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ABSTRACT

Evaggelia V. Tsiligianni, PhD, Computer Science & Engineering Department, University
of Toannina, Greece. July, 2015. Construction of approximately equiangular tight frames
and their applications. Thesis Supervisor: Lisimachos P. Kondi.

Frames are considered a natural extension of orthonormal bases to overcomplete span-
ning systems. In the signal processing community, frames have mainly become popular
due to wavelets; however, many other frame families have been employed in numerous
applications, including source coding, robust transmission, code division multiple access
(CDMA) systems, and coding theory. The most important characteristic of frames is
redundancy, which adds more flexibility to signal expansions, facilitating various signal
processing tasks.

A finite frame with N vectors in an m-dimensional Hilbert space H™ is usually identi-
fied with the m x N matrix F = [f; fo ... fx], m < N, with columns the frame vectors
fr € H™, k =1,...,N. The most important properties of frames are mutual coherence
and spectral norm. Mutual coherence is a measure of the maximal correlation between
the frame vectors and characterizes the degree of similarity between the columns of the
matrix F. Spectral norm measures how much a frame can dilate a unit norm coefficient
vector. Mutual coherence and spectral norm define particular classes of frames. Unit
norm tight frames (UNTFs) attain optimal bounds of spectral norm; these frames have
unit norm columns and orthogonal rows of equal norm. Unit norm tight frames with small
mutual coherence are referred to as incoherent UNTFs. The minimum possible mutual
coherence is attained by equiangular tight frames (ETFs). The frame vectors of ETFs
exhibit identical correlation and these frames are considered closest to orthonormal bases.

ETFs offer erasure-robust transmission in communications and minimize interuser
interference when employed as spreading sequences in multiuser communication systems.
Due to their incoherence, they are of interest in sparse representations and compressed
sensing. However, ETFs do not exist for all frame dimensions and their construction has
been proved extremely difficult.

This thesis presents two methods that produce real frames close to ETFs. The pro-
posed constructions are motivated by specific applications, namely, compressed sensing
and sparse representations. Concerning sparse or compressible signals, that is, signals
with a few significant coefficients, compressed sensing and sparse representations have

vil



experienced a growing interest in the last decade, providing the ability of compact repre-
sentations that serve various data sources. The mathematical model lying in the heart of
these applications involves an underdetermined linear system with more unknowns than
equations. Computing its sparsest solution, i.e., the one with the fewest non-vanishing
coefficients is tractable with numerical methods. Standard numerical solvers include Or-
thogonal Matching Pursuit (OMP) and Basis Pursuit (BP).

In sparse and redundant representations, we seek a sparse signal representation with
respect to a redundant (overcomplete) dictionary. Performance guarantees for the algo-
rithms deployed to compute the non-vanishing coefficients require that the given dictio-
nary forms an incoherent UNTF. While many incoherent dictionaries are known in the
literature, their limited sparsifying ability has promoted the design of learning based dic-
tionaries. Often, learning based dictionaries do not satisfy the necessary properties for
numerical computations.

Compressed sensing is a sampling theory that allows signal reconstruction from an
incomplete number of measurements. Concerning signals that are sparse or compressible,
compressed sensing uses a sensing mechanism implemented by an appropriate matrix, the
so-called projection matriz. According to theoretical results, the projection matrix must
possess a property known as the restricted isometry property (RIP). Constructing RIP
matrices is difficult, as evaluation of RIP is combinatorially complex. Random Gaussian
or Bernoulli matrices satisfy RIP with high probability. Considering N-dimensional sig-
nals with s non-vanishing coefficients, recovery conditions for random matrices require
O(slog N) measurements. More recent results formulate similar recovery guarantees for
projection matrices that form incoherent UNTFs. Thus, a new design strategy involves
the construction of projection matrices exhibiting small mutual coherence and spectral
norm.

Minimum bounds of mutual coherence and spectral norm are attained by ETFs; there-
fore, the methods proposed here aim at the construction of frames as close to ETFs as
possible. The first method uses results from frame theory and relies on alternating pro-
jection ideas. The produced constructions form UNTFs with remarkably small mutual
coherence, that is, incoherent UNTFs. The second method relies on recent results showing
that there is one-to-one correspondence of ETF's to a special type of graphs. The existence
of an ETF is determined by the so-called signature matriz. A signature matrix has the
form of the adjacency matrix of a graph and its spectrum consists of two distinct eigen-
values. Viewing the construction of a signature matrix as an inverse eigenvalue problem,
we develop a numerical algorithm to compute a solution that approximates the signature
matrix of an ETF. The second method produces nearly equiangular, nearly tight frames,
that is, frames with similar column correlation and approximately optimal spectral norm.

The proposed frame constructions are employed as projection matrices in compressed
sensing, improving substantially the performance of the deployed algorithms in sparse
recovery. Considering that many signals are sparse or compressible under overcomplete
dictionaries, incoherent UNTF's are also used for the design of optimized projection ma-
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trices with respect to a given representation dictionary. An additional way to employ the
proposed frames to solve underdetermined linear systems is the technique of precondition-
ing. Applying preconditioning to sparse representations, we improve the performance of
the algorithms deployed to find the coefficients of the sparse signal. In compressed sens-
ing, preconditioning is used to improve signal recovery when binary matrices are used as
projection matrices. Note that binary matrices are considered more suitable for hardware
implementation.

Besides compressed sensing and sparse representations, one of the proposed construc-
tions has been employed in the design of near-optimal codes or spreading sequences in
synchronous CDMA systems. Optimal spreading sequences maximize the rate at which
the users can transmit and minimize interuser interference. Equal norm tight frames have
been proved optimal, if all users in the system are active. When the number of users
changes, the only frames that can minimize interuser interference are ETFs. However,
only a few ETF constructions are known in the literature. The near optimal codebook
presented here has the form of a nearly equiangular, nearly tight frame and minimizes

interuser interference even when some users in the system are silent.
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[IEPIAHWH

Evayyehla Touytdvyny tou Baouelou xar e Exévne. PhD, Tufua Mrnyavixdy H/Y
& TIanpogopuic, Tavemotiuo Inavvivey, Todiiog, 2015. Kataoxeur tpooeyylotixdy
equiangular tight frames xou egapuoyéc. EmPBAénwy: Avctuayoc Iadhog Koving.

Ta frames elvor UTEPTATET CUCTAUUTO TOU TOEAYOLY EVAY BLUVUCUOTIXG YOPO XoL
Dewpolvtal eméxtoon Twv ophoxavovxdy Bdoewy. Xtny enelepyocio ofuatog, to frames
€Yoy YVwoTd yder ota wavelets. ‘Addol tirol frames éyouv ypnowwonoinfel oe mowxiiec
EQUPUOYES, OTWC ElVaL 1 XwdXoTolNoT, 1 eVpWOTY UETABOGT Xl T GUCTHUATA TOANATATC
tpooméhaone ue daipeorn xdduxa (Code Division Multiple Access-CDMA). H urepmhnpé-
Nt Dewpeltal To o oNUAVTIXG YapaxTneloTxd Ty frames, SLoTL Tpoopépel euehilio TNy
AVOTAPAGTACT) EVOS GHUATOS XoL Sleuxollvel Tny enelepyaoia.

'Evo frame ue nenepaouévo mAffog SLovucudTwy TOU TapdyYEL TOV M-3LA0TOTO SLavu-
ouatxd ydeo H™, cuvifue, avanaplotdtar and évay nivaxa ueyébouc m x N, mou €yel
wc othkec ta davdouata tou frame, dnhadh, F = [fi fo ... fn], m < N, fr € H™,
E=1,...,N. Q¢ mo onuavtxéc Wotntec evoc frame Oewpodvtan 1 auofaia ouvdpera
(mutual coherence) xou v paouatix) vépua (spectral norm). H auoBale cuvdpeto amotelel
€vol UETPO NG UEYLOTNS GUOYETLONS TV Slavuoudtwy Tou frame xou exgpdlel Ty ouoldTnTa
UeTaLy TV 6TNAGOY Tou mtivaxa F'. H gaouatind vopuo anotelel UETEO TNC UEYLOTNS SUVATHC
SLLOTOATC EVOS wovadlalou dlaviouatog, 6Tay autd todarniaclaotel ue to frame. Ou 0o
Widtntee opilovy ouyxexpuévec xatnyopiec frames. Ta unit norm tight frames (UNTF's)
eugaviCouy TN uxpdtepn Suvath gacuatixr vopuo. To cuyxexpuuéva frames €youv oThheg
uovadLatou Uétpou xat ophoydvieg Ypauués loou uétpou. 'Otav éva UNTE eugavilel uixpy
apoBata ouvdgela, tote yapaxtneiletol wg incoherent UNTF. H ehdyiotn duvaty) auoPala
ouvdgeLo ouvavtdtal ota equiangular tight frames (ETFs). Ta Swavbouata twv ETFs
eugavilouy TautéonUn cLuaYETLoN XoL To frames auToV Tou TUToL HewpolvTal wE N XAADTERT
TEOGEYYLOT 0pBoXAVOVIXGDY BdcEWY.

To ETF's éyouv npotabel yio Ty entteuln ebpwotng UETAB00TC 6E GUGTAUATA ETLXOLY®L-
viog, xa0d¢ xat yo Ty ehayLoTonolnoy Tne tapeUfohnic UETAE) TwV YeNoTdV 68 GUOTAULLTA
Tohamhic TpooTélaong. Xdern otny eAdylotn auotBala cuvdgeld Tou eupavilouy, Tapou-
04louy EVBLAYEROY OE EQUPUOYES OTIWS OL OpaléS avaTapaoTAoELS (Sparse representations)
xaL 1 ovunteotixy| deryuatodndio (compressed sensing). 'Ouwe, ETFs dev undpyouv yla
OTOLEGONTOTE BLUOTACELS, EVE 1) XATAOXELT TOuC €yel amodelyfel Wialtepa SUoXOAN.



Yy mapovoa Sotel| mpotelvovtal 3o uéfodol ylol TNV xoTOoXEVY| TPOGEY YLOTIXMY
ETFs. Kivnteo yia ™ xataoxevt| Tov tpotelvouevoy frames anotelel 1 epapuoyr Toug oe
TEOPAAUOTA paLdY OVITAPACTAGEWY ol GUUTIESTIXNS deryuatohndlog. OL ouyxexpluéveg
EQUPUOYES apopoly GRUATA TOU UTopoly va mapactafoly and Alyoug un undevixolc cu-
vTIeEheoTEC, dMAadt|, apold ¥ cLUTLEGLUA oHUATA, XaL EYOoLY Yvwploel Wialtepn avdnTtuln tny
tehevutala Sexaetio, SLOTL TAPEYOUY TN SUVATOTNTO GUUTAYOV AVITAPUCTICEWY, YPNOLUWY
vl didpopoug TUnoug dedouévey. To uabnuoatixd uovtého tou Bploxetol TNV XxuEdld TV
CLUYXEXPLUEVODY OVOTAPACTACEWY ElvaL €VOL UT0-0pLGUEVD Ypauuxd ovotnua, ue mAnfoc
eZloMOoENY UxpoTEPo amd To TAHHoC Twy ayvedoteny. O utohoyloude Tne aputdtepnc Aorng,
dnhad?), Tng Adorng Ue To Uxpdtepo TANHog Un UNSEVIXGOY GUVTEAEGTHY, elval eQLXTOC UE TN
xenon xatdhiniwy aplbuntixdy uebddwy. Ot o yvwotol adydplfuot eivar o Orthogonal
Matching Pursuit (OMP) xot o Basis Pursuit (BP).

H avanopdotacy evoc oruatoc ue Alyoug un undevixolc cuvteheotés, ouvifng, emt-
TUYYAVETAL UE TN YPHOT EVOC UTERTATIPOUS CUGTHUATOS OVATARIGTACNS, TOU ELVAL YVOOTO
wc Ae€uxé (dictionary). H amodotxi hertovpylo twv alyoplfuwy mou yenotuoroodvtal
YLOL TOV UTOAOYLOUG TOV U1 UNSEVIXDY GUVTEAEGTHY TEOUTODETEL TNV IXaVOTOlNoY) GUYXE-
xpLEvwy ouvinxdy. M and autée amoitel To Ae€ixd v €yel TN Lop@T evog incoherent
UNTF. Qotéo0, Yvootd Aelixd autic Tng Uoppric dev odnyoly e ixavonolntixd enlnedo
apondtnToc. ot To AoYo autd ToANE Aelixd €youy oYESLAOTEL YPNOLLOTOLOVTAC TEYVIXES
exudinonc. Yuvibwg, duwe, Ta he€ixd autod Tou TUmou dev xavorololy TS cuvlfixec Tou
AmoLTOUY oL aAyOpLiuoL UTOAOYLOUOU TN 0POLC OVOTAPAoTICC.

H Bewplo tne ouunieotinic detyuatoindlog xabiotd duvats tny avdxtnon evoc oriuatog
and éva mAhfog eAAdy petprioewy. H ouumeotiny Seryuatoindio agopd orjuata mou elval
apaLd 1) GUUTLEGLUA XOL YETNOLUOTOLEL EVay Unyavioud Setyuatoindiog Tou vhonoleltal Ue TN
BoRbela xatdddnlou nivoxa, Yvwotol we nivaxa mpofoldy (projection matriz). XOupovo
ue Tt Bewpla, o mivaxac autdc TEENEL var €yeL TNy WLOTNTA TEPLOpLOUEVNS LooueTplag (re-
stricted isometry property-RIP). H xataoxeur; tétoiwv mvdxwy elvat Wialtepa dhoxohn,
3t6TL ) emakfifevon tne RIP anaitel ouvduaotixoic unoloyiouolc. Ot mo yvwoTol tivaxeg
mou wavoroloy ) RIP ue ueydin mbavétnta elvon ow tuyatol nivaxeg Gauss xou Bernoulli.
[o Toug mivaxeg autolc undpyouy BewpnTixd anoteréouata Tou amodelxviouy OTL elval
EQLXTA 1) avdxXTNoN eVHC Gruatoc Urxouc N Ue s un undevixoic cuvteleaTtéc, 6Tay To Thrfoc
uetprioewy elvar e tééne O(slog N). Tdugwva mpdogato antoTEAEGUATO, 1) TOPUTEVE
oLV avdxtnone Loydel xat 6tav o Tivaxog TEoBokdv €yel TN Uopyn evdc incoherent
UNTF. Yuvende, o véa GTRATNYLXY XATAOKEUNS TLVAXWY TeoBohdv meplthauBdvel tny
XATACKEVT] TWVAXWY UE YOUNAY) oauoLBala GUVAQELD XAl ULXET) QACUATIXY VopUd.

Eldytoteg twwée 1600 Yoo v auolBala cuvdgela 6G0 XL YLoL TN QUOUATIXY VOPUA
ouvaviovtol ota ETFEs. Enouévwe, ol mpotewvbueves pébodol 6toyetouy otny xataoxeuy
mpooeyylotxoy ETFs. H npdhtn uébodoc yenowwonolel anotehéopata ond tn Oewpla Ty
frames xa Paciletor o 1Wéec mou yenowwonowolvtal 6t UEHodo TwV eVOAAAGGOUEVLY
TpoPoldy (alternating projections). To frames mou mapdyet éyouv tn woper UNTFSs xou
eugaviCouv uxpn auotBato cuvdgela, ondte anoteholv incoherent UNTFEs. H deltepn
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uéfodoc Poociletal oe TPOCPAUTA ATOTEAEGUOTH TOU ATOSEXVUIOLY TNV UTOpLN AUGLIOVO-
ofuavtne aviiotoylag uetald ETEs xat ypdowyv cuyxexpuuévou tomou. H drapln evéc
ETF xafoplletal amd évayv mivaxa, Yvootd we tivaxa signature, Tou EyeL Tn Lop@Y) Tivaxa
yeltoviag Ypdpou oL To @dou Tou artoteAeltal and SV0 Slaxpltéc Wiotluée. Avtiuetwnilo-
VTAC TNV XUTAOXEVY) TOU Tivaxa signature w¢ éva avtlotpogo tpdBinua Wotudy (inverse
eigenvalue problem), npotelvouue évav aptBuntixé ahyodplbuo tou odnyel oe ntpooeyyLoTX)
Aoon. H deltepn uébodoc mapdyel mpooeyyiotxd ETFs, ue dwavdouata mou eugavilouvy
TOEOUOLAL GUGYETLOT XoL OYEBOY BEATLOTY QUOUATLXT VOPUL.

Ol TPOTELVOUEVESC XATACKEVES YPNOLUOTOLOUYTAL WS TVAXES TROBOADY YLoL CUUTIEGTLXT
Setyuatodndla, BehtidvovTtag onuavTixd TNy anddocr Twv GYETXOY ahyoplOuwy otny avd-
%TNOT apal®dy onudTwy. Enetdr tohhd orjuata £Youv apalég avamapaoTAoELS WE PO UTEpR-
Thhen Aelwxd, yenowwomolovue to mpotelvouevo incoherent UNTFs yua v xotaoxevy
BehtioTononuévey Tvexwy Teofohdv oe oyéon ue dedouévo hedixd.  'Evog emmiéov
TPOTOC Yl TNV 0ZLOTOINOT TOV TEOTELVOUEVWY XUTUGXEUMY GTNY ETLAUGT) UTO-0PLOUEVKY
YoouUUXOV cUCTNUATOV elval 1) Teyvixr Tne Tpoppevbutone. Egoapudélovtac tpopptbuion oe
apaléc avamapaoTdoels odnyoluaote oe xakltepn anddoon Twy ahyoplfuwy Tou yernoLuo-
TOLOUYTOL YLOL TOV UTOAOYLOUO T®V UM UNOEVIXMY GUVTEAEGTMV. XT1) GUUTLEGTIXY) SELYUOTO-
Andla n mpoppevlulor BeATidvel TNV avdXTNoT TOU GHUATOSC, GTAY YENoLUoToLoUVTOL Suadixol
Tivaxeg Tpoohdy. Ynueldvouue 6TL oL duadxol mivaxec TpoBoldv tapouctdlouvy EuXONs-
TEQPT TPAXTIXY) LAOTOLN O

Extéc and tic apolég avamapaoTdoels XaL T cuUmeoTixy derypatoindio, ulo and Tig
TPOTELVOUEVES XUTAOKEVES elvol XATIAANAN Yo T oyedlacn oyeddv BEATIOTOV Xxwdixdy
(codes) 1, axolovbidy eldniwonc (spreading sequences) oe ouothuata olyypovou CDMA.
Elval yvootd 6t oL Béltiotec axoloulieg €youv tn uopyy| equal norm tight frames xau
odnyolv oe ueylotonolnon Tou pubuol uetddoong, evd erayloTOTOLOUY TNV ToEEUSOAY
uetall yenotodv. 261600, GTay To TAN00C TOV eVEpY®OY YpNoTdY elval uetaallduevo, ToTE
oL axohoubieg elvar Bértiotec ubvo dtav €youv tn voper) ETFEFs. Avotuyde, uévo ilyeg
xataoxevéc ETFs vndpyouv otn BiShoypagla. To olotnuo xwdixdv mou nopovctdletal
ed& Eyel T wopt| tpoceyylotxdy ETFEs xal ehaytotonotel Ty nopeuBoln uetall ypnotdy
AXOUO XAl OTAY XATOLOL YPNOTEC ElvaL AVEVERYOL.
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CHAPTER 1

INTRODUCTION

1.1 Overview

1.2 Contributions

1.3 Outline

Sometimes the representation of a function or an operator by an overcomplete spanning
system is preferable over the use of an orthonormal basis. The reason for this may be
that an orthonormal basis with the desired properties does not exist or the deliberate
introduction of redundancy. Frames can be regarded as the most natural generalization
of the notion of orthonormal bases. Particularly useful in applications are frames in
finite dimensional spaces. A finite frame is a spanning set of vectors, which are generally
redundant (overcomplete). As frames have more vectors than the dimension of the space,
each vector in the space will have infinitely many representations with respect to the
frame. While armed with the advantage of redundancy, frames come with the drawback
that the frame vectors are linearly dependent.

