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Abstra
t

Evaggelia V. Tsiligianni, PhD, Computer S
ien
e & Engineering Department, University

of Ioannina, Gree
e. July, 2015. Constru
tion of approximately equiangular tight frames

and their appli
ations. Thesis Supervisor: Lisima
hos P. Kondi.

Frames are 
onsidered a natural extension of orthonormal bases to over
omplete span-

ning systems. Én the signal pro
essing 
ommunity, frames have mainly be
ome popular

due to wavelets; however, many other frame families have been employed in numerous

appli
ations, in
luding sour
e 
oding, robust transmission, 
ode division multiple a

ess

(CDMA) systems, and 
oding theory. The most important 
hara
teristi
 of frames is

redundan
y, whi
h adds more 
exibility to signal expansions, fa
ilitating various signal

pro
essing tasks.

A �nite frame with N ve
tors in an m-dimensional Hilbert spa
e Hm

is usually identi-

�ed with the m×N matrix F = [f1 f2 : : : f

N

], m ≤ N , with 
olumns the frame ve
tors

f

k

∈ Hm

, k = 1; : : : ; N . The most important properties of frames are mutual 
oheren
e

and spe
tral norm. Mutual 
oheren
e is a measure of the maximal 
orrelation between

the frame ve
tors and 
hara
terizes the degree of similarity between the 
olumns of the

matrix F . Spe
tral norm measures how mu
h a frame 
an dilate a unit norm 
oeÆ
ient

ve
tor. Mutual 
oheren
e and spe
tral norm de�ne parti
ular 
lasses of frames. Unit

norm tight frames (UNTFs) attain optimal bounds of spe
tral norm; these frames have

unit norm 
olumns and orthogonal rows of equal norm. Unit norm tight frames with small

mutual 
oheren
e are referred to as in
oherent UNTFs. The minimum possible mutual


oheren
e is attained by equiangular tight frames (ETFs). The frame ve
tors of ETFs

exhibit identi
al 
orrelation and these frames are 
onsidered 
losest to orthonormal bases.

ETFs o�er erasure-robust transmission in 
ommuni
ations and minimize interuser

interferen
e when employed as spreading sequen
es in multiuser 
ommuni
ation systems.

Due to their in
oheren
e, they are of interest in sparse representations and 
ompressed

sensing. However, ETFs do not exist for all frame dimensions and their 
onstru
tion has

been proved extremely diÆ
ult.

This thesis presents two methods that produ
e real frames 
lose to ETFs. The pro-

posed 
onstru
tions are motivated by spe
i�
 appli
ations, namely, 
ompressed sensing

and sparse representations. Con
erning sparse or 
ompressible signals, that is, signals

with a few signi�
ant 
oeÆ
ients, 
ompressed sensing and sparse representations have

vii



experien
ed a growing interest in the last de
ade, providing the ability of 
ompa
t repre-

sentations that serve various data sour
es. The mathemati
al model lying in the heart of

these appli
ations involves an underdetermined linear system with more unknowns than

equations. Computing its sparsest solution, i.e., the one with the fewest non-vanishing


oeÆ
ients is tra
table with numeri
al methods. Standard numeri
al solvers in
lude Or-

thogonal Mat
hing Pursuit (OMP) and Basis Pursuit (BP).

In sparse and redundant representations, we seek a sparse signal representation with

respe
t to a redundant (over
omplete) di
tionary. Performan
e guarantees for the algo-

rithms deployed to 
ompute the non-vanishing 
oeÆ
ients require that the given di
tio-

nary forms an in
oherent UNTF. While many in
oherent di
tionaries are known in the

literature, their limited sparsifying ability has promoted the design of learning based di
-

tionaries. Often, learning based di
tionaries do not satisfy the ne
essary properties for

numeri
al 
omputations.

Compressed sensing is a sampling theory that allows signal re
onstru
tion from an

in
omplete number of measurements. Con
erning signals that are sparse or 
ompressible,


ompressed sensing uses a sensing me
hanism implemented by an appropriate matrix, the

so-
alled proje
tion matrix. A

ording to theoreti
al results, the proje
tion matrix must

possess a property known as the restri
ted isometry property (RIP). Constru
ting RIP

matri
es is diÆ
ult, as evaluation of RIP is 
ombinatorially 
omplex. Random Gaussian

or Bernoulli matri
es satisfy RIP with high probability. Considering N -dimensional sig-

nals with s non-vanishing 
oeÆ
ients, re
overy 
onditions for random matri
es require

O(s logN) measurements. More re
ent results formulate similar re
overy guarantees for

proje
tion matri
es that form in
oherent UNTFs. Thus, a new design strategy involves

the 
onstru
tion of proje
tion matri
es exhibiting small mutual 
oheren
e and spe
tral

norm.

Minimum bounds of mutual 
oheren
e and spe
tral norm are attained by ETFs; there-

fore, the methods proposed here aim at the 
onstru
tion of frames as 
lose to ETFs as

possible. The �rst method uses results from frame theory and relies on alternating pro-

je
tion ideas. The produ
ed 
onstru
tions form UNTFs with remarkably small mutual


oheren
e, that is, in
oherent UNTFs. The se
ond method relies on re
ent results showing

that there is one-to-one 
orresponden
e of ETFs to a spe
ial type of graphs. The existen
e

of an ETF is determined by the so-
alled signature matrix. A signature matrix has the

form of the adja
en
y matrix of a graph and its spe
trum 
onsists of two distin
t eigen-

values. Viewing the 
onstru
tion of a signature matrix as an inverse eigenvalue problem,

we develop a numeri
al algorithm to 
ompute a solution that approximates the signature

matrix of an ETF. The se
ond method produ
es nearly equiangular, nearly tight frames,

that is, frames with similar 
olumn 
orrelation and approximately optimal spe
tral norm.

The proposed frame 
onstru
tions are employed as proje
tion matri
es in 
ompressed

sensing, improving substantially the performan
e of the deployed algorithms in sparse

re
overy. Considering that many signals are sparse or 
ompressible under over
omplete

di
tionaries, in
oherent UNTFs are also used for the design of optimized proje
tion ma-
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tri
es with respe
t to a given representation di
tionary. An additional way to employ the

proposed frames to solve underdetermined linear systems is the te
hnique of pre
ondition-

ing. Applying pre
onditioning to sparse representations, we improve the performan
e of

the algorithms deployed to �nd the 
oeÆ
ients of the sparse signal. In 
ompressed sens-

ing, pre
onditioning is used to improve signal re
overy when binary matri
es are used as

proje
tion matri
es. Note that binary matri
es are 
onsidered more suitable for hardware

implementation.

Besides 
ompressed sensing and sparse representations, one of the proposed 
onstru
-

tions has been employed in the design of near-optimal 
odes or spreading sequen
es in

syn
hronous CDMA systems. Optimal spreading sequen
es maximize the rate at whi
h

the users 
an transmit and minimize interuser interferen
e. Equal norm tight frames have

been proved optimal, if all users in the system are a
tive. When the number of users


hanges, the only frames that 
an minimize interuser interferen
e are ETFs. However,

only a few ETF 
onstru
tions are known in the literature. The near optimal 
odebook

presented here has the form of a nearly equiangular, nearly tight frame and minimizes

interuser interferen
e even when some users in the system are silent.
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Åõáããåëßá ÔóéëéãéÜííç �ïõ Âáóéëåßïõ êáé �çò ÅëÝíçò. PhD, ÔìÞìá Ìç÷áíéêþí Ç/Õ

& �ëçñïöïñéêÞò, �áíåðéó�Þìéï Éùáííßíùí, Éïýëéïò, 2015. Êá�áóêåõÞ ðñïóåããéó�éêþí

equiangular tight frames êáé åöáñìïãÝò. ÅðéâëÝðùí: Ëõóßìá÷ïò �áýëïò Êüí�çò.

Ôá frames åßíáé õðåñðëÞñç óõó�Þìá�á ðïõ ðáñÜãïõí Ýíáí äéáíõóìá�éêü ÷þñï êáé

èåùñïýí�áé åðÝê�áóç �ùí ïñèïêáíïíéêþí âÜóåùí. Ó�çí åðåîåñãáóßá óÞìá�ïò, �á frames

Ýãéíáí ãíùó�Ü ÷Üñç ó�á wavelets. ¢ëëïé �ýðïé frames Ý÷ïõí ÷ñçóéìïðïéçèåß óå ðïéêßëåò

åöáñìïãÝò, üðùò åßíáé ç êùäéêïðïßçóç, ç åýñùó�ç ìå�Üäïóç êáé �á óõó�Þìá�á ðïëëáðëÞò

ðñïóðÝëáóçò ìå äéáßñåóç êþäéêá (Code Division Multiple A

ess{CDMA). Ç õðåñðëçñü-

�ç�á èåùñåß�áé �ï ðéï óçìáí�éêü ÷áñáê�çñéó�éêü �ùí frames, äéü�é ðñïóöÝñåé åõåëéîßá ó�çí

áíáðáñÜó�áóç åíüò óÞìá�ïò êáé äéåõêïëýíåé �çí åðåîåñãáóßá.

¸íá frame ìå ðåðåñáóìÝíï ðëÞèïò äéáíõóìÜ�ùí ðïõ ðáñÜãåé �ïí m-äéÜó�á�ï äéáíõ-

óìá�éêü ÷þñï Hm

, óõíÞèùò, áíáðáñéó�Ü�áé áðü Ýíáí ðßíáêá ìåãÝèïõò m × N , ðïõ Ý÷åé

ùò ó�Þëåò �á äéáíýóìá�á �ïõ frame, äçëáäÞ, F = [f1 f2 : : : f

N

], m ≤ N , f

k

∈ Hm

,

k = 1; : : : ; N . Ùò ðéï óçìáí�éêÝò éäéü�ç�åò åíüò frame èåùñïýí�áé ç áìïéâáßá óõíÜöåéá

(mutual 
oheren
e) êáé ç öáóìá�éêÞ íüñìá (spe
tral norm). Ç áìïéâáßá óõíÜöåéá áðï�åëåß

Ýíá ìÝ�ñï �çò ìÝãéó�çò óõó÷Ý�éóçò �ùí äéáíõóìÜ�ùí �ïõ frame êáé åêöñÜæåé �çí ïìïéü�ç�á

ìå�áîý �ùí ó�çëþí �ïõ ðßíáêá F . Ç öáóìá�éêÞ íüñìá áðï�åëåß ìÝ�ñï �çò ìÝãéó�çò äõíá�Þò

äéáó�ïëÞò åíüò ìïíáäéáßïõ äéáíýóìá�ïò, ü�áí áõ�ü ðïëëáðëáóéáó�åß ìå �ï frame. Ïé äýï

éäéü�ç�åò ïñßæïõí óõãêåêñéìÝíåò êá�çãïñßåò frames. Ôá unit norm tight frames (UNTFs)

åìöáíßæïõí �ç ìéêñü�åñç äõíá�Þ öáóìá�éêÞ íüñìá. Ôá óõãêåêñéìÝíá frames Ý÷ïõí ó�Þëåò

ìïíáäéáßïõ ìÝ�ñïõ êáé ïñèïãþíéåò ãñáììÝò ßóïõ ìÝ�ñïõ. ¼�áí Ýíá UNTF åìöáíßæåé ìéêñÞ

áìïéâáßá óõíÜöåéá, �ü�å ÷áñáê�çñßæå�áé ùò in
oherent UNTF. Ç åëÜ÷éó�ç äõíá�Þ áìïéâáßá

óõíÜöåéá óõíáí�Ü�áé ó�á equiangular tight frames (ETFs). Ôá äéáíýóìá�á �ùí ETFs

åìöáíßæïõí �áõ�üóçìç óõó÷Ý�éóç êáé �á frames áõ�ïý �ïõ �ýðïõ èåùñïýí�áé ùò ç êáëý�åñç

ðñïóÝããéóç ïñèïêáíïíéêþí âÜóåùí.

Ôá ETFs Ý÷ïõí ðñï�áèåß ãéá �çí åðß�åõîç åýñùó�çò ìå�Üäïóçò óå óõó�Þìá�á åðéêïéíù-

íßáò, êáèþò êáé ãéá �çí åëá÷éó�ïðïßçóç �çò ðáñåìâïëÞò ìå�áîý �ùí ÷ñçó�þí óå óõó�Þìá�á

ðïëëáðëÞò ðñïóðÝëáóçò. ×Üñç ó�çí åëÜ÷éó�ç áìïéâáßá óõíÜöåéá ðïõ åìöáíßæïõí, ðáñïõ-

óéÜæïõí åíäéáöÝñïí óå åöáñìïãÝò üðùò ïé áñáéÝò áíáðáñáó�Üóåéò (sparse representations)

êáé ç óõìðéåó�éêÞ äåéãìá�ïëçøßá (
ompressed sensing). ¼ìùò, ETFs äåí õðÜñ÷ïõí ãéá

ïðïéåóäÞðï�å äéáó�Üóåéò, åíþ ç êá�áóêåõÞ �ïõò Ý÷åé áðïäåé÷èåß éäéáß�åñá äýóêïëç.
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Ó�çí ðáñïýóá äéá�ñéâÞ ðñï�åßíïí�áé äýï ìÝèïäïé ãéá �çí êá�áóêåõÞ ðñïóåããéó�éêþí

ETFs. Êßíç�ñï ãéá �ç êá�áóêåõÞ �ùí ðñï�åéíüìåíùí frames áðï�åëåß ç åöáñìïãÞ �ïõò óå

ðñïâëÞìá�á áñáéþí áíáðáñáó�Üóåùí êáé óõìðéåó�éêÞò äåéãìá�ïëçøßáò. Ïé óõãêåêñéìÝíåò

åöáñìïãÝò áöïñïýí óÞìá�á ðïõ ìðïñïýí íá ðáñáó�áèïýí áðü ëßãïõò ìç ìçäåíéêïýò óõ-

í�åëåó�Ýò, äçëáäÞ, áñáéÜ Þ óõìðéÝóéìá óÞìá�á, êáé Ý÷ïõí ãíùñßóåé éäéáß�åñç áíÜð�õîç �çí

�åëåõ�áßá äåêáå�ßá, äéü�é ðáñÝ÷ïõí �ç äõíá�ü�ç�á óõìðáãþí áíáðáñáó�Üóåùí, ÷ñÞóéìùí

ãéá äéÜöïñïõò �ýðïõò äåäïìÝíùí. Ôï ìáèçìá�éêü ìïí�Ýëï ðïõ âñßóêå�áé ó�çí êáñäéÜ �ùí

óõãêåêñéìÝíùí áíáðáñáó�Üóåùí åßíáé Ýíá õðï-ïñéóìÝíï ãñáììéêü óýó�çìá, ìå ðëÞèïò

åîéóþóåùí ìéêñü�åñï áðü �ï ðëÞèïò �ùí áãíþó�ùí. Ï õðïëïãéóìüò �çò áñáéü�åñçò ëýóçò,

äçëáäÞ, �çò ëýóçò ìå �ï ìéêñü�åñï ðëÞèïò ìç ìçäåíéêþí óõí�åëåó�þí, åßíáé åöéê�üò ìå �ç

÷ñÞóç êá�Üëëçëùí áñéèìç�éêþí ìåèüäùí. Ïé ðéï ãíùó�ïß áëãüñéèìïé åßíáé ï Orthogonal

Mat
hing Pursuit (OMP) êáé ï Basis Pursuit (BP).

Ç áíáðáñÜó�áóç åíüò óÞìá�ïò ìå ëßãïõò ìç ìçäåíéêïýò óõí�åëåó�Ýò, óõíÞèùò, åðé-

�õã÷Üíå�áé ìå �ç ÷ñÞóç åíüò õðåñðëÞñïõò óõó�Þìá�ïò áíáðáñÜó�áóçò, ðïõ åßíáé ãíùó�ü

ùò ëåîéêü (di
tionary). Ç áðïäï�éêÞ ëåé�ïõñãßá �ùí áëãïñßèìùí ðïõ ÷ñçóéìïðïéïýí�áé

ãéá �ïí õðïëïãéóìü �ùí ìç ìçäåíéêþí óõí�åëåó�þí ðñïûðïèÝ�åé �çí éêáíïðïßçóç óõãêå-

êñéìÝíùí óõíèçêþí. Ìéá áðü áõ�Ýò áðáé�åß �ï ëåîéêü íá Ý÷åé �ç ìïñöÞ åíüò in
oherent

UNTF. Ùó�üóï, ãíùó�Ü ëåîéêÜ áõ�Þò �çò ìïñöÞò äåí ïäçãïýí óå éêáíïðïéç�éêü åðßðåäï

áñáéü�ç�áò. �éá �ï ëüãï áõ�ü ðïëëÜ ëåîéêÜ Ý÷ïõí ó÷åäéáó�åß ÷ñçóéìïðïéþí�áò �å÷íéêÝò

åêìÜèçóçò. ÓõíÞèùò, üìùò, �á ëåîéêÜ áõ�ïý �ïõ �ýðïõ äåí éêáíïðïéïýí �éò óõíèÞêåò ðïõ

áðáé�ïýí ïé áëãüñéèìïé õðïëïãéóìïý �çò áñáéÞò áíáðáñÜó�áóçò.

Ç èåùñßá �çò óõìðéåó�éêÞò äåéãìá�ïëçøßáò êáèéó�Ü äõíá�Þ �çí áíÜê�çóç åíüò óÞìá�ïò

áðü Ýíá ðëÞèïò åëëéðþí ìå�ñÞóåùí. Ç óõìðéåó�éêÞ äåéãìá�ïëçøßá áöïñÜ óÞìá�á ðïõ åßíáé

áñáéÜ Þ óõìðéÝóéìá êáé ÷ñçóéìïðïéåß Ýíáí ìç÷áíéóìü äåéãìá�ïëçøßáò ðïõ õëïðïéåß�áé ìå �ç

âïÞèåéá êá�Üëëçëïõ ðßíáêá, ãíùó�ïý ùò ðßíáêá ðñïâïëþí (proje
tion matrix). Óýìöùíá

ìå �ç èåùñßá, ï ðßíáêáò áõ�üò ðñÝðåé íá Ý÷åé �çí éäéü�ç�á ðåñéïñéóìÝíçò éóïìå�ñßáò (re-

stri
ted isometry property{RIP). Ç êá�áóêåõÞ �Ý�ïéùí ðéíÜêùí åßíáé éäéáß�åñá äýóêïëç,

äéü�é ç åðáëÞèåõóç �çò RIP áðáé�åß óõíäõáó�éêïýò õðïëïãéóìïýò. Ïé ðéï ãíùó�ïß ðßíáêåò

ðïõ éêáíïðïéïýí �ç RIP ìå ìåãÜëç ðéèáíü�ç�á åßíáé ïé �õ÷áßïé ðßíáêåò Gauss êáé Bernoulli.

�éá �ïõò ðßíáêåò áõ�ïýò õðÜñ÷ïõí èåùñç�éêÜ áðï�åëÝóìá�á ðïõ áðïäåéêíýïõí ü�é åßíáé

åöéê�Þ ç áíÜê�çóç åíüò óÞìá�ïò ìÞêïõòN ìå s ìç ìçäåíéêïýò óõí�åëåó�Ýò, ü�áí �ï ðëÞèïò

ìå�ñÞóåùí åßíáé �çò �Üîçò O(s logN). Óýìöùíá ðñüóöá�á áðï�åëÝóìá�á, ç ðáñáðÜíù

óõíèÞêç áíÜê�çóçò éó÷ýåé êáé ü�áí ï ðßíáêáò ðñïâïëþí Ý÷åé �ç ìïñöÞ åíüò in
oherent

UNTF. Óõíåðþò, ìéá íÝá ó�ñá�çãéêÞ êá�áóêåõÞò ðéíÜêùí ðñïâïëþí ðåñéëáìâÜíåé �çí

êá�áóêåõÞ ðéíÜêùí ìå ÷áìçëÞ áìïéâáßá óõíÜöåéá êáé ìéêñÞ öáóìá�éêÞ íüñìá.

ÅëÜ÷éó�åò �éìÝò �üóï ãéá �çí áìïéâáßá óõíÜöåéá üóï êáé ãéá �ç öáóìá�éêÞ íüñìá

óõíáí�þí�áé ó�á ETFs. ÅðïìÝíùò, ïé ðñï�åéíüìåíåò ìÝèïäïé ó�ï÷åýïõí ó�çí êá�áóêåõÞ

ðñïóåããéó�éêþí ETFs. Ç ðñþ�ç ìÝèïäïò ÷ñçóéìïðïéåß áðï�åëÝóìá�á áðü �ç èåùñßá �ùí

frames êáé âáóßæå�áé óå éäÝåò ðïõ ÷ñçóéìïðïéïýí�áé ó�ç ìÝèïäï �ùí åíáëëáóóüìåíùí

ðñïâïëþí (alternating proje
tions). Ôá frames ðïõ ðáñÜãåé Ý÷ïõí �ç ìïñöÞ UNTFs êáé

åìöáíßæïõí ìéêñÞ áìïéâáßá óõíÜöåéá, ïðü�å áðï�åëïýí in
oherent UNTFs. Ç äåý�åñç
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ìÝèïäïò âáóßæå�áé óå ðñüóöá�á áðï�åëÝóìá�á ðïõ áðïäåéêíýïõí �çí ýðáñîç áìöéìïíï-

óÞìáí�çò áí�éó�ïé÷ßáò ìå�áîý ETFs êáé ãñÜöùí óõãêåêñéìÝíïõ �ýðïõ. Ç ýðáñîç åíüò

ETF êáèïñßæå�áé áðü Ýíáí ðßíáêá, ãíùó�ü ùò ðßíáêá signature, ðïõ Ý÷åé �ç ìïñöÞ ðßíáêá

ãåé�ïíßáò ãñÜöïõ êáé �ï öÜóìá �ïõ áðï�åëåß�áé áðü äýï äéáêñé�Ýò éäéï�éìÝò. Áí�éìå�ùðßæï-

í�áò �çí êá�áóêåõÞ �ïõ ðßíáêá signature ùò Ýíá áí�ßó�ñïöï ðñüâëçìá éäéï�éìþí (inverse

eigenvalue problem), ðñï�åßíïõìå Ýíáí áñéèìç�éêü áëãüñéèìï ðïõ ïäçãåß óå ðñïóåããéó�éêÞ

ëýóç. Ç äåý�åñç ìÝèïäïò ðáñÜãåé ðñïóåããéó�éêÜ ETFs, ìå äéáíýóìá�á ðïõ åìöáíßæïõí

ðáñüìïéá óõó÷Ý�éóç êáé ó÷åäüí âÝë�éó�ç öáóìá�éêÞ íüñìá.

Ïé ðñï�åéíüìåíåò êá�áóêåõÝò ÷ñçóéìïðïéïýí�áé ùò ðßíáêåò ðñïâïëþí ãéá óõìðéåó�éêÞ

äåéãìá�ïëçøßá, âåë�éþíïí�áò óçìáí�éêÜ �çí áðüäïóç �ùí ó÷å�éêþí áëãïñßèìùí ó�çí áíÜ-

ê�çóç áñáéþí óçìÜ�ùí. ÅðåéäÞ ðïëëÜ óÞìá�á Ý÷ïõí áñáéÝò áíáðáñáó�Üóåéò ùò ðñïò õðåñ-

ðëÞñç ëåîéêÜ, ÷ñçóéìïðïéïýìå �á ðñï�åéíüìåíá in
oherent UNTFs ãéá �çí êá�áóêåõÞ

âåë�éó�ïðïéçìÝíùí ðéíÜêùí ðñïâïëþí óå ó÷Ýóç ìå äåäïìÝíï ëåîéêü. ¸íáò åðéðëÝïí

�ñüðïò ãéá �çí áîéïðïßçóç �ùí ðñï�åéíüìåíùí êá�áóêåõþí ó�çí åðßëõóç õðï-ïñéóìÝíùí

ãñáììéêþí óõó�çìÜ�ùí åßíáé ç �å÷íéêÞ �çò ðñïññýèìéóçò. Åöáñìüæïí�áò ðñïññýèìéóç óå

áñáéÝò áíáðáñáó�Üóåéò ïäçãïýìáó�å óå êáëý�åñç áðüäïóç �ùí áëãïñßèìùí ðïõ ÷ñçóéìï-

ðïéïýí�áé ãéá �ïí õðïëïãéóìü �ùí ìç ìçäåíéêþí óõí�åëåó�þí. Ó�ç óõìðéåó�éêÞ äåéãìá�ï-

ëçøßá ç ðñïññýèìéóç âåë�éþíåé �çí áíÜê�çóç �ïõ óÞìá�ïò, ü�áí ÷ñçóéìïðïéïýí�áé äõáäéêïß

ðßíáêåò ðñïâïëþí. Óçìåéþíïõìå ü�é ïé äõáäéêïß ðßíáêåò ðñïâïëþí ðáñïõóéÜæïõí åõêïëü-

�åñç ðñáê�éêÞ õëïðïßçóç.

Åê�üò áðü �éò áñáéÝò áíáðáñáó�Üóåéò êáé �ç óõìðéåó�éêÞ äåéãìá�ïëçøßá, ìéá áðü �éò

ðñï�åéíüìåíåò êá�áóêåõÝò åßíáé êá�Üëëçëç ãéá �ç ó÷åäßáóç ó÷åäüí âÝë�éó�ùí êùäéêþí

(
odes) Þ áêïëïõèéþí åîÜðëùóçò (spreading sequen
es) óå óõó�Þìá�á óýã÷ñïíïõ CDMA.

Åßíáé ãíùó�ü ü�é ïé âÝë�éó�åò áêïëïõèßåò Ý÷ïõí �ç ìïñöÞ equal norm tight frames êáé

ïäçãïýí óå ìåãéó�ïðïßçóç �ïõ ñõèìïý ìå�Üäïóçò, åíþ åëá÷éó�ïðïéïýí �çí ðáñåìâïëÞ

ìå�áîý ÷ñçó�þí. Ùó�üóï, ü�áí �ï ðëÞèïò �ùí åíåñãþí ÷ñçó�þí åßíáé ìå�áâáëëüìåíï, �ü�å

ïé áêïëïõèßåò åßíáé âÝë�éó�åò ìüíï ü�áí Ý÷ïõí �ç ìïñöÞ ETFs. Äõó�õ÷þò, ìüíï ëßãåò

êá�áóêåõÝò ETFs õðÜñ÷ïõí ó�ç âéâëéïãñáößá. Ôï óýó�çìá êùäéêþí ðïõ ðáñïõóéÜæå�áé

åäþ Ý÷åé �ç ìïñöÞ ðñïóåããéó�éêþí ETFs êáé åëá÷éó�ïðïéåß �çí ðáñåìâïëÞ ìå�áîý ÷ñçó�þí

áêüìá êáé ü�áí êÜðïéïé ÷ñÞó�åò åßíáé áíåíåñãïß.
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Chapter 1

Introdu
tion

1.1 Overview

1.2 Contributions

1.3 Outline

Sometimes the representation of a fun
tion or an operator by an over
omplete spanning

system is preferable over the use of an orthonormal basis. The reason for this may be

that an orthonormal basis with the desired properties does not exist or the deliberate

introdu
tion of redundan
y. Frames 
an be regarded as the most natural generalization

of the notion of orthonormal bases. Parti
ularly useful in appli
ations are frames in

�nite dimensional spa
es. A �nite frame is a spanning set of ve
tors, whi
h are generally

redundant (over
omplete). As frames have more ve
tors than the dimension of the spa
e,

ea
h ve
tor in the spa
e will have in�nitely many representations with respe
t to the

frame. While armed with the advantage of redundan
y, frames 
ome with the drawba
k

that the frame ve
tors are linearly dependent.

A �nite frame with N ve
tors in an m-dimensional Hilbert spa
e Hm

is usually iden-

ti�ed with the m × N matrix F = [f1 f2 : : : f

N

], m ≤ N , with 
olumns the frame

ve
tors f

k

∈ Hm

, k = 1; : : : ; N . In many appli
ations there is a need to design frames

that are as 
lose to orthonormal bases as possible. Unit norm 
olumns, orthogonal equal

norm rows, equal 
orrelation between frame ve
tors are the desired properties of su
h

frames; the 
orresponding frame 
lasses are known as unit norm frames, tight frames and

equiangular frames, respe
tively. The most important 
ategory of frames in
ludes equian-

gular unit norm tight frames (ETFs) also known as optimal Grassmannian frames. These

frames 
ombine all of the above properties and they also minimize the maximal 
olumn


orrelation max
k 6=` |〈fk; f`〉|; therefore, they are 
onsidered to be 
losest to orthonormal

bases. Despite their important properties, ETFs do not exist for all frame dimensions

and their 
onstru
tion is extremely diÆ
ult. Thus, in many appli
ations similar frame


onstru
tions are used as substitutes.
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This thesis proposes two numeri
al methods for the 
onstru
tion of frames that are


lose to ETFs. The obtained frames exhibit small 
olumn 
orrelation, a property known

as in
oheren
e, and small spe
tral norm , meaning that they are 
lose to unit norm tight

frames. Using these frames in sparse signal re
overy in redundant representations and


ompressed sensing, we substantially improve the performan
e of the numeri
al algorithms

deployed to �nd sparse signals. One of the proposed methods yields nearly equiangular

frames, whi
h are employed as spreading sequen
es in syn
hronous Code Division Multiple

A

ess (s-CDMA) systems, minimizing interuser interferen
e.

1.1 Overview

Let x be a ve
tor of 
oeÆ
ients representing data in a real or 
omplex m-dimensional

Hilbert spa
e Hm

. One 
ommon approa
h to data pro
essing is the de
omposition of x

a

ording to a representation system {f
k

}N
k=1, N ≥ m, by 
onsidering the map

x 7→ (〈x; f
k

〉)N
k=1

The 
hoi
e of the representation system is di
tated by the treated data and the appli
ation

of interest. A su

essful 
hoi
e enables us to solve a variety of analysis tasks. For example,

the sequen
e (〈x; f
k

〉)N
k=1 allows 
ompression of x, whi
h is in fa
t the heart of the new

JPEG2000 
ompression standard when 
hoosing {f
k

}N
k=1 to be a wavelet system.

An a

ompanying approa
h is the expansion of the data x by 
onsidering sequen
es

{

k

}N
k=1 satisfying

x =

N∑

k=1




k

f

k

:

It is well known that suitably 
hosen representation systems allow sparse representations,

that is, representations with small number of nonvanishing 
oeÆ
ients.

A representation system that forms an orthonormal basis for Hm

is the standard


hoi
e. While orthonormal bases provide unique representations they exhibit important

drawba
ks. From the de
omposition viewpoint, the obtained sequen
e is far from being

robust to erasures. Every single 
oeÆ
ient en
apsulates unique information of the data x;

thus, its loss 
annot be re
overed. From the expansion viewpoint, orthonormal basis rarely

yield sparse representations, therefore, they are not suitable for sparsity methodologies

like 
ompressed sensing.

