 + bi

1

π
∗

|C|∑
j=1

ϱj

(6.3)

198

where (a) bα: is the rad of biggest cluster of circle α, and (b) ϱj: is the rad of cluster
cj which is part of C , where C is the set of clusters of circle i.

Figure 6.3: Concentric cluster placement for BioSQL: circles (left), arcs (right)

Clusters on concentric arches

It is possible to layout the clusters in a set of concentric arcs, instead of concentric
circles (Fig. 6.3). This provides better space utilization, as the small clusters are placed
upper left and there is less whitespace devoted to guard against cluster intersection.
Overall, this method is a combination of the previous two methods. Specifically, (a) we
deploy the clusters on concentric arches of size π

2
, to obtain a more compact layout,

and (b) we partition each cluster in proportion to the cluster’s size by applying the
method expressed by equation (6.2).

6.2.4 Layout of Nodes inside a Cluster

The last part of the visualization process involves placing the internals of each cluster
within the area designated to the cluster from previous computations. As already
mentioned, each cluster is aligned in terms of several concentric circles: an innermost
circle for relations, a set of intermediate circles for views and one or more circles for
queries, as we previously stated at section 6.2.2. Now, since the radii of the circles
have been computed, what remains to be resolved is the order of nodes on their

199

corresponding circle. We order relations via a greedy algorithm that promotes the
adjacency of similar relations (i.e., sharing the large amount of views and queries).
Once relations have been laid out, we place the rest of the views and queries in their
corresponding circle of the cluster via a traditional barycenter-based method [101]
that places a node in an angle that equals the average value of the sum of the angles
of the nodes it accesses.

6.3 Visualization of impact analysis and zoom in of queries

The aforementioned visual maps provide the developer with multiple ways to view
and explore the whole software ecosystem. They offer an overview for the developer
to quickly identify blocks of codes, modules and data structures that are highly
interconnected and thus need special attention when re-factoring or evolving parts
of the system. When it comes to the evolution of the system, and the tasks that
require more effort from the developer, such as the identification of the parts of code
that need to change, impact analysis of the change, testing, validation of the change,
etc., the visual representation must offer detailed representation of the structure of a
module, such as an embedded query or a software module. For that, in this section,
we present a method that helps the developer identify the specific parts of the code
that change due to an evolution event. For example in Figure 6.4 we have a rename
event that happened in BLOCK_ROLE relation. To help the developers that have to
find those locations, we have implemented a simple, yet really helpful as we see later
in Section 6.5, visualization method.

In this visualization method, we place the nodes to follow a stratification from left
to right, based on their input dependencies. Leftmost part is for the queries that have
no one using them, them they follow the view or the nested queries and finally we
have the relations. Based on the placement of the high level nodes we arrange their
low level nodes. Following the same tactic, we first place the nodes of the output
schema, then, we continue to the semantics schema and finally we place the input
schema. Observe in Figure 6.4 that for the first two queries besides the input schema,
the output schema nodes (placed under the high level node) are also affected, whilst
the last query does not use the attribute that changed in its output schema.

Looking further in the visualization of the low level nodes of a query, in Figure

200

Figure 6.4: Zoom in a rename attribute impact analysis event of BLOCK_ROLE rela-
tion.

Figure 6.5: Zoom in a remove attribute impact analysis event of
SEARCH_NODE_LINKS relation.

201

6.5 we depict the zoom in view of query Q432 that is having a WHERE clause
statement. Using the previous idea, we implemented the semantics schema and its
nodes as a tree, and we connect the leaves of the tree to the input nodes that they
use in their conditions.

Additionally, in both cases, we keep in parallel the lines of the low level nodes,
by placing the input attribute in the same screen height with the output attribute.

6.4 Experiments

In this section, we present our experimental assessment of the proposed visualization
methods. We start with the discussion of the experimental method and then we assess
our method against aesthetic criteria and objective measurements.

6.4.1 Experimental Method

In order to evaluate our work, we have used some well known open source projects
that contain database queries. Table 6.1 provides a list of the projects. In order to
convert the software of the analyzed tools to the graph representation that we use
in this work, we performed a sequence of steps. We retrieved the database definition
from the source code, using the algorithms and tools described in Chapter 3. Then
we post-processed the queries in order to be parsable by our tool, Hecataeus that
ultimately converts the ecosystem to an architecture graph and visualizes it for the
user.

Dataset Version Description R V Q E

BioSQL 1.0 A generic relational schema covering se-

quences, features, sequence and feature an-

notation, a reference taxonomy, and ontolo-

gies

28 15 79 104

ZenCart 1.3 An open source shopping cart software 106 0 149 158

Drupal 7.41 An open source content management plat-

form

75 0 355 379

OpenCart 1.5.6.1 An open source shopping cart software 115 0 650 824

Table 6.1: Datasets Used (R: Relations, V: Views, Q: Queries, E: Edges)

202

6.4.2 Assessment of Objective Criteria

We assess the behavior of each of the proposed parts of our approach with specific
objective criteria. First, we discuss what is the outcome and benefit from our clustering
and preprocessing steps. Then, we assess the different methods in terms of how
efficiently they exploit space.

Clustering Effectiveness. The first important result concerns the effectiveness of
the clustering of the graph nodes. In all the studied datasets, our clustering produced
a clean separation of the graph in connected components that are completely disjoint and
isolated! In other words, clustering produced clusters that have no edges between their
nodes (inter-cluster edges). This resulted in the elimination of all the visual clutter
that these edges would incur. The second piece of good news is that the number of
clusters ranges within 20 – 60 clusters in all four cases, thus it is presentable in a 2D
screen canvas (see Table 6.2 for the exact numbers). We should, however, emphasize
that as all the examined systems, except for BioSQL, are CMS’s, the results should by
no means be generalized to other types of information systems.

In Table 6.2, we give two objective criteria that are typical metrics used in all
the related literature, specifically number of edge crossings and average edge length, as
well as a metric that is specific to our method, and concerns the area covered by the
clusters, expressed as average cluster radius. It is important to note that, in the absence
of inter-cluster edges due to our clustering, all these objective measures are independent from
the visualization method that follows the original clustering.

Method Effectiveness. A second important part of our method has to do with the
effectiveness of the employed methods in terms of space utilization. For each method,
we measure (a) the rectangle produced by the farthest pairs of coordinates, (b) the
sum of the area covered from all the clusters (on the basis of their outermost circle),
and, (c) the resulting percentage of area covered by the visualized clusters. Remember
that the area covered depends on the particularities of the method; then, our system
autoscales the result to fit in the screen. Thus, the area of the bounding rectangle is
a clear indicator of the scale factor of the drawing: between two drawings that will
ultimately have to fit in the same screen, the one with the larger area needed, will
require more zoom-out.

Table 6.3 reports on the area needed for the visualization of the graph. Underlined
blue shows the winner method that requires the least area and bold red highlights the

203

(a) Concentric circles. (b) Concentric arches.

(c) Circular layout. (d) Zoom in a cluster

Figure 6.6: Examples of ZenCart (upper) and OpenCart (lower)

204

Dataset Number of

clusters

Avg cluster

radius

Avg cluster edge

crossings

Avg edge length

BioSQL 22 12.00 3.50 92.11

ZenCart 41 11.85 0.46 69.21

Drupal 37 25.01 15.62 497.71

OpenCart 59 28.32 84.08 751.32

Table 6.2: Objective measures for all four data sets

worst performance. We observe that concentric circles always loses and the winner
methods are divided, with concentric arches winning for the three smaller cases and
circular layout for the largest one. At the same time, the amount of covered area
is fixed for all methods (as cluster sizes are fixed before laying them out in the 2D
canvas). The percentage of covered area, in all layouts is very small (2%-7% for
Zencart and OpenCart, 7%-15% for Drupal and 16%-23% for BioSql).

