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Abstract

Dimitrios Souravlias, Ph.D., Department of Computer Science and Engineering, Uni-
versity of Ioannina, Greece, June 2017.
New Approaches in Parallel Algorithm Portfolios for Metaheuristic Optimization.
Advisor: Konstantinos E. Parsopoulos, Associate Professor.

Optimization problems are ubiquitous in science and engineering. They emerge in
various types and forms in almost all aspects of decision-making. The abundance
and diversity of optimization problems have offered ample ground for the develop-
ment of innovative solution methodologies. Numerous optimization methods have
been proposed in the past decades, leading to an ongoing expansion of the available
algorithmic artillery. Nowadays, there is a rich variety of optimization algorithms with
diverse effectiveness and efficiency characteristics. However, both theoretical and ex-
perimental evidence suggest that the existence of a universal optimization algorithm
capable of tackling all optimization problems equally well is highly improbable. This
conjecture has offered strong motivation for the ongoing development of optimization
algorithms with diverse characteristics that match specific properties of the confronted
problems.

Typically, each optimization procedure requires a number of decisions taken by the
practitioner. Perhaps the most important one is the selection of the applied optimiza-
tion algorithm. This is a rather complex task and usually requires deep knowledge
of the problem and experience from the practitioner’s side. Whenever the available
information on the problem is limited, preliminary experimentation is needed for the
selection of the most promising algorithm among a group of candidates through a
trial-and-error procedure. This phase is error-prone as well as time-consuming. In
fact, it may require more time than the solution of the problem itself due to the compu-
tational intensity of the involved statistical methodologies. Moreover, it does not take
directly into consideration the online dynamic of each algorithm, i.e., its performance

xii



fluctuations during its execution. Indeed, some algorithms are exploration-intensive
while other are exploitation-intensive. While the first are more useful at the begin-
ning of the optimization procedure in order to detect promising regions of the search
space, the latter are preferable at the end where more fine-grained search around
the best solutions is desirable. An arbitrary selection of a single algorithm from ei-
ther category seems to explicitly promote local or global search, thereby resulting in
questionable performance.

Algorithm Portfolios were proposed as algorithmic models that harness a number
of algorithms in a joint algorithmic scheme, aiming at the alleviation of the afore-
mentioned deficiencies. Standard algorithm portfolios assume a number of algorithms
that are executed either serially on a single processing unit or in parallel whenever
multiple processing units are available. In the first case, the constituent algorithms of
the portfolio are interchangeably executed, consuming a fixed portion of the available
computational budget (function evaluations or time) in a round-robin manner. In the
second case, the processing units and the computational budget are shared among
the algorithms according to a prescribed plan, offering obvious advantages in terms
of time-efficiency. The resources allocation plan of the portfolio is usually determined
prior to its application, based on preliminary experiments or historical performance
data of the algorithms. Thus, the problem of algorithm selection is replaced with the
problem of appropriate resources allocation in the portfolio. Although the simplistic
approach of assigning equal proportions of the available resources may provide ad-
equate solutions in various problems, it does not take full advantage of the portfolio
and its constituent algorithms. To this end, sophisticated resources allocation schemes
can offer significant performance enhancement.

The main goals of the present thesis are the justification for the use of meta-
heuristic algorithm portfolios in demanding optimization problems of various types,
and the development of new parallel algorithm portfolio models with adaptive re-
sources allocation. In the first part of the thesis (Chapters 1- 3) motivation for the
use of algorithm portfolios is provided. The usefulness of appropriate computational
budget allocation in contemporary metaheuristics is identified, and simplistic parallel
algorithm portfolios are demonstrated on challenging problems such as the design
of cryptographically strong S-boxes, and the traffic light scheduling in smart cities
environments.

In the second part of the thesis, two new parallel algorithm portfolio models

xiii



with sophisticated resources allocation mechanisms are proposed. The first model
is an algorithm portfolio with trading-based budget allocation, which introduces a
market-based environment where the constituent algorithms of the portfolio can trade
their solutions for additional running time. The model is highly autonomous and
allows the algorithms to individually interact whenever specific conditions (e.g., search
stagnation) are met. It is demonstrated on three challenging problems, namely the
detection of circulant weighing matrices in combinatorics, the lot-sizing planning
in production systems with returns and remanufacturing, and the transportation of
commodities in humanitarian logistics.

The second proposed model is a forecasting-based parallel algorithm portfolio
where time series forecasting is employed to predict the performance of the portfolio’s
constituent algorithms. The predictions are used to assign computational resources
to the constituent algorithms accordingly. The model is demonstrated again on the
detection of circulant weighing matrices in combinatorics, offering valuable insight
regarding its parameterization.
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Ε Π

Δημήτριος Σουραβλιάς, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πανεπιστή-
μιο Ιωαννίνων, Ιούνιος 2017.
Νέες Προσεγγίσεις σε Παράλληλα Χαρτοφυλάκια Αλγορίθμων για Μεταευρετική
Βελτιστοποίηση.
Επιβλέπων: Κωνσταντίνος Ε. Παρσόπουλος, Αναπληρωτής Καθηγητής.

Τα προβλήματα βελτιστοποίησης είναι πανταχού παρόντα στην επιστήμη και στη
μηχανική. Εμφανίζονται σε διάφορους τύπους και μορφές σε όλες σχεδόν τις δια-
δικασίες λήψης αποφάσεων. Η αφθονία και η ποικιλομορφία των προβλημάτων
βελτιστοποίησης έχουν δώσει πρόσφορο έδαφος για την ανάπτυξη καινοτόμων με-
θόδων και τεχνικών επίλυσης. Διάφορες μέθοδοι βελτιστοποίησης έχουν προταθεί τις
τελευταίες δεκαετίες, καταγράφοντας διαρκή αύξηση των διαθέσιμων αλγορίθμων.
Αυτό έχει ως αποτέλεσμα την ύπαρξη πλούσιας ποικιλίας αλγορίθμων με ετερογενή
χαρακτηριστικά ως προς την αποτελεσματικότητα και την αποδοτικότητά τους. Επι-
πλέον, τόσο θεωρητικές όσο και πειραματικές μελέτες καταλήγουν στο συμπέρασμα
ότι η ύπαρξη ενός καθολικού αλγορίθμου βελτιστοποίησης ικανού να αντιμετωπίσει
εξίσου καλά όλα τα δυνατά προβλήματα βελτιστοποίησης είναι απίθανη. Αυτό έχει
προσφέρει ισχυρά κίνητρα για τη συνεχή ανάπτυξη αλγορίθμων βελτιστοποίησης με
ποικίλα χαρακτηριστικά, τα οποία εκμεταλλεύονται συγκεκριμένες ιδιότητες των
εκάστοτε προβλημάτων.

Γενικά, κάθε διαδικασία βελτιστοποίησης απαιτεί τη λήψη μιας σειράς αποφά-
σεων. Ίσως η πιο σημαντική απόφαση είναι η επιλογή του αλγορίθμου βελτιστοποί-
ησης που θα χρησιμοποιηθεί για επίλυση. Πρόκειται για μια δύσκολη επιλογή που
συνήθως απαιτεί βαθιά γνώση του προβλήματος αλλά και εμπειρία. Σε περίπτωση
που οι διαθέσιμες πληροφορίες για το πρόβλημα είναι περιορισμένες, συνήθως απαι-
τείται προκαταρκτική πειραματική μελέτη για την επιλογή του καταλληλότερου αλ-
γορίθμου από ένα σύνολο υποψηφίων, μέσω μιας διαδικασίας δοκιμής-σφάλματος.
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Αυτή η διαδικασία είναι επιρρεπής σε λάθη καθώς και χρονοβόρα. Στην πράξη
μπορεί να απαιτεί περισσότερο χρόνο ακόμη κι από τη διαδικασία επίλυσης του
ίδιου του προβλήματος, λόγω του υπολογιστικού φόρτου των χρησιμοποιούμενων
στατιστικών μεθόδων. Επιπλέον, δε λαμβάνει άμεσα υπόψη την δυναμική του κάθε
αλγορίθμου σε πραγματικό χρόνο, δηλαδή τις διακυμάνσεις της απόδοσης κατά την
εκτέλεσή του. Για παράδειγμα, ορισμένοι αλγόριθμοι είναι καταλληλότεροι για ευ-
ρύτερη εξερεύνηση του χώρου αναζήτησης, ενώ άλλοι λειτουργούν πιο αποτελεσμα-
τικά για την τοπική βελτίωση των καλύτερων λύσεων. Ενώ οι πρώτοι είναι συνήθως
πιο χρήσιμοι στην αρχή της βελτιστοποίησης για την ανίχνευση καλών περιοχών του
χώρου αναζήτησης, οι τελευταίοι είναι πιο χρήσιμοι στο τέλος όπου είναι επιθυμητή
η πιο λεπτομερής αναζήτηση γύρω από τις καλύτερες λύσεις. Η αυθαίρετη επιλογή
ενός και μόνο αλγορίθμου που ανήκει σε κάποια από τις δύο αυτές κατηγορίες
μπορεί να μην έχει την αναμενόμενη απόδοση στο πρόβλημα που θα εφαρμοστεί.

Για τους παραπάνω λόγους, χαρτοφυλάκια αλγορίθμων αποτελούμενα από με-
ταευρετικούς αλγορίθμους έχουν προταθεί στη βιβλιογραφία για την αντιμετώπιση
δύσκολων προβλημάτων βελτιστοποίησης. Τα χαρτοφυλάκια αλγορίθμων αποτελούν
σχήματα που ενσωματώνουν διαφορετικούς αλγορίθμους ή διαφορετικές εκδοχές
του ίδιου αλγορίθμου, οι οποίες εκτελούνται σειριακά (σε μία μονάδα επεξεργα-
σίας) ή παράλληλα (όταν περισσότερες μονάδες επεξεργασίας είναι διαθέσιμες).
Στην πρώτη περίπτωση, οι αλγόριθμοι του χαρτοφυλακίου εναλλάσσουν την εκτέ-
λεσή τους, καταναλώνοντας ο καθένας εκ περιτροπής ένα κλάσμα των διαθέσιμων
υπολογιστικών πόρων (συναρτησιακοί υπολογισμοί ή χρόνος). Στη δεύτερη περί-
πτωση, οι μονάδες επεξεργασίας και οι υπολογιστικοί πόροι μοιράζονται μεταξύ
των αλγορίθμων σύμφωνα με ένα προκαθορισμένο πλάνο, προσφέροντας προφανή
πλεονεκτήματα ως προς το χρόνο εκτέλεσης. Το πλάνο κατανομής πόρων καθορίζε-
ται συνήθως πριν από την εφαρμογή του χαρτοφυλακίου, διαμέσου προκαταρκτικής
πειραματικής μελέτης ή ιστορικών δεδομένων απόδοσης των αλγορίθμων. Έτσι, το
πρόβλημα επιλογής αλγορίθμου αντικαθίσταται από το πρόβλημα κατάλληλης κα-
τανομής υπολογιστικών πόρων στο χαρτοφυλάκιο. Αν και η απλοϊκή προσέγγιση
της ισόποσης κατανομής πόρων στους αλγορίθμους μπορεί να προσφέρει επαρκείς
λύσεις σε διάφορα προβλήματα, δεν εκμεταλλεύεται πλήρως το χαρτοφυλάκιο και
τους αλγόριθμους που το αποτελούν. Η πραγματικού χρόνου κατανομή υπολογι-
στικών πόρων στους αλγορίθμους μπορεί να οδηγήσει σε σημαντική βελτίωση τόσο
της αποδοτικότητας όσο και της αποτελεσματικότητας.
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Οι κύριοι στόχοι της παρούσας διατριβής είναι η αιτιολόγηση της χρήσης χαρ-
τοφυλακίων μεταευρετικών αλγορίθμων σε προβλήματα βελτιστοποίησης διαφόρων
τύπων και η ανάπτυξη νέων μοντέλων παράλληλων χαρτοφυλακίων αλγορίθμων με
δυναμικά προσαρμοζόμενα σχέδια κατανομής υπολογιστικών πόρων. Στο πρώτο
μέρος της διατριβής δίνονται κίνητρα για τη χρήση χαρτοφυλακίων αλγορίθμων (Κε-
φάλαια 1-3) και διερευνάται η χρησιμότητα των μηχανισμών κατανομής υπολογιστι-
κών πόρων σε μεταευρετικούς αλγορίθμους. Στη συνέχεια προτείνονται παράλληλα
χαρτοφυλάκια αλγορίθμων για απαιτητικά προβλήματα όπως ο σχεδιασμός κρυ-
πτογραφικά ισχυρών S-boxes καθώς και ο χρονοπρογραμματισμός φωτεινών σημα-
τοδοτών σε περιβάλλοντα έξυπνων πόλεων.

Στο δεύτερο μέρος της εργασίας, προτείνονται δύο νέα παράλληλα μοντέλα χαρ-
τοφυλακίων αλγορίθμων, τα οποία υλοποιούν νέους μηχανισμούς κατανομής υπο-
λογιστικών πόρων. Το πρώτο μοντέλο είναι ένα χαρτοφυλάκιο αλγορίθμων βασι-
σμένο σε συναλλαγές, το οποίο χρησιμοποιεί ένα νέο μηχανισμό κατανομής πόρων,
σύμφωνα με τον οποίο οι αλγόριθμοί του μπορούν να πωλούν λύσεις κερδίζοντας
επιπλέον χρόνο εκτέλεσης. Το μοντέλο είναι αυτόνομο και επιτρέπει στους αλγορίθ-
μους να αλληλεπιδρούν όταν πληρούνται συγκεκριμένες συνθήκες (για παράδειγμα
στασιμότητα αναζήτησης). Το μοντέλο εφαρμόζεται σε τρία απαιτητικά προβλή-
ματα όπως η ανίχνευση κυκλικών πινάκων στάθμισης, ο προσδιορισμός μεγέθους
παρτίδας σε συστήματα παραγωγής με επιστροφές και ανακατασκευή προϊόντων,
καθώς και η μεταφορά εμπορευμάτων σε ανθρωπιστικές εφοδιαστικές αλυσίδες. Το
δεύτερο προτεινόμενο μοντέλο είναι ένα χαρτοφυλάκιο αλγορίθμων βασισμένο σε
προβλέψεις, το οποίο χρησιμοποιεί τεχνικές πρόβλεψης χρονοσειρών για την πρό-
βλεψη της απόδοσης των αλγορίθμων που το αποτελούν. Οι προβλέψεις χρησιμο-
ποιούνται για τον κατάλληλο διαμοιρασμό των διαθέσιμων υπολογιστικών πόρων
στους αλγορίθμους του χαρτοφυλακίου. Το μοντέλο εφαρμόζεται και πάλι στην
ανίχνευση κυκλικών πινάκων στάθμισης, προσφέροντας πολύτιμα συμπεράσματα
σχετικά με την παραμετροποίησή του.
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Chapter 1

Introduction

1.1 Overview

1.2 Thesis contribution

1.3 Thesis Layout

1.1 Overview

Οptimization problems are met in every aspect of science and engineering. They
emerge in a variety of types and forms in the majority of decision-making applica-
tions. Undoubtedly, the plethora of optimization problems has increased the demand
for innovative solution methodologies. A high number of optimization methods [2]
with diverse characteristics has appeared over the last decades to match the special
properties of the existing problems and address their complexities. Their primary
target has been the effectiveness in terms of solution quality and the efficiency in
terms of computational resources. Despite the multitude of available optimization al-
gorithms, strong theoretical results such as the No Free Lunch theorem [3] suggest
that there is no universal algorithm that can tackle all problems equally well. Nev-
ertheless, experimental evidence suggests that specific algorithmic instances can be
particularly effective and efficient in specific optimization problems [4, 5]. Thus, the
ability to identify the most appropriate algorithm eventually determines the boundary
between success and failure when challenging optimization problems are confronted.
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A central problem in applied optimization lies in the selection of the most ap-
propriate algorithm and/or its parameter setting for tackling a given problem. The
so called algorithm selection problem has concentrated the attention of the research
community for many decades [6,7]. Algorithm selection methods usually operate of-
fline [5] and involve decisions of high complexity. The difficulties can be mitigated
under deep knowledge of the problem at hand as well as experience from the prac-
titioner’s side. When limited a priori knowledge of the problem exists, preliminary
experimentation is required for the selection of a suitable algorithm among a set of
candidates. In this case, a trial-and-error phase takes place involving the execution
of a number of algorithms and performance comparisons through statistical method-
ologies [5]. This is habitually an error-prone and time-consuming process as it may
requires more time than the solution of the problem itself. This is due to the com-
putational resources spent by the used algorithmic approaches as required by the
statistical methodologies.

Even if a single algorithm is selected, its performance exhibits fluctuations dur-
ing the optimization procedure. While an algorithm may prove to be efficient at
early stages of the optimization procedure, it may exhibit declining performance af-
ter a critical number of iterations. In fact, there are exploration-intensive algorithms
that generally perform better at the beginning of the optimization process whereas
exploitation-intensive ones are more useful at the end [8]. In general, a single algo-
rithm cannot satisfy both requirements equally well. Therefore, selecting algorithms
from both categories rather than a single one can be a wise choice to combine their
diverse characteristics and complementary properties.

In this framework, Algorithm Portfolios (APs) [9, 10] have been proposed as gen-
eral models for building algorithmic schemes that alleviate deficiencies originating
from the selection of a single algorithm for tackling a specific optimization problem.
Specifically, APs define schemes that harness multiple individual algorithms, which
share the available computational resources. APs can be either homogeneous [11]
(consisting of instances of the same algorithm) or heterogeneous [12, 13] (consisting
of different algorithms). If a single processing unit is used, the AP’s constituent al-
gorithms are interchangeably executed according to a resource-assignment schedule.
When many processing units are available, the algorithms run in parallel, each one
occupying one processing unit [10]. Standard algorithm portfolios assume no interac-
tion among their constituent algorithms [14]. However, recent studies with interactive
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models suggested that performance benefits can be achieved [4].
The distribution of the available computational resources among the portfolio’s

constituents algorithms is crucial for its performance [12,13]. The choice of the appro-
priate resources allocation plan is usually an offline process, namely it is conducted
prior to the execution of the portfolio. When historical performance data of the algo-
rithms are available, they can be used to distribute the available resources among the
algorithms, accordingly. Alternatively, preliminary experiments can be conducted to
determine the fraction of computational resources allocated to each constituent algo-
rithm. However, the assignment of prespecified portions of computational resources
may be inefficient, since it does not take into account the online dynamic of each
algorithm. In such cases, online techniques for the dynamic allocation of resources
during the portfolio’s run can be beneficial especially when addressing challenging
problems.

In order to alleviate the problem of algorithm selection and to exploit the diverse
performance dynamic of different algorithms, metaheuristics have been frequently
used within algorithm portfolio frameworks [4, 11–13, 15, 16]. Metaheuristics can be
especially useful to tackle optimization problems where good (sub-)optimal solu-
tions are needed in reasonable time. They are distinguished into two groups, namely
population-based and trajectory-based (or local-based) algorithms. Population-based
algorithms use populations of individuals that explore the search space iteratively.
Each individual stores a candidate solution of the problem under consideration. On
the other hand, trajectory-based algorithms employ a single search point that is mod-
ified iteratively during the optimization process.

1.2 Thesis contribution

In the first part of the dissertation, motivation for the use of algorithm portfolios
is provided. First, the usefulness of an appropriate computational budget allocation
technique to a well studied metaheuristic algorithm, namely the Particle Swarm Opti-
mization algorithm (PSO) [17,18] is identified. The standard PSO algorithm allocates
the total available budget of function evaluations equally and concurrently among
the particles of the swarm. In contrast to the plain PSO algorithm a new variant of
PSO is proposed in Chapter 2 where each particle is dynamically assigned different
computational budget based on the quality of its neighborhood. The main goal is
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to favor particles of high-quality neighborhoods by asynchronously equipping them
with additional function evaluations. For this purpose, quality criteria are defined
to assess each neighborhood in terms of solutions quality and diversity. Established
stochastic techniques are employed for the final selection among the particles. Differ-
ent variants are proposed by combining various quality criteria in a single-objective or
multi-objective manner. The proposed approach is assessed on widely used test suites
as well as on a set of real-world problems. Experimental evidence reveals the effec-
tiveness of the proposed approach and its competitiveness against other PSO-based
variants as well as different established algorithms. The following contributions are
achieved:

• A PSO variant that employs neighborhood-based ranking is proposed.

• Two neighborhood quality criteria as well as one neighborhood diversity crite-
rion are proposed.

• Two alternative selection probability schemes are proposed; a linear schema and
a nonlinear one.

• The new PSO variant is evaluated on a widely used benchmark of several ob-
jective functions.

• The proposed approach is compared against other PSO-based variants as well
as different established metaheuristics.

In Chapter 3, two essential parallel algorithm portfolio models are proposed. The
first model is generic and can be used by any optimization algorithm. In the present
thesis, it has been tested for the design of cryptographically strong S-boxes [19, 20].
The second model is especially designed for population-based algorithms. Its use is
beneficial in cases where the function evaluations are expensive in terms of compu-
tational time. This model is assessed on the traffic light scheduling problem [21] that
arises in smart cities environments. The following contributions are achieved:

• Two simplistic parallel algorithm portfolio models are proposed; a generic and
a population-based one.

• The generic algorithm portfolio model is applied on the design of cryptograph-
ically strong S-boxes.
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• The population-based algorithm portfolio model is applied on the traffic light
scheduling problem.

• Thorough experimentation is conducted under different parameter settings, of-
fering interesting conclusions.

In Chapter 4, a trading-based parallel algorithm portfolio is proposed. The portfo-
lio exploits a novel trading-based budget allocation mechanism that distributes the
available computational resources among its constituent algorithms. Specifically, the
portfolio introduces a market-based environment where each constituent algorithm
can buy solutions from the rest or sell its own ones for additional running time. Thus,
best-performing algorithms gain more running time than the rest, as they sell solu-
tions more frequently. The resource allocation occurs indirectly through the trading
of solutions and dynamically during the optimization process. The portfolio is highly
autonomous and allows the algorithms to individually interact whenever specific
conditions (e.g., search stagnation) are identified. It is applied on three challenging
problems, namely the detection of circulant weighing matrices in combinatorics [22],
the lot-sizing planning in production environments with returns and remanufac-
turing [23], and the transportation of commodities in humanitarian logistics [24].
Thorough experimentation under different parameter settings offers insightful con-
clusions and demonstrates the potential of the portfolio. The following contributions
are achieved:

• A parallel algorithm portfolio that employs a sophisticated trading-based mech-
anism is proposed.

• The mechanism allocates the available computational resources indirectly throu-
gh the trading of solutions and dynamically during the optimization process.

• It is applied on three challenging problems, namely the detection of circulant
weighing matrices in combinatorics, the lot-sizing planning in production en-
vironments with returns and remanufacturing, and the transportation of com-
modities in humanitarian logistics.

• Thorough experimentation under different parameter settings demonstrates the
potential of the portfolio on the considered problems.
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In Chapter 5, a forecasting-based parallel algorithm portfolio is proposed. The portfo-
lio employs a novel forecasting-based mechanism adopted from prevalent time series
forecasting techniques. Specifically, the mechanism is used to predict the forthcoming
performance of the portfolio’s constituent algorithms based on current and past per-
formance data. The predictions are then used to assign computational resources by
favoring the most promising constituent algorithms. The portfolio is applied on the
detection of circulant weighing matrices in combinatorics. Extensive experimentation
under different parameterizations offers interesting results that reveal the combined
algorithmic power of the portfolio. The following contributions are achieved:

• A parallel algorithm portfolio that employs a novel forecasting-based mecha-
nism is proposed.

• Three prominent forecasting time series techniques are employed by the attained
mechanism.

• The portfolio predicts the performance of its constituent algorithms and allocates
the available computational resources accordingly.

• It is applied on the detection of circulant weighing matrices in combinatorics,
revealing its efficiency and effectiveness.

1.3 Thesis Layout

The thesis is organized as follows: Chapter 2 provides the necessary background
in metaheuristics and presents a novel budget allocation mechanism that is incorpo-
rated into the PSO algorithm. Chapter 3 presents two basic parallel algorithm portfolio
models along with applications on the detection of cryptographically strong S-boxes
and on the traffic light scheduling problem. Chapter 4 presents a new trading-based
algorithm portfolio, which is demonstrated on three challenging problems, namely
the detection of circulant weighing matrices in combinatorics, the lot-sizing planning
in production environments with returns and remanufacturing, and the transporta-
tion of commodities in humanitarian logistics. In Chapter 5 a new forecasting-based
algorithm portfolio is exposed, which is applied on the detection of circulant weighing
matrices in combinatorics. Finally, Chapter 6 concludes the dissertation and outlines
directions for future work.
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Chapter 2

Metaheuristic Optimization

2.1 Intoduction

2.2 Simulated Annealing

2.3 Tabu Search

2.4 Iterated Local Search

2.5 Variable Neighborhood Search

2.6 Differential Evolution

2.7 Particle Swarm Optimization

2.8 Computational Budget Allocation

2.9 Synopsis

2.1 Intoduction

In this chapter, the employed metaheuristic algorithms are outlined. Without loss of
generality, the continuous bound constrained minimization problem is considered,

min
x∈X⊂Rn

f(x), (2.1)

where X is the search space under consideration defined as an n-dimensional hy-
perbox. In the following paragraphs, R defines a real-valued random number in the
range (0,1).
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Algorithm 2.1 Simulated Annealing
Input: Dimension of problem (n), computational budget, SA parameters

Output: Best detected solution
1: t← 0, x← x(t), T ← T (t)

2: while (not termination) do

3: for (i = 1 . . . ST ) do

4: randomly select y ∈ Nx(t) ∩ X

5: ε← f (y)− f
(
x(t)
)

6: if (ε < 0) OR (R < exp(−ε/T )) then

7: x(t) ← y

8: end if

9: end for

10: T (t+1) ← αT (t)

11: t← t+ 1

12: UpdateBest (x(t), x∗)

13: end while

14: return x∗

2.2 Simulated Annealing

Simulated Annealing (SA) is a popular trajectory-based metaheuristic, particularly used
in discrete optimization problems [25]. SA is equipped with a hill-climbing mecha-
nism, which is based on the probabilistic acceptance of non-improving solutions in
order to alleviate local minimizers. Let x(t) ∈ X be the current position at iteration t,
and Nx(t) ⊂ X be its neighborhood. Also, let T (t) be a parameter, called the temperature,
which controls the probability of accepting non-improving solutions. The algorithm
starts with a random initial position x(0) and a (usually high) initial temperature
T (0). At each iteration, SA performs a number, ST , of inner steps with fixed tempera-
ture value. Then, the temperature is scaled according to a user-defined cooling factor
α ∈ (0, 1), and the algorithm proceeds to the next iteration.

At each inner step, a point y is randomly and uniformly selected from Nx(t). In
case of improvement (better objective function value), the algorithm moves to the new
position y. If y is a non-improving position, the algorithm accepts it with probability
p = exp(−ε/T ), where ε = f(y) − f

(
x(t)
)
. Note that the probability p increases with

T . This promotes the frequent acceptance of non-improving solutions at early stages
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of the optimization procedure, thereby enhancing the exploration capability of the
algorithm. As T decreases, the algorithm tends to accept mostly improving solutions,
amplifying its exploitation dynamic.

SA terminates execution when a predefined computational budget is exceeded or
if it fails to improve the best detected solution for a number of iterations. The main
procedure of the considered SA is given in Algorithm 2.1. For a detailed presentation
of SA, the reader is referred to [26].

2.3 Tabu Search

Tabu Search (TS) is one of the most popular and well studied metaheuristics. Since its
introduction in [27,28], TS has been applied on numerous problems spanning various
fields of discrete optimization [29–31]. The basic motivation for the development of
TS originated from the necessity of search algorithms to overcome local minimizers.

TS belongs to the class of trajectory-based search methods and it is based on a local
search (LS) procedure. The algorithm is initialized on a randomly selected position in
the search space X . At each iteration, the current position moves to the best position
of its neighborhood in terms of objective value. Specifically, TS moves to the best
neighbor of the current position regardless of improving it. This property equips TS
with hill-climbing capability, which is necessary for alleviating local minimizers.

In order to avoid cyclic moves, TS employs a short-term memory, called the tabu
list (TL) where recently visited positions are stored. The positions enlisted in TL are
prohibited for a number of iterations, thereby preventing the algorithm from retracing
the same trajectories. The size of TL can affect the algorithm’s performance. Proper
values for TL are typically problem-dependent.

Moreover, in order to avoid restraining the search in narrow parts of the search
space, TS is usually applied within a multistart framework. Thus, the best position
of the current trajectory is recorded and, if not improved for a number of iterations,
the algorithm is restarted to a new (randomly selected) initial position. Eventually,
the algorithm terminates when it exceeds a predefined computational budget or the
best position fails to improve for a maximum number of restarts.

Let x(t) ∈ X be the current position of the algorithm at iteration t, Nx(t) ⊂ X be
the set of all neighbors of x(t), TL(t) be the tabu list of size sTL at iteration t, Nx(t)

be the set of all immediate neighbors of x(t) not included in TL, and x∗ be the best
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Algorithm 2.2 Tabu Search
Input: Dimension of problem (n), computational budget, TS parameters

Output: Best detected solution
1: t← 0

2: while (not termination) do

3: x(t+1) ← arg min
y∈Nx(t)∩X

f(y)

4: TL(t+1) ← TL(t) ∪
{
x(t+1)

}
and remove the oldest entry from TL(t+1)

5: if
(
f
(
x(t+1)

)
< f (x∗)

)
then

6: x∗ ← x(t+1)

7: end if

8: t← t+ 1

9: end while

10: return x∗

visited position. Then the main trajectory-generating procedure of TS is outlined in
Algorithm 2.2. Detailed analysis of the TS algorithm can be found in [30].

2.4 Iterated Local Search

Iterated Local Search (ILS) [32] defines a simple and straightforward framework for
probing complex search spaces. Its main requirement is the use of a suitable local
search procedure for the problem at hand. The local search is initiated to a randomly
selected point xinit and generates a trajectory that eventually reaches the nearest local
minimizer, xmin. This is achieved by iteratively selecting steepest descent moves in the
neighborhood of the current position.

In discrete spaces, the close neighborhood of a point is defined as the finite set
of points with the smallest distance from it. Typically, Hamming distance is used for
this purpose. The local search procedure scans the whole neighborhood of the cur-
rent point and makes the move of highest improvement (neighborhood-best strategy).
Alternatively, it can move to the first improving sequence found in the neighborhood
(first-best strategy). The detected local minimizer is archived in a set Smin. Then, a
new trajectory is started from a new initial sequence [32].

In its simplest form, ILS generates new trajectories by randomly sampling new
initial sequences in the search space according to a (typically uniform) distribution.
This is the well known Random Restarts approach. The most common stopping cri-
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Algorithm 2.3 Iterated Local Search
Input: Dimension of problem (n), computational budget, ILS parameters

Output: Best detected solution
1: xinit ← GetInitialSequence(X )

2: xmin ← LocalSearch(xinit)

3: Smin ← {xmin}

4: while (not termination) do

5: if (R < ρ) then

6: xinit ← GetInitialSequence(Smin)

7: else

8: xinit ← GetInitialSequence(X )

9: end if

10: xmin ← LocalSearch(xinit)

11: Smin ← Smin ∪ {xmin}

12: end while

13: x∗ ← argminxmin∈Smin f(xmin)

14: return x∗

teria are the detection of a prespecified number of local minimizers or a maximum
computational budget in terms of running time or function evaluations. Although
random restarts were shown to be sufficient in various problems, relevant research
suggests that efficiency can be increased if already detected local minimizers from the
set Smin are exploited during the search. Typically, this refers to the generation of
new initial positions by perturbing previously detected local minimizers.

The two initialization approaches can be combined. Naturally, this scheme in-
troduces new parameters to the algorithm. Specifically, the user needs to specify a
probability ρ ∈ [0, 1] of using perturbation-based restarts as well as the criteria for
selecting the local minimizers from the set Smin.

The ILS algorithm is given in pseudocode in Algorithm 2.3. The sampling pro-
cedures for the search space X and the set Smin are implemented by the function
GetInitialSequence(). For a comprehensive presentation of ILS the reader is referred
to [32].
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Algorithm 2.4 General Variable Neighborhood Search
Input: Dimension of problem (n), computational budget, VNS parameters

Output: Best detected solution
1: while (not termination) do

2: k1 ← 1

3: while (k1 < K) do

4: x′′ ← Perturb (x,Nx,k1)

5: k2 ← 1

6: while (k2 < K) do

7: x′′ ← arg min
y∈Nx′,k2∩X

f(y)

8: if (f (x′′) < f (x′)) then x′ ← x′′ and k2 ← 1 else k2 ← k2 + 1

9: end while

10: if (f (x′) < f (x)) then x← x′ and k1 ← 1 else k1 ← k1 + 1

11: end while

12: x∗ ← x

13: end while

14: return x∗

2.5 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [33] is a trajectory-based metaheuristic, origi-
nally designed to solve combinatorial optimization problems [34]. Important appli-
cations of VNS include the continuous location-allocation problem [35], the resource-
constrained project scheduling problem [36], and the simple plant location prob-
lem [37]. A number of different variants have been proposed in literature [2]. In
present thesis, the General VNS approach is employed, which couples an LS pro-
cedure with a perturbation mechanism, both guided by a systematic change of K
predefined neighborhood structures.

Given an initial position x ∈ X and initial neighborhood index k = 1, the algorithm
randomly perturbs x and receives a new position x′ in its neighborhood Nx,k. Then,
local search is applied to find the best point x′′ ∈ Nx′,k. If x′′ does not improve x′, the
local search is applied anew in the k + 1 neighborhood. Otherwise, x′′ becomes the
new x′ and the index k is reset to 1, continuing the same procedure for the new x′. If
there is no success after exceeding all the K neighborhoods, the algorithm backtracks
to the original x and changes its neighborhood. If all neighborhoods are exceeded

12



without success, the algorithm is applied on a new initial point x for k = 1. The
pseudocode of VNS is outlined in Algorithm 2.4, based on the presentation in [34].
For a comprehensive presentation of VNS the reader is referred to [2].

2.6 Differential Evolution

Differential Evolution (DE) is a well studied population-based algorithm used for con-
tinuous optimization. It was introduced by Storn and Price in [38] and, since then,
it has gained increasing popularity [39]. The DE algorithm employs a population of
N candidate solutions,

P = {x1, x2, . . . , xN},

where each n-dimensional vector xi is called an individual. The algorithm begins
with an initialization phase where the individuals are randomly (usually uniformly)
initialized over the corresponding search space X . The cornerstone of the algorithm
is the exploration phase where the individuals iteratively probe the search space by
sampling new points through mutation, crossover, and selection operators.

At each iteration t, a mutated vector vi is generated for each individual xi by
combining other individuals of the population. In the present thesis, the following
well known mutation operators are considered:

DE1 : v(t+1)
i = x(t)best + F

(
x(t)r1
− x(t)r2

)
, (2.2)

DE2 : v(t+1)
i = x(t)r1

+ F
(
x(t)r2
− x(t)r3

)
, (2.3)

DE3 : v(t+1)
i = x(t)i + F

(
x(t)best − x(t)i

)
+ F

(
x(t)r1
− x(t)r2

)
, (2.4)

DE4 : v(t+1)
i = x(t)best + F

(
x(t)r1
− x(t)r2

)
+ F

(
x(t)r3
− x(t)r4

)
, (2.5)

DE5 : v(t+1)
i = x(t)r1

+ F
(
x(t)r2
− x(t)r3

)
+ F

(
x(t)r4
− x(t)r5

)
, (2.6)

where x(t)best denotes the individual with the best function value at iteration t. Consider
the set,

I = {1, 2, . . . , N}

of the indices of individuals. The indices,

rj ∈ I \ {i}, j = 1, 2, . . . , 5,
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Algorithm 2.5 Differential Evolution
Input: Dimension of problem (n), computational budget, DE parameters, I = {1, 2, . . . , N}

Output: Best detected solution

1: initialize population P =
{
x(0)1 , x(0)2 , . . . , x(0)N

}
randomly in X and set t← 0

2: while (not termination) do

3: for (i = 1 . . . N) do

4: take random, mutually different indices r1, r2, r3 ∈ {1, . . . , N} \ {i}

5: v(t+1)
i ← x(t)r1 + F

(
x(t)r2 − x(t)r3

)
6: take random index ℓ ∈ {1, . . . , n}

7: for (j = 1 . . . n) do

8: if (R ⩽ CR) OR (j = ℓ) then u
(t+1)
ij ← v

(t+1)
ij else u

(t+1)
ij ← x

(t)
ij

9: restrict u(t+1)
ij in X if boundary is violated

10: end for

11: end for

12: for (i = 1 . . . N) do

13: if
(
f
(
u(t+1)
i

)
⩽ f

(
x(t)i

))
then x(t+1)

i ← u(t+1)
i else x(t+1)

i ← x(t)i

14: end for

15: set t← t+ 1 and x∗ ← arg min
x∈P (t)

f (x)

16: end while

17: return x∗

are randomly selected and mutually different. The differential weight, F ∈ [0, 2], is a
user-defined constant that controls the degree of expansion towards the directions
defined by the difference vectors.