These problems 
an be ta
kled by allowing the system {f
k

}N
k=1 to be redundant, leading

us naturally to the notion of Hilbert frames. Redundan
y is a fundamental 
hara
teristi


of frames and plays a signi�
ant role in appli
ations. Due to redundan
y frames o�er

greater design 
exibility and 
an be 
onstru
ted to �t a parti
ular problem in a manner

impossible by a set of linearly independent ve
tors. For example, in sparse signal repre-

sentations, a redundant frame 
an be 
hosen to �t its 
ontent to the data, a
hieving a

high sparsity level that would not be easily obtained using an orthonormal basis. A se
-

ond major advantage of redundan
y is robustness. Frames have the advantage to spread

2



the information over a wider range of ve
tors, o�ering resilien
e against erasures (losses).

Erasures are, for instan
e, a severe problem in wireless sensor networks when transmission

losses o

ur.

The advantages provided by the frame redundan
y 
ome at the 
ost that the represen-

tation may not be unique. Thus, while we have good reasons to trade orthonormal bases

for frames, we still want to preserve as many properties of orthonormal bases as possible.

To measure the nearness of a frame to an orthonormal basis, we de�ne two important

properties. The �rst is the maximal 
orrelation of the frame ve
tors de�ned as the largest

absolute normalized inner produ
t between di�erent frame 
olumns

�(F ) = max
1≤k;`≤N

k 6=`

|〈f
k

; f

`

〉|
‖f

k

‖ ‖f
`

‖ ; (1.1)

where ‖·‖ denotes the Eu
lidean norm. In sparse representations the maximal 
orrelation
is referred to as mutual 
oheren
e [93℄ and is bounded a

ording to [119℄

√
N −m

m(N − 1)
≤ �(F ) ≤ 1: (1.2)

Frames with small mutual 
oheren
e are known as in
oherent.

An interpretation of the in
oheren
e property from an information theoreti
 viewpoint

is the following. Requiring a matrix F with small mutual 
oheren
e, that is, with 
olumns

as \independent" as possible, means that the information of a ve
tor x expanded by F

is spread in di�erent dire
tions, whi
h makes its re
overy easier. As we will see, mutual


oheren
e plays an important role in the existen
e of a unique solution of underdetermined

linear systems as well as in the performan
e of the algorithms deployed to �nd sparse

solutions.

After the mutual 
oheren
e, the spe
tral norm ‖F‖ is the most important geometri


quantity asso
iated with a frame F . Spe
tral norm equals the largest eigenvalue of F

T

F

and measures how mu
h the frame 
an dilate a unit norm 
oeÆ
ient ve
tor, so it re
e
ts

how mu
h the 
olumns of F are\spread out". A lower bound on the spe
tral norm of a

frame is given by

‖F‖2 ≥ N

m

: (1.3)

When equality holds in this relation, the frame forms a unit norm tight frame (UNTF).

Equivalently, the rows of F are mutually orthogonal ve
tors with equal norms. Mini-

mum bounds of both mutual 
oheren
e and spe
tral norm are a
hieved by equiangular

tight frames. ETFs have unit norm ve
tors forming equal angles, exhibiting minimal

dependen
y; thus, they are 
onsidered to be 
losest to orthonormal bases. However, the


onstru
tion of ETFs is extremely diÆ
ult, while it has been proved that ETFs do not

exist for all frame dimensions.

Mutual 
oheren
e and spe
tral norm de�ne parti
ular 
lasses of frames and play a

signi�
ant role in appli
ations. Most of the problems employing frames demand 
ertain
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desired properties; thus, most frame 
onstru
tions are appli
ation spe
i�
. Following

this rule, the work presented in this thesis is motivated by the resear
h for a good sensing

operator for 
ompressed sensing. The importan
e of in
oheren
e in sparse signal re
overy,

both in redundant representations and 
ompressed sensing makes ETFs ideal 
andidates

for these problems [70, 124, 125℄. The numeri
al 
onstru
tions proposed here produ
e

frames 
lose to ETFs in the sense that the obtained frames exhibit mutual 
oheren
e and

spe
tral norm approximating or, sometimes, attaining the minimum bounds. The �rst

method relies on frame theory and 
onstru
ts in
oherent UNTFs. These frames satisfy the

theoreti
al 
onditions for sparse re
overy, and are used in 
ompressed sensing to optimize

the measurement pro
ess and improve signal re
onstru
tion. The se
ond method is based

on results 
onne
ting frames to graphs and produ
es nearly equiangular frames, whi
h

are also employed in 
ompressed sensing to improve re
overy rates.

Besides 
ompressed sensing, the proposed frames are found useful in a similar prob-

lem, namely in sparse re
onstru
tion of redundant representations. The mathemati
al

te
hnique that enables their employment in this problem is referred to as pre
onditioning.

Moreover, based on re
ent results establishing the important role of equiangularity in de-

signing optimal 
odes for multiuser 
ommuni
ation systems, we employ nearly equiangular

frames as spreading sequen
es in s-CDMA systems to minimize interuser interferen
e.

1.1.1 Sparse representations

In the sparse representations literature, it is 
ommon for a basis or frame to be referred

to as a di
tionary or over
omplete di
tionary, respe
tively, with the di
tionary elements

being 
alled atoms. A signal expansion under an over
omplete di
tionary results in an

underdetermined linear system of the form

y = Ax; (1.4)

where y ∈ RK

is the signal of interest, A ∈ RK×N
, K < N , is a redundant di
tionary,

and x ∈ RN

is the ve
tor of the unknown 
oeÆ
ients [58℄. Due to the linear dependen
e

between the 
olumns of A, an important issue is the uniqueness of the representation.

A

ording to well known results, unique representations 
an be obtained as long as the

involved di
tionary is suÆ
iently in
oherent [51℄. Having more unknowns than equations,

system (1.4) 
an be solved if we add sparsity priors, requiring x to have only a few nonva-

nishing 
oeÆ
ients. Conditions that guarantee the performan
e of sparse re
onstru
tion

algorithms [93, 47, 26℄, besides in
oheren
e, highlight the role of tightness, requiring A to

be an in
oherent unit norm tight frame [125℄.

Although 
onstru
tions of in
oherent tight di
tionaries appear often in signal pro-


essing appli
ations, su
h di
tionaries have a limited ability of sparsifying signals or are

suitable only for 
ertain signal types. In this thesis, we propose the use of in
oherent unit

norm tight frames in the re
onstru
tion of sparse signals, utilizing a te
hnique referred

to as pre
onditioning. Pre
onditioning is used to transform a system into a form that

4



is more suitable for numeri
al solution [6℄. Designing a K ×K matrix C su
h that CA

exhibits in
oheren
e and tightness and employing C in (1.4) a

ording to

Cy = CAx; or z = CAx; z = Cy; (1.5)

we obtain a system that 
an be solved more eÆ
iently by the deployed algorithms. An

important 
ondition that must be taken into a

ount when designing the pre
onditioner

C is that (1.5) is equivalent to (1.4) if and only if C is invertible.

1.1.2 Compressed sensing

Solving an underdetermined linear system with a sparsity prior has re
ently re
eived a

lot of attention in 
ompressed sensing [49, 25℄. Exploiting sparsity, 
ompressed sensing

o�ers simultaneous a
quisition and 
ompression of signals, allowing signal re
onstru
tion

from an in
omplete number of measurements. Considering a sparse signal x ∈ RN

under

an orthonormal basis or redundant di
tionary A ∈ RK×N
, K ≤ N , we obtain m linear

measurements a

ording to

y = PAx; (1.6)

using a sensing operator P realized by an m×K, m≪ K, matrix. We refer to P as the

proje
tion or measurement matrix.

Compressed sensing leads to an underdetermined linear system with m equations

and N unknowns, m ≪ N , and, similarly to the sparse representation problem, relies

on numeri
al methods to �nd a sparse solution satisfying (1.6). The system matrix is

the produ
t of the sensing operator P and the representation di
tionary A; we refer

to this produ
t as the e�e
tive di
tionary. A

ording to theoreti
al results from sparse

representations, the e�e
tive di
tionary should be an in
oherent unit norm tight frame

[125℄.

Su

essful signal re
onstru
tion in 
ompressed sensing is based on the 
hoi
e of the

proje
tion matrix. Random matri
es are 
onsidered a universal solution; however, the

demand to in
rease re
onstru
tion a

ura
y and redu
e the ne
essary number of mea-

surements has led to new theoreti
al and pra
ti
al results [54℄. A te
hnique used to

improve re
overy rates in 
ompressed sensing involves the optimization of the proje
tion

matrix over the representation di
tionary A. Here, we design a proje
tion matrix that

yields an e�e
tive di
tionary having the form of an in
oherent unit norm tight frame.

Moreover, binary proje
tion matri
es that are 
onsidered more suitable for hardware im-

plementation may yield re
overy rates similar to optimized proje
tions, if the re
overy

pro

ess in
ludes pre
onditioning.

1.1.3 Spreading sequen
es for s-CDMA

In syn
hronous CDMA systems, the users share the entire bandwidth and ea
h user is

distinguished from the others by its spreading sequen
e or 
ode. The 
apa
ity region

de�ned as the set of information rates at whi
h users 
an transmit while retaining reliable
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transmission is 
hara
terized as a fun
tion of the spreading sequen
es and average input

power 
onstraints of the users. Capa
ity optimal sequen
es are fun
tions of 
odebook

length as well as the number of users [95, 136℄.

Suppose that x1; x2; : : : ; xN is a set of ve
tors in Rm


orresponding to N possible users

of an s-CDMA system. These ve
tors form a set of sequen
es of length m. Optimal

spreading sequen
es have been 
hara
terized in [95℄ to be the Wel
h Bound Equality

(WBE) sequen
es, that is, equal norm tight frames. WBE sequen
es minimize the total

squared 
orrelation (TSC), that is,

TSC =

N∑

i=1

N∑

j=1

|〈x
i

; x

j

〉|2 ; (1.7)

whi
h results in that the interferen
e experien
ed by any user is exa
tly the same. How-

ever, WBE sequen
es do not perform well when the number of users in the 
ell 
hanges.

If the number of the a
tive users is smaller than N , then a 
ode set designed for N users

is no longer optimal and new 
odes should be assigned to all users [76℄.

The interferen
e experien
ed by the j-th user in the system depends on the term [95℄

�(j) =

√∑

i6=j
|〈x

i

; x

j

〉|2: (1.8)

Consider a system with K < N a
tive users. In [76℄ it was shown that all users experien
e

the same interferen
e, whi
h depends only on K, the 
urrent number of a
tive users, if

and only if the 
ode set is an equiangular sequen
e set.

While ETFs 
onstitute an optimal solution for minimizing interuser interferen
e, only

a few 
onstru
tions of ETFs are available. Here, we propose the employment of nearly

equiangular frames as spreading sequen
es and improve interuser interferen
e when the

number of users in the system 
hanges.

1.2 Contributions

The main 
ontribution of this thesis is the development of two numeri
al methods for the


onstru
tion of frames that are 
lose to ETFs. The �rst method uses results from frame

theory and linear algebra and is based on alternating and averaged proje
tions ideas. The

obtained frames are UNTFs with small 
olumn 
orrelation, i.e., in
oherent UNTFs. The

se
ond method uses theoreti
al results 
on
erning the 
onne
tion of frames to graphs and

employs a heuristi
 algorithm to produ
e frames that are nearly equiangular, that is, the

frame ve
tors exhibit similar near optimal 
orrelation. The proposed numeri
al meth-

ods produ
e frames of any dimensions, whi
h may be employed in various appli
ations

requiring ETFs.

Here, we apply the proposed 
onstru
tions in signal pro
essing appli
ations, namely

sparse representations and 
ompressed sensing, and s-CDMA 
ommuni
ation systems.
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Con
erning sparse representations under redundant di
tionaries, the proposed frames are

utilized in the re
onstru
tion of sparse signals using the te
hnique of pre
onditioning.

Experimental results show that the performan
e of the deployed numeri
al solvers is sub-

stantially improved. In 
ompressed sensing the proposed frame 
onstru
tions are used in

three ways. First, as proje
tion matri
es to a
quire sparse signals, attaining high a

u-

ra
y in signal re
onstru
tion. Se
ond, given the representation di
tionary, we 
onstru
t

optimized proje
tion matri
es and further improve re
overy rates. Third, for the �rst

time, we apply pre
onditioning in 
ompressed signal a
quisition with binary operators.

The te
hnique improves the performan
e of numeri
al algorithms and is very important

for pra
ti
al 
ompressed sensing appli
ations, be
ause binary matri
es have easy hard-

ware implementation. Another appli
ation involves the employment of nearly equiangular

frames as spreading sequen
es in s-CDMA systems. Our simulations show that nearly

equiangular frames minimize the interuser interferen
e when the number of users in the

system 
hanges.

1.3 Outline

This thesis is organized as follows. In Chapter, 2 we review basi
 results from frame theory

and survey important work in frame design. Chapter 3 in
ludes the proposed methods

for the 
onstru
tion of frames exhibiting good in
oheren
e and spe
tral properties. In

Chapter 4, we review important results for sparse re
overy and use the proposed frames to

apply pre
onditioning of underdetermined linear systems met in sparse representations. In

Chapter 5, we address sparse re
overy in 
ompressed sensing and explain how the proposed


onstru
tions are used to produ
e optimized proje
tions. We also present re
onstru
tion

of sparse signals a
quired with Bernoulli proje
tion matri
es using pre
onditioning. The

employment of the proposed nearly equiangular frames as spreading sequen
es in s-CDMA

systems is presented in Chapter 6. Finally, Chapter 7 in
ludes 
on
lusions and future

resear
h dire
tions.
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Chapter 2

Frames review

2.1 Preliminaries

2.2 Finite frames basi
s

2.3 Conne
tion of frames to graphs

2.4 The frame design problem

Introdu
ed by DuÆn and S
hae�er [56℄, frames have been known for over half a 
en-

tury, but they be
ame popular due to wavelets in the late 1980s, when Daube
hies, Gross-

man and Meyer [45, 43℄ showed their importan
e for data pro
essing. Generalizing the

notion of orthonormal bases, frames are less 
onstrained than bases allowing for redun-

dant (over
omplete) representations, and they are used when more 
exibility in 
hoosing

a representation is needed.

Traditionally, frames are used in signal and image pro
essing, nonharmoni
 Fourier

series, data 
ompression, and sampling theory [84, 85℄. For example, in signal pro
ess-

ing, frames are a 
exible de
omposition tool that fa
ilitates various signal pro
essing

tasks, having the ability to 
apture important signal 
hara
teristi
s and providing numer-

i
al stability of re
onstru
tion, resilien
e to additive noise and resilien
e to quantization

[84, 22℄. Finite frames play a 
entral role in the design and analysis of both sparse repre-

sentations and 
ompressed sensing [124, 125, 9, 8, 27, 41℄. Other appli
ations of frames

in
lude sour
e 
oding [43, 69℄, robust transmission [80, 62℄, Code Division Multiple A
-


ess (CDMA) systems [95, 136, 137, 140℄, operator theory, 
oding theory [110℄, quantum

theory and quantum 
omputing [60℄.

Frame theory might be regarded as partly belonging to applied harmoni
 analysis,

fun
tional analysis, and operator theory, as well as numeri
al linear algebra and matrix

theory. Certain frame 
ategories su
h as Grassmannian frames have 
onne
tions to Grass-

mannian pa
kings, spheri
al 
odes and graph theory [119℄. Therefore, frame theory and

its appli
ations have experien
ed a growing interest among mathemati
ians, engineers,
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omputer s
ientists, and others. New theoreti
al insights and novel appli
ations are 
on-

tinually arising due to the fa
t that the underlying prin
iples of frame theory are basi


ideas whi
h are fundamental to a wide 
anon of areas of resear
h.

2.1 Preliminaries

In this se
tion we present basi
 de�nitions and results whi
h we will need later.

Given a positive integer m, we denote by H
m

the real or 
omplex �nite Hilbert spa
e

of dimension m. This is either Rm

or Cm

. By 〈·; ·〉 we denote the inner produ
t and by

‖ · ‖ the 
orresponding norm. For x = (x1; x2; : : : ; xm) and y = (y1; y2; : : : ; ym), the inner

produ
t is de�ned as

〈x; y〉 =
m∑

k=1

x

k

y

∗
k

: (2.1)

Two ve
tors x; y ∈ Hm

are 
alled orthogonal if 〈x; y〉 = 0. The norm is de�ned as

‖x‖ =
√

〈x; x〉 =

√√√√
m∑

k=1

|x
k

|2: (2.2)

A ve
tor x ∈ Hm

is 
alled normalized if ‖x‖ = 1.

De�nition 2.1.1. A system {e
k

}m
k=1 of ve
tors in Hm

is 
alled:

i. Linearly independent, if for any s
alars {a
k

}m
k=1 and provided that e

k

6= 0 for all

k = 1; 2; : : : ; m,

m∑

k=1

a

k

e

k

= 0 ⇒ a

k

= 0; for all k = 1; 2; : : : ; m: (2.3)

ii. Complete (or spanning set) if span{e
k

}m
k=1 = Hm

.

iii. Orthogonal if for all k 6= `, the ve
tors e

k

and e

`

are orthogonal.

iv. Orthonormal if it is orthogonal and ea
h e

k

is normalized.

v. An orthonormal basis for Hm

if it is 
omplete and orthonormal.

Proposition 2.1.1 (Parseval's identity). If {e
k

}m
k=1 is an orthonormal basis for Hm

, then

for every x ∈ Hm

, we have

‖x‖2 =
m∑

k=1

|〈e
k

; x〉|2: (2.4)

It follows that

Corollary 2.1.1. If {e
k

}m
k=1 is an orthonormal basis for Hm

, then for every x ∈ Hm

, we

have

x =

m∑

k=1

〈e
k

; x〉e
k

for all x ∈ H
m

: (2.5)
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Proje
tions

De�nition 2.1.2 (Orthogonal proje
tion). An operator P : H → H is 
alled a proje
tion,

if P

2 = P . It is an orthogonal proje
tion if P is also self-adjoint.

For any subspa
e W ⊂ Hm

, there is an orthogonal proje
tion of H onto W 
alled the

nearest point proje
tion. One way to de�ne it is to pi
k any orthonormal basis {e
k

}n
k=1,

n ≤ m, and de�ne

Px =
n∑

k=1

〈e
k

; x〉e
k

: (2.6)

Theorem 2.1.3. Let P be an orthogonal proje
tion onto a subspa
e W . Then

‖x− Px‖ ≤ ‖x− y‖ for all y ∈ W: (2.7)

Analysis and synthesis

Suppose x is a ve
tor of 
oeÆ
ients representing data in H
m

. Considering a general basis

F , the following equation expresses the analysis or de
omposition of x under F

X = F

∗
x; (2.8)

where

∗
denotes the Hermitian matrix. We 
an go ba
k to x by

x = (F ∗)−1
X; (2.9)

whi
h expresses the synthesis or re
onstru
tion. If F is an orthonormal basis then F

∗ =

F

−1
, thus, x = FX.

2.2 Finite frames basi
s

Considering a real or 
omplex m-dimensional Hilbert spa
e Hm

, a sequen
e of N ≥ m

ve
tors {f
k

}N
k=1, fk ∈ Hm

, is a �nite frame F , if there are positive 
onstants �, � su
h

that

� ‖x‖2 ≤
N∑

k=1

|〈f
k

; x〉|2 ≤ � ‖x‖2 ; for all x ∈ H
m

: (2.10)

We refer to �, � as the lower and upper frame bounds, respe
tively.

The following notions are related to a frame {f
k

}N
k=1.

(a) The ratio � = N=m is referred to as the redundan
y of the frame and is a \measure

of over
ompleteness" of the frame.

(b) When � = �, we say that the frame is �-tight, while when � = � = 1 the frame is


alled Parseval.
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(
) A frame is 
alled uniform or equal norm, when ‖f
k

‖ = C, C > 0, for all k ∈
{1; : : : ; N}, and unit norm, when ‖f

k

‖ = 1 for all k ∈ {1; : : : ; N}.

(d) For a unit norm frame, the absolute value of the inner produ
t between two frame

ve
tors equals the 
osine of the a
ute angle between the lines spanned by the two

ve
tors. If there is a 
onstant 
 > 0 for whi
h |〈f
k

; f

`

〉| = 
, k 6= `, then the frame is


alled equiangular.

(e) Any orthonormal basis is a frame with frame bounds � = � = 1.

A simple example of frames is the so-
alled Mer
edes Benz frame, the smallest redun-

dant family in H2
with N = 3 ve
tors. It 
an be 
hosen to be a unit norm tight frame if

we just sele
t three equally spa
ed points on the unit 
ir
le (i.e., ea
h 120 degrees apart).

The ve
tors to these points from the origin is our unit norm tight frame.

We usually identify the m × N matrix F = [f1 f2 : : : f

N

] with 
olumns the frame

ve
tors f

k

∈ Hm

, with the frame itself. The frame bounds are then the lower and upper

bounds of the quantity

‖F ∗
x‖2

‖x‖2 =
〈F ∗

x; F

∗
x〉

‖x‖2 =
〈x; FF ∗

x〉
‖x‖2 ; x 6= 0: (2.11)

These bounds are attained at the smallest and largest eigenvalues of FF

∗
, respe
tively.

We also note that the frame elements span H
m

when � > 0; thus, any frame of N elements

in m dimensions must satisfy N ≥ m.

2.2.1 Frame operators

The analysis, synthesis, and frame operators determine the operation of a frame when

analysing and re
onstru
ting a signal. The analysis operator{as the name suggests{

analyzes a signal in terms of the frame by 
omputing its frame 
oeÆ
ients.

De�nition 2.2.1 (Analysis operator). Let {f
k

}N
k=1 be a sequen
e of ve
tors in Hm

. Then

the asso
iated analysis operator T : Hm → HN

is de�ned by

Tx := (〈x; f
k

〉)N
k=1; x ∈ H

m

: (2.12)

De�nition 2.2.2 (Synthesis operator). Let {f
k

}N
k=1 be a sequen
e of ve
tors in Hm

with

asso
iated analysis operator T . Then, the adjoint operator T

∗
is 
alled the synthesis

operator.

The frame operator might be 
onsidered the most important operator asso
iated with

a frame. Although it is \merely" the 
on
atenation of the analysis and synthesis operator,

it en
odes 
ru
ial properties of the frame as we will see in the sequel. Moreover, it is also

fundamental for the re
onstru
tion of the signal from frame 
oeÆ
ients.

12



De�nition 2.2.3 (Frame operator). Let {f
k

}N
k=1 be a sequen
e of ve
tors in Hm

with

asso
iated analysis operator T . Then the asso
iated frame operator S : Hm → Hm

is

de�ned by

Sx := T

∗
Tx =

N∑

k=1

〈f
k

; x〉f
k

; x ∈ H
m

: (2.13)

When {f
k

}N
k=1 is an orthonormal basis then Sx = x. The matrix representation of the

frame operator S = T

∗
T is the positive semide�nite Hermitian matrix FF

∗
. The most

fundamental property of the frame operator is its invertibility whi
h is 
ru
ial for the

re
onstru
tion formula.

Allowing the mapping x 7→ (〈x; f
k

〉) to 
apture the energy of any x ∈ Hm

, re
on-

stru
tion of x is enabled with the help of some dual frame. In parti
ular, for every frame

F = {f
k

}N
k=1 for H

m

, there exists at least one dual frame 	 = { 
k

}N
k=1 su
h that

x =

N∑

k=1

〈f
k

; x〉 
k

; for all x ∈ H
m

: (2.14)

Any orthogonal basis is a frame with frame bounds � = � = 1 and 
orresponds to a

dual frame 	 = F . The most often-used dual frame is the 
anoni
al dual frame, namely,

the pseudoinverse F̃ = (FF ∗)−1
F . Computing a 
anoni
al dual involves the inversion of

FF

∗
. As su
h when designing a frame it is important to retain 
ontrol over the eigenvalues

{�
i

}m
i=1 of FF

∗
.

Of parti
ular interest is also the operator generated by �rst applying the synthesis and

then the analysis operator.

De�nition 2.2.4 (Grammian operator). Let {f
k

}N
k=1 be a sequen
e of ve
tors in Hm

with

asso
iated analysis operator T . Then the Grammian operator R : HN → H
N

is de�ned

by

R(a
k

)N
k=1 = TT

∗(a
k

)N
k=1 =

(
N∑

`=1

a

`

〈f
k

; f

`

〉
)
N

k=1

=
N∑

`=1

(a
`

〈f
k

; f

`

〉)N
k=1 : (2.15)

The matrix representation of the Grammian of a frame is 
alled the Gram matrix; this

is the N ×N matrix R = F

∗
F given by




‖f1‖2 〈f2; f1〉 : : : 〈f
N

; f1〉
〈f1; f2〉 ‖f2‖2 : : : 〈f

N

; f2〉
.

.

.

.

.

.

.

.

.

.

.

.

〈f1; fN〉 〈f2; fN〉 : : : ‖f
N

‖2



: (2.16)

If the frame is unit norm then the entries of the Gram matrix are exa
tly the 
osines of

the angles between the frame ve
tors. The following are fundamental properties of the

Gram matrix.

i. F is an m×N frame, if and only if the Gram matrix is a self-adjoint proje
tion with

rank m.
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ii. F is an m × N Parseval frame, if and only if the Gram matrix is an orthogonal

proje
tion with rank m.

iii. An operator U on Hm

is unitary, if and only if the Gram matrix of {Uf
k

}N
k=1 
oin
ides

with R.

iv. The nonzero eigenvalues {�}m
i=1 of F

∗
F and FF

∗
are the same; thus

m∑

i=1

�

i

= tra
e(F ∗
F ) = tra
e(FF ∗): (2.17)

Frames F = {f
k

}N
k=1 and G = {g

k

}N
k=1 are unitarily equivalent, if there exists a unitary

transformation U : Hm → Hm

with F = UG := {Uf
k

}, k ∈ {1; : : : ; N}. Therefore, a

frame is determined by its Gram matrix up to unitary equivalen
e.

2.2.2 Tight frames

Let F = {f
k

}N
k=1 be a �nite redundant frame in Hm

. If (2.10) holds with � = �, we have

x =
1

�

N∑

k=1

〈f
k

; x〉 f
k

; for all x ∈ H
m

; (2.18)

thus obtaining an �-tight frame. In this 
ase, the rows of �

−1=2
F form an orthogonal

family, ea
h with norm

√
�. For an �-tight frame the following property

FF

∗ = �I

m

; (2.19)

where I

m

is the m×m identity matrix, follows immediately.

Constru
ting a tight frame is straightforward; we take an orthonormal basis and sele
t

the desired number of rows. For example, m×N harmoni
 tight frames are obtained by

deleting (N −m) rows of an N ×N DFT matrix.

While (2.18) resembles the expansion formula in the 
ase of an orthonormal basis, a

tight frame does not 
onstitute an orthonormal basis in general. Be
ause of the linear

dependen
e whi
h exists among frame ve
tors, the expansion is no longer unique. The

expansion is unique in the sense that it minimizes the norm of the expansion among all

valid expansions. Be
ause of (2.19), the 
anoni
al dual frame F̃ = (FF ∗)−1
F 
oin
ides

with the frame itself. Thus, tight frames provide perfe
t re
onstru
tion. For this reason

tight frames are desirable in redundant signal representations.

Considering the spe
tral properties of an �-tight frame, the following proposition

summarizes well-known results.

Proposition 2.2.1 (Spe
tral properties of tight frames). A frame is �-tight if and only

if one of the following 
onditions holds:

(a) The nonzero eigenvalues of the Gram matrix equal �.

14



(b) The nonzero singular values of F equal

√
�.

(
) The spe
tral norm of F equals

√
�.

Even though the 
onstru
tion of a tight frame is trivial, we 
annot easily design a

tight frame with equal-norm 
olumns; su
h frames exist for 
ertain frame bounds �. For

an equal norm �-tight frame with 
olumn norms ‖f
k

‖ = C, k = 1; : : : ; N , there holds

tra
e(F ∗
F ) =

N∑

k=1

‖f
k

‖2 = NC

2
: (2.20)

For the m nonzero eigenvalues of the frame operator there holds

tra
e(FF ∗) =
m∑

i=1

�

i

= m�: (2.21)

Thus, the frame bound is given by

� =
N

m

C

2
: (2.22)

2.2.3 Unit norm tight frames

Finite frames that are both tight and normalized are 
alled unit norm tight frames

(UNTFs) (the term �nite normalized tight frames (FNTF) is also used) and possess a

signi�
ant stru
ture. An intuitive 
hara
terization of UNTFs is presented in [69℄ where

the authors demonstrate that if one randomly 
hooses unit ve
tors a

ording to a uni-

form distribution on a sphere, the resulting Bessel sequen
e is asymptoti
ally a UNTF.

A UNTF 
an be thought of as a sequen
e that retains the de
omposition properties of

orthonormal bases while relaxing the need to be a basis. For example a 
on
atenation of

� orthonormal bases form an �-UNTF. These expansions gain redundan
y and stability

at the expense of not having a unique representation.

There is only one 
hoi
e for the frame bound of a UNTF of N ve
tors for H
m

, whi
h

is given by the following theorem.

Theorem 2.2.5 ([14℄). If {f
k

}N
k=1 is a �nite unit norm �-tight frame for anm-dimensional

Hilbert spa
e Hm

, then � = N=m.

Therefore, a UNTF in a �nite dimensional spa
e is an m×N matrix su
h that

(a) The rows are orthogonal.

(b) Ea
h row has norm

√
N=m.

(
) Ea
h 
olumn has norm 1.

Another question of interest is whether UNTFs of a given N exist for a Hilbert spa
e Hm

.

This question is answered by the following theorem.
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Theorem 2.2.6 (Existen
e of UNTFs [68℄). Given any m, N , with N ≥ m, there exists

a UNTF for Hm

of N ve
tors.

Similar to Proposition 2.2.1 the spe
tral properties of a UNTF are given by the fol-

lowing proposition.

Proposition 2.2.2 (Spe
tral properties of UNTFs). A frame is unit norm tight if and

only if one of the following 
onditions holds:

(a) The nonzero eigenvalues of the Gram matrix equal N=m.

(b) The nonzero singular values of F equal

√
N=m.

(
) The spe
tral norm of F equals

√
N=m.

The value of the spe
tral norm of a UNTF is the lowest possible bound for m × N

frames [38℄. The spe
tral norm of an arbitrary frame is often used as a measure of how


lose a given frame is to a UNTF.

Unit norm tight frames are also known as Wel
h Bound Equality (WBE) sequen
es

[143℄. A quarter 
entury ago Wel
h published a 
olle
tion of lower bounds on the max-

imum magnitude of the inner produ
ts of a set of unit norm 
omplex valued ve
tors

and used these results to dedu
e lower bounds on the maximum magnitudes of 
orre-

lation fun
tions for sets of periodi
 sequen
es. UNTFs were found to meet the lower

bounds on the mean square (RMS) magnitude, a quantity that is also known as total

squared 
orrelation (TSC). Due to this important property UNTFs are 
onsidered optimal

spreading sequen
es for s-CDMA systems [95, 136, 137, 140℄. Moreover, their robustness

against additive noise and erasures allows for stable re
onstru
tion in 
ommuni
ations

[69, 68, 31, 80℄.