A finite frame with N vectors in an m-dimensional Hilbert space H™ is usually iden-
tified with the m x N matrix F = [f; fo ... fn], m < N, with columns the frame
vectors f, € H™, k = 1,...,N. In many applications there is a need to design frames
that are as close to orthonormal bases as possible. Unit norm columns, orthogonal equal
norm rows, equal correlation between frame vectors are the desired properties of such
frames; the corresponding frame classes are known as unit norm frames, tight frames and
equiangular frames, respectively. The most important category of frames includes equian-
gular unit norm tight frames (ETFs) also known as optimal Grassmannian frames. These
frames combine all of the above properties and they also minimize the maximal column
correlation maxy., [(fz, fr)|; therefore, they are considered to be closest to orthonormal
bases. Despite their important properties, ETFs do not exist for all frame dimensions
and their construction is extremely difficult. Thus, in many applications similar frame
constructions are used as substitutes.



This thesis proposes two numerical methods for the construction of frames that are
close to ETFs. The obtained frames exhibit small column correlation, a property known
as incoherence, and small spectral norm , meaning that they are close to unit norm tight
frames. Using these frames in sparse signal recovery in redundant representations and
compressed sensing, we substantially improve the performance of the numerical algorithms
deployed to find sparse signals. One of the proposed methods yields nearly equiangular
frames, which are employed as spreading sequences in synchronous Code Division Multiple
Access (s-CDMA) systems, minimizing interuser interference.

1.1 Overview

Let x be a vector of coefficients representing data in a real or complex m-dimensional
Hilbert space H™. One common approach to data processing is the decomposition of z
according to a representation system {fy}~_,, N > m, by considering the map

> ((, fi) )k

The choice of the representation system is dictated by the treated data and the application
of interest. A successful choice enables us to solve a variety of analysis tasks. For example,
the sequence ((z, fi))n—, allows compression of z, which is in fact the heart of the new
JPEG2000 compression standard when choosing {f,}2_, to be a wavelet system.

An accompanying approach is the expansion of the data x by considering sequences
{cp MY, satisfying

N
T = Z Cr [
k=1

It is well known that suitably chosen representation systems allow sparse representations,
that is, representations with small number of nonvanishing coefficients.

A representation system that forms an orthonormal basis for H™ is the standard
choice. While orthonormal bases provide unique representations they exhibit important
drawbacks. From the decomposition viewpoint, the obtained sequence is far from being
robust to erasures. Every single coefficient encapsulates unique information of the data x;
thus, its loss cannot be recovered. From the expansion viewpoint, orthonormal basis rarely
yield sparse representations, therefore, they are not suitable for sparsity methodologies
like compressed sensing.

These problems can be tackled by allowing the system { fi. }7_, to be redundant, leading
us naturally to the notion of Hilbert frames. Redundancy is a fundamental characteristic
of frames and plays a significant role in applications. Due to redundancy frames offer
greater design flexibility and can be constructed to fit a particular problem in a manner
impossible by a set of linearly independent vectors. For example, in sparse signal repre-
sentations, a redundant frame can be chosen to fit its content to the data, achieving a
high sparsity level that would not be easily obtained using an orthonormal basis. A sec-
ond major advantage of redundancy is robustness. Frames have the advantage to spread



the information over a wider range of vectors, offering resilience against erasures (losses).
Erasures are, for instance, a severe problem in wireless sensor networks when transmission
losses occur.

The advantages provided by the frame redundancy come at the cost that the represen-
tation may not be unique. Thus, while we have good reasons to trade orthonormal bases
for frames, we still want to preserve as many properties of orthonormal bases as possible.
To measure the nearness of a frame to an orthonormal basis, we define two important
properties. The first is the maximal correlation of the frame vectors defined as the largest
absolute normalized inner product between different frame columns

| fer £2)]
. e fo)| 1.1
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where | -|| denotes the Euclidean norm. In sparse representations the maximal correlation
is referred to as mutual coherence [93] and is bounded according to [119]

N —m

V= SMF) L (1.2)

Frames with small mutual coherence are known as incoherent.

An interpretation of the incoherence property from an information theoretic viewpoint
is the following. Requiring a matrix F' with small mutual coherence, that is, with columns
as “independent” as possible, means that the information of a vector x expanded by F
is spread in different directions, which makes its recovery easier. As we will see, mutual
coherence plays an important role in the existence of a unique solution of underdetermined
linear systems as well as in the performance of the algorithms deployed to find sparse
solutions.

After the mutual coherence, the spectral norm ||F|| is the most important geometric
quantity associated with a frame F. Spectral norm equals the largest eigenvalue of FTF
and measures how much the frame can dilate a unit norm coefficient vector, so it reflects
how much the columns of F' are“spread out”. A lower bound on the spectral norm of a

frame is given by
N

2
(1 s (1.3)
When equality holds in this relation, the frame forms a unit norm tight frame (UNTF).
Equivalently, the rows of F' are mutually orthogonal vectors with equal norms. Mini-
mum bounds of both mutual coherence and spectral norm are achieved by equiangular
tight frames. ETFs have unit norm vectors forming equal angles, exhibiting minimal
dependency; thus, they are considered to be closest to orthonormal bases. However, the
construction of ETFs is extremely difficult, while it has been proved that ETFs do not
exist for all frame dimensions.
Mutual coherence and spectral norm define particular classes of frames and play a

significant role in applications. Most of the problems employing frames demand certain



desired properties; thus, most frame constructions are application specific. Following
this rule, the work presented in this thesis is motivated by the research for a good sensing
operator for compressed sensing. The importance of incoherence in sparse signal recovery,
both in redundant representations and compressed sensing makes ETF's ideal candidates
for these problems [70, 124, 125]. The numerical constructions proposed here produce
frames close to ETF's in the sense that the obtained frames exhibit mutual coherence and
spectral norm approximating or, sometimes, attaining the minimum bounds. The first
method relies on frame theory and constructs incoherent UNTF's. These frames satisfy the
theoretical conditions for sparse recovery, and are used in compressed sensing to optimize
the measurement process and improve signal reconstruction. The second method is based
on results connecting frames to graphs and produces nearly equiangular frames, which
are also employed in compressed sensing to improve recovery rates.

Besides compressed sensing, the proposed frames are found useful in a similar prob-
lem, namely in sparse reconstruction of redundant representations. The mathematical
technique that enables their employment in this problem is referred to as preconditioning.
Moreover, based on recent results establishing the important role of equiangularity in de-
signing optimal codes for multiuser communication systems, we employ nearly equiangular
frames as spreading sequences in s-CDMA systems to minimize interuser interference.

1.1.1 Sparse representations

In the sparse representations literature, it is common for a basis or frame to be referred
to as a dictionary or overcomplete dictionary, respectively, with the dictionary elements
being called atoms. A signal expansion under an overcomplete dictionary results in an
underdetermined linear system of the form

y = Az, (1.4)

where y € R¥ is the signal of interest, A € RE*Y K < N, is a redundant dictionary,
and x € RY is the vector of the unknown coefficients [58]. Due to the linear dependence
between the columns of A, an important issue is the uniqueness of the representation.
According to well known results, unique representations can be obtained as long as the
involved dictionary is sufficiently incoherent [51]. Having more unknowns than equations,
system (1.4) can be solved if we add sparsity priors, requiring x to have only a few nonva-
nishing coefficients. Conditions that guarantee the performance of sparse reconstruction
algorithms [93, 47, 26|, besides incoherence, highlight the role of tightness, requiring A to
be an incoherent unit norm tight frame [125].

Although constructions of incoherent tight dictionaries appear often in signal pro-
cessing applications, such dictionaries have a limited ability of sparsifying signals or are
suitable only for certain signal types. In this thesis, we propose the use of incoherent unit
norm tight frames in the reconstruction of sparse signals, utilizing a technique referred
to as preconditioning. Preconditioning is used to transform a system into a form that



is more suitable for numerical solution [6]. Designing a K x K matrix C' such that C'A
exhibits incoherence and tightness and employing C' in (1.4) according to

Cy=CAzx, or z=CAzx, z=Cy, (1.5)

we obtain a system that can be solved more efficiently by the deployed algorithms. An
important condition that must be taken into account when designing the preconditioner
C'is that (1.5) is equivalent to (1.4) if and only if C' is invertible.

1.1.2 Compressed sensing

Solving an underdetermined linear system with a sparsity prior has recently received a
lot of attention in compressed sensing [49, 25]. Exploiting sparsity, compressed sensing
offers simultaneous acquisition and compression of signals, allowing signal reconstruction
from an incomplete number of measurements. Considering a sparse signal z € RY under
an orthonormal basis or redundant dictionary A € R¥*N K < N, we obtain m linear
measurements according to

y = PAz, (1.6)

using a sensing operator P realized by an m x K, m < K, matrix. We refer to P as the
projection or measurement matrix.

Compressed sensing leads to an underdetermined linear system with m equations
and N unknowns, m < N, and, similarly to the sparse representation problem, relies
on numerical methods to find a sparse solution satisfying (1.6). The system matrix is
the product of the sensing operator P and the representation dictionary A; we refer
to this product as the effective dictionary. According to theoretical results from sparse
representations, the effective dictionary should be an incoherent unit norm tight frame
[125].

Successful signal reconstruction in compressed sensing is based on the choice of the
projection matrix. Random matrices are considered a universal solution; however, the
demand to increase reconstruction accuracy and reduce the necessary number of mea-
surements has led to new theoretical and practical results [54]. A technique used to
improve recovery rates in compressed sensing involves the optimization of the projection
matrix over the representation dictionary A. Here, we design a projection matrix that
yields an effective dictionary having the form of an incoherent unit norm tight frame.
Moreover, binary projection matrices that are considered more suitable for hardware im-
plementation may yield recovery rates similar to optimized projections, if the recovery
proccess includes preconditioning.

1.1.3 Spreading sequences for ss-CDMA

In synchronous CDMA systems, the users share the entire bandwidth and each user is
distinguished from the others by its spreading sequence or code. The capacity region
defined as the set of information rates at which users can transmit while retaining reliable



transmission is characterized as a function of the spreading sequences and average input
power constraints of the users. Capacity optimal sequences are functions of codebook
length as well as the number of users [95, 136].

Suppose that z1, x9,...,xy is a set of vectors in R™ corresponding to N possible users
of an s-CDMA system. These vectors form a set of sequences of length m. Optimal
spreading sequences have been characterized in [95] to be the Welch Bound Equality
(WBE) sequences, that is, equal norm tight frames. WBE sequences minimize the total
squared correlation (TSC), that is,

TSC =" iz, (1.7)

N
i=1 j=1

which results in that the interference experienced by any user is exactly the same. How-
ever, WBE sequences do not perform well when the number of users in the cell changes.
If the number of the active users is smaller than /N, then a code set designed for N users
is no longer optimal and new codes should be assigned to all users [76].

The interference experienced by the j-th user in the system depends on the term [95]

o) = |3 s, ). (L8)
i#]

Consider a system with K < N active users. In [76] it was shown that all users experience
the same interference, which depends only on K, the current number of active users, if
and only if the code set is an equiangular sequence set.

While ETFs constitute an optimal solution for minimizing interuser interference, only
a few constructions of ETFs are available. Here, we propose the employment of nearly
equiangular frames as spreading sequences and improve interuser interference when the

number of users in the system changes.

1.2 Contributions

The main contribution of this thesis is the development of two numerical methods for the
construction of frames that are close to ETFs. The first method uses results from frame
theory and linear algebra and is based on alternating and averaged projections ideas. The
obtained frames are UNTFs with small column correlation, i.e., incoherent UNTFs. The
second method uses theoretical results concerning the connection of frames to graphs and
employs a heuristic algorithm to produce frames that are nearly equiangular, that is, the
frame vectors exhibit similar near optimal correlation. The proposed numerical meth-
ods produce frames of any dimensions, which may be employed in various applications
requiring ETF's.

Here, we apply the proposed constructions in signal processing applications, namely
sparse representations and compressed sensing, and s-CDMA communication systems.



Concerning sparse representations under redundant dictionaries, the proposed frames are
utilized in the reconstruction of sparse signals using the technique of preconditioning.
Experimental results show that the performance of the deployed numerical solvers is sub-
stantially improved. In compressed sensing the proposed frame constructions are used in
three ways. First, as projection matrices to acquire sparse signals, attaining high accu-
racy in signal reconstruction. Second, given the representation dictionary, we construct
optimized projection matrices and further improve recovery rates. Third, for the first
time, we apply preconditioning in compressed signal acquisition with binary operators.
The technique improves the performance of numerical algorithms and is very important
for practical compressed sensing applications, because binary matrices have easy hard-
ware implementation. Another application involves the employment of nearly equiangular
frames as spreading sequences in s-CDMA systems. Our simulations show that nearly
equiangular frames minimize the interuser interference when the number of users in the

system changes.

1.3 Outline

This thesis is organized as follows. In Chapter, 2 we review basic results from frame theory
and survey important work in frame design. Chapter 3 includes the proposed methods
for the construction of frames exhibiting good incoherence and spectral properties. In
Chapter 4, we review important results for sparse recovery and use the proposed frames to
apply preconditioning of underdetermined linear systems met in sparse representations. In
Chapter 5, we address sparse recovery in compressed sensing and explain how the proposed
constructions are used to produce optimized projections. We also present reconstruction
of sparse signals acquired with Bernoulli projection matrices using preconditioning. The
employment of the proposed nearly equiangular frames as spreading sequences in s-CDMA
systems is presented in Chapter 6. Finally, Chapter 7 includes conclusions and future
research directions.






CHAPTER 2

FRAMES REVIEW

2.1 Preliminaries
2.2 Finite frames basics
2.3 Connection of frames to graphs

2.4 The frame design problem

Introduced by Duffin and Schaeffer [56], frames have been known for over half a cen-
tury, but they became popular due to wavelets in the late 1980s, when Daubechies, Gross-
man and Meyer [45, 43] showed their importance for data processing. Generalizing the
notion of orthonormal bases, frames are less constrained than bases allowing for redun-
dant (overcomplete) representations, and they are used when more flexibility in choosing
a representation is needed.

Traditionally, frames are used in signal and image processing, nonharmonic Fourier
series, data compression, and sampling theory [84, 85]. For example, in signal process-
ing, frames are a flexible decomposition tool that facilitates various signal processing
tasks, having the ability to capture important signal characteristics and providing numer-
ical stability of reconstruction, resilience to additive noise and resilience to quantization
(84, 22]. Finite frames play a central role in the design and analysis of both sparse repre-
sentations and compressed sensing [124, 125, 9, 8, 27, 41]. Other applications of frames
include source coding [43, 69], robust transmission [80, 62], Code Division Multiple Ac-
cess (CDMA) systems [95, 136, 137, 140], operator theory, coding theory [110], quantum
theory and quantum computing [60].

Frame theory might be regarded as partly belonging to applied harmonic analysis,
functional analysis, and operator theory, as well as numerical linear algebra and matrix
theory. Certain frame categories such as Grassmannian frames have connections to Grass-
mannian packings, spherical codes and graph theory [119]. Therefore, frame theory and

its applications have experienced a growing interest among mathematicians, engineers,



computer scientists, and others. New theoretical insights and novel applications are con-
tinually arising due to the fact that the underlying principles of frame theory are basic
ideas which are fundamental to a wide canon of areas of research.

2.1 Preliminaries

In this section we present basic definitions and results which we will need later.

Given a positive integer m, we denote by H™ the real or complex finite Hilbert space
of dimension m. This is either R™ or C™. By (-,-) we denote the inner product and by
|| - || the corresponding norm. For x = (z1,z9,...,2y) and y = (y1,¥2, - - -, Ym), the inner
product is defined as

(@,y) =D 2. (2.1)

Two vectors x,y € H™ are called orthogonal if (x,y) = 0. The norm is defined as

2]l = vz, z) =

(2.2)

A vector x € H™ is called normalized if ||z| = 1.
Definition 2.1.1. A system {e;}}"; of vectors in H™ is called:

i. Linearly independent, if for any scalars {ay}}, and provided that e, # 0 for all
k=1,2,...,m,
> aper =0=ap =0, forallk=1,2,...,m. (2.3)
k=1

ii. Complete (or spanning set) if span{e;};r, = H™.
iii. Orthogonal if for all k£ # ¢, the vectors e, and e, are orthogonal.
iv. Orthonormal if it is orthogonal and each ej, is normalized.

v. An orthonormal basis for H™ if it is complete and orthonormal.

Proposition 2.1.1 (Parseval’s identity). If {ex}i is an orthonormal basis for H™, then
for every x € H™, we have

2l = e, 2)I*. (2.4)
k=1

It follows that

Corollary 2.1.1. If {ex}}", is an orthonormal basis for H™, then for every z € H™, we
have

=Y (e, r)ep forall =& H™ (2.5)

m
k=1
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Projections

Definition 2.1.2 (Orthogonal projection). An operator P : H — H is called a projection,
if P? = P. It is an orthogonal projection if P is also self-adjoint.

For any subspace W C H™, there is an orthogonal projection of H onto W called the
nearest point projection. One way to define it is to pick any orthonormal basis {ex}}_;,

n < m, and define
n

Pr = Z(ek,x>ek. (2.6)

k=1

Theorem 2.1.3. Let P be an orthogonal projection onto a subspace W. Then

lo = Pa| < |z —yll forall yeW (2.7)

Analysis and synthesis

Suppose x is a vector of coefficients representing data in H™. Considering a general basis
F, the following equation expresses the analysis or decomposition of x under F

X = Frz, (2.8)
where * denotes the Hermitian matrix. We can go back to = by
r=(F)X, (2.9)

which expresses the synthesis or reconstruction. If F is an orthonormal basis then F™* =
F~! thus, v = FX.