Dataset Circular layout Conc. circles Conc. arches Covered area

BioSQL 196243 275943 193641 44550

ZenCart 2007636 2162420 1238296 50739

Drupal 2329122 3232093 1612675 253173

OpenCart 5775976 18392055 9711796 461425

Table 6.3: Area occupied by graph

6.4.3 Aesthetic criteria

In this subsection, we assess whether our major design choice of using circular layouts
as well as the detailed technical choices for each of the proposed methods were
appropriate according to the fundamental principles for visual object representations
[80].

Proximity is achieved via clustering: we place nodes with similar semantics closely
to each other (in our case nodes belonging to the same clusters of relations, views and
queries). Connectedness is inherently achieved via the choice of graph representation.

Similarity and proportion are encompassed in our methods via several decisions. We
use the same shape for nodes of same type (relations, queries, views), the same color
for nodes that belong in similar physical structures. The queries that belong to the

205

same files are coloured with the same color. If there exist files that are placed in the
same folder, then those files get a light change of the color of the parent folder. The
relations and the views are always gray and purple, respectively. We scale the size of
each node according to its graph degree, so that larger size denotes larger degree of
interrelationship.

Closure and isolation are also inherently supported via the idea of circular visual-
ization of each cluster: the outermost circles of each cluster provide a visual border
that separate it from other clusters. We take special care for clusters not to intersect
and we enhance their surrounding space with intentionally injected white-space. The
same care is paid for individual nodes too.

Clutter avoidance is one of the fundamental problems our methods try to battle. As
the main source of visual clutter is the overwhelming presence of edges –especially,
when they cross– we take every possible means to minimize the number of pixels-
per-edge, without taking them out of the diagram, at the same time. To this end,
we decrease the strength of edge coloring to light gray and highlighting neighbours
only when a user interactively picks a node to inspect. The idea of clustering nodes,
putting similar nodes closely tries to minimize the span of edges throughout the
entire canvas. Within each cluster, we implement an adjustment of the barycentre
method to radial layouts to minimize edge crossings. A second source of clutter is
the overlapping of clusters or nodes: we intentionally tune the methods to avoid such
phenomena.

Finally, we avoid any other emphasis of individual clusters or nodes and leave this
aesthetic tool available for arbitrary usages where there will be a need for emphasizing
some parts of the graph. We do not inject visual hierarchies, contrast, asymmetry or
discontinuity to emphasize any part of the graph. We also avoid any special purpose
focal points to guide the visual flow of the user’s optical navigation over the screen.
Flow occurs, however, in the concentric methods, as there is a flow from smaller
towards larger clusters. This makes these methods more suitable for arrangements
where cluster size is also important for the users’ work.

6.4.4 Comparison to general purpose graph visualizations

In this section we will discuss alternative visualization methods and we compare them
to our approach. Our visualizations were implemented with Jung, a software library

206

that provides a common and extensible language for the modelling, analysis, and
visualization of data that can be represented as a graph or network. Jung is written
in Java, which allows Jung-based applications to make use of the extensive built-in
capabilities of the Java API, as well as those of other existing third-party Java libraries.
Jung supports several layouts, out of which we discern the following prominent ones:

• A simple, random Circle Layout (Fig. 6.7) that places vertexes randomly on a
circle

• The Fruchterman-Reingold algorithm [102], denoted as FRLayout (Fig. 6.8)

• Meyer’s “Self-Organizing Map” layout [103] denoted as ISOMLayout (Fig. 6.9)

• The Kamada-Kawai algorithm [104], denoted as KKLayout in Jung (Fig. 6.10),

• The SpringLayout (Fig. 6.11), which is a simple force-directed spring-embedder
[101]

We applied all these layouts on our datasets to compare them with our layouts.
The result is shown in the figures bellow. In Jung’s circular layout all nodes are
randomly placed on a periphery of a circle with radius R =

#nodes
2ϕ

. With this radius
there should be no overlaps, however as we see in Fig. 6.7 nodes do overlap where
in some parts of the circumference of the circle there are empty (white) spaces. In
the remaining Jung layouts, the nodes of the graph appear to be randomly placed on
the canvas.

207

Figure 6.7: BioSql visualized via a circular algorithm by Jung.

Figure 6.8: BioSql visualized via the FR algorithm by Jung.

208

Figure 6.9: BioSql visualized via the Self-organizing algorithm by Jung.

Figure 6.10: BioSql visualized via the KK algorithm by Jung.

Figure 6.11: BioSql visualized via the spring layout algorithm by Jung.

209

6.5 User study evaluation

In order to evaluate how our tool can be used in real situations, we conducted a
user study. The study referred to the context of maintaining the source code of an
application, specifically Drupal 7.41, in the presence of schema evolution events at
its underlying database. We believe that our tool, Hecataeus, is most important for
designers and administrators that are not extensively familiarized to both the source
code of the application and the database. This can happen in many settings, e.g.,
(a) when the developer team is different from the database administration team, (b)
when a newcomer joins a team, or (c) when a new project starts, etc. Given this
background, we have assessed our method, using the Drupal project as a testbed
and a population of graduate students as maintainers. All of our maintainers had
just completed a course of “software and database evolution”. All of our maintainers
have experience in programming, since they all performed a set of programming
exercises in the course we mentioned earlier. Finally, all of our maintainers had a
database related project to examine regarding its evolution.

Our protocol is as follows:

• We trained the maintainers to the Hecataeus tool. We demonstrated the tool,
and we provided them a video that describes what one may do using Hecataeus.

• We assigned the questionnaire of Table 6.4 to all maintainers.

• We randomly split the maintainers in two groups, and we instructed the ones
that were at the first group to initially work with Hecataeus and then with a
tool of their own choice. The other group had to work in reverse order, using
Hecataeus in the end.

• We asked the maintainers to complete the task and then fill an on-line ques-
tionnaire.

As we mentioned earlier the graph is parted of queries that were mined from the
source code files of the project and the database schema which was also mined from
the source code of the project. Drupal has no views, actually nearly all open source
projects have no views, besides one (BioSQL). Therefore, when we mention files, at
the same time we refer to nodes of the Architecture Graph.

210

Task 1

1. Which files change when we rename the COMMENT.CID to
COMMENT.COMMENT_ID column?

2. How much time (in minutes) did you need to find which
files change when we rename the COMMENT.CID to COM-
MENT.COMMENT_ID column?

Task 2

1. How easy was to keep you code unchanged on one file (com-
ment.pages.inc), while adapt all others that use the COMMENT
table, when you add a new column to it.

2. Measure the time needed (in minutes) to keep you code un-
changed on one file (comment.pages.inc), while adapt all oth-
ers that use the COMMENT table, when you add a new column
to it.

Task 3 How easy is to find what specific parts of the queries have to change
for the rename of the first question (COMMENT.CID to became
COMMENT.COMMENT_ID)?

Task 4 Give a score from 0 to 5 on

1. your tools

2. Hecataeus’ Single Circle

3. Hecataeus’ Concentric Circles

4. Hecataeus’ Concentric Arcs layouts

on how helpful they are to find where views could be used in this
project (a number of questions using simultaneously more than one
tables)?

Table 6.4: Tasks that the participants of user study were asked to complete.