Mutation is followed by crossover, where a trial vector ui is produced for each
individual xi in the following way:

u
(t)
ij =


v
(t+1)
ij , if R ⩽ CR or j = RI(i),

x
(t)
ij , otherwise,

(2.7)

where CR ∈ [0, 1] is a user-defined scalar called the crossover probability, and RI(i) ∈
{1, 2, . . . , n} is a random integer uniformly selected for each individual xi of the
population.

Finally, selection decides whether the trial vector shall replace the corresponding
original individual. Specifically, the replacement occurs if the trial vector improves in
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function value the original individual, i.e.,

x(t+1)
i =


u(t+1)
i , if f

(
u(t+1)
i

)
< f

(
x(t)i

)
x(t)i , otherwise.

(2.8)

The DE algorithm has been shown to be sensitive on its parameters N , F , and CR.
Therefore, appropriate parameterization has significant impact on its performance
and it is highly dependent on the considered problem. A detailed pseudocode of the
DE algorithm can be found in Algorithm 2.5. Additionally, a concise presentation of
research related to the DE algorithm can be found in [39].

Enhanced Differential Evolution

In [40] an enhanced DE (eDE) variant was proposed. It defines an alternative muta-
tion scheme, while crossover is based on probabilistic selection between the new and
the DE2 scheme of Eq. (2.3). Moreover, the algorithm is enhanced by using restart
to alleviate local minima.

Putting it formally, eDE introduces the mutation scheme,

w(t+1)
i = x(t)r1

+ F1

(
x(t)best − x(t)r1

)
+ F2

(
x(t)r1
− x(t)worst

)
, (2.9)

where x(t)r1 is a randomly selected individual, F1, F2 ∈ [0, 2] are called the differential
weights, and x(t)best, x

(t)
worst denote the best and worst individuals at iteration t, respectively.

The trial vector is given as follows,

u
(t+1)
ij =


w

(t+1)
ij , if

(
R ⩽ CR or j = RI(i)

)
and R ⩾

(
1− t

tmax

)
,

v
(t+1)
ij , if

(
R ⩽ CR or j = RI(i)

)
and R <

(
1− t

tmax

)
,

x
(t)
ij , otherwise,

(2.10)

where tmax is the total number of iterations. The rest of the parameters are identical
to the standard DE. Also, note that vij is the j-th component of the mutation vector
ui produced through Eqs. (2.2)-(2.6).

A restarting mechanism is also incorporated into eDE to avoid premature conver-
gence. The restarting mechanism is applied on each individual except for the best one,
which is kept unaltered. Specifically, restarts from mild perturbations x′i of current
individuals xi are adopted, as follows,

x′
ij = xij ± 1. (2.11)
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According to this scheme, the probability of plunging into local minima is drastically
decreased, while the local search capability is enhanced through the perturbation of
individuals’ position by ±1. The sign “+” or “−” in Eq. (2.11) is randomly selected
with probability 0.5 for each j. The bias is selected equal to 1 since it constitutes the
smallest step size in integer search spaces.

2.7 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population-based algorithm that models so-
cial behavior to effectively solve global optimization problems by guiding swarms of
particles towards the most promising regions of the search space. It was originally
introduced by Eberhart and Kennedy [17] in 1995 and, since then, it has gained in-
creasing popularity. This can be ascribed to its efficiency and effectiveness in solving
hard optimization problems with minor programming effort. Up-to-date there is a
considerable amount of PSO-based applications in various scientific and technological
fields [18,41–45].

Synchronous Particle Swarm Optimization

In this section, a presentation of the original (synchronous) PSO algorithm is pro-
vided. Consider the sets,

I = {1, 2, . . . , N} , D = {1, 2, . . . , n} ,

which denote the indices of the search points and the indices of direction components,
respectively. PSO employs a set of search points,

S = {x1, x2, . . . , xN},

which is called a swarm, to iteratively probe the search space X . Each search point is
an n-dimensional vector,

xi = (xi1, xi2, . . . , xin)
⊤ ∈ X , i ∈ I,

called a particle. Each particle explores the search space by moving to new positions
(candidate solutions) in X and adjusts its exploratory behavior according to its own
findings as well as the findings of the other particles.
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Figure 2.1: Neighborhood topologies: ring (left) and star (right).

During its quest for better solutions, each particle records in memory the best
position it has encountered. In minimization problems, this position has the lowest
objective value among all positions visited by the particle. If t denotes the iteration
counter and x(t)i are the subsequent positions of the i-th particle, then its best position
is denoted as,

pi = (pi1, pi2, . . . , pin)
⊤ ∈ X , i ∈ I,

and defined as,
p(t)
i = arg min

τ=0,1,2,...,t

{
f
(
x(τ)i

)}
.

The particle moves in the search space by using an adaptable position shift, called
velocity,

vi = (vi1, vi2, . . . , vin)
⊤ , i ∈ I,

which is added to its current position.
The velocity of each particle is updated at each iteration by taking into consid-

eration its own best position and the best position among a set of adjacent particles,
which constitute its neighborhood [46, 47]. The adjacency between particles is deter-
mined according to arbitrary interconnection schemes that allow groups of particles
to exchange information among them. These schemes are called neighborhood topologies,
and they are usually visualized as undirected graphs where nodes denote the parti-
cles and edges denote communication channels. Figure 2.1 illustrates two common
neighborhood topologies.

Various neighborhood topologies have been proposed in the literature. The most
common one is the ring topology, illustrated in the left part of Fig. 2.1, where each
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particle assumes as neighbors the particles with adjacent indices. The size of the
neighborhood is determined by a parameter r called the neighborhood’s radius. For-
mally, a ring neighborhood of radius r of the i-th particle is defined by the set of
indices,

NBi,r = {i− r, . . . , i− 1, i, i+ 1, . . . , i+ r}. (2.12)

This means that the best position among the ones with indices from i−r up to i+r is
used for the i-th particle’s velocity update. The indices are assumed to recycle at their
limits, i.e., the particle with index 1 follows immediately after the one with index N .

Based on the neighborhood size, two prevailing PSO models have been estab-
lished. The first one, called the global PSO model (denoted as gbest), assumes the
whole swarm as neighborhood of each particle. Thus, the overall best position of the
swarm is used to update all particles’ velocities. This approach was mainly used in
early PSO variants and exhibited rapid convergence (exploitation) properties. How-
ever, rapid convergence was habitually accompanied by loss of diversity, leading to
premature convergence in undesirable suboptimal solutions. On the other hand, us-
ing significantly smaller neighborhoods can enhance the exploration properties of
the swarm. This is attributed to the limited connectivity among the particles, which
restricts the rapid diffusion of the detected best positions to the rest of the swarm.
This approach defines the local PSO model (denoted as lbest).

Let pg(i,t) denote the best position in the neighborhood of the i-th particle at
iteration t, i.e.,

g(i,t) = arg min
j∈NBi,r

{
f
(
p(t)
j

)}
.

Then, based on the definitions above, the update equations of PSO are given as
follows [48]:

v(t+1)
i = χ

[
v(t)
i + c1R1 ⊗

(
p(t)
i − x(t)i

)
+ c2R2 ⊗

(
p(t)
g(i,t)
− x(t)i

)]
, (2.13)

x(t+1)
i = x(t)i + v(t+1)

i , (2.14)

where i ∈ I , and ⊗ denotes componentwise multiplication of vectors. The parameter χ
is called the constriction coefficient and it is used to clamp the velocities in order to avoid
the swarm explosion effect [48]. The scalars c1 and c2 are called the cognitive and social
parameter, respectively, and they are used to bias velocity towards either the particle’s
own best position or the neighborhood’s best position. The parameters R1 and R2

are random vectors that induce stochasticity in the algorithm. Their components are
drawn from the uniform distribution U(0, 1).
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Algorithm 2.6 Synchronous Particle Swarm Optimization
Input: Dimension of problem (n), computational budget, PSO parameters, I = {1, 2, . . . , N}

Output: Best detected solution

1: initialize swarm S =
{
x(0)1 , x(0)2 , . . . , x(0)N

}
randomly in X and set t← 0

2: initialize best positions p(t)
i ← x(t)i and velocities v(t)i , ∀ i = 1, . . . , N

3: while (not termination) do

4: for (i = 1 . . . N, j = 1 . . . n) do

5: v
(t+1)
ij ← χ

[
v
(t)
ij +R1

(
p
(t)
ij − x

(t)
ij

)
+R2

(
p
(t)
g(i,t)j

− x
(t)
ij

)]
6: x

(t+1)
ij ← x

(t)
ij + v

(t+1)
ij

7: end for

8: for (i = 1 . . . N) do

9: if
(
f
(
x(t+1)
i

)
⩽ f

(
p(t)
i

))
then p(t+1)

i ← x(t+1)
i else p(t+1)

i ← p(t)
i

10: end for

11: update indices g(i,t),∀ i = 1, . . . , N

12: set t← t+ 1 and x∗ ← arg min
p(t)
i

f
(
p(t)
i

)
13: end while

14: return x∗

After updating all particles, their new positions compete against their best posi-
tions. Thus, the best position of each particle is updated as follows,

p(t+1)
i =


x(t+1)
i , if f

(
x(t+1)
i

)
< f

(
p(t)
i

)
,

p(t)
i , otherwise,

(2.15)

where i ∈ I.
The presented variant of PSO is supported by thorough stability and convergence

analysis [48], which suggested the general-purpose parameter setting,

χ = 0.729, c1 = c2 = 2.05.

This is considered to be a satisfactory setting that produces balanced convergence
speed for the algorithm. Nevertheless, alternative successful settings have also been
proposed in the literature [49].

Instead of using the χ coefficient, Eq. (2.13) can be redefined by using the inertia
weight of the particle, denoted as ω, as follows:

v(t+1)
i = ωv(t)

i + c1R1 ⊗
(
p(t)
i − x(t)i

)
+ c2R2 ⊗

(
p(t)
g(i,t)
− x(t)i

)
(2.16)
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The inertia weight can be adaptive and change linearly throughout the optimization
process. A widely used approach is based on the following rule:

ω = ωmax −
(ωmax − ωmin) t

tmax
, (2.17)

where ωmin and ωmax define its range, t is the iteration counter, and tmax is the maxi-
mum number of iterations. At the beginning of the optimization process, Eq. (2.17)
allows the inertia weight to take high values, thereby promoting exploration, whereas
as ω reduces, better exploitation properties are achieved.

In case of discrete optimization problems, the update of the velocity can be prop-
erly modified. As suggested in [21, 50], each element of the velocity vector is trans-
formed as follows:

v
(t+1)
ij =


⌊
v
(t+1)
ij

⌋
, if R ⩽ λ,⌈

v
(t+1)
ij

⌉
, otherwise,

(2.18)

where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively. The parameter λ

determines the probability of using the floor or ceiling function in the computation
of the velocity.

The standard PSO algorithm allocates one function evaluation per particle per
iteration. Hence, at the end of its execution, all particles have spent equal portions
of the available computational budget. Moreover, the update of Eqs. (2.13), (2.14),
and (2.15), is synchronous, i.e., the new best positions are determined only after the
position update of all particles. A detailed pseudocode of the sychronous version of
the PSO algorithm can be found in Algorithm 2.6. Alternatively, asynchronous PSO
variants have been developed.

Asynchronous Particle Swarm Optimization

Asynchronous PSO variants have been developed as alternatives to the standard (syn-
chronous) approach. Contrary to synchronous PSO, in the asynchronous model each
particle updates and communicates at once its new best position to its neighbors,
without waiting for the rest of the particles to update their memory. The immediate
exposition of the particles to new findings has significant impact on their conver-
gence speed. Also, it can radically reduce the algorithm’s runtime in parallel imple-
mentations on inhomogeneous systems or problems with high diversity of function
evaluation time.
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On the other hand, rapid convergence of asynchronous PSO can lead the swarm to
deceitful positions more frequently than the synchronous approach. Thus, it increases
the probability of getting trapped in low-quality solutions. Therefore, special attention
is required when selecting between the synchronous and the asynchronous model.

2.8 Computational Budget Allocation

The proper distribution of computational resources among the operations or proce-
dures of a metaheuristic algorithm can have significant impact on its performance.
Given the initial computational budget, the important decision lies on the allocation
schedule of the available resources. The resources allocation plan can be static, i.e.
predefined and unchanged throughout the optimization process. Alternatively, a dy-
namic allocation plan can be used, which is deployed along with the algorithm. During
its execution, the algorithm offers feedback to the allocation mechanism in order to
adjust its decision.

Numerous research works consider metaheuristic algorithms that exploit bud-
get allocation mechanisms. A large body of work has been devoted to the study of
population-based algorithms equipped with the Optimal Computing Budget Alloca-
tion (OCBA) method [51] in order to cope with optimization problems contaminated
by noise [52–55]. Additionally, there are a few research works that use metaheuris-
tics to address resources allocation issues that are met in a multitude of optimization
problems [56].

2.8.1 Neighborhood-based Budget Allocation

The standard PSO algorithm considers all particles of the swarm to be equally im-
portant. Thus, it synchronously allocates the same fraction of function evaluations to
each one. On the other hand, it would be reasonable to promote the search in the
most promising regions of the search space by favoring the particles that probe such
regions. Due to the inherent collective dynamics of PSO, these particles communi-
cate their experience also to their neighbors, thereby offering them an opportunity
to enhance their performance. For this reason, the idea of using neighborhood char-
acteristics and qualities to identify and favor some of the particles in the budget
allocation procedure is appealing.
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In this section, a novel PSO variant is proposed, called Particle Swarm Optimization
with Neighborhood-based Budget Allocation, henceforth denoted as PSO-NBA. The new
algorithm employs two essential budget allocation strategies to assess the quality of the
neighborhoods. The two strategies are based on single-objective and multi-objective
scoring modes, respectively. The single-objective approach is based on the total or,
alternatively, on the best information carried by the neighborhood in terms of objective
values. The multi-objective approach takes into consideration also another aspect of
quality, namely the diversity of the neighborhood. In this case, each neighborhood is
assessed on the basis of a 2-dimensional scoring vector. The first component of the
vector is identical to the solution quality criterion of the single-objective approach.
The second component of the vector depends on the diversity of the best positions
of the particles that comprise the neighborhood. Then, a scheme that is based on the
concept of Pareto dominance is used for the selection among the neighborhoods.

In literature there are works that propose rank-based PSO variants. In [57] the
algorithm uses only a fraction of the particles to update velocity. This approach is
solely based on the global (gbest) PSO model, neglecting the neighborhoods. In [58]
the proposed approach uses ranking in order to replace low-fitness particles with
better ones. A relevant (although not rank-based) asynchronous PSO variant is PSO-
DLI [1], which employs a special scheme to allocate function evaluations to some of
the particles while the rest remain idle. The proposed approach differs also from these
approaches, since neighborhood ranking schemes are used to allocate the available
computational budget in a sophisticated manner. It shall be mentioned that this is the
first study that uses rank-based criteria to assess the quality of neighborhoods and
dynamically distribute the available computational budget among the corresponding
particles.

2.8.1.1 Neighborhood Quality Criteria

The two essential properties that define the dynamics of any population-based op-
timization algorithm are exploration (diversification) and exploitation (intensification).
The first one is the ability of the algorithm to explore different parts of the search
space, while the second one is the ability to perform more refined search around the
discovered solutions. Proper balancing between these properties has been associated
with highly competitive optimization algorithms.

It is easily inferred (and experimentally verified) that these two properties are
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Table 2.1: Neighborhood quality criteria of PSO-NBA.

Type Criterion Abbrev. Description

Solution quality SumBest SB Sum of all objective values in the neighborhood.

LocalBest LB Best objective value in the neighborhood.

Diversity AvgDev AD Average standard deviation of direction components of

the best positions that comprise the neighborhood.

intimately related with two performance indices of the algorithm, namely solution
quality and diversity. The most successful approaches are expected to retain adequate
diversity in the swarm such that search stagnation is alluded, while concurrently
improving solution quality within reasonable time limits.

Transferring these concepts from swarm level to the neighborhood level, two types
of neighborhood quality criteria are considered. The first type refers to solution quality
and consists of two alternative schemes, while the second type refers to diversity.
Specifically, the first solution quality criterion, denoted as SumBest (SB), is based
on the total solution information carried by the neighborhood in terms of objective
values. Thus, each neighborhood is assessed according to the collective achievements
of its members.

The second solution quality criterion, denoted as LocalBest (LB), takes into con-
sideration only the best position attained by the neighborhood’s members. Thus, it
clearly promotes elitism. Regarding diversity, a criterion denoted as AvgDev (AD) is
considered, which assesses each neighborhood in terms of diversity of the best posi-
tions that comprise it. The three criteria are summarized in Table 2.1, and they are
formally defined below.

SumBest (SB)

Let NBi,r be the neighborhood of the i-th particle as defined in Eq. (2.12). Then, its
SB ranking score at iteration t is defined as,

SBRi =
∑

k∈NBi,r

f
(
p(t)
k

)
, i ∈ I. (2.19)

Thus, the SB score assesses the neighborhood’s quality in terms of the sum of the
objective values of all best positions that comprise it. In order to facilitate the use
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of SB scores for the computation of the neighborhoods’ selection probabilities, a
normalization step takes place,

SBR∗
i =

SBRi∑
m∈I

SBRm

, i ∈ I. (2.20)

Lower values of the SB ranking score correspond to neighborhoods that possess
lower cumulative information in terms of their objective values. These neighborhoods
are considered to be superior than the ones with higher scores and, hence, their
corresponding particles shall be assigned higher selection probabilities in subsequent
steps of the algorithm.

LocalBest (LB)

Let again NBi,r be the neighborhood of the i-th particle. Then, the LB ranking score
for this neighborhood is defined as,

LBRi = min
k∈NBi,r

f
(
p(t)
k

)
, i ∈ I. (2.21)

The LB score promotes elitism by assessing the neighborhood’s quality only in terms
of the best position involved in it. Normalization takes place also in this case,

LBR∗
i =

LBRi∑
m∈I

LBRm

, i ∈ I. (2.22)

Similarly to SB, particles with neighborhoods of lower LB ranking scores shall be
assigned higher selection probabilities.

AvgDev (AD)

This diversity measure is based on the average standard deviation of the direction
components of the best positions that comprise the neighborhood NBi,r. Thus, if
NBi,r = {k1, . . . , kr} and D = {1, 2, . . . , n}, the standard deviation per direction com-
ponent j ∈ D is first computed,

σ
[i]
j = standard deviation of vector


p
(t)
k1j

...
p
(t)
krj

 . (2.23)

where pkj stands for the j-th component of the best position pk, k ∈ NBi,r.
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Then, the AD ranking score for the neighborhood is obtained by averaging the
standard deviations over all dimensions,

ADi =
1

n

n∑
j=1

σ
[i]
j . (2.24)

The obtained values are normalized as follows,

AD∗
i =

ADi∑
m∈I

ADm

, i ∈ I. (2.25)

Obviously, neighborhoods with higher AD scores contain more dispersed best posi-
tions. Thus, they are preferable against neighborhoods of lower scores in order to
promote exploration.

Also, contrary to the solution quality scores SB and LB, which are based on
objective values, the AD scores are based on the actual positions of the neighborhood’s
members in the search space.

2.8.1.2 Selection Probability

After the computation of the neighborhoods’ ranking scores, each particle is assigned
a selection probability based on the score of its neighborhood. Two alternative selection
probability schemes were considered. Let xBR denote the selected ranking scheme
(SB or LB), i.e.,

xBR∗
i = SBR∗

i or LBR∗
i , ∀i ∈ I.

Let also,
Q =

{
xBR∗

k1
, xBR∗

k2
, . . . , xBR∗

kN

}
, ki ∈ I,

be the ordering of the neighborhoods’ ranking scores, sorted from the highest to the
lowest value, and

qi = position of i-th neighborhood’s score xBR∗
i in Q.

Then, the first selection probability scheme is the well known linear ranking that is
widely used in Genetic Algorithms (GAs) [59]. This scheme assigns selection proba-
bilities that are linear with respect to xBR∗

i as follows,

LPRi = 2− s+ 2(s− 1)
qi − 1

(N − 1)
, i ∈ I, (2.26)

where the parameter s ∈ [1, 2] is called the selection pressure, and N is the total number
of neighborhoods (equal to swarm size). Note that intense elitism is promoted when
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s = 2, while equal selection probabilities are assigned to all neighborhoods when it is
equal to s = 1.

The corresponding selection probability of the i-th particle becomes,

SPi =
LPRi∑

m∈I
LPRm

, i ∈ I. (2.27)

Henceforth, this scheme will be denoted as L (linear).
The second selection probability scheme comes again from the field of GAs and it

is nonlinear, henceforth denoted as NL,

NLPRi = (xBR∗
i )

−ρ , i ∈ I, (2.28)

where ρ is a positive integer. This scheme resembles the power selection operator in
GAs [59]. The corresponding selection probabilities for this scheme are given as,

SPi =
NLPRi∑

m∈I
NLPRm

, i ∈ I. (2.29)

Clearly, higher values of the power weight ρ favor elitism since they result in higher
selection probabilities for the neighborhoods with lower ranking scores xBR∗

i .
The neighborhoods’ selection probabilities, computed either linearly through Eqs.

(2.26) and (2.27) or nonlinearly through Eqs. (2.28) and (2.29), are used as input in
a stochastic selection mechanism that determines the particle that will receive the next
function evaluation. This mechanism can use either the selection probabilities solely
or take into consideration also the AD diversity criterion defined in Section 2.8.1.1.
The first case is referred as the Single-Objective Budget Allocation Strategy (SOBA),
and the second one as the Multi-Objective Budget Allocation Strategy (MOBA). Both
strategies are analyzed in the following sections.

2.8.1.3 Single-Objective Budget Allocation Strategy

In the Single-Objective Budget Allocation (SOBA) strategy, the selection probabili-
ties are fed as input in a stochastic selection mechanism, neglecting the AD diversity
criterion. The employed selection mechanism is the fitness proportionate selection tech-
nique from GAs literature, also known as roulette-wheel [59]. This scheme makes a
randomized decision among the competitors based on their selection probabilities.

Obviously, particles with neighborhoods of higher values SPi have higher proba-
bility of being selected. However, it is still possible that particles with inferior selection
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Algorithm 2.7 SOBA strategy (for SB and LB) and MOBA strategy (for LWΑ and
DWΑ)
Input: Strategy (S), computational budget (FEmax), PSO parameters, I = {1, 2, . . . , N}

Output: Best detected solution
1: initialize xi, vi, pi, ∀i ∈ I

2: compute selection probabilities SPi, ∀i ∈ I

3: t← 0

4: while (t ⩽ FEmax) do

5: k ← RouletteWheel(SP1, . . . , SPN )

6: update vk and xk according to Eqs. (2.13) and (2.14)

7: update pk according to Eq. (2.15)

8: if (pk has changed) then

9: if (S = SOBA with SB or LB) then

10: Ik = {i ∈ I; k ∈ NBi,r}

11: update neighborhoods NBj,r, j ∈ Ik

12: compute SPi, ∀i ∈ I

13: else if (S = MOBA with LWΑ or DWΑ) then

14: compute w1(t), w2(t), according to Eq. (2.32) or Eq. (2.33)

15: update SPi, ∀i ∈ I

16: end if

17: end if

18: t← t+ 1

19: end while

probabilities are selected due to the stochastic nature of the selection scheme. A pseu-
docode for the application of the SOBA selection strategy is given in Algorithm 2.7.

2.8.1.4 Multi-Objective Budget Allocation Strategy

The multi-objective budget allocation (MOBA) strategy takes into consideration both
solution quality and diversity of the neighborhood. In general, there are two alter-
native multi-objective approaches to combine the two criteria. The first one is the
weighted aggregation approach, which uses weighted combinations of the two criteria.
The second one is the Pareto front approach, which is based on the concept of Pareto
dominance. Both approaches are described in the following sections.
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Weighted Aggregation

The weighted aggregation is a popular technique for coping with multiple objectives [60,
61]. Its popularity lies in the transformation of the multi-objective problem to a single-
objective one, which allows the use of a wide variety of optimization methods.

In this approach, the two objectives are the solution quality, which is related to
the exploitation property of the algorithm, and the diversity, which is related to the
exploration property. Nonnegative weights are used to balance their contribution in
an aggregated score defined as,

F = w1(t)× quality+ w2(t)× diversity, (2.30)

where w2(t) = 1 − w1(t), and t is the counter of function evaluations. The quality-
based component is the selection probability SPi as computed in Section 2.8.1.2. The
diversity-based component is AD∗

i defined in Section 2.8.1.1. Therefore, Eq. (2.30)
becomes,

Fi = w1(t) SPi + w2(t)AD∗
i , i ∈ I (2.31)

with w2(t) = 1 − w1(t). Notice that both SPi and AD∗
i are better when they receive

higher values. Thus, higher aggregated values Fi are better. The values Fi are nor-
malized and fed as probabilities in a roulette-wheel selection scheme similarly to
SOBA.

The weights can either remain fixed or be dynamically adjusted during the op-
timization process. In general, different phases of the optimization process require
different exploration-exploitation trade-off of the algorithm. Since the case of fixed
weights neglect this necessity, dynamically changing weights were adopted in the
proposed approach.

There are two widely used schemes for dynamically changing weighted aggre-
gation. The first one is the linear weighted aggregation (henceforth denoted as LWA),
where the weights are defined as follows,

w1(t) =
t

FEmax
, w2(t) = 1− w1(t), (2.32)

where FEmax is the maximum budget of function evaluations and t is their counter.
Note that, at the early stages of the optimization process the diversity component
is favored in order to promote better exploration of the search space, whereas the
quality component is promoted at later stages in order to intensify the search near
the most promising candidate solutions.
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Algorithm 2.8 MOBA strategy (PFA approach)
Input: Computational budget (FEmax), PSO parameters, I = {1, 2, . . . , N}

Output: Best detected solution
1: initialize xi, vi, pi, (xBR∗

i , AD
∗
i ), ∀i ∈ I

2: t← 0

3: while (t ⩽ FEmax) do

4: I ′ ← Tournament{(xBR∗
1, AD

∗
1), . . . , (xBR∗

N , AD∗
N )}

5: I∗ ← Non-Dominated(I ′)

6: for all i∗ ∈ I∗ do

7: update vi∗ , xi∗ according to Eqs. (2.13) and (2.14)

8: update pi∗ according to Eq. (2.15)

9: end for

10: if (some pi∗ has changed) then

11: for all i∗ ∈ I∗ do

12: update xBR∗
j , for all j with i∗ ∈ NBj,r, according to Eq. (2.19) or Eq. (2.21)

13: update AD∗
j , for all j with i∗ ∈ NBj,r, according to Eq. (2.24)

14: end for

15: end if

16: t← t + 1

17: end while

The second scheme is the dynamic weighted aggregation (denoted as DWA). The
weights are modified as follows,

w1(t) = |sin(2πt /FR) |, w2(t) = 1− w1(t), (2.33)

where t is the counter of function evaluations and FR is the weights’ change frequency.
The use of the trigonometric function implies the interchange between exploration
and exploitation, repeatedly.

Pseudocode for the LWA and DWA schemes is given in Algorithm 2.7. Note that,
the sole difference between the SOBA and the weighted aggregation approach lies in
the employed neighborhood scoring scheme.

Pareto Front Approach

In the Pareto front approach (henceforth denoted as PFA), the 2-dimensional scoring
vector is maintained,

(xBR∗
i ,AD

∗
i ), i ∈ I,
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Table 2.2: Dimensions and ranges of the test problems.

Problem Dimension Range

TP0 10, 50, 100 [−100, 100]n

TP1 10, 50, 100 [−30, 30]n

TP2 10, 50, 100 [−5.12, 5.12]n

TP3 10, 50, 100 [−600, 600]n

TP4 10, 50, 100 [−20, 30]n

TP5 10 [−2, 2]10

TP6 6 [−10, 10]6

TP7 5 [−10, 10]5

TP8 8 [−10, 10]8

TP9 10 [−10, 10]10

TP10 20 [−10, 10]20

for each neighborhood, where the xBR∗
i is related to solution quality while AD

∗
i is the

diversity criterion (see Sections 2.8.1.2 and 2.8.1.1, respectively). Alternatively, the
selection probability SPi can be used instead of xBR∗

i with minor modifications.
The core idea behind PFA is the promotion of the non-dominated neighborhoods

with respect to the two criteria, in terms of the multi-objective optimization concepts
of domination and Pareto optimality [62]. Thus, a neighborhood with scoring vector
(xBR∗

i ,AD
∗
i ) is dominated by another one with scoring vector (xBR∗

j ,AD
∗
j) if it holds

that,
xBR∗

j < xBR∗
i and AD∗

j ⩾ AD∗
i ,

or,
AD∗

j > AD∗
i and xBR∗

j ⩽ xBR∗
i .

Note that larger values of diversity and lower values of the solution quality score are
preferable.

The non-dominated neighborhoods are candidates for gaining function evalua-
tions through a tournament selection scheme. Specifically, at each iteration of the al-
gorithm a prespecified number (tournament size) of particles are selected from the
swarm. The particles (among the selected) whose neighborhoods are non-dominated
are awarded one function evaluation each. Obviously, the allocated number of func-
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Table 2.3: Parameter values for the considered SOBA and MOBA strategies.

Parameter Value
PSO model lbest
PSO parameters χ = 0.729, c1 = c2 = 2.05

Neighborhood topology Ring
Neighborhood radius 1

Quality criteria SumBest (SB), LocalBest (LB)
Diversity criterion AvgDev(AD)
Selection scheme Linear (L), Nonlinear (NL)
Selection pressure s ∈ {1.0, 1.5, 2.0}
Nonlinear weight ρ ∈ {1.0, 2.0}
Problem dimensions n = {10, 50, 100}
Swarm size N = 10× n

Function evaluations FEmax = 1000× n

Tournament size T ∈ {N/2, N/3, N/5}
Weight’s change frequency FR = 200

Number of experiments 100 per approach

tion evaluations can differ from one iteration to another. The pseudocode of the PFA
appoach is given in Algorithm 2.8.

The use of tournament selection instead of all non-dominated neighborhoods
allows to address search stagnation. Specifically, it was frequently observed that a few
(usually one or two) neighborhoods could dominate all others at early stages of the
algorithm’s execution and, thus, collect almost all the allocated computational budget.
This was proved to be detrimental for the algorithm’s exploration ability, leading to
search stagnation. The stochasticity of tournament selection provides the option of
assigning function evaluations also to particles with neighborhoods of low quality
and diversity, thereby amplifying the algorithm’s exploration capability.

2.8.2 Experimental Results

PSO-NBA was initially assessed over two test suites. The first one consists of five
widely used test functions (TP0-TP4), while the second one contains six problems
(TP5-TP10) that come from real-world applications and they are modeled as sys-
tems of nonlinear equations. The descriptions of the test problems are provided in
Appendix A, while their dimensions and ranges used in the experimental setting are
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Table 2.4: Results for the SOBA approach for test problems TP0-TP4 (standard test
suite).

Problem Dimension Algorithm Mean StD Min Max
TP0 10 SB/L/2.0 3.535e− 02 3.528e− 02 2.919e− 04 1.645e− 01

LB/L/2.0 2.131e− 02 2.303e− 02 1.404e− 03 1.153e− 01
SB/NL/1.0 8.199e− 02 3.127e− 01 4.868e− 06 2.889e+ 00
LB/NL/2.0 9.406e− 26 8.806e− 25 1.523e− 35 8.807e− 24

50 SB/L/2.0 2.092e+ 03 4.243e+ 02 1.305e+ 03 3.343e+ 03
LB/L/2.0 1.980e+ 03 4.118e+ 02 8.238e+ 02 3.322e+ 03
SB/NL/2.0 5.378e+ 00 1.349e+ 01 3.603e− 03 1.003e+ 02
LB/NL/2.0 3.116e− 08 1.332e− 07 1.762e− 012 1.293e− 06

100 SB/L/2.0 1.758e+ 04 2.471e+ 03 1.218e+ 04 2.364e+ 04
LB/L/2.0 1.680e+ 04 2.199e+ 03 1.093e+ 04 2.532e+ 04
SB/NL/2.0 3.055e+ 02 1.728e+ 03 1.835e− 04 1.015e+ 04
LB/NL/2.0 1.025e+ 02 1.021e+ 03 5.849e− 05 1.021e+ 04

TP1 10 SB/L/2.0 2.096e+ 01 2.129e+ 01 3.641e+ 00 1.309e+ 02
LB/L/2.0 1.944e+ 01 2.379e+ 01 2.576e+ 00 1.359e+ 02
SB/NL/1.0 6.709e+ 02 9.798e+ 02 3.819e+ 00 4.183e+ 03
LB/NL/1.0 2.841e+ 03 1.542e+ 04 1.177e− 01 9.001e+ 04

50 SB/L/2.0 7.509e+ 05 2.821e+ 05 2.696e+ 05 1.721e+ 06
LB/L/2.0 6.395e+ 05 2.642e+ 05 1.250e+ 05 1.365e+ 06
SB/NL/1.0 3.279e+ 03 1.538e+ 04 6.913e+ 01 9.015e+ 04
LB/NL/2.0 3.031e+ 03 1.541e+ 04 1.832e+ 01 9.016e+ 04

100 SB/L/2.0 1.411e+ 07 3.222e+ 06 6.315e+ 06 2.110e+ 07
LB/L/2.0 1.311e+ 07 2.922e+ 06 7.330e+ 06 2.147e+ 07
SB/NL/1.0 8.806e+ 04 3.708e+ 05 2.359e+ 02 3.069e+ 06
LB/NL/2.0 1.442e+ 03 9.031e+ 03 1.621e+ 02 9.060e+ 04

TP2 10 SB/L/2.0 1.025e+ 01 3.122e+ 00 2.479e+ 00 1.808e+ 01
LB/L/2.0 9.866e+ 00 3.169e+ 00 4.150e+ 00 1.755e+ 01
SB/NL/2.0 9.233e+ 00 3.253e+ 00 2.985e+ 00 1.845e+ 01
LB/NL/2.0 7.302e+ 00 3.347e+ 00 9.950e− 01 1.792e+ 01

50 SB/L/2.0 2.751e+ 02 2.650e+ 01 1.985e+ 02 3.284e+ 02
LB/L/2.0 2.707e+ 02 2.125e+ 01 2.093e+ 02 3.222e+ 02
SB/NL/2.0 2.934e+ 02 3.642e+ 01 1.588e+ 02 3.530e+ 02
LB/NL/2.0 2.793e+ 02 4.174e+ 01 1.668e+ 02 3.598e+ 02

100 SB/L/2.0 7.746e+ 02 3.730e+ 01 6.324e+ 02 8.545e+ 02
LB/L/2.0 7.758e+ 02 3.902e+ 01 6.610e+ 02 8.473e+ 02
SB/NL/2.0 8.544e+ 02 4.779e+ 01 6.957e+ 02 9.499e+ 02
LB/NL/2.0 8.392e+ 02 5.525e+ 01 6.920e+ 02 9.258e+ 02

TP3 10 SB/L/2.0 3.166e− 01 1.326e− 01 9.189e− 02 6.199e− 01
LB/L/2.0 2.896e− 01 1.180e− 01 7.101e− 02 6.369e− 01
SB/NL/1.0 1.350e− 01 1.060e− 01 7.396e− 03 5.944e− 01
LB/NL/1.0 7.808e− 02 5.022e− 02 0.000e+ 00 2.753e− 01

50 SB/L/2.0 2.008e+ 01 4.572e+ 00 1.052e+ 01 4.020e+ 01
LB/L/2.0 1.853e+ 01 4.383e+ 00 8.683e+ 00 3.427e+ 01
SB/NL/2.0 5.325e− 01 8.326e− 01 3.273e− 05 4.649e+ 00
LB/NL/2.0 1.034e− 02 1.817e− 02 2.463e− 010 8.768e− 02

100 SB/L/2.0 1.575e+ 02 2.284e+ 01 9.160e+ 01 2.192e+ 02
LB/L/2.0 1.566e+ 02 2.039e+ 01 1.150e+ 02 2.062e+ 02
SB/NL/2.0 2.101e+ 00 1.315e+ 01 5.689e− 05 9.397e+ 01
LB/NL/2.0 3.826e− 01 4.391e− 01 2.724e− 03 3.173e+ 00

TP4 10 SB/L/2.0 1.037e− 01 1.042e− 01 2.589e− 02 9.993e− 01
LB/L/2.0 7.962e− 02 6.811e− 02 6.170e− 03 3.781e− 01
SB/NL/2.0 1.580e− 01 3.890e− 01 2.774e− 04 1.646e+ 00
LB/NL/2.0 1.176e− 02 1.155e− 01 9.948e− 014 1.155e+ 00

50 SB/L/2.0 7.821e+ 00 6.142e− 01 6.135e+ 00 9.182e+ 00
LB/L/2.0 7.675e+ 00 5.482e− 01 6.279e+ 00 8.775e+ 00
SB/NL/2.0 9.738e+ 00 8.693e− 01 7.080e+ 00 1.122e+ 01
LB/NL/2.0 9.513e+ 00 7.807e− 01 7.493e+ 00 1.084e+ 01

100 SB/L/2.0 1.224e+ 01 4.918e− 01 1.089e+ 01 1.353e+ 01
LB/L/2.0 1.214e+ 01 4.772e− 01 1.081e+ 01 1.311e+ 01
SB/NL/2.0 1.416e+ 01 5.042e− 01 1.309e+ 01 1.521e+ 01
LB/NL/2.0 1.416e+ 01 4.283e− 01 1.300e+ 01 1.491e+ 01
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Table 2.5: Results for the SOBA approach for test problems TP5-TP10 (nonlinear
systems).