2.2.4 Equiangular tight frames

When a unit norm tight frame has ve
tors forming equal angles we obtain an equiangular

tight frame. ETFs exhibit equal 
olumn 
orrelation, whi
h is also the smallest possible

[119℄; thus, they are maximally in
oherent equiangular frames. ETFs are arguably the

most important 
lass of �nite-dimensional frames, and they are the natural 
hoi
e when

one tries to 
ombine the advantages of orthonormal bases with the 
on
ept of redundan
y

provided by frames.

The maximal 
orrelation between di�erent normalized frame ve
tors is de�ned as

�(F ) = max
1≤k;`≤N

k 6=`

|〈f
k

; f

`

〉|; (2.23)

and is related to a 
lass of frames known as Grassmannian frames. A Grassmannian frame

minimizes the maximal 
orrelation between frame elements among all unit norm frames

with the same redundan
y.
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De�nition 2.2.7 (Grassmannian frames [119℄). A sequen
e of ve
tors F = {f
k

}N
k=1 in

Hm

is 
alled a Grassmannian frame, if it is a solution to

min�(F ); (2.24)

where the minimum is taken over all unit norm frames F in H
m

.

The minimum in (2.24) depends on the frame dimensionsm;N . The following theorem

derives bounds on �(F ).

Theorem 2.2.8 (Minimum maximal 
orrelation [119℄). Let F = {f
k

}N
k=1 be a frame in

Hm

. Then

�(F ) ≥
√

N −m

m(N − 1)
: (2.25)

Equality holds, if and only if F is an equiangular tight frame. Furthemore,

if H = R equality in (2.25) 
an only hold if N ≤ m(m + 1)

2
;

if H = C equality in (2.25) 
an only hold if N ≤ m

2
:

(2.26)

In [119℄ it was shown that the bound in (2.25) is attained by Grassmannian frames

that also form unit norm tight frames. These frames are referred to as optimal Grass-

mannian frames and 
oin
ide with equiangular tight frames. As unit norm tight frames

with dimensions m;N exist for a spe
i�
 tightness parameter (� = N=m), an optimal

Grassmannian frame is an equiangular N=m-tight frame. Therefore, an equiangular tight

frame F = {f
k

}N
k=1 in Hm

satis�es the following 
onditions:

‖f
k

‖ = 1 for k = 1; : : : ; N; (2.27)

|〈f
k

; f

`

〉| =
√

N −m

m(N − 1)
for k 6= `; (2.28)

N

m

N∑

k=1

〈x; f
k

〉 f
k

= x for all x ∈ H
m

: (2.29)

The lowest bound on the minimal a
hievable 
orrelation for equiangular frames is also

known asWel
h bound [143℄, and optimal Grassmannian frames or ETFs are also referred

to as Maximal Wel
h Bound Equality sequen
es (MWBE).

Equiangular tight frames were introdu
ed by van Lint and Seidel in the setting of

dis
rete geometry [134℄. ETFs are parti
ularly interesting and useful. In signal pro
essing,

ETFs meet the Wel
h bound for optimal 
odes [76℄. As spreading sequen
es in multiuser


ommuni
ation systems the tightness 
ondition allows equiangular tight frames to a
hieve

maximal 
apa
ity of a Gaussian 
hannel and their equiangularity allows them to satisfy

an interferen
e invarian
e property [76℄. In sparse representations and 
ompressed sensing

they are of interest due to their in
oheren
e. ETFs have also been proposed for robust

transmission [80, 62℄.
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Despite their important properties and their numerous pra
ti
al appli
ations, there is

no expli
it way of 
onstru
ting ETFs. This problem is 
onne
ted with other important

problems su
h as pa
kings in Grassmannian spa
es and antipodal spheri
al 
odes. It has

also 
onne
tions to graph theory, equiangular line sets and 
oding theory. The te
hniques

reported in [126, 119, 144, 141, 64℄ 
onstru
t a few of existent frames. A te
hnique

proposed in [119℄ relies on the 
onne
tion of frames to graphs and will be dis
ussed next.

2.3 Conne
tion of frames to graphs

Graphs with a lot of stru
ture and symmetry play a 
entral role in graph theory. Di�erent

kinds of matri
es are used to represent a graph, su
h as the Lapla
e matrix or adja
en
y

matri
es [21℄. What stru
tural properties 
an be derived from the eigenvalues depends on

the spe
i�
 matrix that is used. The Seidel adja
en
y matrix Q of a graph � is given by

Q =





− 1 if the verti
es x; y ∈ � are adja
ent;

1 if the verti
es x; y ∈ � are nonadja
ent;

0 if x = y:

(2.30)

If Q has only a few distin
t eigenvalues, then the graph is strongly regular.

Studies 
on
erning the 
onne
tion of frames with graphs have shown that the existen
e

of an ETF in a real Hilbert spa
e depends on the existen
e of a matrix Q with zero

diagonal and ±1's o�-diagonal entries. This matrix 
orresponds to the adja
en
y matrix

of a spe
ial type of strongly regular graphs [119℄. From [119, 80℄ we quote the following

de�nition.

De�nition 2.3.1. Given an m×N equiangular tight frame F = [f1 f2 : : : fN ], the Gram

matrix 
an be written in the form

R = I + 
Q; (2.31)

where I is the N × N identity matrix and 
 is the Wel
h bound given by (2.25). The

N ×N matrix Q is 
alled the signature matrix of the frame F .

The main results about signature matri
es are summarized in the following theorem.

Theorem 2.3.2 ([80℄). Let Q be a self-adjoint N ×N matrix, with q

i;i

= 0 for all i and

|q
i;j

| = 1 for all i 6= j. Then the following are equivalent:

i. Q is the signature matrix of an m×N ETF.

ii. Q

2 = (N − 1)I + �Q for some ne
essarily real number �.

iii. Q has exa
tly two distin
t eigenvalues, denoted as �1 < �2.

18



When any of the above 
onditions hold, the parameters m;N; �; �1; �2 satisfy 
ertain

relations [17℄, implying that for many values of m;N ETFs do not exist. It 
an be shown

that [141℄

�1 = −
√
m(N − 1)

N −m

; with multipli
ity N −m;

�2 =

√
(N −m)(N − 1)

m

; with multipli
ity m:

(2.32)

A

ording to [80℄, there are �nitely many possible N ×N signature matri
es and �nitely

many real equiangular frames ofN ve
tors. For more details about the 
onne
tion between

graphs and frames the reader is referred to [119, 80, 17, 141, 18℄.

Based on the 
onstru
tion of 
onferen
e matri
es proposed in [86℄ and relying on the

above results, the authors of [119℄ proposed the 
onstru
tion of ETFs os size m × 2m.

Conferen
e matri
es are N×N matri
es with zeros along the diagonal and ±1 of diagonal

entries, satisfying CC

T = (N−1)I
N

, and play an important role in graph theory [86℄, [115℄.

Conferen
e matri
es exist for N = p

� + 1, where p is an odd prime number and � ∈ N,

and 
an be 
onstru
ted expli
ity [67, 102℄. A

ording to [119℄, if C

2m
is a symmetri



onferen
e matrix, then there exist 2m ve
tors in R
m

su
h that the bound (2.25) holds

with equality for N = 2m. In this 
ase the bound be
omes 
 = 1=
√
2m− 1 and the Gram

matrix is obtained a

ording to (2.31), having o�-diagonal entries equal to ±1=
√
2m− 1.

2.4 The frame design problem

When designing a frame, the design spe
i�
ations arise from the appli
ation of interest. As

a result, there exist a large number of 
onstru
tion methods, as diverse as the appli
ations

requiring a frame. Usually, the 
onstru
tions that 
ome to address spe
i�
 requirements

are diÆ
ult to generalize to solve di�erent types of frame design problems. On the other

hand, more general 
onstru
tions 
oming from the frame 
ommunity often impose 
ertain

restri
tions on frame dimensions.

We have seen that properties su
h as unit normness, tightness and equiangularity

de�ne 
ertain 
lasses of frames and play a signi�
ant role in appli
ations. Therefore,

when design spe
i�
ations are set they in
lude

(a) pres
ribed ve
tor norms,

(b) pres
ribed spe
tral properties,

(
) 
orrelation 
onstraints su
h as equiangularity or in
oheren
e.

Considering the 
onstru
tion of a tight frame, it is easy to obtain su
h a frame by

sele
ting the desired number of rows from an N × N orthonormal basis. However, most

appli
ations require that the ve
tors 
omprising the frame have some additional stru
ture.

For example, tight frames with pres
ribed norms, or most required UNTFs, are diÆ
ult

19



to 
onstru
t, as row orthogonality opposes 
olumn unit normness. The design diÆ
ulties

be
ome stronger when trying to address the main drawba
k of frames, that is, the 
or-

relation between the frame elements. Tightness implies 
ertain restri
tions on singular

values and singular ve
tors whi
h 
ombat either 
olumn normalization or the requirement

for 
onstant inner produ
ts between 
olumns [126℄.

A

ording to [126℄ �nite-dimensional frame design is an algebrai
 problem. Frame

design aims at produ
ing a stru
tured matrix with 
ertain spe
tral properties, a problem

that may require the use of dis
rete and 
ombinatorial mathemati
s. Sarwate's survey

paper [112℄ about tight frames in
ludes 
onstru
tions of unit-norm frames with methods

that have employed algebrai
 te
hniques. The last few years, some essentially algebrai


algorithms have been proposed that 
an 
onstru
t tight frames with non
onstant ve
tor

norms [136, 32, 127℄. The frames proposed in [136℄ and [127℄ were designed with the

s-CDMA appli
ation in mind, while [32℄ 
omes from the frame 
ommunity.

Algebrai
 and 
ombinatori
 tools are not always e�e
tive. In these situations, nu-

meri
al methods 
an help to produ
e 
onstru
tions with properties that approximate

the desired theoreti
al spe
i�
ations. Moreover, numeri
al methods 
an help resear
hers

develop the insight ne
essary for 
ompleting an algebrai
 
onstru
tion. However, the

literature does not o�er many numeri
al approa
hes to frame design.

Regarding the 
onstru
tion of UNTFs, most algorithms provide frames to be used

as spreading sequen
es in s-CDMA systems. This appli
ation prompted a long series of

papers [132, 109, 133, 3℄ that des
ribe iterative methods for 
onstru
ting tight frames with

pres
ribed 
olumn norms. Besides spe
tral and stru
tural properties frames designed for

s-CDMA systems may also apply restri
tions on the employed alphabet. It is not 
lear

how one 
ould generalize these methods to solve di�erent types of frame design problems.

More re
ent methods providing general UNTF 
onstru
tions modify a given frame so

that the result is a tight frame. Three te
hniques are known to belong to this 
ategory. In

[19℄, the authors start from a tight frame and approa
h a UNTF by solving a di�erential

equation. In [29℄, the authors start from a unit norm frame and in
rease the degree of

tightness using a gradient-des
ent-based algorithm. Relative primeness of m and N is a


ondition assumed by both te
hniques, though in [29℄ in a weaker sense. The work of [30℄


omes from the frame 
ommunity. \Spe
tral tetris" presented in [30℄ has the drawba
k

that it often generates multiple 
opies of the same frame ve
tor.

Regarding the 
onstru
tion of equiangular tight frames, it is known that these frames

exist for 
ertain frame dimensions [121℄ and most existing 
onstru
tions [126, 119, 144,

107, 141, 64℄ impose additional restri
tions. A survey on known ETFs 
an be found in [63℄.

As we have already mentioned, this problem is 
onne
ted with other important problems

su
h as equiangular line sets and it has been addressed for over 60 years. The problem

of 
onstru
ting any number (espe
ially, the maximal number) of equiangular lines in Rm

is one of the most elementary and at the same time one of the most diÆ
ult problems in

mathemati
s. After sixty years of resear
h, we do not know the answer for all dimensions

m ≤ 20 in either the real or 
omplex 
ase.
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Re
ently, the 
onstru
tion of equiangular tight frames has gained the interest of the

sparse modelling 
ommunity, as ETFs are maximally in
oherent. Due to new theoreti
al

results in sparse representations and 
ompressed sensing, there is a growing interest for

in
oherent unit norm tight frames. The few numeri
al methods that are available in the

literature [57, 145, 82℄ fo
us on in
oheren
e rather than on spe
tral properties. Clearly,

this is an open resear
h topi
.
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Chapter 3

Constru
tion of approximately

equiangular tight frames

3.1 Alternating proje
tions

3.2 Averaged proje
tions

3.3 Constru
tion of in
oherent unit norm tight frames

3.4 Constru
tion of nearly equiangular frames

3.5 Comparison of the proposed 
onstru
tions

The resear
h presented in this thesis is motivated by re
ent theoreti
al and pra
ti
al

results formulated in sparse representations and 
ompressed sensing, whi
h highlight the

important role of in
oherent unit norm tight frames in sparse re
overy. Considering that

optimal values of in
oheren
e and tightness are observed in equiangular tight frames

(ETFs), the frame 
ommunity aims at perfe
t ETF 
onstru
tions. Here, we fo
us on

the improvement of pra
ti
al appli
ations and propose two methods for the 
onstru
tion

of real frames as 
lose to ETFs as possible. We per
eive nearness to ETFs by means

of mutual 
oheren
e and spe
tral norm and design frames with unit norm ve
tors that

exhibit small mutual 
oheren
e and are almost or exa
tly tight.

The �rst of the methods developed here is inspired by an algorithm for designing in
o-

herent matri
es for 
ompressed sensing. In [57℄, Elad argued that an optimized proje
tion

matrix would be a matrix that redu
es the mutual 
oheren
e of the e�e
tive di
tionary

involved in sparse re
overy and proposed a heuristi
 algorithm for its 
onstru
tion. Most

of the existing work for optimized proje
tions relies on [57℄ and aims at redu
ing the mu-

tual 
oheren
e. The method developed here introdu
es, for the �rst time, the tightness

parameter in in
oherent matrix design, produ
ing unit norm tight frames with remarkably

low in
oheren
e levels.
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The se
ond method developed in this thesis is based on the following observation.

Studying the properties of the proposed in
oherent tight frames, we noti
ed that these

frames have \signature" matri
es with eigenvalues approximating the spe
trum of a sig-

nature matrix of an ETF. Re
all that the signature matrix of a real ETF is a matrix with

zero diagonal entries, ±1 o�-diagonal entries, and spe
trum 
onsisting of two distin
t

eigenvalues, and de�nes ETFs up to unitary equivalen
e. Here, we develop an algorithm

for the 
onstru
tion of a matrix satisfying the stru
tural 
onstraints and approximating

the spe
tral 
onstraints of a signature matrix of an ETF. Employing this matrix as a \sig-

nature" matrix, we produ
e frames that are 
lose to ETFs. The most signi�
ant property

of these frames is that they are nearly equiangular, meaning that the frame ve
tors form

similar angles that are 
lose to the optimal value. This property makes these frames

suitable for use in s-CDMA systems as spreading sequen
es.

Considering the design diÆ
ulties when 
onstru
ting ETFs, the 
onstraints implied

by existing 
onstru
tions and the restri
tions 
oming of frame theory regarding the frame

dimensions, the most important 
hara
teristi
 of the proposed algorithms is probably that

they 
an produ
e frames of any size. Thus, they 
an provide solutions in many signal

pro
essing problems as well as in other appli
ations requiring ETFs.

Both methods proposed here utilize ideas from alternating and averaged proje
tions.

However, introdu
ing the tightness parameter in frame design, we a
tually fo
us on ma-

tri
es with 
ertain spe
tral requirements. Proje
ting onto spe
tral sets, that is, sets of

matri
es de�ned via properties of their eigenvalues, is an important obsta
le the pro-

posed algorithms must fa
e. The spe
tral sets are not 
onvex, therefore, they do not

admit unique proje
tions. We start with a short presentation of alternating and averaged

proje
tions, and dis
uss how these problems 
ould be addressed.

3.1 Alternating proje
tions

Alternating proje
tions [139℄ is a very simple algorithm for 
omputing a point in the

interse
tion of some 
onvex sets, using a sequen
e of proje
tions onto the sets. Suppose

S and W are 
losed 
onvex sets in RN

, and let P
S

and P
W

denote the proje
tion on S

and W , respe
tively. The algorithm starts with any x0 ∈ S, and then alternately proje
ts

onto S and W :

y

k

= P
W

(x
k

); x

k+1 = P
S

(y
k

); k = 0; 1; 2; : : : (3.1)

This generates a sequen
e of points x

k

∈ S and y

k

∈ W . If S andW are not disjoint, then

the sequen
es x

k

and y

k

both 
onverge to a point x ∈ S ∩W [37℄. Alternating proje
tions


omputes a point in the interse
tion of the sets, provided they interse
t. The algorithm

does not ne
essarily produ
e a point in x ∈ S ∩W in a �nite number of steps, but the

sequen
e x

k

(whi
h lies in S) satis�es dist(x
k

;W ) → 0, and likewise for y

k

.

Alternating proje
tions is also useful when the sets do not interse
t. In this 
ase the

following holds. Assume the distan
e between S andW is attained (i.e., there exist points
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in S and W whose distan
e is dist(S;W )). Then x
k

→ x

∗ ∈ S, and y

k

→ y

∗ ∈ W , where

‖x∗ − y

∗‖ = dist(S;W ). In other words, alternating proje
tions yields a pair of points in

S and W that have minimum distan
e.

There are many variations and extensions of the basi
 alternating proje
tions algo-

rithm. For example, we 
an �nd a point in the interse
tion of k > 2 
onvex sets, by

proje
ting onto S1, then onto S2, . . . , and �nally onto S

k

, and then repeating the 
y
le

of k proje
tions. This is 
alled the sequential or 
y
li
 proje
tion algorithm, instead of

alternating proje
tion.

Alternating proje
tions is very popular be
ause of its simpli
ity and intuitive appeal

(see survey arti
le [12℄). The method 
an be slow, but it 
an be useful when we have

some eÆ
ient method, su
h as an analyti
al formula, for 
arrying out the proje
tions.

Convergen
e of alternating proje
tions on 
onvex sets has been well studied; however,

only a few re
ent extensions of alternating proje
tions 
onsider the 
ase of non
onvex sets

[88℄, [87℄.

3.1.1 Alternating proje
tions on non
onvex sets

Iterated proje
tion algorithms and analogous heuristi
s have been su

essfully applied in

many non
onvex problems, in areas su
h as inverse eigenvalue problems [35, 36℄, infor-

mation theory [126℄, image pro
essing [142, 13℄, and more. While alternating proje
tions

is quite popular in pra
ti
e, theoreti
al understanding is still poor. An important sub-

problem one must solve in the non
onvex 
ase is that the proje
tion mapping 
an no

longer be single-valued and may be hard to 
ompute. However, the proje
tion problem

for some non
onvex sets is relatively easy and 
omputationally inexpensive [88℄. Conver-

gen
e results on non
onvex alternating proje
tion algorithms have been un
ommon, and

have either fo
used on a very spe
ial 
ase [36℄, or have been mu
h weaker than for the


onvex 
ase [42, 126℄.

The only general 
onvergen
e study is the work of [88, 87℄. In [88℄ the authors study

alternating proje
tions on manifolds and prove lo
al 
onvergen
e at a linear rate. A more

re
ent publi
ation [87℄ 
onsiders alternating proje
tions on two non
onvex sets, one of

whi
h is assumed to be suitably \regular"; the term refers to 
onvex sets, smooth manifolds

or feasible regions satisfying the Mangasarian-Fromovitz 
onstraint quali�
ation. The

authors show that the method 
onverges lo
ally to a point in the interse
tion at a linear

rate. The 
onvergen
e of alternating proje
tions on more than two sets, some of whi
h

are non
onvex, is still an open problem.

3.2 Averaged proje
tions

Averaged proje
tions is a simple variation of alternating proje
tions. At every step of

averaged proje
tions, we proje
t the 
urrent iteration onto every set and average the

results to obtain the value for the next iteration. We start with x0 ∈ S and y0 ∈ W , we
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form the average, z0 = (x0 + y0)=2, and set x1 = P
S

(z0) and y1 = P
W

(z0). Then, we

repeat

z

k

= (x
k

+ y

k

)=2; x

k+1 = P
S

(z
k

); y

k+1 = P
W

(z
k

); k = 1; 2; : : : (3.2)

Global 
onvergen
e of this method in the 
ase of two 
losed 
onvex sets was proved in [5℄.

Similar to alternating proje
tions, the method of averaged proje
tions might appear

hard to implement on 
on
rete non
onvex problems. The only work analysing 
onvergen
e

of averaged proje
tions for non
onvex sets is the work of [87℄. A

ording to [87℄, studying

the 
onvergen
e of iterative algorithms for non
onvex minimization problems must be

equipped with a lo
al theory.

Lo
al linear 
onvergen
e requires good geometri
 properties su
h as 
onvexity, smooth-

ness, or \prox-regularity". Prox-regular sets is a large 
lass of sets that admit unique

proje
tions lo
ally. It is known [88℄ that 
onvex sets and smooth manifolds (see Appendix

A) belong to this 
ategory. Considering averaged proje
tions on several prox-regular sets,

the authors of [87℄ assert that the method 
onverges lo
ally at a linear rate to a point in

the interse
tion as long as the interse
tion satis�es some properties.

3.2.1 Convergen
e for averaged proje
tions on prox-regular sets

The 
ru
ial idea behind the 
onvergen
e analysis presented in [87℄ is the notion of strongly

regular interse
tion. The main result in [87℄ states that when several prox-regular sets

have strongly regular interse
tion at some point, the method 
onverges lo
ally at a linear

rate to a point in the interse
tion. Strongly regular interse
tion is important to prevent the

algorithm from proje
ting near a lo
ally extremal point. The notion of a lo
ally extremal

point in the interse
tion of some sets is the following: if we restri
t to a neighborhood of

su
h a point and then translate the sets by small distan
es, their interse
tion may render

empty. Therefore, not 
hoosing a lo
ally extremal point as initial point in a proje
tions

algorithm is a 
riti
al hypothesis for 
onvergen
e.

In order to make 
lear that strong regularity implies lo
al extremality, we present here

the relevant de�nitions for the 
ase of two sets. For more details the reader is referred to

[87℄.

De�nition 3.2.1 (Lo
ally extremal point [87℄). Denoting by E the Eu
lidean spa
e,


onsider two sets H;G ⊂ E. A point x̄ ∈ H ∩G is lo
ally extremal for this pair of sets, if

there exists a positive � and a sequen
e of ve
tors z

r

→ 0 in E su
h that

(H + z

r

) ∩G ∩B
�

(x̄) = ∅; for all r = 1; 2; : : : ;

where B

�

(x̄) is the 
losed ball of radius � 
entered at x̄. Clearly x̄ is not lo
ally extremal,

if and only if

0 ∈ int

(
((H − x̄) ∩ �B)− (G− x̄) ∩ �B)

)
; for all � > 0;

where B is the 
losed unit ball in E.
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De�nition 3.2.2 (Strongly regular interse
tion). Two sets H;G ⊂ E have strongly reg-

ular interse
tion at a point x̄ ∈ H ∩G if there exists a 
onstant � > 0 su
h that

��B ⊂ ((H − x) ∩ �B)− ((G− z) ∩ �B)

for all x ∈ H near x̄ and z ∈ G near x̄.

By 
onsidering the 
ase x = z = x̄, we see that strongly regular interse
tion at a point

x̄ implies that x̄ is not lo
ally extremal. Conversely, �nding a point in the interse
tion of

the involved sets that is not lo
ally extremal, implies that the sets have strongly regular

interse
tion at this point.

Now, we 
an summarize the results of [87℄ regarding averaged proje
tions.

Theorem 3.2.3. Consider prox-regular sets H1; H2; : : : ; HL

⊂ E having strongly regular

interse
tion at a point x̄ ∈ ∩H
i

, and any 
onstant k > 
ond(H1; H2; : : : ; HL

|x̄). Then,

starting from any point near x̄, one iteration of the method of averaged proje
tions redu
es

the mean squared distan
e

D =
1

2L

L∑

i=1

d

2
H

i

by a fa
tor of at least 1− 1
k

2
L

.

The 
ondition modulus 
ond(H1; H2; : : : ; HL

|x̄) is a positive 
onstant that quanti�es

strong regularity [87℄. The distan
e d

H

i

between the 
urrent iteration x and the set H

i

we

proje
t on is de�ned as d

H

i

= inf{‖x−X‖F : X ∈ H

i

}, with ‖·‖F denoting the Frobenius

norm.

3.3 Constru
tion of in
oherent unit norm tight frames

When aiming at minimization of the 
orrelation of a matrix, a 
ommon strategy is to

work with the Gram matrix. Re
all that given an m × N matrix F , with 
olumns F =

[f1 f2 : : : fN ], the Gram matrix is the N × N matrix G = F

T

F , with the (i; j) entry of

G being the 
orrelation between the i-th and the j-th 
olumn of F , that is, g

ij

= 〈f
i

; f

j

〉.
Redu
ing 
olumn 
orrelation of F is equivalent to applying a \shrinkage" operation on

the o�-diagonal entries of the Gram matrix. The �rst method we propose here for the


onstru
tion of in
oherent UNTFs is inspired by the work presented in [57℄. In [57℄,

Elad proposed an algorithm for the 
onstru
tion of in
oherent matri
es, whi
h were used

to obtain optimized proje
tion matri
es for 
ompressed sensing. In 
ompressed sensing,

F stands for the e�e
tive di
tionary employed in sparse re
overy, whi
h 
omes of the

produ
t of the proje
tion matrix P and the sparsifying di
tionary D, F = PD. In

order to minimize the 
orrelation between the 
olumns of F , Elad proposed the following

operation

ĝ

ij

=






g

ij

; |g
ij

| ≥ t;


t · sgn(g
ij

); t > |g
ij

| ≥ 
t;

g

ij

; 
t > |g
ij

| ;
(3.3)
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where 
 and t are appropriate s
alars. Indeed, them×N matrix obtained by the \shrunk"

Gram exhibits improved mutual 
oheren
e, resulting in higher re
onstru
tion a

ura
y

when used in 
ompressed sensing. Noti
e that, having 
omputed an in
oherent matrix

F , optimized proje
tions P are obtained by solving the least squares problem min
P

‖F −
PD‖22.

Considering the important role of in
oheren
e in sparse signal re
overy, many authors

have argued that ETFs are ideal 
andidates for these problems as these frames exhibit

the lowest possible mutual 
oheren
e. However, very few results 
on
ern the employment

of ETFs in 
ompressed sensing and the main reason for this are the diÆ
ulties in their


onstru
tion.

The method presented here aims at the 
onstru
tion of frames that are as 
lose to

ETFs as possible. The proposed 
onstru
tion strategy is based on the observation that

ETFs not only exhibit minimal mutual 
oheren
e, but N=m-tightness as well. Thus, we

proposed in [128℄ the following design methodology: Suppose we 
ompute a matrix with

small mutual 
oheren
e. Then, the problem of approximating an ETF redu
es to �nding a

UNTF that is nearest to the 
omputed in
oherent matrix, in Frobenius norm. Computing

a UNTF that is nearest to a given matrix, is a matrix nearness problem, whi
h 
an be

solved algebrai
ally by employing the following algebrai
 theorem.

Theorem 3.3.1 (Nearest tight frame [126, 81℄). Given a matrix F ∈ Rm×N
, N ≥ m,

suppose F has singular value de
omposition (SVD) U�V

T

. With respe
t to the Frobenius

norm, a nearest �-tight frame F

′
to F is given by

√
� · UV T

. Assume, in addition, that

F has full row-rank. Then

√
� ·UV T

is the unique �-tight frame 
losest to F . Moreover,

one may 
ompute UV

T

using the formula (FF T )−1=2
F .

The proposed design methodology is alternating between tightness and in
oheren
e.

The algorithm presented in [128℄ is a preliminary result of our work and utilizes the

\shrinkage" operation proposed by Elad to improve in
oheren
e, and Theorem 3.3.1 to

improve tightness. Changing the \shrinkage" operation a

ording to

ĝ

ij

=

{
sgn(g

ij

) · (1=√m); if 1=
√
m < |g

ij

| < 1;

g

ij

; otherwise;

(3.4)

we obtain the algorithms presented in [129℄, whi
h provide a better formulation and a


learer insight of the pro
ess des
ribed in [128℄. The presented 
onstru
tion strategy is

implemented utilizing alternating and averaged proje
tions.

3.3.1 Algorithm 1

The �rst algorithm starts from an arbitrary m × N matrix that has full rank and se-

quentially applies (3.4) and Theorem 3.3.1. The \shrinkage" pro
ess redu
es the matrix

mutual 
oheren
e, while Theorem 3.3.1 �nds an N=m-tight frame that is nearest to the

in
oherent matrix. The sele
ted bound 1=
√
m is approximately equal to the lowest possi-

ble bound (see eq. (2.25)) for large values of N . Other 
hoi
es of the bound might perform
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better depending on the frame dimensions. Combined with Theorem 3.3.1, the proposed

Gram matrix pro
essing yields highly in
oherent UNTFs.

Algorithm 1 Constru
tion of in
oherent UNTFs with Alternating Proje
tions

Input: m×N frame F0, iterations ITER

Output: m×N in
oherent UNTF F

q+1

for q := 1 to ITER do

F̂

q

= norm
(F
q

) // 
olumn normalization

G

q

= F̂

T

q

F̂

q

// obtain the Gram matrix

for i := 1 to N do

for j := 1 to N do

ĝ

ij

= g

ij

if i 6= j then

if |g
ij

| > 1=
√
d then

ĝ

ij

= sgn(g
ij

)(1=
√
d) // apply (3.4) to bound o�-diagonal entries

[U;�; V ] = svd(G̃
q

)

� = �(1 : m; 1 : m)

U = U(1 : m; 1 : m)

V = V (1 : m; 1 : m)

Ǧ = U�V // Redu
e the rank of G̃

q

to m

Ǧ = diag(1:=sqrt(diag(Ǧ))) ·Ǧ·diag(1:=sqrt(diag(Ǧ))) // normalize the Gram matrix

[U;�; V ] = svd(Ǧ) // U = V

S

q

= sqrt(�)V T

// Obtain S

q

∈ Rm×N
su
h that S

T

q

S

q

= Ǧ

q

S

′
q

=
√
N=m · (S

q

S

T

q

)−1=2
S

q

// Find the nearest N=m-tight frame

F

q+1 = S

′
q

The algorithm we propose is iterative. We employ as initial matrix F0 a tight frame

nearest to a random Gaussian matrix. In the q-th iteration, the pro
ess that redu
es

the mutual 
oheren
e involves \shrinkage" operations on the Gram matrix G

q

; thus, a


olumn normalization step pre
edes the main steps of our method. After applying (3.4),

the modi�ed Gram matrix G̃

q

may have rank larger than m. We obtain the nearest m-

rank Gram matrix using SVD. De
omposing the new Gram matrix Ǧ

q

, we obtain the

in
oherent matrix S

q

su
h that S

T

q

S

q

= Ǧ

q

. Next, Theorem 3.3.1 is applied to S

q

to

obtain an in
oherent tight frame. Therefore, the q-th iteration of Algorithm 1 involves

the following:

1. Obtain the matrix F̂

q

, after 
olumn normalization of F

q

.

2. Cal
ulate the Gram matrix Ĝ

q

= F̂

T

q

F̂

q

and apply (3.4) to bound the absolute values

of the o�-diagonal entries, produ
ing G̃

q

.