211

6.5.1 Effectiveness

The first task of the user study was designed with the goal to assess the effectiveness
of our tool. The effectiveness is measured by the combination of the number of the
files that the users found, and which files that the users found but are not correct
(those are files that we deliberately injected in the source code of the project). The
number of files that are to change due to the rename of COMMENT.CID to COM-
MENT.COMMENT_ID is 7. Additionally, we have measured the time it took to our
maintainers to find the files.

Hec. Correct

Hec. Unnecessary

1 2 3 4 5 6 7 8 9
0

5

10

participant number

#
fil
es

Non-Hec. Correct

Non-Hec. Unnecessary

Figure 6.12: Effectiveness measured via correct and unnecessary files retrieved for
maintenance by the users. Five of the users did not notice the information area of
Hecataeus that stated which files changed, and used the highlight event of Hecataeus
tool to find the files, by clicking on the COMMENT node, therefor they gave one
additional file in their answer.

Observe that when using Hecataeus, all but one user (maintainer number 6) had
a perfect score. On the other hand, when the users used the tools of their own
choice, only one managed to find all the files (maintainer number 4), but he also
reported a number of files (6) that were not containing source code as files that needed
maintenance. Additionally, there were 3 people who did not manage to find any
related files, stating that their tool had too much input for them to check. Regarding
the exceptions:

• In the case when the users employed Hecataeus to detect the locations of impact

212

of the schema change, we had one user who found an additional file on top of
the correct ones. That user stated that he did not use the information area of
our tool as the other participants did, but he used an effect of our tool, the “click
to highlight” effect. This effect, when a node is clicked, highlights the nodes that
are connected to it. Then, the participant reported those nodes in his answer.

• In the case where the users had used the tools of their choice, we had the
majority of the users (5) to state, apart from the correct files, additional ones
(or completely wrong, as participant number 9 did). That was because –as we
already mentioned– we had intentionally added some commented out code that
was using that table and one would need time to examine if this code is runnable
or not.

Regarding the time measurement, Figure 6.13 describes in logarithmic scale the
time needed (in minutes) for both Hecataeus and Non-Hecataeus tools that the par-
ticipants used. Observe that using Hecataeus resulted in faster completion times in
all cases besides one (the case of user number 4, who had found all the correct files
plus 6 additional).

Figure 6.13: Time needed (in minutes) for other tools and Hecataeus. Tie was only
in one situation where the result was wrong (6 additional files were reported that
need maintenance).

6.5.2 User Satisfaction

The second task of the user study was designed to evaluate the satisfaction of users
with our tool. We asked the users to perform a large number of changes in the

213

database-related code. The maintainers had to change the code of the files that use the
COMMENT table and add a new column, wherever this table was used except of one
file (comment.pages.inc) which should remain unchanged, retaining its previous
code. User satisfaction is measured by the user selection of a number ranging between
0 and 5. Figure 6.14 depicts the measurements of Task 2. Out of 9 users, 6 stated that
Hecataeus was more useful on this task, and none said that his tool was better than
Hecataeus. The average number for the user satisfaction in efficiency for Hecataeus
regarding Task 2 was: 4.1 units of user satisfaction while the average number for the
other tools was: 2.2 units of user satisfaction. An interesting observation is that we
can discriminate 3 users that were really happy with Hecataeus compared to their
selection tool, another 3 that were as happy as with their tools and another group of
3 that were happier or slightly happier with Hecataeus, compared to the tool of their
selection.

Figure 6.14: User satisfaction in 0 to 5 scale on how helpful was Hecataeus and the
tool of their choice to perform complex changes in the files that use a specific table.

Regarding the time measurement of Task 2, we depict in Figure 6.15 that Hecataeus
completes the task faster than any other tool or technique used, except for one situa-
tion (maintainer number 4, who also stated that the tool of his selection and Hecataeus
were equally helpful for performing the second task).

214

Figure 6.15: Time needed (in minutes) for Task 2, which is to change a number of
files but leave one unmodified, due to a database schema alteration.

6.5.3 Code understanding

Regarding the next tasks, we wanted to measure the code understanding that our tool
provides to its users. In Task 3, the participants were asked to evaluate how easy was
to use our tool to locate where the queries should change, given an event. In Task 4,
the participants had to compare the three visualization methods (clusters on a circle,
clusters on concentric circles, and clusters on concentric arcs) on their appropriateness
to identify possible database evolution steps. The users were requested to perform
Task 3 and 4 both with Hecataeus and their tool of choice. Both tasks’ unit of
measurement is the user satisfaction expressed as a number between 0 and 5.

As depicted in Fig. 6.16, we observe that all participants, except user 8, found our
tool was really helpful. Apart from participant with number 8 who gave small value
(1) to both Hecataeus and the tool of his selection, Hecataeus had 4 perfect scores
and another 4 nearly perfect scores. The average number of the user satisfaction with
Hecataeus for Task 3 is 4.1 units, compared to 1.7 units of the rest of the tools.

Regarding the score of each one of the visualization methods used for code under-
standing, we observed that the concentric methods (both circles and arcs) had better
values compared to single circle. The clear winner of the three Hecataeus methods is
the concentric arcs, with average value 4.2 units of user satisfaction; second comes
the concentric circles, with average value 4.1 units of user satisfaction, and, the single
circle is the last one with an average value of 3.7 units of user satisfaction. When the
users evaluated the tools of their choice, no one was happy with the results of their
tool (the average value was only 1.6 units of user satisfaction). Figure 6.17 depicts

215

Figure 6.16: Task 3 measurements. The users evaluated on how useful the visualiza-
tion technique is, when they want to identify specific parts of the code that change
(impact analysis).

Figure 6.17: Task 4 measurements. The concentric methods are more useful on code
understanding, regarding the evolution of a database related project.

the average results of Task 4.

6.5.4 Threats to validity

We have addressed the threat of maturation by employing inverse order of tool usage
between the two groups of participants.

Additionally, we informed the participants that this evaluation is anonymous and

216

we will not know who answered what, plus we emphasized that we only wanted the
truth out of this evaluation, thus the reactive arrangements and the reactivity threats
are also excluded from our user study.

In order to guarantee the integrity of the presented results we had to resort in the
exclusion of participants whose actions or reports were incoherent. So, although we
report on 9 participants, the test was originally conducted with 12 participants, 3 of
which were excluded.

1. One of the excluded participants gave the exact same results in Hecataeus answer
as he had given using the tool of his selection. He had correctly found 5 out
of the 7 files, but the additional two he mentioned in his answer could not be
related to the requirements of Task 1. So he was either unwilling to use the tool,
or he had mistakenly used it. The fact that the answer is exactly the same as in
his own tool, made us exclude him from our study.

2. Two of the participants also gave the exact same answers in Hecataeus and their
selection tools. The fact here is that in the project that was given to them, in
order to work with Hecataeus, we had an auxiliary file, intentionally injected,
that had a connection to the COMMENT table. That file does not exist in the
project that was given to be examined by the tools of their choice. Therefore,
we excluded those participants from the survey too.

6.6 Conclusions

Concluding, in this Chapter we have explored how visual maps of data-intensive
information systems support the work of their developers.

We had already seen the three possible circular layouts of a visual map of the
information system in [1] and in this Chapter we proposed an impact analysis vi-
sualization method, which we evaluated additionally to the three aforementioned
visualization methods with a user study. As we have seen in the user study our tool
and its methods are helping the users to have a better code understanding of a new
project, with less effort and time consumed.

217

Chapter 7

Conclusions and Future Work

7.1 Conclusions

7.2 Future work

In the current chapter, we summarize our findings and our major contributions and
describe directions for future work. Section 7.1 summarizes the contributions of this
thesis, and ideas for future work are discussed in Section 7.2.