2.2 Finite frames basics

Considering a real or complex m-dimensional Hilbert space H™, a sequence of N > m
vectors {fk}szl, fr € H™, is a finite frame F', if there are positive constants «,  such
that

N
allzl <Y (fr2) < Bllal®,  forall z e H™ (2.10)
k=1

We refer to «, § as the lower and upper frame bounds, respectively.
The following notions are related to a frame { fk}szl.

(a) The ratio p = N/m is referred to as the redundancy of the frame and is a “measure
of overcompleteness” of the frame.

(b) When o = 3, we say that the frame is a-tight, while when o = 3 = 1 the frame is
called Parseval.
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(c) A frame is called uniform or equal norm, when || fx|| = C, C > 0, for all k£ €
{1,..., N}, and unit norm, when ||f¢|| =1 for all k € {1,...,N}.

(d) For a unit norm frame, the absolute value of the inner product between two frame
vectors equals the cosine of the acute angle between the lines spanned by the two
vectors. If there is a constant ¢ > 0 for which |(f, fo)| = ¢, k # £, then the frame is
called equiangular.

(e) Any orthonormal basis is a frame with frame bounds o = g = 1.

A simple example of frames is the so-called Mercedes Benz frame, the smallest redun-
dant family in H? with N = 3 vectors. It can be chosen to be a unit norm tight frame if
we just select three equally spaced points on the unit circle (i.e., each 120 degrees apart).
The vectors to these points from the origin is our unit norm tight frame.

We usually identify the m x N matrix F = [f; fo ... fn] with columns the frame
vectors fr € H™, with the frame itself. The frame bounds are then the lower and upper
bounds of the quantity

* 2 * * *
|Frz|®  (F*z, F*x) _ (x, FF x>, 40, (2.11)

Iz =l ]

These bounds are attained at the smallest and largest eigenvalues of F'F*, respectively.
We also note that the frame elements span H™ when « > 0; thus, any frame of /V elements
in m dimensions must satisfy N > m.

2.2.1 Frame operators

The analysis, synthesis, and frame operators determine the operation of a frame when
analysing and reconstructing a signal. The analysis operator-as the name suggests—
analyzes a signal in terms of the frame by computing its frame coefficients.

Definition 2.2.1 (Analysis operator). Let {fi},_, be a sequence of vectors in H™. Then
the associated analysis operator T : H™ — HY is defined by

Tx = ((z, fi))ny, = €H™ (2.12)

Definition 2.2.2 (Synthesis operator). Let {fi}r_, be a sequence of vectors in H™ with
associated analysis operator 7. Then, the adjoint operator 7™ is called the synthesis
operator.

The frame operator might be considered the most important operator associated with
a frame. Although it is “merely” the concatenation of the analysis and synthesis operator,
it encodes crucial properties of the frame as we will see in the sequel. Moreover, it is also
fundamental for the reconstruction of the signal from frame coefficients.
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Definition 2.2.3 (Frame operator). Let {fi},_, be a sequence of vectors in H™ with
associated analysis operator 7. Then the associated frame operator S : H™ — H™ is
defined by

N
Sx =TTz = Z(fk,x>fk, r e H™. (2.13)
k=1
When {f,}1_, is an orthonormal basis then Sz = x. The matrix representation of the
frame operator S = T™*T is the positive semidefinite Hermitian matrix F'F™*. The most
fundamental property of the frame operator is its invertibility which is crucial for the
reconstruction formula.
Allowing the mapping = — ((z, fx)) to capture the energy of any = € H™, recon-
struction of z is enabled with the help of some dual frame. In particular, for every frame
F = {fe}}_, for H™, there exists at least one dual frame ¥ = {4, }% | such that

N
T = Z(fk,x>wk, for all z € H™. (2.14)
k=1
Any orthogonal basis is a frame with frame bounds o« = § = 1 and corresponds to a
dual frame ¥ = F. The most often-used dual frame is the canonical dual frame, namely,
the pseudoinverse F' = (FF*)"'F. Computing a canonical dual involves the inversion of
FF*. As such when designing a frame it is important to retain control over the eigenvalues
{\i}, of FF*.
Of particular interest is also the operator generated by first applying the synthesis and
then the analysis operator.

Definition 2.2.4 (Grammian operator). Let {fi}~_, be a sequence of vectors in H™ with
associated analysis operator 7. Then the Grammian operator R : HY — HY is defined
by

N N N
Rlag)p=y =TT (ax)pey = (Z ae(fk,fz>> = (ae{fr, o))y (2.15)
/=1 k=1 (=1

The matrix representation of the Grammian of a frame is called the Gram matrix; this
is the N x N matrix R = F*F given by

WA Fa i) oo (s )]

ik B o (2.16)

(fiofn) (fosfn) oo NP

If the frame is unit norm then the entries of the Gram matrix are exactly the cosines of
the angles between the frame vectors. The following are fundamental properties of the
Gram matrix.

i. F'isan m x N frame, if and only if the Gram matrix is a self-adjoint projection with
rank m.
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ii. F'is an m x N Parseval frame, if and only if the Gram matrix is an orthogonal
projection with rank m.

iii. An operator U on H™ is unitary, if and only if the Gram matrix of {U fx }2_, coincides
with R.

iv. The nonzero eigenvalues {A}, of F*F and F'F* are the same; thus

Z = trace(F"F) = trace(FF™). (2.17)

Frames F' = {fy}+_, and G = {gi}._, are unitarily equivalent, if there exists a unitary
transformation U : H™ — H™ with F = UG = {Ufi}, k € {1,...,N}. Therefore, a

frame is determined by its Gram matrix up to unitary equivalence.

2.2.2 Tight frames

Let ' = {f,}r_, be a finite redundant frame in H™. If (2.10) holds with o = 3, we have

1 N
— Z fr, z) fr, forall z € H™, (2.18)
k=1

Q

thus obtaining an a-tight frame. In this case, the rows of o~ %/2F form an orthogonal
family, each with norm /. For an a-tight frame the following property

FF* = al,, (2.19)

where [,,, is the m x m identity matrix, follows immediately.

Constructing a tight frame is straightforward; we take an orthonormal basis and select
the desired number of rows. For example, m x N harmonic tight frames are obtained by
deleting (N — m) rows of an N x N DFT matrix.

While (2.18) resembles the expansion formula in the case of an orthonormal basis, a
tight frame does not constitute an orthonormal basis in general. Because of the linear
dependence which exists among frame vectors, the expansion is no longer unique. The
expansion is unique in the sense that it minimizes the norm of the expansion among all
valid expansions. Because of (2.19), the canonical dual frame F' = (FF*)~'F coincides
with the frame itself. Thus, tight frames provide perfect reconstruction. For this reason
tight frames are desirable in redundant signal representations.

Considering the spectral properties of an a-tight frame, the following proposition
summarizes well-known results.

Proposition 2.2.1 (Spectral properties of tight frames). A frame is a-tight if and only
if one of the following conditions holds:

(a) The nonzero eigenvalues of the Gram matriz equal c.
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(b) The nonzero singular values of F' equal /.
(¢) The spectral norm of F equals \/c.

Even though the construction of a tight frame is trivial, we cannot easily design a
tight frame with equal-norm columns; such frames exist for certain frame bounds «. For

an equal norm a-tight frame with column norms || fz|| = C, k = 1,..., N, there holds
N
trace(F*F) = Y || fill> = NC*. (2.20)
k=1

For the m nonzero eigenvalues of the frame operator there holds
m
trace(FFF™) = Z Ai = ma. (2.21)
i=1

Thus, the frame bound is given by

0N (2.22)

2.2.3 Unit norm tight frames

Finite frames that are both tight and normalized are called unit norm tight frames
(UNTFs) (the term finite normalized tight frames (FNTF) is also used) and possess a
significant structure. An intuitive characterization of UNTFs is presented in [69] where
the authors demonstrate that if one randomly chooses unit vectors according to a uni-
form distribution on a sphere, the resulting Bessel sequence is asymptotically a UNTEF.
A UNTF can be thought of as a sequence that retains the decomposition properties of
orthonormal bases while relaxing the need to be a basis. For example a concatenation of
a orthonormal bases form an a-UNTF. These expansions gain redundancy and stability
at the expense of not having a unique representation.

There is only one choice for the frame bound of a UNTF of N vectors for H”, which
is given by the following theorem.

Theorem 2.2.5 ([14]). If { fi.}}_, is a finite unit norm a-tight frame for an m-dimensional
Hilbert space H™, then o = N/m.

Therefore, a UNTF in a finite dimensional space is an m x N matrix such that
(a) The rows are orthogonal.
(b) Each row has norm /N/m.
(c) Each column has norm 1.

Another question of interest is whether UNTFs of a given N exist for a Hilbert space H™.
This question is answered by the following theorem.
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Theorem 2.2.6 (Existence of UNTFs [68]). Given any m, N, with N > m, there exists
a UNTF for H™ of N wectors.

Similar to Proposition 2.2.1 the spectral properties of a UNTF are given by the fol-
lowing proposition.

Proposition 2.2.2 (Spectral properties of UNTFS). A frame is unit norm tight if and
only if one of the following conditions holds:

(a) The nonzero eigenvalues of the Gram matriz equal N/m.
(b) The nonzero singular values of F' equal \/N/m.
(¢) The spectral norm of F equals \/N/m.

The value of the spectral norm of a UNTF is the lowest possible bound for m x N
frames [38]. The spectral norm of an arbitrary frame is often used as a measure of how
close a given frame is to a UNTF.

Unit norm tight frames are also known as Welch Bound Equality (WBE) sequences
[143]. A quarter century ago Welch published a collection of lower bounds on the max-
imum magnitude of the inner products of a set of unit norm complex valued vectors
and used these results to deduce lower bounds on the maximum magnitudes of corre-
lation functions for sets of periodic sequences. UNTFs were found to meet the lower
bounds on the mean square (RMS) magnitude, a quantity that is also known as total
squared correlation (TSC). Due to this important property UNTFs are considered optimal
spreading sequences for s-CDMA systems [95, 136, 137, 140]. Moreover, their robustness
against additive noise and erasures allows for stable reconstruction in communications
(69, 68, 31, 80].

2.2.4 Equiangular tight frames

When a unit norm tight frame has vectors forming equal angles we obtain an equiangular
tight frame. ETFs exhibit equal column correlation, which is also the smallest possible
[119]; thus, they are maximally incoherent equiangular frames. ETFs are arguably the
most important class of finite-dimensional frames, and they are the natural choice when
one tries to combine the advantages of orthonormal bases with the concept of redundancy
provided by frames.

The maximal correlation between different normalized frame vectors is defined as

p(F) = max [{fx, fo)l, (2.23)

1<k <N
kAL

and is related to a class of frames known as Grassmannian frames. A Grassmannian frame
minimizes the maximal correlation between frame elements among all unit norm frames
with the same redundancy.
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Definition 2.2.7 (Grassmannian frames [119]). A sequence of vectors F' = {fy}r_, in
H™ is called a Grassmannian frame, if it is a solution to

min p(F), (2.24)
where the minimum is taken over all unit norm frames F' in H™.

The minimum in (2.24) depends on the frame dimensions m, N. The following theorem
derives bounds on pu(F).

Theorem 2.2.8 (Minimum maximal correlation [119]). Let F = {fy}~_, be a frame in

H™. Then
N—m
Fy>,/——. 2.25
Equality holds, if and only if F' is an equiangular tight frame. Furthemore,
1
if H=R equality in (2.25) can only hold if N < %, (2.26)

if H=C -equality in (2.25) can only hold if N < m?.

In [119] it was shown that the bound in (2.25) is attained by Grassmannian frames
that also form unit norm tight frames. These frames are referred to as optimal Grass-
mannian frames and coincide with equiangular tight frames. As unit norm tight frames
with dimensions m, N exist for a specific tightness parameter (&« = N/m), an optimal
Grassmannian frame is an equiangular N/m-tight frame. Therefore, an equiangular tight
frame F' = {f,}V_, in H™ satisfies the following conditions:

fell =1 for k=1,...,N, (2.27)
N —
\(fe, fo)| = W—ml) for k#¢, (2.28)
N
E ; <33, fk> fk =g forall x € H™. (2‘29)

The lowest bound on the minimal achievable correlation for equiangular frames is also
known as Welch bound [143], and optimal Grassmannian frames or ETFs are also referred
to as Mazimal Welch Bound Equality sequences (MWBE).

Equiangular tight frames were introduced by van Lint and Seidel in the setting of
discrete geometry [134]. ETFs are particularly interesting and useful. In signal processing,
ETFs meet the Welch bound for optimal codes [76]. As spreading sequences in multiuser
communication systems the tightness condition allows equiangular tight frames to achieve
maximal capacity of a Gaussian channel and their equiangularity allows them to satisfy
an interference invariance property [76]. In sparse representations and compressed sensing
they are of interest due to their incoherence. ETFs have also been proposed for robust
transmission [80, 62].
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Despite their important properties and their numerous practical applications, there is
no explicit way of constructing ETFs. This problem is connected with other important
problems such as packings in Grassmannian spaces and antipodal spherical codes. It has
also connections to graph theory, equiangular line sets and coding theory. The techniques
reported in [126, 119, 144, 141, 64] construct a few of existent frames. A technique
proposed in [119] relies on the connection of frames to graphs and will be discussed next.

2.3 Connection of frames to graphs

Graphs with a lot of structure and symmetry play a central role in graph theory. Different
kinds of matrices are used to represent a graph, such as the Laplace matrix or adjacency
matrices [21]. What structural properties can be derived from the eigenvalues depends on
the specific matrix that is used. The Seidel adjacency matrix @) of a graph I" is given by

— 1 if the vertices x,y € I are adjacent,
Q=11 if the vertices x,y € I" are nonadjacent, (2.30)
0 if r =y.

If @ has only a few distinct eigenvalues, then the graph is strongly regular.

Studies concerning the connection of frames with graphs have shown that the existence
of an ETF in a real Hilbert space depends on the existence of a matrix ) with zero
diagonal and +1’s off-diagonal entries. This matrix corresponds to the adjacency matrix
of a special type of strongly regular graphs [119]. From [119, 80] we quote the following
definition.

Definition 2.3.1. Given an m x N equiangular tight frame F' = [f; fo ... fy], the Gram
matrix can be written in the form

R=1T+cQ, (2.31)

where I is the N x N identity matrix and ¢ is the Welch bound given by (2.25). The
N x N matrix @ is called the signature matriz of the frame F'.

The main results about signature matrices are summarized in the following theorem.

Theorem 2.3.2 ([80]). Let Q be a self-adjoint N x N matriz, with q;; = 0 for all i and
|gijl =1 for all i # j. Then the following are equivalent:

i. Q s the signature matriz of an m x N ETF.
. Q* = (N — 1)I + vQ for some necessarily real number v.

11. (Q has exactly two distinct eigenvalues, denoted as Ay < As.
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When any of the above conditions hold, the parameters m, N, v, A1, Ay satisfy certain
relations [17], implying that for many values of m, N ETFs do not exist. It can be shown
that [141]

N-—-1
A =— M, with multiplicity N — m,
N—m
(2.32)
N — N -1
Ay = \/< m)( ), with multiplicity m.
m

According to [80], there are finitely many possible N x N signature matrices and finitely
many real equiangular frames of N vectors. For more details about the connection between
graphs and frames the reader is referred to [119, 80, 17, 141, 18].

Based on the construction of conference matrices proposed in [86] and relying on the
above results, the authors of [119] proposed the construction of ETFs os size m x 2m.
Conference matrices are N x N matrices with zeros along the diagonal and +1 of diagonal
entries, satisfying CCT = (N—1)Iy, and play an important role in graph theory [86], [115].
Conference matrices exist for N = p® 4+ 1, where p is an odd prime number and o € N,
and can be constructed explicity [67, 102]. According to [119], if C*™ is a symmetric
conference matrix, then there exist 2m vectors in R™ such that the bound (2.25) holds
with equality for N = 2m. In this case the bound becomes ¢ = 1/y/2m — 1 and the Gram
matrix is obtained according to (2.31), having off-diagonal entries equal to +1//2m — 1.

2.4 The frame design problem

When designing a frame, the design specifications arise from the application of interest. As
a result, there exist a large number of construction methods, as diverse as the applications
requiring a frame. Usually, the constructions that come to address specific requirements
are difficult to generalize to solve different types of frame design problems. On the other
hand, more general constructions coming from the frame community often impose certain
restrictions on frame dimensions.

We have seen that properties such as unit normness, tightness and equiangularity
define certain classes of frames and play a significant role in applications. Therefore,
when design specifications are set they include

(a) prescribed vector norms,
(b) prescribed spectral properties,

(c) correlation constraints such as equiangularity or incoherence.

Considering the construction of a tight frame, it is easy to obtain such a frame by
selecting the desired number of rows from an N x N orthonormal basis. However, most
applications require that the vectors comprising the frame have some additional structure.
For example, tight frames with prescribed norms, or most required UNTF's, are difficult
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to construct, as row orthogonality opposes column unit normness. The design difficulties
become stronger when trying to address the main drawback of frames, that is, the cor-
relation between the frame elements. Tightness implies certain restrictions on singular
values and singular vectors which combat either column normalization or the requirement
for constant inner products between columns [126].

According to [126] finite-dimensional frame design is an algebraic problem. Frame
design aims at producing a structured matrix with certain spectral properties, a problem
that may require the use of discrete and combinatorial mathematics. Sarwate’s survey
paper [112] about tight frames includes constructions of unit-norm frames with methods
that have employed algebraic techniques. The last few years, some essentially algebraic
algorithms have been proposed that can construct tight frames with nonconstant vector
norms [136, 32, 127]. The frames proposed in [136] and [127] were designed with the
s-CDMA application in mind, while [32] comes from the frame community.

Algebraic and combinatoric tools are not always effective. In these situations, nu-
merical methods can help to produce constructions with properties that approximate
the desired theoretical specifications. Moreover, numerical methods can help researchers
develop the insight necessary for completing an algebraic construction. However, the
literature does not offer many numerical approaches to frame design.

Regarding the construction of UNTFs, most algorithms provide frames to be used
as spreading sequences in s-CDMA systems. This application prompted a long series of
papers [132, 109, 133, 3] that describe iterative methods for constructing tight frames with
prescribed column norms. Besides spectral and structural properties frames designed for
s-CDMA systems may also apply restrictions on the employed alphabet. It is not clear
how one could generalize these methods to solve different types of frame design problems.

More recent methods providing general UNTF constructions modify a given frame so
that the result is a tight frame. Three techniques are known to belong to this category. In
[19], the authors start from a tight frame and approach a UNTF by solving a differential
equation. In [29], the authors start from a unit norm frame and increase the degree of
tightness using a gradient-descent-based algorithm. Relative primeness of m and N is a
condition assumed by both techniques, though in [29] in a weaker sense. The work of [30]
comes from the frame community. “Spectral tetris” presented in [30] has the drawback
that it often generates multiple copies of the same frame vector.