Problem Dimension Algorithm Mean StD Min Max
TP5 10 SB/L/2.0 6.312e− 03 3.557e− 03 1.035e− 03 1.855e− 02

LB/L/2.0 5.523e− 03 3.189e− 03 1.070e− 03 1.625e− 02

SB/NL/1.0 5.155e− 04 1.912e− 03 3.978e− 07 1.538e− 02

LB/NL/2.0 4.833e− 10 2.108e− 09 6.556e− 015 1.221e− 08

TP6 6 SB/L/2.0 3.751e− 03 5.196e− 03 4.176e− 05 2.578e− 02

LB/L/2.0 4.020e− 03 7.317e− 03 7.693e− 06 4.181e− 02

SB/NL/1.0 1.514e− 01 2.579e− 01 6.463e− 09 9.859e− 01

LB/NL/1.0 9.961e− 02 2.432e− 01 0.000e+ 00 9.363e− 01

TP7 5 SB/L/2.0 1.904e− 01 1.360e− 01 2.017e− 02 6.531e− 01

LB/L/1.5 1.741e− 01 1.066e− 01 1.610e− 02 5.573e− 01

SB/NL/1.0 3.078e− 01 2.387e− 01 3.518e− 02 1.179e+ 00

LB/NL/1.0 2.201e− 01 1.721e− 01 6.671e− 03 7.199e− 01

TP8 8 SB/L/2.0 3.419e− 01 2.033e− 01 2.969e− 02 1.176e+ 00

LB/L/2.0 2.926e− 01 1.552e− 01 7.430e− 02 7.061e− 01

SB/NL/1.0 3.167e− 01 2.444e− 01 1.055e− 02 1.085e+ 00

LB/NL/1.0 3.208e− 01 2.509e− 01 5.308e− 03 9.437e− 01

TP9 10 SB/L/2.0 8.820e− 02 6.530e− 02 8.032e− 04 3.955e− 01

LB/L/2.0 7.770e− 02 5.849e− 02 5.178e− 03 2.526e− 01

SB/NL/1.0 4.683e− 02 4.217e− 02 6.689e− 04 2.013e− 01

LB/NL/2.0 1.648e− 02 1.933e− 02 1.856e− 05 9.591e− 02

TP10 20 SB/L/2.0 2.227e− 04 2.215e− 04 1.107e− 06 8.203e− 04

LB/L/2.0 1.236e− 04 2.127e− 04 2.809e− 07 1.199e− 03

SB/NL/1.0 2.099e− 03 6.839e− 03 1.053e− 278 5.399e− 02

LB/NL/1.0 4.881e− 07 2.167e− 06 2.220e− 262 1.497e− 05

reported in Table 2.2. Further experimentation was also conducted on the test suite
proposed at the special issue on Scalability of Evolutionary Algorithms and Other Meta-
heuristics for Large-Scale Optimization Problems of the Soft Computing journal [63]. This
test suite consists of 19 problems that include problems from the CEC 2008 challenge,
shifted problems, as well as hybrid composition functions.

Four variants of PSO-NBA were considered, namely the SOBA strategy and the
MOBA strategy with the LWA, DWA, and PFA schemes. These approaches were
combined with the SB and LB scoring schemes under different parameter settings.
The complete set of parameter values that were used in the experiments is reported
in Table 2.3. In total, there were 36 individual PSO-NBA variants defined by all
combinations of these schemes and parameter values.

The experimental evaluation consisted of two stages. In the first stage, the most
promising among the different PSO-NBA variants for all test problems was identified.
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In the second stage, the distinguished variants were further assessed against different
algorithms (either PSO-based or not). The obtained results are presented in detail in
the following sections.

2.8.2.1 Assessment of SOBA Strategy

As described in Section 2.8.1.3, the SOBA strategy quantifies the quality of each
neighborhood according to a single rank-based score. The SB and LB scoring schemes
of Section 2.8.1.1 were employed for this purpose and both were combined with the
linear (L) and the nonlinear (NL) approaches described in Section 2.8.1.2, in order
to compute the corresponding selection probabilities.

For the linear approach, three different values of selection pressure were consid-
ered, namely s ∈ {1.0, 1.5, 2.0}. In the nonlinear approach, two different values for
the power weight were used, namely ρ ∈ {1.0, 2.0}. These combinations result in ten
SOBA variants that are henceforth denoted as,

X / Y / Z

where X ∈ {SB,LB} and Y ∈ {L,NL}. If Y=L then Z ∈ {1.0, 1.5, 2.0} stands for
the selection pressure. If Y=NL then Z ∈ {1.0, 2.0} (power weight). For example,
LB/NL/2.0 stands for the SOBA variant with LocalBest neighborhood scoring and
nonlinear probability selection with selection pressure s = 2.0.

A total of 100 independent experiments were performed for each test problem
and algorithm variant. In all experiments, the available computational budget was
equal to 1000× n function evaluations, where n stands for the problem’s dimension.
For each experiment, the best solution found by the algorithm as well as its objective
value were recorded.

Table 2.4 reports the mean, standard deviation, minimum, and maximum of the
100 solutions’ objective values per algorithm and problem instance for TP0-TP4. For
presentation purposes, results only for the variants with the best values of selection
pressure in the L schemes are reported. The same holds also for the power weights
in the NL schemes. Thus, four variants are reported per test problem and dimension.
Also, the algorithm with the smallest mean is boldfaced per problem instance.

A quick inspection of Table 2.4 verifies that there is no single variant dominat-
ing all the rest. This was anticipated, since the combination of different schemes
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and parameter values can equip the algorithm with significantly different explo-
ration/exploitation properties. However, it is clearly identified that some variants ha-
bitually exhibit good performance. Specifically, the best SB/L approach (SumBest with
linear ranking) was the one with selection pressure s = 2.0 in all test problems. This
value corresponds to a purely elitist linear ranking (see Section 2.8.1.2). The same
holds also for the best LB/L approach (LocalBest with linear ranking), where s = 2.0

was again the dominant selection pressure value.
Thus, the experimental evidence suggests that the linear ranking variants of PSO-

NBA perform better under high selection elitism. This is a consequence of the al-
gorithm’s exploration dynamic, which is increased due to the neighborhood-based
budget allocation scheme. The increased exploration is counterbalanced with the in-
tense exploitation imposed through selection elitism.

Elitism was proved to be beneficial also for the nonlinear (NL) selection schemes.
Indeed, power weight ρ = 2.0 was shown to be superior than ρ = 1.0 in 10 out of
15 cases for the SB/NL variants, and in 13 out of 15 cases for the LB/NL variants,
as reported in Table 2.4. Obviously, the power selection with ρ = 2.0 in Eq. (2.28)
provides a significant advantage to neighborhoods with better solution quality by as-
signing them exponentially higher selection probabilities. Therefore, selection elitism
is promoted also in this case. Another interesting observation is that the superiority
of ρ = 1.0 (observed only in NL-based variants) was restricted in the 10-dimensional
instances of the problems with the exception of TP1. This exception can be ascribed
to the fact that TP1 becomes an easier problem when its dimension increases [64].

Overall, the LB/NL/2.0 variant was the most successful one, outperforming the rest
in 9 out of 15 cases. Also, the LB-based variants dominated the SB-based variants in
all cases except one. Finally, the dominant variants were based on the NL scheme in
10 out of 15 cases.

A similar set of experiments was conducted also for TP5-TP10. All SOBA-based
variants of PSO-NBA were applied on these problems, using the same experimental
setting and analysis as previously. The results for this case are reported in Table 2.5.
As can be seen, the LB/NL approaches were dominant in half of the problems and,
specifically, the ones of higher dimension (TP5, TP9, and TP10). In the rest, the vari-
ants that are based on linear ranking (SB/L and LB/L) exhibited the best performance.
Thus, dimensionality was verified to play a crucial role on efficiency.

The aforementioned observations identify clear tendencies and indications regard-
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Table 2.6: Results for the MOBA weighted aggregation approaches (LWA and DWA)
for test problems TP0-TP4 (standard test suite).

Problem Dimension Algorithm Mean StD Min Max
TP0 10 DW/SB/L/2.0 3.630e− 01 2.251e− 01 5.058e− 02 9.873e− 01

LW/LB/L/2.0 3.405e− 01 2.452e− 01 2.447e− 02 1.493e+ 00
DW/SB/NL/1.0 7.666e− 03 1.835e− 02 7.828e− 06 1.430e− 01
DW/LB/NL/2.0 1.992e− 15 1.227e− 14 1.236e− 22 1.171e− 13

50 LW/SB/L/2.0 3.128e+ 03 4.198e+ 02 2.149e+ 03 4.294e+ 03
LW/LB/L/2.0 3.052e+ 03 4.056e+ 02 2.008e+ 03 3.832e+ 03
DW/SB/NL/2.0 6.121e+ 00 2.768e+ 01 7.749e− 03 2.363e+ 02
DW/LB/NL/2.0 1.300e+ 01 1.174e+ 02 1.763e− 05 1.174e+ 03

100 LW/SB/L/2.0 2.163e+ 04 1.731e+ 03 1.725e+ 04 2.582e+ 04
DW/LB/L/2.0 2.136e+ 04 1.947e+ 03 1.598e+ 04 2.582e+ 04
DW/SB/NL/2.0 1.353e+ 04 7.436e+ 03 4.331e+ 01 2.525e+ 04
DW/LB/NL/2.0 1.269e+ 04 7.356e+ 03 1.838e+ 01 2.493e+ 04

TP1 10 LW/SB/L/2.0 3.417e+ 01 2.548e+ 01 6.264e+ 00 1.383e+ 02
LW/LB/L/2.0 3.057e+ 01 2.338e+ 01 4.785e+ 00 1.446e+ 02
LW/SB/NL/1.0 2.332e+ 01 3.548e+ 01 4.790e− 01 2.089e+ 02
LW/LB/NL/1.0 2.156e+ 01 3.934e+ 01 1.631e− 02 2.234e+ 02

50 LW/SB/L/2.0 1.122e+ 06 2.704e+ 05 5.704e+ 05 1.795e+ 06
LW/LB/L/2.0 1.109e+ 06 2.918e+ 05 4.950e+ 05 1.713e+ 06
LW/SB/NL/2.0 7.607e+ 03 1.965e+ 04 1.950e+ 02 9.306e+ 04
DW/LB/NL/2.0 4.047e+ 03 1.770e+ 04 2.238e+ 01 9.027e+ 04

100 LW/SB/L/2.0 1.717e+ 07 2.412e+ 06 1.075e+ 07 2.258e+ 07
LW/LB/L/2.0 1.662e+ 07 2.122e+ 06 1.085e+ 07 2.109e+ 07
DW/SB/NL/2.0 1.686e+ 04 2.952e+ 04 5.324e+ 02 1.459e+ 05
LW/LB/NL/2.0 3.752e+ 03 9.879e+ 03 3.929e+ 02 9.757e+ 04

TP2 10 DW/SB/L/2.0 1.155e+ 01 2.976e+ 00 4.488e+ 00 2.054e+ 01
LW/LB/L/2.0 1.066e+ 01 2.611e+ 00 5.273e+ 00 1.881e+ 01
LW/SB/NL/2.0 1.036e+ 01 3.514e+ 00 3.239e+ 00 2.040e+ 01
LW/LB/NL/2.0 8.997e+ 00 3.495e+ 00 2.252e+ 00 1.813e+ 01

50 LW/SB/L/2.0 2.932e+ 02 1.974e+ 01 2.295e+ 02 3.427e+ 02
LW/LB/L/2.0 2.943e+ 02 1.777e+ 01 2.411e+ 02 3.426e+ 02
LW/SB/NL/2.0 3.129e+ 02 2.673e+ 01 1.966e+ 02 3.572e+ 02
LW/LB/NL/2.0 3.063e+ 02 3.032e+ 01 2.174e+ 02 3.672e+ 02

100 LW/SB/L/2.0 8.127e+ 02 2.755e+ 01 7.487e+ 02 8.725e+ 02
LW/LB/L/2.0 8.124e+ 02 2.738e+ 01 7.312e+ 02 8.610e+ 02
LW/SB/NL/2.0 8.830e+ 02 3.096e+ 01 7.892e+ 02 9.481e+ 02
LW/LB/NL/2.0 8.665e+ 02 3.122e+ 01 7.624e+ 02 9.261e+ 02

TP3 10 LW/SB/L/2.0 4.752e− 01 1.339e− 01 9.608e− 02 8.261e− 01
DW/LB/L/2.0 4.543e− 01 1.362e− 01 1.699e− 01 8.738e− 01
LW/SB/NL/2.0 1.928e− 01 1.322e− 01 2.464e− 02 7.160e− 01
DW/LB/NL/2.0 1.038e− 01 6.630e− 02 7.396e− 03 3.327e− 01

50 LW/SB/L/2.0 2.913e+ 01 4.014e+ 00 1.977e+ 01 3.863e+ 01
DW/LB/L/2.0 2.811e+ 01 3.823e+ 00 1.760e+ 01 3.660e+ 01
DW/SB/NL/2.0 6.145e− 01 2.668e+ 00 1.637e− 03 2.628e+ 01
DW/LB/NL/2.0 3.970e− 01 4.026e− 01 1.424e− 03 1.613e+ 00

100 LW/SB/L/2.0 1.966e+ 02 1.701e+ 01 1.535e+ 02 2.424e+ 02
LW/LB/L/2.0 1.927e+ 02 1.824e+ 01 1.415e+ 02 2.443e+ 02
DW/SB/NL/2.0 1.270e+ 02 6.175e+ 01 8.447e− 01 2.356e+ 02
DW/LB/NL/2.0 1.101e+ 02 6.169e+ 01 3.474e+ 00 2.254e+ 02

TP4 10 LW/SB/L/2.0 4.714e− 01 3.097e− 01 6.339e− 02 1.699e+ 00
DW/LB/L/2.0 4.864e− 01 3.246e− 01 1.117e− 01 1.627e+ 00
LW/SB/NL/2.0 2.485e− 01 4.314e− 01 1.808e− 03 1.597e+ 00
LW/LB/NL/2.0 1.106e− 01 3.406e− 01 1.189e− 06 1.524e+ 00

50 LW/SB/L/2.0 8.918e+ 00 4.258e− 01 7.794e+ 00 9.861e+ 00
LW/LB/L/2.0 8.863e+ 00 3.804e− 01 7.517e+ 00 9.573e+ 00
LW/SB/NL/2.0 1.020e+ 01 4.392e− 01 8.762e+ 00 1.108e+ 01
LW/LB/NL/2.0 1.021e+ 01 4.662e− 01 8.583e+ 00 1.097e+ 01

100 LW/SB/L/2.0 1.306e+ 01 3.285e− 01 1.190e+ 01 1.375e+ 01
LW/LB/L/2.0 1.312e+ 01 3.119e− 01 1.217e+ 01 1.373e+ 01
LW/SB/NL/2.0 1.433e+ 01 3.070e− 01 1.328e+ 01 1.490e+ 01
LW/LB/NL/2.0 1.428e+ 01 2.843e− 01 1.352e+ 01 1.485e+ 01
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Figure 2.2: Number of wins, draws, and losses for all SOBA variants.

ing the superiority of some schemes. However, further statistical evidence (e.g., the
reported standard deviations in the tables) suggested that some of the observed dif-
ferences might be statistically insignificant. In order to gain more sound insight, pair-
wise statistical significance tests for all variants were conducted. Specifically, Wilcoxon
rank-sum tests at significance level 99% were conducted for each pair of the studied
variants (including the ones that are not reported in Tables 2.4 and 2.5). Recall that
there were 10 algorithmic variants and 21 different problem instances in total. Thus,
each variant had 9 competitors over 21 problem instances, which results in 9×21 = 189

statistical tests in total per algorithmic variant. For each test where algorithm A was
superior than B with statistical significance, a win for A and a loss for B were counted.
If there was no statistical significance between them, a draw for both algorithms was
counted. The results of these tests are illustrated in Figs. 2.2-2.4.

Figure 2.2 illustrates the number of wins, losses, and draws for all studied variants.
The superiority of the LB/NL/2.0 variant is confirmed against the rest. On the other
hand, SB/L/1.0 and LB/L/1.0 are evidently the worst combinations as they exhibit the
highest number of losses. Besides each individual variant, the four main categories
were collectively considered with respect to the combination of quality criterion and
selection probability, namely SB/L, LB/L, SB/NL, and LB/NL. For each category, the
number of wins, draws, and losses was computed as the sum of the corresponding
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Figure 2.3: Aggregate number of wins, draws, and losses for different combinations
of quality criteria and selection probability in SOBA-based variants.

values for all variants that comprise it. The results are reported in Fig. 2.3 where
the tendency of LB/NL to produce more efficient variants can be clearly verified. The
combinations SB/L and LB/L are the worst (they have the highest number of losses),
exhibiting similar behavior between them.

In order to further probe the influence of the selection pressure and the nonlinear
weight, Wilcoxon rank-sum tests were performed between pairs of variants that use
the same neighborhood scoring approach (SB or LB) and probability selection scheme
(L or NL) but different values of selection pressure. These results are reported in
Fig. 2.4 and denoted as L/2.0 vs L/1.0, L/2.0 vs L/1.5, and L/1.5 vs L/1.0, where L/s
stands for all approaches with linear ranking (L) and selection probability s. Similar
analysis was conducted also for the nonlinear approaches (NL) for different values
of the power weight. This case is denoted as NL/2.0 vs NL/1.0 in Fig. 2.4. There is
an apparently monotonic superiority for the selection pressure values, i.e., s = 2.0

prevails s = 1.5, which in turn prevails s = 1.0. Again, this verifies the benefits of
increased elitism in the proposed PSO-NBA variants. The same can be inferred also
for the nonlinear weight, since the elitistic choice ρ = 2.0 has almost twice as many
wins as ρ = 1.0.
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Table 2.7: Results for the MOBA weighted aggregation approaches (LWA and DWA)
for test problems TP5-TP10 (nonlinear systems).

Problem Dimension Algorithm Mean StD Min Max
TP5 10 LW/SB/L/2.0 2.405e− 02 8.260e− 03 6.498e− 03 5.362e− 02

LW/LB/L/2.0 2.183e− 02 8.869e− 03 5.610e− 03 5.908e− 02

LW/SB/NL/2.0 4.517e− 03 5.577e− 03 2.076e− 04 3.597e− 02

DW/LB/NL/2.0 8.575e− 06 6.669e− 05 1.835e− 10 6.651e− 04

TP6 6 LW/SB/L/2.0 9.637e− 03 8.184e− 03 5.393e− 04 3.941e− 02

LW/LB/L/2.0 7.083e− 03 5.662e− 03 5.466e− 04 2.818e− 02

LW/SB/NL/1.0 4.218e− 03 5.612e− 03 1.146e− 05 2.426e− 02

LW/LB/NL/2.0 1.060e− 03 3.762e− 03 2.321e− 16 2.509e− 02

TP7 5 LW/SB/L/2.0 1.753e− 01 1.029e− 01 2.367e− 02 5.233e− 01

LW/LB/L/2.0 1.780e− 01 9.777e− 02 2.886e− 02 4.870e− 01

LW/SB/NL/1.0 1.947e− 01 1.303e− 01 7.659e− 03 7.236e− 01

LW/LB/NL/1.0 1.411e− 01 1.008e− 01 6.790e− 03 5.604e− 01

TP8 8 LW/SB/L/2.0 4.043e− 01 1.708e− 01 7.351e− 02 9.027e− 01

LW/LB/L/2.0 3.387e− 01 1.687e− 01 5.565e− 02 8.826e− 01

LW/SB/NL/2.0 3.583e− 01 1.632e− 01 5.907e− 02 8.943e− 01

LW/LB/NL/2.0 2.334e− 01 1.864e− 01 7.806e− 03 7.858e− 01

TP9 10 DW/SB/L/2.0 1.566e− 01 8.544e− 02 1.537e− 02 4.686e− 01

LW/LB/L/2.0 1.401e− 01 8.279e− 02 1.056e− 02 4.241e− 01

DW/SB/NL/1.0 8.990e− 02 7.890e− 02 1.983e− 03 5.038e− 01

DW/LB/NL/2.0 3.616e− 02 6.486e− 02 4.262e− 04 5.240e− 01

TP10 20 LW/SB/L/2.0 1.235e− 03 1.196e− 03 1.832e− 05 5.835e− 03

DW/LB/L/2.0 9.602e− 04 1.107e− 03 1.039e− 05 7.384e− 03

LW/SB/NL/1.0 4.581e− 04 1.152e− 03 1.776e− 15 9.323e− 03

DW/LB/NL/1.0 4.877e− 06 1.583e− 05 4.878e− 134 1.100e− 04

2.8.2.2 Assessment of MOBA Strategy

The MOBA strategy assesses each neighborhood by using two criteria instead of one,
as described in Section 2.8.1.4. The first criterion is solution quality while the second
one is diversity of the best positions involved in the neighborhood. Two different
ways to cope with the multi-objective scoring were considered, namely weighted
aggregation (LWA and DWA) and the Pareto front (PFA) approach. For notation
purposes, the formalism of Section 2.8.2.1 was extended as follows:

A / X / Y / Z,

where A takes the values DW (for DWA), LW (for LWA), and PF (for PFA), while
X ∈ {SB,LB} and Y ∈ {L,NL}. Experimental results for all MOBA approaches are
reported and analyzed in the following sections.
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Figure 2.4: Aggregate number of wins, draws, and losses for pairs of variants with the
same selection probability scheme (L or NL) but different parameters in SOBA-based
variants.

Results for Weighted Aggregation Approaches

Initially, the weighted aggregation approach was studied, which is based on the con-
version of the multi-objective scoring to a single-objective one as described in Sec-
tion 2.8.1.4. Both the linear weighted aggregation (LWA) and the dynamic weighted
aggregation (DWA) approaches were considered. The neighborhoods’ quality was
determined based on the SB and LB schemes, while diversity was quantified through
the AD scheme (see Section 2.8.1.1). The L and NL selection probability approaches
(see Section 2.8.1.2) were combined with the aforementioned schemes. The parameter
setting of Table 2.3 was used also here, resulting in ten LWA and ten DWA variants.

All variants were applied on all instances of test problems TP0-TP10. The best
variants were distinguished per problem instance on the basis of the average best
solution value within the prespecified computational budget over 100 experiments.
The results for TP0-TP4 are reported in Table 2.6 and for TP5-TP10 in Table 2.7.

Table 2.6 offers interesting evidence. First, the LB-based variants clearly domi-
nate the SB-based variants in 12 out of 15 cases. Moreover, the NL/2.0 approaches
performed better in 11 out of 15 cases, while L/2.0 approaches were the best in the
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Table 2.8: Results for the PFA approach of MOBA strategy for test problems TP0-
TP10.

Problem Dimension Algorithm Mean StD Min Max
TP0 10 PF/SB/2 4.956e− 03 9.674e− 03 3.582e− 05 7.846e− 02

PF/LB/2 7.788e− 03 8.127e− 03 1.266e− 04 4.324e− 02

50 PF/SB/2 1.059e+ 01 5.525e+ 00 1.802e+ 00 2.796e+ 01

PF/LB/2 2.527e+ 01 1.220e+ 01 5.353e+ 00 7.520e+ 01

100 PF/SB/2 1.489e+ 02 6.499e+ 01 5.378e+ 01 3.799e+ 02

PF/LB/2 2.524e+ 02 9.412e+ 01 1.171e+ 02 7.451e+ 02

TP1 10 PF/SB/5 1.346e+ 01 1.532e+ 01 2.117e+ 00 8.625e+ 01

PF/LB/3 1.350e+ 01 2.095e+ 01 2.389e− 01 1.138e+ 02

50 PF/SB/3 4.120e+ 03 1.259e+ 04 2.363e+ 02 9.155e+ 04

PF/LB/3 3.651e+ 03 9.885e+ 03 6.327e+ 02 9.083e+ 04

100 PF/SB/2 3.076e+ 04 2.883e+ 04 4.238e+ 03 1.160e+ 05

PF/LB/2 4.517e+ 04 3.261e+ 04 1.270e+ 04 1.586e+ 05

TP2 10 PF/SB/3 8.552e+ 00 3.468e+ 00 9.954e− 01 1.994e+ 01

PF/LB/5 8.224e+ 00 3.116e+ 00 2.985e+ 00 1.866e+ 01

50 PF/SB/5 1.439e+ 02 2.614e+ 01 9.102e+ 01 2.098e+ 02

PF/LB/5 1.463e+ 02 2.943e+ 01 7.830e+ 01 1.990e+ 02

100 PF/SB/5 3.814e+ 02 4.841e+ 01 2.734e+ 02 5.077e+ 02

PF/LB/5 4.096e+ 02 6.149e+ 01 2.753e+ 02 5.311e+ 02

TP3 10 PF/SB/2 2.142e− 01 1.265e− 01 4.135e− 02 6.241e− 01

PF/LB/3 2.288e− 01 1.266e− 01 3.214e− 02 5.560e− 01

50 PF/SB/2 1.092e+ 00 5.068e− 02 1.011e+ 00 1.296e+ 00

PF/LB/2 1.205e+ 00 7.270e− 02 1.070e+ 00 1.388e+ 00

100 PF/SB/2 2.224e+ 00 6.657e− 01 1.311e+ 00 5.931e+ 00

PF/LB/2 3.280e+ 00 8.334e− 01 1.718e+ 00 6.719e+ 00

TP4 10 PF/SB/2 3.168e− 02 6.641e− 02 1.923e− 03 6.358e− 01

PF/LB/2 3.543e− 02 3.993e− 02 5.304e− 03 3.435e− 01

50 PF/SB/2 2.265e+ 00 5.141e− 01 7.843e− 01 3.532e+ 00

PF/LB/2 2.308e+ 00 4.078e− 01 1.226e+ 00 3.431e+ 00

100 PF/SB/2 3.806e+ 00 5.387e− 01 2.812e+ 00 5.817e+ 00

PF/LB/2 3.761e+ 00 4.558e− 01 2.879e+ 00 5.400e+ 00

TP5 10 PF/SB/2 2.100e− 03 1.444e− 03 5.228e− 05 7.846e− 03

PF/LB/2 3.202e− 03 2.261e− 03 7.199e− 05 1.527e− 02

TP6 6 PF/SB/5 5.067e− 03 1.053e− 02 3.121e− 06 6.372e− 02

PF/LB/3 1.329e− 03 2.891e− 03 7.233e− 07 1.680e− 02

TP7 5 PF/SB/3 1.698e− 01 1.113e− 01 9.561e− 03 5.112e− 01

PF/LB/5 1.395e− 01 9.246e− 02 9.646e− 03 4.269e− 01

TP8 8 PF/SB/3 3.098e− 01 2.272e− 01 2.095e− 02 1.268e+ 00

PF/LB/2 2.539e− 01 1.872e− 01 1.803e− 02 8.879e− 01

TP9 10 PF/SB/2 4.831e− 02 5.041e− 02 3.136e− 04 2.945e− 01

PF/LB/2 4.070e− 02 3.635e− 02 1.515e− 03 2.136e− 01

TP10 20 PF/SB/5 1.428e− 04 3.736e− 04 5.837e− 15 3.225e− 03

PF/LB/5 1.364e− 04 2.927e− 04 2.037e− 11 1.477e− 03
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Figure 2.5: Number of wins, draws, and losses for the MOBA-based variants LWA
and DWA.

rest 4 cases. These findings are aligned with the ones for the SOBA strategy in the
previous section.

However, the picture becomes complicated when DWA is considered against LWA.
In Table 2.6, there is no clear tendency for either of the two approaches. In fact,
DWA was superior in 7 out of 15 cases, while LWA appeared to be a better choice
for the rest 8 problem instances. Therefore, no clear conclusion can be derived from
these results. Yet, it is ascertained that DWA performs better when combined with
LB/NL approaches. On the other hand, the LWA approaches do not favor a single
combination. Indeed, LW/LB/NL appears 4 times in Table 2.6, while LW/LB/L and
LW/SB/L appear 2 times each.

The second set of test problems offers similar conclusions. As can be seen in
Table 2.7, DWA is distinguished in half of the cases and LWA in the rest. However, this
time it can be seen that all variants are based on the LB/NL combination. Interestingly,
DWA dominates in the three high-dimensional problems (TP5, TP9, and TP10), while
LWA is distinguished in the lower-dimensional cases.

In order to facilitate comparisons between different variants, Wilcoxon rank-sum
tests were conducted among all LWA and DWA variants at significance level 99%,
similarly to the SOBA approach. Figure 2.5 illustrates the number of wins, draws, and
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Figure 2.6: Aggregate number of wins, draws, and losses for different combinations
of quality criteria and selection probability in LWA and DWA approaches.

losses per algorithmic variant. As can be seen, there is an indisputable predominance
of the LB/NL/2.0 variants both for DWA and LWA, with the later exhibiting the
highest number of wins. This is in line with the evidence in Tables 2.6 and 2.7.

Similarly to the SOBA approaches, the four main categories SB/L, LB/L, SB/NL,
and LB/NL were also considered, both for LWA and DWA. For each category, the
aggregate number of wins, draws, and losses was computed. The results are reported
in the net chart of Fig. 2.6, where the previous findings can be clearly verified.
Finally, L-based and NL-based approaches for both LWA and DWA were compared
with different parameter values. The results are illustrated in Fig. 2.7 where the
monotonic decline of performance can be verified as selection pressure decreases
(suppressing elitism) as well as the superiority of higher power weight values in
NL-based variants.

Results for Pareto Front Approach

The PFA approach uses a radically different mechanism for neighborhood scoring
than the previous SOBA and MOBA approaches. Specifically, each neighborhood is
assessed with two distinct criteria, namely solution quality and diversity. These criteria
are not combined as in the weighted aggregation approaches. Instead, they are used
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Figure 2.7: Aggregate number of wins, draws, and losses for pairs of LWA and
DWA variants with identical selection probability scheme (L or NL), but different
parameters.

for vectorial comparisons between neighborhoods in the sense of Pareto dominance.
The comparisons are conducted through a tournament selection mechanism in order
to avoid search stagnation.

The tournament size is usually an influential factor in tournament selection. For
this reason, three different values were used, i.e., T = N/2, N/3, N/5, where N is the
swarm size. The combinations of the neighborhood scoring schemes with the different
tournament sizes resulted in six PFA variants. Each combination is denoted with the
notation,

PF / X / TS,

where X ∈ {SB,LB} and TS ∈ {2,3,5}. For example, PF/LB/2 stands for the PFA vari-
ant with LB neighborhood scoring and tournament size T = N/2, whereas PF/SB/5
denotes the PFA variant with SB neighborhood scoring mode and tournament size
T = N/5. The experimental setting was identical to the previous cases of MOBA and
SOBA strategies. Table 2.8 reports the best solution values for each problem instance,
averaged over 100 experiments. For presentation compactness reasons, only the best
SB-based and LB-based variants are reported per case.

In the upper part of Table 2.8 (problems TP0-TP4), the variant SB/2 is distin-
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Table 2.9: Aggregate numbers of wins, draws, and losses for all PSO-NBA variants
for all test problems.

Strategy Algorithm Wins Draws Losses
SOBA SB/L/1.0 25 80 630

SB/L/1.5 277 110 348

SB/L/2.0 438 97 200

SB/NL/1.0 329 149 257

SB/NL/2.0 301 84 350

LB/L/1.0 26 81 628

LB/L/1.5 299 106 330

LB/L/2.0 450 109 176

LB/NL/1.0 398 128 209

LB/NL/2.0 544 87 104
MOBA LW/SB/L/1.0 43 102 590

LW/SB/L/1.5 189 113 433

LW/SB/L/2.0 327 105 303

LW/SB/NL/1.0 252 148 335

LW/SB/NL/2.0 357 137 241

LW/LB/L/1.0 44 102 589

LW/LB/L/1.5 203 102 430

LW/LB/L/2.0 340 115 280

LW/LB/NL/1.0 306 128 301

LW/LB/NL/2.0 498 105 132
DW/SB/L/1.0 32 90 613

DW/SB/L/1.5 170 94 471

DW/SB/L/2.0 303 106 326

DW/SB/NL/1.0 240 160 335

DW/SB/NL/2.0 307 123 305

DW/LB/L/1.0 30 85 620

DW/LB/L/1.5 171 112 452

DW/LB/L/2.0 325 113 297

DW/LB/NL/1.0 292 152 291

DW/LB/NL/2.0 454 120 161
PF/SB/2 555 114 66

PF/SB/3 542 119 74

PF/SB/5 508 105 122

PF/LB/2 575 88 72
PF/LB/3 566 95 74

PF/LB/5 537 90 108
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Figure 2.8: Number of wins, draws, and losses for the PFA variant of MOBA strategy.

guished in 12 out of 15 problem instances. Also, the TS = 2 (i.e., T = N/2) case
appeared as the most efficient in 10 out of 15 cases. The SB approach implies re-
duced elitism than LB. On the other hand, smaller values of TS correspond to higher
tournament sizes T , which promote elitism since the overall best individual has higher
probability of being selected. Thus, it may be reasonable to assume that the lower
values of TS counterbalance the selection of the SB approach in terms of elitism.

The picture changes in the lower part of Table 2.8 (TP5-TP10). In these cases, the
LB-based approaches outperform the rest in all but one problem. Also, the tourna-
ment size seems to be problem-dependent. This evidence suggests that elitism plays
significant role in TP5-TP10. This is in accordance with previous findings for the rest
of SOBA and MOBA variants.

Following the analysis of previous sections, Wilcoxon rank-sum tests among all
PFA variants were conducted. Figure 2.8 illustrates the number of wins, draws, and
losses per variant. The statistical evidence clearly shows a monotonic decline of per-
formance as TS increases. Also, the SB-based variants seem to prevail especially for
lower TS values.

In order to further explore the impact of tournament size, Wilcoxon rank-sum
tests were conducted between variants that use identical scoring schemes but different
tournament sizes. Then, for each tournament size the corresponding number of wins,
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Figure 2.9: Aggregate number of wins, draws, and losses for different tournament
sizes in PFA variants.

draws, and losses was summed up. The results are reported in Fig. 2.9. Clearly, TS = 2

is the best choice, verifying the monotonic decline as its value increases. Therefore,
smaller tournament sizes produce less efficient approaches evidently due to reduced
elitism.

2.8.2.3 Comparative Results

In the previous sections, each strategy of the proposed PSO-NBA approach was in-
dividually studied. In this section, comparisons among all the presented variants
are reported. This includes the SOBA approaches as well as all MOBA approaches
(LWA, DWA, and PFA). The comparisons were all based on test problems TP0-TP10.
Moreover, results from comparisons with other algorithms are reported.

First, all PSO-NBA approaches among them for all test problems were compared.
Each pairwise comparison was based on Wilcoxon rank-sum tests at significance
level of 99%. For each algorithm, its aggregate number of wins, draws, and losses
was recorded. These results are reported in Table 2.9.

Two interesting observations can be made in Table 2.9. First, it can be easily
noticed that the LB/NL/2.0 approach prevails both in SOBA and MOBA strategies
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Table 2.10: Computational budgets for GA, DE, MONS, PSO, and ASY [1], in test
problems TP5-TP10.

Problem Comp. Budget

TP5 15× 104

TP6 6× 104

TP7 25× 104

TP8 50× 104

TP9 15× 104

TP10 15× 104

(boldfaced entries in Table 2.9). This was also pointed out in the previous sections.
Secondly, it can be seen that all PFA approaches exhibit a remarkably high number
of wins and small number of losses. This is a new evidence, which indicates that
using diversity along with solution quality for neighborhood rating can be beneficial
for the algorithm.

According to Table 2.9, the variants LB/NL/2.0 and PF/LB/2 exhibited the highest
number of wins for the SOBA and the MOBA strategies, respectively. These two
variants were considered for comparisons with different PSO-based algorithms under
the experimental setting of Table 2.3. More specifically, they were compared against
the standard sychronous Particle Swarm Optimization (PSO) algorithm as well as its
asychronous version (ASY) presented in [1]. The corresponding results are reported in
Tables 2.11 and 2.12 for the standard test suite and the nonlinear systems, respectively.

The reported results reveal an apparent superiority of the PSO-NBA algorithm
(by orders of magnitude) against PSO and ASY for all problems and dimensions.
More specifically, the SOBA-based variant LB/NL/2.0 surmounts all other in 10 out
of 15 problem instances of the standard test suite (Table 2.11), while the MOBA-
based variant PF/L/2 is superior in the rest 5 cases. In Table 2.12, similar results for
the nonlinear systems are reported, with the two variants being distinguished in 3

cases each. Finally, it can be inferred that the SOBA strategy dominates in the three
high-dimensional problems (TP5, TP9, and TP10), while the MOBA one is better in
the lower-dimensional cases.