7.1 Conclusions

In this research we have proposed the map that connects the software part of the data-
intensive ecosystems to the database part, which is the Architecture Graph. To create
this graph, we have to know the database schema of the data-intensive ecosystems
and the queries that use it. To obtain the queries, we have to extract them from the
source code files of the projects we examined. Then, having the Architecture Graph, we
have proposed a metric that are related to both data and software, which metric helps
us evaluate the quality, understandability, and maintainability of the project we were
interested in. Additionally, we have suggested restructures in both parts (software
and database) of the project so as to achieve higher software and database schema
quality. Then, we have addressed the problem of “what-if” analysis for the evolution
of the schema of a data-intensive ecosystem, where we use policies over the potential

218

events that regulate the evolution of the Architecture Graph. Finally, we have proposed
a method to depict the Architecture Graph’s “what-if” analysis in a way that reduces
visual clutter, and evaluated the visualization methods presented in [1] with a user
study.

In Chapter 3, we have proposed a 4 step method for the query extraction problem
that is both host language and programming style independent. The first step is to
keep only the code that is related to the database. The second step is to create every
possible query version that might occur due to the branch and loop statements of the
host language, using the Query Variants Graph representation, which is both host lan-
guage independent, and programming style independent. The third step is to create an
abstract representation for each query, using the Abstract Query Representation that is query
language independent. Finally, the fourth step is based on this abstract representation
which we can “export” in a concrete query language, that can be used for migrating a
project from one querying syntax to another (e.g. migrate from SQL Server to Oracle1,
or even MongoDB).

In Chapter 4, we have proposed a metric that assesses the coupling of the ap-
plication to the database of a project. We have introduced in a principle manner,
the fundamental ideas, properties and constraints that evaluate a well-designed data-
intensive ecosystem project. We have evaluated our metric using a real world ecosys-
tem, following its evolution, and we have observed that our metric is in sync with the
Lehman’s Lows of evolution. Moreover, we have proposed an algorithm that rewrites
parts of the schema and software to obtain better metric values, which additionally
simplifies the developers effort during evolution events.

In Chapter 5, we have introduced the Architecture Graph that models the data-
intensive ecosystems with input and output schemata, the events that represent im-
minent schema changes and finally the policies that regulate whether the event is
accepted (and propagated to a module’s consumers) or not. To achieve that, we have
introduced a language for policies that is complete over the events we examined and
concise enough to only need a few policy lines to describe the general ecosystem’s
policy and specific component’s policies that differ. Additionally we rewrite the soft-
ware and database code, performing the event’s schema changes when all nodes have
accepted the event. When there are conflicts on an event acceptance over a database
view change, we proposed a solution that creates two variants of the view: (a) one

1https://www.w3schools.com/sql/sql_top.asp

219

https://www.w3schools.com/sql/sql_top.asp

that performs the needed rewrites for those that accepted the change, and (b) another
that retains the original definition of the view. Then, we rewrite the view’s consumers
to follow the view definition they want. Our contributions are:

• The impact assessment where a status determination algorithm (Algorithm 5.2)
makes sure that the nodes of the ecosystem are assigned a status concerning
when they are affected by an event depending on their reaction to the event
(accepted or blocked).

• The conflict resolution and variants calculation of Algorithm 5.3, where queries
with different reactions to an event of a view can get satisfied using a number
of view variants (one for the blockers and another for the accepters).

• The module rewriting of Algorithm 5.4 where, since the status and the number
of variants have been determined, we rewrote the software and the database
schema to restructure the nodes and edges of the Architecture Graph.

In Chapter 6, we have addressed the problem of visually depicting the Architecture
Graph. In this Thesis we have extended the work originally presented in [1] with a
“what-if” visualization algorithm and a user study. The visualization of the “what-if”
scenarios is performed by, depicting only the affected nodes, in parallel lines min-
imizing the visual clutter of the edge crossings. From the user study we conclude
that:

• The visualization is a neat tool to help in code understanding of a data intensive
project that it is new for the developers.

• The time needed to perform simple tasks is better when there is a tool to help
besides performing it, also displaying it, since the users can easily evaluate the
success or failure of the task.

7.2 Future work

In this section we discuss the ideas for additional research over the open issues that
this work has not cover.

In Chapter 3, we talked about the query extraction problem, and we presented the
Query Variants Graph that describe how a query is constructed due to branch and loop

220

statements of the hosting language, and with the Abstract Query Representation we
are able to describe every query in a more abstract way that we can then translate to
two up to now concrete query languages. Some of the open issues in this area are:
(i) an extension to the Abstract Data Manipulation Operators in order to cover even
more query language components, (ii) writing the needed code to facilitate the use of
our tool in more host languages besides C++ and PHP, (iii) a way to help the users of
our software avoid writing any line of code but work with pattern recognition when
they search for query functions that interact with a query object, or query string, and,
finally, (iv) methods to translate the Abstract Query Representation to more than the
two presented (SQL and MongoDB) concrete query languages.

In Chapter 4, we introduced the fundamental requirements to evaluate a well-
designed Data Intensive Information Systems project. To this end, we have proposed
the Data-To-Software Coupling metric based on those requirements, which assesses,
in a principled and multigranular way, how strongly coupled a software part of a
project is to the underlying data. We have also showed that the evolution of a popular
project is in line with the quality metric proposed. Moreover, we have described an
algorithm on how we can rewrite parts of the system, based on our metric, to im-
prove the understandability and reduce maintenance costs. Concerning future work,
a table utilization metric would be useful, so as to know whether a query uses all the
attributes of a table or not, which would suggest an extension to the presented rewrit-
ing method with an additional algorithm that would “clean up” the output variables
of the views that are not used by any query. Additionally, apart from coupling, the
exploration of metrics that are common to software and absent from databases, such
as cohesion or complexity would also be an interesting research path to follow.

In Chapter 5, we initially described the Architecture Graph which depicts a data-
intensive ecosystem, and then we described that using policies an ecosystem can with-
stand a change gracefully using policies that denote that an imminent is accepted or
not. Then, we proposed a set of algorithms that could facilitate schema changes even
when there existed contradicting policies for a change. The future work of this chap-
ter can continue in several directions. For example, the change events can address the
assessment of complicated events, involving a set of possible changes simultaneously
applied over either the same or different modules. This would also involve some
extra ”garbage collection” of views that are redundant or useless. The possibility of
adding more semantics to the Architecture Graph is also a possible path for future

221

research. For example, constraints that are not necessarily extracted from the reverse
engineering of the database, like functional or conditional functional dependencies,
or logical constraints within the source code (e.g., pre- and post-conditions over the
correctness of a stored procedure) can also become part of the graph. Adding more
kinds of sources, like for example, web-services, or XML stores to the graph is also
a possibility. Providing hints to the DBA’s or the developers for policies in a semi-
automatic way can also help with the annotation of the graph.

Finally, concerning the visualization techniques presented in Chapter 6, the issues
that remain to be explored, include alternative visualization methods and improved
space utilization of the 2D canvas.

222

Bibliography

[1] P. Manousis, P. Vassiliadis, and G. Papastefanatos, “Impact analysis and policy-
conforming rewriting of evolving data-intensive ecosystems,” Journal on Data
Semantics, vol. 4, no. 4, pp. 231–267, 2015.