Regarding the construction of equiangular tight frames, it is known that these frames
exist for certain frame dimensions [121] and most existing constructions [126, 119, 144,
107, 141, 64] impose additional restrictions. A survey on known ETFs can be found in [63].
As we have already mentioned, this problem is connected with other important problems
such as equiangular line sets and it has been addressed for over 60 years. The problem
of constructing any number (especially, the maximal number) of equiangular lines in R™
is one of the most elementary and at the same time one of the most difficult problems in
mathematics. After sixty years of research, we do not know the answer for all dimensions
m < 20 in either the real or complex case.
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Recently, the construction of equiangular tight frames has gained the interest of the
sparse modelling community, as ETFs are maximally incoherent. Due to new theoretical
results in sparse representations and compressed sensing, there is a growing interest, for
incoherent unit norm tight frames. The few numerical methods that are available in the
literature [57, 145, 82] focus on incoherence rather than on spectral properties. Clearly,
this is an open research topic.
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CHAPTER 3

CONSTRUCTION OF APPROXIMATELY
EQUIANGULAR TIGHT FRAMES

3.1 Alternating projections

3.2 Averaged projections

3.3 Construction of incoherent unit norm tight frames
3.4 Construction of nearly equiangular frames

3.5 Comparison of the proposed constructions

The research presented in this thesis is motivated by recent theoretical and practical
results formulated in sparse representations and compressed sensing, which highlight the
important role of incoherent unit norm tight frames in sparse recovery. Considering that
optimal values of incoherence and tightness are observed in equiangular tight frames
(ETFs), the frame community aims at perfect ETF constructions. Here, we focus on
the improvement of practical applications and propose two methods for the construction
of real frames as close to ETFs as possible. We perceive nearness to ETFs by means
of mutual coherence and spectral norm and design frames with unit norm vectors that
exhibit small mutual coherence and are almost or exactly tight.

The first of the methods developed here is inspired by an algorithm for designing inco-
herent matrices for compressed sensing. In [57], Elad argued that an optimized projection
matrix would be a matrix that reduces the mutual coherence of the effective dictionary
involved in sparse recovery and proposed a heuristic algorithm for its construction. Most
of the existing work for optimized projections relies on [57] and aims at reducing the mu-
tual coherence. The method developed here introduces, for the first time, the tightness
parameter in incoherent matrix design, producing unit norm tight frames with remarkably

low incoherence levels.
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The second method developed in this thesis is based on the following observation.
Studying the properties of the proposed incoherent tight frames, we noticed that these
frames have “signature” matrices with eigenvalues approximating the spectrum of a sig-
nature matrix of an ETF. Recall that the signature matrix of a real ETF is a matrix with
zero diagonal entries, +1 off-diagonal entries, and spectrum consisting of two distinct
eigenvalues, and defines ETFs up to unitary equivalence. Here, we develop an algorithm
for the construction of a matrix satisfying the structural constraints and approximating
the spectral constraints of a signature matrix of an ETF. Employing this matrix as a “sig-
nature” matrix, we produce frames that are close to ETFs. The most significant property
of these frames is that they are nearly equiangular, meaning that the frame vectors form
similar angles that are close to the optimal value. This property makes these frames
suitable for use in s-CDMA systems as spreading sequences.

Considering the design difficulties when constructing ETFs, the constraints implied
by existing constructions and the restrictions coming of frame theory regarding the frame
dimensions, the most important characteristic of the proposed algorithms is probably that
they can produce frames of any size. Thus, they can provide solutions in many signal
processing problems as well as in other applications requiring ETFs.

Both methods proposed here utilize ideas from alternating and averaged projections.
However, introducing the tightness parameter in frame design, we actually focus on ma-
trices with certain spectral requirements. Projecting onto spectral sets, that is, sets of
matrices defined via properties of their eigenvalues, is an important obstacle the pro-
posed algorithms must face. The spectral sets are not convex, therefore, they do not
admit unique projections. We start with a short presentation of alternating and averaged
projections, and discuss how these problems could be addressed.

3.1 Alternating projections

Alternating projections [139] is a very simple algorithm for computing a point in the
intersection of some convex sets, using a sequence of projections onto the sets. Suppose
S and W are closed convex sets in RY, and let Pg and Py denote the projection on S
and W, respectively. The algorithm starts with any zy € S, and then alternately projects
onto S and W:

Y = PW(Q?k), Tht1 = Pg(yk), k = 0, 1, 2, . (31)

This generates a sequence of points z € S and y, € W. If S and W are not disjoint, then
the sequences x and y;, both converge to a point x € SNW [37]. Alternating projections
computes a point in the intersection of the sets, provided they intersect. The algorithm
does not necessarily produce a point in x € S N W in a finite number of steps, but the
sequence zy, (which lies in S) satisfies dist(zy, W) — 0, and likewise for yy.

Alternating projections is also useful when the sets do not intersect. In this case the
following holds. Assume the distance between S and W is attained (i.e., there exist points
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in S and W whose distance is dist(S,W)). Then z;, — z* € S, and y, — y* € W, where
|lz* — y*|| = dist(S, W). In other words, alternating projections yields a pair of points in
S and W that have minimum distance.

There are many variations and extensions of the basic alternating projections algo-
rithm. For example, we can find a point in the intersection of £ > 2 convex sets, by
projecting onto Sp, then onto Ss, ..., and finally onto Si, and then repeating the cycle
of k projections. This is called the sequential or cyclic projection algorithm, instead of
alternating projection.

Alternating projections is very popular because of its simplicity and intuitive appeal
(see survey article [12]). The method can be slow, but it can be useful when we have
some efficient method, such as an analytical formula, for carrying out the projections.
Convergence of alternating projections on convex sets has been well studied; however,

only a few recent extensions of alternating projections consider the case of nonconvex sets

188], [87].

3.1.1 Alternating projections on nonconvex sets

Iterated projection algorithms and analogous heuristics have been successfully applied in
many nonconvex problems, in areas such as inverse eigenvalue problems [35, 36], infor-
mation theory [126], image processing [142, 13], and more. While alternating projections
is quite popular in practice, theoretical understanding is still poor. An important sub-
problem one must solve in the nonconvex case is that the projection mapping can no
longer be single-valued and may be hard to compute. However, the projection problem
for some nonconvex sets is relatively easy and computationally inexpensive [88]. Conver-
gence results on nonconvex alternating projection algorithms have been uncommon, and
have either focused on a very special case [36], or have been much weaker than for the
convex case [42, 126].

The only general convergence study is the work of [88, 87]. In [88] the authors study
alternating projections on manifolds and prove local convergence at a linear rate. A more
recent publication [87] considers alternating projections on two nonconvex sets, one of
which is assumed to be suitably “regular”; the term refers to convex sets, smooth manifolds
or feasible regions satisfying the Mangasarian-Fromovitz constraint qualification. The
authors show that the method converges locally to a point in the intersection at a linear
rate. The convergence of alternating projections on more than two sets, some of which

are nonconvex, is still an open problem.

3.2 Averaged projections

Averaged projections is a simple variation of alternating projections. At every step of
averaged projections, we project the current iteration onto every set and average the
results to obtain the value for the next iteration. We start with zo € S and yo € W, we

25



form the average, zo = (zo + y0)/2, and set 1 = Ps(20) and y; = Pw(29). Then, we
repeat
2k = Tk +Uk)/2, T =Ps(z), Ye1=Pwl(z), k=12,... (3.2)

Global convergence of this method in the case of two closed convex sets was proved in [5].

Similar to alternating projections, the method of averaged projections might appear
hard to implement on concrete nonconvex problems. The only work analysing convergence
of averaged projections for nonconvex sets is the work of [87]. According to [87], studying
the convergence of iterative algorithms for nonconvex minimization problems must be
equipped with a local theory.

Local linear convergence requires good geometric properties such as convexity, smooth-
ness, or “prox-regularity”. Proz-reqular sets is a large class of sets that admit unique
projections locally. It is known [88] that convex sets and smooth manifolds (see Appendix
A) belong to this category. Considering averaged projections on several prox-regular sets,
the authors of [87] assert that the method converges locally at a linear rate to a point in
the intersection as long as the intersection satisfies some properties.

3.2.1 Convergence for averaged projections on prox-regular sets

The crucial idea behind the convergence analysis presented in [87] is the notion of strongly
reqular intersection. The main result in [87] states that when several prox-regular sets
have strongly reqular intersection at some point, the method converges locally at a linear
rate to a point in the intersection. Strongly regular intersection is important to prevent the
algorithm from projecting near a locally extremal point. The notion of a locally extremal
point in the intersection of some sets is the following: if we restrict to a neighborhood of
such a point and then translate the sets by small distances, their intersection may render
empty. Therefore, not choosing a locally extremal point as initial point in a projections
algorithm is a critical hypothesis for convergence.

In order to make clear that strong regularity implies local extremality, we present here
the relevant definitions for the case of two sets. For more details the reader is referred to
187].

Definition 3.2.1 (Locally extremal point [87]). Denoting by E the Euclidean space,
consider two sets H,G C E. A point £ € H NG is locally extremal for this pair of sets, if
there exists a positive p and a sequence of vectors z, — 0 in [E such that

(H+2z)NGNB,(z) =0, forall r =1,2,...,

where B,(7) is the closed ball of radius p centered at z. Clearly 7 is not locally extremal,
if and only if

0 € int(((H — %) N pB) — (G — ) N pB)), for all p > 0,

where B is the closed unit ball in E.
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Definition 3.2.2 (Strongly regular intersection). Two sets H, G C E have strongly reg-
ular intersection at a point z € H N G if there exists a constant o > 0 such that

apB C (H—x)NpB) —((G—2)NpB)
for all z € H near z and 2z € GG near Z.

By considering the case x = 2z = ¥, we see that strongly regular intersection at a point
Z implies that z is not locally extremal. Conversely, finding a point in the intersection of
the involved sets that is not locally extremal, implies that the sets have strongly regular
intersection at this point.

Now, we can summarize the results of [87] regarding averaged projections.

Theorem 3.2.3. Consider prox-regular sets Hi, Ho, ..., H;, C E having strongly regular
intersection at a point * € NH;, and any constant k > cond(Hy, Hs, ..., Hr|z). Then,
starting from any point near T, one iteration of the method of averaged projections reduces

the mean squared distance
L
1
D=—) d;
2L 2 i

by a factor of at least 1 — k%L

The condition modulus cond(Hy, Hs, ..., Hy|Z) is a positive constant that quantifies
strong regularity [87]. The distance dy, between the current iteration x and the set H; we
project on is defined as dy, = inf{||z — X||- : X € H;}, with ||-|| - denoting the Frobenius

norm.

3.3 Construction of incoherent unit norm tight frames

When aiming at minimization of the correlation of a matrix, a common strategy is to
work with the Gram matrix. Recall that given an m x N matrix F', with columns F' =
[fi fo...fn], the Gram matrix is the N x N matrix G = FTF, with the (i, j) entry of
G being the correlation between the i-th and the j-th column of F, that is, g;; = (fi, f;)-
Reducing column correlation of F' is equivalent to applying a “shrinkage” operation on
the off-diagonal entries of the Gram matrix. The first method we propose here for the
construction of incoherent UNTFs is inspired by the work presented in [57]. In [57],
Elad proposed an algorithm for the construction of incoherent matrices, which were used
to obtain optimized projection matrices for compressed sensing. In compressed sensing,
F stands for the effective dictionary employed in sparse recovery, which comes of the
product of the projection matrix P and the sparsifying dictionary D, F' = PD. In
order to minimize the correlation between the columns of F', Elad proposed the following

operation
VGij> l9i5] > 1,
gij =  vt-sgn(gij), t>|gi] >t (3.3)
9ij» vt > g3l
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where v and ¢ are appropriate scalars. Indeed, the m x N matrix obtained by the “shrunk”
Gram exhibits improved mutual coherence, resulting in higher reconstruction accuracy
when used in compressed sensing. Notice that, having computed an incoherent matrix
F, optimized projections P are obtained by solving the least squares problem minp || F' —
PDI3

Considering the important role of incoherence in sparse signal recovery, many authors
have argued that ETFs are ideal candidates for these problems as these frames exhibit
the lowest possible mutual coherence. However, very few results concern the employment
of ETFs in compressed sensing and the main reason for this are the difficulties in their
construction.

The method presented here aims at the construction of frames that are as close to
ETFs as possible. The proposed construction strategy is based on the observation that
ETFSs not only exhibit minimal mutual coherence, but N/m-tightness as well. Thus, we
proposed in [128] the following design methodology: Suppose we compute a matrix with
small mutual coherence. Then, the problem of approximating an ETF reduces to finding a
UNTF that is nearest to the computed incoherent matrix, in Frobenius norm. Computing
a UNTF that is nearest to a given matrix, is a matrix nearness problem, which can be
solved algebraically by employing the following algebraic theorem.

Theorem 3.3.1 (Nearest tight frame [126, 81]). Given a matric F € R™N N > m,
suppose F has singular value decomposition (SVD) UXVT. With respect to the Frobenius
norm, a nearest a-tight frame F' to F is given by /a - UVT. Assume, in addition, that
F has full row-rank. Then \/a-UVT is the unique a-tight frame closest to F.. Moreover,
one may compute UV using the formula (FFT)™'/2F.

The proposed design methodology is alternating between tightness and incoherence.
The algorithm presented in [128] is a preliminary result of our work and utilizes the
“shrinkage” operation proposed by Elad to improve incoherence, and Theorem 3.3.1 to
improve tightness. Changing the “shrinkage” operation according to

G = {Sgn(gi]‘) (1/v/m), if 1/v/m <lgy| <1,

' (3.4)
Gijs otherwise,

we obtain the algorithms presented in [129], which provide a better formulation and a
clearer insight of the process described in [128]. The presented construction strategy is
implemented utilizing alternating and averaged projections.

3.3.1 Algorithm 1

The first algorithm starts from an arbitrary m x N matrix that has full rank and se-
quentially applies (3.4) and Theorem 3.3.1. The “shrinkage” process reduces the matrix
mutual coherence, while Theorem 3.3.1 finds an N/m-tight frame that is nearest to the
incoherent matrix. The selected bound 1/4/m is approximately equal to the lowest possi-
ble bound (see eq. (2.25)) for large values of N. Other choices of the bound might perform
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better depending on the frame dimensions. Combined with Theorem 3.3.1, the proposed
Gram matrix processing yields highly incoherent UNTF's.

Algorithm 1 Construction of incoherent UNTFs with Alternating Projections
Input: m x N frame Fj, iterations I TER
Output: m x N incoherent UNTF F 4,

for ¢ := 1 to ITER do
F, = norme(F,) // column normalization
G, = F;Tﬁ'q // obtain the Gram matrix
for 1 :=1to N do
for j:=1to N do

9ij = Yij
if 7 # j then
if |g;;| > 1/V/d then
Gi; = sgn(gi;)(1/v/d) // apply (3.4) to bound off-diagonal entries

U, %, V] = svd(G,)
Y=X1:m,1:m)
U=U(1:m,1:m)
V=V({1:m,1:m)
G = UXV // Reduce the rank of G, to m
G = diag(1./sqrt(diag(G)))- G -diag(1./sqrt(diag(G))) // normalize the Gram matrix
U, 2, V]=svd(G) /] U=V
Sy =sart(X)VT // Obtain S, € R™*N such that SI'S, = G,
St =/N/m-(S,5)~'/2S, // Find the nearest N/m-tight frame
Fo1=S5

q

The algorithm we propose is iterative. We employ as initial matrix Fj a tight frame
nearest to a random Gaussian matrix. In the ¢-th iteration, the process that reduces
the mutual coherence involves “shrinkage” operations on the Gram matrix Gy; thus, a
column normalization step precedes the main steps of our method. After applying (3.4),
the modified Gram matrix éq may have rank larger than m. We obtain the nearest m-
rank Gram matrix using SVD. Decomposing the new Gram matrix Gq, we obtain the
incoherent matrix S, such that SqTSq = Gq. Next, Theorem 3.3.1 is applied to S, to
obtain an incoherent tight frame. Therefore, the ¢-th iteration of Algorithm 1 involves

the following:

1. Obtain the matrix Fq, after column normalization of Fj,.

2. Calculate the Gram matrix qu = F:}“Fq and apply (3.4) to bound the absolute values
of the off-diagonal entries, producing éq.

3. Apply SVD to G~q to force the matrix rank to be equal to m, obtaining Gq.

4. A matrix S; € R™" is obtained such that SgSq = Gq.
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Figure 3.1: Convergence of Algorithm 1 (alternating projections) for a 60 x 120 matrix.

The mean squared distance between the current iteration and the sets we project on
reduces in a linear rate.

5. Find S}, the nearest N/m-tight frame to S, according to S; = \/N/m-(S,S})~/25,,
Set, Fq+1 = Sq.

3.3.2 Convergence of Algorithm 1

The proposed algorithm is actually an alternating projections algorithm. More particu-
larly, the proposed algorithm projects onto the following sets:

1. The set Y of N x N Gram matrices of m x N unit norm frames,
Y ={GeRV"N:G=G"g;=1,i=1,...,N}.
2. The set Z of N x N symmetric matrices with bounded off-diagonal entries,
7 ={G e RN .G =G"|gijl <1/v/m,i#j,i,j =1,...,N}.
3. The set W of rank-m, N x N symmetric matrices,
W ={GeRV*N:G=G" rank(G) =m}.

4. The set S of N x N Gram matrices of m x N a-tight frames,
S ={G ¢ R"*N . G = G*, with only

m nonzero eigenvalues, all equal to a}.

As we have already mentioned, alternating projections has been well studied for closed
convex sets. However, from the above sets only Y and Z are convex, whereas W and S
are smooth manifolds [88]. Therefore, our discussion regarding convergence of Algorithm
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Figure 3.2: Convergence of Algorithm 1 (alternating projections) for a 25 x 120 matrix.
The convergence rate depends on the bound used in eq. (3.4). In (a) we observe a
sub-linear convergence rate when the bound equals 1/y/m. In (b) the convergence rate
becomes linear as the bound is relaxed to 3/2y/m.

1 is mainly based on numerical results. To illustrate convergence, we need to define the

mean squared distance of the current iteration from the sets involved in the projections,

that is ]

D(q) = 3

where the distance d(G,, H) between the current iteration GG, and the set H we project
on is defined as d(Gy, H) = dg = inf{||G, — X|| - : X € H}.