The four distinguished PSO-NBA approaches from Table 2.9 were used for further
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Table 2.11: Comparative results of PSO-NBA with PSO-based variants for test prob-
lems TP0-TP4 (standard test suite).

Problem Dimension Algorithm Mean StD
TP0 10 PSO 3.608e+ 00 2.038e+ 00

ASY 2.067e+ 00 1.091e+ 00
PF/LB/2 7.788e− 03 8.127e− 03
LB/NL/2.0 9.406e− 26 8.806e− 25

50 PSO 8.801e+ 03 9.596e+ 02
ASY 7.162e+ 03 7.755e+ 02
PF/LB/2 2.527e+ 01 1.220e+ 01
LB/NL/2.0 3.116e− 08 1.332e− 07

100 PSO 4.808e+ 04 2.913e+ 03
ASY 3.876e+ 04 2.494e+ 03
PF/LB/2 2.524e+ 02 9.412e+ 01
LB/NL/2.0 1.025e+ 02 1.021e+ 03

TP1 10 PSO 2.369e+ 03 1.790e+ 03
ASY 1.270e+ 03 8.705e+ 02
PF/LB/2 2.035e+ 01 3.011e+ 01
LB/NL/2.0 5.330e+ 03 2.072e+ 04

50 PSO 7.382e+ 08 1.569e+ 08
ASY 5.187e+ 08 1.214e+ 08
PF/LB/2 3.685e+ 03 1.269e+ 04
LB/NL/2.0 3.031e+ 03 1.541e+ 04

100 PSO 7.760e+ 09 1.135e+ 09
ASY 5.573e+ 09 7.742e+ 08
PF/LB/2 4.517e+ 04 3.261e+ 04
LB/NL/2.0 1.442e+ 03 9.031e+ 03

TP2 10 PSO 1.587e+ 01 3.773e+ 00
ASY 1.563e+ 01 3.977e+ 00
PF/LB/2 8.306e+ 00 3.390e+ 00
LB/NL/2.0 7.302e+ 00 3.347e+ 00

50 PSO 3.508e+ 02 2.098e+ 01
ASY 3.330e+ 02 1.751e+ 01
PF/LB/2 1.601e+ 02 3.212e+ 01
LB/NL/2.0 2.793e+ 02 4.174e+ 01

100 PSO 9.289e+ 02 3.046e+ 01
ASY 8.877e+ 02 3.119e+ 01
PF/LB/2 4.273e+ 02 6.944e+ 01
LB/NL/2.0 8.392e+ 02 5.525e+ 01

TP3 10 PSO 8.536e− 01 1.173e− 01
ASY 7.369e− 01 1.598e− 01
PF/LB/2 2.375e− 01 1.306e− 01
LB/NL/2.0 8.893e− 02 5.447e− 02

50 PSO 8.095e+ 01 9.016e+ 00
ASY 6.425e+ 01 7.925e+ 00
PF/LB/2 1.205e+ 00 7.270e− 02
LB/NL/2.0 1.034e− 02 1.817e− 02

100 PSO 4.331e+ 02 2.505e+ 01
ASY 3.520e+ 02 2.312e+ 01
PF/LB/2 3.280e+ 00 8.334e− 01
LB/NL/2.0 3.826e− 01 4.391e− 01

TP4 10 PSO 2.059e+ 00 4.495e− 01
ASY 1.706e+ 00 5.198e− 01
PF/LB/2 3.543e− 02 3.993e− 02
LB/NL/2.0 1.176e− 02 1.155e− 01

50 PSO 1.370e+ 01 4.042e− 01
ASY 1.284e+ 01 4.087e− 01
PF/LB/2 2.308e+ 00 4.078e− 01
LB/NL/2.0 9.513e+ 00 7.807e− 01

100 PSO 1.730e+ 01 2.400e− 01
ASY 1.636e+ 01 2.488e− 01
PF/LB/2 3.761e+ 00 4.558e− 01
LB/NL/2.0 1.416e+ 01 4.283e− 01
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Table 2.12: Comparative results of PSO-NBA with PSO-based variants for test prob-
lems TP5-TP10 (nonlinear systems).

Problem Dimension Algorithm Mean StD
TP5 10 PSO 6.921e− 02 1.7539e− 02

ASY 6.214e− 02 1.755e− 02

PF/LB/2 3.202e− 03 2.261e− 03

LB/NL/2.0 4.833e− 10 2.108e− 09

TP6 6 PSO 2.765e− 02 2.482e− 02

ASY 2.081e− 02 1.388e− 02

PF/LB/2 6.827e− 03 2.914e− 02

LB/NL/2.0 1.908e− 01 3.177e− 01

TP7 5 PSO 2.640e− 01 1.273e− 01

ASY 2.192e− 01 1.215e− 01

PF/LB/2 1.402e− 01 1.006e− 01

LB/NL/2.0 2.904e− 01 2.285e− 01

TP8 8 PSO 6.120e− 01 2.050e− 01

ASY 5.396e− 01 1.974e− 01

PF/LB/2 2.539e− 01 1.872e− 01

LB/NL/2.0 3.870e− 01 4.366e− 01

TP9 10 PSO 2.980e− 01 1.565e− 01

ASY 2.391e− 01 1.317e− 01

PF/LB/2 4.070e− 02 3.635e− 02

LB/NL/2.0 1.648e− 02 1.933e− 02

TP10 20 PSO 4.617e− 03 4.544e− 03

ASY 3.377e− 03 2.518e− 03

PF/LB/2 3.482e− 04 1.243e− 03

LB/NL/2.0 1.576e− 06 6.868e− 06

comparisons with different algorithms on TP5-TP10. For this purpose, the results for
a steady state Genetic Algorithm (GA), Differential Evolution (DE), and the multi-
objective MONS approach were adopted that were reported in the recent study [1]. The
experimental setting that was used in [1] assumed higher computational budgets than
the one used in this study. Thus, the experiments on TP5-TP10 for the distinguished
PSO-NBA approaches were repeated with the new computational budget, in order to
obtain comparable results. The computational budgets adopted from [1] are reported
in Table 2.10. For the PSO-NBA variants, the parameters were identical to the ones
used in previous sections and reported in Table 2.3 without any further fine-tuning.

All results are reported in Table 2.13. The best performance among the other
algorithms as well as among PSO-NBA variants is boldfaced. The reported experi-
mental evidence offer some useful conclusions. First, it can be seen that the MOBA
approaches of PSO-NBA outperformed the SOBA one with the exception of TP10.
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Table 2.13: Comparative results of PSO-NBA with different algorithms. The results
of MONS, GA, DE are adopted from [1].

TP5 TP6 TP7 TP8 TP9 TP10

MONS Mean 1.80e+ 00 1.00e− 01 6.00e− 01 1.10e+ 00 2.00e− 01 2.00e− 02

StD − − − − − −

GA Mean 1.01e− 01 1.29e− 02 9.57e− 01 1.03e+ 00 4.53e− 01 2.10e− 06

StD 6.21e− 02 2.29e− 02 6.78e− 01 5.50e− 01 4.74e− 01 1.00e− 06

DE Mean 1.44e− 16 1.29e− 03 1.01e− 02 1.29e− 16 5.20e− 04 6.37e− 03

StD 1.90e− 18 2.47e− 03 9.07e− 04 5.87e− 17 1.92e− 04 3.74e− 03

LB/NL/2.0 (SOBA) Mean 1.44e− 16 5.24e− 02 1.46e− 01 1.85e− 01 2.57e− 02 8.53e− 10

StD 6.74e− 19 1.66e− 01 1.20e− 01 1.97e− 01 2.49e− 01 6.84e− 09

LW/LB/NL/2.0 (MOBA) Mean 1.44e− 16 1.03e− 05 3.31e− 02 2.09e− 02 4.33e− 03 6.43e− 07

StD 0.00e+ 00 6.96e− 05 1.69e− 02 2.39e− 02 5.13e− 03 2.53e− 06

DW/LB/NL/2.0 (MOBA) Mean 1.44e− 16 2.80e− 06 3.57e− 02 3.40e− 02 2.82e− 03 7.38e− 09

StD 5.20e− 19 1.90e− 05 1.94e− 02 3.39e− 02 4.25e− 03 3.07e− 08

PF/LB/2 (MOBA) Mean 1.44e− 16 2.92e− 06 3.79e− 02 6.04e− 02 3.48e− 03 1.32e− 05

StD 0.00e+ 00 1.45e− 05 2.21e− 02 8.25e− 02 5.77e− 03 3.34e− 05

Secondly, the MOBA approaches performed better (by orders of magnitude) than
MONS and GA in most of the problems.

Finally, it can be seen that PSO-NBA could outperform DE, which was the best
algorithm among the rest, in half of the problems. It shall be taken into considera-
tion that the results of PSO-NBA were received with the same parameters that were
used in the default experimental setting without any further fine-tuning for the spe-
cific problems and computational budgets, while population sizes for the rest of the
algorithms were fine-tuned per case.

2.8.2.4 Further Experiments

The PSO-NBA algorithm was further assessed on a test suite of 19 problems that was
proposed as a benchmark at the special issue on Scalability of Evolutionary Algorithms
and Other Metaheuristics for Large-Scale Optimization Problems of the Soft Computing
journal [63]. These problems will be henceforth denoted as SC-TP0 - SC-TP18. The
problems SC-TP0 - SC-TP5 belong to the CEC 2008 test suite, SC-TP6 - SC-TP10 are
shifted problems, and SC-TP11 - SC-TP18 are hybrid composition functions. Their
definitions as well as source codes can be obtained through online sources 1. Com-

1http : //sci2s.ugr.es/eamhco/testfunctions− SOCO.pdf
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Figure 2.10: Cumulative number of hits for different accuracy levels (linear case).

parative results for different algorithms are also publicly available 2.
PSO-NBA was applied on the 50- and 100-dimensional instances of the test prob-

lems, adopting the experimental setting in [63]. In all cases, the algorithm assumed
population size equal to 2× n, where n stands for the problem’s dimension. At each
experiment, the solution error |fPSO-NBA − f ∗| was recorded, where f ∗ denotes the ac-
tual global minimum of the problem and fPSO-NBA is the best solution value achieved
by the proposed approach.

The two best SOBA approaches and the two best MOBA approaches (in terms
of number of wins) from Table 2.9 were considered for further experimentation.
These approaches were also compared against six established algorithms, namely
the CHC Genetic (Cross-generational elitist selection, Heterogeneous recombination
and Cataclysmic mutation) algorithm [65], the G-CMA-ES (Restart Covariant Matrix
Evolutionary Strategy) algorithm [66], the EvoPROpt (Evolutionary Path Relinking)
algorithm [67], the SPSO2011 (Standard PSO 2011) algorithm [68], the ITHS (Intelli-
gent Tuned Harmony Search) algorithm [69,70] and the DBC (Directed Bee Colony)
algorithm [71]. Note that G-CMA-ES was the dominant algorithm in the CEC 2005
challenge.

In Table 2.14, the obtained average errors for the two SOBA variants LB/NL/2.0
2http : //sci2s.ugr.es/eamhco/SOCO− results.xls
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Figure 2.11: Cumulative number of hits for different accuracy levels (nonlinear case).

and LB/L/2.0 are reported. MOBA variants had slightly inferior performance, which
was anticipated since in the previous experiments they were shown to perform better
in lower dimensions. For this reason they are omitted from the current results. Also,
in Table 2.14 the corresponding results for the rest of the algorithms are reported. The
results of the EvoPROpt, G-CMA-ES, and CHC algorithms are publicly available in the
aforementioned online sources, while the results of the SPSO2011, ITHS and DBC were
produced with implementations that closely followed the instructions, pseudocodes,
and parameter settings provided in the original sources.

A first inspection of the results reveals that PSO-NBA is highly competitive to
the other algorithms. More specifically, the linear PSO-NBA variant achieved zero
or marginally deviant values in 12 problem instances, while the nonlinear variant
achieved similar success in 8 out of 38 problem instances. The corresponding number
of successes for EvoPROpt, SPSO2011, ITHS, DBC, G-CMA-ES, and CHC were 0, 2,
0, 0, 7, and 6, respectively, out of 38 problem instances.

In order to facilitate comparisons and provide further insight on the algorithm’s
effectiveness, pairwise comparisons of each algorithm with the rest were conducted.
At each comparison, the number of hits (successes) over the accuracy levels were
recorded,

10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104.
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Figure 2.12: Portion of time spent on algorithmic procedures vs function evaluations.

A hit is recorded for an algorithm when it outperforms another algorithm, i.e., it
achieves a lower average error for the specific problem and dimension, and both
their average errors are smaller than the particular accuracy level.

Figures 2.10 and 2.11 depict the distribution of the number of hits over the pre-
defined accuracy levels for the linear and the nonlinear case, respectively. Evidently,
PSO-NBA exhibits high numbers of hits for the majority of accuracy levels, especially
for the smallest ones, which are the most desirable in practice. EvoPROpt outper-
formed PSO-NBA only for the highest accuracy levels. Yet, it does not achieve any
hit in almost half of the (smaller) accuracy levels.

The presented experimental evidence verifies that the proposed PSO-NBA ap-
proach can be very competitive also to other algorithms. Of course, the best choice
among different PSO-NBA variants is always problem-dependent. However, the ob-
servations that were pointed out in the previous sections can be helpful for the prac-
titioner.

Finally, the time complexity of the algorithm is considered. Specifically, the frac-
tion of the time spent to algorithmic procedures against the time spent purely for
function evaluations per run was investigated. Figure 2.12 illustrates the required
time for the 100-dimensional instances of 4 of the most demanding problems from
the current test suite. The measured time is indicative for a single experiment. De-
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spite the high dimensionality of the problems, the large population size, and the lack
of any optimization in the source code of the implementation, it can be clearly seen
that the function evaluation dominates the time required by the algorithm. This is
an indication that smaller execution times can be achieved with further optimization
of the algorithm’s procedures and source code.

2.9 Synopsis

In this chapter, state-of-the-art metaheuristic optimization algorithms were outlined.
In the next chapters, novel parallel algorithm porfolio frameworks are proposed that
harness the metaheuristic algorithms exposed in this chapter.

Moreover, PSO-NBA was introduced, which is an asynchronous PSO variant that
distributes the available computational budget of function evaluations in an irregular
way among the particles of the swarm. In order to select the favored particles, the
algorithm assesses their neighborhoods with respect to solution quality and diver-
sity. Particles that possess highly ranked neighborhoods have higher probability of
receiving function evaluations than the rest.

Two essential budget allocation strategies were introduced, namely a single-objecti-
ve and a multi-objective one. For both strategies, a multitude of PSO-NBA variants
were defined. All variants were tested on a standard suite of benchmark problems as
well as on problems drawn from real-life applications. The most successful variants
were distinguished after statistical analysis of the results. Further experiments were
conducted on an established test suite. Comparisons with various algorithms were
provided.

The acquired results suggested that PSO-NBA can be highly competitive. Overall,
elitistic options were shown to be beneficial on performance. Both single-objective and
multi-objective strategies exhibited efficiency and robustness. The provided evidence
justified the significance of budget allocation in metaheuristics, leaving ground for
further research.
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Chapter 3

Algorithm Portfolios

3.1 Introduction

3.2 Literature review

3.3 Parallel Algorithm Portfolios

3.4 Application in Design of S-boxes

3.5 Application in Traffic Light Scheduling

3.6 Synopsis

In this chapter, the concept of algorithm portfolios is introduced and a literature
review is presented. Then, two standard parallel algorithm portfolio models are pro-
posed. The first one can be applied with any optimization algorithm to enhance effi-
ciency. It is demonstrated on the design of S-boxes, which is an important problem
in cryptography. The second algorithm portfolio is specialized on population-based
algorithms. This portfolio is applied on a challenging problem that originates from
smart cities, namely the traffic light scheduling problem.

3.1 Introduction

The term Algorithm Portfolio (AP) refers to a general framework where multiple in-
dividual algorithms are combined into a single algorithmic scheme and share the
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available computational resources [9]. APs emerged several years ago as a promis-
ing approach to tackle challenging optimization problems. Their computational ef-
ficiency against individual metaheuristics has lead to a constantly increasing pop-
ularity [4, 9–11, 13, 15, 72]. The rationale behind APs lies in the fact that the best
algorithm for a given problem is rarely a priori known. Thus, employing a number of
preferably diverse algorithms can increase the probability of finding a good solution,
while reducing the risk in terms of deviation of the final result from that of a single
algorithmic approach.

An AP can consist of multiple copies of one algorithm with identical or different
parameters (homogeneous AP) or different algorithms (heterogeneous AP). All algorithms
run concurrently in either one or multiple processing units. If a single processing unit
is used, the execution of the algorithms is alternated according to a resources assign-
ment schedule. In multi-core or parallel systems, the algorithms share the hardware
resources, i.e., the number of available processing units [10].

The algorithms that comprise an AP can be either isolated (non-interactive AP) or
communicate and exchange information with each other (interactive AP). The commu-
nicated information usually comprises the best solutions detected by each algorithm.
This model is typically used in APs of population-based algorithms. For example,
in [4] the proposed AP accommodates a number of population-based algorithms that
exchange solutions via regular migrations. Non-interactive APs have also been applied
on problems in operations research [14, 73] and combinatorial optimization [11].

An important issue in the design of high-performance algorithm portfolios is the
choice of the appropriate resources allocation plan. The simplistic approach of assign-
ing equal computational budgets among the constituent algorithms of the AP may
provide adequate solutions in various optimization problems [74]. However, recent
studies have suggested the use of sophisticated budget allocation mechanisms [13,75]
in order to take full advantage of the combined algorithmic power of the APs. To this
end, algorithm portfolios that share the computational budget by exploiting dynamic
resources allocation mechanisms can offer significant performance benefits.

3.2 Literature review

The first works that introduced APs for solving challenging problems appeared two
decades ago [9, 10]. In [9] a general method that incorporated Las Vegas algorithms
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into a single AP framework was introduced. The authors showed that the proposed
method can be used to tackle a wide range of hard optimization problems. Addi-
tionally, the authors investigated the relation between the variation of the AP’s per-
formance (i.e., the risk) and its expected performance in terms of the time required
to detect a solution. Also, there was evidence suggesting that cooperation among the
constituent algorithms of the AP can further boost its performance.

In [10] the proposed AP consisted of a number of stochastic algorithms run-
ning interchangeably on one processor or employing more processing units without
communication among them during their execution. The principal goal of that re-
search was to show that specific APs are preferable than other ones with respect to
the expected computational cost and the overall risk. For this purpose, an experi-
mental evaluation of the AP approach on diverse hard combinatorial problems was
conducted. The acquired results indicated the superiority of APs compared to other
algorithmic approaches.

Fukunaga et al. was the first to propose AP schemes that harness metaheuristic
optimization algorithms. In [11] an AP that distributed the available computational
budget among algorithms with different configurations instead of a single algorithm
was proposed. Unlike previous works based on Las Vegas algorithms, that AP used
anytime algorithmic approaches, which can be interrupted at any time offering sub-
optimal solutions. Specifically, different configurations of a genetic algorithm were
incorporated into the AP and its performance was investigated on the well known
traveling salesman problem.

In [4] the proposed AP accommodated a number of well studied population-based
algorithms to solve numerical optimization problems. The AP allocated the com-
putational budget its constituent algorithms, which exchanged solutions via regular
migrations. Additionally, that work focused on reducing the risk of an algorithmic
approach on a collection of optimization problems. In contrast, previous works were
interested only in measuring the risk of the application of a single algorithm on a
single problem by conducting a number of independent experiments. The experi-
mental results showed that the proposed AP framework outperformed its constituent
algorithms in terms of solution quality as well as with respect to a proposed risk
measure for the majority of the tested problems.

In [15] a multi-algorithm genetically adaptive method was proposed, which em-
braced different population-based algorithms into a single framework. In this frame-
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work, multiple algorithms ran concurrently and interacted with each other by ex-
changing information via a shared population of search points. At each iteration,
each constituent algorithm generated a fraction of the offspring. This fraction was
adjusted for each algorithm during the optimization process and depended on their
performance in previous iterations. Finally, the authors argued that the success of a
multi-algorithm method depends on the efficiency of the constituent algorithms as
well as their complementary search capabilities.

Non-interactive APs have also been applied on problems that originate in opera-
tions research [14, 73] and combinatorial optimization [11]. The lack of information
exchange in this case can be beneficial in some applications where the search is prone
to get rapidly biased in narrow neighborhoods of the search space. In such cases, the
migration of solutions from one algorithm to another can eventually result in limited
exploration capability or premature convergence of the AP [13, 76].

A crucial issue in the design of efficient and effective APs is the appropriate se-
lection of its constituent algorithms [5,12]. Choosing the AP’s constituent algorithms
from a wide range of available methods is a hard task that is usually conducted
offline. In [5] several selection policies were proposed to construct APs from prede-
fined sets of algorithms. The proposed methods were applied on several instances
of a maintenance scheduling problem. Their evaluation was based on the running
time required to formulate the APs. The APs were assessed on the basis of solution
quality, and their performance was shown to be problem-dependent.

In [12] an automatic selection approach was proposed to address the constituent
algorithms selection problem. Specifically, the AP proposed in [4] was extended with
an automatic selection mechanism based on an estimated performance matrix for each
algorithm from a predefined set of evolutionary algorithms. This matrix recorded the
performance of each candidate algorithm during a preprocessing phase. During this
phase, each algorithm was applied on the problem under consideration, consuming
a fraction of the total available computational budget. Then, selection of the most
promising methods took place, and they were eventually integrated into the AP. The
formulated AP was executed with the remaining budget after the selection phase.
Experimental results showed that the proposed AP approach outperformed its con-
stituent algorithms in terms of solution quality.

The authors in [77] proposed an automated mechanism to construct APs for
memetic algorithms. Their approach targeted at finding the best algorithm sets over
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a number of combinations of crossover, mutation, and local search operators. To this
end, the combinations were clustered with respect to their performance when applied
on the tested problems. Then, the best combination of each cluster was selected and
integrated into the AP. Finally, an online algorithm selection mechanism was used to
orchestrate the AP. The proposed method was evaluated on instances of the quadratic
assignment problem.

The first research work that investigated the use of APs on multi-objective op-
timization problems appeared in [78]. The AP consisted of a set of evolutionary
algorithms, which were executed without any communication among them. Differing
from previous AP approaches, each evolutionary algorithm exploited an independent
population of individuals. Also, an essential characteristic of that approach was the
lack of additional parameters in the AP. At each generation, the performance of each
algorithm was predicted at a future point by exploiting a score calculation method.
Then, the algorithm selector came into play and determined the best-performing
algorithm that was to be executed for the subsequent generation. This way, the con-
stituent algorithms were selected as a function of the available computational budget.
Experimental results showed that the proposed AP can achieve better solution quality
than that when using one of its constituent algorithms solely.

In [74] the proposed APs were used to tackle optimization problems contaminated
by noise. In that work, two AP models were proposed. The first one distributed the
available computational budget equally among the constituent algorithms while the
second one suggested an unfair sharing among them. Bounds of the performance
of the two AP models were provided. Also, it was shown that performance history
is beneficial for the selection of the best-performing algorithm. Experimental results
showed that APs are efficient especially for noisy problems as long as their con-
stituent algorithms exhibit different convergence behaviors when applied on different
problems.

In [13], an AP framework that tackles single-objective optimization problems was
proposed. Several well known evolutionary algorithms were integrated into the AP,
while no information exchange occurred among them during their execution. The
proposed framework employed a predictive mechanism that predicted online the per-
formance of its constituent algorithms based on past history. Specifically, the mech-
anism predicted the fitness values of the algorithms at some future point. This was
achieved by extrapolating the convergence curves of the algorithms up to the point
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of interest. The algorithm that achieved the lowest predicted function value was exe-
cuted for one generation and then the performance of each algorithm was predicted
again. In this way, the contituent algorithms switched between iterations as a func-
tion of the available computational budget. Extensive experimental evaluation on a
well know benchmark suite revealed that the proposed AP outperformed other AP
approaches as well as its constituent algorithms with respect to solution quality.

A first parallel implementation of the population-based AP framework [4] ap-
peared in [72]. In that work, the performance of different parallel models used in
the construction of APs was investigated. In particular, the efficiency of the proposed
models was measured with respect to their execution times as well as by using the
speedup performance metric. Additionally, the performance of the parallel AP was
assessed on training neural networks with different architectures. Experimental re-
sults on a popular benchmark suite showed the robustness of the proposed parallel
AP compared to its sequential counterparts. Also, is was demonstrated that speedup
is affected by the distribution of the individuals of the algorithms in the shared
population of the AP.

3.3 Parallel Algorithm Portfolios

In this section, two parallel algorithm portfolio models are considered. Firstly, a
non-interactive AP model is presented where algorithms run individually without
any communication among them. Next, an AP model focused on population-based
algorithms is proposed.

3.3.1 Standard Model

A non-interactive AP is considered, which consists of M metaheuristic algorithms
that run in parallel according to a master-slave model. Each constituent algorithm
runs individually on a single slave node without information exchange. Whenever an
algorithm detects a new solution xi that improves its current best one, it sends it along
with its function value f (xi) to the master node. The master node is responsible for all
bookkeeping operations, storing the best solutions discovered by the algorithms and
retaining the current overall best solution xbest and its function value fbest. Pseudocode
of the AP is provided in Algorithm 3.1 (master node) and Algorithm 3.2 (slave nodes).
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Algorithm 3.1 Parallel algorithm portfolio: master node
Input: Number of slaves (M)
Output: Best detected solution
1: initialize M slave-nodes and assign an algorithm to each one
2: t← 0, fbest ←∞
3: while (nodes still running) do
4: receive xi, fi = f (xi) from node i

5: if (fi < fbest) then
6: fbest ← fi, xbest ← xi
7: end if
8: end while
9: return xbest

Algorithm 3.2 Parallel algorithm portfolio: slave nodes
Input: Allocated execution time (Texec)
1: initialize assigned algorithm
2: while (Texec not exceeded) do
3: execute one iteration of the algorithm
4: if (new best xi found) then
5: send xi, fi = f (xi) to master node
6: end if
7: end while
8: terminate slave node

3.3.2 Algorithm Portfolio for Population-based Algorithms

Hard optimization problems require long computational times. In the case of meta-
heuristics, the most costly part of their execution is the evaluation of the objective
function. Parallel AP frameworks for population-based metaheuristics have prevailed
in recent years to mitigate this deficiency [15, 72]. In this section, an AP framework
that is based on the well known parallelization of population approach [79] is considered.
This approach proposes the division of the population into parts, each one assigned
to a different processing unit.

Also, a simple master-slave parallelization model is employed, where the main
algorithm runs on the master node and the slave nodes are devoted to the com-
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putation process. Specifically, the function evaluations of the population are divided
into equal parts, each one assigned to a slave node running on a single processor.
At each iteration, the algorithm requires the evaluation of the individuals. First, the
master sends the solution vectors (individuals) to the assigned slave nodes. Then,
each slave computes the function values of the assigned individuals. Eventually, each
slave returns the computed function values back to the master, where they are further
exploited for the next iteration of the algorithm.

An obvious advantage of using the considered AP is the load distribution of
the function evaluations among different processing units. Therefore, its use is even
more beneficial in cases where each function evaluation requires high computation
times. Also, note that the employed parallel AP model does not affect the quality
of the detected solutions (nor it changes the search model) compared to the serial
algorithm.

3.4 Application in Design of S-boxes

Substitution boxes (S-boxes) constitute essential parts of modern cryptographic ap-
plications. In essence, S-boxes are multi-input, multi-ouput Boolean functions that
map binary input to binary output values. S-boxes lie at the core of symmetric-key
cryptographic algorithms. Specifically, they are used to conceal the relation between
the input key and the encrypted output message. Therefore, they have crucial impact
on the algorithm’s security quality [80,81].

The design of suitable S-boxes has been an active research area for several decades
with significant applications in symmetric-key cryptography standards. A widely
known example is the Data Encryption Standard (DES), which was introduced in
1977 and it is based on eight 6-input 4-output S-boxes [82]. DES has been proved to
be vulnerable to crack attacks such as linear cryptanalysis and parallel brute-forcing.
Thus, it was superseded by the Advanced Encryption Standard (AES), which was
proposed in 2000 and its implementation is also based on S-boxes [83]. Specifically,
it employs a properly designed Rijndael S-box that is resistant to linear [84] and
differential [85] cryptanalysis, which are most popular cipher-attacks. Today, AES is
widely considered as a highly secure standard.

The problem of designing S-boxes with desirable properties has been tackled both
through algebraic techniques [19, 20] and computational methods [86–88]. Among
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them, a large body of work has been devoted to the application of metaheuristic
algorithms. Typical examples are Evolutionary Algorithms and Swarm Intelligence
approaches, such as Particle Swarm Optimization [86], Differential Evolution [86],
and Genetic Algorithms [87]. Also, trajectory-based algorithms such as Simulated
Annealing have been used [88]. Despite the reported effectiveness of these algorithms,
their running time efficiency has been habitually neglected in the relevant studies.

This fact can raise concerns, since most of the studied computational algorithms
require a remarkably large amount of time to produce S-boxes of high nonlinearity
and low autocorrelation. Indicatively, running time has been reported to reach even
several days of uninterrupted execution of the algorithm for some approaches [88].
In addition, formal experimental and statistical analysis of the algorithms’ perfor-
mance has been rarely reported in relevant literature. Instead, most efforts have been
concentrated on reporting an S-box of good quality. Hence, existing performance as-
sessments and comparisons of different metaheuristics on the S-boxes design problem
are rather obscure. Nevertheless, it is widely perceived that the necessity for efficient
and effective algorithms is indispensable for the specific problem type.

This section focuses on the application of parallel APs on the design of S-boxes.
Previous research suggested that hill-climbing properties can be highly beneficial for
metaheuristics in the detection of S-boxes with desirable properties [89]. Thus, a
simple and efficient parallel AP approach that comprises the well studied Tabu Search
(TS) [90] and Simulated Annealing (SA) [25] algorithms is considered. The selection
of the specific constituent algorithms is motivated by their recognized efficiency and
their inherent hill-climbing capabilities. This is the first time that TS as well as the
APs approach are used for the specific problem.

The proposed algorithmic approaches are evaluated and statistically analyzed on
widely used problem instances. In order to make the problem even more challenging,
tight running time constraints are considered. Thus, in a first experimentation phase
the plain sequential TS and SA algorithms are applied and analyzed on the S-boxes
design problem. The use of sequential algorithms is the most frequent approach
reported in relevant literature. In a second experimentation phase, homogeneous and
heterogeneous APs are composed using combinations of different TS and SA variants.
Then, the capability of the APs in outperforming TS and SA with respect to solution
quality and time efficiency is experimentally studied.

The considered AP model is inherently parallel, i.e., the constituent algorithms are
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simultaneously executed on multiple processors. In order to perform fair comparisons
with the sequential algorithms, which are executed on a single processor, the parallel
AP is assigned exactly the same total running time with the sequential approaches.
This time is then equally allocated to the AP’s constituent algorithms. Thus, the total
running time of the AP cannot exceed that of the sequential algorithms; it is simply
exploited differently. The obtained experimental results suggest that the simultaneous
execution of multiple algorithms can improve performance in terms of solution quality
and time efficiency. Also, various speculations regarding the dynamics of the APs and
the TS and SA algorithms are verified on the investigated problems.

3.4.1 Problem Formulation

In this section, the mathematical formulation of the S-boxes design problem is pro-
vided. Let

f : Bn → Bm, B = {0, 1},

be a vectorial Boolean function that maps n Boolean input values to m Boolean output
values. This function is called an n-input m-output S-box or, simply, an n×m S-box.
In case of a single output, i.e., m = 1, the S-box degenerates to a Boolean function.
The following definitions refer to Boolean function properties.

Definition 3.1. (Polarity truth table) Let x ∈ Bn. A useful representation of a Boolean
function is the polarity truth table defined as,

f̂(x) = (−1)f(x),

which maps the output values of the Boolean function from the set {0, 1} to the set
{−1, 1}.

Definition 3.2. (Linear Boolean function) Let x,w ∈ Bn. A linear Boolean function is
defined as,

Lw(x) = w1x1 ⊕ w2x2 ⊕ · · · ⊕ wnxn,

where wixi denotes the bitwise AND operation for all i ∈ {1, 2, . . . , n}, and ⊕ denotes
the bitwise XOR. A linear Boolean function in polarity form is denoted as L̂w(x).

Definition 3.3. (Affine Boolean function) The set of affine Boolean functions includes
the set of linear Boolean functions and their complements, i.e., all functions of the
form,

Aw,c(x) = Lw(x)⊕ c, c ∈ B.
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Definition 3.4. (Walsh-Hadamard transform of Boolean function) The Walsh-Hadamard
transform (WHT) of a Boolean function f is defined as,

F̂f (w) =
∑
x∈Bn

f̂(x) L̂w(x),

and it measures the correlation between the Boolean function f and the linear Boolean
function L̂w with x ∈ Bn.

Definition 3.5. (Nonlinearity of Boolean function) The nonlinearity NLf of a Boolean
function f is defined as,

NLf =
1

2
(2n −WHmax (f,w)) ,

where,
WHmax(f,w) = max

w∈Bn

∣∣∣F̂f (w)
∣∣∣ ,

i.e., it is the maximum absolute value of WHT. The computation of WHmax(f,w),
except for the Boolean function f , also requires to specify a linear function through
the vector w.

Definition 3.6. (Autocorrelation of Boolean function) The autocorrelation of a Boolean
function f measures its self-similarity. It is defined as,

r̂f (s) =
∑
x∈Bn

f̂(x) f̂(x⊕ s),

where s ∈ Bn. The maximum absolute value of the autocorrelation of a function f is
defined as,

ACf = max
s∈Bn\{0n}

∣∣∣∣∣∑
x∈Bn

f̂(x) f̂(x⊕ s)

∣∣∣∣∣ ,
where 0n denotes the null vector over Bn.

Theorem 3.1. (Parseval’s theorem) It holds that,∑
w∈Bn

(
F̂f (w)

)2
= 22n,

which in turn results in WHmax(f,w) ⩾ 2n/2.

Definition 3.7. (Balanced Boolean function) If the number of 0-valued outputs of a
Boolean function is equal to the number of its 1-valued outputs, then the Boolean
function is called balanced.
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Boolean functions compose S-boxes. An S-box, f : Bn → Bm, is a combination of m
single-output Boolean functions. In order to extend the theoretical background from
Boolean functions to S-boxes, the m output values of the S-box can be transformed
into a single-output Boolean function. Let fβ(x), β ∈ Bm, be a linear combination of
the m output values of the S-box f ,

fβ(x) = β1f1(x)⊕ β2f2(x)⊕ · · · ⊕ βmfm(x),

where fi(x), i ∈ {1, 2, . . . ,m}, denotes the i-th output bit of the S-box. There are
2m − 1 such linear combinations, excluding the trivial case of the linear combination
with the null vector. The aforementioned nonlinearity and autocorrelation properties
of Boolean functions can be extended to S-boxes as follows.

Definition 3.8. (Walsh-Hadamard transform of S-box) The Walsh-Hadamard transform
(WHT) of an S-box is defined as,

F̂β(w) =
∑
x∈Bn

f̂β(x) L̂w(x). (3.1)

Definition 3.9. (Nonlinearity of S-box) The nonlinearity NLf of an S-box is defined as,

NLf =
1

2
(2n −WHmax (fβ,w)) , (3.2)

where WHmax(fβ,w) is the minimum among all maximum absolute values of WHT
over the 2m − 1 linear combinations of the output values of the S-box.

Definition 3.10. (Autocorrelation of S-box) The autocorrelation of an S-box is denoted
as r̂β(s), where s ∈ Bn \ {0n}, and β ∈ Bm \ {0m}, and it is the highest autocorrelation
value over the 2m − 1 linear combinations of the output values of the S-box.

Definition 3.11. (Balanced S-box) An S-box is called balanced if the number of preim-
ages of each output is 2n−m.

Definition 3.12. (Bijective S-box) An S-box is called bijective if n = m and the number
of preimages of each output is 1. Note that a bijective S-box is also balanced. Bijective
S-boxes are also denoted as n× n S-boxes.

The quality of an S-box is primarily assessed by its properties that render it invul-
nerable to common attacks such as linear [84] and differential cryptanalysis [85]. In
this context, nonlinearity and autocorrelation are essential properties. S-boxes of high
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nonlinearity and low autocorrelation become less vulnerable to attacks. Consequently,
these two properties are typically adopted as quality measures of S-boxes and, hence,
they are at the center of interest in the underlying optimization problems.