[2] E. Kontogiannopoulou, P. Manousis, and P. Vassiliadis, “Visual maps for data-
intensive ecosystems,” in Conceptual Modeling - 33rd International Conference,
ER 2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings (E. S. K. Yu,
G. Dobbie, M. Jarke, and S. Purao, eds.), vol. 8824 of Lecture Notes in Computer
Science, pp. 385–392, Springer, 2014.

[3] J. F. Roddick, “A survey of schema versioning issues for database systems,”
Information & Software Technology, vol. 37, no. 7, pp. 383–393, 1995.

[4] M. Hartung, J. F. Terwilliger, and E. Rahm, “Recent Advances in Schema and
Ontology Evolution,” in Schema Matching and Mapping (Z. Bellahsene, A. Boni-
fati, and E. Rahm, eds.), Data-Centric Systems and Applications, pp. 149–190,
Springer, 2011.

[5] D. Sjøberg, “Quantifying Schema Evolution,” Information and Software Technology,
vol. 35, no. 1, pp. 35–44, 1993.

[6] C. Curino, H. J. Moon, L. Tanca, and C. Zaniolo, “Schema Evolution in
Wikipedia: Toward a Web Information System Benchmark,” in Proceedings of
10th International Conference on Enterprise Information Systems (ICEIS), 2008.

[7] C. A. Curino, H. J. Moon, and C. Zaniolo, “Graceful Database Schema Evolution:
the PRISM Workbench,” Proceedings of the VLDB Endowment, vol. 1, pp. 761–
772, 2008.

[8] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the Database
Schema Evolution Process,” VLDB Journal, vol. 22, no. 1, pp. 73–98, 2013.

223

[9] D.-Y. Lin and I. Neamtiu, “Collateral Evolution of Applications and Databases,”
in Proceedings of the Joint International and Annual ERCIM Workshops on Principles
of Software Evolution and Software Evolution Workshops (IWPSE), pp. 31–40,
2009.

[10] S. Wu and I. Neamtiu, “Schema evolution analysis for embedded databases,”
in Proceedings of the 27th IEEE International Conference on Data Engineering
Workshops (ICDEW), pp. 151–156, 2011.

[11] D. Qiu, B. Li, and Z. Su, “An Empirical Analysis of the Co-evolution of Schema
and Code in Database Applications,” in Proceedings of the 9th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE), pp. 125–135, 2013.

[12] I. Skoulis, P. Vassiliadis, and A. V. Zarras, “Open-source databases: Within,
outside, or beyond lehman’s laws of software evolution?,” in Advanced Infor-
mation Systems Engineering - 26th International Conference, CAiSE 2014, Thessa-
loniki, Greece, June 16-20, 2014. Proceedings (M. Jarke, J. Mylopoulos, C. Quix,
C. Rolland, Y. Manolopoulos, H. Mouratidis, and J. Horkoff, eds.), vol. 8484 of
Lecture Notes in Computer Science, pp. 379–393, Springer, 2014.

[13] I. Skoulis, P. Vassiliadis, and A. Zarras, “Growing Up with Stability: how Open-
Source Relational Databases Evolve,” Information Systems, vol. in press, 2015.

[14] P. Vassiliadis, A. Zarras, and I. Skoulis, “How is Life for a Table in an Evolving
Relational Schema? Birth, Death and Everything in Between,” in Proceedings
of the 34th International Conference on Conceptual Modeling (ER), p. to appear,
2015.

[15] M. M. Lehman and J. C. Fernandez-Ramil, Software Evolution and Feedback:
Theory and Practice, ch. Rules and Tools for Software Evolution Planning and
Management. Wiley, 2006.

[16] L. A. Belady and M. M. Lehman, “A Model of Large Program Development,”
IBM Systems Journal, vol. 15, no. 3, pp. 225–252, 1976.

[17] I. Herraiz, D. Rodriguez, G. Robles, and J. M. Gonzalez-Barahona, “The Evo-
lution of the Laws of Software Evolution: A Discussion Based on a Systematic
Literature Review,” ACM Computing Surveys, vol. 46, no. 2, pp. 1–28, 2013.

224

[18] M. M. Lehman, J. F. Ramil, P. Wernick, D. E. Perry, and W. M. Turski, “Metrics
and laws of software evolution - the nineties view,” in 4th IEEE International
Software Metrics Symposium (METRICS 1997), November 5-7, 1997, Albuquerque,
NM, USA, p. 20, IEEE Computer Society, 1997.

[19] Oracle, “Oracle Change Management Pack.” http://docs.oracle.com/html/

A96679_01/overview.htm, 2014.

[20] IBM, “Schema changes.” http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/

index.jsp?topic=%2Fcom.ibm.db2.luw.admin.dbobj.doc%2Fdoc%2Fc0060234.html,
May 2014.

[21] “IBM DB2 object comparison tool for Z/OS version 10 release 1.”
http://www-01.ibm.com/support/knowledgecenter/SSAUVH_10.1.0/com.ibm.

db2tools.gou10.doc.ug/gocugj13.pdf?lang=en, May 2012.

[22] “SQL management studio for SQL server user’s manual.” http://www.

sqlmanager.net/download/msstudio/doc/msstudio.pdf, December 2012.

[23] “Microsoft SQL server data tools: Database development zero to sixty.” http:

//channel9.msdn.com/Events/TechEd/Europe/2012/DBI311, June 2012.

[24] “Django.” https://www.djangoproject.com/.

[25] “South.” http://south.readthedocs.org/en/latest/index.html.

[26] “Hecate.” https://github.com/DAINTINESS-Group/Hecate.

[27] “Hecataeus.” http://cs.uoi.gr/~pvassil/projects/hecataeus/index.html.

[28] A. Maule, W. Emmerich, and D. S. Rosenblum, “Impact analysis of database
schema changes,” in 30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008 (W. Schäfer, M. B. Dwyer, and
V. Gruhn, eds.), pp. 451–460, ACM, 2008.

[29] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou, “Policy-regulated
management of ETL evolution,” J. Data Semantics, vol. 13, pp. 147–177, 2009.

[30] G. Papastefanatos, P. Vassiliadis, A. Simitsis, K. Aggistalis, F. Pechlivani, and
Y. Vassiliou, “Language Extensions for the Automation of Database Schema
Evolution,” in ICEIS (1) (J. Cordeiro and J. Filipe, eds.), pp. 74–81, 2008.

225

http://docs.oracle.com/html/A96679_01/overview.htm
http://docs.oracle.com/html/A96679_01/overview.htm
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.dbobj.doc%2Fdoc%2Fc0060234.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/index.jsp?topic=%2Fcom.ibm.db2.luw.admin.dbobj.doc%2Fdoc%2Fc0060234.html
http://www-01.ibm.com/support/knowledgecenter/SSAUVH_10.1.0/com.ibm.db2tools.gou10.doc.ug/gocugj13.pdf?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAUVH_10.1.0/com.ibm.db2tools.gou10.doc.ug/gocugj13.pdf?lang=en
http://www.sqlmanager.net/download/msstudio/doc/msstudio.pdf
http://www.sqlmanager.net/download/msstudio/doc/msstudio.pdf
http://channel9.msdn.com/Events/TechEd/Europe/2012/DBI311
http://channel9.msdn.com/Events/TechEd/Europe/2012/DBI311
https://www.djangoproject.com/
http://south.readthedocs.org/en/latest/index.html
https://github.com/DAINTINESS-Group/Hecate
http://cs.uoi.gr/~pvassil/projects/hecataeus/index.html

[31] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou, “Design metrics
for data warehouse evolution,” in Conceptual Modeling - ER 2008, 27th Interna-
tional Conference on Conceptual Modeling, Barcelona, Spain, October 20-24, 2008.
Proceedings (Q. Li, S. Spaccapietra, E. S. K. Yu, and A. Olivé, eds.), vol. 5231
of Lecture Notes in Computer Science, pp. 440–454, Springer, 2008.