In figures 3.1 and 3.2 we display log,, D(q) when Algorithm 1 is applied to a 60 x 120

(d*(G, YY)+ d*(Gy, Z) + d*(Gy, W) + d*(G, S)),

and a 25 x 120 matrix, respectively. Figure 3.1 shows that the proposed algorithm con-
verges at a linear rate, constructing a frame that belongs to the intersection of the involved
sets. The zeroing of the mean squared distance implies that the produced frame is indeed
an incoherent UNTF. When the frame redundancy increases, the numerical results be-
come a little different. Figure 3.2(a) shows that the convergence rate for a 25 x 120 frame
is sub-linear and the produced frame does not belong to the intersection of the involved
sets. Considering the increased difficulties of constructing incoherent frames of high re-
dundancy, this result is not surprising; it is possible that either the intersection is empty
or it has properties that bring on difficulties to the proposed algorithm. Experiments
performed with a relaxed incoherence level, which is determined by the bound 1/y/m in
eq. (3.4) confirm our conjecture. A relaxed bound yields a broader set Z and increases
the probability that the intersection has good properties. Figure 3.2(b) illustrates con-
vergence of Algorithm 1 when the bound 1/y/m in eq. (3.4) is replaced by 3/2y/m. We
can see that the convergence rate becomes linear and the produced matrix belongs to the
intersection of the involved sets.
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3.3.3 Algorithm 2

Algorithm 2 Construction of incoherent UNTFs with Averaged Projections
Input: N x N initial Gram matrix G, iterations ITER
Output: m x N incoherent UNTF Fj;

for ¢ :=1 to ITER do
Py (G,) = diag(1./sqrt(diag(G,))) - G, - diag(1./sqrt(diag(G,))) // Normalize the
Gram matrix
for i :=1to N do
for j:=1to N do
Gij = i
if 1 # j then
if |gi;| > 1/V/d then
Gij = sgn(gij)(l/\/g) // Apply (3.4) to bound the Gram entries
Pz(Gq) = {95}

U, 2,V] = svd(G,)
Y=X1:m,1:m)

U=U(1:m,1:m)

V=V({1:m,1:m)

Pw(G,) =UXV // Reduce the rank of G, to m
a=N/m

Y = diag{o im o}

Ps(G,) =UX'UT // Symmetric matrix with m eigenvalues all equal to N/m
Gyir = HPY(Gy) + P(Gy) + Pur(Gy) + Ps(Gy)) // Apvly (3.5)

U2, V] =svd(Gy1) // U=V

Y=X1:m,1:m)

U=U(l:m,1:m)

V=V({1:m,1:m)

Fou = sqrt(2)V7T

Considering the difficulties in studying alternating projections on nonconvex sets, we
propose here a similar algorithm for the construction of incoherent UNTF's that relies on
averaged projections. Suppose (G is the initial Gram matrix. We consider the following
projections: Py (Gy) the projection onto the set of N x N symmetric matrices with unit
diagonal, Pz(Gy) the projection onto the set of N x N symmetric matrices with bounded
off-diagonal entries, Py (Go) the projection onto the set of rank-m N x N symmetric
matrices, Ps(Go) the projection onto the set of N x N symmetric matrices with m nonzero
eigenvalues equal to N/m. If G is the Gram matrix calculated in the g-th iteration, then
a modified version of Algorithm 1 would consider as input in the (¢ + 1)-th iteration the
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average

Gorr = 3(Pr(Gy) + Pa(Gy) + Pul(Gy) + Ps(Ga)). (35)

The projection Pg(G,) can be calculated using Theorem A.2 given in the Appendix A.
If G, = UXUT" is the eigenvalue decomposition of the symmetric matrix obtained in the
g-th iteration, then Ps(G,) = UX'UT with X’ being a diagonal matrix with m entries
equal to N/m and the rest zero.

Again we start from a random Gaussian matrix and apply Theorem 3.3.1 to obtain
a nearest tight frame Fj; then we calculate the Gram matrix Gy = F(;[FO. In the g¢-th
iteration we execute the following steps:

1. Normalize the Gram matrix to obtain a symmetric matrix with unit diagonal. This
is the projection Py (G,).

2. Apply (3.4) on G, to bound the absolute values of the off-diagonal entries, producing
Pz (Gq)-

3. Apply SVD to G, to force the matrix rank to be equal to m, obtaining Py (G,,).

4. If G, = UXUT then Ps(G,) = UX'UT with X’ being a diagonal matrix with m
entries all equal to N/m and the rest zero.

5. Calculate the average Gram matrix G4, according to (3.5).

3.3.4 Convergence of Algorithm 2

The convergence of averaged projections algorithm is straightforward, considering the
results presented in 3.2.1. The sets Y, Z, W and S involved in Algorithm 2 are prox-
regular: Y, Z are convex and W, S are smooth manifolds. Their intersection is very likely
to be strongly regular; the fact that our initial matrix is a random Gaussian matrix
minimizes the probability of choosing an initial point that is near to a locally extremal
point. Though we cannot guarantee strong regularity for the above sets, randomness
seems to prevent us from irregular solutions. Therefore, we expect that the averaged
projections algorithm converges linearly to a point in the intersection of the above sets.
Let us see what experimental results show. Figures 3.3 and 3.4 present mean squared
distance for the averaged projections algorithm. Indeed, in Fig. 3.3 the results for a
matrix of redundancy equal to 2 confirm a linear convergence rate and are in agreement
with our theoretical expectations. Moreover, the zero mean squared distance implies that
the obtained frame belongs to the intersection of the involved sets, that is, it forms an
incoherent UNTF. The results are a little different for a matrix with higher redundancy.
As we can see in Fig. 3.4(b), the rate of convergence becomes sub-linear, indicating that
the intersection of the involved sets is either empty or does not have the desired properties.
Relaxing the imposed incoherence level, i.e., using a larger bound than 1/4/m in eq. (3.4),
we obtain a broader set 7, increasing the probability that the intersection of the involved
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Figure 3.3: Convergence of Algorithm 2 (averaged projections) for a 60 x 120 matrix. The
mean squared distance between the current iteration and the sets we project on reduces
in a linear rate.

sets satisfies the sufficient conditions formulated in Theorem 3.2.3. The experiments
performed with the new set Z yield a linear convergence rate (Fig. 3.4(b)), confirming
our conjecture.

Comparing the convergence of the two proposed algorithms, an important note is that
the presented experiments show that the results of the proposed averaged projections
algorithm are similar to the alternating projections. Of course, there is a significant
difference regarding the slope of the convergence curve; alternating projections is faster
than averaged projections. However, the shapes of the curves are identical in all examples
employed in our experiments. Therefore, even though the theoretical justification of
the proposed alternating projections needs further investigation, the experimental results
encourage its use for the proposed constructions. In the next subsection, we present some
experiments demonstrating the properties of the obtained frames, showing that both
algorithms give similar results.

Before proceeding to more experiments and applications, we would like to clarify a
point concerning the incoherence level constraint. One might wonder what is the effect of
the imposed incoherence level on the proposed construction. Do we obtain frames with
similar properties, regardless of the bound used in eq. (3.4)?7 The answer is that the
frame properties are similar but not identical. Depending on the frame redundancy, there
is a lower incoherence bound that should not be exceeded; otherwise, the smaller the
incoherence bound we impose, the worse the incoherence level we finally obtain. Thus,
the selected bound needs fine tuning. However, the proposed bound 1/1/m works well for
the constructions considered in this thesis.

3.3.5 Experimental results

In order to test the performance of the proposed algorithms, this section includes ex-
perimental results that demonstrate the properties of the obtained constructions. The
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Figure 3.4: Convergence of Algorithm 2 (averaged projections) for a 25 x 120 matrix. The
convergence rate depends on the bound used in eq. (3.4). In (a) we observe a sub-linear
convergence rate when the bound equals 1/y/m. In (b) the convergence rate becomes
linear as the bound is relaxed to 3/2y/m.

results concern mainly the mutual coherence that expresses the similarity between frame
elements and the spectral norm that expresses how close is a frame to a UNTEF.

We begin with Fig. 3.5 that illustrates three snapshots of execution including 500 it-
erations, depicting the achieved mutual coherence and spectral norm at every iteration.
The examples involve frames of size 60 x 120, 40 x 120 and 20 x 120. The obtained re-
sults confirm our convergence discussion, showing that alternating projections algorithm
is faster than averaged projections. However, both algorithms finally converge to simi-
lar values regarding mutual coherence and spectral norm. The attained results for the
spectral norm coincide with the target values, while for the mutual coherence they are
close to the minimum bound. Regarding spectral norm , the results for alternating pro-
jections are impressive showing that the algorithm meets the minimum bound after only
a few iterations; both algorithms finally attain to produce UNTFs. The most important
observation concerning the proposed algorithms is that their performance depends on the
frame dimensions, or, more accurately, on the frame redundancy (p = N/m for an m x N
frame). The lower the frame redundancy, the smaller the distance between the properties
of the obtained frames and the target values. This behaviour is more obvious regarding
the mutual coherence, but it also affects the spectral norm for large values of redundancy
and is in agreement with the convergence discussion of the previous paragraph. Average
results presented next confirm these observations.

Tables 3.1 and 3.2 include average values of mutual coherence and spectral norm , re-
spectively, for m x 120 frames, with m = 20 : 20 : 100. The first column concerns random
Gaussian matrices, the second column frames obtained with alternating projections (Al-
gorithm 1) and the third column frames obtained with averaged projections (Algorithm
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of iterations. The experiments involve frames of various dimensions.

36



Figure 3.6:

Figure 3.7:

3000

Random Gaussian

2000

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Algorithm 1
3000 T
2000 B
1000 B
0 . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Algorithm 2
3000 T
2000 B
1000 B
0 . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distribution

3000

of Gram matrix entries of a 60 x 120 frame.

Random Gaussian

2000

1000 -

3000

Omlmm-n- ‘

0.4 0.5 0.6

Algorithm 1
T

0.7 0.8 0.9 1

2000

3000

1000 - I|
0 ™

0.4 0.5 0.6

Algorithm 2
T

0.7 0.8 0.9 1

2000

1000

Distribution of Gram matrix

0.4 0.5 0.6

37

0.7 0.8 0.9 1

entries of a 20 x 120 frame.



Table 3.1: Mutual coherence of m x N frames, with m = 20 : 20 : 100 and N = 120.

m || Gaussian | Algorithm 1 | Algorithm 2 | Optimal
20 0.756 0.339 0.393 0.205
40 0.577 0.169 0.199 0.130
60 0.472 0.129 0.138 0.092
80 0.428 0.112 0.114 0.065
100 0.384 0.100 0.103 0.041

Table 3.2: Spectral norm of m x N frames, with m = 20 : 20 : 100 and N = 120.

m || Gaussian | Algorithm 1 | Algorithm 2 | Optimal
20 3.281 2.450 2.483 2.450
40 2.637 1.732 1.752 1.732
60 2.333 1.414 1.421 1.414
80 2.158 1.225 1.227 1.225
100 2.044 1.095 1.097 1.095

2). The execution of algorithms involves 100 iterations. It is clear that both algorithms
yield similar constructions, that is, they produce highly incoherent UNTFs. A small dis-
crepancy between the results of the proposed algorithms can be erased if we increase the
number of iterations so that the slow averaged projections algorithm catches up alternat-
ing projections. For medium and low redundacy the obtained values for mutual coherence
approximate the lowest possible bound.

A better insight into the obtained constructions can be attained by demonstrating
the distribution of the off-diagonal entries (absolute values) of the corresponding Gram
matrix. Figures 3.6 and 3.7 present results for a 60 x 120 and a 20 x 120 frame, obtained
after 100 iterations of the proposed algorithms. Compared to the original random Gaus-
sian matrix, most correlation values of the incoherent UNTFs are concentrated near the
optimal minimum bound, showing that the obtained constructions are close to ETF's.

Before concluding, we would like to note that the proposed frames are compared with
other techniques that produce incoherent matrices for compressed sensing in Chapter 5,
where they are used for sensing sparse signals. The reason for choosing not to make
a comparison with existing methods at this point is that no other method for designing
general purpose incoherent UNTFs has been proposed in the literature. As a final remark,
we would like to emphasize that the algorithms proposed here utilizing alternating and
averaged projections can yield incoherent UNTF's of any dimensions, providing an efficient
tool for the construction of frames that are close to ETFs even if ETFs with the given
dimensions do not actually exist.
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3.4 Construction of nearly equiangular frames

The second technique we present for the construction of frames that are close to ETFs is
based on ideas coming from graph theory. Summarizing the results presented in Section
2.3, an ETF can be defined up to unitary equivalence by its so-called signature matrix.
Considering real equiangular frames, the corresponding signature matrix is a symmetric
matrix with zero diagonal and +1’s off-diagonal entries, and it can be thought of as the
adjacency matrix of a graph. The most important property of a signature matrix is its
spectrum, consisting of exactly two eigenvalues \;, Ay, with multiplicity N — m and m,
respectively, given by

R 39

Therefore, the problem of designing an ETF can be reduced to an inverse eigenvalue prob-
lem, that is, the construction of a matrix with specific structure and spectrum consisting
of two distinct eigenvalues.

Many signature matrices that correspond to ETFs are known and constructions of
ETFs based on signature matrices have been proposed in [119]. These techniques impose
certain restrictions on frame dimensions. In this thesis, we consider frames of arbitrary
dimensions and construct a symmetric matrix with spectrum that approximates the spec-
trum of the corresponding signature matrix. The obtained matrix is then used for the
construction of frames that are close to ETFs. The produced frames are almost tight,
with frame vectors forming angles that approximate the optimal value.

Inverse eigenvalue problems (IEPs) concern the construction of a matrix from pre-
scribed spectral data. A large category of TEPs includes structured inverse eigenvalue
problems (SIEPs), where given a set N of specially structured matrices and a set of
scalars {)\i}i]\il, A; € R, corresponding to the desired spectrum, we want to find a matrix
X € N such that o(X) = {\;} Y, where spectrum o(X) [40].

The signature matrix of an ETF is a symmetric matrix with zero diagonal, +1’s off-
diagonal entries, and spectrum containing the eigenvalues given by (3.6). The problem
we need to solve to find a signature matrix is a SIEP formulated as follows.

Signature Matrix Inverse Eigenvalue Problem (SMIEP). Considering a set of two
real numbers, A1, Ny, given by (3.6), find a symmetric N x N matriz with zero diagonal,
+1’s off-diagonal entries, and spectrum

0'2{2\1,...,)\152\2,...,)\%}, m < N. (37)
N‘—rm ‘ng

SIEPs are difficult to solve and most of the existing algorithms have been designed for
problems of special type [40, 101]. The numerical method proposed here for SMIEP does
not always produce an exact solution. However, it can produce an approximate solution
satisfying structural constraints and approximating spectral constraints. Although such
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a matrix is not the signature matrix of an ETF, it can be used to obtain a frame that is
close to an ETF as we will see in the sequel.

The work presented here is based on the observation that real frames that are close
to ETFs (e.g., incoherent frames proposed in [129]) have “signature” matrices with eigen-
values that approximate the spectrum of a signature matrix corresponding to an ETF.
Before proceeding, we need to explain what we call a “signature” matrix of an arbitrary
real frame. Suppose we are given an ETF with dimensions m, N. From equation (2.31)
we see that we can derive the N x N signature matrix from the corresponding Gram
matrix by keeping the signs of the off-diagonal entries and zeroing the diagonal. In the
same manner, we can obtain an N x N symmetric matrix with £+1’s off-diagonal entries
and zero diagonal from the Gram matrix of an arbitrary m x N frame. Therefore, we are
led to the following definition.

Definition 3.4.1 (Signature matrix of an arbitrary frame). The signature matriz Q@ of
an arbitrary m X N real frame F = [f1 fo ... fx]is the N x N matrix with entries derived
from the corresponding Gram matrix, R = FTF, according to

sgn(ry), 177,
qi; = { ’ ) . (3-8)
0, =7,

where r;; is the (i,j) entry of R. Obviously, the eigenvalues of an arbitrary signature
matrix do not satisfy (3.6).

Now we can explain the main idea of the work presented here. Let us make the
assumption that an ETF with arbitrary dimensions m, N exists, and use (3.6), (3.7), to
calculate the spectrum of the corresponding signature matrix. If we construct a matrix
with spectrum close to (3.7), satisfying the structure of a signature matrix, then, using
(2.31), we obtain an m x N frame with good spectral properties and frame vectors forming
angles near the optimal value. We refer to this frame as nearly equiangular.

3.4.1 Construction of signature matrices

A special case of SIEP is the symmetric nonnegative inverse eigenvalue problem (SNIEP),
that is, finding a symmetric matrix with nonnegative entries and prescribed spectrum. A
numerical method for the solution of SNIEP was presented in [101], where the authors
utilize alternating projection ideas and propose an algorithm in which, first, the eigenvalue
decomposition is used to impose the desired spectrum, and, subsequently, every negative
entry of the obtained matrix is set to zero to obtain a nonnegative matrix.

Inspired by the work of [101], we propose here an algorithm that imposes structural
and spectral constraints on a randomly generated symmetric matrix to find a solution to
SMIEP. Starting from an initial matrix )y with the prescribed structure, and using an
iterative process consisting of two steps, in the k-th iteration we do the following:

Step 1. Compute the eigenvalue decomposition Q_; = PAP~!, where A is a diagonal
matrix containing the eigenvalues of (Jy_; and P is the matrix of the corresponding
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eigenvectors. Then, produce a matrix with the desired spectrum o according to @k =
PY P! where ¥ := diag(o) is the diagonal matrix with entries the desired eigenvalues.

Step 2. Obtain a matrix @), with the desired structure that is close to @k, by keeping
the signs of the off-diagonal entries of )5 and set the diagonal to zero,

T e o9
0, 1 =7.

Step 1 replaces the eigenvalues of the given matrix with the requested ones; thus, it yields
a matrix with the desired spectrum, impairing the matrix structure. This step actually
uses Theorem A.2 given in the Appendix and projects on the spectral set of matrices
with spectrum o. Step 2 yields a matrix exhibiting the requested structure, impairing
the matrix spectrum. The above steps bring up Algorithm 3. Note that, due to small
numerical inaccuracy, @k from Step 1 may not be perfectly symmetric; thus, we perform
the following operation: Q := 0.5 - (QT + Qy).