In order to maximize nonlinearity, the definition of Eq. (3.2) can be used. Equiv-
alently, the maximization problem is transformed into a minimization problem over
all possible S-boxes f as follows,

min
f

max
β∈Bm

w∈Bn

∣∣∣F̂β(w)
∣∣∣ , (3.3)

where F̂β(w) is the WHT defined in Eq. (3.1). Regarding autocorrelation, the mini-
mization problem is defined as,

min
f

max
β∈Bm\{0m}
s∈Bn\{0n}

|r̂β(s)| , (3.4)

where r̂β(s) is the autocorrelation defined in Definition 3.10.
The minimization problems of Eqs. (3.3) and (3.4) are consistently considered in

the relevant literature for the design of S-boxes of high nonlinearity and low autocor-
relation [86–88]. Typically, the nonlinearity is considered as the primary optimization
objective, while autocorrelation is mostly reported for the final solution. Probably, this
is due to the computational overhead imposed by the concurrent handling of both
objectives.

3.4.2 Implementation Details

The bijective S-boxes design problem is tackled through non-interactive APs consist-
ing of the state-of-the-art SA and TS algorithms running in parallel according to a
master-slave model. Details about the employed AP framework can be found in Sec-
tion 3.3.1, and about the SA and TS algorithms in Sections 2.1 and 2.2, respectively.

Special attention is paid on the representation of the solution vector. The goal is to
detect bijective n×n S-boxes with n binary inputs and n binary outputs. The number
of combinations of all binary inputs is equal to 2n, and each binary input vector has
an n-bit output vector. Therefore, the S-box can be represented as a binary solution
vector of dimension,

Dbin = 2n × n.

Evidently, the S-boxes design problem is equivalent to a high-dimensional binary
optimization problem.
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Moreover, the studied S-boxes are bijective as well as balanced. Therefore, each one
of the 2n binary output vectors is mapped to only one of the 2n binary input vectors.
Taking into consideration this property, the solution-generation technique reported
in [91] is adopted. This technique constructs all the 2n possible output vectors of the
S-box. Then a candidate solution (S-box) is formed by assigning each n-bit output
vector to only one of the 2n input vectors. Initially the assignment is randomly and
uniformly performed as in [86,87].

Using this technique, the optimization algorithms need to find the proper mapping
between the 2n binary input vectors and the 2n binary output vectors, i.e., the one
that maximizes nonlinearity and minimizes autocorrelation of the resulting S-box.
This is achieved by searching for the best position permutation of the 2n binary
output vectors in the S-box. Thus, the Dbin-dimensional binary optimization problem
is transformed into a D-permutation problem where,

D = 2n. (3.5)

This technique retains vectors that satisfy the requirement for equal number of 0 and
1 in the solution, and it has been successfully used with Cartesian Genetic Program-
ming [91]. Note that the resulting search spaces are vast even for small values of n,
since their cardinality is equal to the factorial (2n)!.

The evaluation of the generated candidate solutions is based on both nonlinearity
and autocorrelation although with different priority. Specifically, higher priority is
given to nonlinearity and lower priority to autocorrelation. This is in accordance with
the reported significance of the two objectives in relevant literature [92,93]. It results
in a two-stage solution assessment scheme that imitates multi-objective optimization,
consisting of the following rules:

(i) Between two candidate solutions, the one that achieves the highest nonlinearity
is preferable.

(ii) Between two candidate solutions of equal nonlinearity, the one that has the
lowest autocorrelation is preferable.

The algorithms are compared on the basis of their final solution quality, i.e., its non-
linearity and autocorrelation, according to these rules. In case of equivalent solutions
in both nonlinearity and autocorrelation, the required running times of the algorithms
to achieve their final solutions serve as the tiebreaker.
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Table 3.1: Problem size, dimension D of permutation vector, cardinality |X | of search
space, and available time budget (in minutes) per experiment.

Problem D |X | Time (min)

5× 5 32 ∼ 1035 2
6× 6 64 ∼ 1089 60
7× 7 128 ∼ 10215 480
8× 8 256 ∼ 10506 1440

Table 3.2: Parameter settings of the algorithms.

Algorithm Parameter Description Value(s)

AP M Number of nodes 3, 5

TS sTL Tabu list size D

Tnoimp Non-improving iterations before restart 100

SA ST Number of inner steps 1500, 2500

T (0) Initial temperature 1.0

α Cooling factor 0.5, 0.98

Tnoimp Non-improving iterations before restart 50

3.4.3 Experimental Results

The sequential TS and SA algorithms as the baseline approaches for comparisons were
considered. Note that SA has been previously used on S-boxes design problems [88,
94] while TS is used for the first time. Various instances of the proposed parallel
APs with different constituent TS and SA variants were also considered. Each AP
followed a master-slave model and initializes a number of nodes. These can be either
individual processors or threads in a multi-core processor. In the experiments the
APs were run on 3 and 5 nodes. Henceforth, the following notation is used:

(i) TS: sequential TS algorithm.

(ii) SA: sequential SA algorithm.

(iii) AP (TS, k): homogeneous AP on k CPUs, comprising solely TS instances.
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Table 3.3: Results for the sequential TS algorithms.

Problem Alg. Median Best

n×m NL AC Time (msec) NL AC Time (msec)

5× 5 TS 10 16 15184.24 10 16 1492.77
TSr 10 16 7603.43 10 16 1564.04

6× 6 TS 20 32 7936.34 20 32 3365.81
TSr 20 32 7342.95 20 32 3502.38

7× 7 TS * 46 48 7332689.32 46 48 4540495.85
TSr 46 56 2870727.66 46 48 2242817.24

8× 8 TS 98 80 78001050.97 100 80 61694764.99
TSr 98 88 9287593.35 100 80 83956598.72

(iv) AP (SA, k): homogeneous AP on k CPUs, comprising solely SA instances.

(v) AP (TS, SA, k): heterogeneous AP on k CPUs, comprising both TS and SA in-
stances.

In all parallel APs, the master node served only for bookkeeping and solution storage
purposes, while the slave nodes were devoted to the algorithms. Thus, the APs on 3

and 5 nodes contained 2 and 4 algorithms, respectively.
The experimental evaluation was conducted on the saw cluster of the Sharcnet1

consortium. Each node of this cluster consists of 8 cores (2 sockets × 4 cores per
socket) using Intel© Xeon 2.83 GHz processors with 16 GB RAM. All source codes
were developed in the C programming language. For the parallelization, the OpenMPI
project2 libraries were used with the gcc compiler.

The considered test suite included four bijective S-boxes design problems that have
been commonly used for benchmarking in relevant works. In parallel computing
environments, the running time of the algorithms has special merit [95]. Usually,
strict restrictions apply on the maximum available time per user, while significant
costs may apply to users occupying the machines for long time. Adhering to these
requirements, running time was considered to be the computational budget in the

1http://www.sharcnet.ca
2http://www.open-mpi.org
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Table 3.4: Results for the sequential SA algorithms.

Problem Alg. Median Best

n×m NL AC Time (msec) NL AC Time (msec)

5× 5 SA1 * 10 16 23985.54 10 16 11168.44
SA2 10 16 48594.72 10 16 37122.27
SA3 * 10 16 9057.50 10 16 4995.97
SA4 10 24 12210.65 10 16 35346.25
SAr * 10 16 44607.71 10 16 22363.94

6× 6 SA1 * 20 32 2568.39 20 32 2379.13
SA2 20 32 34616.83 22 40 814711.13
SA3 * 20 32 3983.65 20 32 3961.48
SA4 20 32 67908.50 20 32 3951.24
SAr 20 32 13223.55 20 32 2853.44

7× 7 SA1 * 46 48 28461662.76 46 48 1375571.42
SA2 46 56 243804.27 46 56 51618.37
SA3 * 46 48 15404001.48 46 48 1639139.68
SA4 46 56 405697.99 46 56 142187.42
SAr 46 56 192213.00 46 48 4992287.41

8× 8 SA1 * 100 88 2827104.23 100 80 1769426.69
SA2 100 88 30456410.60 100 88 1019285.79
SA3 * 100 88 2644293.84 100 80 2230341.29
SA4 100 88 37945562.16 100 88 1890570.36
SAr * 100 88 9521700.16 100 80 10031840.50

experimental study. Different budget was provided for each test problem, taking its
complexity into consideration. The considered test problems, the dimension D of
the corresponding permutation vectors, the cardinality of the search space, and the
corresponding time budget per experiment are reported in Table 3.1. The imposed
time limits are challenging since, in similar works, running times that span even
several days have been reported.

The execution of each algorithm was terminated as soon as it exceeded the prede-
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fined running time. In the parallel APs, the total running time was equally allocated
to the constituent algorithms. A number of 25 independent experiments were con-
ducted per algorithm and test problem. At each experiment, the best detected solution
(S-box) and the elapsed running time until its detection was recorded.

In statistical comparisons, the algorithms were assessed on the basis of solution
quality, i.e., the nonlinearity (primarily) and autocorrelation (secondarily) of the
achieved solutions, as analyzed in Section 3.4.2. In case of ties under these crite-
ria, the required running times for attaining the solutions were used to identify the
dominant algorithm.

3.4.3.1 Results of sequential algorithms

The first round of experiments was devoted to the sequential versions of TS and SA.
It is well established that parameterization affects the algorithms’ performance. For
this reason, the following two settings for both algorithms were considered:

(i) Fixed parameter values according to trial-and-error preprocessing.

(ii) Randomly assigned parameters.

The obtained parameter values for the first case are reported in Table 3.2. Note that the
parameters ST and α of SA exhibited two different promising values each, resulting
in four distinct SA instances. Henceforth, the following notation for the sequential
approaches will be used:

(1) TS: TS with fixed parameter sTL = D.

(2) TSr: TS with randomly and uniformly selected sTL in the range [D, 2D].

(3) SA1: SA with ST = 1500 and α = 0.5.

(4) SA2: SA with ST = 1500 and α = 0.98.

(5) SA3: SA with ST = 2500 and α = 0.5.

(6) SA4: SA with ST = 2500 and α = 0.98.

(7) SAr: SA with randomly and uniformly selected ST and α in the ranges
[1500, 2500] and [0.5, 0.98], respectively.
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For each test problem and algorithm, the obtained solutions over the 25 experiments
were ranked according to their quality, i.e., their nonlinearity (NL) value (primarily),
their autocorrelation (AC) value (secondarily), and the required running time other-
wise. The median and the best solutions in the ranking are reported for the sequential
TS and SA algorithms in Tables 3.3 and 3.4, respectively. The median was preferred
against the mean due to the discrete (integer) nature of the NL and AC objectives, as
well as due to its use in the considered statistical significance tests.

As reported in Table 3.3, the two TS approaches achieved identical median so-
lutions in terms of NL and AC for the 5 × 5 and 6 × 6 problems. In the rest of the
problems, the AC values achieved by TS were better than that of TSr. This is rea-
sonable since TS admitted carefully selected parameters through preprocessing. The
best solutions were identical in all cases. For the most challenging 7 × 7 and 8 × 8

problems, TSr achieved a solution of inferior AC quality but same NL value with TS.
On the other hand, as the problem dimension increases, TSr seems to require shorter
running time than TS to attain solutions of equal quality with the reported medians.

The experimentation was supported by pairwise Wilcoxon rank-sum tests at sig-
nificance level 95% among the algorithms. For each test problem, the solutions pro-
vided by TS were compared against those of TSr with respect to NL (primarily), AC
(secondarily), and running time otherwise. In case of statistically significant differ-
ences between the two algorithms, the dominating one was awarded a win, while a
loss was counted for the other. In case of statistical indifference, both algorithms were
awarded a draw. The conducted tests revealed insignificant differences in almost all
test problems, verifying the mild parameter sensitivity of the TS algorithm on the
considered problems. The exception to this was the 7 × 7 problem, where TS was
the dominant algorithm in terms of wins. This is marked with the star “*” symbol in
Table 3.3.

The corresponding results for the SA algorithms are reported in Table 3.4. Al-
though there are only few differences in the reported median and best values for
the NL, considerable differences are observed for the AC values. A closer look in
Table 3.4 reveals that the SA1 and SA3 variants, which assumed the α = 0.5 parame-
ter, exhibited superior performance, always attaining the best solution. This indicates
that rapid modulation of the temperature parameter can be beneficial for the specific
problems under the used strict computational budgets. The only exception is the 6×6
problems, where the SA2 variant discovered the overall best solution in terms of NL.
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Table 3.5: Results of the APs for the 5× 5 and 6× 6 test problems.

Algorithm Median Best

NL AC Time (msec) NL AC Time (msec)

5× 5 S-box

TS 10 16 15184.24 10 16 1492.77
AP (TS, 3) * 10 16 6576.10 10 16 1039.90
AP (TS, 5) * (2) 10 16 4080.50 10 16 643.20

TSr 10 16 7603.43 10 16 1564.04
AP (TSr, 3) 10 16 4430.70 10 16 814.80
AP (TSr, 5) * (1) 10 16 3651.60 10 16 1272.50

SA3 10 16 9057.50 10 16 4995.97
AP (SA3, 3) 10 16 3988.60 10 16 3988.60
AP (SA3, 5) 10 16 10040.00 10 16 6645.80

SAr 10 16 44607.71 10 16 22363.94
AP (SAr, 3) * 10 16 6479.80 10 16 4654.60
AP (SAr, 5) * 10 16 6790.80 10 16 2176.20

AP (TS, SA3, 3) 10 16 10362.30 10 16 557.20
AP (TS, SA3, 5) 10 16 4998.70 10 16 1552.90
AP (TSr, SAr, 3) 10 16 6777.50 10 16 1481.50
AP (TSr, SAr, 5) * 10 16 4555.60 10 16 1020.30

6× 6 S-box

TS 20 32 7936.34 20 32 3365.81
AP (TS, 3) 20 32 6803.30 22 32 657451.30
AP (TS, 5) * 20 32 6693.30 20 32 3355.80

TSr 20 32 7342.95 20 32 3502.38
AP (TSr, 3) 20 32 7455.60 22 32 1193029.70
AP (TSr, 5) * 20 32 3904.10 22 32 881951.40

SA3 * (1) 20 32 3983.65 20 32 3961.48
AP (SA3, 3)

(2) 20 32 4026.40 20 32 3973.60
AP (SA3, 5) 20 32 4130.80 20 32 4052.50

SAr 20 32 13223.55 20 32 2853.44
AP (SAr, 3) 20 32 3807.80 20 32 2519.80
AP (SAr, 5) * 20 32 3799.30 20 32 2542.20

AP (TS, SA3, 3) 20 32 4390.40 20 32 3844.70
AP (TS, SA3, 5) * 20 32 4224.80 20 32 3585.90
AP (TSr, SAr, 3) 20 32 4185.40 20 32 3031.50
AP (TSr, SAr, 5) 20 32 4136.00 20 32 2762.60
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Table 3.6: Results of the APs for the 7× 7 and 8× 8 test problems.

Algorithm Median Best

NL AC Time (msec) NL AC Time (msec)

7× 7 S-box

TS * (1) 46 48 7332689.32 46 48 4540495.85
AP (TS, 3) 46 48 10670926.70 46 48 531649.50
AP (TS, 5) * 46 56 404443.60 46 48 1725213.90

TSr * 46 56 2870727.66 46 48 2242817.24
AP (TSr, 3) * 46 48 6859680.70 46 48 640373.80
AP (TSr, 5) * 46 56 960809.10 46 48 4461868.70

SA3 46 48 15404001.48 46 48 1639139.68
AP (SA3, 3) * 46 48 12653260.80 46 48 276356.10
AP (SA3, 5) * (1) 46 48 3155517.80 46 48 183949.40

SAr 46 56 192213.00 46 48 4992287.41
AP (SAr, 3) * 46 56 33075.10 46 48 2417257.80
AP (SAr, 5) * 46 56 114760.80 46 48 624332.80

AP (TS, SA3, 3) * 46 56 102293.00 46 48 375019.10
AP (TS, SA3, 5) * 46 48 6029739.40 46 48 847927.20
AP (TSr, SAr, 3) * 46 56 110495.10 46 48 5592137.80
AP (TSr, SAr, 5) 46 56 159311.90 46 48 3156178.30

8× 8 S-box

TS * 98 80 78001050.97 100 80 61694764.99
AP (TS, 3) 98 88 11125639.50 98 80 18167071.70
AP (TS, 5) 98 88 13297265.00 98 80 15577934.10

TSr 98 88 9287593.35 100 80 83956598.72
AP (TSr, 3) * 98 88 9266743.50 98 80 15573342.40
AP (TSr, 5) 98 88 10818025.60 98 80 9497480.20

SA3
(1) 100 88 2644293.84 100 80 2230341.29

AP (SA3, 3) * 100 88 910879.20 100 80 5821906.80
AP (SA3, 5)

(2) 100 80 16348693.20 100 80 3554649.30

SAr 100 88 9521700.16 100 80 10031840.50
AP (SAr, 3) 100 88 5256191.20 100 80 19673499.00
AP (SAr, 5) 100 88 7079210.10 100 80 4949492.80

AP (TS, SA3, 3) * 100 88 4023823.20 100 80 10780589.40
AP (TS, SA3, 5) * 100 88 2910635.10 100 80 2351611.20
AP (TSr, SAr, 3) 100 88 15498679.60 100 88 8189413.10
AP (TSr, SAr, 5) 100 88 5374450.40 100 80 5179593.80
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However, even in this case, the AC of this solution was higher than the aforemen-
tioned approaches. Interestingly, the random-parameter variant SAr closely followed
in performance the fixed-parameter variants.

Pairwise Wilcoxon rank-sum tests were conducted among all SA variants. For each
test problem, the dominant approaches in terms of wins are marked with a star “*”
symbol in Table 3.4, and they have statistically indifferent performance among them.
Overall, the SA3 variant is the most prominent as the problem dimension increases.
Also, it achieved very competitive running times, especially for its best solutions. This
can be attributed to the ST = 2500 setting that, combined with the rapid decrease
of the temperature due to α = 0.5, promoted the rejection of non-improving moves
more rapidly than in the rest of the SA approaches. Thus, it resulted in fast transition
of the algorithm’s dynamic from global to local search. Overall, SA appeared to be
more sensitive on its parameter setting than TS, while its performance was highly
competitive to TS.

3.4.3.2 Results of algorithm portfolios

The second round of experiments focused on the proposed APs. Both fixed and
random parameters were considered for the constituent TS and SA algorithms. Due
to the large number of combinations, the experiments were restricted on APs com-
prising two variants of each algorithm. Thus, the promising TS, TSr, SA3, and SAr

algorithms were selected to form APs running on 3 and 5 nodes. The designed APs
consisted of either a sole algorithm (homogeneous APs) or two different algorithms
(heterogeneous APs).

For each test problem, 25 independent experiments were conducted per AP and
they were statistically analyzed similarly to the sequential approaches. The obtained
results are reported in Tables 3.5 and 3.6. Note that all the received solution values
lie within the theoretical bounds reported in [20]. For each test problem, the APs
are reported in blocks according to their constituent algorithm. The results of the
baseline sequential algorithms, namely TS, TSr, SA3, and SAr, are reproduced from
Tables 3.3 and 3.4 to facilitate comparisons, and they are highlighted with light gray
color in Tables 3.5 and 3.6.

For example, in the upper half of Table 3.5 (5×5 problem), the first block consists
of the sequential TS algorithm and the two homogeneous TS-based APs, namely
AP (TS, 3) and AP (TS, 5), with 3 and 5 nodes, respectively. Next comes the block
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Figure 3.1: Number of wins per algorithm and test problem.

of TSr and its related homogeneous APs, followed by the blocks of SA3 and SAr,
along with the corresponding homogeneous APs. The last block for the 5×5 problem
reports results for the heterogeneous APs that combine fixed-parameter and random-
parameter variants of the constituent algorithms.

The dominating approaches in terms of wins in the pairwise Wilcoxon rank-
sum tests are marked with a star “*” symbol in Tables 3.5 and 3.6. In addition, all
approaches competed against each other and the two best-performing algorithms in
terms of wins in the rank-sum tests are marked with the corresponding superscripts.
For example, for the 5 × 5 problem in Table 3.5, AP (TSr, 5) was ranked first, while
AP (TS, 5) was ranked second among the best-performing approaches. Similarly, SA3

and AP (SA3, 3) were the best algorithms for the 6 × 6 problem. Note that starred
algorithms within the same block had equal numbers of wins among them. The total
number of wins per algorithm and test problem are also graphically illustrated in
Fig. 3.1.

Diverse conclusions can be derived from the reported results. In the 5×5 problem,
homogeneous APs appear to be superior to their sequential counterparts in terms of
the reported median solution values or time efficiency (in case of equal quality). The
heterogeneous APs appear to consistently achieve high-quality median solutions and
high time efficiency compared to the baseline algorithms. Similar conclusions are
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Table 3.7: Median numbers of function evaluations (FEV) required by the APs for
all test problems.

Algorithm 5× 5 6× 6 7× 7 8× 8

NL AC FEV NL AC FEV NL AC FEV NL AC FEV

AP (TS, 3) 10 16 27698 20 32 2172 46 48 641354 98 88 65297
AP (TS, 5) 10 16 16857 20 32 2030 46 56 16516 98 88 66930

AP (TSr, 3) 10 16 19026 20 32 2112 46 48 471266 98 88 49958
AP (TSr, 5) 10 16 14583 20 32 2006 46 56 40686 98 88 35425

AP (SA3, 3) 10 16 16106 20 32 1090 46 48 878650 100 88 6032
AP (SA3, 5) 10 16 43412 20 32 1048 46 48 237382 100 80 111113

AP (SAr, 3) 10 16 28772 20 32 2375 46 56 1743 100 88 54970
AP (SAr, 5) 10 16 30124 20 32 1575 46 56 7684 100 88 57190

AP (TS, SA3, 3) 10 16 43742 20 32 1074 46 56 6019 100 88 36013
AP (TS, SA3, 5) 10 16 21094 20 32 1024 46 48 351183 100 88 26208
AP (TSr, SAr, 3) 10 16 28423 20 32 2039 46 56 7626 100 88 131924
AP (TSr, SAr, 5) 10 16 19769 20 32 2010 46 56 11140 100 88 58931

derived for the reported best solutions.
Another interesting observation is that APs with 5 nodes outperformed those with

3 nodes. This is an empirical confirmation of the rationale behind the use of mul-
tiple algorithms in APs. Moreover, the overall best AP in the experiments was the
AP (TSr, 5), which consists of four instances of the TS algorithm with random param-
eters, followed by the homogeneous AP (TS, 5) that consists of four fixed-parameter
instances of TS. Similar performance was attained for the 6 × 6 problem. The APs
habitually outperformed the sequential algorithms. However, in this case the SA3

approach was ranked first, followed by AP (SA3, 5). Clearly, the previously neglected
SA3 algorithm appeared to form efficient AP schemes in this case.

In the 7 × 7 and 8 × 8 problems reported in Table 3.6, enhanced performance
was achieved for the TS-based APs with 3 nodes. This can be attributed to the
exponentially increasing difficulty of the problem as the size of the S-box increases
linearly, which augments the time requirements of the algorithms for the detection
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(c) 7× 7 test problem.

Figure 3.2: Required execution time to achieve the reported median solutions.
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(d) 8× 8 test problem.

Figure 3.3: Nonlinearity of the best solution during the algorithms’ execution.
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Figure 3.4: Autocorrelation of the best solution during the algorithms’ execution.
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Figure 3.5: Standard deviation of running time for all algorithms and problems.

of high-quality solutions. The constituent algorithms of the APs with 3 nodes were
assigned more time than the algorithms in APs with 5 nodes (recall that the total
computational budget is the same for all APs). Thus, they could probe the search
space more thoroughly, providing better solutions. This is a strong indication that
the benefits from the use of APs decline if the running time per constituent algorithm
is inadequate for deploying its dynamics.

In contrast to TS-based APs, the SA-based APs with 5 nodes outperformed the
ones with the 3 nodes in most test problems. This suggests that SA-based APs ex-
ploited the additional nodes more efficiently. In particular, the inherent randomization
of SA proved to enhance the exploration dynamics of the APs, which is beneficial in
challenging problems. In fact, for the 8× 8 test problem, AP (SA3, 5) was the best AP
with marginal difference from the sequential SA3 approach, which was ranked first
mostly due to its rapid detection of the best solutions. This verifies the necessity of
providing adequate running time to the algorithms when dimension increases. Note
that AP (SA3, 5) was the variant that achieved the best median solution as can be seen
in Table 3.6.

Overall, the considered APs exhibited competitive performance in all test problems.
They were able to regularly achieve high-quality solutions and time efficiency. This
is clearly communicated from Fig. 3.2, where the algorithms that achieved the best

84



Table 3.8: Maximum nonlinearity values achieved by the considered algorithms
against other approaches in the literature.

Prob. Curr. workPicek et al. [96] Laskari et al. [86] Clark et al. [88]Millan et al. [97]

5× 5 10 10 10 10 10

6× 6 22 22 20 22 20

7× 7 46 48 46 48 46

8× 8 100 104 98 102 100

medians per problem are ranked according to their running times. In all cases, APs
occupy higher positions due to their high time-efficiency. The 8 × 8 test problem is
excluded because only the AP (SA3, 5) variant achieved the best median solution.
Another interesting observation is that APs based on SA3 appear to be the most
efficient. This implies that SA-based APs gain more benefits from fixed-parameter
settings.

As previously mentioned, in parallel computing environments the running time of
an algorithm constitutes an established measure of efficiency. However, for complete-
ness purposes, the median of the number of function evaluations required by the APs
for each test problem is reported in Table 3.7. In general, the observed performance
with respect to function evaluations is aligned with the previous findings based on
the running time of the algorithms.

For better understanding of the algorithms, the progress of their NL value dur-
ing their execution, averaged over the 25 experiments, is depicted in Fig. 3.3. The
corresponding AC values are illustrated in Fig. 3.4. Specifically, the running time
was divided into equal segments and the achieved average NL and AC was plotted
per segment. The curves yield apparent NL differences between the sequential algo-
rithms and the APs. Also, it can be seen that AC is not monotonically decreasing but
rather fluctuates. This is anticipated since AC is a lower-priority objective compelled
to follow the changes in NL.

Another issue of interest in APs is the reduction of risk, which is defined in terms
of the standard deviation of the AP’s time efficiency. For the employed algorithms this
can be interpreted as the standard deviation of the running time. Figure 3.5 reveals
the standard deviations of running times for all algorithms and problems. Apparently
APs achieved smaller standard deviations, especially for the harder problems, thereby
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Table 3.9: Minimum autocorrelation values achieved by the considered algorithms
against other approaches in the literature.

Problem Current work Laskari et al. [86] Clark et al. [88]

5× 5 16 16 16

6× 6 32 32 32

7× 7 48 56 48

8× 8 80 80 80

revealing their risk-reduction properties.
Finally, for completeness purpose, Tables 3.8 and 3.9 report the best NL and AC

values achieved by the proposed algorithms within the provided strict time budgets,
against other computational methods from the literature. Specifically, the best results
of Picek et al. [96], Laskari et al. [86], Clark et al. [88], and Millan et al. [97] are
reported. Regarding the NL values, some differences mainly for the most difficult
problems are witnessed. In particular, for the 7 × 7 and 8 × 8 problems, the cost
functions proposed in [96] and [88] resulted in solutions of high NL values. The use
of these cost functions constitutes an interesting direction for future research, as they
can be incorporated in the proposed APs to boost their performance.

For the 8× 8 test problem, some additional works can be found in the literature.
In [98] the proposed approach was based on a finite field inversion method and
managed to detect 8 × 8 S-boxes with NL value equal to 106. In [99], a reverse
genetic algorithm with initial population of AES affine equivalent S-boxes was used,
succeeding to detect solutions with NL value 112. Finally, in [100] the proposed
approach exploited important theoretical findings on power mappings. The employed
method managed to detect S-boxes with NL values equal to 112.

Regarding autocorrelation, Table 3.9 shows that the other approaches achieved
similar results to the studied APs. The main difference is observed in the 7×7 problem,
where the proposed approach achieved the best AC along with the approach of [88].

3.5 Application in Traffic Light Scheduling

Urban traffic planning is a fertile research area in smart cities to improve efficiency,
environmental care, and safety, since traffic jams and congestion are one of the biggest
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sources of pollution and noise. Traffic lights play an important role in solving these
problems as they control the flow of the vehicular network in the city. These devices
are positioned at road intersections, pedestrian crossings, and other locations to con-
trol conflicting flows of traffic and avoid possible accidents. At each intersection, all
traffic lights are synchronized to carry out a sequence of valid phases periodically.
Each phase consists of a combination of light color states and determines the time
span that vehicles are allowed to use the roadway. The assignment of the time span
for each phase in the phase sequence of all intersections at an urban area is called
the traffic light plan.

Finding an optimal traffic light plan is crucial for reducing the number of stops for
red lights, thereby minimizing the travel time of vehicles through the road network.
Intuitive examples are the well known green waves, which facilitate a continuous traffic
flow in one main direction. Reducing the travel time prevents drivers from time-loss
and late arrivals, which induce economic impact. Also, it helps reducing the fuel
consumption and CO2 emissions while the vehicle is stopped at red lights.

The many obvious benefits of optimal traffic light scheduling have motivated a
growing field of research related to automatic traffic control signals. A number of
industrial solutions have been proposed for this problem, such as the Cross Zlín
[101] and ATC [102]. These solutions focus on the real-time configuration of a single
traffic light junction. Also, they require the existence of infrastructures that provide
online information about the changing traffic situations. Here, a different direction
is followed, because the increasing number of vehicles requires the transition from
the local control of a single intersection to a holistic approach considering a large
urban area, and because optimizing the existing traditional traffic lights rests still
much unexplored.

This holistic approach is only possible by using advanced computational resources
and techniques due to the complexity of the problem, which is twofold. Firstly, the
problem usually has huge search spaces. For example, a simple intersection with 8
traffic light phases represents 558 (more than 8.3× 1014) possible solutions. Secondly,
there is no closed mathematical formulation of the problem to assess the quality of
candidate traffic lights configurations. Thus, the utilization of simulators is necessary.
However, simulators are usually time-consuming, typically requiring from seconds up
to a few minutes per simulation. Hence, new and efficient algorithmic tools become
indispensable in real-world scenarios.
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Metaheuristics have been widely used to tackle traffic light scheduling problems.
Early attempts were mostly based on Genetic Algorithms (GAs). The first study ap-
peared in [103] where a GA was employed to optimize the timing of the traffic light
cycles of nine intersections located in the city of Chicago (IL), USA. The authors pro-
posed further investigation of GAs on larger problem instances. In [104] the authors
studied the reactions of drivers to changes of the traffic lights timing. Their approach
used a GA and it was evaluated on a case study of the city of Chester, UK. A GA was
used also in [105] to optimize traffic light cycle programs. In this work, the authors
assumed that the traffic lights timing of each intersection works independently of
other intersections. They tested their approach on a test case of a commercial area
of the city of Santa Cruz, Spain. Another work involving the application of GAs on a
traffic light scheduling problem appeared in [106]. The proposed approach tackled
the problem of controlling the traffic lights timing for vehicles and pedestrians under
a dynamic traffic load situation.

Recently, there has been a number of works focusing on the application of the
Particle Swarm Optimization (PSO) algorithm on finding optimal traffic light sched-
ules. In [107] PSO was employed to train a fuzzy logic controller installed at each
intersection. Specifically, PSO was used to train the membership functions and the
rules of the controller, targeting to detect the optimal duration of the green signal for
each phase of the traffic lights. In [108] the authors proposed a PSO algorithm to dis-
cover isolation niches on a traffic light scheduling problem. The proposed approach
was evaluated on a small problem instance consisting of an one-way road with two
intersections. This work focused on the potential of the algorithm to maintain its
diversity without trying to gain deep insight on the problem at hand.

A multi-objective PSO algorithm that employed a predictive model control strategy
to optimize traffic light cycle schedules was studied in [109]. The proposed algorithm
was evaluated on an urban network consisting of 16 intersections and 51 links. In [21,
50] PSO was proposed for computing the optimal traffic light cycle programs. The
main objectives of these works were the maximization of the number of vehicles that
reach their destinations, as well as the minimization of the total trip time of the
vehicles. The evaluation of the cycle programs was based on the popular microscopic
SUMO simulator. The proposed algorithm was assessed on small/medium urban areas
located in the cities of Málaga and Sevilla (Spain), and in Bahía Blanca (Argentina).

More recently, PSO algorithms were used for detecting traffic light cycle programs,
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aiming at the reduction of fuel consumption and vehicular emissions in metropolitan
areas [110, 111]. These approaches followed a traffic emission model standardized
by the European Union reference framework. The proposed algorithm achieved sig-
nificant improvements in the considered objectives compared to traffic light cycle
programs designed by experts.

This section focuses on various aspects of the traffic light scheduling problem.
Firstly, an approach based on the established Differential Evolution algorithm [38]
is proposed. Several variants of the algorithm are tested to distinguish the most
competitive ones. Also, parallel APs are studied on realistic problem instances. Finally,
the proposed approach is evaluated on two large, real-world urban scenarios for the
cities of Málaga (Spain) and Paris (France). The latter involves the optimization of
more than 375 traffic lights, while the largest instances tackled in previous works [21,
50] were restricted to cases of up to 190 traffic lights.

3.5.1 Problem Formulation

Here, the mathematical model presented in [21,50] is used for the traffic light schedul-
ing problem. The considered problem has multiple objectives. The first objective is
to maximize the number VR of vehicles that reach their destination or, equivalently,
minimize the number VNR of vehicles that do not arrive at their destination during a
given simulation time Tsim. A second objective is to minimize the total trip time Ttrip

of the vehicles, which is equal to the sum of the trip times of all vehicles. The trip
time refers to the simulation time individually consumed by each vehicle to arrive
at its destination. Evidently, vehicles that fail to reach their destination consume the
whole simulation time.

A third objective is to minimize the sum of stop and wait times of all vehicles,
denoted by Tsw. The stop and wait time refers to the overall time that each vehicle
individually has to stop at those intersections that have traffic lights in red color,
thereby delaying its trip. Another objective is the maximization of the ratio P of
green and red colors in each phase state of all intersections, which is defined as
follows,

P =
intr∑
i=0

ph∑
j=0

di,j
gi,j
ri,j

, (3.6)

where intr denotes the number of all intersections; ph denotes the number of all
phases; and gi,j , ri,j , denote the number of green and red signal colors, respectively,
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at intersection i and phase state j, with duration di,j. The minimum value of ri,j is
set to 1 in order to prevent division by zero.

The intuition behind Eq. (3.6) lies in the effort to promote green traffic signals
at intersections overburdened by traffic flow, and red traffic signals at intersections
where low traffic flow is observed. Traffic lights with extended times in red color may
overwhelm not only the intersection where they are located, but also neighboring
intersections, creating extensive traffic flow problems in the city.

All objectives are combined into a single-objective function formulated as follows,

fobj =
Ttrip + Tsw + VNR Tsim

V 2
R + P

. (3.7)

It shall be noted that the quantities under minimization are placed in the numerator
of Eq. (3.7), whereas the ones under maximization are placed in the denominator.
Therefore, the problem is a global minimization task. The term VR is squared to
prioritize over all other terms as it represents the main (first) objective. Also, the
number of non-arriving vehicles VNR is multiplied by the simulation time Tsim to
induce a penalization for this undersided scenario.

3.5.2 Employed algorithms

The considered problem is tackled through the Differential Evolution and Particle
Swarm Optimization algorithms. Details about the algorithms can be found in Sec-
tions 2.6 and 2.7, respectively. Regarding the Particle Swarm Optimization algorithm,
Eq. (2.16) is employed for updating the velocity of the particles. Additionally, the
inertia weight changes linearly during the optimization according to Eq. (2.17) and
the velocity is updated according to Eq. (2.18), which is used especially for combina-
torial problems. Apart from the sequential algorithms, the Parallel AP model that is
exposed in Section 3.3.2 is employed. In this section, the employed SUMO simulator
is briefly described, and details are provided about the solution encoding employed
by the algorithms.

3.5.2.1 SUMO: Simulator of Urban Mobility

As already mentioned, simulation plays a crucial role in the assessment of optimiza-
tion algorithms for the traffic light scheduling problem. Simulator of Urban MObility
(SUMO) [112] constitutes a well established tool for this purpose. SUMO is a popular,
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open-source, highly-portable micro-simulator. It requires a number of input files in
XML format that contain information about the road scenarios to be simulated.

Specifically, there is a network file .net.xml that stores information about the
form of the map, namely nodes, edges, and connection links among them. A route
file .rou.xml holds information about the journey of a vehicle from a starting point
(starting vertex) to an ending point (destination vertex) as well as all intermediate
points visited by the vehicle. The .add.xml files contain additional information about
the map or the traffic lights. Finally, the .tripinfo.xml contains information used to
evaluate traffic light cycle programs. For instance, it contains information about the
vehicles’ departure and arrival times that are used to compute each vehicle’s total
trip time.

A candidate solution vector (traffic light cycle program) is forwarded to SUMO,
which in turn computes its objective value after a simulation procedure. SUMO starts
the simulation after transforming the input vector and the information contained in
its data files into real-world objects such as vehicles, intersections, traffic lights, etc.
When the simulation is completed, SUMO returns all the information that is neces-
sary for the computation of the objective function value of the specific traffic light
cycle program for the city. Note that a single SUMO call is adequate for computing
the corresponding function value because SUMO works in a deterministic way. De-
terministic traffic simulators are preferable to stochastic ones as they acquire similar
results at considerably lower computational cost [105].