[32] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou, “HECATAEUS:
regulating schema evolution,” in Proceedings of the 26th International Conference
on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA
(F. Li, M. M. Moro, S. Ghandeharizadeh, J. R. Haritsa, G. Weikum, M. J. Carey,
F. Casati, E. Y. Chang, I. Manolescu, S. Mehrotra, U. Dayal, and V. J. Tsotras,
eds.), pp. 1181–1184, IEEE Computer Society, 2010.

[33] G. Papastefanatos, P. Vassiliadis, A. Simitsis, and Y. Vassiliou, “Metrics for the
prediction of evolution impact in ETL ecosystems: A case study,” J. Data Se-
mantics, vol. 1, no. 2, pp. 75–97, 2012.

[34] P. Manousis, P. Vassiliadis, and G. Papastefanatos, “Automating the adaptation
of evolving data-intensive ecosystems,” in Proceedings of the 32nd International
Conference on Conceptual Modeling (ER), pp. 182–196, 2013.

[35] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Update Rewriting and
Integrity Constraint Maintenance in a Schema Evolution Support System:
PRISM++,” PVLDB, vol. 4, no. 2, pp. 117–128, 2010.

[36] M. Mohania, “Avoiding re-computation: View adaptation in data warehouses,”
in In Proc. of 8 th International Database Workshop, Hong Kong, pp. 151–165,
1997.

[37] A. Gupta, I. S. Mumick, J. Rao, and K. A. Ross, “Adapting materialized views
after redefinitions: techniques and a performance study,” Information Systems,
vol. 26, no. 5, pp. 323–362, 2001.

[38] A. Nica, A. J. Lee, and E. A. Rundensteiner, “The CVS algorithm for view
synchronization in evolvable large-scale information systems,” in Advances
in Database Technology - EDBT’98, 6th International Conference on Extending
Database Technology, Valencia, Spain, March 23-27, 1998, Proceedings (H. Schek,

226

F. Saltor, I. Ramos, and G. Alonso, eds.), vol. 1377 of Lecture Notes in Computer
Science, pp. 359–373, Springer, 1998.

[39] M. Golfarelli and S. Rizzi, “A survey on temporal data warehousing,” IJDWM,
vol. 5, no. 1, pp. 1–17, 2009.

[40] R. Wrembel, “A survey of managing the evolution of data warehouses,” IJDWM,
vol. 5, no. 2, pp. 24–56, 2009.

[41] Z. Bellahsene, “View adaptation in data warehousing systems,” in Database and
Expert Systems Applications, 9th International Conference, DEXA ’98, Vienna,
Austria, August 24-28, 1998, Proceedings (G. Quirchmayr, E. Schweighofer,
and T. J. M. Bench-Capon, eds.), vol. 1460 of Lecture Notes in Computer Science,
pp. 300–309, Springer, 1998.

[42] Z. Bellahsene, “Schema evolution in data warehouses,” Knowl. Inf. Syst., vol. 4,
no. 3, pp. 283–304, 2002.

[43] C. Quix, “Repository support for data warehouse evolution,” in DMDW
(S. Gatziu, M. A. Jeusfeld, M. Staudt, and Y. Vassiliou, eds.), vol. 19 of CEUR
Workshop Proceedings, p. 4, CEUR-WS.org, 1999.

[44] M. Blaschka, C. Sapia, and G. Höfling, “On schema evolution in multidimen-
sional databases,” in DaWaK (M. K. Mohania and A. M. Tjoa, eds.), vol. 1676
of Lecture Notes in Computer Science, pp. 153–164, Springer, 1999.

[45] C. A. Hurtado, A. O. Mendelzon, and A. A. Vaisman, “Maintaining data cubes
under dimension updates,” in ICDE (M. Kitsuregawa, M. P. Papazoglou, and
C. Pu, eds.), pp. 346–355, IEEE Computer Society, 1999.

[46] C. A. Hurtado, A. O. Mendelzon, and A. A. Vaisman, “Updating olap dimen-
sions,” in DOLAP (I.-Y. Song and T. J. Teorey, eds.), pp. 60–66, ACM, 1999.

[47] C. Kaas, T. B. Pedersen, and B. Rasmussen, “Schema evolution for stars and
snowflakes,” in ICEIS (1), pp. 425–433, 2004.

[48] R. Wrembel and B. Bebel, “Metadata management in a multiversion data ware-
house,” J. Data Semantics, vol. 8, pp. 118–157, 2007.

227

[49] J. Eder, C. Koncilia, and D. Mitsche, “Automatic detection of structural changes
in data warehouses,” in DaWaK (Y. Kambayashi, M. K. Mohania, and W. Wöß,
eds.), vol. 2737 of Lecture Notes in Computer Science, pp. 119–128, Springer,
2003.

[50] J. Eder, C. Koncilia, and D. Mitsche, “Analysing slices of data warehouses
to detect structural modifications,” in CAiSE (A. Persson and J. Stirna, eds.),
vol. 3084 of Lecture Notes in Computer Science, pp. 492–505, Springer, 2004.

[51] J. Eder and C. Koncilia, “Changes of dimension data in temporal data ware-
houses,” in DaWaK (Y. Kambayashi, W. Winiwarter, and M. Arikawa, eds.),
vol. 2114 of Lecture Notes in Computer Science, pp. 284–293, Springer, 2001.

[52] M. Golfarelli, J. Lechtenbörger, S. Rizzi, and G. Vossen, “Schema versioning in
data warehouses: Enabling cross-version querying via schema augmentation,”
Data Knowl. Eng., vol. 59, no. 2, pp. 435–459, 2006.

[53] A. S. Christensen, A. Møller, and M. I. Schwartzbach, “Precise analysis of string
expressions,” in Static Analysis, 10th International Symposium, SAS 2003, San
Diego, CA, USA, June 11-13, 2003, Proceedings (R. Cousot, ed.), vol. 2694 of
Lecture Notes in Computer Science, pp. 1–18, Springer, 2003.

[54] C. Gould, Z. Su, and P. T. Devanbu, “Static checking of dynamically gener-
ated queries in database applications,” in 26th International Conference on Soft-
ware Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom
(A. Finkelstein, J. Estublier, and D. S. Rosenblum, eds.), pp. 645–654, IEEE
Computer Society, 2004.

[55] G. Wassermann, C. Gould, Z. Su, and P. T. Devanbu, “Static checking of dy-
namically generated queries in database applications,” ACM Trans. Softw. Eng.
Methodol., vol. 16, no. 4, p. 14, 2007.

[56] A. Annamaa, A. Breslav, J. Kabanov, and V. Vene, “An interactive tool for
analyzing embedded SQL queries,” in Programming Languages and Systems - 8th
Asian Symposium, APLAS 2010, Shanghai, China, November 28 - December 1,
2010. Proceedings (K. Ueda, ed.), vol. 6461 of Lecture Notes in Computer Science,
pp. 131–138, Springer, 2010.

228

[57] H. van den Brink, R. van der Leek, and J. Visser, “Quality assessment for
embedded SQL,” in Seventh IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM 2007), September 30 - October 1, 2007, Paris, France,
pp. 163–170, IEEE Computer Society, 2007.

[58] M. N. Ngo and H. B. K. Tan, “Applying static analysis for automated extraction
of database interactions in web applications,” Information & Software Technology,
vol. 50, no. 3, pp. 160–175, 2008.