Algorithm 3 Signature Matrix Construction I
Input: initial N x N signature matrix (Jy, spectrum o, iterations I'TER

Output: N x N symmetric matrix i, with zero diagonal, +1’s off-diagonal entries and
spectrum approximate to o

Y = diag(o)
for k£ :=1 to ITER do
[P, A] := EigenDecomp(Qy_1) // Q-1 = PAP™!
Q= PX P! // apply desired spectrum
Qr = 05- (QF + Q)
for every entry of @), ¢i;, do
if i == j then
¢;j =0 // diagonal entries
else
¢ij = sgn(q;j) // off-diagonal entries
k=Fk+1

Studying the convergence of the proposed algorithm is not a trivial task. Well known
results from alternating projections cannot be applied here because convexity conditions
for the employed sets are not satisfied, and in case the corresponding ETF does not exist,
SMIEP is not solvable. Therefore, our results will be basically experimental. First, we
use Algorithm 3 to compute signature matrices of ETFs that are known to exist. Our
experiments have shown that the algorithm can produce the signature matrices of ETF's
with dimensions m x (m+1) in a few iterations. When the algorithm is used to construct
ETFs of other dimensions, e.g., 5 x 10, 6 x 16, it may need a few trials (with different
starting matrices) to find the corresponding signature matrices. A possible explanation
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Figure 3.8: The spectrum of the signature matrix of a 64 x 128 random Gaussian matrix
before and after processing the matrix with Algorithms 3 and 4. The black dotted line
stands for the spectrum of the signature matrix corresponding to a 64 x 128 ETF.

for this is that the algorithm may converge locally, thus, finding a solution depends on
the starting matrix. As an example we cite the signature matrix of a 6 x 16 ETF.

o +1 41 -1 41 -1 +1 +1 -1 +1 +1 -1 41 -1 +1 -1
+ 0 +1 +1 41 -1 -1 +1 +1 -1 +1 +1 +1 -1 +1 +1
+1 +1 O0 -1 41 -1 -1 -1 +1 +1 -1 +1 +1 +1 +1 -1
-1 +41 -1 0 -1 -1 -1 +1 +1 -1 -1 -1 +1 -1 -1 +1
+1 +11 +1 -1 0 -1 41 -1 -1 -1 +1 +1 +1 +1 -1 +1
-1 -1-1-1 -1 O -1 -1 -1 -1 +1 +1 -1 -1 +1 -1
+1 -1 -1 -1 +41 -1 0 +1 -1 41 +1 -1 -1 41 -1 +1
+ +1 -1 +1 -1 -1 +41 O +1 +1 +1 -1 -1 -1 +1 +1
-1+ +1 +1 -1 -1 -1 +1 0 +1 -1 +1 -1 +1 +1 +1
+ -1+ -1 -1 -1 +1 +1 41 O -1 -1 -1 +1 +1 -1
+ +1 -1 -1 +1 +1 +1 +1 -1 -1 O +1 -1 -1 +1 +1
-1+ +41 -1 +1 41 -1 -1 +1 -1 41 O -1 +1 +1 +1
+1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 -1
-1 -1 +41 -1 +1 -1 41 -1 +1 +1 -1 +1 -1 0 -1 +1
+ +1 +1 -1 -1 41 -1 +1 +1 +1 +1 +1 -1 -1 0 -1
-1+ -1 +1 +1 -1 +41 +1 +1 -1 +1 +1 -1 +1 -1 O

Considering that these frame constructions are already known, the most important re-
sult of Algorithm 3 concerns finding the signature matrices of nearly equiangular frames of
arbitrary dimensions. Testing the algorithm with signature matrices of frames of various
dimensions has shown that after a few iterations we obtain a matrix with the requested
structure and significantly improved spectrum that approximates (3.7); therefore, Algo-
rithm 3 yields an approximate solution to SMIEP. Figure 3.8 demonstrates results con-
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cerning the spectrum of a signature matrix before and after applying Algorithm 3. The
initial signature matrix was obtained by a random Gaussian 64 x 128 matrix.

Algorithm 4 Signature Matrix Construction II
Input: initial N x N signature matrix )y, spectrum o, iterations I'TER

Output: N x N symmetric matrix ()i, with zero diagonal, +1’s off-diagonal entries and

spectrum approximate to o

Y = diag(o)
for £ :=1 to ITER do
[P, A] := EigenDecomp(Qx_1) // Qr_1 = PAP™!
Q= PyYpr!
Qr =05+ (QF + Q)
for every entry of @), ¢i;j, do
if 1 == j then
if |¢;;| <t then
¢;; =0 // diagonal entries
else
if |1 — |g;j|| <t then
¢i; = sgn(q;j) // off-diagonal entries
k=Fk+1
for every off-diagonal entry do
Gij = sgn(dij)
for every diagonal entry do
¢i =0

Our experiments with Algorithm 3 have shown that, even though the proposed pro-
cessing improves the signature matrix spectrum substantially, it becomes ineffective after
a few iterations. To further improve our results, we propose to modify the second step as
follows. Before changing the value of a matrix entry according to (3.9), we examine its dis-
tance from 1 (off-diagonal) or 0 (diagonal). To avoid a significant spectrum impairment,
if this distance exceeds a threshold ¢, we keep the entry unchanged, that is

sen(di;), if |1—ldgll <t, i#7,
% =90 it [qi;| <, i=j, (3.10)

Gij otherwise.

This way the k-th iteration does not produce a matrix having the appropriate entries, but
structure is improved gradually. After a number of iterations is reached, we apply (3.9)
to finally produce a matrix with the desired structure. Thus, we are led to Algorithm 4.
Experimental results showing the improvement achieved with Algorithm 4 are presented
in Fig. 3.8.
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3.4.2 Nearly equiangular frames based on signature matrices

The signature matrix obtained by Algorithm 4 will be used next to construct a nearly
equiangular frame. First, we construct the Gram matrix R according to (2.31). A sym-
metric N X N matrix obtained by (2.31) corresponds to an m x N frame, if it is of rank
m. Thus, a rank reduction step follows. Using singular value decomposition (SVD), we
keep the m largest eigenvalues and set the rest to zero. The matrix produced after rank
reduction may not have ones in the diagonal; therefore, a normalization step follows to
ensure that the Gram matrix corresponds to a unit norm frame. Finally, using SVD, we
obtain an m x N frame, which is unit norm, almost tight, with the frame vectors forming
angles near the optimal value. The above steps bring up Algorithm 5. Recall that the
frame obtained this way is unique up to unitary equivalence.

Algorithm 5 Construction of a nearly equiangular frame
Input: m x N frame Fj

Output: m x N frame F,,, nearly equiangular

Ry = FJ'Fy // Obtain the initial Gram matrix

// Obtain @y according to (3.8)

Qo = sgn(Ro)

Qo(i,7) =0, for all 4

// Use Algorithm 4 to obtain a signature matrix
Q = Algorithm2(Q,)

// Obtain the Gram matrix from (2.31)
R=T1+cQ

// Reduce the rank of R to m

U,S,V] = svd(G)

S=85(1:m,1:m)

U=U(1:m,1:m)

V=V({1:m,1:m)

R=USV

// Normalize the Gram matrix R

R = diag(1./sqrt(diag(R))) - R - diag(1./sqrt(diag(R)))
// Obtain Fyy

U, S, V]=svd(G) // U=V

Fout = sqrt(S)V7

Some results of the produced frames are presented in Fig. 3.9. Figure 3.9(a) demon-
strates the frame vectors’ correlation for a 64 x 128 frame, showing that the angles formed
by the frame vectors have values around the optimal value of an ETF. Figure 3.9(b)
demonstrates the frame vectors’ correlation for a 96 x 128 frame, showing more impres-
sive results for frames of low redundancy.
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Algorithm 5 Algorithm 5
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(a) A 64 x 128 frame (f1opt = 0.0887). (b) A 96 x 128 frame (opy = 0.0512).

Figure 3.9: Correlation distribution of frame vectors produced with Algorithm 5. fipt
stands for the optimal lowest bound (Welch bound).

Algorithm 6 Algorithm 6

4000

7000

3500 6000

3000
5000

2500
4000 -
2000 -
3000
1500

2000
1000

s00f 1000(-

03 04 05 06 0.7 08 09 1 02 03 04 0.5 06 07 08 0.9 1

(a) A 64 x 128 frame (piop, = 0.0887). (b) A 96 x 128 frame (jop; = 0.0512).

Figure 3.10: Correlation distribution of frame vectors produced with Algorithm 6. fipt
stands for the optimal lowest bound (Welch bound).

3.4.3 Nearly equiangular, nearly tight frames based on signature

matrices

Algorithm 5 produces frames of any dimensions with the frame vectors forming angles
near the optimal value. Even though the obtained frames exhibit good spectral properties,
they are not exactly tight, a characteristic that is important for many applications. One
way to improve tightness is Theorem 3.3.1 that finds a nearest a-tight frame to a given
frame F' according to /a(FFT)~1/2F.

Having produced a nearly equiangular m x N frame with Algorithm 5, we apply
Theorem 3.3.1 with & = N/m. As tightness opposes unit-normness, we must carry out
a few iterations, alternating between these two properties according to Algorithm 6 to
obtain a nearly equiangular, nearly tight unit norm frame.
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Algorithm 6 Construction of a nearly equiangular, nearly tight frame
Input: m x N frame Fj

Output: m x N frame Fj,, nearly equiangular, nearly tight

// Compute @)y the signature matrix of Fj.
// Obtain a nearly equiangular frame F; with Algorithm 5.
for £ :=1 to ITER do

Fiy1 i= \/N/m(F,F')""2F, // impose tightness

Fiy1 :=normc(Fy,1) // normalize columns

k=k+1

Table 3.3: Spectral norm of m x N frames with m =32 : 16 : 96 and N = 128 obtained
with Algorithm 5 and Algorithm 6.

Spectral norm
" Algorithm 5 | Algorithm 6 | Optimal
32 2.074 2.015 2.000
48 1.716 1.655 1.633
64 1.499 1.440 1.414
80 1.351 1.288 1.265
96 1.250 1.171 1.155

A metric to evaluate how close the obtained frame is to a unit norm tight frame is the
spectral norm. Recall that the spectral norm of a unit norm tight frame equals the lowest
possible bound y/N/m. To see the improvement of tightness achieved by Algorithm 6
we construct frames of various dimensions and compute their spectral norm. The results
presented in Table 3.3 are averaged over 500 frame samples and concern m x N frames
with m = 32 : 16 : 96 and N = 128. While Algorithm 6 improves the spectral norm of
the obtained frames, it also affects the frame vectors’ correlation. We can see that there
is a trade-off between equiangularity and tightness, also observed in Figures 3.9, 3.10.
Figure 3.10 demonstrates results of the frame vectors’ correlation for a 64 x 128 and a
96 x 128 frame produced by Algorithm 6. Comparing Fig. 3.10 to Fig. 3.9, we observe a
slight deterioration of correlation’s distribution, as a price of the improvement of tightness.
Therefore, the choice between Algorithm 5 and Algorithm 6 for the construction of nearly
equiangular frames, depends on the specific requirements of the related application.

More results regarding the properties of the proposed frames based on signature ma-
trices are presented in the next section, where we provide a comparison with incoherent
UNTFs obtained with alternating and average projections.
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Table 3.4: Standard deviation of the Gram matrix entries corresponding to m x N frames
with m =32 :16 : 96, N = 128, obtained with Algorithms 1, 5 and 6.

Standard deviation
" Gaussian | Algorithm 1 | Algorithm 5 | Algorithm 6
32 || 0.1051 0.0582 0.0439 0.0412
48 || 0.0862 0.0471 0.0266 0.0257
64 || 0.0749 0.0422 0.0176 0.0189
80 || 0.0670 0.0364 0.0119 0.0153
96 || 0.0612 0.0292 0.0076 0.0136

3.5 Comparison of the proposed constructions

In order to provide a thorough comparison of the proposed frame constructions, we present
here numerical results showing the achieved levels of equiangularity and incoherence of
the obtained frames and discuss already presented results regarding the spectral norm.
The experiments include frames constructed with the signature matrix based Algorithms
5 and 6, and Algorithm 1 that utilizes alternating projections. Averaged projections
algorithm yields results very similar to alternating projections, as we have already seen in
Tables 3.1 and 3.2, while it is more time consuming. Thus, results for Algorithm 2 are not
demonstrated here. The next Tables include average values of the mutual coherence and
the average coherence. To evaluate the equiangularity, we study the distribution of the
Gram matrix entries. The experiments consider frames of variable redundancy, including
constructions of size m x 128, with m = 32 : 16 : 96. The obtained measurements are
averaged over 500 realizations.

All measurements presented next are related to frame vectors’ correlation. However,
trying give an answer to the question how close are the proposed frames to ETFs, let
us first discuss the obtained values for the spectral norm. Results for the spectral norm
of nearly equiangular constructions have been presented in the previous section in Table
3.3. Comparison with incoherent UNTF's regarding the spectral norm is straightforward,
as already presented results (see Table 3.2) show that incoherent UNTFs meet the mini-
mum bound, which is also demonstrated in Table 3.3. Table 3.3 shows that equiangular
constructions approximate the minimum bound without actually reaching it; therefore,
incoherent UNTFs obtained with Algorithm 1 are preferable when tightness is impor-
tant. However, the spectral norm of frames obtained with Algorithm 6 is very close to
the optimal value; thus, Algorithm 6 is expected to provide reliable solutions when the
application raises a need for tightness and equiangularity concurrently.

The most important property of the frames produced with the signature matrix based
method is that they comprise nearly equiangular vectors. One way to observe equangu-
larity is to study the distribution of the Gram matrix entries. Besides Figures 3.9, 3.10
depicting the distribution of sample constructions, we present average measurements of
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Table 3.5: Mutual coherence of m x N frames with m = 32 : 16 : 96, N = 128, obtained
with Algorithms 1, 5 and 6.

Mutual coherence
" Gaussian | Algorithm 1 | Algorithm 5 | Algorithm 6 | Optimal
32 0.637 0.220 0.320 0.310 0.154
48 0.534 0.148 0.218 0.214 0.115
64 0.472 0.125 0.158 0.162 0.089
80 0.427 0.112 0.116 0.128 0.069
96 0.392 0.102 0.082 0.103 0.051

the standard deviation of the Gram matrix entries (absolute values). The results pre-
sented in Table 3.4 concern nearly equiangular frames constructed with Algorithms 5,
6, and incoherent UNTFs constructed with Algorithm 1. Clearly, Table 3.4 shows that
signature matrix based frames are more equiangular compared to incoherent UNTF's, ex-
hibiting smaller values of standard deviation. More impressive results are observed for
low redundancy frames, showing the important role redundancy plays in the efficiency of
the algorithms, a remark we also have made for Algorithms 1, 2.

Results for the mutual coherence are presented in Table 3.5 and show that smaller
values are obtained for incoherent UNTFs. The difference between nearly equiangular
frames and incoherent UNTFs is larger when the frame redundancy is high and becomes
insignificant for less redundant frames. Truely, for 96 x 128 frames Algorithm 6 achieves
the best results regarding column correlation, that is the smallest mutual coherence and
standard deviation. Results obtained for 80 x 128 frames are also remarkable. Comparing
the algorithms based on signature matrices, the observation made in Figures 3.9, 3.10
regarding equiangularity also holds for the mutual coherence; more tight frames are less
equiangular and less incoherent. Although the differences in mutual coherence are mi-
nor and one would expect that they could hardly affect the applications of interest, the
variation of the spectral norm we observed in Table 3.3 may affect the efficiency of the
employed frames in applications.

A measure that accounts for all inner products between the columns of a given matrix,
and not only for the largest one is average coherence. Given a unit norm matrix A =
[a; as...ay], average coherence is defined in [55] as

N N

1a4) = =y 20 3 o) (3.11)

i=1 j=1
i#]

Results for average coherence of the proposed constructions are presented in Table 3.6 and

they are remarkable. All methods yield frames with identical average coherence. It seems

that no matter what operations are made on a frame, the resulting construction attains

some kind of equilibrium, expressed by the same average coherence. This observation may
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Table 3.6: Average coherence of m x N frames with m = 32 : 16 : 96, N = 128, obtained
with Algorithms 1, 5 and 6.

Average coherence
" Gaussian | Algorithm 1 | Algorithm 5 | Algorithm 6 | Optimal
32 0.042 0.038 0.038 0.038 0.154
48 0.035 0.029 0.029 0.029 0.115
64 0.030 0.023 0.023 0.022 0.089
80 0.028 0.017 0.017 0.017 0.069
96 0.026 0.013 0.013 0.013 0.051

be the key to explain the similar performance in sparse recovery observed for the proposed
constructions, as we will see in the next chapters. Definitely, exploring the reasons for
which these frames exhibit identical average coherence is a subject for further research.

Concluding the presentation of the developed frame constructions, we would like to
make the following remarks. First, both methods proposed here yield frames exhibiting
high incoherence levels. As we will see in the next chapters, the proposed frames are ap-
propriate for sparse representations and compressed sensing, improving the performance
of sparse recovery algorithms and offering accurate signal reconstruction. Second, re-
garding the spectral norm , Algorithms 1, 2 yield the best results, producing incoherent
UNTFs with spectral norm coinciding with the minimum achievable bound. Signature
matrix based constructions are less tight; however, they have a simpler implementation,
thus, they are preferable if tightness requirements are loose. Finally, when equiangularity
is the main requirement, then the best constructions are obtained with the algorithms
based on signature matrices. The frames obtained with Algorithm 6 bridge the distance
between tightness and equiangularity, and may be used as spreading sequences in s-CDMA
systems, where both properties are required.
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CHAPTER 4

PRECONDITIONING IN SPARSE AND
REDUNDANT REPRESENTATIONS

4.1 The sparse representation problem
4.2 Mutual coherence and RIP

4.3 Promoting a sparse solution

4.4 The role of the spectral norm

4.5 Preconditioning

Sparse signal representations consist of a linear combination of a small number of el-
ementary signals called atoms. Often, the atoms are chosen from a redundant (overcom-
plete) dictionary, that is, a collection of atoms with cardinality exceeding the dimension
of the signal space. Thus, any signal can be represented by more than one combinations
of different atoms [58].

Sparse representations are motivated by the fact that many natural signals are com-
pressible, that is, they can be well approximated by a few large and many small coefficients.
Sparseness is one of the reasons for the extensive use of popular transforms such as the
Discrete Fourier Transform or the wavelet transform. The aim of these transforms is often
to reveal certain structures of a signal and to represent these structures in a compact and
sparse form. Sparsity has improved the performance of many signal processing applica-
tions such as compression, feature extraction, pattern classification, and noise reduction
[58].

The generation of sparse representations with a redundant dictionary is non-trivial.
Indeed, the general problem of finding a representation with the smallest number of
atoms from an arbitrary dictionary has been shown to be NP-hard. This has led to
considerable effort being put into the development of many sub-optimal schemes. A key
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contribution to sparse representation problems is considered the work of [34] where the
authors proposed a pursuit technique for evaluating sparsity. In general, algorithms for
sparse representations form two classes: algorithms that iteratively build up the signal
approximation one coefficient at a time, e.g., Matching Pursuit [93], Orthogonal Matching
Pursuit [47], and algorithms that process all the coefficients simultaneously, e.g., Basis
Pursuit [34]. Even though there exist a range of empirical evidence for the performance of
methods built on sparse representation, many fundamental theoretical questions remain
to be addressed. The development of novel fast sparse reconstuction algorithms, the
theoretical and practical performance of such algorithms, the design and learning of good
dictionaries are open research topics in the field [58].