3.5.2.2 Solution Enconding

Similarly to previous works [21,50], each direction component of the solution vector
represents a phase duration of one state of the traffic lights of a particular intersection.
Specifically, each state of each phase duration is encoded via an integer number, be-
longing to a simple vector of integers. The proposed encoding is desirable for various
reasons. Firstly, the SUMO simulator itself employs integer numbers to represent the
discrete time steps of the simulation procedure. Therefore, the mapping between the
phase duration used by the data structures of SUMO and the solution vector is simpli-
fied. Secondly, the employed population-based algorithms can take into consideration
the interdependence of variables, representing traffic lights of the same intersection
as well as traffic lights of different intersections that exhibit high proximity.

Regarding the initialization of DE and PSO, the candidate solutions are initialized

91



Table 3.10: Málaga and Paris problem instances.

Problem
instance

Number of
traffic logics

Number of
traffic lights

Number of
vehicles

Málaga 56 190 1200
Paris 70 378 1200

Table 3.11: Parameters of the Algorithms.

Alg. Param. Description Value(s)

DE N Population size 50
F Differential weight {0.5, 0.7}
CR Crossover probability {0.05, 0.1}

PSO N Population size 100
c1 Cognitive parameter 2.05
c2 Social parameter 2.05
ωmin Min. inertia weight 0.1
ωmax Max. inertia weight 0.5

in the range [5, 60]. Each value in this range represents the time units (in seconds)
that the corresponding traffic light will keep the same signal color, in the case of red
and green colors. As for the amber signal color, its time interval is set to a constant
value (4 seconds), which remains unchanged during the optimization. The proposed
interval is selected according to various real-world traffic light scenarios provided by
the City Council of Málaga (Spain).

The two algorithms are typically used in continuous optimization, where solutions
consist of real numbers. The considered problem belongs to the class of combinatorial
optimization problems. In order to tackle it, both DE and PSO use a proper rounding
of the solution vector at each iteration, thus converting it to a vector of integer val-
ues. This conversion is necessary also for implementation purposes, since the SUMO
simulator admits only integer input values.

3.5.3 Experimental Results

The proposed parallel AP approach is particularly suitable for tackling real-world
urban scenarios. For this reason, the proposed approach was evaluated on two close-

92



Table 3.12: Results of DE algorithm on the Málaga instance.

OP F CR Mean StD

DE1 0.5 0.05 0.4908 0.0098
0.5 0.1 0.4895 0.0085
0.7 0.05 0.5010 0.0073
0.7 0.1 0.4992 0.0049

DE2 0.5 0.05 0.5015 0.0096
0.5 0.1 0.5051 0.0079
0.7 0.05 0.5141 0.0115
0.7 0.1 0.5150 0.0070

DE3 0.5 0.05 0.5030 0.0098
0.5 0.1 0.4809 0.0080
0.7 0.05 0.4979 0.0062
0.7 0.1 0.4979 0.0079

DE4 0.5 0.05 0.4988 0.0091
0.5 0.1 0.4986 0.0114
0.7 0.05 0.5058 0.0091
0.7 0.1 0.5250 0.0134

DE5 0.5 0.05 0.5095 0.0138
0.5 0.1 0.5178 0.0100
0.7 0.05 0.5188 0.0101
0.7 0.1 0.5408 0.0091

to-reality problem cases consisting of large metropolitan areas located in Málaga
(Spain) and Paris (France). The considered problem cases were created by extracting
information from real digital maps. The first problem instance involves the optimiza-
tion of 190 traffic lights, whereas the second one contains 378 traffic lights. Previous
works [21,50] tackled problem instances with no more than 190 traffic lights. The di-
mension of each problem case is equal to the number of the traffic lights it comprises.
More details on the used instances can be found in Table 3.10.

The experimental evaluation was conducted on the saw cluster of the Sharcnet
consortium. The parallel implementations were based on the OpenMPI project. Re-
garding the simulation procedure, each vehicle started its own trip from a starting
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Table 3.13: Results of DE algorithm on the Paris instance.

OP F CR Mean StD

DE1 0.5 0.05 0.7420 0.0117
0.5 0.1 0.7487 0.0096
0.7 0.05 0.7502 0.0109
0.7 0.1 0.7332 0.0052

DE2 0.5 0.05 0.7684 0.0117
0.5 0.1 0.7681 0.0193
0.7 0.05 0.7686 0.0097
0.7 0.1 0.7603 0.0098

DE3 0.5 0.05 0.7764 0.0125
0.5 0.1 0.7627 0.0600
0.7 0.05 0.7602 0.0092
0.7 0.1 0.7366 0.0111

DE4 0.5 0.05 0.7466 0.0111
0.5 0.1 0.7344 0.0088
0.7 0.05 0.7624 0.0063
0.7 0.1 0.7521 0.0092

DE5 0.5 0.05 0.7732 0.0097
0.5 0.1 0.7675 0.0105
0.7 0.05 0.7759 0.0140
0.7 0.1 0.7878 0.0085

point to a destination with a maximum speed of 50 km/h. This speed limit is typical
in urban areas. The simulation time was set to 2200 seconds (iterations of microsimu-
lation) for the Málaga instance and 3400 seconds for the Paris instance, as it consisted
of a larger number of traffic lights. The simulation was conducted by executing the
traffic simulator SUMO release 0.19.0 for Linux.

The first objective of the experiments was to compare the different variants of the
DE algorithm on both problem instances. The population size of the algorithm was set
to 50 individuals each one conducting 600 iterations, resulting in a total computational
budget of 30000 function evaluations. Each function value was obtained by a single
simulation run of SUMO. Two distinct values for the differential weight parameter
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Figure 3.6: Comparison of DE operators on the Málaga instance.

F ∈ {0.5, 0.7} are considered along with the crossover probability CR ∈ {0.05, 0.1}.
Details for the parameterization of the DE algorithm are given in Table 3.11.

For each problem case and DE variant, 10 independent experiments were con-
ducted and the best detected solution was recorded. Each independent experiment
required 10 to 13 hours of simulation, and it was terminated as soon as the maxi-
mum number of function evaluations was attained. For each problem instance and
algorithmic variant, the average of the obtained solution values and the standard
deviation are reported in Tables 3.12 and 3.13. The best approach per problem case,
i.e., the one with the lowest average function value is boldfaced.

For comparison purposes, pairwise Wilcoxon rank-sum tests were performed be-
tween all pairs of the considered approaches. For each variant, the number of wins
was counted, i.e., the number of comparisons that it outperformed another variant
(achieved lower mean function value) with significance level 95%.

The approaches that appear boldfaced in Tables 3.12 and 3.13 exhibited the high-
est number of wins. Specifically, the best approach on the Málaga instance, namely
the one that used the DE3 operator and parameter values F = 0.5, CR = 0.1, won
18 different variants. The best approach on the Paris instance, namely the one that
employed the DE1 operator and parameter values F = 0.7, CR = 0.1, won 17 dif-
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Figure 3.7: Comparison of DE operators on the Paris instance.

ferent variants. Notice that the total number of comparisons among the different DE
variants is equal to 19.

The number of rank-sum wins per DE variant is graphically illustrated in Fig. 3.6
for the Málaga case and Fig. 3.7 for the Paris case. In both cases, there is an evi-
dent superiority of the DE1 operator, achieving 45 wins for the Málaga case and
53 wins for the Paris case. Also, DE3 and DE4 operators achieved high numbers
of wins compared to DE2 and DE5 ones, which exhibited the worst performance.
This fact is attributed to the global information incorporated into the three best-
performing operators. In general, experimental evidence suggests that it is beneficial
to use exploitation-oriented operators in order to rapidly achieve a suboptimal so-
lution under restricted computational budget. Operators DE1, DE3, and DE4 fulfill
this necessity since they take advantage of the globally best solution, which rapidly
leads the population to suboptimal solutions.

In a second round of experiments, the best-performing DE variant for each prob-
lem competed against the global best model of the PSO algorithm. Details about the
employed PSO were given in Section 2.7. Regarding the parameterization of PSO,
the swarm size was set to 100 and the cognitive and social constants were equal to
2.05. The PSO algorithm used an initial inertia weight ωmax = 0.5 that was linearly
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Table 3.14: Results of PSO algorithm on both problem instances.

Problem instance Mean StD

Málaga 0.5081 0.0122
Paris 0.7724 0.0083

decreased to the final value ωmin = 0.1. Recall that the inertia weight adjusts the
exploitation/exploration capabilities of PSO. The selected parameter values are also
reported in Table 3.11.

The obtained average values and standard deviations of PSO are reported in
Table 3.14. Evidently, the best-performing DE variant surmounts the specific PSO
approach on each problem case. For the Málaga instance, the best DE approach
achieved mean function value equal to 0.4809 in contrast to the value 0.5081 achieved
by PSO. Similar performance is observed for the Paris instance where DE achieved
an average value 0.7332 whereas PSO achieved 0.7724. Although the differences be-
tween these values seem marginal, it shall be underlined that the improvement in
the function value from one iteration to another during the optimization was usually
observed in the second or third decimal digit using both DE and PSO algorithms.
Nevertheless, these small fitness differences correspond to important differences in
the solution vectors.

In the third round of the experiments, the proposed parallel AP approach was
evaluated. The best-performing algorithm per problem was selected and implemented
according to the parallelization of population approach. Specifically, the DE variant
was employed that uses DE3 with F = 0.5, CR = 0.1, for the Málaga problem and
the one that uses DE1 with F = 0.7, CR = 0.1, for the Paris problem. The function
evaluations were equally distributed among 2 and 3 nodes in an effort to speed up
the computation process. Details about the proposed parallel AP model are given in
Section 3.3.2. For each problem and algorithmic variant, the execution time required
to achieve a targeted objective function value, ftrg was recorded. For the Málaga
problem, this value was set to 0.50, while for the Paris problem it was equal to 0.74.
The specific values of ftrg were achievable at each independent experiment. As soon
as the algorithm reached the targeted function value or a better one, it terminated its
execution.

A significant gain metric for parallel implementations is the speedup, which com-
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Table 3.15: Results of the parallel approach.

Problem Nodes Time (hours) Speedup

Málaga 2 1.90 –
3 1.41 1.35
4 1.10 1.73

Paris 2 9.28 –
3 5.79 1.60
4 5.29 1.75

putes the ratio between sequential and corresponding parallel execution times. Several
speedup definitions are used in the literature. Here, the weak speedup definition [79]
is used. The weak speedup sm of a parallel algorithm using m processors is defined
as follows,

sm =
Tseq

Tm

, (3.8)

where Tseq is the execution time of the sequential algorithm executed on a single
processor, and Tm is the execution time of the parallel algorithm running on m

processors.
Table 3.15 reports the execution time (in hours) and the achieved speedup for the

best serial algorithm per problem parallelized across a number of nodes. Note that
the reported number of nodes includes the master node, which runs the algorithm,
and the slave nodes that conduct the function evaluations through parallel SUMO
calls. Thus, 2 nodes refer to the serial execution of the algorithm (1 master and 1

slave) and it was used as a baseline for comparisons with the parallel AP approach
that assumes higher number of nodes.

For the Málaga instance, is is observed that the sequential algorithm required 1.90

hours to achieve the considered ftrg. The approaches that exploited 3 and 4 nodes
achieved lower execution times, namely 1.41 and 1.10 hours, respectively. In terms
of speedup, Table 3.15 shows a value of 1.35 for 3 nodes. The speedup value was
further increased when 4 nodes were used. This result was expected since the function
evaluations were distributed among a larger number of nodes, thus enhancing the
performance of the algorithm. However, is is noticed that the percentage of increase
in speedup values from 2 to 3 nodes is lower than the one from 3 to 4 nodes.

For the Paris instance, it is observed that the parallel AP approach was even
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more beneficial. Specifically, the sequential algorithm required 9.28 hours, whereas the
parallel AP approach using 3 and 4 nodes needed 5.79 and 5.29 hours, respectively.
The corresponding speedup values were 1.60 for the 3-node case and 1.75 for the
4-node one. The longer execution time needed for the Paris instance is attributed
to its problem size, which is almost twice the Málaga one, thereby leading to higher
simulation times.

Thus, the proposed parallel AP model has evidently boosted the performance of
the employed algorithms. This finding is highly desirable in real-world traffic light
scenarios as the considered one. Nevertheless, the effect of the simulation procedure on
the acquired results is underlined, since high deviation in the running times needed
by the SUMO simulator was noticed.

3.6 Synopsis

In this chapter, algorithm portfolios were introduced as powerful algorithmic schemes
to tackle hard optimization problems. In the first part, a thorough literature review
was presented related to sequential and parallel AP frameworks. Next, a simple yet ef-
ficient parallel AP framework was proposed where the algorithms were executed with
no information exchange among them. The proposed AP was demonstrated on the
design of bijective S-boxes of high nonlinearity and low autocorrelation. Initially two
well studied trajectory methods, namely TS and SA, were applied on the considered
problem. TS has never been used to design bijective S-boxes before. Next, the algo-
rithms were incorporated into parallel AP frameworks that exploited the widely used
master-slave model. The APs were constructed using either one algorithm (homoge-
neous case) or both TS and SA (heterogeneous case), and were thoroughly compared
with each other and with their constituent algorithms.

Extensive experimental evaluation revealed that the proposed APs can provide
S-boxes of better or equal quality with the sequential algorithms, although in signif-
icantly less time. SA-based APs that used fixed-parameter settings usually outper-
formed TS-based ones in harder test problems, while in smaller test problems TS-
based APs surmounted SA-based ones. Additionally, TS-based APs achieved smaller
standard deviations of running time compared to SA-based ones. In general, the
proposed APs achieved smaller deviations in the time required to attain their best
solution compared to their sequential versions, especially for the harder problems.
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Future research will include the exploration of interactive AP frameworks. Also, more
sophisticated formulations of the problem will be explored, along with different cost
functions such as the spectrum-based cost function reported in the relevant literature.

Finally, a parallel AP for population-based metaheuristic algorithms was proposed.
The AP employed a typical master-slave model and distributed the budget of func-
tion evaluations among the slaves. Its use was suggested for expensive optimization
problems that spend high amounts of time in function evaluations. The parallel AP
was applied on the traffic light scheduling problem. The proposed approach initially
involved applying the sequential DE algorithm on the problem at hand. This was the
first time that the potential of the DE algorithm was investigated on the considered
problem. Next, the DE algorithm was incorporated into a parallel AP to tackle more
realistic instances efficiently. The performance of the proposed approach was com-
pared with the PSO algorithm in terms of solution quality. The proposed methods
have been assessed on two real-world scenarios, consisting of large metropolitan areas
located in Málaga (Spain) and Paris (France).
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Chapter 4

New Parallel Trading-based Algorithm
Portfolio

4.1 Introduction

4.2 Proposed model

4.3 Application in Circulant Weighing Matrices

4.4 Application in Production Scheduling

4.5 Application in Humanitarian Logistics

4.6 Synopsis

4.1 Introduction

In this chapter a novel parallel trading-based algorithm portfolio is proposed. The AP
adopts a trading-based mechanism that dynamically modifies the allocation of the
available execution time among the constituent algorithms. Thus, best-performing
algorithms are assigned higher fractions of execution time than the rest, without
modifying the AP’s total execution time.

The rationale behind the development of APs is based on the concept of investment.
This implies investment either on the algorithms that comprise the portfolio [12,13] or,
in population-based approaches, on the individuals that compose the population [16].
The proposed AP framework introduces a different aspect of investment. Specifically,
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its core idea is inspired by stock trading models and assumes a number of algorithms-
investors that invest on elite solutions playing the role of stocks, while using execution
time as the currency.

4.2 Proposed model

The proposed AP model assumes a number of M metaheuristics that interact with
each other during the optimization process, acting as investors. The AP is allocated
a fixed budget of total running time and employs a master-slave parallelization model
where each algorithm is executed on a single slave node. The total running time
is equally distributed among the algorithms. Each algorithm divides its own run-
ning time into investment time (denoted as Tinv) and execution time (denoted as Texec).
The execution time is devoted to the specific algorithm’s execution solely. On the
other hand, the investment time is consumed by each algorithm for buying solutions
discovered by the other algorithms, if it fails to achieve progress.

The master node is responsible for two basic operations. Firstly, it retains an
archive of M elite solutions, each one corresponding to the best solution discovered
by one of the algorithms of the AP. Secondly, the master node prices each elite solution,
assigning a cost (in terms of time) that is demanded for an algorithm to acquire it.
For this purpose, the master sorts the solutions in descending order with respect
to their objective values. Then, the price of each solution is defined in terms of its
corresponding position ρi in the ranking, i.e.,

Ci =
ρi ×BC

M
, (4.1)

where BC = β Tinv is a base cost, and β is a constant that takes values in [0, 1]. The
parameter β tunes the algorithm’s elitism. Clearly, high values of β limit the number
of elite solutions an algorithm can buy throughout the optimization process.

The slave nodes communicate with each other via the exchange of asynchronous
messages through the master node. Specifically, if slave node i discovers a new elite
solution xnew, it sends it to the master node where it replaces its existing one xi.
Interaction among the algorithms takes place when an algorithm cannot improve
its own elite solution for an amount of time Tnoimp. In this case, the master node
acts as trading broker that applies a solution selection policy to help the algorithm
that would like to make a purchase (buyer algorithm) make the most profitable
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Algorithm 4.1 Trading-based algorithm portfolio: master node
Input: Execution time (Texec), Investment time (Tinv), Constant β

Output: Best detected solution
1: solFound ← False

2: while (NOT solFound) do

3: wait for requests from slaves

4: if (slave i requests to send a new elite solution xnew) then

5: replace xi with xnew in the archive of elite solutions

6: else if (slave i requests to buy) then

7: sort elite solutions in descending order w.r.t. their objective values

8: price elite solutions

9: select elite solution xj with cost Cj , j ̸= i with the maximum ROI

10: increase Texec of slave j by Cj

11: decrease Tinv of slave i by Cj

12: send elite solution xj to slave i

13: end if

14: if (xi is global optimum) then

15: solFound ← True

16: end if

17: end while

investment. In particular, the solution selection mechanism proposes elite solutions
to the byer algorithm based on the Return On Investment (ROI) index. ROI comes
from trading theory and it is defined as follows,

ROIj =
f − fj
Cj

, j ∈ {1, 2, . . . ,M} , (4.2)

where f denotes the objective value of the buyer’s best solution, fj denotes the ob-
jective value of the seller’s elite solution, and Cj is the assigned price.

Among the possible elite solutions, the algorithm opts to buy the solution that
maximizes the ROI index and has better objective value than its own one. If the buyer
algorithm decides to acquire the j-th solution xj , then it rewards the seller algorithm
with an amount of time equal to Cj. Specifically, the byer algorithm reduces its own
investment time by Cj , whereas the seller algorithm extends its own execution time
by Cj. This way the better-performing algorithms are expected to gain more running
time than the rest as they sell solutions more often. Note that the total running time
allocated to the AP at the beginning of the optimization remains constant. Detailed
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Algorithm 4.2 Trading-based algorithm portfolio: slave nodes
Input: Execution time (Texec), Investment time (Tinv), Constant β

Output: Best detected solution
1: initialize the AP with one algorithm per slave node

2: allocate to each algorithm execution time Texec and investment time Tinv
3: solFound ← False

4: while (Texec > 0) AND (NOT solFound) do

5: apply the algorithm for some iterations

6: send to master node a new elite solution xnew, if detected

7: if (xnew is global optimum) then

8: solFound ← True

9: else if (no improvement is achieved for Tnoimp AND Tinv > 0) then

10: request to buy an elite solution from the master node

11: if (elite solution xj is successfully bought) then

12: incorporate the solution xj in the algorithm

13: end if

14: end if

15: end while

pseudocodes of the the master node and the slave nodes procedures are summarized
in Algorithm 4.1 and Algorithm 4.2, respectively.

4.3 Application in Circulant Weighing Matrices

Combinatorial matrices are special types of matrices with prescribed combinatorial
properties. Circulant weighing matrices (CWMs) constitute an important class of com-
binatorial matrices that has been a fruitful research area for several decades. Their
applications are numerous in diverse scientific fields spanning from coding theory
where they are used to construct linear codes with good properties [113], to quantum
information processing where they are used to improve quantum algorithms [114].
Applications can also be found in other research fields such as statistical experimen-
tation and optical multiplexing [115].

Significant amount of research has been devoted to the investigation of existence
of finite or infinite classes of circulant weighing matrices. For this purpose, a number
of algebraic methodologies has been used to identify the necessary existence con-
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ditions [22, 116–119]. Moreover, recent works have shed light on the classification
of specific circulant weighing matrices [120–122]. Complementary to the theoretical
approaches, computational methods have been used in cases where the first were
unsuccessful. In such cases, the existence problem is transformed into an equiva-
lent discrete minimization problem [123–127] such that the global minimizers of the
involved objective function correspond to the desirable matrices.

4.3.1 Problem Formulation

A square n× n matrix W = [wij] with entries,

wij ∈ {−1, 0, 1}, i, j ∈ {1, 2, . . . , n},

is called a circulant weighing matrix of order n and weight k2, and denoted as,

CW(n, k2),

if there exists a positive integer k < n such that,

W W t = k In, (4.3)

where In is the identity matrix of size n, and W t denotes the transpose matrix of W .
Such a matrix has the property that, excluding the first row, each other row is a right
cyclic shift of its preceding one. Thus, the matrix can be completely defined solely by
its first row.

Various methodologies have been proposed for the systematic detection of cir-
culant weighing matrices of various orders and weights [118, 120, 121, 128]. Beside
the theoretical algebraic methods, computational optimization algorithms have been
successfully applied. In these cases, the original problem is modeled as a permutation
optimization problem where each global minimizer corresponds to a matrix of the
desirable type, i.e., it defines the first row of the matrix. The objective function of the
optimization problem is based on the periodic autocorrelation function [126]. Let,

T n = {(x1, x2, . . . , xn) , xi ∈ {−1, 0,+1} for all i}

be the set of all ternary sequences of length n, and let,

x ∈ T n,
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be the first row that defines a CW(n, k2) matrix. Then, its periodic autocorrelation
function values are defined as,

PAFx(s) =
n∑

i=1

xi xi+s, s = 1, 2, . . . ,
⌈n
2

⌉
, (4.4)

where i+s is taken modulo n when i+s > n. The property of Eq. (4.3) is equivalent
to the system composed of the equations,

PAFx(s) = 0, ∀s.

Thus, the admissible sequences that define CW(n, k2) matrices are the global mini-
mizers of the combinatorial optimization problem,

min
x∈Tn

f(x) =
⌈n2 ⌉∑
s=1

∣∣PAFx(s)
∣∣. (4.5)

Moreover, it is proved that each admissible sequence has exactly,

(a) k2 non-zero (+1 or −1) components,

(b) k(k + 1)/2 components equal to +1, and

(c) k(k − 1)/2 components equal to −1.

Taking into consideration the fixed number of appearances of 0, +1, and −1 in the
sequence, the problem becomes a permutation optimization problem. Various ap-
proaches including metaheuristics have been extensively used for solving such prob-
lems [126, 127]. Experimental evidence has shown that the difficulty level of the
problem increases with the length of sequence n and the weight k2.

4.3.2 Employed Algorithms

Established parallel metaheuristics are used to tackle CWMs problems. The selected
algorithms are prevailing in metaheuristics research. Specifically, two trajectory-based
methods, namely Tabu Search (TS) [90] and Variable Neighborhood Search (VNS) [33],
as well as two population-based methods, namely Differential Evolution (DE) [38]
and Particle Swarm Optimization (PSO) [129] are considered. The employed algo-
rithms are described in detail in Chapter 2. The parallelization of these approaches is
straightforward in a multiple-trajectory or multiple-population framework, and allows
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Table 4.1: Parameter setting for the considered algorithms.

Algorithm Parameters and Values

TS Tabu list size: sTL = 48

VNS Number of neighborhoods: K = 2

DE Population size: N = 100; Mutation and crossover
parameters: F = 0.7, CR = 0.3

PSO Swarm size: N = 100; Parameters: χ = 0.729, c1 = c2 = 1.49;
Neighborhood: ring (radius 1)

Common Migration period: Tmig = 100 iterations

AP Investment time fraction: 0.3 (i.e., 30%); β = 0.05;
Tnoimp = 5000 non-improvement cycles

the use of communication strategies that promote cooperation in order to increase ef-
ficiency. Path Relinking (PR) [130] is also employed to enhance performance. Finally,
homogeneous trading-based algorithm portfolios, which consist of combinations of
the TS algorithm, are also used to tackle the considered problem.

PSO and DE were originally designed for real-valued search spaces. Thus, the
question arises on how it can be applied on the studied permutation problems. This
is addressed by using the smallest position value (SPV) representation scheme [131],
which maps real-valued individuals into permutations of a predefined reference vec-
tor. Specifically, this scheme considers the real values as weights that determine the
priority of the corresponding components of the reference vector [131].

4.3.2.1 Parallel Implementations

The employed metaheuristics can be easily parallelized with subsequent reduction in
running time [79]. A parallelization framework is proposed that is based on a typical
master-slave model that consists of M metaheuristics. Each slave node runs a copy
of the same algorithm with identical or different parameterization. Communication
among the algorithms is achieved via the exchange of messages through the mas-
ter node. The communication is inherently asynchronous and exploits a migration
scheme [79] that involves the periodic exchange of solutions.

The master node retains an external archive of M elite solutions, one solution
detected by each algorithm. Whenever an algorithm discovers a new elite solution, it
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forwards it to the master and the previous solution that was discovered by the same
algorithm is replaced. Also, each algorithm requests periodically (with a period Tmig)
to acquire the best elite solution that exists in the archive of the master. Next, the
acquired elite solution is incorporated in the algorithm either as a new starting point
(TS and VNS) or as a new population member (DE and PSO).

In addition to the aforementioned choices, the acquired elite solution can be used
also for a Path Relinking (PR) phase [130]. In this context, PR is initiated with a
user-defined probability ρPR to locate the best permutation between the slave’s own
best solution (starting point) and the acquired one (target point). This is achieved
by iteratively permuting the current position such that a new one with the lowest
Hamming distance from the target point is achieved. The best position found by this
local search procedure is used as a new initial point or a new population member for
the algorithm.

4.3.2.2 Algorithm Portfolio

The AP framework proposed in Section 4.2 is also adopted to tackle CWM problems.
Additionally, a combination between the elite solution of the algorithm and the one it
purchases takes place in order to further enhance the solution quality, The combina-
tion is attained by applying crossover and mutation between the solutions. Specifically,
crossover is implemented by retaining the components that are equal in the two so-
lutions. Mutation is then applied on the different components of two solutions and
involves their random permutation. The resulting new solution initiates a new tra-
jectory (in TS and VNS) or replaces the worst particle in the population (in DE and
PSO). Therefore, stochasticity is infused in the algorithms boosting their exploration
dynamics.

4.3.3 Experimental results

Parallel implementations of TS, VNS, DE, and PSO were considered, according to
the settings provided in Chapter 2. Also, an AP was considered based on different
variants of the TS, which was identified as the best-performing algorithm. Table 4.1
reports the parameter configuration of the employed algorithms. All experiments were
conducted on the glacier cluster of the Sharcnet consortium, using 8 and 16 nodes
(one master node and the rest were slave nodes). The implementation was based on
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Table 4.2: Number of successes (suc) over 25 experiments (and the corresponding
percentage) along with the number of unique solutions (uni) and the corresponding
percentage with respect to the total number of solutions found by the algorithm.

Number of CPUs
Algorithm Time (hrs.) 8 16

TS 12 suc 14 (56.0%) 22 (88.0%)
uni 7 (50.0%) 5 (22.7%)

24 suc 20 (80.0%) 24 (96.0%)
uni 4 (18.2%) 6 (25.0%)

VNS 12 suc 3 (12.0%) 4 (16.0%)
uni 1 (33.3%) 1 (25.0%)

24 suc 5 (20.0%) 6 (24.0%)
uni 2 (40.0%) 2 (33.3%)

DE 12 suc 8 (32.0%) 10 (40.0%)
uni 1 (12.5%) 2 (20.0%)

24 suc 15 (60.0%) 18 (72.0%)
uni 3 (20.0%) 4 (22.2%)

PSO 12 suc 7 (28.0%) 11 (44.0%)
uni 2 (28.6%) 3 (27.2%)

24 suc 13 (52.0%) 17 (68.0%)
uni 4 (30.8%) 5 (29.4%)

AP 12 suc 15 (60.0%) 25 (100.0%)
uni 7 (46.7%) 10 (40.0%)

24 suc 15 (60.0%) 25 (100.0%)
uni 5 (33.3%) 9 (36.0%)

the OpenMPI project. Also, two different running time budgets, namely 12 and 24

hours, were considered for all algorithms. A number of 25 independent experiments
were conducted for each algorithm and test case. Henceforth, the experimental con-
figurations are denoted with their corresponding number of CPUs followed by the
running time, i.e., 8/12, 8/24, 16/12, and 16/24, respectively.

The primary objective of the experiments was the detection of a hard CWM class,
namely CW(48, 36). A secondary objective was the comparison between the algo-
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rithms. For this purpose, the number of successful experiments (out of 25) were
recorded as well as the number of unique solutions detected by each algorithm, i.e.,
solutions that are not cyclic permutations of other solutions detected by the same
algorithm. An experiment is considered to be successful if the discovered solution is
a ternary sequence that is the first row of any CW(48, 36) matrix and therefore mini-
mizes the objective function defined in Eq. (4.5). Regarding the first objective, overall
the algorithms detected the 22 unique solutions given below, with “-” denoting “-1”,
and “+” denoting “+1”:

0+++-0-++-+0-0-+0+++-0+-0-+++0++++-0+0-+0--+-0--

0++0+-++0-00--+-0-+-++--0++0-+++0+00+-++0++----+

+++-0-+0-+++0+-0-0+-++-0-+++0--0-+--0+-0+0-++++0

++-000-+---+-0+--+++00+++-+000-+++++-0--+-++00-+

+00-++--000-+-+-+-0+---++00+++++000-++-++-0--+++

00-+-+--00++---++0+0-+-+00++--+-00+++++++0-0+--+

-0+0+-++00+++++-00-+--++-0-0-+++00-++---00-+++-+

0++--+++000-+-+-00+-----0++++-++000+--++00+-++-+

+0-+++00+0-++-0+-0+-++++-0+++-00-0-+-+0+-0----++

+0+--+00++-++-00++--+++0-0-+-+00-+----00++++-++0

00++----0-+++-+-000+-+++00++++-+0-+--++-000-+++-

---+00++-++-00+++-+++0-0++-+00-+----00++-+-++0+0

+-++000+++-+++0--++-+00-+---000++-+-++0+----+00+

-+0++++0++0-0+--+-0-+-+0--0++--0++0+0-+-++0++--0

00+++--++0+-++-+00++--+000++-++++0-----+00-+-+-0

-+-0-00+++-0-++-+--0-+0+++-0+00-+++0++++--+0-+0-

+-+--00+++--++0+0++-+00++--+-00++-++++0-0---+00-

0+0--++00+++++-00-++-++-0-0++++00-++---00-+-+-+-

-+0+-0+---+++0++++00+0-++-0+-0--++++-0-++-00-0-+

-+0++0-0---++0-+-+0-+0+++-0++0+0++-+-0++--0--0++

++-0-0-++--+-00-+++++00++-+0+0-+-+++-00---++-00+

-0++---0-0++0+-++0--0--++0-+-++0+0++0-+++0+-0+-+

Regarding the second objective, Table 4.2 reports the successes (both in number
and percentage over 25 experiments) of each algorithm. Additionally, the number of
unique solutions and the corresponding percentage with respect to the total number of
solutions detected by the algorithm are reported. A first reading of the results clearly
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Figure 4.1: Statistics for the required running time (in seconds) per algorithm for the
successful experiments over all problem configurations.

shows that TS outperforms the rest of the distinct algorithms by achieving significantly
higher number of successes. This is verified also for the number of unique solutions
found per case. Obviously, the exhaustive local neighborhood search along with the
hill-climbing capabilities and the cooperation in the parallel scheme, equipped TS
with satisfactory trade-off between exploration and exploitation.

However, even TS was outperformed by the AP in most test cases. In fact, the AP
was the only approach that achieved 100% successes for some experimental config-
urations. Even in the 8/24 case, where TS outperformed AP in successes, its unique
solutions were 4 in 20 successful experiments against 5 in 15 successful experiments
of the AP. This evidence is a strong indication of the benefits gained from the special
solution trading scheme implemented in the AP against the simple cooperation of
the plain parallel models. The rest of the algorithms, especially DE and PSO, could
easily bypass a solution. Nevertheless, the performance between DE and PSO was
very similar (their success percentages differ by 6% at most).

Table 4.2 also reveals a consistent improvement of the four algorithms’ results
when the number of CPUs or the running time is doubled. Moreover, increasing
the running time appears to be more effective than increasing the number of CPUs
in most cases. However, this is not verified for the AP, where the number of CPUs
seems to be of primary importance. At first sight, this observation seems to contradict
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the previous one. However, it can be easily explained by the evidence illustrated in
Fig. 4.1, which reports the required running time (in seconds) per algorithm only for
the successful experiments over all problem configurations.

As can be seen, the AP approach requires only a small fraction of the running time
required by the rest of the algorithms to detect a solution. Thus, providing additional
time does not have a crucial impact. On the other hand, adding slave nodes increases
the search capacity of the AP with a consequent surge in successes. The reported
running times were further investigated by conducting Wilcoxon rank-sum tests for
each pair of algorithms (only for the successful experiments) at significance level 95%.
The tests revealed that only the AP had statistically significant differences in running
time with the rest of the algorithms.

Overall, the AP approach was shown to be the most efficient and effective among
the considered ones. Given that AP differs from the simple parallel TS only in the
sophisticated solution trading scheme, it can be inferred that this AP framework can
be highly beneficial.

4.4 Application in Production Scheduling

Recently, manufacturing companies have focused on reducing material waste by re-
covering a fraction of the used products. The reasons behind this action are mainly the
increasing environmental care and the possible economical benefits. To this end, re-
manufacturing has been extensively used involving the transformation of used prod-
ucts into like-new ones. Specifically, the used product is first disassembled and then
its problematic parts are either repaired or replaced with new ones. The final reman-
ufactured products have the same quality as the new ones and usually are sold in
competitive prices, thereby attracting the interest of potential buyers.

Economic Lot Sizing (ELS), i.e., planning manufacturing/production orders over
a finite, discrete planning horizon where demand is dynamic and deterministic has
been extensively studied in relevant literature. The ELS problem with remanufac-
turing options (ELSR) has recently received growing attention as an alternative to
manufacturing. According to this, in every period over a finite, discrete planning
horizon, a manufacturer faces a dynamic and deterministic demand for a single type
of product, and has a deterministic number of returned used items at its disposal. In
order to satisfy product demand, the manufacturer can either decide to manufacture
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new items or remanufacture a number of returned items. Separate inventories are
held for manufacturing and remanufacturing items. Also, fixed costs are incurred
when ordering manufactured or remanufactured products. Additional, holding costs
are incurred for storing serviceable and the returned product in inventory.

Different variants of the ELSR problem have been studied [132, 133]. In this sec-
tion, the classical Wagner-Whitin model [134] with a remanufacturing process is
considered. It employs the dynamic lot sizing model with separate manufacturing
and remanufacturing setup costs as it was introduced in [23] and further studied
in [135].

4.4.1 Problem Formulation

The problem assumes a manufacturer that sells a single type of product over a finite
planning horizon of T time periods. In each time period t = 1, 2, . . . , T , the consumers
state their demand denoted by Dt, along with a number of used products that are
returned to the manufacturer. The fraction Rt of returned products in period t that
can be recovered and sold as new is stored at a recoverables inventory with a holding
cost hR per unit time. To satisfy the demand, a number of zRt and zMt products are
remanufactured and manufactured, respectively, in period t and then brought to a
serviceables inventory with a holding cost hM per unit time. Naturally, the manu-
facturing and remanufacturing process incur setup costs denoted by KR and KM ,
respectively.

The target is to minimize the incurring setup and holding costs by determining
the exact number of manufactured and remanufactured items per period under a
number of constraints. The corresponding cost function is defined as follows [135],

C =
T∑
t=1

(
KRγR

t +KMγM
t + hRyRt + hMyMt

)
, (4.6)

where γR
t and γM

t are binary variables denoting the initiation of a remanufacturing
or manufacturing lot, respectively. The inventory levels of items that can be reman-
ufactured or manufactured in period t are denoted by yRt and yMt , respectively. The
operational constraints of the model are defined as follows:

yRt = yRt−1 +Rt − zRt , yMt = yMt−1 + zRt + zMt −Dt, t = 1, 2, . . . , T, (4.7)

zRt ≤ Q γR
t , zMt ≤ Q γM

t , t = 1, 2, . . . , T, (4.8)
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Table 4.3: Parameters of the considered problem and the employed algorithms.