[59] C. Nagy, L. Meurice, and A. Cleve, “Where was this SQL query executed? a
static concept location approach,” in 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC,
Canada, March 2-6, 2015 (Y. Guéhéneuc, B. Adams, and A. Serebrenik, eds.),
pp. 580–584, IEEE Computer Society, 2015.

[60] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”
IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476–493, 1994.

[61] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented
design metrics as quality indicators,” IEEE Trans. Software Eng., vol. 22, no. 10,
pp. 751–761, 1996.

[62] L. C. Briand, J. W. Daly, and J. Wüst, “A unified framework for cohesion
measurement in object-oriented systems,” Empirical Software Engineering, vol. 3,
no. 1, pp. 65–117, 1998.

[63] J. Al-Dallal and L. C. Briand, “A precise method-method interaction-based
cohesion metric for object-oriented classes,” ACM Trans. Softw. Eng. Methodol.,
vol. 21, no. 2, pp. 8:1–8:34, 2012.

[64] U. S. Poornima and V. Suma, “Significance of coupling and cohesion on design
quality,” CoRR, vol. abs/1402.2375, 2014.

[65] L. C. I. David Longstreet, Function Points Analysis Training Course.
www.SoftwareMetrics.com, 2004.

[66] M. P. Papazoglou and W. van den Heuvel, “Service-oriented design and de-
velopment methodology,” Int. J. Web Eng. Technol., vol. 2, no. 4, pp. 412–442,
2006.

229

[67] C. Legner and T. Vogel, “Design principles for B2B services - an evaluation
of two alternative service designs,” in 2007 IEEE International Conference on
Services Computing (SCC 2007), 9-13 July 2007, Salt Lake City, Utah, USA,
pp. 372–379, IEEE Computer Society, 2007.

[68] D. Athanasopoulos and A. V. Zarras, “Fine-grained metrics of cohesion lack
for service interfaces,” in IEEE International Conference on Web Services, ICWS
2011, Washington, DC, USA, July 4-9, 2011, pp. 588–595, IEEE Computer
Society, 2011.

[69] M. Perepletchikov, C. Ryan, and Z. Tari, “The impact of service cohesion on
the analyzability of service-oriented software,” IEEE Trans. Services Computing,
vol. 3, no. 2, pp. 89–103, 2010.

[70] A. Kazemi, A. Rostampour, A. Zamiri, P. Jamshidi, H. Haghighi, and F. Shams,
“An information retrieval based approach for measuring service conceptual
cohesion,” in Proceedings of the 11th International Conference on Quality Software,
QSIC 2011, Madrid, Spain, July 13-14, 2011. (M. Núñez, R. M. Hierons, and
M. G. Merayo, eds.), pp. 102–111, IEEE Computer Society, 2011.

[71] T. Sharma, M. Fragkoulis, S. Rizou, M. Bruntink, and D. Spinellis, “Smelly re-
lations: measuring and understanding database schema quality,” in Proceedings
of the 40th International Conference on Software Engineering: Software Engineering
in Practice, ICSE (SEIP) 2018, Gothenburg, Sweden, May 27 - June 03, 2018
(F. Paulisch and J. Bosch, eds.), pp. 55–64, ACM, 2018.

[72] R. Pottinger and A. Y. Halevy, “Minicon: A scalable algorithm for answering
queries using views,” VLDB J., vol. 10, no. 2-3, pp. 182–198, 2001.

[73] A. Y. Levy, A. Rajaraman, and J. J. Ordille, “Querying heterogeneous infor-
mation sources using source descriptions,” in VLDB’96, Proceedings of 22th
International Conference on Very Large Data Bases, September 3-6, 1996, Mumbai
(Bombay), India (T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, eds.), pp. 251–262, Morgan Kaufmann, 1996.

[74] O. M. Duschka and M. R. Genesereth, “Answering recursive queries using
views,” in Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Sympo-

230

sium on Principles of Database Systems, May 12-14, 1997, Tucson, Arizona, USA
(A. O. Mendelzon and Z. M. Özsoyoglu, eds.), pp. 109–116, ACM Press, 1997.

[75] R. DeLine, G. Venolia, and K. Rowan, “Software development with code maps,”
ACM Queue, vol. 8, no. 7, p. 10, 2010.

[76] B. Johnson and B. Shneiderman, “Tree maps: A space-filling approach to
the visualization of hierarchical information structures,” in IEEE Visualization,
pp. 284–291, 1991.

[77] S. G. Eick, J. L. Steffen, and E. E. S. Jr., “Seesoft-a tool for visualizing line
oriented software statistics,” IEEE Trans. Software Eng., vol. 18, no. 11, pp. 957–
968, 1992.

[78] A. Bragdon, S. P. Reiss, R. C. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. L. Jr., “Code bubbles: rethinking the user
interface paradigm of integrated development environments,” in Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1, ICSE 2010, Cape Town, South Africa, 1-8 May 2010 (J. Kramer, J. Bishop,
P. T. Devanbu, and S. Uchitel, eds.), pp. 455–464, ACM, 2010.

[79] P. Caserta and O. Zendra, “Visualization of the static aspects of software: A
survey,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 7, pp. 913–933, 2011.

[80] C. Ware, Information visualization: Perception for design. Morgan Kaufmann, 2nd
edition, 2004.

[81] J. Tidwell, Designing interfaces - patterns for effective interaction design. O’Reilly,
2006.

[82] T. Munzner, “A nested process model for visualization design and validation,”
IEEE Trans. Vis. Comput. Graph., vol. 15, no. 6, pp. 921–928, 2009.

[83] J. M. Six and I. G. Tollis, “A framework and algorithms for circular drawings
of graphs,” J. Discrete Algorithms, vol. 4, no. 1, pp. 25–50, 2006.

[84] I. Halupczok and A. Schulz, “Pinning balloons with perfect angles and optimal
area,” J. Graph Algorithms Appl., vol. 16, no. 4, pp. 847–870, 2012.

231

[85] P. Hoffman, G. G. Grinstein, and D. Pinkney, “Dimensional anchors: A graphic
primitive for multidimensional multivariate information visualizations,” in
Workshop on New Paradigms in Information Visualization and Manipulation (NPIVM
’99), in conjunction with the Eigth ACM International Conference on Information
and Knowledge Management (CIKM ’99), Kansas City, Missouri, USA, November
6, 1999, Proceedings., pp. 9–16, ACM, 1999.

[86] K. Misue, “Drawing bipartite graphs as anchored maps,” in Asia-Pacific Sympo-
sium on Information Visualisation, APVIS 2006, Tokyo, Japan, February 1-3, 2006
(K. Misue, K. Sugiyama, and J. Tanaka, eds.), vol. 60 of CRPIT, pp. 169–177,
Australian Computer Society, 2006.

[87] G. M. Draper, Y. Livnat, and R. F. Riesenfeld, “A survey of radial methods
for information visualization,” IEEE Trans. Vis. Comput. Graph., vol. 15, no. 5,
pp. 759–776, 2009.

[88] S. J. Rysavy, D. Bromley, and V. Daggett, “DIVE: A graph-based visual-analytics
framework for big data,” IEEE Computer Graphics and Applications, vol. 34, no. 2,
pp. 26–37, 2014.

[89] S. van den Elzen and J. J. van Wijk, “Multivariate network exploration and
presentation: From detail to overview via selections and aggregations,” IEEE
Trans. Vis. Comput. Graph., vol. 20, no. 12, pp. 2310–2319, 2014.