3. Apply SVD to G̃

q

to for
e the matrix rank to be equal to m, obtaining Ǧ

q

.

4. A matrix S

q

∈ Rm×N
is obtained su
h that S

T

q

S

q

= Ǧ

q

.
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Figure 3.1: Convergen
e of Algorithm 1 (alternating proje
tions) for a 60 × 120 matrix.

The mean squared distan
e between the 
urrent iteration and the sets we proje
t on

redu
es in a linear rate.

5. Find S

′
q

, the nearestN=m-tight frame to S

q

, a

ording to S

′
q

=
√
N=m·(S

q

S

T

q

)−1=2
S

q

.

Set F

q+1 = S

q

.

3.3.2 Convergen
e of Algorithm 1

The proposed algorithm is a
tually an alternating proje
tions algorithm. More parti
u-

larly, the proposed algorithm proje
ts onto the following sets:

1. The set Y of N ×N Gram matri
es of m×N unit norm frames,

Y =
{
G ∈ R

N×N : G = G

∗
; g

ii

= 1; i = 1; : : : ; N
}
:

2. The set Z of N ×N symmetri
 matri
es with bounded o�-diagonal entries,

Z = {G ∈ R
N×N : G = G

∗
; |g

ij

| ≤ 1=
√
m
; i 6= j; i; j = 1; : : : ; N}:

3. The set W of rank-m, N ×N symmetri
 matri
es,

W =
{
G ∈ R

N×N : G = G

∗
; rank(G) = m

}
:

4. The set S of N ×N Gram matri
es of m×N �-tight frames,

S ={G ∈ R
N×N : G = G

∗
; with only

m nonzero eigenvalues, all equal to �}:

As we have already mentioned, alternating proje
tions has been well studied for 
losed


onvex sets. However, from the above sets only Y and Z are 
onvex, whereas W and S

are smooth manifolds [88℄. Therefore, our dis
ussion regarding 
onvergen
e of Algorithm
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Figure 3.2: Convergen
e of Algorithm 1 (alternating proje
tions) for a 25 × 120 matrix.

The 
onvergen
e rate depends on the bound used in eq. (3.4). In (a) we observe a

sub-linear 
onvergen
e rate when the bound equals 1=
√
m. In (b) the 
onvergen
e rate

be
omes linear as the bound is relaxed to 3=2
√
m.

1 is mainly based on numeri
al results. To illustrate 
onvergen
e, we need to de�ne the

mean squared distan
e of the 
urrent iteration from the sets involved in the proje
tions,

that is

D(q) =
1

8
(d2(G

q

; Y ) + d

2(G
q

; Z) + d

2(G
q

;W ) + d

2(G
q

; S));

where the distan
e d(G
q

; H) between the 
urrent iteration G

q

and the set H we proje
t

on is de�ned as d(G
q

; H) = d

H

= inf{‖G
q

−X‖F : X ∈ H}.
In �gures 3.1 and 3.2 we display log10D(q) when Algorithm 1 is applied to a 60× 120

and a 25 × 120 matrix, respe
tively. Figure 3.1 shows that the proposed algorithm 
on-

verges at a linear rate, 
onstru
ting a frame that belongs to the interse
tion of the involved

sets. The zeroing of the mean squared distan
e implies that the produ
ed frame is indeed

an in
oherent UNTF. When the frame redundan
y in
reases, the numeri
al results be-


ome a little di�erent. Figure 3.2(a) shows that the 
onvergen
e rate for a 25×120 frame

is sub-linear and the produ
ed frame does not belong to the interse
tion of the involved

sets. Considering the in
reased diÆ
ulties of 
onstru
ting in
oherent frames of high re-

dundan
y, this result is not surprising; it is possible that either the interse
tion is empty

or it has properties that bring on diÆ
ulties to the proposed algorithm. Experiments

performed with a relaxed in
oheren
e level, whi
h is determined by the bound 1=
√
m in

eq. (3.4) 
on�rm our 
onje
ture. A relaxed bound yields a broader set Z and in
reases

the probability that the interse
tion has good properties. Figure 3.2(b) illustrates 
on-

vergen
e of Algorithm 1 when the bound 1=
√
m in eq. (3.4) is repla
ed by 3=2

√
m. We


an see that the 
onvergen
e rate be
omes linear and the produ
ed matrix belongs to the

interse
tion of the involved sets.
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3.3.3 Algorithm 2

Algorithm 2 Constru
tion of in
oherent UNTFs with Averaged Proje
tions

Input: N ×N initial Gram matrix G0, iterations ITER

Output: m×N in
oherent UNTF F

out

for q := 1 to ITER do

P
Y

(G
q

) = diag(1:=sqrt(diag(G
q

))) · G
q

· diag(1:=sqrt(diag(G
q

))) // Normalize the

Gram matrix

for i := 1 to N do

for j := 1 to N do

ĝ

ij

= g

ij

if i 6= j then

if |g
ij

| > 1=
√
d then

ĝ

ij

= sgn(g
ij

)(1=
√
d) // Apply (3.4) to bound the Gram entries

P
Z

(G
q

) = {ĝ
ij

}
[U;�; V ] = svd(G

q

)

� = �(1 : m; 1 : m)

U = U(1 : m; 1 : m)

V = V (1 : m; 1 : m)

P
W

(G
q

) = U�V // Redu
e the rank of G

q

to m

� = N=m

�

′ = diag{� � : : : �︸ ︷︷ ︸
N−m

}

P
S

(G
q

) = U�

′
U

T

// Symmetri
 matrix with m eigenvalues all equal to N=m

G

q+1 =
1
4
(P

Y

(G
q

) + P
Z

(G
q

) + P
W

(G
q

) + P
S

(G
q

)) // Apply (3.5)

[U;�; V ] = svd(G
q+1) // U = V

� = �(1 : m; 1 : m)

U = U(1 : m; 1 : m)

V = V (1 : m; 1 : m)

F

out

= sqrt(�)V T

Considering the diÆ
ulties in studying alternating proje
tions on non
onvex sets, we

propose here a similar algorithm for the 
onstru
tion of in
oherent UNTFs that relies on

averaged proje
tions. Suppose G0 is the initial Gram matrix. We 
onsider the following

proje
tions: P
Y

(G0) the proje
tion onto the set of N ×N symmetri
 matri
es with unit

diagonal, P
Z

(G0) the proje
tion onto the set of N ×N symmetri
 matri
es with bounded

o�-diagonal entries, P
W

(G0) the proje
tion onto the set of rank-m N × N symmetri


matri
es, P
S

(G0) the proje
tion onto the set of N×N symmetri
 matri
es withm nonzero

eigenvalues equal to N=m. If G

q

is the Gram matrix 
al
ulated in the q-th iteration, then

a modi�ed version of Algorithm 1 would 
onsider as input in the (q + 1)-th iteration the
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average

G

q+1 =
1

4
(P

Y

(G
q

) + P
Z

(G
q

) + P
W

(G
q

) + P
S

(G
q

)): (3.5)

The proje
tion P
S

(G
q

) 
an be 
al
ulated using Theorem A.2 given in the Appendix A.

If G

q

= U�U

T

is the eigenvalue de
omposition of the symmetri
 matrix obtained in the

q-th iteration, then P
S

(G
q

) = U�

′
U

T

with �

′
being a diagonal matrix with m entries

equal to N=m and the rest zero.

Again we start from a random Gaussian matrix and apply Theorem 3.3.1 to obtain

a nearest tight frame F0; then we 
al
ulate the Gram matrix G0 = F

T

0 F0. In the q-th

iteration we exe
ute the following steps:

1. Normalize the Gram matrix to obtain a symmetri
 matrix with unit diagonal. This

is the proje
tion P
Y

(G
q

).

2. Apply (3.4) on G

q

to bound the absolute values of the o�-diagonal entries, produ
ing

P
Z

(G
q

).

3. Apply SVD to G

q

to for
e the matrix rank to be equal to m, obtaining P
W

(G
q

).

4. If G

q

= U�U

T

then P
S

(G
q

) = U�

′
U

T

with �

′
being a diagonal matrix with m

entries all equal to N=m and the rest zero.

5. Cal
ulate the average Gram matrix G

q+1 a

ording to (3.5).

3.3.4 Convergen
e of Algorithm 2

The 
onvergen
e of averaged proje
tions algorithm is straightforward, 
onsidering the

results presented in 3.2.1. The sets Y; Z;W and S involved in Algorithm 2 are prox-

regular: Y; Z are 
onvex and W;S are smooth manifolds. Their interse
tion is very likely

to be strongly regular; the fa
t that our initial matrix is a random Gaussian matrix

minimizes the probability of 
hoosing an initial point that is near to a lo
ally extremal

point. Though we 
annot guarantee strong regularity for the above sets, randomness

seems to prevent us from irregular solutions. Therefore, we expe
t that the averaged

proje
tions algorithm 
onverges linearly to a point in the interse
tion of the above sets.

Let us see what experimental results show. Figures 3.3 and 3.4 present mean squared

distan
e for the averaged proje
tions algorithm. Indeed, in Fig. 3.3 the results for a

matrix of redundan
y equal to 2 
on�rm a linear 
onvergen
e rate and are in agreement

with our theoreti
al expe
tations. Moreover, the zero mean squared distan
e implies that

the obtained frame belongs to the interse
tion of the involved sets, that is, it forms an

in
oherent UNTF. The results are a little di�erent for a matrix with higher redundan
y.

As we 
an see in Fig. 3.4(b), the rate of 
onvergen
e be
omes sub-linear, indi
ating that

the interse
tion of the involved sets is either empty or does not have the desired properties.

Relaxing the imposed in
oheren
e level, i.e., using a larger bound than 1=
√
m in eq. (3.4),

we obtain a broader set Z, in
reasing the probability that the interse
tion of the involved
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Figure 3.3: Convergen
e of Algorithm 2 (averaged proje
tions) for a 60×120 matrix. The

mean squared distan
e between the 
urrent iteration and the sets we proje
t on redu
es

in a linear rate.

sets satis�es the suÆ
ient 
onditions formulated in Theorem 3.2.3. The experiments

performed with the new set Z yield a linear 
onvergen
e rate (Fig. 3.4(b)), 
on�rming

our 
onje
ture.

Comparing the 
onvergen
e of the two proposed algorithms, an important note is that

the presented experiments show that the results of the proposed averaged proje
tions

algorithm are similar to the alternating proje
tions. Of 
ourse, there is a signi�
ant

di�eren
e regarding the slope of the 
onvergen
e 
urve; alternating proje
tions is faster

than averaged proje
tions. However, the shapes of the 
urves are identi
al in all examples

employed in our experiments. Therefore, even though the theoreti
al justi�
ation of

the proposed alternating proje
tions needs further investigation, the experimental results

en
ourage its use for the proposed 
onstru
tions. In the next subse
tion, we present some

experiments demonstrating the properties of the obtained frames, showing that both

algorithms give similar results.

Before pro
eeding to more experiments and appli
ations, we would like to 
larify a

point 
on
erning the in
oheren
e level 
onstraint. One might wonder what is the e�e
t of

the imposed in
oheren
e level on the proposed 
onstru
tion. Do we obtain frames with

similar properties, regardless of the bound used in eq. (3.4)? The answer is that the

frame properties are similar but not identi
al. Depending on the frame redundan
y, there

is a lower in
oheren
e bound that should not be ex
eeded; otherwise, the smaller the

in
oheren
e bound we impose, the worse the in
oheren
e level we �nally obtain. Thus,

the sele
ted bound needs �ne tuning. However, the proposed bound 1=
√
m works well for

the 
onstru
tions 
onsidered in this thesis.

3.3.5 Experimental results

In order to test the performan
e of the proposed algorithms, this se
tion in
ludes ex-

perimental results that demonstrate the properties of the obtained 
onstru
tions. The
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Figure 3.4: Convergen
e of Algorithm 2 (averaged proje
tions) for a 25×120 matrix. The


onvergen
e rate depends on the bound used in eq. (3.4). In (a) we observe a sub-linear


onvergen
e rate when the bound equals 1=
√
m. In (b) the 
onvergen
e rate be
omes

linear as the bound is relaxed to 3=2
√
m.

results 
on
ern mainly the mutual 
oheren
e that expresses the similarity between frame

elements and the spe
tral norm that expresses how 
lose is a frame to a UNTF.

We begin with Fig. 3.5 that illustrates three snapshots of exe
ution in
luding 500 it-

erations, depi
ting the a
hieved mutual 
oheren
e and spe
tral norm at every iteration.

The examples involve frames of size 60 × 120, 40 × 120 and 20 × 120. The obtained re-

sults 
on�rm our 
onvergen
e dis
ussion, showing that alternating proje
tions algorithm

is faster than averaged proje
tions. However, both algorithms �nally 
onverge to simi-

lar values regarding mutual 
oheren
e and spe
tral norm. The attained results for the

spe
tral norm 
oin
ide with the target values, while for the mutual 
oheren
e they are


lose to the minimum bound. Regarding spe
tral norm , the results for alternating pro-

je
tions are impressive showing that the algorithm meets the minimum bound after only

a few iterations; both algorithms �nally attain to produ
e UNTFs. The most important

observation 
on
erning the proposed algorithms is that their performan
e depends on the

frame dimensions, or, more a

urately, on the frame redundan
y (� = N=m for an m×N

frame). The lower the frame redundan
y, the smaller the distan
e between the properties

of the obtained frames and the target values. This behaviour is more obvious regarding

the mutual 
oheren
e, but it also a�e
ts the spe
tral norm for large values of redundan
y

and is in agreement with the 
onvergen
e dis
ussion of the previous paragraph. Average

results presented next 
on�rm these observations.

Tables 3.1 and 3.2 in
lude average values of mutual 
oheren
e and spe
tral norm , re-

spe
tively, for m×120 frames, with m = 20 : 20 : 100. The �rst 
olumn 
on
erns random

Gaussian matri
es, the se
ond 
olumn frames obtained with alternating proje
tions (Al-

gorithm 1) and the third 
olumn frames obtained with averaged proje
tions (Algorithm
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50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

M
ut

ua
l c

oh
er

en
ce

40X120

Algorithm 1
Algorithm 2
Welch bound

(
) 40× 120 frame
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(d) 40× 120 frame
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(e) 20× 120 frame
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Figure 3.5: Mutual 
oheren
e (left) and spe
tral norm (right) as a fun
tion of the number

of iterations. The experiments involve frames of various dimensions.
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Figure 3.6: Distribution of Gram matrix entries of a 60× 120 frame.
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Figure 3.7: Distribution of Gram matrix entries of a 20× 120 frame.
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Table 3.1: Mutual 
oheren
e of m×N frames, with m = 20 : 20 : 100 and N = 120.

m Gaussian Algorithm 1 Algorithm 2 Optimal

20 0:756 0:339 0:393 0:205

40 0:577 0:169 0:199 0:130

60 0:472 0:129 0:138 0:092

80 0:428 0:112 0:114 0:065

100 0:384 0:100 0:103 0:041

Table 3.2: Spe
tral norm of m×N frames, with m = 20 : 20 : 100 and N = 120.

m Gaussian Algorithm 1 Algorithm 2 Optimal

20 3:281 2:450 2:483 2:450

40 2:637 1:732 1:752 1:732

60 2:333 1:414 1:421 1:414

80 2:158 1:225 1:227 1:225

100 2:044 1:095 1:097 1:095

2). The exe
ution of algorithms involves 100 iterations. It is 
lear that both algorithms

yield similar 
onstru
tions, that is, they produ
e highly in
oherent UNTFs. A small dis-


repan
y between the results of the proposed algorithms 
an be erased if we in
rease the

number of iterations so that the slow averaged proje
tions algorithm 
at
hes up alternat-

ing proje
tions. For medium and low redunda
y the obtained values for mutual 
oheren
e

approximate the lowest possible bound.

A better insight into the obtained 
onstru
tions 
an be attained by demonstrating

the distribution of the o�-diagonal entries (absolute values) of the 
orresponding Gram

matrix. Figures 3.6 and 3.7 present results for a 60× 120 and a 20× 120 frame, obtained

after 100 iterations of the proposed algorithms. Compared to the original random Gaus-

sian matrix, most 
orrelation values of the in
oherent UNTFs are 
on
entrated near the

optimal minimum bound, showing that the obtained 
onstru
tions are 
lose to ETFs.

Before 
on
luding, we would like to note that the proposed frames are 
ompared with

other te
hniques that produ
e in
oherent matri
es for 
ompressed sensing in Chapter 5,

where they are used for sensing sparse signals. The reason for 
hoosing not to make

a 
omparison with existing methods at this point is that no other method for designing

general purpose in
oherent UNTFs has been proposed in the literature. As a �nal remark,

we would like to emphasize that the algorithms proposed here utilizing alternating and

averaged proje
tions 
an yield in
oherent UNTFs of any dimensions, providing an eÆ
ient

tool for the 
onstru
tion of frames that are 
lose to ETFs even if ETFs with the given

dimensions do not a
tually exist.
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3.4 Constru
tion of nearly equiangular frames

The se
ond te
hnique we present for the 
onstru
tion of frames that are 
lose to ETFs is

based on ideas 
oming from graph theory. Summarizing the results presented in Se
tion

2.3, an ETF 
an be de�ned up to unitary equivalen
e by its so-
alled signature matrix.

Considering real equiangular frames, the 
orresponding signature matrix is a symmetri


matrix with zero diagonal and ±1's o�-diagonal entries, and it 
an be thought of as the

adja
en
y matrix of a graph. The most important property of a signature matrix is its

spe
trum, 
onsisting of exa
tly two eigenvalues �1, �2, with multipli
ity N −m and m,

respe
tively, given by

�1 = −
√
m(N − 1)

N −m

; �2 =

√
(N −m)(N − 1)

m

: (3.6)

Therefore, the problem of designing an ETF 
an be redu
ed to an inverse eigenvalue prob-

lem, that is, the 
onstru
tion of a matrix with spe
i�
 stru
ture and spe
trum 
onsisting

of two distin
t eigenvalues.

Many signature matri
es that 
orrespond to ETFs are known and 
onstru
tions of

ETFs based on signature matri
es have been proposed in [119℄. These te
hniques impose


ertain restri
tions on frame dimensions. In this thesis, we 
onsider frames of arbitrary

dimensions and 
onstru
t a symmetri
 matrix with spe
trum that approximates the spe
-

trum of the 
orresponding signature matrix. The obtained matrix is then used for the


onstru
tion of frames that are 
lose to ETFs. The produ
ed frames are almost tight,

with frame ve
tors forming angles that approximate the optimal value.

Inverse eigenvalue problems (IEPs) 
on
ern the 
onstru
tion of a matrix from pre-

s
ribed spe
tral data. A large 
ategory of IEPs in
ludes stru
tured inverse eigenvalue

problems (SIEPs), where given a set N of spe
ially stru
tured matri
es and a set of

s
alars {�
i

}N
i=1, �i ∈ R, 
orresponding to the desired spe
trum, we want to �nd a matrix

X ∈ N su
h that �(X) = {�
i

}N
i=1, where spe
trum �(X) [40℄.

The signature matrix of an ETF is a symmetri
 matrix with zero diagonal, ±1's o�-

diagonal entries, and spe
trum 
ontaining the eigenvalues given by (3.6). The problem

we need to solve to �nd a signature matrix is a SIEP formulated as follows.

Signature Matrix Inverse Eigenvalue Problem (SMIEP). Considering a set of two

real numbers, �1; �2, given by (3.6), �nd a symmetri
 N × N matrix with zero diagonal,

±1's o�-diagonal entries, and spe
trum

� = {�1; : : : ; �1;︸ ︷︷ ︸
N−m

�2; : : : ; �2︸ ︷︷ ︸
m

}; m < N: (3.7)

SIEPs are diÆ
ult to solve and most of the existing algorithms have been designed for

problems of spe
ial type [40, 101℄. The numeri
al method proposed here for SMIEP does

not always produ
e an exa
t solution. However, it 
an produ
e an approximate solution

satisfying stru
tural 
onstraints and approximating spe
tral 
onstraints. Although su
h
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a matrix is not the signature matrix of an ETF, it 
an be used to obtain a frame that is


lose to an ETF as we will see in the sequel.

The work presented here is based on the observation that real frames that are 
lose

to ETFs (e.g., in
oherent frames proposed in [129℄) have \signature" matri
es with eigen-

values that approximate the spe
trum of a signature matrix 
orresponding to an ETF.

Before pro
eeding, we need to explain what we 
all a \signature" matrix of an arbitrary

real frame. Suppose we are given an ETF with dimensions m, N . From equation (2.31)

we see that we 
an derive the N × N signature matrix from the 
orresponding Gram

matrix by keeping the signs of the o�-diagonal entries and zeroing the diagonal. In the

same manner, we 
an obtain an N ×N symmetri
 matrix with ±1's o�-diagonal entries

and zero diagonal from the Gram matrix of an arbitrary m×N frame. Therefore, we are

led to the following de�nition.

De�nition 3.4.1 (Signature matrix of an arbitrary frame). The signature matrix Q of

an arbitrary m×N real frame F = [f1 f2 : : : fN ] is the N×N matrix with entries derived

from the 
orresponding Gram matrix, R = F

T

F , a

ording to

q

ij

=

{
sgn(r

ij

); i 6= j;

0; i = j;

(3.8)

where r

ij

is the (i; j) entry of R. Obviously, the eigenvalues of an arbitrary signature

matrix do not satisfy (3.6).

Now we 
an explain the main idea of the work presented here. Let us make the

assumption that an ETF with arbitrary dimensions m;N exists, and use (3.6), (3.7), to


al
ulate the spe
trum of the 
orresponding signature matrix. If we 
onstru
t a matrix

with spe
trum 
lose to (3.7), satisfying the stru
ture of a signature matrix, then, using

(2.31), we obtain an m×N frame with good spe
tral properties and frame ve
tors forming

angles near the optimal value. We refer to this frame as nearly equiangular.

3.4.1 Constru
tion of signature matri
es

A spe
ial 
ase of SIEP is the symmetri
 nonnegative inverse eigenvalue problem (SNIEP),

that is, �nding a symmetri
 matrix with nonnegative entries and pres
ribed spe
trum. A

numeri
al method for the solution of SNIEP was presented in [101℄, where the authors

utilize alternating proje
tion ideas and propose an algorithm in whi
h, �rst, the eigenvalue

de
omposition is used to impose the desired spe
trum, and, subsequently, every negative

entry of the obtained matrix is set to zero to obtain a nonnegative matrix.

Inspired by the work of [101℄, we propose here an algorithm that imposes stru
tural

and spe
tral 
onstraints on a randomly generated symmetri
 matrix to �nd a solution to

SMIEP. Starting from an initial matrix Q0 with the pres
ribed stru
ture, and using an

iterative pro
ess 
onsisting of two steps, in the k-th iteration we do the following:

Step 1. Compute the eigenvalue de
omposition Q

k−1 = P�P

−1
, where � is a diagonal

matrix 
ontaining the eigenvalues of Q

k−1 and P is the matrix of the 
orresponding
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eigenve
tors. Then, produ
e a matrix with the desired spe
trum � a

ording to Q̃

k

=

P�P

−1
, where � := diag(�) is the diagonal matrix with entries the desired eigenvalues.

Step 2. Obtain a matrix Q

k

with the desired stru
ture that is 
lose to Q̃

k

, by keeping

the signs of the o�-diagonal entries of Q̃

k

and set the diagonal to zero,

q

ij

=

{
sgn(q̃

ij

); i 6= j;

0; i = j:

(3.9)

Step 1 repla
es the eigenvalues of the given matrix with the requested ones; thus, it yields

a matrix with the desired spe
trum, impairing the matrix stru
ture. This step a
tually

uses Theorem A.2 given in the Appendix and proje
ts on the spe
tral set of matri
es

with spe
trum �. Step 2 yields a matrix exhibiting the requested stru
ture, impairing

the matrix spe
trum. The above steps bring up Algorithm 3. Note that, due to small

numeri
al ina

ura
y, Q̃

k

from Step 1 may not be perfe
tly symmetri
; thus, we perform

the following operation: Q̃

k

:= 0:5 · (Q̃T

k

+ Q̃

k

).

Algorithm 3 Signature Matrix Constru
tion I

Input: initial N ×N signature matrix Q0, spe
trum �, iterations ITER

Output: N ×N symmetri
 matrix Q

k

, with zero diagonal, ±1's o�-diagonal entries and

spe
trum approximate to �

� := diag(�)

for k := 1 to ITER do

[P; �] := EigenDe
omp(Q
k−1) // Q

k−1 = P�P

−1

Q

k

:= P�P

−1
// apply desired spe
trum

Q

k

:= 0:5 · (QT

k

+Q

k

)

for every entry of Q

k

, q

ij

, do

if i == j then

q

ij

:= 0 // diagonal entries

else

q

ij

:= sgn(q
ij

) // o�-diagonal entries

k := k + 1

Studying the 
onvergen
e of the proposed algorithm is not a trivial task. Well known

results from alternating proje
tions 
annot be applied here be
ause 
onvexity 
onditions

for the employed sets are not satis�ed, and in 
ase the 
orresponding ETF does not exist,

SMIEP is not solvable. Therefore, our results will be basi
ally experimental. First, we

use Algorithm 3 to 
ompute signature matri
es of ETFs that are known to exist. Our

experiments have shown that the algorithm 
an produ
e the signature matri
es of ETFs

with dimensions m× (m+1) in a few iterations. When the algorithm is used to 
onstru
t

ETFs of other dimensions, e.g., 5 × 10, 6 × 16, it may need a few trials (with di�erent

starting matri
es) to �nd the 
orresponding signature matri
es. A possible explanation
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Figure 3.8: The spe
trum of the signature matrix of a 64× 128 random Gaussian matrix

before and after pro
essing the matrix with Algorithms 3 and 4. The bla
k dotted line

stands for the spe
trum of the signature matrix 
orresponding to a 64× 128 ETF.

for this is that the algorithm may 
onverge lo
ally, thus, �nding a solution depends on

the starting matrix. As an example we 
ite the signature matrix of a 6× 16 ETF.

0 +1 +1 −1 +1 −1 +1 +1 −1 +1 +1 −1 +1 −1 +1 −1

+1 0 +1 +1 +1 −1 −1 +1 +1 −1 +1 +1 +1 −1 +1 +1

+1 +1 0 −1 +1 −1 −1 −1 +1 +1 −1 +1 +1 +1 +1 −1

−1 +1 −1 0 −1 −1 −1 +1 +1 −1 −1 −1 +1 −1 −1 +1

+1 +1 +1 −1 0 −1 +1 −1 −1 −1 +1 +1 +1 +1 −1 +1

−1 −1 −1 −1 −1 0 −1 −1 −1 −1 +1 +1 −1 −1 +1 −1

+1 −1 −1 −1 +1 −1 0 +1 −1 +1 +1 −1 −1 +1 −1 +1

+1 +1 −1 +1 −1 −1 +1 0 +1 +1 +1 −1 −1 −1 +1 +1

−1 +1 +1 +1 −1 −1 −1 +1 0 +1 −1 +1 −1 +1 +1 +1

+1 −1 +1 −1 −1 −1 +1 +1 +1 0 −1 −1 −1 +1 +1 −1

+1 +1 −1 −1 +1 +1 +1 +1 −1 −1 0 +1 −1 −1 +1 +1

−1 +1 +1 −1 +1 +1 −1 −1 +1 −1 +1 0 −1 +1 +1 +1

+1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1 −1 0 −1 −1 −1

−1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1 +1 −1 0 −1 +1

+1 +1 +1 −1 −1 +1 −1 +1 +1 +1 +1 +1 −1 −1 0 −1

−1 +1 −1 +1 +1 −1 +1 +1 +1 −1 +1 +1 −1 +1 −1 0

Considering that these frame 
onstru
tions are already known, the most important re-

sult of Algorithm 3 
on
erns �nding the signature matri
es of nearly equiangular frames of

arbitrary dimensions. Testing the algorithm with signature matri
es of frames of various

dimensions has shown that after a few iterations we obtain a matrix with the requested

stru
ture and signi�
antly improved spe
trum that approximates (3.7); therefore, Algo-

rithm 3 yields an approximate solution to SMIEP. Figure 3.8 demonstrates results 
on-
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erning the spe
trum of a signature matrix before and after applying Algorithm 3. The

initial signature matrix was obtained by a random Gaussian 64× 128 matrix.

Algorithm 4 Signature Matrix Constru
tion II

Input: initial N ×N signature matrix Q0, spe
trum �, iterations ITER

Output: N ×N symmetri
 matrix Q

k

, with zero diagonal, ±1's o�-diagonal entries and

spe
trum approximate to �

� := diag(�)

for k := 1 to ITER do

[P; �] := EigenDe
omp(Q
k−1) // Q

k−1 = P�P

−1

Q

k

:= P�P

−1

Q

k

:= 0:5 · (QT

k

+Q

k

)

for every entry of Q

k

, q

ij

, do

if i == j then

if |q
ij

| < t then

q

ij

:= 0 // diagonal entries

else

if |1− |q
ij

|| < t then

q

ij

:= sgn(q
ij

) // o�-diagonal entries

k := k + 1

for every o�-diagonal entry do

q

ij

:= sgn(q
ij

)

for every diagonal entry do

q

ii

:= 0

Our experiments with Algorithm 3 have shown that, even though the proposed pro-


essing improves the signature matrix spe
trum substantially, it be
omes ine�e
tive after

a few iterations. To further improve our results, we propose to modify the se
ond step as

follows. Before 
hanging the value of a matrix entry a

ording to (3.9), we examine its dis-

tan
e from 1 (o�-diagonal) or 0 (diagonal). To avoid a signi�
ant spe
trum impairment,

if this distan
e ex
eeds a threshold t, we keep the entry un
hanged, that is

q

ij

=





sgn(q̃
ij

); if |1− |q̃
ij

|| < t; i 6= j;

0; if |q̃
ij

| < t; i = j;

q̃

ij

; otherwise.

(3.10)

This way the k-th iteration does not produ
e a matrix having the appropriate entries, but

stru
ture is improved gradually. After a number of iterations is rea
hed, we apply (3.9)

to �nally produ
e a matrix with the desired stru
ture. Thus, we are led to Algorithm 4.

Experimental results showing the improvement a
hieved with Algorithm 4 are presented

in Fig. 3.8.
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3.4.2 Nearly equiangular frames based on signature matri
es

The signature matrix obtained by Algorithm 4 will be used next to 
onstru
t a nearly

equiangular frame. First, we 
onstru
t the Gram matrix R a

ording to (2.31). A sym-

metri
 N ×N matrix obtained by (2.31) 
orresponds to an m×N frame, if it is of rank

m. Thus, a rank redu
tion step follows. Using singular value de
omposition (SVD), we

keep the m largest eigenvalues and set the rest to zero. The matrix produ
ed after rank

redu
tion may not have ones in the diagonal; therefore, a normalization step follows to

ensure that the Gram matrix 
orresponds to a unit norm frame. Finally, using SVD, we

obtain an m×N frame, whi
h is unit norm, almost tight, with the frame ve
tors forming

angles near the optimal value. The above steps bring up Algorithm 5. Re
all that the

frame obtained this way is unique up to unitary equivalen
e.