Problem parameter Value(s) Algorithm parameter Value(s)

Dimension n = 24 AP Number of slave algorithms M = 4

Setup costs KM , KR ∈ {200, 500, 2000} Per algorithm execution time Ttot = 75000 msec.

Holding costs hM = 1, hR ∈ {0.2, 0.5, 0.8} Constants α, β α = 0.1, β = 0.05

Demand for period t Dt ∼ N(µD, σ2
D) PSO Model lbest (ring topology)

µD = 100 Swarm size 60

σ2
D = 10% of µD (small variance) Constriction coefficient χ = 0.729

σ2
D = 20% of µD (large variance) Cognitive/social constants c1 = c2 = 2.05

Returns for period t Rt ∼ N(µR, σ2
R) DE Population size 60

µR ∈ {30, 50, 70} Operator DE/rand/1

σ2
R = 10% of µR (small variance) Differential/crossover constants F = 0.7, CR = 0.3

σ2
R = 20% of µR (large variance) TS Size of tabu list 24

yR0 = yM0 = 0, γR
t , γ

M
t ∈ {0, 1}, yRt , y

M
t , zRt , z

M
t ≥ 0, t = 1, 2, . . . , T. (4.9)

Equation (4.7) guarantees the inventory balance, while Eq. (4.8) assures that fixed
costs are paid whenever a new lot is initiated. In [135] the value of Q is suggested
to be equal to the total demand of the planning horizon. Finally, Eq. (4.9) asserts
that inventories are initially empty and determines the domain of each variable. The
decision variables of the optimization problem are zMt and zRt for each period t.
Thus, for a planning horizon of T periods the corresponding problem has dimension
n = 2T . More details about the considered problem can be found in [23, 135, 136].

4.4.2 Employed Algorithms

Recently, modern population-based metaheuristics have been employed to effectively
tackle the Wagner-Whitin and relevant inventory optimization problems [136–138].
Although, the employed population-based algorithms are primarily designed to tackle
real-valued optimization problems, proper modifications related to the problem and
the algorithms themselves can render them applicable to integer and mixed-integer
optimization problems.

In order to enrich the algorithmic artillery for such types of optimization problems,
the considered problem is tackled through a heterogeneous trading-based algorithm
portfolio presented in Section 4.2. The employed algorithm portfolio consists of 4
metaheuristic algorithms, namely Particle Swarm Optimization (PSO) [129], Differen-
tial Evolution (DE) [38], Tabu Search (TS) [90], and Iterated Local Search (ILS) [139].
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Table 4.4: Percentage error of the compared algorithms for different problem param-
eters.

Alg. Avg StD Max
All SM+

4 2.2 2.9 24.3
PSO 4.3 4.5 49.8

DE 3.3 5.1 31.9

TS 51.6 33.4 255.5

ILS 80.3 54.3 450.8

AP 1.9 2.8 35.6

σ2
D=10% SM+

4 2.1 2.8 18.9
PSO 4.4 4.6 49.8

DE 3.4 4.8 31.7

TS 50.9 33.2 200.2

ILS 79.7 54.2 450.8

AP 1.8 2.6 26.8

σ2
D=20%SM

+
4 2.4 3.0 24.3

PSO 4.1 4.5 48.3

DE 3.3 5.2 31.9

TS 52.4 33.5 255.5

ILS 80.9 54.4 421.5

AP 2.0 2.9 35.6

Alg. Avg StD Max
hR=0.2 SM+

4 1.7 2.5 21.1
PSO 4.5 5.2 49.8

DE 3.0 5.3 30.9

TS 45.0 26.4 255.5

ILS 94.8 67.2 450.8

AP 1.5 2.5 35.6

hR=0.5 SM+
4 2.3 3.0 24.3

PSO 4.3 4.5 45.5

DE 3.3 5.0 31.9

TS 50.8 32.1 202.1

ILS 77.6 48.2 261.1

AP 1.9 2.8 27.4

hR=0.8 SM+
4 2.8 3.0 20.6

PSO 4.0 3.9 42.9

DE 3.7 4.5 31.4

TS 59.1 39.0 235.2

ILS 68.4 40.8 211.4

AP 2.2 3.0 21.6

Alg. Avg StD Max
µR=30SM+

4 1.2 1.8 12.1
PSO 3.5 3.1 45.5

DE 3.3 5.0 28.2

TS 37.2 23.9 255.5

ILS 70.6 46.5 336.8

AP 1.6 2.5 25.7

µR=50SM+
4 2.3 2.7 16.2

PSO 4.1 4.0 34.0

DE 3.5 5.2 31.9

TS 50.8 27.3 153.6

ILS 83.7 53.0 364.2

AP 2.0 2.9 27.4

µR=70 SM+
4 3.3 3.5 24.3

PSO 5.1 5.9 49.8

DE 3.3 4.6 31.7

TS 66.9 39.8 235.2

ILS 86.5 61.1 450.8

AP 2.0 2.9 35.6

Alg. Avg StD Max
KM=200 SM+

4 2.3 2.6 13.5
PSO 4.0 3.1 45.5

DE 3.2 3.9 24.0

TS 39.1 27.3 255.5

ILS 62.6 64.0 450.8

AP 2.4 3.0 21.6

KM=500 SM+
4 2.1 2.5 12.8

PSO 4.5 4.1 27.5

DE 2.5 2.6 15.2

TS 67.9 33.1 197.1

ILS 62.0 40.6 278.1

AP 1.8 2.4 17.6

KM=2000SM+
4 2.3 3.4 24.3

PSO 4.4 5.9 49.8

DE 4.3 7.1 31.9

TS 47.9 32.7 235.2

ILS 116.3 34.2 260.4

AP 1.4 2.8 35.6

Alg. Avg StD Max
KR=200 SM+

4 1.9 2.1 11.8
PSO 5.7 5.5 49.8

DE 3.8 4.0 24.0

TS 75.2 38.0 203.3

ILS 63.0 45.4 260.4

AP 3.0 3.3 21.6

KR=500 SM+
4 3.4 3.2 19.1

PSO 3.8 4.1 37.4

DE 1.8 2.0 11.2

TS 50.8 23.8 235.2

ILS 62.4 37.8 244.8

AP 1.3 1.7 11.6
KR=2000SM+

4 1.4 2.9 24.3
PSO 3.3 3.5 45.5

DE 4.4 7.1 31.9

TS 29.0 16.4 255.5

ILS 115.5 59.2 450.8

AP 1.3 2.8 35.6

Alg. Avg StD Max
σ2
R=10% SM+

4 2.2 2.9 21.1
PSO 4.3 4.6 46.7

DE 3.4 5.0 31.4

TS 52.1 34.3 233.8

ILS 80.4 54.4 450.8

AP 1.8 2.7 35.6

σ2
R=20%SM

+
4 2.3 2.9 24.3

PSO 4.2 4.5 49.8

DE 3.3 4.9 31.9

TS 51.2 32.5 255.5

ILS 80.1 54.2 399.1

AP 2.0 2.9 25.6
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4.4.3 Experimental Results

The proposed approach was evaluated on the established test suite used in [135]. It
consists of a full factorial study of various problem instances with common planning
horizon T = 12. Table 4.3 summarizes the configuration of the problem parameters
as well as the employed algorithm parameters for the AP. Further details on the
problem setting can be found in [135]. The proposed AP was compared against
the best-performing variant (SM+

4 ) of the state-of-the-art Silver-Meal heuristic [135],
as well as against the serial versions of its constituent algorithms. The goal of the
experiments was to achieve the lowest possible percentage error [135] from the global
optimum within a predefined budget of total execution time Ttot. The global optimum
per problem was computed by CPLEX and provided in the test suite.

Table 4.4 shows the average (Avg), standard deviation (StD), and maximum (Max)
value of the percentage error for the different values of the problem parameters. A
first inspection of the results reveals superiority of the proposed AP, which achieves
the best overall mean percentage error (1.9%). The second lowest value was achieved
by SM+

4 (2.2%), followed by the sequential versions of DE (3.3%) and PSO (4.3%).
Specifically, AP prevails in 14 out of 17 considered parameter cases, while in the rest
3 cases SM+

4 is the dominant algorithm. The results of SM+
4 and PSO were directly

adopted from [135] and [136], respectively.
The results indicate that population-based algorithms (DE and PSO) outperform

(by far) the trajectory-based ones (TS and ILS). Moreover, when all algorithms are
integrated into the AP, the overall performance with respect to solution quality is
further enhanced. This can be attributed to the dynamics of the trading among the
algorithms. In particular, it was observed that the population-based algorithms were
mainly the seller ones, using their exploration capability to discover high-quality
solutions. On the other hand, trajectory-based algorithms employed their exploitation
power to further fine-tune the vast number of acquired solutions. From this point
of view, the employed algorithms of the AP exhibited complementarity, which is a
desired property in APs [4,15]. Also, it was observed that between the two population-
based algorithms, PSO acquired a higher number of solutions than DE during the
optimization whereas the solutions of the latter were of better quality.
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4.5 Application in Humanitarian Logistics

Humanitarian Logistics (HL) has attracted increasing interest over the last two decades
due to the exponential surge in natural and man-made disasters [24]. From earth-
quakes to tsunamis, natural disasters have produced startling devastation with major
death tolls and economical consequences.

HL plays a crucial role in addressing disaster relief operations problems. Quoting
from [140], HL is responsible for “planning, implementing and controlling the efficient,
cost-effective flow and storage of goods and materials, as well as related information, from
point of origin to point of consumption for the purpose of alleviating the suffering of vulnerable
people”. In general, it is perceived that HL constitutes a powerful tool for managing
disaster relief operations, making the difference between success and failure [141,142].

Even though HL is significant to prevent from consequences on people’s health or
life loss, the relevant literature is limited compared to commercial logistics, which aims
at cost reduction [142]. Nevertheless, different aspects of HL have been addressed in
several studies [143], including transportation and routing [144, 145], supply chain
and procurement [146, 147], and distribution and supply location [148, 149].

In [150] a multi-period problem is studied, taking into account limited supply
and transportation capacity that aims to minimize losses caused by (i) the mismatch
between supplies and demand, and (ii) the transportation time due to logistics pro-
cesses. In the next section, a model is considered where the objective is the min-
imization of losses caused by the mismatch between supply and demand of relief
resources in the affected areas, taking into account the already existing quantities (if
any) and the importance of the different resources. Furthermore, beyond constraints
related to number, volume, and load capacity of vehicles, road capacity constraints
are considered. The latter is the source of bottleneck in supply chain due to decrease
in transportation capacity and unexpected increase of relief vehicles [151], and this
maybe be defined by authorities.

4.5.1 Problem Formulation

In the studied model, a set J of affected areas (AAs) and a set I of dispatch centers
(DCs) are considered. Relief resources (commodities) are transported from DCs to
AAs through a number of vehicles of different type and mode. Also, ground and
aerial vehicles of two sizes (big and small) are considered. Henceforth, the set of
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Table 4.5: Notation used in the proposed model.

Model Variable Description

T Planning horizon
I Set of Dispatch Centers (DCs)
J Set of Affected Areas (AAs)
C Set of commodities
M Set of transportation modes
m Index denoting the transportation mode (ground, air)
Om Set of vehicle types of transportation mode m

o Index denoting the vehicle type (big vehicle, small vehicle)

bcj Importance weight of commodity c in AA j

wc Unit weight of commodity c

volumec Unit volume of commodity c

capmo Capacity of type o, mode m vehicle
volmo Volume capacity of type o, mode m vehicle
dtcj Demand for commodity c in AA j at time period t

kt
ijm Traffic restriction for mode m vehicles traveling

from DC i to AA j at time t

υt
imo Number of type o, mode m vehicles at DC i at time t

Decision Variable Description

stcijm Delivered quantity of commodity c from DC i to AA j through
transportation mode m at time t

vtcijmo Number of type o, mode m vehicles used at period t to transport
commodity c from DC i to AA j

commodities is denoted as C , the set of transportation modes is denoted as M , and
the set of vehicles of mode m ∈ M is denoted as Om. The planning horizon is finite
and denoted as T . The complete notation used in the studied model is presented in
Table 4.5.

Based on this notation, the optimization problem lies in specifying the optimal
delivered quantities stcijm per commodity c ∈ C , from DC i to AA j using vehicles of
transportation mode m, for each time period t. Moreover, the optimal number vtcijmo

of type o, mode m vehicles is needed to be specified that are used to transport the
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commodities at each time period t. All decision variables assume integer values. The
corresponding minimization problem is defined as follows,

min
∑
t∈T

∑
j∈J

∑
c∈C

bcj

(
dtcj −

∑
i∈I

∑
m∈M

stcijm − I t−1
cj

)2

, (4.10)

where bcj is a scalar importance weight of commodity c at AA j. The model is subject
to the following constraints,

I0cj = Ycj, ∀ c ∈ C, ∀ j ∈ J, (4.11)

I tcj =
∑
i∈I

∑
m∈M

stcijm − dtcj + I t−1
cj , ∀ t ∈ T, ∀ c ∈ C, ∀ j ∈ J, (4.12)

∑
c∈C

∑
j∈J

stcijm wc ⩽
∑
o∈Om

υt
imo capmo, ∀ t ∈ T, ∀ i ∈ I, ∀m ∈M, (4.13)

∑
c∈C

∑
j∈J

stcijm volc ⩽
∑
o∈Om

υt
imo volmo, ∀ t ∈ T, ∀ i ∈ I, ∀m ∈M, (4.14)

stcijm ⩽ min
{∑

o∈Om
vtcijmo capmo

wc

,

∑
o∈Om

vtcijmo volmo

volumec

}
, (4.15)

∑
c∈C

∑
o∈Om

vtcijmo ⩽ kt
ijm, ∀ t ∈ T, ∀ i ∈ I, ∀m ∈M, ∀j ∈ J, (4.16)

∑
c∈C

∑
j∈J

vtcijmo ⩽ υt
imo, ∀ t ∈ T, ∀ i ∈ I, ∀m ∈M, ∀ o ∈ Om. (4.17)

Equation (4.11) accounts for the initial inventory level of commodity c pre-existing
at DC j. Equation (4.12) determines the inventory balance, which takes into account
the demand of the commodity c and the replenishment quantity. Equations (4.13)
and (4.14) refer to capacity and volume constraints, respectively. Equation (4.15)
defines upper limit of the delivered quantity stcijm, which is useful for bounding
the decision variables. Equation (4.16) stands for traffic flow restrictions expected
in natural disasters, e.g., roads that are partially damaged or destroyed, reducing
traffic capacity. Equation (4.17) ensures that the number of vehicles transporting the
commodities in a particular AA does not exceed the total number of vehicles.
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The squared error in Eq. (4.10) can be replaced by absolute error if metaheuristics
are the employed solvers. Nevertheless, the quadratic form is chosen, in order to
render the problem solvable by CPLEX.

4.5.2 Employed Algorithms

Humanitarian logistics models require efficient solvers that can produce satisfactory
solutions within strict time constraints. Metaheuristics have been recognized as valu-
able optimization tools for this purpose. Such algorithms are able to offer solutions
to difficult optimization problems within reasonable amount of time. However, this
comes at the cost of dubious optimality of the detected solution. For more details
about metaheuristics the reader is referred to Chapter 2. In literature, there is a sig-
nificant amount of research studying the performance of metaheuristics in various
problems in logistics, while recently several works appeared also in the growing area
of HL [152,153].

In this study, two prevailing population-based metaheuristic algorithms, namely
DE and PSO are considered to address the humanitarian logistics problem. Details
about these algorithms can be found in Section 2.6 and 2.7, respectively. Moreover, an
enhanced DE (eDE) variant is considered, which is described in Section 2.6. Finally,
homogeneous and heterogeneous trading-based APs, which consist of combinations
of the aforementioned algorithms, are also used to tackle the considered problem.

4.5.2.1 Further Applicability Issues

Two main issues need to be addressed prior to the application of the presented
metaheuristics on the problem of Section 4.5.1. The first one is related to the discrete
nature of the search space, while the second one refers to constraint handling.

Regarding the first issue, simple rounding to the nearest integer is used. Specif-
ically, the algorithms are applied on the corresponding real search space and, for
the function evaluation, the vectors are rounded to the nearest integer ones. In DE
and eDE, the rounded vectors are also retained in the population. In PSO, rounded
vectors replace best positions. Rounding is a common approach, successfully applied
in similar problems [137, 154].

The constraint handling problem is tackled with the widely used penalty function
approach, combined with a set of preference rules between feasible and infeasible
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Table 4.6: Capacity and volume information for vehicle types I (small) and II (big).

Transportation Mode
Ground Air
I II I II

Load Capacity (ton) 3 10 4 9
Load Volume (m3) 20 44 35 75

Table 4.7: Commodities information.

Water Medicines Food

Importance weight 0.35 0.35 0.30
Unit Weight (kg) 650 20 200
Unit Volume (m3) 1.44 0.125 0.60

solutions:

(i) Between two infeasible solutions, the one that violates fewer constraints is se-
lected.

(ii) Between a feasible and an infeasible solution, the feasible one is preferred.

(iii) Between two feasible solutions, the one with the lowest objective value is pre-
ferred.

These rules have been previously used with PSO and DE [154]. The employed penalty
function has a simple form,

P (x) = f(x) +
∑

i∈V C(x)

|V (i)| , (4.18)

where f(x) is the actual objective value of x; V (i) is the violation magnitude of the i-th
constraint; and V C(x) is the set of constraints violated by x. Note that the penalty for
a violated constraint depends on the magnitude of violation. Apparently, in absence
of violated constraints, the penalty function is equal to the original objective function.

4.5.3 Experimental Results

The main goal in the studied model is the minimization of losses caused by the
mismatch between supply and demand, as well as the determination of the optimal
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Table 4.8: Number of vehicles per DC.

Transportation Mode
Ground Air
I II I II

DC1 4 5 1 1
DC2 4 5 1 1

Table 4.9: Mean, standard deviation, minimum, and maximum solution error values
for all algorithms, averaged over all problems. Best values are boldfaced. The “+”
symbol denotes AP approach constituting of the corresponding algorithms.

Algorithm Mean St.D. Min Max

PSO 513.80 235.85 197.00 2442.20
DE 63.31 40.45 26.97 160.21
eDE 3.54 3.42 0.29 11.80
PSO+DE 52.28 31.11 27.01 129.42
PSO+eDE 4.14 3.99 0.16 13.77
DE+DE 59.65 55.36 21.15 193.81
DE+eDE 0.76 0.91 0.00 2.91
eDE+eDE 0.75 0.85 0.00 2.27
PSO+DE+eDE 0.84 1.18 0.00 3.74

number of vehicles for the transportation of relief resources to the stricken areas.
In the experiments, three life-essential commodities were considered, namely water,
medicines, and food. Among them, the first two were assumed to have slightly higher
importance weights than the third one.

Moreover, the existence of two DCs responsible to supply two AAs was assumed as
well as two modes of transportation, ground and aerial, using trucks and helicopters,
respectively. For each transportation mode, two vehicle types were considered, namely
small and big vehicles, henceforth denoted as type I and II, respectively. Tables 4.6
and 4.7 report the relevant information for vehicles and commodities, respectively.
Note that the reported data are based on real-world values (e.g., palettes of water
bottles, typical transportation boxes for medication etc). Also, Table 4.8 reports the
number of available vehicles per DC.
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In the context of the proposed model, a test suite of 10 benchmark problems
with diverse characteristics was initially generated and solved to optimality with the
commercial CPLEX solver. The problems are henceforth denoted as P1 − P10. In a
second phase, extensive experiments were conducted with the following algorithms:
PSO, DE, eDE, AP with PSO+DE, AP with PSO+eDE, AP with DE+DE, AP with
DE+eDE, AP with eDE+eDE, and AP with PSO+DE+eDE. The five basic DE and eDE
mutation operators of Eqs. (2.2)-(2.6) were considered, along with all combinations
of their parameters F ∈ [0, 2] and CR ∈ [0, 1], with step size 0.05.

Preliminary experiments provided clear evidence that DE2 with,

F = F1 = F2 = 0.4, CR = 0.05,

was the most promising setting. The PSO algorithm was considered in its lbest model
with ring topology of radius r = 1, and the default parameter set,

χ = 0.729, c1 = c2 = 2.05.

The population size for all algorithms was set to N = 150, since the corresponding
optimization problem’s dimension was n = 144. The boundaries for the decision vari-
ables were the ones imposed by the given data (for the vehicles) and the constraints
of Section 4.5.3 (for the delivered quantities).

In order to statistically validate each algorithm, 30 independent experiments were
performed per problem instance. The experiments were conducted on Intel® i7 servers
with 8GB RAM. The running time for each experiment was set to 10 minutes in order
to be comparable with that of CPLEX. For each algorithm and experiment, the best
solution x∗alg and its value f ∗

alg were recorded, along with the absolute solution error
from the global minimum detected by CPLEX, i.e.,

solution error =
∣∣∣f ∗
cplex − f ∗

alg

∣∣∣ .
Average values of solution error over the 30 experiments, along with standard devia-
tion, minimum, and maximum values, were also recorded for performance compari-
son purpose.

4.5.3.1 Results and Discussion

A summary of all the recorded results is reported in Table 4.9, where the best-
performing approach is boldfaced. Also, the results are graphically illustrated to fa-
cilitate visual comparisons. The average solution error from the global minimum is
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Figure 4.2: Averaged solution error per algorithm and problem (upper part) and
zoom in center area (lower part).

presented in the upper part of Fig. 4.2, per problem and algorithm. In the lower part
of Fig. 4.2, the central region around the origin is zoomed, exposing the correspond-
ing curves of the most competitive algorithms. Similarly, in the upper and lower part
of Fig. 4.3, the averaged standard deviation per problem and algorithm is illustrated.
Note that in all figures the results of PSO are excluded, due to scaling reasons.

Furthermore, the success rate per algorithm was also recorded, i.e., the percentage
of experiments where it succeeded to reach the optimal solution within the available
execution time. Figure 4.4 presents the resulted success rates per problem instance
for the most promising algorithms. Finally, the boxplots of Fig. 4.5 illustrate the
distribution of the obtained solution error values in all experiments.

The reported results offer several conclusions. Firstly, it can be easily seen that
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Figure 4.3: Standard deviation of the solution error per algorithm and problem (upper
part) and zoom in center area (lower part).

the homogeneous AP approach eDE+eDE as well as the heterogeneous AP with
PSO+DE+eDE, outperformed the rest of the algorithms, yielding higher success rates.
Also, these two approaches exhibited almost equivalent performance. However, in
problems P6-P8, which were proved to be the most difficult ones with respect to
the success rates of the algorithms, the eDE+eDE approach dominated in terms of
efficiency.

In order to quantitatively study this behavior, the solution purchases between
the algorithms of the AP approaches were further analyzed. The analysis verified
that, especially for these problems, the number of purchases between the algorithms
was remarkably high. This leads to the conclusion that, due to the complexity of
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Figure 4.4: Success rates of the most promising algorithms per problem.

these problems, the constituent algorithms of the AP experienced severe difficulties in
reaching the optimal solution. Therefore, they were forced to exchange information in
order to improve their performance. Also, in the case of PSO+DE+eDE, the assigned
execution time per algorithm was shorter than that of each eDE instance in eDE+eDE,
because in the first case the total time of the AP is divided by 3, while in the latter it
is divided in 2 equal parts. Since PSO was proved to be less efficient than eDE, the
assigned time in PSO+DE+eDE was naturally proved to be insufficient.

Regarding the standalone algorithms, eDE was clearly the dominant one, exhibit-
ing undoubtful advantages against the rest. This can also explain the superiority of
the eDE-based AP approaches. Obviously, the special probabilistic operator of eDE as
well as the restart mechanism with mild perturbations (see Section 2.6) were benefi-
cial for the algorithm. Experimental evidence suggested that this can be attributed to
the alleviation of search stagnation, caused by the rounding of the real-valued vectors
to the nearest integers. Moreover, this can be related also to the domination of DE2
operator, which offers the necessary diversity to avoid stagnation.

Although there is clear advantage of some algorithms against the rest, there are
marginal differences among the most promising approaches. In order to investigate
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Figure 4.5: Solution error distribution of the most promising algorithms for all test
problems.

whether these differences were the outcome of random fluctuations, statistical sig-
nificance tests among the most competitive algorithms were conducted. Specifically,
pairwise comparisons of the algorithms were conducted using the Wilcoxon rank-sum
tests at 95% confidence level, for all problems. Whenever an algorithm was statisti-
cally superior to another, it was counted as win of the algorithm. On the other hand,
if it was statistically inferior, it was counted as loss. The lack of statistical significance
was counted as draw for both algorithms.

The results concerning wins/losses/draws are presented in Table 4.10 and the cor-
responding graphical illustration is given in Fig. 4.6 for all problem instances. The
superiority of DE+eDE, eDE+eDE, and PSO+DE+eDE was anew confirmed. In al-
most all comparisons, these approaches were prevalent against the rest. Yet, most of
the comparisons among them resulted in draws, despite the marginal differences re-
ported in Table 4.10. Especially for DE+eDE and eDE+eDE, no losses were reported.
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Table 4.10: Wins/losses/draws of row versus column algorithms for all problem in-
stances.

eDE PSO+eDE DE+eDE eDE+eDE PSO+DE+eDE

eDE - 1 / 1 / 8 0 / 5 / 5 0 / 5 / 5 0 / 8 / 2
PSO+eDE - 0 / 7 / 3 0 / 9 / 1 1 / 7 / 2
DE+eDE - 0 / 0 / 10 0 / 0 / 10
eDE+eDE - 0 / 0 / 10
PSO+DE+eDE -

eDE PSO+eDE DE+eDE eDE+eDE PSO+DE+eDE
0

10

20

30

40

50

60

70

80

90

100

Algorithms

C
om

pa
ris

on
s 

(%
)

 

 

Wins
Losses
Draws

Figure 4.6: Results of the pairwise statistical comparisons among the most competitive
algorithms for all test problems.

Thus, the initial assumption regarding the superiority of eDE-based approaches was
corroborated by the statistical evidence, placing these AP approaches in a salient
position among the most promising solvers.
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4.6 Synopsis

In this chapter, a new trading-based algorithm portfolio framework was proposed.
The AP comprises of a number of metaheuristic algorithms that operate in parallel
and exploit a sophisticated trading-based time allocation mechanism. The mecha-
nism distributes the available computational resources irregularly among the algo-
rithms and indirectly through the trading of solutions. The algorithms sell and buy
solutions when needed using execution time as currency. In this way, the AP favors
best-performing algorithms with more execution time than the rest, as they sell so-
lutions more frequently. Also, it combines the exploration/exploitation dynamics of
each individual constituent algorithm in an efficient way.

The proposed AP was evaluated on a challenging CWM problem. First, parallel
versions of TS, VNS, DE and PSO are employed that exploited a typical master-slave
parallelization model. Particularly, each slave node executes a copy of the same al-
gorithm and exchanges information with the rest through the master node. All slave
nodes assume identical copies of the algorithm selected after preliminary experimen-
tation. Among them, the TS-based approach exhibited the best performance in terms
of quality and uniqueness of acquired solutions. The next step involved constructing
homogeneous APs based on the TS algorithm. The experimental results revealed the
superiority of the TS-based AP framework against the parallel frameworks based on
TS or other algorithms. This offers motivation for further research on the application
of APs on combinatorial matrices problems.

Additionally, a significant operations research problem, namely the single-item
lot sizing problem with returns and remanufacturing, was used as a benchmark for
the proposed AP. Initially, the application of well studied metaheuristic algorithms,
namely PSO, DE, TS, and ILS was considered. Next, a heterogeneous AP consisted of
all four algorithms outperformed its constituent algorithms with respect to quality of
acquired solutions. This can be attributed to the dynamics of the trading among the
algorithms as well as the synergy among the population-based and the trajectory-
based algorithms. In particular, it was observed that the population-based algorithms
were mainly the seller ones, using their exploration capability to discover high-quality
solutions. On the other hand, trajectory-based algorithms employed their exploitation
power to further fine-tune the acquired solutions. Overall, the results indicated that
the AP is highly competitive against its constituent algorithms, individually, as well
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as against a state-of-the-art algorithm of the considered problem.
Finally, a humanitarian logistics problem complemented the set of applications.

For this problem, a model was first introduced that aims at minimizing the losses
caused by the mismatch between supply and demand, while concurrently determin-
ing the number of different types of vehicles used to transport relief commodities
from dispatch centers to stricken areas. A number of test problems with diverse
characteristics was generated for the proposed model and solved to optimality using
CPLEX.

Next, a number of prevalent modern metaheuristics was studied in solving the
considered humanitarian logistics problem. The proposed approach was based on
DE, eDE, PSO, and heterogeneous/homogeneous APs consisting of combinations of
these algorithms. Proper modifications and refinements were introduced to tackle the
special requirements of the test problems. From the obtained results, it was concluded
that APs based on eDE offer remarkable performance efficiency and solution quality.
Also, it became evident that APs can offer crucial insight in gathering information
regarding the most appropriate metaheuristic for the problem at hand. Future work
will enrich the study of APs by employing larger and more diverse collections of
metaheuristics, in order to efficiently deal with problems of higher complexity.
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Chapter 5

New Parallel Forecasting-based
Algorithm Portfolio

5.1 Introduction

5.2 Time Series Forecasting

5.3 Proposed model

5.4 Application in Circulant Weighing Matrices

5.5 Synopsis

5.1 Introduction

An essential issue in designing efficient algorithm portfolios is the resources allocation
plan. In the previous chapter, this issue was investigated by proposing a trading-based
mechanism for the online distribution of the available computational budget among
the constituent algorithms. In this chapter, the resource allocation issue is investigated
again, although in a different manner. Specifically, a new parallel forecasting-based al-
gorithm portfolio is introduced, which employs a time series forecasting mechanism in
order to predict the performance of the constituent algorithms and properly allocate
the available computational resources. Three essential forecasting models, namely the
simple exponential smoothing, the linear exponential smoothing, and the moving
average are employed by the forecasting mechanism. The inspiration behind the pro-
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posed model emanates from stock market environments where stockbrokers employ
forecasting models that exploit the past behavior of the stocks to predict their future
values.

5.2 Time Series Forecasting

Time series forecasting [155, 156] is concerned with the prediction of a model based
on its historical observations. The predictions are the outcome of diverse method-
ologies ranging from empirical rules and Monte Carlo simulations to sophisticated
statistical procedures. The main struggle in these approaches lies in the detection of
statistical patterns in the available data. The forecasted variable can be considered
as the aggregation of pure signal and noise, where the signal can be predicted while
the noise introduces distortion to its values. A forecasting model shall be capable of
capturing the underlying signal and extrapolating it in time. Naturally, this is far
from easy task for complex signals.

Among the plethora of available models for time series forecasting, exponential
smoothing [157, 158] is distinguished as a simple and straightforward approach. It
exploits prior assumptions and observations to predict variables that can be either
random processes or deterministic processes contaminated by noise. Central role in
exponential smoothing plays the concept of window functions, which determines the
scheme that assigns significance weights on the available observations.

The simple moving average [159,160] is the simplest approach for data smoothing.
If ft denotes the observed quantity at time moment t, then this approach predicts the
next value of f at time t+ 1 as the average of the k most recent observations,

f̂t+1 =
1

k

k−1∑
i=0

ft−i. (5.1)

In this model each one of the k observations has equal weight. Thus, increasing k

results in declining impact of the most recent observations, thereby filtering more
period-to-period noise. In turn, this produces smoother forecast series. The special
case for k = 1 is also called the random walk model, which assumes that the coming
value can be predicted solely by the last observed value,

f̂t+1 = ft. (5.2)

This model has the property of following the exact path of the predicted variable but
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with 1-period lag.
Alternatively to the simple moving average model, the simple exponential smooth-

ing [159,161,162] model can be used. This is also known as the exponentially weighted
moving average model and its main difference from the previous one lies in the as-
sumption of gradually decreasing weights for older observations. According to this
model, the next forecasted value is given as,

f̂t+1 = α ft + (1− α) f̂t, (5.3)

with α ∈ [0, 1] being a smoothing constant. Smaller values of α produce smoother
forecast series. On the other hand, higher values assume that each observation intro-
duces significant changes in the level of the series. The simple exponential smoothing
model is among the most popular ones in business applications due to its simplicity
and efficiency under a variety of conditions.

The aforementioned models assume that the time series does not have a dis-
tinguishable trend. Some of their variants can also admit a constant linear trend.
Although this is adequate for 1-step-ahead predictions, it may be inefficient for pre-
dicting variables with varying growth rates. This deficiency is tackled through the
linear exponential smoothing [159] model, which takes into consideration both level
and trend of the series. Let lt and rt denote the local estimates of level and trend,
respectively. Then, the level is computed according to the Holt’s formula as follows,

lt = α ft + (1− α) (lt−1 − rt−1), (5.4)

while the trend is computed as,

rt = β (lt − lt−1) + (1− β) rt−1, (5.5)

where α, β ∈ [0, 1] are weighing factors. Eventually, the forecast for k steps ahead is
computed as,

f̂t+k = lt + k rt. (5.6)

Higher values of β assume rapid changes in the trend of the data, while smaller values
better match slower changes.

5.3 Proposed model

A metaheuristic optimization algorithm can be considered as a stochastic system that
evolves through time. Its state signal during a run can be defined as the function
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value of the best solution achieved at each time moment or iteration. This signal can
be tracked in order to predict the algorithm’s performance through extrapolation.
Randomized fluctuations due to stochasticity or adaptive changes in the algorithm’s
dynamic introduce noise to the performance signal. The noise can be detrimental for
the quality of predictions based on simple observation or explicit if-then-else rules.

The main idea in the proposed approach lies in monitoring the performance sig-
nal of each constituent algorithm of an algorithm portfolio in order to predict its
forthcoming performance, and use these predictions to allocate the available com-
putational resources by favoring the most promising algorithms. Since the focus is
mostly on high-performance computation environments, the number of processing
units occupied by each algorithm of the portfolio constitutes the shared computational
resources under consideration.

Putting it formally, let AP denote an algorithm portfolio consisting ofM algorithms
or different parameterizations of the same algorithm,

AP = {a1, a2, . . . , aM}.

Let C ⩾ M denote the number of available processing units. These can be either
physical cores or processing threads. Also, let emax denote the maximum number
of function evaluations available to the portfolio. This means that the portfolio is
terminated when the total number of function evaluations spent by all its constituent
algorithms exceeds emax.

In this model the computational budget is assigned to the portfolio in batches. The
user specifies the total number, bmax, of batches. At each batch, a fixed number of
function evaluations,

ebatch =
emax
bmax

, (5.7)

is allocated to the portfolio and shall be completely consumed before the next batch
assignment. These function evaluations are equally shared among the C processing
units. Thus, the computational budget allocated to each processing unit at each batch
is fixed and equal to,

eproc =
ebatch
C

. (5.8)

Each processing unit executes one of the algorithms of the portfolio during each batch.
Thus, the main decision issue is the allocation of algorithms to processing units, i.e.,
how many instances of each algorithm are going to be allocated on the available
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processing units. Let pib denote the number of processing units running algorithm
ai during batch b. This means that each one of these processing units executes the
specific algorithm independently of the rest. Obviously, it shall hold that,

C =
M∑
i=1

pib, b ∈ {1, 2, . . . , bmax}. (5.9)

At the end of batch b, the best performance achieved by each algorithm is recorded.
This consists of the best solution value achieved by any instance of the algorithm
from the beginning of the portfolio’s execution. Using this information, forecasting
methods are used to predict the performance of each algorithm in the forthcoming
b + 1 batch. According to the predicted performance, a new number of processing
units that will be occupied by each algorithm in the next batch is determined.