In the heart of sparse representations lies an underdetermined linear system with
more unknowns than equations. Uniqueness conditions for the existence of a sparse solu-
tion and performance guarantees for the algorithms deployed to find it require that the
involved system matrix exhibits incoherence and good spectral properties [125]. While
many incoherent tight dictionaries are known, often they cannot provide sufficiently sparse
representations or they are not suitable for certain families of signals.

In this chapter, first, we survey well-known results providing the conditions for the
existence of unique sparse representations and highlighting the constraints imposed for
successful numerical computation. Based on these results, we consider an underdeter-
mined linear system with sparse solutions and apply a mathematical technique referred
to as preconditioning that yields a system matrix with good incoherence and spectral
properties. While existing work in preconditioning concerns greedy algorithms, the tech-
nique presented here can be employed with any standard numerical solver. Our simula-
tions show that the proposed preconditioning substantially improves the recovery rates in
sparse representations.

4.1 The sparse representation problem

The weakness of orthogonal transforms to provide highly sparse representations has pro-
moted the development of overcomplete dictionaries. Overcomplete or redundant dictio-
naries can provide compact representations with a few non-vanishing coefficients. Con-
sider a finite-length real-valued signal x of length m, which we view as an m x 1 column
vector in R™. Let § € RY be a represenation of z under an overcomplete dictionary
AcR™N m < N,

r = Af. (4.1)

Clearly = and # are equivalent representations of the same signal, with = in the time
domain and # in the A domain. Assume that ||f||o = s, where || - ||¢ is the ¢y quasi-norm
counting the nonzero coefficients of the treated signal. A sparse representation consists
of a linear combination of s columns of A, with s < N. We refer to s as the sparsity level
of 6. The set of indices corresponding to the non-vanishing coefficients is referred to as
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the support of 6.

The sparse representation problem requires the computation of the vector 6, given
only the dictionary A and the treated signal x. System (4.1) is underdetermined with
fewer equations than unknowns, making the solution ill-posed in general. To avoid the
trivial case of having no solution, we assume that the matrix A is of full rank. Thus,
the system has infinitely many solutions and if one desires to narrow the choice to one
well-defined solution, additional criteria are needed. Therefore, when considering systems
of the form (4.1), the following plausible questions are posed:

(a) When can uniqueness of a sparse solution be claimed?
(b) Can the solution be reliably and efficiently computed in practice?

(c) What performance guarantees can be given for various approximate and practical
solvers?

Theoretical guarantees for a unique and stable solution satisfying (4.1) set bounds on
the maximum sparsity level of the representation and impose certain constraints on the
system matrix A.

4.2 Mutual coherence and RIP

Necessary and sufficient conditions ensuring that a signal can have a unique sparse repre-
sentation under an overcomplete dictionary are phrased in terms of the mutual coherence
and the restricted isometry property (RIP). These properties express a measure of the
linear dependence between the columns of A, and are used to set restrictions on the maxi-
mal sparsity allowed for a unique representation. Note that the results presented here can
incorporate sparse representations affected by additive noise, i.e., z = A0 +n, ||n]] < e,
with slight modifications.

4.2.1 Mutual Coherence

One of the most important properties related to the geometry of the dictionary A is the
maximal column correlation, also known as mutual coherence. Recall that the mutual
coherence 1(A) is a simple numerical way to characterize the degree of similarity between
the columns of the matrix A and is defined as the largest absolute normalized inner
product between different frame columns [93],

n(A) = max s a)l (4.2)

1<ig < [Jag]| [[a;]
i#j

Mutual coherence is bounded as 0 < pu(A) < 1, with u(A) = 0 if A is orthogonal (see also
Chapter 2). If A € R™¥Y m < N, then u(A) satisfies

N —m

m(N 1) < u(4) <1, (4.3)
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where the lower bound is the well-known Welch bound. Matrices with small mutual
coherence are known as incoherent. Requiring a matrix A with small mutual coherence,
that is, with columns as “independent” as possible, means that the information of =
represented by A is spread in different directions, which makes its recovery easier. Mutual
coherence plays an important role in the existence of a unique solution of system (4.1) as
well as in the performance of the algorithms deployed to find sparse solutions.

4.2.2 Uniqueness via mutual coherence

Mutual coherence can provide a condition that gives an answer to the crucial question
regarding the existence of a unique solution of (4.1). The following result was derived in
[51].

Theorem 4.2.1 (Incoherence and sparsity [51]). If the linear system of equations in (4.1)
has a solution that satisfies the condition

1 1

then this solution is the sparsest one.

Consequently, if a solution satisfies (4.4), then this is the unique sparsest solution.

Combining Theorem 4.2.1 with the lower bound of mutual coherence, we can provide
an upper bound of sparsity related to the lower dimension m of the matrix A. When
N > 2m, it follows that ;(A) > (2m—1)~/2. Thus, the maximum sparsity level ensuring a
unique sparse representation is O(y/m). This bound is referred to as square root bottleneck.

We must note here that Theorem 4.2.1 is a pessimistic result, and often sparse signal
recovery is possible for larger values of O(y/m). However, in order to shatter the square
root bottleneck, probabilistic analysis is needed as we will see later.

4.2.3 The Restricted Isometry Property

The restricted isometry property (RIP) is a different way to measure the similarity of
columns of a matrix and is used to study the uniqueness of the solution and the stability
of system (4.1), while it provides conditions for robust recovery in the presence of noise.

Definition 4.2.2. An m x N matrix A has the Restricted Isometry Property (RIP) of
order s with s = 1,2,..., if there exists a constant d, € [0, 1) such that

(1= 8017 < 1A0]2 < (1+8,)[0]%, forall 0 RY. (45)
We refer to 05 as the isometry constant.

This concept was introduced in [28]. A matrix A obeys the RIP of order s, if d5 is
not too close to one. When this property holds, it implies that the Euclidean norm of
f is approximately preserved, after projecting it on the rows of A. Obviously, if matrix
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A were orthogonal then d; = 0. Since we are dealing with non-square matrices this is
not possible, thus, we can loosely say that when a matrix obeys RIP of order s, then all
subsets of s columns are nearly orthogonal. Clearly, the closer d; is to zero, the closer to
orthogonal all subsets of s columns of A are.

If S is a set of columns of the dictionary A, with |S| = s, the following expression of
the isometry constant is an immediate consequence of the definition:

"= camax o IAsAs — L, (4.6)
where I, is the s X s identity matrix.

It is interesting to note that the RIP is also related to the condition number of the
Gram matrix. In [28, 11], it is pointed out that if A, denotes the matrix that results by
considering r arbitrary columns of A, then the RIP in (4.5) is equivalent to requiring the
respective Gram, AT A, r < s, to have its eigenvalues within the interval [1 — d,, 1 + d,].

4.2.4 Relation between RIP and mutual coherence

The properties presented so far show that a central issue in sparse representations is the
linear independence of vectors involved in the sparse representation. Mutual coherence
and RIP try to capture the geometry of the dictionary A and help us to identify well-
conditioned subsets of vectors. The size of well-conditioned subdictionaries determines the
maximum sparsity level allowed to have a sparse representation under a given dictionary.
If S is a subset of columns of the dictionary A, with |S| = s, then the subdictionary
As is well-conditioned if ||[ALAs|| < ¢, where ¢ is a small constant. The following result
connects the mutual coherence with the isometry constant.

Theorem 4.2.3 (Relation between RIP and mutual coherence [50]). Let A be a dictionary
with coherence p = p(A), and As be an arbitrary s-column submatriz of A. Then

07" = || AsAs — Ll < (s = D, (4.7)

where I is the s X s identity matriz. In particular, every collection of s columns is linearly

independent when (s — 1)pu < 1.

We must note here that, while mutual coherence of a given matrix can be easily
extracted, evaluating the RIP property is NP-hard. However, even though working with
the mutual coherence is simpler than working with the complex RIP, the analysis from the
point of view of the mutual coherence leads to pessimistic results regarding the maximal
sparsity; recovering s components from a sparse signal requires s to be of order O(y/m)
at most. From a theoretical perspective, the RIP property provides the ability of a
probabilistic analysis of sparse recovery, improving substantially the results obtained with

deterministic analysis.
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4.3 Promoting a sparse solution

When seeking solutions that satisfy system (4.1) the first obstacle we need to surpass is the
fact that the system may have infinitely many solutions. Additional criteria to narrow this
choice are set through regularization. Thus, we define the general optimization problem

mgin J(0) subject to z = A8, (4.8)

where J(#) is a function that imposes sparsity constraints on 6.

4.3.1 The /)-minimizer

One way to promote a sparse solution is the ¢, quasi-norm. Choosing J(#) = ||f]|,, we
are led to the following /p-minimization problem,

orgﬂig% 6], subject to x = A#. (4.9)

The discrete and discontinuous nature of the 3 norm poses many conceptual chal-
lenges regarding the solution of (4.9). Problem (4.9) is NP-hard, requiring combinatorial
search. The main techniques proposed for its solution include greedy algorithms. Greedy
algorithms iteratively approximate the coefficients and the support of the sparse signals.
They genenerate a sequence of locally optimal choices in hope of determining a globally
optimal solution, thus, they have the advantage of being very fast and easy to implement.
Orthogonal Matching Pursuit (OMP) [47] and its variants (CoSaMP [98], StOMP [53],
regularized OMP [99]) belong to this category.

OMP was introduced in [47] as an improved successor of Matching Pursuit (MP) [93].
OMP starts from () = 0 and it iteratively constructs a k-term approximant 6%) by
maintaining a set of active atoms. At each stage, it expands that set by one additional
atom.

A result that provides performance guarantees for OMP is presented in [124].

Theorem 4.3.1 (Performance guarantess for OMP [124]). Let A be an m x N matriz

and 0 € RN be a solution of the £y minimization problem (4.9) satisfying

101, < % (1 + ﬁ) |

Then OMP with error threshold e = 0 recovers 6.

4.3.2 Stability of /; minimization via the RIP

Another fundamental question regarding problem (4.9) concerns the stability of the solu-
tion. Considering a slight discrepancy between Af and z, which can be interpreted as the
presence of noise, we define an error tolerant version of (4.9), with error tolerance € > 0

genﬂiélv |0]|, subject to [JAf — x| <e. (4.10)
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Algorithm 7 OMP: approximately solve /p-minimization problem
Input: m x N matrix A, m-dimensional signal x, error threshold ¢

Output: N-dimensional signal

E=0

0 =0

r(0 = 2 // initial residual

s = () // initial solution support

®) = [empty matrix] // matrix of chosen atoms

repeat
kE=k+1
7 = |ATr®)|

p = argmax, ,[Z| // find new support entry
st = sort([s**~1),p]) // new support
®*) = A 4 // matrix of chosen atoms
0%) = argmin, ||z — @*)9||2 s.t. support(f) = s*) // new solution estimation
r®) =2 — A% // new residual
until r*) < ¢

Stability issues require that both (4.9) and (4.10) must always give results of the same
sparsity. A stability condition involving RIP is given in [58].

Theorem 4.3.2 (Stability of ¢, minimization [58]). Assume that 0 is a candidate solution
of (4.10), with 2sy non-vanishing coefficients, satisfying the inequality ||Aé —z|| <e. Let
us assume that the matriz A satisfies the RIP property for 2sq, with do5, < 1. If o, T
are the solutions of (4.9) and (4.10), respectively, then

4¢?
1 — dggy

(4.11)

|70 — Zol| <

4.3.3 The /;-minimizer

As problem (4.9) is intractable, another approach towards its solution is smoothing the
penalty function and replace fp-norm with /;-norm,

orgﬂi%% 16|, subject to x = A#. (4.12)

This way we obtain a convex program with computational complexity polynomial in the
signal length.

Transforming a computationally intractable problem into a tractable one does not
necessarily mean that the solution of (4.9) is similar to the solution of (4.12). A result
established in [51, 70] states that if system (4.1) has a solution that satisfies (4.4), then
this is the unique solution of both £y- or /1-minimization. A uniqueness condition via the
RIP property that also guarantees exact sparse recovery via ¢;-minimization is presented
next.

S7



Theorem 4.3.3 (Exact recovery based on RIP [28]). Suppose that the matriz A in problem
(4.12) satisfies RIP of order s, with RIP-constant §s. Let 05 denote the truncated version

of 0 obtained if we keep its s largest components and set the rest equal to zero.
1. If 095 < 1 and 0 is an s-sparse solution of x = Af, then it is unique.

IT. If 625 < /2 — 1, then the solution to the (, minimizer of (4.12), denoted by 0,
satisfies the following two conditions

10— 0]y < Coll6 — 6,1, (4.13)

and
~ 1
10— 6]l < Cos3110 — 0,1, (4.14)

for some constant Cy.

This theorem states that if the true vector is a sparse one, i.e., # = f,, then the /-
minimizer recovers the (unique) exact value. On the other hand, if the true vector is not
a sparse one, then the minimizer results in a solution whose accuracy is dictated by a
procedure that knew in advance the locations of the s largest components of . Note that
this is a deterministic result; it is always true and not with high probability. Recently,
the sufficient condition has been improved to dos < 0.4931 [97].

Well-known algorithms deployed to solve (4.12) include Matching Pursuit (MP) [93],
Basis Pursuit (BP) [34], iterative thresholding [44], and Dantzig selector [26]. While these
solvers require fewer measurements compared to greedy algorithms, they are computa-
tionally more complex.

4.4 The role of the spectral norm

Considering the global geometry of an overcomplete dictionary, after the mutual coher-
ence, the most important geometric property is the spectral norm. Spectral norm is a
measure of how close is a matrix to a tight frame. Recall that an m x N frame ¢ with
|@]> = ¥ is a unit norm tight frame, meaning that the columns of @ have unit norm
and the rows are orthogonal. Results concerning the use of tight frames in sparse repre-
sentations can be found in [24, 52, 124, 125, 8]. The latest theoretical results that justify
the employment of incoherent tight frames in sparse recovery are probabilistic, leading to
optimistic bounds on the maximal sparsity for sparse recovery.

Deterministic analysis of sparse representations has shown that, given an overcom-
plete dictionary, the maximal sparsity depends on the size (number of columns) of well-
conditioned subdictionaries. Instead of considering arbitrary sets of columns, the authors
of [125] focused on random subdictionaries and shattered the square root bottleneck using
tools from Banach space probability. The theoretical results presented in [125] necessitate

that the system matrix forms an incoherent unit norm tight frame.
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Theorem 4.4.1 (Incoherent UNTFs and sparse recovery [125]). Let A be an m x N
incoherent unit norm tight frame, and 0 a sparse representation of an m-dimensional
signal x under dictionary A, that is, x = Af. If 6 has s < em/log N nonzero entries
drawn at random (c is some positive constant), then it is the unique solution for ly- and
C1-minimization problems with probability at least 99.44%.

An m x N dictionary is characterized as incoherent if its mutual coherence does not

exceed 1/+/m.

Theorem 4.4.1 states that the maximum sparsity level is allowed to approach the
dimension m of the original time-domain signal. If the dictionary is not a UNTF, then
similar results are given as a function of the spectral norm.

Employing spectral norm , mutual coherence and average coherence, the authors of
18] allow for similar sparsity levels providing near-optimal probabilistic guarantees in the
performance of a fast greedy algorithm called one-step thresholding (OST). In [8] the

average coherence of a unit norm matrix A is defined as

1
v(4) = - max| Z@-, a;)| (4.15)
i#£]
and is a measure of how well the frame elements are distributed in the unit hypersphere.
The main result of [8] follows.

Theorem 4.4.2 ([8]). Let A be an m x N matriz, with mutual coherence p and average

N 1
m’ H S 164 log N

¢ such that sorted one-step thresholding fails with probability P{é #0} < %, provided that
N > 128 and m > cslog N.

coherence v. Suppose ||Al]? = and v < =. Then, there exists a constant

Spectral norm and mutual coherence are also used to provide tighter bounds on the
maximal sparsity in case of convex optimization methods in [24], under the additional
assumption that the sparse signals have independent nonzero entries with zero median.

4.5 Preconditioning

In linear algebra and numerical analysis, preconditioning is a process that conditions a
given problem into a form that is more suitable for numerical treatment [6]. Given a
linear system z = A6, a preconditioner C~! of the matrix A is a matrix such that C'A has
a smaller condition number than A. Considering an underdetermined linear system with
sparse solutions, the aim of the proposed technique is to transform (4.1) into a form that
satisfies performance guarantees for the algorithms deployed for its solution. According
to theoretical results presented in the previous section, a preconditioner of A should result
in a matrix C'A that forms an incoherent UNTF.

Although constructions of incoherent tight dictionaries appear often in signal pro-
cessing applications, such dictionaries have a limited ability of sparsifying signals or are
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suitable only for certain signal types. Learning based dictionaries, that have been pro-
posed as an alternative, contain atoms generated from instances belonging to a particular
signal family. Every signal in the family can then be represented as a linear combination
of a few atoms from the dictionary. As the design of the dictionary is dictated by the
characteristics of the treated signals, the obtained dictionary may not satisfy incoherence
and/or tightness. Thus, one way to employ incoherent UNTFs in sparse representations
is preconditioning.

Let A be an arbitrary m x N matrix, not satisfying the necessary conditions for sparse
recovery. Suppose there exists an m x m matrix C' such that the product C'A exhibits
good incoherence and spectral properties. Multiplying both sides of (4.1) by C', we obtain

Cx=CAf or z=CAb, (4.16)

where z = Cx. Requiring C' to be invertible, implies that system (4.1) is equivalent to
(4.16). Therefore, solving the following minimization problem

0 = arg mein |0]|, subject to z=CA®, (4.17)

we obtain a solution that satisfies also (4.9).

Problem (4.17) involves the effective system matriz F' = C'A; thus, the efficiency of the
numerical algorithms deployed to solve it depends on the properties of F. The question
that naturally arises is how can we construct an invertible m x m matrix C' such that the
effective matrix F' has good incoherence and spectral properties?

The technique of preconditioning in sparse representations was introduced in [113, 114].
The weakness of many overcomplete dictionaries to satisfy incoherence properties, mo-
tivated the authors of [114] to propose a modification of thresholding and OMP, such
that in the estimation of the unknown support, a matrix different from the original rep-
resentation dictionary is employed. More particularly, in greedy algorithms like OMP,
the estimation of the unknown support depends on the inner products ATz = AT Af. If
A were an orthonormal basis, then AT A = Iy, where Iy is the N x N identity matrix,
and the product ATz would recover the unknown support. Similarly, when employing
overcomplete dictionaries, successful recovery is achieved if the Gram matrix has small
off-diagonal entries. The authors of [113, 114] introduced a new step, namely, the sensing
step, for the estimation of the support of the unknown signal, which employs another
dictionary ¥ incoherent to A. The key concept of a frame’s coherence is extended to pairs
of frames according to the following definition:

Definition 4.5.1 (Mutual coherence of pairs of frames). Given two frames ¥ = [¢; ¢y ... PN/,
and A = [a; as . ..ay], the mutual coherence between ¥ and A is defined as the maximum
absolute normalized inner product between the columns of the given dictionaries

p(¥,A) = max_|(¢, a;)l. (4.18)

1<i,j<N
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The sensing step involves the product W7 A that yields a pseudo-Gram matrix with
small off-diagonal entries, due to incoherence between ¥ and A. Thus, support estimation
described by ¥Tx = WTAf yields higher recovery rates. Regarding thresholding, an
explicit formula for calculating the optimal matrix for support estimation is given in
[113].