Algorithm 5 Constru
tion of a nearly equiangular frame

Input: m×N frame F0

Output: m×N frame F

out

, nearly equiangular

R0 = F

T

0 F0 // Obtain the initial Gram matrix

// Obtain Q0 a

ording to (3.8)

Q0 = sgn(R0)

Q0(i; i) = 0; for all i

// Use Algorithm 4 to obtain a signature matrix Q̃

Q̃ = Algorithm2(Q0)

// Obtain the Gram matrix from (2.31)

R̃ = I + 
Q̃

// Redu
e the rank of R̃ to m

[U; S; V ] = svd(G)

S = S(1 : m; 1 : m)

U = U(1 : m; 1 : m)

V = V (1 : m; 1 : m)

Ř = USV

// Normalize the Gram matrix Ř

Ř = diag(1:=sqrt(diag(Ř))) · Ř · diag(1:=sqrt(diag(Ř)))
// Obtain F

out

[U; S; V ] = svd(G) // U = V

F

out

= sqrt(S)V T

Some results of the produ
ed frames are presented in Fig. 3.9. Figure 3.9(a) demon-

strates the frame ve
tors' 
orrelation for a 64×128 frame, showing that the angles formed

by the frame ve
tors have values around the optimal value of an ETF. Figure 3.9(b)

demonstrates the frame ve
tors' 
orrelation for a 96 × 128 frame, showing more impres-

sive results for frames of low redundan
y.
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(a) A 64× 128 frame (�

opt

= 0:0887).
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Algorithm 5

(b) A 96× 128 frame (�

opt

= 0:0512).

Figure 3.9: Correlation distribution of frame ve
tors produ
ed with Algorithm 5. �

opt

stands for the optimal lowest bound (Wel
h bound).
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Algorithm 6

(a) A 64× 128 frame (�

opt

= 0:0887).
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Algorithm 6

(b) A 96× 128 frame (�

opt

= 0:0512).

Figure 3.10: Correlation distribution of frame ve
tors produ
ed with Algorithm 6. �

opt

stands for the optimal lowest bound (Wel
h bound).

3.4.3 Nearly equiangular, nearly tight frames based on signature

matri
es

Algorithm 5 produ
es frames of any dimensions with the frame ve
tors forming angles

near the optimal value. Even though the obtained frames exhibit good spe
tral properties,

they are not exa
tly tight, a 
hara
teristi
 that is important for many appli
ations. One

way to improve tightness is Theorem 3.3.1 that �nds a nearest �-tight frame to a given

frame F a

ording to

√
�(FF T )−1=2

F .

Having produ
ed a nearly equiangular m × N frame with Algorithm 5, we apply

Theorem 3.3.1 with � = N=m. As tightness opposes unit-normness, we must 
arry out

a few iterations, alternating between these two properties a

ording to Algorithm 6 to

obtain a nearly equiangular, nearly tight unit norm frame.
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Algorithm 6 Constru
tion of a nearly equiangular, nearly tight frame

Input: m×N frame F0

Output: m×N frame F

out

, nearly equiangular, nearly tight

// Compute Q0 the signature matrix of F0.

// Obtain a nearly equiangular frame F1 with Algorithm 5.

for k := 1 to ITER do

F

k+1 :=
√
N=m(F

k

F

T

k

)−1=2
F

k

// impose tightness

F

k+1 := norm
(F
k+1) // normalize 
olumns

k := k + 1

Table 3.3: Spe
tral norm of m ×N frames with m = 32 : 16 : 96 and N = 128 obtained

with Algorithm 5 and Algorithm 6.

m

Spe
tral norm

Algorithm 5 Algorithm 6 Optimal

32 2.074 2.015 2.000

48 1.716 1.655 1.633

64 1.499 1.440 1.414

80 1.351 1.288 1.265

96 1.250 1.171 1.155

A metri
 to evaluate how 
lose the obtained frame is to a unit norm tight frame is the

spe
tral norm. Re
all that the spe
tral norm of a unit norm tight frame equals the lowest

possible bound

√
N=m. To see the improvement of tightness a
hieved by Algorithm 6

we 
onstru
t frames of various dimensions and 
ompute their spe
tral norm. The results

presented in Table 3.3 are averaged over 500 frame samples and 
on
ern m × N frames

with m = 32 : 16 : 96 and N = 128. While Algorithm 6 improves the spe
tral norm of

the obtained frames, it also a�e
ts the frame ve
tors' 
orrelation. We 
an see that there

is a trade-o� between equiangularity and tightness, also observed in Figures 3.9, 3.10.

Figure 3.10 demonstrates results of the frame ve
tors' 
orrelation for a 64 × 128 and a

96× 128 frame produ
ed by Algorithm 6. Comparing Fig. 3.10 to Fig. 3.9, we observe a

slight deterioration of 
orrelation's distribution, as a pri
e of the improvement of tightness.

Therefore, the 
hoi
e between Algorithm 5 and Algorithm 6 for the 
onstru
tion of nearly

equiangular frames, depends on the spe
i�
 requirements of the related appli
ation.

More results regarding the properties of the proposed frames based on signature ma-

tri
es are presented in the next se
tion, where we provide a 
omparison with in
oherent

UNTFs obtained with alternating and average proje
tions.
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Table 3.4: Standard deviation of the Gram matrix entries 
orresponding to m×N frames

with m = 32 : 16 : 96, N = 128, obtained with Algorithms 1, 5 and 6.

m

Standard deviation

Gaussian Algorithm 1 Algorithm 5 Algorithm 6

32 0.1051 0.0582 0.0439 0.0412

48 0.0862 0.0471 0.0266 0.0257

64 0.0749 0.0422 0.0176 0.0189

80 0.0670 0.0364 0.0119 0.0153

96 0.0612 0.0292 0.0076 0.0136

3.5 Comparison of the proposed 
onstru
tions

In order to provide a thorough 
omparison of the proposed frame 
onstru
tions, we present

here numeri
al results showing the a
hieved levels of equiangularity and in
oheren
e of

the obtained frames and dis
uss already presented results regarding the spe
tral norm.

The experiments in
lude frames 
onstru
ted with the signature matrix based Algorithms

5 and 6, and Algorithm 1 that utilizes alternating proje
tions. Averaged proje
tions

algorithm yields results very similar to alternating proje
tions, as we have already seen in

Tables 3.1 and 3.2, while it is more time 
onsuming. Thus, results for Algorithm 2 are not

demonstrated here. The next Tables in
lude average values of the mutual 
oheren
e and

the average 
oheren
e. To evaluate the equiangularity, we study the distribution of the

Gram matrix entries. The experiments 
onsider frames of variable redundan
y, in
luding


onstru
tions of size m × 128, with m = 32 : 16 : 96. The obtained measurements are

averaged over 500 realizations.

All measurements presented next are related to frame ve
tors' 
orrelation. However,

trying give an answer to the question how 
lose are the proposed frames to ETFs, let

us �rst dis
uss the obtained values for the spe
tral norm. Results for the spe
tral norm

of nearly equiangular 
onstru
tions have been presented in the previous se
tion in Table

3.3. Comparison with in
oherent UNTFs regarding the spe
tral norm is straightforward,

as already presented results (see Table 3.2) show that in
oherent UNTFs meet the mini-

mum bound, whi
h is also demonstrated in Table 3.3. Table 3.3 shows that equiangular


onstru
tions approximate the minimum bound without a
tually rea
hing it; therefore,

in
oherent UNTFs obtained with Algorithm 1 are preferable when tightness is impor-

tant. However, the spe
tral norm of frames obtained with Algorithm 6 is very 
lose to

the optimal value; thus, Algorithm 6 is expe
ted to provide reliable solutions when the

appli
ation raises a need for tightness and equiangularity 
on
urrently.

The most important property of the frames produ
ed with the signature matrix based

method is that they 
omprise nearly equiangular ve
tors. One way to observe equangu-

larity is to study the distribution of the Gram matrix entries. Besides Figures 3.9, 3.10

depi
ting the distribution of sample 
onstru
tions, we present average measurements of
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Table 3.5: Mutual 
oheren
e of m ×N frames with m = 32 : 16 : 96, N = 128, obtained

with Algorithms 1, 5 and 6.

m

Mutual 
oheren
e

Gaussian Algorithm 1 Algorithm 5 Algorithm 6 Optimal

32 0.637 0.220 0.320 0.310 0.154

48 0.534 0.148 0.218 0.214 0.115

64 0.472 0.125 0.158 0.162 0.089

80 0.427 0.112 0.116 0.128 0.069

96 0.392 0.102 0.082 0.103 0.051

the standard deviation of the Gram matrix entries (absolute values). The results pre-

sented in Table 3.4 
on
ern nearly equiangular frames 
onstru
ted with Algorithms 5,

6, and in
oherent UNTFs 
onstru
ted with Algorithm 1. Clearly, Table 3.4 shows that

signature matrix based frames are more equiangular 
ompared to in
oherent UNTFs, ex-

hibiting smaller values of standard deviation. More impressive results are observed for

low redundan
y frames, showing the important role redundan
y plays in the eÆ
ien
y of

the algorithms, a remark we also have made for Algorithms 1, 2.

Results for the mutual 
oheren
e are presented in Table 3.5 and show that smaller

values are obtained for in
oherent UNTFs. The di�eren
e between nearly equiangular

frames and in
oherent UNTFs is larger when the frame redundan
y is high and be
omes

insigni�
ant for less redundant frames. Truely, for 96× 128 frames Algorithm 6 a
hieves

the best results regarding 
olumn 
orrelation, that is the smallest mutual 
oheren
e and

standard deviation. Results obtained for 80×128 frames are also remarkable. Comparing

the algorithms based on signature matri
es, the observation made in Figures 3.9, 3.10

regarding equiangularity also holds for the mutual 
oheren
e; more tight frames are less

equiangular and less in
oherent. Although the di�eren
es in mutual 
oheren
e are mi-

nor and one would expe
t that they 
ould hardly a�e
t the appli
ations of interest, the

variation of the spe
tral norm we observed in Table 3.3 may a�e
t the eÆ
ien
y of the

employed frames in appli
ations.

A measure that a

ounts for all inner produ
ts between the 
olumns of a given matrix,

and not only for the largest one is average 
oheren
e. Given a unit norm matrix A =

[a1 a2 : : : aN ], average 
oheren
e is de�ned in [55℄ as

�

g

(A) =
1

N(N − 1)

N∑

i=1

N∑

j=1
i6=j

|〈a
i

; a

j

〉|2: (3.11)

Results for average 
oheren
e of the proposed 
onstru
tions are presented in Table 3.6 and

they are remarkable. All methods yield frames with identi
al average 
oheren
e. It seems

that no matter what operations are made on a frame, the resulting 
onstru
tion attains

some kind of equilibrium, expressed by the same average 
oheren
e. This observation may
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Table 3.6: Average 
oheren
e of m×N frames with m = 32 : 16 : 96, N = 128, obtained

with Algorithms 1, 5 and 6.

m

Average 
oheren
e

Gaussian Algorithm 1 Algorithm 5 Algorithm 6 Optimal

32 0.042 0.038 0.038 0.038 0.154

48 0.035 0.029 0.029 0.029 0.115

64 0.030 0.023 0.023 0.022 0.089

80 0.028 0.017 0.017 0.017 0.069

96 0.026 0.013 0.013 0.013 0.051

be the key to explain the similar performan
e in sparse re
overy observed for the proposed


onstru
tions, as we will see in the next 
hapters. De�nitely, exploring the reasons for

whi
h these frames exhibit identi
al average 
oheren
e is a subje
t for further resear
h.

Con
luding the presentation of the developed frame 
onstru
tions, we would like to

make the following remarks. First, both methods proposed here yield frames exhibiting

high in
oheren
e levels. As we will see in the next 
hapters, the proposed frames are ap-

propriate for sparse representations and 
ompressed sensing, improving the performan
e

of sparse re
overy algorithms and o�ering a

urate signal re
onstru
tion. Se
ond, re-

garding the spe
tral norm , Algorithms 1, 2 yield the best results, produ
ing in
oherent

UNTFs with spe
tral norm 
oin
iding with the minimum a
hievable bound. Signature

matrix based 
onstru
tions are less tight; however, they have a simpler implementation,

thus, they are preferable if tightness requirements are loose. Finally, when equiangularity

is the main requirement, then the best 
onstru
tions are obtained with the algorithms

based on signature matri
es. The frames obtained with Algorithm 6 bridge the distan
e

between tightness and equiangularity, and may be used as spreading sequen
es in s-CDMA

systems, where both properties are required.
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Chapter 4

Pre
onditioning in Sparse and

Redundant Representations

4.1 The sparse representation problem

4.2 Mutual 
oheren
e and RIP

4.3 Promoting a sparse solution

4.4 The role of the spe
tral norm

4.5 Pre
onditioning

Sparse signal representations 
onsist of a linear 
ombination of a small number of el-

ementary signals 
alled atoms. Often, the atoms are 
hosen from a redundant (over
om-

plete) di
tionary, that is, a 
olle
tion of atoms with 
ardinality ex
eeding the dimension

of the signal spa
e. Thus, any signal 
an be represented by more than one 
ombinations

of di�erent atoms [58℄.

Sparse representations are motivated by the fa
t that many natural signals are 
om-

pressible, that is, they 
an be well approximated by a few large and many small 
oeÆ
ients.

Sparseness is one of the reasons for the extensive use of popular transforms su
h as the

Dis
rete Fourier Transform or the wavelet transform. The aim of these transforms is often

to reveal 
ertain stru
tures of a signal and to represent these stru
tures in a 
ompa
t and

sparse form. Sparsity has improved the performan
e of many signal pro
essing appli
a-

tions su
h as 
ompression, feature extra
tion, pattern 
lassi�
ation, and noise redu
tion

[58℄.

The generation of sparse representations with a redundant di
tionary is non-trivial.

Indeed, the general problem of �nding a representation with the smallest number of

atoms from an arbitrary di
tionary has been shown to be NP-hard. This has led to


onsiderable e�ort being put into the development of many sub-optimal s
hemes. A key
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ontribution to sparse representation problems is 
onsidered the work of [34℄ where the

authors proposed a pursuit te
hnique for evaluating sparsity. In general, algorithms for

sparse representations form two 
lasses: algorithms that iteratively build up the signal

approximation one 
oeÆ
ient at a time, e.g., Mat
hing Pursuit [93℄, Orthogonal Mat
hing

Pursuit [47℄, and algorithms that pro
ess all the 
oeÆ
ients simultaneously, e.g., Basis

Pursuit [34℄. Even though there exist a range of empiri
al eviden
e for the performan
e of

methods built on sparse representation, many fundamental theoreti
al questions remain

to be addressed. The development of novel fast sparse re
onstu
tion algorithms, the

theoreti
al and pra
ti
al performan
e of su
h algorithms, the design and learning of good

di
tionaries are open resear
h topi
s in the �eld [58℄.

In the heart of sparse representations lies an underdetermined linear system with

more unknowns than equations. Uniqueness 
onditions for the existen
e of a sparse solu-

tion and performan
e guarantees for the algorithms deployed to �nd it require that the

involved system matrix exhibits in
oheren
e and good spe
tral properties [125℄. While

many in
oherent tight di
tionaries are known, often they 
annot provide suÆ
iently sparse

representations or they are not suitable for 
ertain families of signals.

In this 
hapter, �rst, we survey well-known results providing the 
onditions for the

existen
e of unique sparse representations and highlighting the 
onstraints imposed for

su

essful numeri
al 
omputation. Based on these results, we 
onsider an underdeter-

mined linear system with sparse solutions and apply a mathemati
al te
hnique referred

to as pre
onditioning that yields a system matrix with good in
oheren
e and spe
tral

properties. While existing work in pre
onditioning 
on
erns greedy algorithms, the te
h-

nique presented here 
an be employed with any standard numeri
al solver. Our simula-

tions show that the proposed pre
onditioning substantially improves the re
overy rates in

sparse representations.

4.1 The sparse representation problem

The weakness of orthogonal transforms to provide highly sparse representations has pro-

moted the development of over
omplete di
tionaries. Over
omplete or redundant di
tio-

naries 
an provide 
ompa
t representations with a few non-vanishing 
oeÆ
ients. Con-

sider a �nite-length real-valued signal x of length m, whi
h we view as an m× 1 
olumn

ve
tor in Rm

. Let � ∈ RN

be a represenation of x under an over
omplete di
tionary

A ∈ Rm×N
, m < N ,

x = A�: (4.1)

Clearly x and � are equivalent representations of the same signal, with x in the time

domain and � in the A domain. Assume that ‖�‖0 = s, where ‖ · ‖0 is the `0 quasi-norm

ounting the nonzero 
oeÆ
ients of the treated signal. A sparse representation 
onsists

of a linear 
ombination of s 
olumns of A, with s≪ N . We refer to s as the sparsity level

of �. The set of indi
es 
orresponding to the non-vanishing 
oeÆ
ients is referred to as
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the support of �.

The sparse representation problem requires the 
omputation of the ve
tor �, given

only the di
tionary A and the treated signal x. System (4.1) is underdetermined with

fewer equations than unknowns, making the solution ill-posed in general. To avoid the

trivial 
ase of having no solution, we assume that the matrix A is of full rank. Thus,

the system has in�nitely many solutions and if one desires to narrow the 
hoi
e to one

well-de�ned solution, additional 
riteria are needed. Therefore, when 
onsidering systems

of the form (4.1), the following plausible questions are posed:

(a) When 
an uniqueness of a sparse solution be 
laimed?

(b) Can the solution be reliably and eÆ
iently 
omputed in pra
ti
e?

(
) What performan
e guarantees 
an be given for various approximate and pra
ti
al

solvers?

Theoreti
al guarantees for a unique and stable solution satisfying (4.1) set bounds on

the maximum sparsity level of the representation and impose 
ertain 
onstraints on the

system matrix A.

4.2 Mutual 
oheren
e and RIP

Ne
essary and suÆ
ient 
onditions ensuring that a signal 
an have a unique sparse repre-

sentation under an over
omplete di
tionary are phrased in terms of the mutual 
oheren
e

and the restri
ted isometry property (RIP). These properties express a measure of the

linear dependen
e between the 
olumns of A, and are used to set restri
tions on the maxi-

mal sparsity allowed for a unique representation. Note that the results presented here 
an

in
orporate sparse representations a�e
ted by additive noise, i.e., x = A� + �, ‖�‖ ≤ �,

with slight modi�
ations.

4.2.1 Mutual Coheren
e

One of the most important properties related to the geometry of the di
tionary A is the

maximal 
olumn 
orrelation, also known as mutual 
oheren
e. Re
all that the mutual


oheren
e �(A) is a simple numeri
al way to 
hara
terize the degree of similarity between

the 
olumns of the matrix A and is de�ned as the largest absolute normalized inner

produ
t between di�erent frame 
olumns [93℄,

�(A) = max
1≤i;j≤N

i6=j

|〈a
i

; a

j

〉|
‖a

i

‖ ‖a
j

‖ : (4.2)

Mutual 
oheren
e is bounded as 0 ≤ �(A) ≤ 1, with �(A) = 0 if A is orthogonal (see also

Chapter 2). If A ∈ Rm×N
, m ≤ N , then �(A) satis�es

√
N −m

m(N − 1)
≤ �(A) ≤ 1; (4.3)
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where the lower bound is the well-known Wel
h bound. Matri
es with small mutual


oheren
e are known as in
oherent. Requiring a matrix A with small mutual 
oheren
e,

that is, with 
olumns as \independent" as possible, means that the information of x

represented by A is spread in di�erent dire
tions, whi
h makes its re
overy easier. Mutual


oheren
e plays an important role in the existen
e of a unique solution of system (4.1) as

well as in the performan
e of the algorithms deployed to �nd sparse solutions.

4.2.2 Uniqueness via mutual 
oheren
e

Mutual 
oheren
e 
an provide a 
ondition that gives an answer to the 
ru
ial question

regarding the existen
e of a unique solution of (4.1). The following result was derived in

[51℄.

Theorem 4.2.1 (In
oheren
e and sparsity [51℄). If the linear system of equations in (4.1)

has a solution that satis�es the 
ondition

‖�‖0 <
1

2

(
1 +

1

�(A)

)
; (4.4)

then this solution is the sparsest one.

Consequently, if a solution satis�es (4.4), then this is the unique sparsest solution.

Combining Theorem 4.2.1 with the lower bound of mutual 
oheren
e, we 
an provide

an upper bound of sparsity related to the lower dimension m of the matrix A. When

N ≥ 2m, it follows that �(A) ≥ (2m−1)−1=2
. Thus, the maximum sparsity level ensuring a

unique sparse representation isO(
√
m). This bound is referred to as square root bottlene
k.

We must note here that Theorem 4.2.1 is a pessimisti
 result, and often sparse signal

re
overy is possible for larger values of O(
√
m). However, in order to shatter the square

root bottlene
k, probabilisti
 analysis is needed as we will see later.

4.2.3 The Restri
ted Isometry Property

The restri
ted isometry property (RIP) is a di�erent way to measure the similarity of


olumns of a matrix and is used to study the uniqueness of the solution and the stability

of system (4.1), while it provides 
onditions for robust re
overy in the presen
e of noise.

De�nition 4.2.2. An m × N matrix A has the Restri
ted Isometry Property (RIP) of

order s with s = 1; 2; : : : , if there exists a 
onstant Æ
s

∈ [0; 1) su
h that

(1− Æ

s

)‖�‖2 ≤ ‖A�‖2 ≤ (1 + Æ

s

)‖�‖2; for all � ∈ R
N

: (4.5)

We refer to Æ

s

as the isometry 
onstant.

This 
on
ept was introdu
ed in [28℄. A matrix A obeys the RIP of order s, if Æ

s

is

not too 
lose to one. When this property holds, it implies that the Eu
lidean norm of

� is approximately preserved, after proje
ting it on the rows of A. Obviously, if matrix
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A were orthogonal then Æ

s

= 0. Sin
e we are dealing with non-square matri
es this is

not possible, thus, we 
an loosely say that when a matrix obeys RIP of order s, then all

subsets of s 
olumns are nearly orthogonal. Clearly, the 
loser Æ

s

is to zero, the 
loser to

orthogonal all subsets of s 
olumns of A are.

If S is a set of 
olumns of the di
tionary A, with |S| = s, the following expression of

the isometry 
onstant is an immediate 
onsequen
e of the de�nition:

Æ

min

s

= max
S⊆{1;:::;N};|S|=s

‖AT

SAS − I

s

‖; (4.6)

where I

s

is the s× s identity matrix.

It is interesting to note that the RIP is also related to the 
ondition number of the

Gram matrix. In [28, 11℄, it is pointed out that if A

r

denotes the matrix that results by


onsidering r arbitrary 
olumns of A, then the RIP in (4.5) is equivalent to requiring the

respe
tive Gram, A

T

r

A

r

, r ≤ s, to have its eigenvalues within the interval [1− Æ

s

; 1 + Æ

s

].

4.2.4 Relation between RIP and mutual 
oheren
e

The properties presented so far show that a 
entral issue in sparse representations is the

linear independen
e of ve
tors involved in the sparse representation. Mutual 
oheren
e

and RIP try to 
apture the geometry of the di
tionary A and help us to identify well-


onditioned subsets of ve
tors. The size of well-
onditioned subdi
tionaries determines the

maximum sparsity level allowed to have a sparse representation under a given di
tionary.

If S is a subset of 
olumns of the di
tionary A, with |S| = s, then the subdi
tionary

AS is well-
onditioned if ‖AT

SAS‖ ≤ 
, where 
 is a small 
onstant. The following result


onne
ts the mutual 
oheren
e with the isometry 
onstant.

Theorem 4.2.3 (Relation between RIP and mutual 
oheren
e [50℄). Let A be a di
tionary

with 
oheren
e � = �(A), and AS be an arbitrary s-
olumn submatrix of A. Then

Æ

min

s

= ‖AT

SAS − I

s

‖ ≤ (s− 1)�; (4.7)

where I

s

is the s×s identity matrix. In parti
ular, every 
olle
tion of s 
olumns is linearly

independent when (s− 1)� < 1.

We must note here that, while mutual 
oheren
e of a given matrix 
an be easily

extra
ted, evaluating the RIP property is NP-hard. However, even though working with

the mutual 
oheren
e is simpler than working with the 
omplex RIP, the analysis from the

point of view of the mutual 
oheren
e leads to pessimisti
 results regarding the maximal

sparsity; re
overing s 
omponents from a sparse signal requires s to be of order O(
√
m)

at most. From a theoreti
al perspe
tive, the RIP property provides the ability of a

probabilisti
 analysis of sparse re
overy, improving substantially the results obtained with

deterministi
 analysis.
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4.3 Promoting a sparse solution

When seeking solutions that satisfy system (4.1) the �rst obsta
le we need to surpass is the

fa
t that the system may have in�nitely many solutions. Additional 
riteria to narrow this


hoi
e are set through regularization. Thus, we de�ne the general optimization problem

min
�

J(�) subje
t to x = A�; (4.8)

where J(�) is a fun
tion that imposes sparsity 
onstraints on �.

4.3.1 The `0-minimizer

One way to promote a sparse solution is the `0 quasi-norm. Choosing J(�) ≡ ‖�‖0, we
are led to the following `0-minimization problem,

min
�∈RN

‖�‖0 subje
t to x = A�: (4.9)

The dis
rete and dis
ontinuous nature of the `0 norm poses many 
on
eptual 
hal-

lenges regarding the solution of (4.9). Problem (4.9) is NP-hard, requiring 
ombinatorial

sear
h. The main te
hniques proposed for its solution in
lude greedy algorithms. Greedy

algorithms iteratively approximate the 
oeÆ
ients and the support of the sparse signals.

They genenerate a sequen
e of lo
ally optimal 
hoi
es in hope of determining a globally

optimal solution, thus, they have the advantage of being very fast and easy to implement.

Orthogonal Mat
hing Pursuit (OMP) [47℄ and its variants (CoSaMP [98℄, StOMP [53℄,

regularized OMP [99℄) belong to this 
ategory.

OMP was introdu
ed in [47℄ as an improved su

essor of Mat
hing Pursuit (MP) [93℄.

OMP starts from �

(0) = 0 and it iteratively 
onstru
ts a k-term approximant �

(k)
by

maintaining a set of a
tive atoms. At ea
h stage, it expands that set by one additional

atom.

A result that provides performan
e guarantees for OMP is presented in [124℄.

Theorem 4.3.1 (Performan
e guarantess for OMP [124℄). Let A be an m × N matrix

and � ∈ R
N

be a solution of the `0 minimization problem (4.9) satisfying

‖�‖0 <
1

2

(
1 +

1

�(A)

)
:

Then OMP with error threshold � = 0 re
overs �.

4.3.2 Stability of `0 minimization via the RIP

Another fundamental question regarding problem (4.9) 
on
erns the stability of the solu-

tion. Considering a slight dis
repan
y between A� and x, whi
h 
an be interpreted as the

presen
e of noise, we de�ne an error tolerant version of (4.9), with error toleran
e � > 0

min
�∈RN

‖�‖0 subje
t to ‖A� − x‖ ≤ �: (4.10)
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Algorithm 7 OMP: approximately solve `0-minimization problem

Input: m×N matrix A, m-dimensional signal x, error threshold t

Output: N -dimensional signal �

k = 0

�

(0) = 0

r

(0) = x // initial residual

s

(0) = ∅ // initial solution support

�

(0) = [empty matrix] // matrix of 
hosen atoms

repeat

k = k + 1

Z = |AT

r

(k)|
p = argmax1;:::;m|Z| // �nd new support entry

s

(k) = sort([s(k−1)
; p]) // new support

�

(k) = A

s

(k) // matrix of 
hosen atoms

�

(k) = argmin

�

‖x− �

(k)
�‖22 s.t. support(�) = s

(k)
// new solution estimation

r

(k) = x−A�

(k)
// new residual

until r

(k)
< t

Stability issues require that both (4.9) and (4.10) must always give results of the same

sparsity. A stability 
ondition involving RIP is given in [58℄.

Theorem 4.3.2 (Stability of `0 minimization [58℄). Assume that �̂ is a 
andidate solution

of (4.10), with 2s0 non-vanishing 
oeÆ
ients, satisfying the inequality ‖A�̂− x‖ ≤ �. Let

us assume that the matrix A satis�es the RIP property for 2s0, with Æ2s0 < 1. If x0, x̂0

are the solutions of (4.9) and (4.10), respe
tively, then

‖x0 − x̂0‖ ≤ 4�2

1− Æ2s0

: (4.11)

4.3.3 The `1-minimizer

As problem (4.9) is intra
table, another approa
h towards its solution is smoothing the

penalty fun
tion and repla
e `0-norm with `1-norm,

min
�∈RN

‖�‖1 subje
t to x = A�: (4.12)

This way we obtain a 
onvex program with 
omputational 
omplexity polynomial in the

signal length.

Transforming a 
omputationally intra
table problem into a tra
table one does not

ne
essarily mean that the solution of (4.9) is similar to the solution of (4.12). A result

established in [51, 70℄ states that if system (4.1) has a solution that satis�es (4.4), then

this is the unique solution of both `0- or `1-minimization. A uniqueness 
ondition via the

RIP property that also guarantees exa
t sparse re
overy via `1-minimization is presented

next.
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Theorem 4.3.3 (Exa
t re
overy based on RIP [28℄). Suppose that the matrix A in problem

(4.12) satis�es RIP of order s, with RIP-
onstant Æ

s

. Let �

s

denote the trun
ated version

of � obtained if we keep its s largest 
omponents and set the rest equal to zero.

I. If Æ2s < 1 and � is an s-sparse solution of x = A�, then it is unique.

II. If Æ2s <
√
2 − 1, then the solution to the `1 minimizer of (4.12), denoted by �̂,

satis�es the following two 
onditions

‖� − �̂‖1 ≤ C0‖� − �

s

‖1; (4.13)

and

‖� − �̂‖ ≤ C0s
− 1

2‖� − �

s

‖1; (4.14)

for some 
onstant C0.

This theorem states that if the true ve
tor is a sparse one, i.e., � = �

s

, then the `1-

minimizer re
overs the (unique) exa
t value. On the other hand, if the true ve
tor is not

a sparse one, then the minimizer results in a solution whose a

ura
y is di
tated by a

pro
edure that knew in advan
e the lo
ations of the s largest 
omponents of �. Note that

this is a deterministi
 result; it is always true and not with high probability. Re
ently,

the suÆ
ient 
ondition has been improved to Æ2s < 0:4931 [97℄.

Well-known algorithms deployed to solve (4.12) in
lude Mat
hing Pursuit (MP) [93℄,

Basis Pursuit (BP) [34℄, iterative thresholding [44℄, and Dantzig sele
tor [26℄. While these

solvers require fewer measurements 
ompared to greedy algorithms, they are 
omputa-

tionally more 
omplex.

4.4 The role of the spe
tral norm

Considering the global geometry of an over
omplete di
tionary, after the mutual 
oher-

en
e, the most important geometri
 property is the spe
tral norm. Spe
tral norm is a

measure of how 
lose is a matrix to a tight frame. Re
all that an m × N frame � with

‖�‖2 = N

m

is a unit norm tight frame, meaning that the 
olumns of � have unit norm

and the rows are orthogonal. Results 
on
erning the use of tight frames in sparse repre-

sentations 
an be found in [24, 52, 124, 125, 8℄. The latest theoreti
al results that justify

the employment of in
oherent tight frames in sparse re
overy are probabilisti
, leading to

optimisti
 bounds on the maximal sparsity for sparse re
overy.