Specifically, let f i
b denote the overall best solution value detected by algorithm ai

at the end of batch b, regardless of the number of processing units it has occupied so
far. The objective value is assumed to be strictly non-negative, which is the case in
the minimization problems in this chapter. Also, let f̂ i

b be the corresponding predicted
value of the algorithm regardless of the employed forecasting model. The sets,

H i
b =

{
f i
1, f̂

i
2, f

i
2, f̂

i
3, f

i
3, . . . , f̂

i
b , f

i
b

}
, i ∈ {1, 2, . . . ,M},

contain all the available (actual and forecasted) performance data achieved by each
algorithm ai up to batch b. Additional information may be also included in these sets
depending on the selected forecasting method, e.g., trend values for the linear expo-
nential smoothing model. Then, this information is used to predict the performance
of each algorithm ai in the next batch b+ 1. Let,

f̂ i
b+1 = Forecast

(
H i

b

)
, i ∈ {1, 2, . . . ,M},

be the forecasted solution values of the algorithms for the next batch using any of the
forecasting models. Then, the fraction of processing units that will be occupied by
algorithm ai in the next batch b+1 is given by the normalized inverse of its predicted
performance value,

ηib+1 =
1/f̂ i

b+1

M∑
j=1

1/f̂ j
b+1

, i ∈ {1, 2, . . . ,M}. (5.10)

Proportionally to these fractions, the actual number of processing units that will host
each algorithm in the next batch is determined through a resource allocation plan,

pib+1 = Allocate
(
ηib+1, C

)
, i ∈ {1, 2, . . . ,M}, (5.11)
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Algorithm 5.1 Forecasting-based algorithm portfolio
Input: Algorithms a1, . . . , aM , number of processing units C , number of batches bmax,

computational budget emax
Output: Overall best solution
1: set eproc according to Eq. (5.8) and b← 0

2: /* processing units equally shared in 1st batch */
3: set ηib+1 ← 1/M for all i = 1, . . . ,M

4: pib+1 ← Allocate
(
ηib+1, C

)
for all i = 1, . . . ,M

5: H i
b ← ∅ for all i = 1, . . . ,M

6: /* loop on the number of batches */
7: for (b = 1 . . . bmax) do
8: /* parallel execution */
9: ExecuteAlgorithm

(
ai, p

i
b, eproc

)
for all i = 1, . . . ,M

10: for (i = 1 . . .M) do
11: UpdateBest (f i

b)

12: H i
b ← H i

b−1 ∪ {f i
b}

13: f̂ i
b+1 ← Forecast (H i

b)

14: H i
b ← H i

b ∪ {f̂ i
b+1}

15: end for
16: compute ηib+1 and pib+1 according to Eqs. (5.10) and (5.11)

for all i = 1, . . . ,M

17: end for
18: return overall best solution

taking care that Eq. (5.9) holds. For example, a simple allocation procedure may
directly set pib+1 as the decimal value ηib+1C rounded to the nearest integer. How-
ever, correction may be needed since the outcome of the rounded quantities is not
guaranteed to be equal to C (it can smaller or larger). In the implementation, the
quantities, ⌊

ηib+1 C
⌋
,

were alternatively used to make a first assignment of algorithms to processing units.
This approach always leaves spare processing units, which are then additionally as-
signed to the algorithms. Specifically, the algorithm with the best fraction value gets
the first spare processing unit, the second best algorithm gets the second spare pro-
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cessing unit, and this is continued in the same manner until all spare processing units
have been equipped with an algorithm.

The proposed procedure is given in the pseudocode of Algorithm 5.1. In a parallel
master-slave environment, better work division is attained when the master process-
ing unit is devoted to bookkeeping, forecasting, and resources allocation, while the
rest of the processing units (slave units) are devoted to algorithm execution. In this
framework, the pseudocode can be executed on the master unit except step 9, which
can be concurrently executed on each slave.

Another issue of interest is the minimum number of processing units occupied
by each algorithm. Specifically, it is widely perceived that the efficiency of algorithm
portfolios stems from the inclusion of algorithms of different characteristics. Comple-
mentarity of the constituent algorithms has been widely recognized as performance
booster of the portfolio since weaknesses of one approach are addressed by another.
Thus, the Allocate( ) function in Eq. (5.11) shall preserve that pib+1 does not vanish
for any algorithm, rendering it inactive. In order to avoid this potential deficiency, it
is recommended to firstly assign each one of the M algorithm to one processing unit
regardless of its predicted performance, and then allocate the rest C −M processing
units to the algorithms according to the proposed procedure described above.

It shall be noticed that the proposed algorithm portfolio model does not exceed the
computational budget of function evaluations provided by the user. It rather exploits
it more efficiently by favoring the best-performing algorithms, which occupy more
processing units at each batch and, eventually, perform higher number of function
evaluations than the rest. Nevertheless, the total computational cost of the portfolio
remains fixed to the predefined value of the user. This is a significant property for
algorithms executed in parallel environments where execution time shall be prede-
termined, while exceeding it may impose penalties or additional charges.

5.4 Application in Circulant Weighing Matrices

In this section, the forecasting-based algorithm portfolio is applied on a challenging
combinatorial problem, namely the detection of circulant weighing matrices [22].
Details about the considered problem are presented in Section 4.3.

The experimental analysis was conducted in two stages. In the first stage, proof of
concept was the main goal. For this purpose, a reasonable experimental configuration
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Table 5.1: Experimental configuration.

Description Notation Value(s)
Test problems CW(n, k2) CW(48, 36), CW(52, 36), CW(57, 49)

CW(62, 16), CW(84, 16), CW(112, 16)

Tabu search algorithms a1 sTL = 2 (tabu list size),
Tnoimp = 100 (iterations before restarting)

a2 sTL = 10, Tnoimp = 100

a3 sTL = 2, Tnoimp = 1000

a4 sTL = 10, Tnoimp = 1000

Algorithm portfolios PL No forecasting, equally shared resources
(plain portfolio)

RW Simple moving average, k = 1

M.3 Simple moving average, k = 3

M.10 Simple moving average, k = 10

S.3 Simple exp. smoothing, α = 0.3

S.8 Simple exp. smoothing, α = 0.8

L.3.3 Linear exp. smoothing, α = 0.3, β = 0.3

L.3.8 Linear exp. smoothing, α = 0.3, β = 0.8

L.8.3 Linear exp. smoothing, α = 0.8, β = 0.3

L.8.8 Linear exp. smoothing, α = 0.8, β = 0.8

Num. of batches bmax 500 (1st stage), 100, 500, 1000 (2nd stage)
Num. of processing units C 41 (1st stage), 21, 41, 61 (2nd stage)
Num. of function evaluations emax 1011

Num. of experiments per case g 100

was set and the proposed algorithm portfolios were applied under various parame-
terizations of the forecasting models. The two best-performing models distinguished
in the first stage were further studied in a second stage of experiments with respect
to their sensitivity on the number of batches used by the forecasting mechanism and
the number of available processing units.

The complete experimental configuration is reported in Table 5.1. Specifically, six
representative test problems were selected for experimentation with sequence lengths
ranging from 48 up to 112 and various weights ranging from 4 to 7. All problems were
selected from the provided list in [22]. Taking into consideration the findings from
previous works [123] and the evidence reported in Section 4.3.3 of Chapter 4, the
considered algorithm portfolios consisted solely of the efficient tabu search algorithm.
Specifically, the four parameter combinations were considered that are produced by
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Table 5.2: Maximum and minimum correlation coefficients between the portfolios’
samples of function evaluations per test problem.

Problem Max Alg. Portfolios Min Alg. Portfolios

CW(48, 36) 0.230 L.3.8 - L.8.8 −0.210 RW - L.8.8
CW(52, 36) 0.237 PL - L.3.3 −0.196 RW - S.3
CW(57, 49) 0.362 PL - L.3.3 −0.220 M.3 - M.10
CW(62, 16) 0.162 L.3.3 - L.8.8 −0.157 S.3 - L.3.8
CW(84, 16) 0.264 RW - S.8 −0.176 S.3 - S.8
CW(112, 16) 0.354 L.3.8 - L.8.3 −0.183 RW - L.8.3

tabu list size sTL ∈ {2, 10}, and number of non-improving iterations before restarting,
Tnoimp ∈ {100, 1000}. The four constituent algorithms are denoted as a1, a2, a3, and a4,
according to the notation reported in Table 5.1.

The three forecasting models described in Section 5.2 were employed in the al-
gorithm portfolios under various parameters. Specifically, the simple moving average
model was applied by averaging k ∈ {1, 3, 10} previous observations, with the special
case k = 1 corresponding to the random walk model. These models are denoted as
RW, M.3, and M.10, respectively. The simple exponential model was considered with
a low and a high level of its parameter, namely α ∈ {0.3, 0.8}, denoted as SES.3 and
SES.8, respectively. The linear exponential model was considered with four combi-
nation of its parameters, namely α, β ∈ {0.3, 0.8}, denoted as L.3.3, L.3.8, L.8.3, and
L.8.8 as reported in Table 5.1. Finally, the plain portfolio without any forecasting,
which allocates equal amount of computational resources to its constituent algorithms,
was considered as the baseline approach and it is henceforth denoted as PL.

In the experiments each portfolio was executed on each test problem until the
maximum computational budget of emax = 1011 function evaluations was exceeded
or an optimal solution was found. An optimal solution is a sequence x where the
objective function f(x) of Eq. (4.5) vanishes. The number of batches for forecasting
and resources allocation was set to bmax = 500, and the number of processing units was
equal to C = 41 in the 1st stage of experimentation. This choice allowed the portfolios
to conduct an adequate number of function evaluations before revising their resources
allocation schedule. Note that one of the processing units plays the role of the master
where bookkeeping procedures are executed, while the rest of the processing units
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Figure 5.1: Boxplots of the number of function evaluations per problem and algorithm
portfolio.
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Figure 5.2: Number of wins, draws, and losses per problem and algorithm portfolio.
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Figure 5.3: Total number of wins and draws of all algorithm portfolios per test
problem.

simply execute their assigned algorithms. In the 2nd stage of experiments, the two
variables assumed different values, namely bmax ∈ {10, 500, 1000} and C ∈ {21, 41, 61},
in order to explore the impact of these choices on the portfolio’s performance. All
runs were conducted in a mixed environment consisting of the saw cluster of the
Sharcnet consortium along with a number of multi-core servers consisting of Intel©

i7 processors.
A number of g = 100 independent experiments per algorithm portfolio and test

problem were conducted, while statistical hypothesis testing was applied for head-
to-head comparisons of the portfolios. The quantities of interest were the number
of successful experiments, which reflects the effectiveness of the portfolio, and the
average number of function evaluations spent, which reflects its efficiency. In or-
der to facilitate comparisons between the algorithms, pairwise Wilcoxon rank-sum
tests were conducted between each pair of algorithm portfolios on each test problem.
Specifically, two portfolios were initially compared according to their number of suc-
cessful runs. When the statistical test revealed significant difference between them,
the most successful algorithm was awarded a win and the other one assumed a loss.
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Figure 5.4: Average ranks of the algorithm portfolios over all test problems.

In case where this test revealed no significant difference, the corresponding test was
conducted for the number of function evaluations. Again, a win was awarded to the
winning algorithm and a loss to the other one. In case of insignificant differences in
both tests, both portfolios assumed a draw. Let µw denote the wins, µl denote the
losses, and µd denote the draws of an algorithm in the statistical tests. Since there are
10 distinct algorithm portfolios in the experiments, it shall clearly hold that,

µw + µl + µd = 9.

In order to quantify the relevant differences between the portfolios, a rank is assigned
to each one based on its wins and losses. The rank of a portfolio AP is defined as
follows,

R(AP) = µw − µl, (5.12)

i.e., it is the difference between its number of wins and losses and lies in the range
[−9, 9] for each portfolio. This way, the portfolios can be sorted according to their
ranks in order to identify the best one for each test problem individually. Also, the
average rank over all test problems can offer insight on the overall performance of
each portfolio.
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Table 5.3: Number of successes, mean and standard deviation of function evaluations,
as well as wins, draws, losses, and rank per algorithm portfolio for test problems
CW(48, 36), CW(52, 36), and CW(57, 49).

Problem AP Suc Mean St.Dev. Wins Draws Losses Rank
CW(48, 36) PL 100 3.40e+ 10 2.34e+ 10 7 0 2 5

RW 100 3.91e+ 10 1.80e+ 10 5 1 3 2

M.3 82 6.15e+ 10 2.90e+ 10 0 0 9 −9
M.10 100 2.93e+ 10 2.19e+ 10 8 0 1 7

S.3 100 2.43e+ 10 1.18e+ 10 9 0 0 9

S.8 79 4.99e+ 10 3.17e+ 10 1 0 8 −7
L.3.3 90 3.67e+ 10 3.18e+ 10 3 0 6 −3
L.3.8 90 4.41e+ 10 3.66e+ 10 2 0 7 −5
L.8.3 100 4.29e+ 10 3.04e+ 10 4 0 5 −1
L.8.8 100 3.84e+ 10 2.67e+ 10 5 1 3 2

CW(52, 36) PL 100 2.63e+ 10 2.18e+ 10 5 1 3 2

RW 100 1.37e+ 10 9.53e+ 09 9 0 0 9

M.3 100 2.74e+ 10 1.52e+ 10 4 2 3 1

M.10 100 2.95e+ 10 1.94e+ 10 3 2 4 −1
S.3 100 4.00e+ 10 2.73e+ 10 2 0 7 −5
S.8 100 2.40e+ 10 1.96e+ 10 7 0 2 5

L.3.3 89 2.91e+ 10 2.49e+ 10 1 0 8 −7
L.3.8 100 1.62e+ 10 1.03e+ 10 8 0 1 7

L.8.3 100 3.00e+ 10 2.59e+ 10 3 1 5 −2
L.8.8 91 3.26e+ 10 2.55e+ 10 0 0 9 −9

CW(57, 49) PL 28 8.87e+ 10 1.79e+ 10 0 1 8 −8
RW 67 7.19e+ 10 2.57e+ 10 6 0 3 3

M.3 69 6.00e+ 10 3.25e+ 10 7 0 2 5

M.10 49 6.46e+ 10 4.04e+ 10 5 0 4 1

S.3 90 6.30e+ 10 2.55e+ 10 9 0 0 9

S.8 36 8.22e+ 10 2.55e+ 10 2 0 7 −5
L.3.3 29 8.79e+ 10 2.34e+ 10 0 1 8 −8
L.3.8 70 4.90e+ 10 3.26e+ 10 8 0 1 7

L.8.3 39 6.73e+ 10 4.27e+ 10 4 0 5 −1
L.8.8 39 7.64e+ 10 3.30e+ 10 3 0 6 −3

144



Table 5.4: Number of successes, mean and standard deviation of function evaluations,
as well as wins, draws, losses, and rank per algorithm portfolio for test problems
CW(62, 16), CW(84, 16), and CW(112, 16).

Problem AP Suc Mean St.Dev. Wins Draws Losses Rank
CW(62, 16) PL 100 2.15e+ 10 1.22e+ 10 3 1 5 −2

RW 100 1.41e+ 10 1.15e+ 10 7 1 1 6

M.3 100 1.53e+ 10 1.69e+ 10 7 1 1 6

M.10 100 1.76e+ 10 7.62e+ 09 5 1 3 2

S.3 100 2.73e+ 10 2.46e+ 10 1 1 7 −6
S.8 100 1.25e+ 10 1.26e+ 10 9 0 0 9

L.3.3 100 3.14e+ 10 2.88e+ 10 0 0 9 −9
L.3.8 100 2.71e+ 10 1.87e+ 10 1 1 7 −6
L.8.3 100 2.17e+ 10 2.04e+ 10 3 1 5 −2
L.8.8 100 1.75e+ 10 1.43e+ 10 5 1 3 2

CW(84, 16) PL 100 2.93e+ 09 2.42e+ 09 1 1 7 −6
RW 100 2.74e+ 09 1.87e+ 09 1 2 6 −5
M.3 100 2.63e+ 09 2.07e+ 09 2 2 5 −3
M.10 100 2.45e+ 09 1.99e+ 09 4 2 3 1

S.3 100 1.79e+ 09 1.66e+ 09 8 0 1 7

S.8 100 2.36e+ 09 1.96e+ 09 4 2 3 1

L.3.3 100 3.84e+ 09 4.77e+ 09 0 0 9 −9
L.3.8 100 1.52e+ 09 1.26e+ 09 9 0 0 9

L.8.3 100 2.02e+ 09 1.30e+ 09 7 0 2 5

L.8.8 100 2.47e+ 09 2.87e+ 09 3 3 3 0

CW(112, 16) PL 100 2.90e+ 09 2.37e+ 09 3 2 4 −1
RW 100 2.93e+ 09 2.97e+ 09 3 3 3 0

M.3 100 2.67e+ 09 1.94e+ 09 4 2 3 1

M.10 100 2.79e+ 09 3.00e+ 09 3 3 3 0

S.3 100 1.94e+ 09 1.60e+ 09 7 1 1 6

S.8 100 1.79e+ 09 2.01e+ 09 9 0 0 9

L.3.3 100 5.01e+ 09 3.62e+ 09 0 0 9 −9
L.3.8 100 4.43e+ 09 4.39e+ 09 1 1 7 −6
L.8.3 100 1.98e+ 09 1.64e+ 09 7 1 1 6

L.8.8 100 4.30e+ 09 3.70e+ 09 1 1 7 −6
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5.4.1 First stage of experiments: proof of concept

The 1st stage of experiments was conducted according to the experimental setting
presented above. Figure 5.1 graphically depicts in boxplots the number of function
evaluations spent by each algorithm portfolio for each test problem in 100 exper-
iments. The number of successful runs, the mean and standard deviation of the
required function evaluations, along with the wins, draws, losses, and the rank of
each portfolio for each test problem are reported in Tables 5.3 and 5.4. The latter
information is depicted also in Fig. 5.2. Figure 5.3 shows the total number of wins
and draws of all algorithms observed per test problem. Finally, the average ranks of
the portfolios over all test problems are illustrated in Fig. 5.4.

Some interesting observations can be made from the reported data. Figure 5.1
demonstrates significant variability on each portfolio’s performance, depending on
the corresponding test problem. Also, there seems to be no apparent correlation of
performance between any two algorithms. Indeed, Table 5.2 reports the maximum
and minimum values of the correlation coefficients computed on the samples of func-
tions evaluations of the algorithm portfolios for each test problem. As can be seen,
there are no crucial positive or negative correlations. The highest value is 0.362 be-
tween PL and L.3.3 in CW(57, 49), while the lowest value is −0.220 between M.3 and
M.10 for the same problem. Moreover, no pair of portfolios appears persistently in
Table 5.2. These observations suggest that the portfolios’ performance exhibits strong
dependence on the corresponding problem and it is rather unrelated among them.

This conclusion can be verified also in Fig. 5.2. As can be seen there are no observ-
able correlations between the algorithm portfolios with respect of their wins, draws,
and losses in the statistical performance comparisons. Also, it can be clearly observed
that even the highly-performing portfolios exhibit variable performance trends in all
problems. However, it can be observed that the number of draws apparently increases
with the problem’s dimension. This is illustrated in Fig. 5.3, which shows the total
number of wins and draws of all algorithms per test problem. Clearly, as dimension
increases, the total number of draws exhibits a monotonically upward trend. This
reveals the increasing difficulty of the problems, which is responsible for the trimmed
performance differences among the portfolios.

Most interestingly, Fig. 5.2 depicts the average ranks of the algorithm portfolios,
which quantifies the average performance of the portfolios over all test problems.
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Firstly, it can be seen that the plain algorithm portfolio without forecasting, denoted
as PL, was outperformed by the majority of the forecasting-based portfolios. This is a
strong indication that performance forecasting can enhance the portfolios in terms of
effectiveness and efficiency. Secondly, it can be clearly observed the superiority of sim-
ple exponential smoothing and simple moving average approaches against the linear
exponential smoothing. Since the main difference of the latter is the ability of cap-
turing short-term trends (varying rate of growth or cyclical patterns), it is reasonable
to assume that the obtained portfolios performance does not exhibit such behav-
ior. Instead, the ability of capturing linear trends and making accurate 1-step-ahead
forecasts of the other two forecasting models resulted in their observed dominance.

Moreover, it can be seen that the two most successful approaches are the ones
that use the least number of observations in the simple moving average model (RW
case), and the smaller value of α in the simple exponential smoothing model (SES.3
case). In the first case, using less observations results in a model that filters less
noise in the signal but responds rapidly to performance changes. In the second case,
smaller values of α yield smoother forecast series at the cost of slower responses in
performance changes, but it also alleviates abrupt changes in the forecasted values
due to temporal variations of the observed performance.

This reveals the two essential but conflicting properties that a forecasting-based
algorithm portfolio shall possess, namely,

(a) the ability to timely respond to new achievements of the constituent algorithms,
and

(b) the alleviation of instant changes in the portfolios’ dynamic due to possibly tem-
poral achievements.

Appropriate trade-off between the two can offer tangible benefits to the portfolio.
Evidently, the obtained results in the experiments show that property (b) can offer
performance boost since SES.3 is 33% better than RW in terms of its average rank as
can be seen in Fig. 5.2.

The two best-performing portfolios were subjected to further experimentation in
order to probe their sensitivity with respect to two parameters, namely the number
of batches and the number of processing units.
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Figure 5.5: Average number of function evaluations per parameter setting.

5.4.2 Second stage of experiments: sensitivity analysis

In the second stage of experiments, the distinguished SES.3 and RW algorithm portfo-
lios were considered for further investigation. The test problem of highest dimension,
namely CW(112, 16), was selected as the testbed for the sensitivity analysis of the
portfolios with respect to the number of batches, bmax, and the number of processing
units, C. As reported in Table 5.1, three levels were considered for each variable,
namely,

bmax ∈ {100, 500, 1000}, C ∈ {21, 41, 61}.

Note that C contains also the master processing unit, thus the actual number of
the available computational resources allocated to the constituent algorithms of the
portfolios are 20, 40, and 60, respectively. Henceforth, the notation

AP/bmax/C

is used, where AP ∈ {SES.3,RW}, to denote the corresponding portfolio with the
specific setting of bmax batches and C processing units. The total number of function
evaluations was equal to the one of the 1st stage of experiments for consistency reason.

The analysis of the portfolios was similar to the one in the previous section. A total
number of 100 runs were conducted for each portfolio and parameters combination,
extracting the same statistical information and relative performance data, namely
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Figure 5.6: Number of wins, draws, and losses per parameter setting.
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Figure 5.7: Ranks of the algorithm portfolios per parameter setting.
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Table 5.5: Average number of function evaluations allocated to each processing unit
per batch.

SES.3 modif. RW modif.

Best 8 AP (rank > 0) 4716981.13 6521739.27

Worst 8 AP (rank < 0) 3571428.57 (−24.3%) 3968253.96 (−39.2%)

Table 5.6: Two-way ANOVA table for SES.3 and RW. Processing units correspond to
rows and number of batches correspond to columns.

AP Source SS df MS F p-value

SES.3 Columns 4.7552e+ 20 2 2.3776e+ 20 295.4936 0

Rows 1.8116e+ 20 2 9.0581e+ 19 112.5764 0

Interaction 5.6473e+ 20 4 1.4118e+ 20 175.4647 0

Error 7.1691e+ 20 891 8.0462e+ 17

Total 1.9383e+ 21 899

RW Columns 6.6276e+ 20 2 3.3138e+ 20 408.2137 0

Rows 2.1044e+ 20 2 1.0522e+ 20 129.6189 0

Interaction 2.5925e+ 20 4 6.4812e+ 19 79.8390 0

Error 7.2330e+ 20 891 8.1178e+ 17

Total 1.8557e+ 21 899

wins, losses, draws, and rank. Figure 5.5 illustrates the average number of function
evaluations per algorithm portfolio and parameter setting. Figures 5.6 and 5.7 report
the corresponding number of wins, draws, losses, and the ranks of each portfolio,
respectively. Table 5.5 reports the average number of function evaluations allocated
to the best-performing SES.3 and RW portfolios. Eventually, Table 5.6 reports the
statistical information of two-way analysis of variance (ANOVA) for each portfolio
with respect to the values of batches and processing units, which aims at revealing
the impact of each variable and their possible interactions.

The results offer interesting evidence. As can be seen in Fig. 5.5, SES.3 was proved
to be more efficient in most cases, requiring smaller average numbers of function
evaluations. This is observed especially for higher number of batches and higher
number of processing units. Note that, according to Eqs. (5.7) and (5.8) under fixed
computational budget, an increase in the number of batches or processing units results
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in fewer number of function evaluations assigned to each processing unit at each
resources allocation cycle. Thus, it seems that SES.3 gained more benefits from RW
when frequent reallocations occur. This is reasonable, since RW is expected to closely
follow changes in the performance of constituent algorithms, thereby rapidly changing
the allocated resources from one batch to the next. This property can introduce
fluctuations in the observed performance signals of the algorithms since their total
exploration dynamic becomes highly variable between two consequent batches. On
the other hand, the smoother transition from one allocation state to another in SES.3
evidently avoids that deficiency.

Figure 5.6 and, especially, Fig. 5.7 are pretty revealing regarding the most domi-
nant approaches. As can be seen in Fig. 5.7, the 8 best-performing approaches with
positive ranks (more wins than losses) consist of 5 instances of SES.3 and just 3 of
RW, while exactly the opposite holds for the worst 8 approaches with negative ranks
(more losses than wins). Table 5.5 reports the average number of function evaluations
that is allocated to each processing unit for the SES.3 and RW portfolios that belong
to the best 8 and, respectively, to the worst 8 portfolios depicted in Fig. 5.7. As can be
seen, the best SES.3 approaches have an average that is around 24% higher than the
less successful ones. Similarly, the successful RW approaches have an average that is
approximately 39% higher than their worst counterparts. This evidence corroborates
the previous conjecture.

In order to detect possible performance similarities and interactions between the
different parameter settings, two-way ANOVA was conducted for SES.3 and RW in-
dividually. Table 5.6 reports the complete ANOVA table for both cases. In this table,
sum of squares is denoted as SS, degrees of freedom is denoted as df, MS stands
for mean squares and F is the F ratio. As can be seen, all the obtained p-values
were equal to zero. This means that there were no statistical similarities of perfor-
mance among different settings of either the number of batches or the number of
processing units. Also, there was no observable interaction among them. This shows
that the selected parameterization for these two variables can result in quite distinct
performance profiles of the portfolios.

Nevertheless, SES.3 with 500 batches and 60 processing units shared the best
position in Fig. 5.7 with the RW approach with 500 batches and 20 processing units.
Both achieved almost 19% increased rank values than the next best approach. This is
observed also in Fig. 5.6, where it can be seen that these two portfolios are the only
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ones without losses, while they exhibit only one draw from the comparison between
them.

5.5 Synopsis

A new forecasting-based algorithm portfolio model was proposed. Time series fore-
casting was employed to predict the performance of the portfolio’s constituent al-
gorithms. Then, computational resources (processing units) were allocated to the
algorithms accordingly.

The challenging problem of detecting circulant weighing matrices was selected
as the testbed for the empirical analysis of the proposed approach. Six problems of
various sequence lengths and weights were used for this purpose. Moving average and
exponential smoothing techniques were used with heterogeneous parallel algorithm
portfolios based on the tabu search algorithm to detect matrices of various sizes and
weights.

The experimental evidence and statistical analysis verified the ability of the pro-
posed model to outperform standard algorithm portfolios. Also, sensitivity analysis
provided useful insight regarding the impact of variables related to the model (num-
ber of batches) and the computation environment (number of processing units) on
the portfolio’s performance.

Further work will consider the application of the proposed approaches on open
circulant weighing matrices problems. Also, the online adaptation of the employed
forecasting model as well as its parameters will significantly enhance its performance
and broaden its applicability.
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Chapter 6

Concluding Remarks and Future Work

6.1 Concluding Remarks

6.2 Future work

6.1 Concluding Remarks

Algorithm Portfolios define schemes that combine multiple algorithms into a joint
framework while sharing the computational resources. The goals of the present the-
sis were the justification for the use of algorithm portfolios of metaheuristic algorithms
in demanding optimization problems and the development of new parallel algorithm
portfolio models. First, the necessity for appropriate computational resources alloca-
tion in modern metaheuristics was identified. Standard parallel algorithm portfolio
models were introduced and applied on hard optimization problems such as the
design of S-boxes in cryptography and the traffic light scheduling in smart cities
environments.

Moreover, two new parallel algorithm portfolios with sophisticated resources allo-
cation mechanisms were proposed. The first model introduces a trading-based mech-
anism that distributes the computational resources through a solution trading proce-
dure. It was assessed on three demanding problems, namely the detection of circulant
weighing matrices, the lot-sizing planning in production systems with returns and
remanufacturing, and the transportation of commodities in humanitarian logistics.
The second proposed model employs time series forecasting techniques to predict
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the performance of the constituent algorithms of the portfolio and allocate the com-
putational resources, accordingly. Its potential was demonstrated on the detection of
circulant weighing matrices.

The experimental results offered strong evidence on the efficiency and effective-
ness of the proposed algorithm portfolios on the studied discrete and mixed-integer
problems. The portfolios usually achieved solutions of equal or higher quality than
their constituent algorithms in significantly less time. Also, the experiments showed
that it is highly desirable to construct portfolios with complementary algorithms. For
example, it seems beneficial to form portfolios that harness both population-based
and local-based algorithms to address specific types of problems. Additionally, the
potential of the proposed budget allocation mechanisms in algorithm portfolios has
been fully revealed. Specifically, the mechanisms can offer remarkable performance
enhancement with respect to solution quality. Finally, the experimental results offered
guidelines for the parameter setting of the portfolios.

6.2 Future work

It is highly interesting to investigate the synergy among the constituent algorithms
of the portfolio and the impact of their complementarity on performance. Another
important topic is the number of constituent algorithms. It is questionable whether
adding algorithms to the algorithm portfolio results in subsequent performance im-
provement. Furthermore, it would be interesting to apply algorithm portfolios on
optimization problems with many objectives. Additionally, it would be compelling to
construct algorithm portfolios that also combine gradient-based optimization algo-
rithms as there are no relevant works in literature. Finally, the performance of the
algorithm portfolios could be further investigated on modern computing infrastruc-
tures using GPU-based techniques and tools.
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Appendix A

Appendix

A.1 Test Problems

A.1 Test Problems

A.1.1 Standard Test Suite

The standard test suite consists of the following problems:

Test Problem 0 (TP0 - Sphere) [18]. This is a separable n-dimensional problem,
defined as:

f(x) =
n∑

i=1

x2
i , (A.1)

and it has a single global minimizer, x∗ = (0, 0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 1 (TP1 - Generalized Rosenbrock) [18]. This is a non-separable n-
dimensional problem, defined as:

f(x) =
n−1∑
i=1

(
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

)
, (A.2)

and it has a global minimizer, x∗ = (1, 1, . . . , 1)⊤, with f(x∗) = 0.

Test Problem 2 (TP2 - Rastrigin) [18]. This is a separable n-dimensional problem,
defined as:

f(x) = 10n+
n∑

i=1

(
x2
i − 10 cos(2πxi)

)
, (A.3)
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and it has a global minimizer, x∗ = (0, 0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 3 (TP3 - Griewank) [18]. This is a non-separable n-dimensional prob-
lem, defined as:

f(x) =
n∑

i=1

x2
i

4000
−

n∏
i=1

cos
(

xi√
i

)
+ 1, (A.4)

and it has a global minimizer, x∗ = (0, 0, . . . , 0)⊤, with f(x∗) = 0.

Test Problem 4 (TP4 - Ackley) [18]. This is a non-separable n-dimensional problem,
defined as:

f(x) = 20 + exp(1)− 20 exp

−0.2
√√√√ 1

n

n∑
i=1

x2
i


− exp

(
1

n

n∑
i=1

cos(2πxi)

)
, (A.5)

and it has a global minimizer, x∗ = (0, 0, . . . , 0)⊤, with f(x∗) = 0.

A.1.2 Nonlinear Systems

This test set consists of six real-application problems, which are modeled as systems of
nonlinear equations. Computing a solution of a nonlinear system is a very challenging
task and it has received the ongoing attention of the scientific community. A common
methodology for solving such systems is their transformation to an equivalent global
optimization problem, which allows the use of a wide range of optimization tools. The
transformation produces a single objective function by aggregating all the system’s
equations, such that the solutions of the original system are exactly the same with
that of the derived optimization problem.

Consider the system of nonlinear equations:
f1(x) = 0,

f2(x) = 0,
...

fm(x) = 0,

with x ∈ S ⊂ Rn. Then, the objective function:

f(x) =
m∑
i=1

|fi(x)|, (A.6)
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defines an equivalent optimization problem. Obviously, if x∗ with f(x∗) = 0 is a global
minimizer of the objective function, then x∗ is also a solution of the corresponding
nonlinear system and vice versa.

In our experiments, we considered the following nonlinear systems, previously
employed by Grosan and Abraham [163] to justify the usefulness of evolutionary
approaches as efficient solvers of nonlinear systems:

Test Problem 5 (TP5 - Interval Arithmetic Benchmark) [163] This problem consists
of the following system:

x1 − 0.25428722− 0.18324757 x4x3x9 = 0,

x2 − 0.37842197− 0.16275449 x1x10x6 = 0,

x3 − 0.27162577− 0.16955071 x1x2x10 = 0,

x4 − 0.19807914− 0.15585316 x7x1x6 = 0,

x5 − 0.44166728− 0.19950920 x7x6x3 = 0,

x6 − 0.14654113− 0.18922793 x8x5x10 = 0,

x7 − 0.42937161− 0.21180486 x2x5x8 = 0,

x8 − 0.07056438− 0.17081208 x1x7x6 = 0,

x9 − 0.34504906− 0.19612740 x10x6x8 = 0,

x10 − 0.42651102− 0.21466544 x4x8x1 = 0.

(A.7)

The resulting objective function defined by Eq. (A.6), is 10-dimensional with global
minimum f(x∗) = 0.

Test Problem 6 (TP6 - Neurophysiology Application) [163] This problem consists of
the following system: 

x2
1 + x2

3 = 1,

x2
2 + x2

4 = 1,

x5x
3
3 + x6x

3
4 = c1,

x5x
3
1 + x6x

3
2 = c2,

x5x1x
2
3 + x6x

2
4x2 = c3,

x5x
2
1x3 + x6x

2
2x4 = c4,

(A.8)

where the constants, ci = 0, i = 1, 2, 3, 4. The resulting objective function is 6-
dimensional with global minimum f(x∗) = 0.

Test Problem 7 (TP7 - Chemical Equilibrium Application) [163] This problem consists
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of the following system:

x1x2 + x1 − 3x5 = 0,

2x1x2 + x1 + x2x
2
3 +R8x2 −Rx5 + 2R10x

2
2 +R7x2x3+

R9x2x4 = 0,

2x2x
2
3 + 2R5x

2
3 − 8x5 +R6x3 +R7x2x3 = 0,

R9x2x4 + 2x2
4 − 4Rx5 = 0,

x1(x2 + 1) +R10x
2
2 + x2x

2
3 +R8x2 +R5x

2
3 + x2

4 − 1

+R6x3 +R7x2x3 +R9x2x4 = 0,

(A.9)

where,
R = 10, R5 = 0.193, R6 =

0.002597√
40

, R7 =
0.003448√

40
,

R8 =
0.00001799

40
, R9 =

0.0002155√
40

, R10 =
0.00003846

40
.

The corresponding objective function is 5-dimensional with global minimum f(x∗) =

0.

Test Problem 8 (TP8 - Kinematic Application) [163] This problem consists of the
following system:

x2
i + x2

i+1 − 1 = 0,

a1ix1x3 + a2ix1x4 + a3ix2x3 + a4ix2x4 + a5ix2x7+

a6ix5x8 + a7ix6x7 + a8ix6x8 + a9ix1 + a10ix2 + a11ix3+

a12ix4 + a13ix5 + a14ix6 + a15ix7 + a16ix8 + a17i = 0,

(A.10)

with aki, 1 ⩽ k ⩽ 17, 1 ⩽ i ⩽ 4, is the corresponding element of the k-th row and i-th
column of the matrix:

A =



-0.249150680 0.125016350 -0.635550077 1.48947730
1.609135400 -0.686607360 -0.115719920 0.23062341
0.279423430 -0.119228120 -0.666404480 1.32810730
1.434801600 -0.719940470 0.110362110 -0.25864503
0.000000000 -0.432419270 0.290702030 1.16517200
0.400263840 0.000000000 1.258776700 -0.26908494
-0.800527680 0.000000000 -0.629388360 0.53816987
0.000000000 -0.864838550 0.581404060 0.58258598
0.074052388 -0.037157270 0.195946620 -0.20816985
-0.083050031 0.035436896 -1.228034200 2.68683200
-0.386159610 0.085383482 0.000000000 -0.69910317
-0.755266030 0.000000000 -0.079034221 0.35744413
0.504201680 -0.039251967 0.026387877 1.24991170
-1.091628700 0.000000000 -0.057131430 1.46773600
0.000000000 -0.432419270 -1.162808100 1.16517200
0.049207290 0.000000000 1.258776700 1.07633970
0.049207290 0.013873010 2.162575000 -0.69686809



.

The corresponding objective function is 8-dimensional with global minimum f(x∗) =

0.
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Test Problem 9 (TP9 - Combustion Application) [163] This problem consists of the
following system: 

x2 + 2x6 + x9 + 2x10 = 10−5,

x3 + x8 = 3× 10−5,

x1 + x3 + 2x5 + 2x8 + x9 + x10 = 5× 10−5,

x4 + 2x7 = 10−5,

0.5140437× 10−7x5 = x2
1,

0.1006932× 10−6x6 = 2x2
2,

0.7816278× 10−15x7 = x2
4,

0.1496236× 10−6x8 = x1x3,

0.6194411× 10−7x9 = x1x2,

0.2089296× 10−14x10 = x1x
2
2.

(A.11)

The corresponding objective function is 10-dimensional with global minimum f(x∗) =

0.

Test Problem 10 (TP10 - Economics Modeling Application) [163] This problem con-
sists of the following system:

(
xk +

n−k−1∑
i=1

xixi+k

)
xn − ck = 0,

n−1∑
l=1

xl + 1 = 0,

(A.12)

where 1 ⩽ k ⩽ n − 1, and ci = 0, i = 1, 2, . . . , n. The problem was considered in
its 20-dimensional instance. Thus, the corresponding objective function was also 20-
dimensional, with global minimum f(x∗) = 0.
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