[90] B. Bach, E. Pietriga, and J. Fekete, “Graphdiaries: Animated transitions
andtemporal navigation for dynamic networks,” IEEE Trans. Vis. Comput.
Graph., vol. 20, no. 5, pp. 740–754, 2014.

[91] K. Gallagher and D. Binkley, “Program slicing,” in Frontiers of Software Main-
tenance, 2008. FoSM 2008., pp. 58–67, IEEE, 2008.

[92] A. Cleve, J. Henrard, and J. Hainaut, “Data reverse engineering using system
dependency graphs,” in Proceedigns of the 13th Working Conference on Reverse
Engineering (WCRE), pp. 157–166, 2006.

[93] M. Goeminne, A. Decan, and T. Mens, “Co-evolving code-related and database-
related changes in a data-intensive software system,” in 2014 Software Evolution

232

Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse En-
gineering, CSMR-WCRE 2014, Antwerp, Belgium, February 3-6, 2014 (S. De-
meyer, D. W. Binkley, and F. Ricca, eds.), pp. 353–357, IEEE Computer Society,
2014.

[94] T. Mens, L. Meurice, M. Goeminne, C. Nagy, A. Decan, and A. Cleve, Analyzing
the Evolution of Database Usage in Data-Intensive Software Systems. 01 2017.

[95] R. Pressman, Software Engineering: A Practitioner’s Approach: European Adaption.
McGraw-Hill, 5 ed., April 2000.

[96] Y. Velegrakis, R. J. Miller, and L. Popa, “Preserving mapping consistency under
schema changes,” VLDB J., vol. 13, no. 3, pp. 274–293, 2004.

[97] G. Papastefanatos, P. Vassiliadis, and A. Simitsis, “Propagating evolution events
in data-centric software artifacts,” in Workshops Proceedings of the 27th Interna-
tional Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover,
Germany (S. Abiteboul, K. Böhm, C. Koch, and K. Tan, eds.), pp. 162–167, IEEE
Computer Society, 2011.

[98] P. Manousis, “Database evolution and maintenance of their dependent appli-
cations via query rewriting,” Master’s thesis, Department of Computer Science,
University of Ioannina, February 2013.

[99] Transaction Processing Performance Council, “The New Decision Support
Benchmark Standard,” April 2012. http://www.tpc.org/tpcds/default.asp.

[100] M. H. Dunham, Data Mining: Introductory and Advanced Topics. Prentice-Hall,
2002.

[101] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, 1999.

[102] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-directed
placement,” Softw., Pract. Exper., vol. 21, no. 11, pp. 1129–1164, 1991.

[103] B. Meyer, “Self-organizing graphs - A neural network perspective of graph lay-
out,” in Graph Drawing, 6th International Symposium, GD’98, Montréal, Canada,
August 1998, Proceedings (S. Whitesides, ed.), vol. 1547 of Lecture Notes in
Computer Science, pp. 246–262, Springer, 1998.

233

http://www.tpc.org/tpcds/default.asp

[104] T. Kamada and S. Kawai, “An algorithm for drawing general undirected
graphs,” Inf. Process. Lett., vol. 31, no. 1, pp. 7–15, 1989.

234

Author’s Publications

1. Petros Manousis, Apostolos V. Zarras, Panos Vassiliadis, George Papastefanatos:
Extraction of Embedded Queries via Static Analysis of Host Code. CAiSE 2017:
511-526

2. Dimitrios Gkesoulis, Panos Vassiliadis, Petros Manousis: CineCubes: Aiding data
workers gain insights from OLAP queries. Inf. Syst. 53: 60-86 (2015)

3. Petros Manousis, Panos Vassiliadis, George Papastefanatos: Impact Analysis and
Policy-Conforming Rewriting of Evolving Data-Intensive Ecosystems. J. Data
Semantics 4(4): 231-267 (2015)

4. Petros Manousis, Panos Vassiliadis, Apostolos V. Zarras, George Papastefanatos:
Schema Evolution for Databases and Data Warehouses. eBISS 2015: 1-31

5. Efthymia Kontogiannopoulou, Petros Manousis, Panos Vassiliadis: Visual Maps
for Data-Intensive Ecosystems. ER 2014: 385-392

6. Petros Manousis, Panos Vassiliadis, George Papastefanatos: Automating the Adap-
tation of Evolving Data-Intensive Ecosystems. ER 2013: 182-196

Short Biography

My name is Petros Manousis and I am a PhD candidate at the Computer Science
& Engineering Department of the University of Ioannina in Greece, under the su-
pervision of Panos Vassiliadis. I received my MSc and BSc Degrees from the same
institution in 2013 and 2008 respectively. I have been a member of the Distributed
Management of Data Laboratory since 2011. My academic interests lie in the area of
software engineering and data management with a particular emphasis on database
ecosystem evolution.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Objectives of this Thesis
	Contributions
	Structure

	Related work
	Introduction
	Database Evolution
	Empirical Studies on Database Evolution
	State of Practice
	Techniques for managing database and view evolution
	Techniques for managing data warehouse evolution

	Query Extraction
	Software Metrics
	Query rewriting
	Visualization of Data Intensive Ecosystems
	Comparison to the state of the art

	Query Extraction
	Introduction
	Source Code to Query Variants Graph
	Query Variants Graph Construction
	Query Variants Graph Path Identification

	From QVG Paths to Abstract Query Representations
	From Abstract Query Representations to Concrete Query Representations
	From AQR to SQL
	From AQR to MongoDB

	Cross-layer method: from source code to execution paths
	Evaluation
	Conclusion

	A Metric to Assess the Coupling of Software to the Database
	Introduction
	Evaluating Data-Software Coupling Quality
	Using Abstract Query Representation for API and Embedded SQL techniques
	Formal (graph-based, uniform) model of Software & Data
	Describing a well designed Data Intensive Information Systems
	Data-Software Coupling Quality
	AQR in our model and metrics

	Data-Software Coupling Quality Experiments
	Research question 1: Does Data-Software Coupling Quality metric indicate which files change, using the rolled up per file value?
	Research question 2: Does Data-Software Coupling Quality metric follow the Lehman's Lows of evolution, when a set of software maintenance steps occurred in the projects life?

	Query Rewriting
	Query Rewriting Experiments
	Conclusions

	Regulation of Schema Evolution with Policies
	Introduction
	Formal Background
	Architecture graph
	Events
	Policies

	Impact Assessment and Adaptation of Ecosystems
	Topological sort
	Detection of affected nodes and status determination
	Query and view rewriting to accommodate change

	Theoretical Guarantees
	Language Properties
	Theoretical Guarantees for the Status Determination Algorithm
	Theoretical Guarantees for the Path Check Algorithm
	Theoretical Guarantees for the Graph Rewrite Algorithm

	Experiments
	Effectiveness and Effort Metrics
	Replaying the Evolution of Drupal
	Controlled experiment with TPC-DS

	Conclusions

	Data-Intensive Ecosystem Visualization
	Introduction
	Graph Layout Methods for Data-Intensive Ecosystems
	Clustering of Modules
	Cluster Preprocessing
	Layout of Cluster Circle(s)
	Layout of Nodes inside a Cluster

	Visualization of impact analysis and zoom in of queries
	Experiments
	Experimental Method
	Assessment of Objective Criteria
	Aesthetic criteria
	Comparison to general purpose graph visualizations

	User study evaluation
	Effectiveness
	User Satisfaction
	Code understanding
	Threats to validity

	Conclusions

	Conclusions and Future Work
	Conclusions
	Future work

	Bibliography
	Author's Publications
	Short Biography