Deterministi
 analysis of sparse representations has shown that, given an over
om-

plete di
tionary, the maximal sparsity depends on the size (number of 
olumns) of well-


onditioned subdi
tionaries. Instead of 
onsidering arbitrary sets of 
olumns, the authors

of [125℄ fo
used on random subdi
tionaries and shattered the square root bottlene
k using

tools from Bana
h spa
e probability. The theoreti
al results presented in [125℄ ne
essitate

that the system matrix forms an in
oherent unit norm tight frame.
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Theorem 4.4.1 (In
oherent UNTFs and sparse re
overy [125℄). Let A be an m × N

in
oherent unit norm tight frame, and � a sparse representation of an m-dimensional

signal x under di
tionary A, that is, x = A�. If � has s ≤ 
m= logN nonzero entries

drawn at random (
 is some positive 
onstant), then it is the unique solution for `0- and

`1-minimization problems with probability at least 99:44%.

An m × N di
tionary is 
hara
terized as in
oherent if its mutual 
oheren
e does not

ex
eed 1=
√
m.

Theorem 4.4.1 states that the maximum sparsity level is allowed to approa
h the

dimension m of the original time-domain signal. If the di
tionary is not a UNTF, then

similar results are given as a fun
tion of the spe
tral norm.

Employing spe
tral norm , mutual 
oheren
e and average 
oheren
e, the authors of

[8℄ allow for similar sparsity levels providing near-optimal probabilisti
 guarantees in the

performan
e of a fast greedy algorithm 
alled one-step thresholding (OST). In [8℄ the

average 
oheren
e of a unit norm matrix A is de�ned as

�(A) =
1

N − 1
max
i

|
∑

i6=j
〈a

i

; a

j

〉| (4.15)

and is a measure of how well the frame elements are distributed in the unit hypersphere.

The main result of [8℄ follows.

Theorem 4.4.2 ([8℄). Let A be an m×N matrix, with mutual 
oheren
e � and average


oheren
e �. Suppose ‖A‖2 = N

m

, � ≤ 1
164 logN

and � ≤ �√
m

. Then, there exists a 
onstant


 su
h that sorted one-step thresholding fails with probability P{�̂ 6= �} ≤ 6
N

, provided that

N ≥ 128 and m ≥ 
s logN .

Spe
tral norm and mutual 
oheren
e are also used to provide tighter bounds on the

maximal sparsity in 
ase of 
onvex optimization methods in [24℄, under the additional

assumption that the sparse signals have independent nonzero entries with zero median.

4.5 Pre
onditioning

In linear algebra and numeri
al analysis, pre
onditioning is a pro
ess that 
onditions a

given problem into a form that is more suitable for numeri
al treatment [6℄. Given a

linear system x = A�, a pre
onditioner C

−1
of the matrix A is a matrix su
h that CA has

a smaller 
ondition number than A. Considering an underdetermined linear system with

sparse solutions, the aim of the proposed te
hnique is to transform (4.1) into a form that

satis�es performan
e guarantees for the algorithms deployed for its solution. A

ording

to theoreti
al results presented in the previous se
tion, a pre
onditioner of A should result

in a matrix CA that forms an in
oherent UNTF.

Although 
onstru
tions of in
oherent tight di
tionaries appear often in signal pro-


essing appli
ations, su
h di
tionaries have a limited ability of sparsifying signals or are
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suitable only for 
ertain signal types. Learning based di
tionaries, that have been pro-

posed as an alternative, 
ontain atoms generated from instan
es belonging to a parti
ular

signal family. Every signal in the family 
an then be represented as a linear 
ombination

of a few atoms from the di
tionary. As the design of the di
tionary is di
tated by the


hara
teristi
s of the treated signals, the obtained di
tionary may not satisfy in
oheren
e

and/or tightness. Thus, one way to employ in
oherent UNTFs in sparse representations

is pre
onditioning.

Let A be an arbitrary m×N matrix, not satisfying the ne
essary 
onditions for sparse

re
overy. Suppose there exists an m × m matrix C su
h that the produ
t CA exhibits

good in
oheren
e and spe
tral properties. Multiplying both sides of (4.1) by C, we obtain

Cx = CA� or z = CA�; (4.16)

where z = Cx. Requiring C to be invertible, implies that system (4.1) is equivalent to

(4.16). Therefore, solving the following minimization problem

�̂ = argmin
�

‖�‖0 subje
t to z = CA�; (4.17)

we obtain a solution that satis�es also (4.9).

Problem (4.17) involves the e�e
tive system matrix F = CA; thus, the eÆ
ien
y of the

numeri
al algorithms deployed to solve it depends on the properties of F . The question

that naturally arises is how 
an we 
onstru
t an invertible m×m matrix C su
h that the

e�e
tive matrix F has good in
oheren
e and spe
tral properties?

The te
hnique of pre
onditioning in sparse representations was introdu
ed in [113, 114℄.

The weakness of many over
omplete di
tionaries to satisfy in
oheren
e properties, mo-

tivated the authors of [114℄ to propose a modi�
ation of thresholding and OMP, su
h

that in the estimation of the unknown support, a matrix di�erent from the original rep-

resentation di
tionary is employed. More parti
ularly, in greedy algorithms like OMP,

the estimation of the unknown support depends on the inner produ
ts A

T

x = A

T

A�. If

A were an orthonormal basis, then A

T

A = I

N

, where I

N

is the N × N identity matrix,

and the produ
t A

T

x would re
over the unknown support. Similarly, when employing

over
omplete di
tionaries, su

essful re
overy is a
hieved if the Gram matrix has small

o�-diagonal entries. The authors of [113, 114℄ introdu
ed a new step, namely, the sensing

step, for the estimation of the support of the unknown signal, whi
h employs another

di
tionary 	 in
oherent to A. The key 
on
ept of a frame's 
oheren
e is extended to pairs

of frames a

ording to the following de�nition:

De�nition 4.5.1 (Mutual 
oheren
e of pairs of frames). Given two frames 	 = [ 1  2 : : :  N ],

and A = [a1 a2 : : : aN ], the mutual 
oheren
e between 	 and A is de�ned as the maximum

absolute normalized inner produ
t between the 
olumns of the given di
tionaries

�(	;A) = max
1≤i;j≤N

|〈 
i

; a

j

〉|: (4.18)
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The sensing step involves the produ
t 	

T

A that yields a pseudo-Gram matrix with

small o�-diagonal entries, due to in
oheren
e between 	 and A. Thus, support estimation

des
ribed by 	

T

x = 	

T

A� yields higher re
overy rates. Regarding thresholding, an

expli
it formula for 
al
ulating the optimal matrix for support estimation is given in

[113℄.

The method we proposed in [130℄ 
onsiders the re
overy of signals that are sparse

under over
omplete di
tionaries and does not depend on the deployed sparse re
overy

algorithm. Using the ideas presented in Chapter 3, the proposed pre
onditioning 
on
erns

underdetermined linear systems en
ountered in sparse representations and aims at the


onstru
tion of an e�e
tive system matrix with good in
oheren
e and spe
tral properties.

4.5.1 Constru
tion of a pre
onditioner

As the 
onstru
tion of a pre
onditioner suitable for system (4.1) aims at the 
onstru
tion

of a system matrix with small mutual 
oheren
e and small spe
tral norm , we expe
t

that both of the methods presented in Chapter 3 with slight modi�
ations 
an be used to

obtain a pre
onditioner. The proposed te
hnique for the 
onstru
tion of a pre
onditioner

involves the following basi
 steps:

1. Sele
t the initial pre
onditioner C

init

to be an m×m random Gaussian matrix. Set

F0 = C

init

A.

2. Apply an algorithm that uses F0 as input to produ
e a frame F̃ with small mutual


oheren
e and small spe
tral norm.

3. Obtain the m×m matrix C solving the minimization problem min
C

‖CA− F̃‖.

The eÆ
ien
y of the above pro
ess depends on the solution of the least squares problem

min
C

‖CA− F̃‖, whi
h must yield a pre
onditioner C su
h that CA is as 
lose as possible

to F̃ . A few iterations between step 2 and step 3 may be ne
essary to attain a good

solution. Moreover, the obtained pre
onditioner must be invertible, in order to ensure

equivalen
e between the initial and the pre
onditioned system. Thus, it is important

to sele
t an invertible initial matrix C. We are based on [110℄ and sele
t the initial

pre
onditioner to be a random Gaussian matrix, be
ause a square random matrix will

almost never be singular.

Next we dis
uss the details of every implementation and present experimental results.

4.5.2 Pre
onditioning with in
oherent UNTFs

The �rst methodology we propose to obtain a pre
onditioner involves the 
onstru
tion of

an in
oherent UNTF based on the algorithms proposed in se
tion 3.3. As both algorithms

presented there yield similar 
onstru
tions, we will use Algorithm 1 that 
onverges faster.

To 
onstru
t a pre
onditioner using Algorithm 1 we employ an iterative pro
ess, with the

q-th iteration involving the following steps:
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Figure 4.1: Dis
repan
y between the Gram or pseudo-Gram matri
es involved in support

estimation and the identity matrix of the same dimensions. The experiments involve

m×N matri
es with m = 64 : 32 : 192 and N = 256.

1. Apply Algorithm 1 on F

q

to produ
e an in
oherent UNTF F̃

q

.

2. Find the m×m matrix C

q

by solving the minimization problem min
C

‖CA− F̃

q

‖.

3. Set F

q+1 = C

q

A.

Indeed, the above pro
ess produ
es an m × m matrix C

q

that yields an e�e
tive

system matrix F

q+1 = C

q

A forming an in
oherent UNTF. As we have already mentioned,

the obtained pre
onditioner 
an be used in the solution of system (4.1), if and only if it

is an invertible matrix; thus, C

q

must be invertible. A

ording to our analysis in Chapter

3, there is strong eviden
e that the algorithm 
onverges lo
ally, meaning that F

q

is 
lose

to F0. Hopefully, the output matrix C

q

will be 
lose to the initial matrix C

init

. Having

sele
ted an invertible initial matrix, the probability that the obtained matrix is singular

is very low. Experimental results 
on�rm our intuition.

Experimental Results

To test the proposed te
hnique in 
omputing a solution of (4.1), we produ
e sparse syn-

theti
 signals � of length 256 under over
omplete random Gaussian di
tionaries A of size

128 × 256, obtaining a signal x = A� of length 128. Following the above pro
ess, we


ompute a pre
onditioner C of size 128× 128 and apply it to x to obtain z = Cx. Given

the eÆ
ient matrix F = CA and the signal z, OMP, BP and Dantzig sele
tor are used to


ompute a sparse solution satisfying z = CA�. The algorithms are also used to 
ompute

a solution given A and x.

Before displaying results 
on
erning the 
omputation of sparse signals, we would like

to estimate the appropriateness of the di
tionaries involved in signal re
overy when greedy

algorithms are used. For this reason we 
ompute the dis
repan
ies d

init

and d

prop

between

the 
orresponding Gram matrix involved in the sensing step and the identity matrix, that
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Figure 4.2: Support re
overy rates for sparse representations using OMP for signals with

varying support size. The pre
onditioner's 
onstru
tion was based on the 
onstru
tion of

in
oherent UNTFs.

is, d

init

=
∥∥
A

T

A− I

N

∥∥
F for the initial di
tionary and d

prop

=
∥∥
F

T

F − I

N

∥∥
F for the pro-

posed pre
onditioning, where F denotes the Frobenius norm. As our experiments involve

a 
omparison with [114℄, whi
h employs a matrix 	 in the sensing step, we also 
ompute

the pseudo-Gram matrix 	

T

A and the distan
e d

[114℄

=
∥∥
	

T

A− I

N

∥∥
F . Results averaged

over 500 experiments are presented in Figure 4.1, involving varying matrix dimensions.

The results are best with the proposed 
onstru
tion, indi
ating improved performan
e in

numeri
al re
overy.

The performan
e of the deployed algorithms is quanti�ed by 
omputing the per
entage

of fully re
overed support, referred to as re
overy rate. Results for signals 
omputed with

OMP are demonstrated in Fig. 4.2, in
luding the method proposed in [114℄. The results

are averaged over 500 experiments and 
on
ern signals with varying support size. Clearly,

the re
overy rates for OMP show that the proposed te
hnique improves algorithm's per-

forman
e and surpasses the results in [114℄. Similarly, re
overy rates for BP and Dantzig

sele
tor in Figures 4.3 and 4.4, respe
tively, 
on�rm that the proposed pre
onditioning

transforms the original system in a manner that is more suitable for �nding sparse solu-

tions. The method of [114℄ 
on
erns only greedy algorithms and is not appli
able here.

4.5.3 Pre
onditioning with nearly equiangular frames

The se
ond methodology we propose to obtain a pre
onditioner involves the 
onstru
tion

of a nearly equiangular, nearly tight frame based on Algorithm 6. Similarly to the previous

methodology, the initialization part involves C

init

to be anm×m random Gaussian matrix,
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Figure 4.3: Support re
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tion was based on the 
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tion of

in
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onditioner's 
onstru
tion was based on the


onstru
tion of nearly equiangular, nearly tight frames.

setting F0 = C

init

A. After obtaining a nearly equiangular, nearly tight frame, F̃ , we


ompute the pre
onditioner solving min
C

‖CA − F̃‖. The pro
ess is iterative, with the

q-th iteration involving the following:

1. Apply Algorithm 6 on F

q

to produ
e a nearly equiangular, nearly tight frame F̃

q

.

2. Obtain the m×m matrix C

q

solving the minimization problem min
C

‖CA− F̃

q

‖.

3. Set F

q+1 = C

q

A.

In 
ontrast to the methodology presented in the previous se
tion, experimental results

show that the above iterative pro
ess does not seem to 
onverge to an optimal solution.

Thus, we perform a few iterations, in every iteration we keep the obtained solution and

�nally 
hoose the pre
onditioner with the smallest mutual 
oheren
e. Regarding the in-

vertibility of the obtained pre
onditioner, we do not really have any theoreti
al eviden
e

that the produ
ed matrix is invertible, but the experimental results show that the pro-

posed methodology does not yield singular matri
es.

Experimental Results

To test the proposed pre
onditioning te
hnique, we produ
e sparse syntheti
 signals � of

length 128 under over
omplete random Gaussian di
tionaries A of size 64 × 128. Thus,

the pre
onditioner C is of size 64 × 64. Compared to the original random matrix A, the

e�e
tive di
tionary CA exhibits improved mutual 
oheren
e and spe
tral norm. Similarly
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to the experiments presented in the previous se
tion, we perform sparse signal re
overy

using OMP, BP and Dantzig sele
tor. The results are averaged over 500 experiments and


on
ern signals with varying support size. While OMP and BP do not seem to improve

their performan
e substantially, re
overy rates for the Dantzig sele
tor are better with

the proposed pre
onditioning and they are demonstrated in Figure 4.5.
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Chapter 5

Improving Sparse Re
overy in

Compressed Sensing

5.1 Compressed sensing basi
s

5.2 Proje
tion matri
es 
onstru
tions

5.3 Compressed sensing with the proposed frame 
onstru
tions

5.4 Proposed optimized proje
tions

5.5 Pre
onditioning in 
ompressed sensing

Compressed sensing or 
ompressive sampling (CS) is a novel theory [49, 25℄ that

merges 
ompression and a
quisition, exploiting sparsity to re
over signals that have been

sampled at a drasti
ally smaller rate than the 
onventional Shannon/Nyquist theorem

imposes. Based on re
ent mathemati
al results, CS has enabled signal re
onstru
tion

from mu
h fewer data samples, relying on the observation that many natural signals

are sparse or 
ompressible, i.e., they 
an be represented by a few signi�
ant 
oeÆ
ients.

Re
overing a signal from in
omplete measurements 
an be done with 
omputationally

eÆ
ient methods.

The results of CS have an important impa
t on numerour signal pro
essing appli
ations

in
luding the eÆ
ient pro
essing and analysis of high-dimensional data su
h as audio

[71℄, image [89, 100℄, video [7℄, and bioinformati
 data [131, 90℄. CS has been applied to

a

elerate the sensing pro
ess in medi
al imaging [15, 66, 72℄ and to limit the number of

sensors in Wireless Visual Sensor Networks (WVSNs) [104℄. Other appli
ation spe
i�


ar
hite
tures that have been developed in
lude radar analysis [120, 103℄ and astronomi
al

imaging [16℄. Besides signal pro
essing, to date CS theory is extensively utilized by

experts to address problems in various �elds su
h as biology [61, 116℄, medi
ine [94℄ and

seismology [79℄.
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The standard way to obtain a 
ompressed representation of a signal involves that one


omputes the 
oeÆ
ients in an appropriate basis and then keeps only the largest 
oef-

�
ients. When 
omplete information on the signal is available, this is 
ertainly a valid

strategy. However, when the signal has to be a
quired �rst with a somewhat 
ostly, diÆ-


ult, or time-
onsuming measurement pro
ess, this seems to be a waste of resour
es: First,

one spends huge e�orts to 
olle
t 
omplete information on the signal and then one throws

away most of the 
oeÆ
ients of the signal to obtain its 
ompressed version. Compressed

sensing is an emerging theory that 
ondenses the signal dire
tly into a 
ompressed repre-

sentation, allowing signal re
overy from a number of measurements that is mu
h smaller

than the signal length.

Re
overing sparse signals from in
omplete measurements leads to the `0 and `1 min-

imization problems formulated in sparse representations. In the 
ontext of CS, re
overy

guarantees 
on
ern the sensing matrix, i.e., the matrix implementing the sensing me
h-

anism, and involve the restri
ted isometry property (RIP). At present, a 
omprehensive

CS theory seems established [65℄ ex
ept for a few deep questions su
h as the improvement

of the sensing me
hanism and the eÆ
ien
y of sparse re
overy.

In early CS appli
ations, the sensing pro
ess was implemented using random matri
es.

It is known that an m×N random Gaussian or Bernoulli matrix satis�es RIP with high

probability and it 
an be used to re
over an s-sparse signal, provided that the number

of measurements m is O(s log(N=s)) [11℄. Re
ent resear
h aims either at the redu
tion

of the number of measurements or at the improvement in re
overy performan
e. While

CS theory 
on
erns non-adaptive measurements, re
ent work in
ludes optimally designed

sensing matri
es with respe
t to a given sparsifying di
tionary. Other parameters a�e
ting

the design of the sensing me
hanism involve the hardware implementation and 
onstraints

imposed by the spe
i�
 appli
ation. From this viewpoint signi�
ant work is related to

matri
es that are not 
ompletely random and often exhibit 
onsiderable stru
ture.

After reviewing basi
 results from CS theory, we dis
uss three approa
hes improving

signal re
overy in CS. The �rst in
ludes the employment of the proposed frame 
on-

stru
tions as sensing matri
es. The se
ond in
ludes the 
onstru
tion of optimized sensing

matri
es with respe
t to a given sparsifying di
tionary. A third approa
h 
onsiders binary

sensing matri
es that are more suitable for hardware implementation and improves signal

re
overy using pre
onditioning.

5.1 Compressed sensing basi
s

In signal pro
essing, the 
onventional Shannon/Nyquist theorem asserts that a signal

must be sampled at a rate at least twi
e its highest frequen
y in order to be represented

without error. Similarly, the fundamental theorem of linear algebra suggests that the

number of 
olle
ted samples (measurements) of a dis
rete �nite-dimensional signal should

be at least as large as its length in order to ensure re
onstru
tion. Re
overing sparse

signals from in
omplete measurements relies on re
ent results that 
on
ern the solution
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of underdetermined linear systems with numeri
al methods [93℄.

Consider a �nite-length real-valued signal � of length N , whi
h we view as an N × 1


olumn ve
tor in R
N

. CS yields a 
ompressed representation of the treated signal using

a sensing me
hanism that is realized by an m×N , m≪ N , matrix P , whi
h is known as

sensing or proje
tion or measurement matrix. The linear measurement pro
ess is des
ribed

by

y = P�; (5.1)

where y ∈ R
m

is the m × 1 ve
tor 
ontaining the obtained measurements. Note that

the measurement pro
ess is non-adaptive, that is, P does not depend in any way on the

signal.

Unique identi�
ation of a signal from a few measurements is feasible, if we restri
t

the 
lass of signals we aim to re
over. In CS, we assume that � is a sparse signal, that

is, ‖�‖0 = s, where ‖ · ‖0 is the `0 quasi-norm 
ounting the non-vanishing 
oeÆ
ients

of the treated signal; s is the sparsity level of � and D is referred to as the sparsifying

di
tionary. The set of indi
es 
orresponding to the non-vanishing 
oeÆ
ients is referred

to as the support of �. For signals that are not exa
tly sparse but 
ompressible, we keep

the s most signi�
ant 
oeÆ
ients.

System (5.1) is underdetermined with fewer equations than unknowns. A sparse ve
tor

satisfying (5.1) 
an be obtained as the solution of the `0-minimization problem

min
�∈RN

‖�‖0 subje
t to y = P�;

(5.2)

or, alternatively, as the solution of the `1-minimization problem

min
�∈RN

‖�‖1 subje
t to y = P�:

(5.3)

The above minimization problems 
an be solved eÆ
iently as long as P exhibits 
ertain

properties. Results from sparse representations require either that P forms an in
oherent

unit norm tight frame (Theorem 4.4.1) or that it satis�es the restri
ted isometry property

(Theorem 4.3.3). In this 
ase, well-known algorithms su
h as OMP [47℄ and BP [34℄


an 
ompute the solution of the `0- and `1-minimization problems. Random Gaussian or

random Bernoulli matri
es have been proved to exhibit good RIP properties and have

been employed in various CS appli
ations.

The theoreti
al guarantees for sparse re
overy in the 
ontext of CS are mainly ex-

pressed in terms of a suÆ
ient number of measurements. Proje
tion matri
es obeying

RIP of order s 
an re
over an s-sparse signal, provided that the number of measurements,

m < N , is of order O(s ln(N=s)), that is

m ≥ 
0s ln(N=s); (5.4)

where 
0 is some 
onstant, whi
h depends on the isometry 
onstant Æs [11℄. Note that m is

larger than the sparsity level by an amount 
ontrolled by the inequality (5.4). Apparently,

the higher the value of s, for whi
h the RIP property of a proje
tion matrix holds true,

the larger the range of sparse signals that 
an be observed.
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A re
ent result that has been formulated in [46℄ gives a dire
t expression of the 
onstant

involved in (5.4).

Theorem 5.1.1. Let P be an m × N matrix that satis�es the RIP of order 2s with


onstant Æ

s

∈
(
0; 1

2

]
. Then

m ≥ 
1s log(N=s); (5.5)

where 
1 is some 
onstant, 
1 = 1=2 log(
√
24 + 1) ≈ 28.

The restri
tion to Æ

s

∈
(
0; 1

2

]
is arbitrary and is made merely for 
onvenien
e. Minor

modi�
ations to the argument establish bounds for Æ ≤ Æ

max

for any Æ

max

< 1.

The seminal work of [25℄ where CS theory was �rst established 
on
erned sparse signal

representations under orthonormal bases. Consider a �nite-length real-valued signal x of

length N , whi
h we view as a N × 1 
olumn ve
tor in R
N

. Let � ∈ R
N

be a sparse

represenation of x under an orthonormal basis D ∈ RN×N
,

x = D�: (5.6)

Then, 
ompressed sensing is des
ribed by

y = PD�: (5.7)

Setting F = PD, system (5.7) 
an be written in the form

y = F�; (5.8)

with F ∈ Rm×N
referred to as the e�e
tive di
tionary.

Rephrasing the results formulated in sparse representations to apply to CS, we obtain

re
overy 
onditions for the e�e
tive di
tionary F = PD. However, designing an eÆ
ient

pro
ess to re
over a signal from in
omplete measurements requires theoreti
al guarantees

that 
on
ern the sensing me
hanism, i.e., the proje
tion matrix P . It has been shown

that the above theoreti
al results that hold for naturally sparse signals also hold for

signals that are sparse under orthonormal bases. Requiring P to be a random Gaussian

matrix, then the produ
t PD is also an independent identi
ally distributed Gaussian

matrix regardless of the 
hoi
e of the orthonormal sparsifying basis D. Random Gaussian

matri
es are universal in the sense that PD has the RIP with high probability, therefore,

the 
onditions for sparse re
overy for `0- and `1- minimization problems are satis�ed.

Conditions that guarantee re
overy of signals that are sparse under redundant di
tio-

naries were established in [27℄. In this 
ase, the proje
tion matrix must satisfy a modi�ed

RIP property referred to as D-RIP.

De�nition 5.1.2 (D-RIP [27℄). Let �

s

be the union of all subspa
es spanned by all

subsets of s 
olumns of D. A proje
tion matrix, P , obeys the restri
ted isometry property

adapted to D, (D-RIP), with Æ

s

, if

(1− Æ

s

)‖�‖2 ≤ ‖P�‖2 ≤ (1 + Æ

s

)‖�‖2; for all � ∈ Σ
s

: (5.9)
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The union of all subspa
es, �

s

, 
ontains all signals x that are s-sparse with respe
t

to the di
tionary D. This is the di�eren
e with the RIP de�nition given in se
tion (4.5).

All random matri
es dis
ussed earlier 
an be shown to satisfy D-RIP, with overwhelming

probability, provided that the number of measurements, m, is at least of order 
2s ln(N=s).

5.2 Proje
tion matri
es 
onstru
tions

Compressed sensing was introdu
ed utilizing random proje
tion matri
es. The entries of

an m×N random Bernoulli matrix take the value + 1√
m

or − 1√
m

with equal probability,

while the entries of a Gaussian matrix are independent and follow a normal distribution

with expe
tation 0 and varian
e 1=m. With high probability su
h random matri
es satisfy

the restri
ted isometry property with a (near) optimal order in s; therefore, they allow

sparse re
overy.

Theorem 5.2.1 (Re
overy 
ondition for Gaussian and Bernoulli random matri
es [11℄).

Let P ∈ Rm×N
be a Gaussian or Bernoulli random matrix. Let �; Æ ∈ (0; 1) and assume

m ≥ CÆ

−2(s ln(N=s) + ln("−1)) (5.10)

for a universal 
onstant C > 0. Then with probability at least 1−" the restri
ted isometry


onstant of P satis�es Æ

s

≤ Æ.

The above Theorem, a simple proof of whi
h 
an be found in [11℄, states that all s-

sparse ve
tors � 
an be re
overed from y = P�, provided that the number of measurements

satis�es m ≥ CÆ

−2(s ln(N=s) + ln("−1)). Note that setting C

′ = CÆ

−2
and 
hoosing

" = exp(−
m) with 
 = 1=(2C ′), we obtain the re
overy 
ondition m ≥ 2C ′
s ln(N=s) that

we have seen in Theorem 5.1.1.

While random matri
es satisfy RIP with high probability, the absen
e of stru
ture

in these matri
es leads to infeasible real-world appli
ations. When multiplying arbitrary

matri
es with signal ve
tors of high dimension, the la
k of any fast matrix multipli
ation

algorithm results in high 
omputational 
ost. Even storing an unstru
tured matrix may

be diÆ
ult. Thus, large s
ale problems are not pra
ti
able with Gaussian or Bernoulli

matri
es.

Another important issue when 
onsidering random matri
es is that the fully random

matrix approa
h is sometimes impra
ti
al to build in hardware. Appli
ations often do not

allow the use of \
ompletely" random matri
es, but put 
ertain physi
al 
onstraints on the

measurement pro
ess and limit the amount of randomness that 
an be used. Hardware

ar
hite
tures that have been implemented to enable random measurements in pra
ti
al

settings in
lude the random demodulator [122℄, random �ltering [123℄ the modulated

wideband 
onverter [96℄, random 
onvolution [108℄ and the 
ompressive multiplexer [117℄.

These ar
hite
tures typi
ally use a redu
ed amount of randomness and are modeled via

matri
es that have signi�
antly more stru
ture than a fully random matrix.
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The physi
s of the sensing me
hanism and the 
apabilities of sensing devi
es may

also limit the types of CS matri
es that 
an be implemented in a spe
i�
 appli
ation.

Clearly, one reason for proposing new 
onstru
tions of proje
tion matri
es is to address

pra
ti
al limitations appearing in the appli
ations. A resear
h dire
tion towards the

solution of su
h problems involves stru
tured matri
es. Important work in 
onstru
tion

of stru
tured matri
es in
ludes deterministi
 matri
es [48, 83, 4, 78, 20℄ and stru
tured

random matri
es [75, 105, 106℄.

Besides the diÆ
ulties in hardware implementation, resear
h on proje
tion matri
es

is also motivated by the improvement of re
overy 
onditions. New theoreti
al and pra
-

ti
al results 
on
ern matri
es that are more eÆ
ient than random Gaussian or Bernoulli

proje
tions. Therefore, another resear
h dire
tion investigates the 
onstru
tion of matri-


es that lead to fewer ne
essary measurements or improve the performan
e of the algo-

rithms deployed in sparse re
overy. An interesting approa
h involves optimized proje
-

tions [57, 145, 82℄.

5.2.1 Deterministi
 proje
tions

From a 
omputational and an appli
ation oriented viewpoint it is desirable to have mea-

surement matri
es with stru
ture. One 
lass of su
h matri
es in
ludes deterministi
 ma-

tri
es. Deterministi
 
onstru
tions [48, 83, 4, 78, 20℄ may provide the 
onvenien
e to

verify RIP without 
he
king up all s-
olumn submatri
es. However, the main drawba
k

of deterministi
 matri
es is that they satisfy poor re
overy 
onditions.

Known deterministi
 matri
es with optimal or near optimal mutual 
oheren
e are

equiangular tight frames [119℄ and the Gabor frames generated from the Alltop sequen
e

[78℄, whi
h are of size m×m2
. Considering a deterministi
 matrix with mutual 
oheren
e

1/

√
m, the sparsity level must be of the order of

√
m (square root bottlene
k), or, equiva-

lently, the maximum number of measurementsm that must be obtained to ensure a unique

solution is O(s2). The aforementioned 
onstru
tions restri
t the number of measurements

needed to re
over an s-sparse signal to O(s2 logN). A 
onstru
tion that managed to go

beyond the square root bottlene
k [20℄ provided only a slight improvement.

It is also possible to deterministi
ally 
onstru
t matri
es of size m×N that satisfy the

RIP of order s, but su
h 
onstru
tions also requirem to be relatively large [48, 83, 20℄. For

example, the 
onstru
tion in [48℄ requires m = O(s2 logN) while the 
onstru
tion in [83℄

requires m = O(sN�) for some 
onstant �. In many pra
ti
al settings, this result would

lead to an una

eptably large requirement on m. A more optimisti
 result 
on
erning a

spe
i�
 deterministi
 
onstru
tion 
an be found in [10℄; the authors 
onje
ture that ETFs


orresponding to Paley graphs of prime order [107℄ are RIP in a manner similar to random

matri
es.
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5.2.2 Stru
tured random proje
tions

Sin
e it is hard to prove good re
overy 
onditions for deterministi
 matri
es as outlined

above, many stru
tured 
onstru
tions allow some randomness to 
ome into play. This

leads to stru
tured random matri
es. These matri
es are of great interest for 
omputa-

tionally eÆ
ient sparse re
overy, even though they do not pre
i
ely attain re
overy 
on-

dition (5.10). The best re
overy bounds have the form O(Cs log�(N=")), � > 1, where

" ∈ (0; 1) 
orresponds to the probability of failure [105℄. The important linear s
aling of

m in s up to log-fa
tors is retained.

An important type of stru
tured random matri
es is based on randomly sampled

fun
tions [105℄. Let D ⊂ R
d

. Consider a fun
tion of the form

f(t) =
N∑

k=1

x

k

 

k

(t); t ∈ D; (5.11)

where x1; : : : ; xN ∈ C. Let t1; : : : ; tN ∈ D be some points and suppose we are given the

sample values

y

`

= f(t
`

) =

N∑

k=1

x

k

 

k

(t
`

); ` = 1; : : : ; m: (5.12)

The 
orresponding measurement matrix has entries P

`;k

= ( 
k

(t
`

)), ` = 1; : : : ; m, k =

1; : : : ; N . Assuming that the sampling points t

`

are sele
ted independently at random,

P

`;k

be
omes a stru
tured random matrix. So the stru
ture is determined by the fun
tion

system  

k

, while the randomness 
omes from the sampling lo
ations. SuÆ
ient 
on-

ditions for sparse re
overy for CS matri
es of the above form require O(Cs ln2(6N="))

measurements [105℄.

The random partial Fourier matri
es, whi
h 
onsist of randomly 
hosen rows of the

dis
rete Fourier matrix 
an be viewed as a spe
ial 
ase of this setup and was studied

already in the very �rst papers on 
ompressed sensing [25℄. For these matri
es the re
overy


ondition requires O(Cs log(N=")) measurements. A fast appli
ation of a partial Fourier

matrix 
an be 
omputed using the fast Fourier transform (FFT) algorithm.

Another type of stru
tured matri
es are partial random 
ir
ulant and Toeplitz matri
es

[75, 105, 106℄; they were �rst inspired by appli
ations in 
ommuni
ations. A 
ir
ulant

matrix U is a square matrix where the entries in ea
h diagonal are all equal, and where

the �rst entry of the se
ond and subsequent rows is equal to the last entry of the previous

row. Sin
e this matrix is square, we perform random subsampling of the rows to obtain

a CS matrix P = RU , with R being an m × N subsampling matrix, i.e., a submatrix of

the identity N × N matrix. Cir
ulant and Toeplitz matri
es 
an be applied eÆ
iently

using FFT, and they greatly redu
e the 
omputational and storage 
omplexity in large-

dimensional problems. The re
overy gurantees for these matri
es require m to be of order

O(s1:5 log1:5N) [54℄.
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5.2.3 Optimized proje
tions

Given a sparse signal � under a di
tionary D, the main 
riterion when designing a pro-

je
tion matrix P is to enable unique identi�
ation of � from its measurements y = PD�.

While the aforementioned matrix 
onstru
tions 
on
ern non-adaptive proje
tion matri-


es, designing a proje
tion matrix with respe
t to a given sparsifying di
tionary leads to

optimized proje
tions.

A major obsta
le in the 
onstru
tion of proje
tion matri
es is that verifying RIP is


ombinatorially 
omplex; we must examine

(
N

s

)
possible 
ombinations of s nonzero entries

in the N -length ve
tor �. Thus, existing optimization te
hniques 
on
ern in
oheren
e.

In
oheren
e is often not satis�ed by arbitrary represenation di
tionaries. As the 
hoi
e

of the sparsifying di
tionary is di
tated by the nature of the signals we want to measure,

one way to improve the stru
ture of the e�e
tive di
tionary F = PD is the optimization

of the proje
tion matrix P . Proje
tions' optimization was �rst proposed by Elad [57℄ and

involved the improvement of the mutual 
oheren
e.

Optimized proje
tions proposed in [57℄ are based on a \shrinkage" pro
ess on the Gram

matrix. Suppose we want to obtain CS measurements of a signal that is sparse under a

di
tionary D. Using a random Gaussian proje
tion matrix P , the sensing me
hanism

involves the e�e
tive di
tionary F = PD. Let G = F

T

F be the 
orresponding Gram

matrix. To improve the mutual 
oheren
e, the optimization pro
ess \shrinks" the values

of the o�-diagonal elements of the Gram matrix in order to redu
e the 
orrelation between

the 
olumns of F . Entries in G with magnitude above a threshold t are \shrunk" by a

fa
tor 
. Entries with magnitude below t but above 
t are \shrunk" by a smaller amount.

Let g

ij

be the (i; j) entry of the initial Gram matrix. The new Gram matrix elements,

ĝ

ij

, are obtained a

ording to

ĝ

ij

=






g

ij

; |g
ij

| ≥ t;


t · sgn(g
ij

); t > |g
ij

| ≥ 
t;

g

ij

; 
t > |g
ij

| :
(5.13)

The \shrinkage" pro
ess is applied iteratively. The new Gram matrix yields an e�e
-

tive di
tionary F̂ with improved mutual 
oheren
e. The optimized proje
tion matrix is

obtained solving the least squares problem min
P

‖PD − F̂‖.
Elad's te
hnique provoked several algorithms for proje
tions' optimization ea
h of

them employed a di�erent \shrinkage" pro
ess on the o�-diagonal entries of the Gram

matrix [145, 82℄. In [145℄ the authors modify the Gram matrix a

ording to

1. ĝ

ij

=





1; i = j;

g

ij

; |g
ij

| < �

G

;

sgn(g
ij

) · �
G

; otherwise;

2. G

p+1 = �G

p

+ (1− �)G
p−1; 0 < � < 1;
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where �

G

is the lowest possible a
hievable 
orrelation (eq. (2.25)) and G

p

is the Gram

matrix in the p-th iteration. Similarly, in [82℄ the proposed \shrinkage" operation is given

by the following formula,

ĝ

ij

= sgn(g
ij

)(|g
ij

| − 0:5 · g2
ij

):

A similar approa
h is presented in [55℄. Here, the authors' goal is to produ
e a Gram

matrix that is as 
lose as possible to the identity matrix, introdu
ing the minimization

problem

min
F

∥∥
F

T

F − I

∥∥
F ; (5.14)

where ‖·‖F denotes the Frobenius norm and I the N ×N identity matrix. Their solution,

based on SVD, 
an work for either the single optimization of the proje
tion matrix given

the di
tionary or the joint design and optimization of the di
tionary and the proje
tion

matrix, from a set of training images. In the latter 
ase the authors 
ombine their method

with K-SVD [2℄. If the di
tionary learning pro
ess is omitted, the proje
tion matrix

optimization is very fast, in 
onstrast to most existing methods that lead to iterative

algorithms. Problem (5.14) is also treated in [1℄, where a solution based on gradient

des
ent is proposed.

5.3 Compressed sensing with the proposed frame 
onstru
tions

In 
ompressed sensing, we may 
onsider either naturally sparse signals or signals that are

sparse with respe
t to a representation di
tionary D. For naturally sparse signals, we

employ a proje
tion matrix with the desired properties and take measurements a

ording

to y = P�. If the treated signals are sparse under a representation di
tionary D, then

the sensing pro
ess is des
ribed by y = PD�. In this 
ase, we may 
onsider the produ
t

F = PD and optimize F over P su
h that the proje
tion matrix yields an e�e
tive di
-

tionary satisfying the desired properties. In this se
tion we dire
tly employ the proposed

frame 
onstru
tions as proje
tion matri
es. The latter 
onsideration involving optimized

proje
tions is presented in the next se
tion.

Considering the high in
oheren
e level and the small spe
tral norm of the frame 
on-

stru
tions proposed in Chapter 3, it is of interest to investigate their performan
e in re-


overing sparse signals obtained with 
ompressed sensing and 
ompare them with random

Gaussian matri
es. Therefore, the experiments presented here involve proje
tion matri
es

of the form of random Gaussian matri
es, in
oherent UNTFs, nearly equiangular frames

and nearly equiangular, nearly tight frames. For the 
onstru
tion of an in
oherent UNTF

we employ Algorithm 1, while for the 
onstru
tion of nearly equiangular frames we employ

Algorithm 5 and Algorithm 6.

Our simulations involve syntheti
 sparse signals � of length N = 120, with s = 4

nonzero 
oeÆ
ients. Considering a proje
tion matrix P of sizem×N , withm = 15 : 5 : 35

and N = 120, we obtain measurements a

ording to y = P�. The obtained measurements
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Table 5.1: Re
overy rates for sparse signals of length N = 120 obtained with CS, for

variable number of measurements, m = 15 : 5 : 35, and various types of proje
tion

matri
es.

m

MSE

Gaussian Alg. 1 Alg. 5 Alg. 6

15 0:01000 0:00821 0:00837 0:00825

20 0:00506 0:00287 0:00300 0:00287

25 0:00180 0:00056 0:00059 0:00059

30 0:00038 5:650 · 10−5 5:609 · 10−5 6:887 · 10−5

35 9:115 · 10−5 3:300 · 10−6 2:768 · 10−6 5:071 · 10−6

Table 5.2: Properties of sensing matri
es employed in CS experiments. Results involve

m×N matri
es with m ∈ {20; 30}, N = 120.

Mutual 
oh. Average 
oh. Spe
tral norm

❍
❍
❍
❍
❍
❍
❍

Type

m

20 30 20 30 20 30

Gaussian 0:751 0:647 0:050 0:033 3:290 2:876

Alg. 1 0:354 0:237 0:042 0:025 2:449 2:000

Alg. 5 0:463 0:332 0:042 0:025 2:512 2:075

Alg. 6 0:445 0:319 0:042 0:025 2:459 2:015

are used to �nd the \unknown" sparse signal, using OMP. For every value of m, we per-

form 10000 experiments. The quality of the re
overed signal is measured 
omputing the

Mean Squared Error (MSE). The results demonstrated in Table 5.1 in
lude average val-

ues. A

ording to Table 5.1, all proposed frames outperform random Gaussian matri
es,

improving re
onstru
tion a

ura
y substantially. In agreement with the established the-

ory, the results depend on the number of a
quired measurements, with all types of the

proposed frames attaining similar quality of re
onstru
tion for given m.

In order to asso
iate the obtained results for sparse re
overy with the properties of

the employed proje
tion matri
es, we also present results 
on
erning mutual 
oheren
e,

average 
oheren
e and spe
tral norm. Table 5.2 in
ludes average values over 10000 real-

izations for proje
tion matri
es with dimensions 20×120 and 30×120. A

ording to these

results, the superiority of the proposed frames against random Gaussian matri
es is plau-

sible, 
onsidering mainly the attained in
oheren
e level. Compared to random Gaussian

matri
es, nearly equiangular frames produ
ed with Algorithm 5 and Algorithm 6 exhibit

redu
ed mutual 
oheren
e by a fa
tor 40 − 50%, while the improvement for in
oherent

UNTFs produ
ed with Algorithm 1 is higher than 50%.

The next important observations 
on
ern a 
omparison between the proposed frame
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onstru
tions. In
oherent UNTFs obtained with Algorithm 1 attain optimal values of

spe
tral norm and the smallest values of mutual 
oheren
e, espe
ially when the frames

are of high redundan
y. A

ording to theoreti
al results presented in previous se
tions

(see Theorem 4.4.1), one 
ould expe
t that these frames would yield the highest re
on-

stru
tion a

ura
y. However, this is not 
on�rmed by the demonstrated results, whi
h

show that the attained re
onstru
tion a

ura
y is not analogous to the improvement of

the aforementioned properies of the employed proje
tion matri
es. These results are not

that surprising, if we take into a

ount that many authors have argued that mutual 
oher-

en
e may not express well the e�e
tiveness of a matrix in sparse signal re
overy [57, 8, 9℄.

Clearly, other properties of the proje
tion matrix su
h as average 
oheren
e seem to in-


uen
e the e�e
tiveness of the employed matrix as well. Re
all that the notion of average


oheren
e was introdu
ed in [8, 9℄, where the authors studied its relation to mutual 
oher-

en
e and provided probabilisti
 guarantees for sparse re
overy. While in
oherent UNTFs

exhibit the smallest mutual 
oheren
e and spe
tral norm values, the values of average 
o-

heren
e are identi
al for all matrix 
onstru
tions ex
ept from random Gaussian matri
es.

We 
on
lude that the results obtained in Tables 5.1 and 5.2 indi
ate that the e�e
tiveness

of a matrix involved in sparse re
overy seems to depend on all a�ormentioned properties,

with average 
oheren
e playing a rather important role.

Con
luding, we would like to make a 
omment 
on
erning the 
omputational 
ost of

Algorithm 5 and Algorithm 6. While Algorithm 6 produ
es frames with better spe
tral

norm, the a
hieved improvement slightly a�e
ts the re
onstru
tion performan
e of OMP.

Taking into a

ount the additional 
omputational 
ost introdu
ed by Algorithm 6 and

the fa
t that the matri
es employed in CS are pra
ti
ally of large dimensions, we suggest

Algorithm 5 as the best 
hoi
e for the 
onstru
tion of sensing matri
es, 
onsidering both

e�e
tiveness and 
omputational 
ost. Comparison between Algorithm 5 and Algorithm

1 leads to a similar 
on
lusion, strengthening our preferen
e to Algorithm 5, espe
ially

when the appli
ation ne
essitates limitation of resour
es.

5.4 Proposed optimized proje
tions

Another way to employ the proposed frame 
onstru
tions in 
ompressed sensing is the

method of optimized proje
tions. The method proposed here is based on the alternat-

ing and averaged proje
tions algorithms presented in Chapter 3 that produ
e in
oherent

UNTFs. As we will explain in the sequel, nearly equiangular frames 
an be employed to

obtain optimized proje
tions in a similar way, with the restri
tion that the treated signals

are sparse under an orthonormal basis.

Despite the existen
e of theoreti
al results that highlight the important role of spe
-

tral norm, none of the existing methods for the optimization of the proje
tion matrix

aims at the 
onstru
tion of e�e
tive di
tionaries that form tight frames. Tightness was

�rstly introdu
ed in the optimization of the proje
tion matrix in our preliminary work

[128℄. Nevertheless, our initial 
on
ern when we proposed the algorithm in [128℄ involved
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minimizing the mutual 
oheren
e rather than attaining tightness. Based on the observa-

tion that the best in
oheren
e levels are obtained by ETFs, whi
h, besides small mutual


oheren
e, also exhibit minimal spe
tral norm, the algorithm proposed [128℄ is our �rst

attempt to produ
e frames 
lose to ETFs.

In optimized proje
tions, we 
onsider the produ
t of the proje
tion matrix and the

representation di
tionary, that is, F = PD, and optimize F over P . The method de-

veloped in [128℄ involves the following operations on the e�e
tive di
tionary: First, we

apply the \shrinkage" pro
ess proposed in [57℄ (see eq. (5.13)) and obtain an e�e
tive

di
tionary with better mutual 
oheren
e. Then, we improve the spe
tral norm of the ob-

tained di
tionary �nding the nearest (N=m)-tight frame a

ording to Theorem 3.3.1. A

third step involves 
omputing the optimized proje
tion matrix solving the minimization

problem min
P

‖PD − F‖. Aiming at the improvement of this algorithm, we were led to

the 
onstru
tion of in
oherent UNTFs proposed in [129℄.

The appropriateness of the proje
tion matri
es proposed in [128℄ is 
on�rmed by the

results established in Theorem 4.4.1 [125℄. Rephrasing Theorem 4.4.1 to apply to CS, we


onsider CS measurements of a sparse signal � ∈ RN

under a di
tionary D ∈ RK×N
, K ≤

N , a

ording to y = PD�, where P ∈ Rm×K
, m≪ K, is the proje
tion matrix. Theorem

4.4.1 states that � 
an be re
overed with high probability from O(s logN) measurements

as long as the e�e
tive di
tionary F = PD forms an in
oherent UNTF. Consequenlty, an

optimization of F over P involves the 
omputation of a proje
tion matrix P su
h that F

is as 
lose to an in
oherent UNTF as possible.

Considering the existing optimization te
hniques for proje
tion matri
es and the re-

sults established in Theorem 4.4.1, the main steps of an algorithm that leads to optimized

proje
tions may be the following:

1. Initialize proje
tions with a random Gaussian matrix P

init

and 
ompute the initial

e�e
tive di
tionary F = P

init

D.

2. Apply an algorithm that modi�es F to obtain a frame F̃ exhibiting small mutual


oheren
e and spe
tral norm.

3. Obtain P

opt

solving min
P

‖PD − F̃‖.

Step 2 
an be realized using one of the algorithms presented in Chapter 3. However,

the third step of the above pro
ess involves the solution of a least squares problem. The

obtained solution depends on the sparse representation di
tionary D and the 
omputed

frame F̃ . When the sparse representation di
tionary is redundant, that is, K < N , mini-

mization of ‖PD− F̃‖ yields an approximate solution P
opt

. Experiments have shown that

if the obtained frame F̃ is an in
oherent UNTF 
onstru
ted with Algorithm 1 or Algorithm

2, then the optimized P

opt

yields an e�e
tive di
tionary F

opt

= P

opt

D that is 
lose to F̃ ;

indeed, F

opt

forms an in
oherent UNTF. On the other hand, if the obtained frame F̃ is a

nearly equiangular frame, then the optimized P

opt

yields an e�e
tive di
tionary that is far

from F̃ . In this 
ase, F

opt

does not exhibit the properties of a nearly equiangular frame.
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A nearly equiangular frame 
ould be used to produ
e optimized proje
tions for signals

that are sparse under orthonormal bases, that is, when K = N . Then, minimization of

‖PD − F̃‖ results in a proje
tion matrix P

opt

satisfying P

opt

D = F̃ . In order to present

a general solution 
on
erning sparse signals under redundant representation di
tionaries

and orthonormal bases as well, the optimization method that follows employs algorithms

yielding in
oherent UNTFs.

5.4.1 Optimized proje
tions using in
oherent UNTFs

In Chapter 3 we presented two algorithms for 
onstru
ting in
oherent UNTFs. Both

algorithms yield similar 
onstru
tions; therefore, we have de
ided to employ only one of

them in the experiments presented here. We 
hoose the proposed alternating proje
tions

(Alg. 1), as it exhibits higher 
onvergen
e speed. Algorithm 1 is slightly modi�ed to

in
orporate the optimization step produ
ing the optimized proje
tion matrix. The method

yields e�e
tive di
tionaries with small mutual 
oheren
e and small spe
tral norm.

In our experiments, the proposed optimized proje
tions are 
ompared to our prelim-

inary work [128℄ and existing 
onstru
tions presented in [145℄ and [82℄. Although our

experiments in
luded the methods of [57℄, [55℄ and [1℄ as well, we only report results with

the methods of [145℄ and [82℄ sin
e they seem to perform better.

The properties of the e�e
tive di
tionary

Before pro
eeding to re
onstru
tion performan
e of algorithms employed in CS, let us

present some results that demonstrate the properties of the obtained in
oherent di
tionary


onstru
tions. The re
onstru
tion experiments that follow involve varying number of

measurements, thus, we present here results for m× N di
tionaries with m = 15 : 5 : 35

andN = 120. For every value ofm, we 
arry out 10000 experiments, in whi
h we 
onstru
t

in
oherent matri
es with all the methods involved in our CS simulations; All algorithms

are exe
uted performing 50 iterations. The properties we are interested in in
lude mutual


oheren
e and spe
tral norm.

Average results for the mutual 
oheren
e are presented in Fig. 5.1(a). We 
an see

that the proposed method leads to a signi�
ant redu
tion of the mutual 
oheren
e of

the initial matrix by a fa
tor depending on redundan
y (� = N=m). A
hieved mutual


oheren
e be
omes 
loser to the lowest possible bound when redundan
y de
reases (the

brown dash-dotted line, in Fig. 5.1(a) stands for the lowest possible bound (see eq. (2.25)).

This is a very signi�
ant improvement 
ompared to the results of our work in [128℄ and

the other methods presented here. The fa
t that the proposed method performs well even

for very redundant frames is an important advantage over the other 
ompeting methods.

In Fig. 5.1(b) we demonstrate the spe
tral norm of the frames under testing, answering

the question \how 
lose are the obtained 
onstru
tions to UNTFs?". The measurements


orresponding to the proposed in
oherent UNTFs and our preliminary 
onstru
tion [128℄


oin
ide with the lowest bound N=m, 
on�rming that the proposed methodology leads to
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Figure 5.1: Properties of the e�e
tive di
tionaries involved in CS re
onstru
tion experi-

ments. In (a) we present mutual 
oheren
e as a fun
tion of the number of measurements.

The bottom brown dash-dotted line represents the lowest possible bound (see eq. (2.25)).

In (b) we present spe
tral norm as a fun
tion of the number of measurements. The red

dotted line 
orresponding to our methodology 
oin
ide with the lowest possible bound.
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Figure 5.2: Changes in the distribution of the 
olumn 
orrelation of a 25× 120 frame.

UNTFs.

Another way to evaluate the obtained in
oherent di
tionaries is to 
onsider the dis-

tribution of the inner produ
ts between distin
t 
olumns. Figure 5.2 illustrates a repre-

sentative example of a 25 × 120 matrix. The histogram depi
ts the distribution of the

absolute values of the 
orresponding Gram matrix entries. The results 
on
ern the initial

matrix and all matri
es produ
ed by the employed iterative algorithms, after 50 iterations.

The yellow bar rises at the 
riti
al interval that in
ludes the minimal a
hievable 
orre-

lation, 
orresponding to the distribution of an optimal Grassmannian frame (the bar's

a
tual height is 
onstrained for 
lear demonstration of the methods under testing). The

proposed method exhibits a signi�
ant 
on
entration near the 
riti
al interval, 
ombined

with a short tail after it, showing that the number of the Gram entries that are 
loser to

the ideal Wel
h bound is larger than in any other method presented here. Su
h a result

is in agreement with the small mutual 
oheren
e values depi
ted in Fig. 5.1(a).

CS performan
e

Let us now 
ontinue with CS simulations. For ea
h experiment, we generate an s-sparse

ve
tor � ∈ RN

of length N , whi
h 
onstitutes a sparse representation of the K-length

syntheti
 signal x = D�, x ∈ RK

, K ≤ N . We 
hoose the di
tionary D ∈ RK×N
to be a

random Gaussian matrix. Experiments with DCT di
tionaries lead to similar results. The

lo
ations of the nonzero 
oeÆ
ients in the sparse ve
tor are 
hosen at random. Besides
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Figure 5.3: CS performan
e for random and optimized proje
tion matri
es by means of

relative MSE in a logarithmi
 s
ale. Numeri
al re
overy deploys OMP. In (a) we keep the

sparsity level �xed and vary the number of measurements. In (b) we keep the number of

measurements �xed and vary the sparsity level. A vanishing graph implies a zero error

rate.
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Figure 5.4: CS performan
e for random and optimized proje
tion matri
es by means of

relative MSE in a logarithmi
 s
ale. Numeri
al re
overy deploys BP. In (a) we keep the

sparsity level �xed and vary the number of measurements. In (b) we keep the number of

measurements �xed and vary the sparsity level. A vanishing graph implies a zero error

rate.
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the e�e
tiveness of the proje
tion matrix P , the re
onstru
tion results also depend on

the number of measurements m and the sparsity level of the representation s. Thus,

our experiments in
lude varying values of these two parameters. For a spe
i�ed number

of measurements m ≪ K, we 
reate a random proje
tion matrix P ∈ Rm×K
. After the

optimization pro
ess, we obtainm proje
tions of the original signal a

ording to y = PD�.

We re
onstru
t the original sparse signal with OMP and BP.

In all experiments presented here, the syntheti
 signals are of length K = 80 and the

respe
tive sparse representations, under the di
tionary D, of length N = 120. The exe
u-

tion of the optimization algorithm in
luded up to 50 iterations. Two sets of experiments

have been 
onsidered; the �rst one in
ludes varying values of the number of measure-

ments m and the se
ond one in
ludes varying values of the sparsity level s of the treated

signals. For every value of the aforementioned parameters we perform 10000 experiments

and 
al
ulate the relative error rate; if the mean squared error of a re
onstru
tion ex
eeds

a threshold of order O(10−4), the re
onstru
tion is 
onsidered to be a failure.

Figure 5.3 demonstrates results for OMP. Figure 5.3 (a) presents the relative errors as a

fun
tion of the number of measurements m, for a �xed sparsity level (s = 4) of the treated

signal. Figure 5.3 (b) presents the relative errors for a �xed number of measurements

(m = 25) and varying values of the sparsity level of the signal. It is 
lear that the

proje
tions matrix obtained with the proposed algorithm leads to better re
onstru
tion

results 
ompared to random matri
es and to matri
es produ
ed by the other methods.

The observed results are due to the improvement in the e�e
tive di
tionary properties.

Similar results for BP are demonstrated in Figure 5.4.

An important observation regarding CS performan
e, we have also made in the pre-

vious se
tion, is that although we a
hieved a high quality of re
onstru
tion, the fa
t that

for some values of measurements (e.g., 15) this improvement is not of the same order as

the improvement in the mutual 
oheren
e, indi
ates that additional properties should be

taken into 
onsideration to de
ide about the appropriateness of the e�e
tive di
tionary.

This has been pointed out by other authors [57, 55℄ as well and should be explored both

theoreti
ally and experimentally.

5.5 Pre
onditioning in 
ompressed sensing

Often 
hoosing the proje
tion matrix in a CS appli
ation is di
tated by spe
i�
 
onstraints

depending on the appli
ation. A major obsta
le in most appli
ations is the design of

a
quisition hardware. Binary random matri
es are 
onsidered the best option for pra
ti
al

implementation [92, 91℄. However, the re
overy rates they yield are similar to the ones

a
hieved with random Gaussian matri
es at best [11, 91℄ while 
ertain types of binary

proje
tions work well only when 
ombined with spe
i�
 representation di
tionaries [54℄.

Motivated by the improved performan
e of sparse re
overy algorithms in sparse repre-

sentations when pre
onditioning is applied, for the �rst time to the best of our knowledge,

we propose the use of pre
onditioning in 
ompressed sensing [130℄. When sparse signals
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are a
quired with binary proje
tions, pre
onditioning 
an improve the in
oheren
e of the

e�e
tive di
tionary leading to higher a

ura
y in sparse re
overy.

The goal of pre
onditioning is to transform the linear system des
ribing the measure-

ment pro
ess, y = PD�, P ∈ Rm×K
, D ∈ RK×N

, into a form that is more suitable for

numeri
al treatment. Employing a pre
onditioner C ∈ Rm×m
we obtain the system

Cy = CPD� or z = F�; (5.15)

where F = CPD is the new system matrix. Computing an appropriate pre
onditioner

C is equivalent to 
onstru
ting a matrix F exhibiting small mutual 
oheren
e and small

spe
tral norm. Moreover, the pre
onditioner C must be an invertible matrix su
h that

Cy = CPD� and y = PD� are equivalent.

The method developed here is similar to the one proposed in sparse representations.

Initializing the pre
onditioner C with a random Gaussian matrix, the e�e
tive di
tionary

is modi�ed su
h as the new system matrix F = CPD forms an in
oherent UNTF.

1. Initialize pre
onditioner with a random Gaussian matrix C = C

init

.

2. Compute the new system matrix F = CPD.

3. Modify F su
h that it forms an in
oherent UNTF F̃ .

4. Compute a suitable pre
onditioner C solving min
C

‖CPD − F̃‖.

To produ
e an in
oherent UNTF, we employ Algorithm 1 proposed in Chapter 3.

Algorithm 1 is modi�ed to in
orporate the last step des
ribed in the above pro
ess su
h

as a pre
onditioner C is 
omputed in every iteration. We 
annot guarantee that the above

algorithm yields an invertible matrix C. However, a

ording to our analysis in [129℄, there

is strong eviden
e that the algorithm 
onverges lo
ally, meaning that the output matrix

C is 
lose to the initial matrix C

init

. Having sele
ted an invertible initial matrix, the

probability that the obtained matrix is singular is very small.

Experimental results

In our experiments we 
onsider a pra
ti
al problem, assuming that the sensing me
hanism

is implemented by a binary random matrix obtained from a Bernoulli (0; 1) distribution.

The �rst group of experiments involves sparse representation di
tionaries D realized by

random Gaussian matri
es of size 128 × 256, while the se
ond group of experiments

involves over
omplete Haar-DCT di
tionaries of size 128 × 255. Assuming sparse signal

under the 
on
erned represenation di
tionary, we 
onstru
t syntheti
 signals � of length

N = 256 or N = 255 depending on the employed di
tionary, with varying sparsity

level. Signal a
quisition is performed a

ording to y = PD�, where P is a 64 × 128

random proje
tion matrix with entries 0; 1. Re
overy of the \unknown" � is performed

using OMP and BP. pre
onditioning is initialized by a 64× 64 random Gaussian matrix

and is obtained following the steps des
ribed above. The performan
e of the deployed
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Figure 5.5: Support re
overy rates for OMP and BP, for signals with varying support

size a
quired with Bernoulli random proje
tions. The signals 
onsidered in (a) are sparse

under a random Gaussian di
tionary. The signals 
onsidered in (b) are sparse under a

Haar-DCT di
tionary.
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Table 5.3: Re
overy rates for CS with Bernoulli and optimized proje
tions. When

Bernoulli proje
tions are used, re
overy involves pre
onditioning.

Support Size

OMP BP

Bernoulli-Pre
. Optimized Bernoulli-Pre
. Optimized

4 1.000 1.000 1.000 1.000

8 0.996 1.000 0.998 1.000

12 0.860 0.870 0.924 0.928

16 0.250 0.248 0.398 0.380

20 0.004 0.006 0.042 0.054

algorithms is quanti�ed by 
omputing the per
entage of fully re
overed support, referred

to as re
overy rate.

For the �rst group of experiments 
on
erning sparse syntheti
 signals under random

Gaussian di
tionaries, re
overy rates for OMP and BP are presented in Fig. 5.5(a). Av-

eraged over 500 realizations, the results show that pre
onditioning yields signi�
ant im-

provement in the performan
e of OMP, and parti
ularly of BP, implying that the proposed

te
hnique 
an be applied su

essfully in CS. For the se
ond group of experiments 
on
ern-

ing sparse syntheti
 signals under Haar-DCT di
tionaries, the re
overy rates obtained for

OMP and BP are presented in Fig. 5.5(b), 
on�rming that pre
onditioning 
an substan-

tially improve the performan
e of the deployed algorithms.

For further evaluation of the proposed te
hnique, we 
ompare the above results with

optimized proje
tions. We 
onsider the �rst group of experiments, 
on
erning sparse

signals under 128 × 256 random Gaussian di
tionaries, and a
quire these signals with

optimized proje
tion matri
es obtained with the method des
ribed in the previous se
-

tion. Table 5.3 demonstrates re
overy rates for OMP and BP. The results are similar

for both methods, showing that the performan
e of the deployed algorithms when used

with Bernoulli proje
tions and pre
onditioning is 
omparable to optimized proje
tions.

Considering that Bernoulli matri
es are more 
onvenient for hardware implementation,

this is an important result for pra
ti
al 
ompressed signal a
quisition.

87





Chapter 6

Spreading sequen
es for s-CDMA

6.1 S-CDMA model

6.2 Design of spreading sequen
es

6.3 Optimal spreading sequen
es for varying number of users

6.4 Codebooks from nearly equiangular, nearly tight frames

Code Division Multiple A

ess (CDMA) is an important multiple a

ess te
hnique in

wireless networks and other 
ommon 
hannel 
ommuni
ation systems where a number

of users transmit their data using the same physi
al 
hannel. To distinguish ea
h user

from the other, every user is assigned a 
ode, also known as spreading sequen
e, whi
h he

uses to spread its information on the 
ommon 
hannel through modulation. In symbol-

syn
hronous CDMA (s-CDMA) systems, all users are in exa
t syn
hronism relative to

the re
eiver, that is, their data symbols are alligned in time. The re
eiver demodulates

the transmitted message upon observing the sum of the transmitted signals embedded in

noise.

Our main 
on
ern in su
h systems is to a
hieve reliable and fair 
ommuni
ation using

maximum sum rate. The set of information rates at whi
h the users 
an transmit while

retaining reliable transmission is known as 
apa
ity region. The information theoreti



apa
ity region of Gaussian multiple a

ess 
hannels was addressed in [135℄ where it was


hara
terized as a fun
tion of spreading sequen
es and average input power 
onstraints

of the users. It was suggested in [135℄ that the 
hoi
e of the spreading sequen
e set or the


odebook is left open to the designer of the CDMA system; the spreading sequen
es 
ould

be optimized given the 
onstraints of the problem.

Optimal spreading sequen
es maximize the sum 
apa
ity, whi
h is de�ned as the max-

imum sum of a
hievable rates of all users per unit pro
essing gain and the maximum

is taken over all 
hoi
es of spreading sequen
es. A

ording to results from [111℄, [136℄,

optimal 
odebooks are fundamentally a fun
tion of the number of a
tive users and the
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number of 
hips. In [111℄ the authors proved that the spreading sequen
es that maximize

the sum 
apa
ity are the ones that minimize the interuser interferen
e. These 
odebooks

form equal norm tight frames, whi
h are also referred to as Wel
h Bound Equality (WBE)

sequen
es [95℄.

While WBE sequen
e sets are of 
onsiderable interest in CDMA 
ommuni
ation sys-

tems, we must note that the properties of a WBE sequen
e set do not always apply to

subsets, meaning that a 
odebook designed for a spe
i�
 number of users is no longer

optimal, if some users are silent [112, 132℄. Therefore, it is of interest to �nd sequen
e

sets that perform well even when subsets of the available 
odes are a
tive. This problem

was addressed in [77, 76℄, where the authors 
onstru
ted 
odebooks from equiangular

tight frames (ETFs) and proved that su
h 
odebooks are less sensitive to 
hanges in the

number of a
tive users. However, the 
odebooks proposed in [76℄, based on 
onferen
e

matri
es (see se
tion 2.4), are restri
ted to 
ertain dimensions.

In this Chapter, �rst, we brie
y review well-known results regarding the design of

spreading sequen
es and 
hara
terize optimal spreading sequen
es for s-CDMA systems.

Then, we employ as spreading sequen
es the proposed nearly equiangular, nearly tight

frames and study their performan
e.

6.1 S-CDMA model

Consider a dis
rete time symbol syn
hronous CDMA system with K independent users

and pro
essing gain L. The K users want to transmit their information symbols B

(k)
,

k = 1; : : : ; K. Ea
h user is assigned an individual real spreading sequen
e s

(k)
of length

L, that is, s

(k) = [s
(k)
1 ; s

(k)
2 ; : : : ; s

(k)
L

], where L is known as the spreading fa
tor of the

spread-spe
trum system. Ea
h spreading sequen
e s

(k)
is assumed to have energy L, i.e.,

〈s(k); s(k)〉 = L: (6.1)

The users en
ode their information into real ±1 valued symbols B

(k)
, whi
h are as-

sumed to be independent Gaussian random variables, with E

[
|B(k)|2

]
= 1. In the i-th

symbol interval, the users spread their real-valued en
oded symbols B

(k)
i

, k = 1; : : : ; K,

by the spreading sequen
es s

(k)
and then transmit the L-dimensional symbols

B

(k)
i

s

(k) =
[
B

(k)
i

s

(k)
1 ; B

(k)
i

s

(k)
2 ; : : : ; B

(k)
i

s

(k)
L

]
:

In this manner, the k-th user 
reates the sequen
e

: : : ; B

(k)
−1s

(k)
; B

(k)
0 s

(k)
; B

(k)
1 s

(k)
; : : :

Transmitting over a Gaussian multiple a

ess 
hannel and assuming perfe
t syn
hro-

nization, the re
eiver during the i-th symbol period observes the i-th data symbol

r

i

= w

K∑

k=1

B

(k)
i

s

(k) + n

i

; (6.2)
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where w is the re
eived power, assumed the same for all users, n

i

is a zero mean Gaussian

random ve
tor with 
orrelation matrix E[NNT ] = n

2
I

L

, and I

L

denotes the L×L identity

matrix.

6.2 Design of spreading sequen
es

Optimal spreading sequen
es maximize the sum 
apa
ity and lead to minimum interuser

interferen
e experien
ed by ea
h user. In [95℄ Massey and Mittelholzer �rst identi�ed

that spreading sequen
e sets that minimize interuser interferen
e exhibit minimum total

squared 
orrelation. The sequen
e sets having this property were identi�ed as WBE se-

quen
es [95℄. Considering the problem of maximizing the 
apa
ity of s-CDMA systems, it

was shown in [111℄ that sum 
apa
ity is maximized pre
isely by the same WBE sequen
es.

6.2.1 Interuser Interferen
e

The observed sequen
e r

i

= [r
i1; ri2; : : : ; riL] at the re
eiver is 
orrelated with the spreading

sequen
e s

(k)
to produ
e the dete
tion statisti
 S

(k)
i

for the user k,

S

(k)
i

= 〈r
i

; s

(k)〉 =
L∑

j=1

r

ij

s

(k)
j

:

Assuming that 〈s(k); s(k)〉 = L, the data symbol dete
tion statisti
 for the user k be
omes

S

(k)
i

= wLB

(k)
i

+ w

K∑

`=1
`6=k

B

(`)
i

〈s(k); s(`)〉+ �

(k)
i

; (6.3)

where �

(k)
i

= 〈n
i

; s

(k)〉. The sum

�

(k)
i

= w

K∑

`=1
6̀=k

B

(`)
i

〈s(k); s(`)〉 (6.4)

represents the interuser interferen
e experien
ed by the user k. Be
ause the data symbols

of the K users are themselves statisti
ally independent and ea
h has mean 0 and varian
e

1, the interuser interferen
e given by the sum (6.4) has mean 0 and varian
e

�

2(k) =

K∑

`=1
`6=k

|〈s(k); s(`)〉|2: (6.5)

The term �

2(k) is also referred to as interferen
e power. Equation (6.5) 
an also be written

in the form

�

2(k) =
K∑

`=1

|〈s(k); s(`)〉|2 − L

2
: (6.6)
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The interferen
e 
aused by the spreading sequen
es has an e�e
t on the quality of

transmission, redu
ing the signal-to-noise plus interferen
e (SINR) ratio

SINR(k) =
1

n

2

w

2 +
∑

K

`=1;k 6=` |〈s(k); s(`)〉|2
; k = 1; : : : ; K: (6.7)

In
reasing interferen
e results in performan
e degradation of the s-CDMA system.

Therefore, the sequen
e design problem for s-CDMA 
an be formulated as follows:

Problem 6.2.1 (Minimize worst interuser interferen
e). Choose sequen
es s

(1)
; s

(2)
; : : : ; s

(K)

of length L to minimize

�

2
w


= max
k

�

2(k) = max
k

K∑

`=1

|〈s(k); s(`)〉|2 − L

2
; (6.8)

where �

w


stands for the worst interuser interferen
e.

The optimally solution to problem 6.2.1 will result from a solution, when it exists, to

the following problem:

Problem 6.2.2 (Minimize Total Squared Correlation). Choose sequen
es s

(1)
; s

(2)
; : : : ; s

(K)

of length L to minimize

�

2
TOT

=

K∑

k=1

K∑

`=1

|〈s(k); s(`)〉|2 −KL

2
: (6.9)

It is easy to show that the ne
essary and suÆ
ient 
ondition for no interuser interfer-

en
e is

〈s(k); s(`)〉 = 0; for all k 6= `: (6.10)

However, this holds only when K ≤ L, sin
e there 
an be at most L orthogonal non-zero

sequen
es of length L.

6.2.2 Wel
h Bound Equality (WBE) sequen
es

While orthogonal sequen
es eliminate interuser interferen
e, it has been shown that non-

orthogonal 
odes are sum 
apa
ity optimal. A quarter-
entury ago, Wel
h [143℄ published

a 
olle
tion of lower bounds on the maximum magnitude of the inner produ
ts of a set of

ve
tors. One of the main results of [143℄ 
on
erns lower bounds for the 2m-th power of

the sum of the inner produ
ts between pairs of ve
tors

K∑

k=1

K∑

`=1

|〈s(k); s(`)〉|2m ≥ K

2
L

2m

(
L+m−1

m

)
: (6.11)

Setting m = 1 in (6.11), we obtain the Wel
h bound on the total squared 
orrelation. In

[95℄, Massey and Mittelholzer provided a simple derivation of this bound and �rst stated

the 
ondition for equality.
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Theorem 6.2.1 (Bound Total Squared Correlation [95℄). If s

(1)
; s

(2)
; : : : ; s

(K)
are se-

quen
es in CL

and all have the same energy L, i.e.,

‖s(k)‖2 = 〈s(k); s(k)〉 = L; k = 1; : : : ; K; (6.12)

then

K∑

k=1

K∑

`=1

|〈s(k); s(`)〉|2 ≥ K

2
L; (6.13)

with equality if and only if the rows r

(1)
; r

(2)
; : : : ; r

(L)
of the L ×K array whose 
olumns

are s

(1)
; s

(2)
; : : : ; s

(K)
are orthogonal and all rows have the same energy, i.e.,

‖r(`)‖2 = K; ` = 1; : : : ; L: (6.14)

The sequen
es satisfying (6.13) with equality are known as Wel
h Bound Equality

(WBE) sequen
es [95℄. When equality holds the sequen
es are also 
hara
terized as

uniformly good [95℄ in the sense that

K∑

`=1

|〈s(k); s(`)〉|2 = KL; k = 1; : : : ; K: (6.15)

Re
all that the sum in equation (6.15) expresses the varian
e �

2(k) of the interuser inter-

feren
e (see (6.5)). Therefore, WBE sequen
es designed for K users when employed as

spreading sequen
es in s-CDMA yield the same interferen
e for every user. From (6.15),

(6.7) we see that the SINR is also 
onstant and depends only on K and L.

6.2.3 Sum 
apa
ity

Sum 
apa
ity is an important measure of overall information 
apa
ity of a multiple a

ess


hannel. It was shown in [135℄ that the sum 
apa
ity is a fun
tion of users' spreading

sequen
es and re
eived powers. Sum 
apa
ity optimal spreading sequen
es have been


hara
terized for Gaussian 
hannels [111℄, [112℄, fading 
hannels with white noise [136℄,

fading 
hannels with 
olored noise [137℄, [3℄, and with di�erent re
eivers [138℄, [73℄.

Let S be the L ×K matrix with the users' spreading sequen
es as its 
olumns, S =

[s(1) s(2) : : : s(K)], and W = diag{w1; w2; : : : ; wK

} be the K ×K diagonal matrix of users'

re
eived powers. Considering a multiple a

ess 
hannel with zero mean Gaussian noise

with 
orrelation matrix E[NNT ] = n

2
I

L

, the maximum 
apa
ity was derived to be [135℄

C

sum

=
1

2
log[det(I

L

+ n

−2
SWS

T )]: (6.16)

When the re
eived powers of the users are the same, w

k

= w for all k, (6.16) redu
es

to

C

sum

=
1

2
log[det(I

L

+
w

n

2
SS

T )]: (6.17)

A ne
essary and suÆ
ient 
ondition to attain (6.17) is [111℄

S

T

S = I

K

; when K ≤ L; (6.18)
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SS

T =
K

L

I

L

; when K ≥ L; (6.19)

where I

K

, I

L

are the K × K and N × N identity matri
es, respe
tively. Therefore, a

spreading sequen
e set should form a set of orthogonal sequen
es, if the number of users

is equal or less than the pro
essing gain, and a unit norm tight frame (UNTF), otherwise.

In [3℄ it was shown that a spreading sequen
e set satisfying (6.17) exhibits also mini-

mum total squared 
orrelation (WBE sequen
es). Therefore, the problem of maximizing

the 
apa
ity of an s-CDMA system is equivalent to minimizing interuser interferen
e. In

[140℄ it was shown that WBE sequen
e sets de�ned in [95℄ are pre
isely equal norm tight

frames.

In Chapter 2 we have seen that equal norm tight frames and unit norm tight frames

exist for any frame dimensions; thus, maximum sum 
apa
ity and minimum interuser

interferen
e 
an be always a
hieved. Constru
tions of WBE sequen
es have been des
ribed

in [95, 112, 127℄.

6.3 Optimal spreading sequen
es for varying number of users

Considering that optimal 
odebooks are a fun
tion of the number of a
tive users, pra
ti
al

appli
ation of WBE sequen
es raises the need of reassignment as the number of a
tive

users 
hanges. While a WBE sequen
e designed for K users is 
apa
ity optimal and

has a ni
e interferen
e invarian
e property, the sequen
e subset 
eases to satisfy Wel
h's

bound with equality if any M < K signatures are removed. Therefore, whenever a user

leaves or a new user arrives, the subset of remaining sequen
es will no longer be optimal

[112, 132, 77, 76℄.

Theorem 6.3.1 ([76℄). Let S = [s(1); s(2); : : : ; s(K)] be a set of WBE sequen
es of length

L and assume K > L. If we remove any M < L sequen
es from or add any M < L equal

norm sequen
es to this set, then the resulting set does not satisfy the Wel
h's bound with

equality.

Employing a subset of spreading sequen
es that are not optimal leads to the undesir-

able property that users would see di�erent amount of interferen
e as a fun
tion of their

sequen
e assignment, whi
h 
an result in 
apa
ity or bit error probability degradations.

Thus, a system that fully exploits WBE sequen
es would need (i) a set of spreading se-

quen
es for every possible K and (ii) would need to reassign all sequen
es every time a

user arrived or departed from the system.

To mitigate the problems 
aused by the loss of the WBE property, in [77, 76℄ the

authors studied equiangular frames and employed them as spreading sequen
es. Perhaps

the most interesting property of equiangular sequen
e sets is that the total interferen
e

power for every sequen
e is only a fun
tion of the 
urrent number of a
tive sequen
es and

the original dimensionality of the 
odebook.
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Let K denote the set of integers 1; 2; : : : ; K, and A a subset of K that indexes the

a
tive sequen
es. For an arbitrary a
tive sequen
e k, the interferen
e power is

�

2(k) =
∑

`∈A
`6=k

|〈s(k); s(`)〉|2 = (|A| − 1)
2; k = 1; : : : ; K; (6.20)

where 
 is the equiangular 
onstant, 
 = |〈s(k); s(`)〉| for any ` 6= k. Note that (6.20)

is independent of k and depends only on the number of the a
tive users given by the


ardinality of A. This byprodu
t of the equiangular property is stated in the following

theorem.

Theorem 6.3.2 (Interferen
e Invarian
e [77℄). The total interferen
e power for any

equiangular sequen
e set is identi
al for all sequen
es and depends only on the total number

of a
tive sequen
es.

A 
onsequen
e of this theorem is that ETFs are the best of all equiangular sequen
es

sin
e they a
hieve the lowest bound on the maximum 
orrelation with equality (and thus

have the smallest possible 
). Considering that for L×K ETFs there holds

∣∣〈
s

(k)
; s

(`)
〉∣∣

‖s(k)‖ ‖s(`)‖ =

√
K − L

L(K − 1)
; k 6= `; (6.21)

we obtain


 = |〈s(k); s(`)〉| = K − L

L(K − 1)
L

2
; k 6= `; (6.22)

where we assumed that ‖s(k)‖ = L, for all k. Therefore, for sequen
e sets obtained by

ETFs, the interferen
e power experien
ed by the k-th user is

�

2(k) =
∑

`∈A
`6=k

|〈s(k); s(`)〉|2 = (|A| − 1)
K − L

L(K − 1)
L

2
; (6.23)

whi
h is the same for k = 1; 2; : : : ; K.

It is 
lear that ETFs are a sub
lass of WBE sequen
es sin
e

K∑

k=1

K∑

`=1

|〈s(k); s(`)〉|2 =
K∑

k=1




K∑

`=1
`6=k

|〈s(k); s(`)〉|2 + L

2




= K

(
(K − 1)

K − L

L(K − 1)
L

2 + L

2

)

= K

(
K − L

L

L

2 + L

2

)

= K

2
L:

(6.24)

Wel
h's bound was originally stated as a lower bound on the maximum value of |〈s(k); s(`)〉|
for k 6= ` (see eq. (3.4.1)), also referred to as maximum Wel
h bound. Re
all that ETFs

satisfy the maximumWel
h bound with equality and 
onstitute a very important sub
lass

of WBE sequen
es, also known as maximal WBE (MWBE) sequen
es [112℄.
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Figure 6.1: Standard deviation of the interferen
e term for variable number of a
tive users

in an s-CDMA system designed for 128 users.

6.4 Codebooks from nearly equiangular, nearly tight frames

In Chapter 3 we have seen that Algorithm 6 may produ
e nearly equiangular, nearly tight

frames of any dimensions. As these frames exhibit approximately minimal spe
tral norm,

they are very 
lose to UNTFs; thus, we expe
t that the frame ve
tors approximately

minimize the total squared 
orrelation as well. Moreover, as the frame ve
tors exhibit

similar 
orrelation, it is expe
ted that the proposed frames lead to similar values of �

2(k) =∑
K

`=1 |〈s(k); s(`)〉|2, ` 6= k, for all k. As we have dis
ussed, this term is related to the

interuser interferen
e and results in variation in the quality of the signal re
eived by the

users. Therefore, we propose the employment of nearly equiangular, nearly tight frames

as spreading sequen
es in s-CDMA. We also employ as spreading sequen
es the proposed

in
oherent UNTFs produ
ed by Algorithm 1. These frames belong to WBE sequen
es

and are expe
ted to minimize TSC and maximize sum 
apa
ity. The proposed frames are


ompared to a UNTF 
onstru
tion presented in [124℄ for appli
ation to s-CDMA.

Our simulations 
onsider an s-CDMA system with varying a
tivity, that is, the number

of users in the system 
hanges, resulting in di�erent subsets of a
tive users. The system is

designed for at most N = 128 users. The 
ode set in
ludes 
odes with length 64, thus, it

forms a 64× 128 frame. For every subset of K a
tive users, the system randomly 
hooses

K frame ve
tors as 
odes. The 
onsidered subsets of users are of varying size. In every

situation, we examine the interferen
e term �

2(k). As a measure of how 
lose we are to the

target that all users experien
e the same interferen
e, we 
ompute the standard deviation

of �

2(k). The results are averaged over a series of random trials and are demonstrated in

Figure 6.1. Clearly, the obtained results show that nearly equiangular, nearly tight frames,

outperform UNTFs (WBE sequen
es), when the system works with a load up to 85% its

total load, exhibiting similar interuser interferen
e for all 
onsidered s
enarios of a
tivity,
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Table 6.1: Average total squared 
orrelation (TSC) for variable number of a
tive users.

# of a
tive users

TSC

Algorithm 6 Algorithm 1 [124℄

64 95.720 95.742 95.868

80 129.812 129.773 129.706

96 167.769 167.763 167.821

112 209.932 209.876 209.805

128 256.094 256.000 256.000

regardless of the number of a
tive users in the system. On the 
ontrary, 
on
erning UNTF


onstru
tions, we see that the smaller the number of a
tive users the higher the varian
e

in interuser interferen
e. However, UNTFs exhibit optimal performan
e for K = N , when

�

2(k) is identi
al for all k, leading to the same interferen
e for every user (see (6.15)).

In Table 6.1, we present average values of the total squared 
orrelation (TSC) ob-

served in the above s
enarios of a
tive subsets of users. Both UNTF 
onstru
tions attain

the minimum bound as expe
ted, while nearly equiangular, nearly tight frames exhibit

a small dis
repan
y. As dis
ussed in se
tion 6.2.3, frames that minimize TSC result in

optimal sum 
apa
ity. Computing the sum 
apa
ity 
orresponding to ea
h frame from

(6.17), the observed dis
repan
y be
omes even smaller. We 
on
lude that the proposed

nearly equiangular, nearly tight frames satisfy the 
ondition for near optimal sum 
a-

pa
ity. Considering that we may produ
e su
h frames of any dimensions, the proposed


onstru
tion o�ers 
exibility when designing 
odes for an s-CDMA system and provides

spreading sequen
es that lead to near optimal performan
e.
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Chapter 7

Con
lusions and future work

In this thesis, we relied on well-known results from frame theory and proposed novel

frame 
onstru
tions that attain small mutual 
oheren
e and spe
tral norm, approximating

the 
orresponding optimal bounds. The proposed frames are su

esfully employed in

sparse representations, 
ompressed sensing, and 
ommuni
ations. More parti
ularly, the

numeri
al methods presented here yield three types of frames, namely in
oherent UNTFs,

nearly equiangular frames and nearly equiangular, nearly tight frames. All proposed

frames exhibit remarkable performan
e, when used to a
quire sparse signals in 
ompressed

sensing, improving the re
overy rates of the deployed algorithms. In
oherent UNTFs are

suitable for designing optimized proje
tion matri
es for 
ompressed sensing and eÆ
ient

pre
onditioners for underdetermined linear systems with sparse solutions that are met in

sparse representations and 
ompressed sensing. Nearly equiangular, nearly tight frames

approximate UNTFs, whi
h are 
onsidered optimal spreading sequen
es for s-CDMA

systems. Exhibiting the additional advantage of approximate equiangularity, they 
an be

employed as spreading sequen
es in multi-a

ess systems with varying number of users,

as they minimize interuser interferen
e.

The mathemati
al tools used to develop the proposed 
onstru
tions involve optimiza-

tion te
hniques that 
on
ern proje
tions onto non-
onvex sets and numeri
al methods for

the solution of inverse eigenvalue problems. Most theoreti
al results in these �elds have

been established over the past de
ades, yet, important questions su
h as the proje
tions

onto non-
onvex sets have not been 
ompletely answered. It is obvious that any progress

in these �elds may o�er a better insight of the developed te
hniques and 
ontribute to

the improvement of the eÆ
ien
y of the proposed algorithms.

Theoreti
al study of the new frame 
onstru
tions regarding their feasibility in pra
ti
al

problems is an important working dire
tion. While there exist several re
overy guarantees

for in
oherent frames and in
oherent UNTFs, we have almost no result for frames that

approximate ETFs. It would be of great signi�
an
e, if the proposed nearly equiangular,

nearly tight frames 
ould be a

ompanied by theoreti
al results justifying their remark-

able performan
e in simulations. A deep investigation 
ould provide performan
e bounds

de
iding the appropriateness of the proposed frames in sparse re
overy or their feasibil-
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ity to minimize interuser interferen
e, when used as spreading sequen
es in multi-a

ess

systems.

Towards this dire
tion, a quantative 
hara
terization of approximate equiangularity

seems useful. The latest work of [23℄ introdu
es the 
on
ept of �-equiangularity. Consid-

ering an m×N frame � = {'
i

}N
i=1, 'i ∈ Rm

, and denoting by �

m;N

the Wel
h bound (see

(4.3)), the frame is de�ned as �-equiangular if

(1− �)�
m;N

≤ |〈'
i

; '

j

〉| ≤ (1 + �)�
m;N

; (7.1)

for any two distin
t 
olumns '

i

, '

j

of �. Regarding the re
overy ability of �-equiangular

frames, the authors of [23℄ rephrase the square root bound on sparsity, s ≤ √
m, to the

plausible bound s ≤
√
m

2(1+�)
. De�nitely, a further investigation of the advantages and

limitations of su
h frames is of great interest. A theoreti
al study 
ould also 
onsider �-

tight frames with spe
tral norm that slightly ex
eeds the minimum bound N=m (‖�‖2 <
N

m

+ �) and �-unit norm frames with 
olumns of norm 
lose to 1.

In 
ompressed sensing, we have seen that pra
ti
al problems impose 
ertain restri
-

tions on the design of proje
tions matri
es, arising from physi
al 
onstraints in the related

appli
ations. Binary matri
es are 
onsidered best 
andidates for hardware implementa-

tion. A similar 
onstraint in multi-a

ess sytems is that the alphabet of the employed


odes may also be restri
ted. From this perspe
tive, it is a 
hallenge to develop methods

that produ
e frames with spe
i�
 alphabet, e.g., binary entries, also exhibiting good in
o-

heren
e and spe
tral properties. Con
erning pra
ti
al 
ompressed sensing appli
ations, it

is important that proje
tion matri
es also possess some stru
ture. Re
all that stru
tured

frames fa
ilitate the design of the a
quisition hardware and o�er fast and reliable signal

re
onstru
tion, improving the performan
e of sensing devi
es. In
orporating the above

parameters in frame design, while also retaining in
oheren
e and tightness, is a 
hallenge.

The goal of this thesis was the 
onstru
tion of frames that exhibit good in
oheren
e

and spe
tral properties. As equiangular tight frames form a 
lass of frames satisfying

optimal bounds regarding in
oheren
e and spe
tral norm, future resear
h is inevitably


onne
ted with new developments in frame theory and, more parti
ularly, new results in

the design of ETFs and UNTFs. Of 
ourse, the 
onstru
tion of ETFs is an extremely

diÆ
ult problem{open for over half a 
entury, and is 
onne
ted with other important

problems and 
onje
tures in frame theory that have been stated in [39, 74, 33℄. However,

from the perspe
tive of an engineer, besides perfe
t ETF and UNTF 
onstru
tions, we are

also interested in approximate 
onstru
tions as the ones proposed in this thesis. Any new

theoreti
al foundations 
ontributing to a better understanding of ETFs or UNTFs may

provoke the development of new te
hniques, produ
ing frames that are useful in pra
ti
al

appli
ations.

Sparse representations and 
ompressed sensing have experien
ed a 
onsiderable growth

during the past de
ade. Still important theoreti
al and pra
ti
al questions remain open

[59, 118℄. The work presented here is a typi
al paradigm of how resear
h in these �elds

evolves. In the re
ent years, mu
h of the progress has been inspired from results in

other resear
h areas su
h as frame theory, graph theory, applied harmoni
 analysis, and
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information theory. On the other hand, 
ompressed sensing and sparse representations

have played an important role to the evolution of advan
ed probability theory and, in

parti
ular, random matrix theory, 
onvex optimization, and applied harmoni
 analysis.

Furthermore, di�usion of sparse re
overy and 
ompressed sensing ideas in areas su
h as

radar analysis, medi
al imaging, distributed signal pro
essing, and data quantization has

also provoked important progress in various pra
ti
al appli
ations. Clearly, the progress

in sparse representations and 
ompressed sensing is a result of interdis
iplinary 
ollab-

orations motivated by one sensible reason: some important problems simply 
annot be

solved otherwise! An interesting side of this 
ollaborative 
ulture is the way we are think-

ing about the development of hardware and software when designing sensors and other

devi
es. While, in the past, we addressed these problems separately, it seems that future

developments require an interdis
iplinary approa
h, where hardware and algorithms are

treated in a truly intergrated manner [118℄.
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Appendix A

Proje
tions

Proje
tion onto smooth manifolds

A

ording to [88℄, a smooth manifold E is, loosely speaking, a set 
onsisting lo
ally of

the solutions of some smooth equations. More pre
isely, we say that a set M ⊂ E is a

C

k

-manifold (of 
odimension d) around a point x ∈ M, if there exists an open set U ⊂ E


ontaining x su
h that

M∩ U = {x ∈ V : F (x) = 0};
where F : U → Rd

is a C

k

fun
tion with surje
tive derivative throughout U .

Fixed rank matri
es is an example of a smooth manifold. Let E = M

m;N

(R) be the

spa
e of m×N matri
es with the 
lassi
al inner produ
t 〈A;B〉 = tra
e(AT

B). Routine


al
ulations show that the set of matri
es with �xed rank r,

R
r

= {X ∈ M

m;N

(R) : rank(X) = r};

is a smooth manifold around any matrix A ∈ R
r

. Using the singular value de
omposition

A = UDV

T

(the two matri
es U = [u1; u2; : : : ; un] and V = [v1; v2; : : : ; vm] being orthogo-

nal, and the diagonal entries in the diagonal matrix D being written in de
reasing order),

the tangent spa
e at A to R
r

is

TR
r

(A) = {H ∈M

m;N

(R) : uT
i

V

j

= 0; for all r < i ≤ N; r < j ≤ m}:

The following result states that smooth manifolds admit unique proje
tions lo
ally.

Theorem A.1 (Proje
tion onto a manifold [88℄). Let M ⊂ E be a manifold of 
lass C

k

(with k ≥ 2) around a point x̄ ∈ M. Then the proje
tion PM is well-de�ned around x̄.

Proje
tion onto �xed rank matri
es is an example of proje
tion onto manifolds and


an be 
omputed with the trun
ated singular value de
omposition. If X ∈M

m;N

(R) with

X = U�V

T

, then the nearest matrix with rank no more than r is

X̂ =
r∑

i=1

�

i

u

i

v

T

i

;

where �

i

are the r �rst singular values of �.
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Proje
tion onto spe
tral sets

A

ording to [101℄, proje
tions onto spe
tral sets of matri
es, that is, sets of matri
es

de�ned via properties of their eigenvalues, 
an be handled using spe
tral de
omposition.

Let QN

be the spa
e of real symmetri
 N × N matri
es, equipped with the tra
e inner

produ
t. QN

is an Eu
lidean spa
e. A subset T is spe
tral if, for every matrix X ∈ T and

every U in the group O

N

of orthogonal matri
es, we have U

T

XU ∈ T . The eigenvalue map

� : QN → RN

maps any symmetri
 matrix X to its eigenvalues arranged in nonin
reasing

order, �1(X) ≥ �2(X) ≥ · · · ≥ �

N

(X). It is easy to see that any spe
tral set 
an be

written in the form �

−1(K) = {X : �(X) ∈ K}, for some set K ⊂ RN

, and that we 
an

further restri
t K to be permutation-invariant: for every ve
tor x ∈ K and every P in the

group P

N

of permutation matri
es, we have Px ∈ K. The following result is established

in [88℄.

Theorem A.2 (Spe
tral proje
tion [88℄). If the point x in the permutation-invariant

set K ⊂ R
N

, is a nearest point to the point y ∈ R
N

, then for any orthogonal matrix

U , the matrix U

T

diag(x)U is a nearest matrix in the spe
tral set �

−1(K) to the matrix

U

T

diag(y)U .

A good example is the set of matri
es of some �xed rank. More results regarding

proje
tions onto spe
tral sets 
an be found in [88℄.
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