The method we proposed in [130] considers the recovery of signals that are sparse
under overcomplete dictionaries and does not depend on the deployed sparse recovery
algorithm. Using the ideas presented in Chapter 3, the proposed preconditioning concerns
underdetermined linear systems encountered in sparse representations and aims at the

construction of an effective system matrix with good incoherence and spectral properties.

4.5.1 Construction of a preconditioner

As the construction of a preconditioner suitable for system (4.1) aims at the construction
of a system matrix with small mutual coherence and small spectral norm , we expect
that both of the methods presented in Chapter 3 with slight modifications can be used to
obtain a preconditioner. The proposed technique for the construction of a preconditioner
involves the following basic steps:

1. Select the initial preconditioner Ci,;; to be an m x m random Gaussian matrix. Set
Fy = Cinis A.

2. Apply an algorithm that uses Fy as input to produce a frame F with small mutual

coherence and small spectral norm.
3. Obtain the m x m matrix C' solving the minimization problem mine |C'A — F.

The efficiency of the above process depends on the solution of the least squares problem
ming ||C'A — F||, which must yield a preconditioner C' such that C'A is as close as possible
to F. A few iterations between step 2 and step 3 may be necessary to attain a good
solution. Moreover, the obtained preconditioner must be invertible, in order to ensure
equivalence between the initial and the preconditioned system. Thus, it is important
to select an invertible initial matrix C. We are based on [110] and select the initial
preconditioner to be a random Gaussian matrix, because a square random matrix will
almost never be singular.

Next we discuss the details of every implementation and present experimental results.

4.5.2 Preconditioning with incoherent UNTF's

The first methodology we propose to obtain a preconditioner involves the construction of
an incoherent UNTF based on the algorithms proposed in section 3.3. As both algorithms
presented there yield similar constructions, we will use Algorithm 1 that converges faster.
To construct a preconditioner using Algorithm 1 we employ an iterative process, with the
g-th iteration involving the following steps:
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Figure 4.1: Discrepancy between the Gram or pseudo-Gram matrices involved in support
estimation and the identity matrix of the same dimensions. The experiments involve
m X N matrices with m =64 : 32 : 192 and N = 256.

1. Apply Algorithm 1 on Fj, to produce an incoherent UNTF ﬁ'q.

2. Find the m x m matrix C, by solving the minimization problem ming ||CA — F,||.
3. Set Fq+1 = CqA

Indeed, the above process produces an m x m matrix C, that yields an effective
system matrix F,;; = C;A forming an incoherent UNTF. As we have already mentioned,
the obtained preconditioner can be used in the solution of system (4.1), if and only if it
is an invertible matrix; thus, C; must be invertible. According to our analysis in Chapter
3, there is strong evidence that the algorithm converges locally, meaning that Fj is close
to Fy. Hopefully, the output matrix C, will be close to the initial matrix Ci,;. Having
selected an invertible initial matrix, the probability that the obtained matrix is singular

is very low. Experimental results confirm our intuition.

Experimental Results

To test the proposed technique in computing a solution of (4.1), we produce sparse syn-
thetic signals # of length 256 under overcomplete random Gaussian dictionaries A of size
128 x 256, obtaining a signal © = A# of length 128. Following the above process, we
compute a preconditioner C' of size 128 x 128 and apply it to = to obtain z = C'z. Given
the efficient matrix F' = C'A and the signal z, OMP, BP and Dantzig selector are used to
compute a sparse solution satisfying z = C'Af. The algorithms are also used to compute
a solution given A and =x.

Before displaying results concerning the computation of sparse signals, we would like
to estimate the appropriateness of the dictionaries involved in signal recovery when greedy
algorithms are used. For this reason we compute the discrepancies dini; and dprop between
the corresponding Gram matrix involved in the sensing step and the identity matrix, that
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Figure 4.2: Support recovery rates for sparse representations using OMP for signals with
varying support size. The preconditioner’s construction was based on the construction of
incoherent UNTF's.

is, diniy = HATA — INH; for the initial dictionary and dpop = HFTF — INH; for the pro-
posed preconditioning, where F denotes the Frobenius norm. As our experiments involve
a comparison with [114], which employs a matrix ¥ in the sensing step, we also compute
the pseudo-Gram matrix ¥ A and the distance diig) = HWTA - INH;' Results averaged
over 500 experiments are presented in Figure 4.1, involving varying matrix dimensions.
The results are best with the proposed construction, indicating improved performance in
numerical recovery.

The performance of the deployed algorithms is quantified by computing the percentage
of fully recovered support, referred to as recovery rate. Results for signals computed with
OMP are demonstrated in Fig. 4.2, including the method proposed in [114]. The results
are averaged over 500 experiments and concern signals with varying support size. Clearly,
the recovery rates for OMP show that the proposed technique improves algorithm’s per-
formance and surpasses the results in [114]. Similarly, recovery rates for BP and Dantzig
selector in Figures 4.3 and 4.4, respectively, confirm that the proposed preconditioning
transforms the original system in a manner that is more suitable for finding sparse solu-
tions. The method of [114] concerns only greedy algorithms and is not applicable here.

4.5.3 Preconditioning with nearly equiangular frames

The second methodology we propose to obtain a preconditioner involves the construction
of a nearly equiangular, nearly tight frame based on Algorithm 6. Similarly to the previous

methodology, the initialization part involves Ci.;; to be an m xm random Gaussian matrix,
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Figure 4.3: Support recovery rates for sparse representations using BP for signals with
varying support size. The preconditioner’s construction was based on the construction of
incoherent UNTF's.
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Figure 4.4: Support recovery rates for sparse representations using Dantzig selector for
signals with varying support size. The preconditioner’s construction was based on the
construction of incoherent UNTF's.
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Figure 4.5: Support recovery rates for sparse representations using Dantzig selector for
signals with varying support size. The preconditioner’s construction was based on the
construction of nearly equiangular, nearly tight frames.

setting Fy = CinwA. After obtaining a nearly equiangular, nearly tight frame, F, we
compute the preconditioner solving mine |[CA — F|. The process is iterative, with the
g-th iteration involving the following:

1. Apply Algorithm 6 on Fj, to produce a nearly equiangular, nearly tight frame ﬁ'q.
2. Obtain the m x m matrix C, solving the minimization problem min¢ ||CA — F,||.
3. Set Fq+1 = CqA

In contrast to the methodology presented in the previous section, experimental results
show that the above iterative process does not seem to converge to an optimal solution.
Thus, we perform a few iterations, in every iteration we keep the obtained solution and
finally choose the preconditioner with the smallest mutual coherence. Regarding the in-
vertibility of the obtained preconditioner, we do not really have any theoretical evidence
that the produced matrix is invertible, but the experimental results show that the pro-
posed methodology does not yield singular matrices.

Experimental Results

To test the proposed preconditioning technique, we produce sparse synthetic signals 6 of
length 128 under overcomplete random Gaussian dictionaries A of size 64 x 128. Thus,
the preconditioner C' is of size 64 x 64. Compared to the original random matrix A, the
effective dictionary C'A exhibits improved mutual coherence and spectral norm. Similarly
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to the experiments presented in the previous section, we perform sparse signal recovery
using OMP, BP and Dantzig selector. The results are averaged over 500 experiments and
concern signals with varying support size. While OMP and BP do not seem to improve
their performance substantially, recovery rates for the Dantzig selector are better with
the proposed preconditioning and they are demonstrated in Figure 4.5.
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CHAPTER 5

IMPROVING SPARSE RECOVERY IN
COMPRESSED SENSING

5.1 Compressed sensing basics

5.2 Projection matrices constructions

5.3 Compressed sensing with the proposed frame constructions
5.4 Proposed optimized projections

5.5 Preconditioning in compressed sensing

Compressed sensing or compressive sampling (CS) is a novel theory [49, 25] that
merges compression and acquisition, exploiting sparsity to recover signals that have been
sampled at a drastically smaller rate than the conventional Shannon/Nyquist theorem
imposes. Based on recent mathematical results, CS has enabled signal reconstruction
from much fewer data samples, relying on the observation that many natural signals
are sparse or compressible, i.e., they can be represented by a few significant coefficients.
Recovering a signal from incomplete measurements can be done with computationally
efficient methods.

The results of CS have an important impact on numerour signal processing applications
including the efficient processing and analysis of high-dimensional data such as audio
[71], image [89, 100], video [7], and bioinformatic data [131, 90]. CS has been applied to
accelerate the sensing process in medical imaging [15, 66, 72] and to limit the number of
sensors in Wireless Visual Sensor Networks (WVSNs) [104]. Other application specific
architectures that have been developed include radar analysis [120, 103] and astronomical
imaging [16]. Besides signal processing, to date CS theory is extensively utilized by
experts to address problems in various fields such as biology [61, 116], medicine [94] and
seismology [79].
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The standard way to obtain a compressed representation of a signal involves that one
computes the coefficients in an appropriate basis and then keeps only the largest coef-
ficients. When complete information on the signal is available, this is certainly a valid
strategy. However, when the signal has to be acquired first with a somewhat costly, diffi-
cult, or time-consuming measurement process, this seems to be a waste of resources: First,
one spends huge efforts to collect complete information on the signal and then one throws
away most of the coefficients of the signal to obtain its compressed version. Compressed
sensing is an emerging theory that condenses the signal directly into a compressed repre-
sentation, allowing signal recovery from a number of measurements that is much smaller
than the signal length.

Recovering sparse signals from incomplete measurements leads to the ¢y and ¢; min-
imization problems formulated in sparse representations. In the context of CS, recovery
guarantees concern the sensing matrix, i.e., the matrix implementing the sensing mech-
anism, and involve the restricted isometry property (RIP). At present, a comprehensive
CS theory seems established [65] except for a few deep questions such as the improvement
of the sensing mechanism and the efficiency of sparse recovery.

In early CS applications, the sensing process was implemented using random matrices.
It is known that an m x N random Gaussian or Bernoulli matrix satisfies RIP with high
probability and it can be used to recover an s-sparse signal, provided that the number
of measurements m is O(slog(N/s)) [11]. Recent research aims either at the reduction
of the number of measurements or at the improvement in recovery performance. While
CS theory concerns non-adaptive measurements, recent work includes optimally designed
sensing matrices with respect to a given sparsifying dictionary. Other parameters affecting
the design of the sensing mechanism involve the hardware implementation and constraints
imposed by the specific application. From this viewpoint significant work is related to
matrices that are not completely random and often exhibit considerable structure.

After reviewing basic results from CS theory, we discuss three approaches improving
signal recovery in CS. The first includes the employment of the proposed frame con-
structions as sensing matrices. The second includes the construction of optimized sensing
matrices with respect to a given sparsifying dictionary. A third approach considers binary
sensing matrices that are more suitable for hardware implementation and improves signal
recovery using preconditioning.

5.1 Compressed sensing basics

In signal processing, the conventional Shannon/Nyquist theorem asserts that a signal
must be sampled at a rate at least twice its highest frequency in order to be represented
without error. Similarly, the fundamental theorem of linear algebra suggests that the
number of collected samples (measurements) of a discrete finite-dimensional signal should
be at least as large as its length in order to ensure reconstruction. Recovering sparse

signals from incomplete measurements relies on recent results that concern the solution
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of underdetermined linear systems with numerical methods [93].

Consider a finite-length real-valued signal # of length N, which we view as an N x 1
column vector in RY. CS yields a compressed representation of the treated signal using
a sensing mechanism that is realized by an m x N, m < N, matrix P, which is known as
sensing or projection or measurement matriz. The linear measurement process is described
by

y = P0, (5.1)

where y € R™ is the m x 1 vector containing the obtained measurements. Note that
the measurement process is non-adaptive, that is, P does not depend in any way on the
signal.

Unique identification of a signal from a few measurements is feasible, if we restrict
the class of signals we aim to recover. In CS, we assume that 6 is a sparse signal, that
is, ||#]lo = s, where || - [|o is the ¢y quasi-norm counting the non-vanishing coefficients
of the treated signal; s is the sparsity level of § and D is referred to as the sparsifying
dictionary. The set of indices corresponding to the non-vanishing coefficients is referred
to as the support of f. For signals that are not exactly sparse but compressible, we keep
the s most significant coefficients.

System (5.1) is underdetermined with fewer equations than unknowns. A sparse vector
satisfying (5.1) can be obtained as the solution of the fy-minimization problem

enelﬂi{rllv 16]|, subject to y = P4, (5.2)

or, alternatively, as the solution of the /;-minimization problem

0125&1}, |0]l, subject to y= P#. (5.3)

The above minimization problems can be solved efficiently as long as P exhibits certain
properties. Results from sparse representations require either that P forms an incoherent
unit norm tight frame (Theorem 4.4.1) or that it satisfies the restricted isometry property
(Theorem 4.3.3). In this case, well-known algorithms such as OMP [47] and BP [34]
can compute the solution of the £y3- and /;-minimization problems. Random Gaussian or
random Bernoulli matrices have been proved to exhibit good RIP properties and have
been employed in various CS applications.

The theoretical guarantees for sparse recovery in the context of CS are mainly ex-
pressed in terms of a sufficient number of measurements. Projection matrices obeying

RIP of order s can recover an s-sparse signal, provided that the number of measurements,
m < N, is of order O(sIn(N/s)), that is

m > cosIn(N/s), (5.4)

where ¢y is some constant, which depends on the isometry constant §; [11]. Note that m is
larger than the sparsity level by an amount controlled by the inequality (5.4). Apparently,
the higher the value of s, for which the RIP property of a projection matrix holds true,
the larger the range of sparse signals that can be observed.
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A recent result that has been formulated in [46] gives a direct expression of the constant
involved in (5.4).

Theorem 5.1.1. Let P be an m x N matriz that satisfies the RIP of order 2s with
constant 6, € (O, %} Then

m > c1slog(N/s), (5.5)
where ¢, is some constant, ¢; = 1/2log(v/24 + 1) ~ 28.

The restriction to d, € (O, %] is arbitrary and is made merely for convenience. Minor
modifications to the argument establish bounds for § < dpay for any dpma. < 1.

The seminal work of [25] where CS theory was first established concerned sparse signal
representations under orthonormal bases. Consider a finite-length real-valued signal = of
length N, which we view as a N x 1 column vector in RY. Let # € RY be a sparse
represenation of  under an orthonormal basis D € RV*V,

x = D6. (5.6)
Then, compressed sensing is described by
y = PD6. (5.7)
Setting F' = PD, system (5.7) can be written in the form
y=F0, (5.8)

with F' € R™*N referred to as the effective dictionary.

Rephrasing the results formulated in sparse representations to apply to CS, we obtain
recovery conditions for the effective dictionary F' = PD. However, designing an efficient
process to recover a signal from incomplete measurements requires theoretical guarantees
that concern the sensing mechanism, i.e., the projection matrix P. It has been shown
that the above theoretical results that hold for naturally sparse signals also hold for
signals that are sparse under orthonormal bases. Requiring P to be a random Gaussian
matrix, then the product PD is also an independent identically distributed Gaussian
matrix regardless of the choice of the orthonormal sparsifying basis D. Random Gaussian
matrices are universal in the sense that PD has the RIP with high probability, therefore,
the conditions for sparse recovery for /- and ¢;- minimization problems are satisfied.

Conditions that guarantee recovery of signals that are sparse under redundant dictio-
naries were established in [27]. In this case, the projection matrix must satisfy a modified
RIP property referred to as D-RIP.

Definition 5.1.2 (D-RIP [27]). Let X be the union of all subspaces spanned by all
subsets of s columns of D. A projection matrix, P, obeys the restricted isometry property
adapted to D, (D-RIP), with J, if

(1—0.)]0]1* < ||PO|]* < (1 +6,)]|0]?>, forall 6 e, (5.9)
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The union of all subspaces, Y, contains all signals x that are s-sparse with respect
to the dictionary D. This is the difference with the RIP definition given in section (4.5).
All random matrices discussed earlier can be shown to satisfy D-RIP, with overwhelming
probability, provided that the number of measurements, m, is at least of order cosIn(N/s).

5.2 Projection matrices constructions

Compressed sensing was introduced utilizing random projection matrices. The entries of
an m X N random Bernoulli matrix take the value —|—ﬁ or —\/—% with equal probability,
while the entries of a Gaussian matrix are independent and follow a normal distribution
with expectation 0 and variance 1/m. With high probability such random matrices satisfy
the restricted isometry property with a (near) optimal order in s; therefore, they allow

Sparse recovery.

Theorem 5.2.1 (Recovery condition for Gaussian and Bernoulli random matrices [11]).
Let P € R™N be a Gaussian or Bernoulli random matriz. Let €,6 € (0,1) and assume

m > C6 %(sIn(N/s) +1In(s 1)) (5.10)

for a universal constant C' > 0. Then with probability at least 1 —e the restricted isometry
constant of P satisfies 05 < .

The above Theorem, a simple proof of which can be found in [11], states that all s-
sparse vectors 6 can be recovered from y = P#, provided that the number of measurements
satisfies m > C62%(sIn(N/s) + In(¢7!)). Note that setting C’ = C6~2 and choosing
e = exp(—em) with ¢ = 1/(2C"), we obtain the recovery condition m > 2C"sIn(N/s) that
we have seen in Theorem 5.1.1.

While random matrices satisfy RIP with high probability, the absence of structure
in these matrices leads to infeasible real-world applications. When multiplying arbitrary
matrices with signal vectors of high dimension, the lack of any fast matrix multiplication
algorithm results in high computational cost. Even storing an unstructured matrix may
be difficult. Thus, large scale problems are not practicable with Gaussian or Bernoulli
matrices.

Another important issue when considering random matrices is that the fully random
matrix approach is sometimes impractical to build in hardware. Applications often do not
allow the use of “completely” random matrices, but put certain physical constraints on the
measurement process and limit the amount of randomness that can be used. Hardware
architectures that have been implemented to enable random measurements in practical
settings include the random demodulator [122], random filtering [123] the modulated
wideband converter [96], random convolution [108] and the compressive multiplexer [117].
These architectures typically use a reduced amount of randomness and are modeled via
matrices that have significantly more structure than a fully random matrix.
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The physics of the sensing mechanism and the capabilities of sensing devices may
also limit the types of CS matrices that can be implemented in a specific application.
Clearly, one reason for proposing new constructions of projection matrices is to address
practical limitations appearing in the applications. A research direction towards the
solution of such problems involves structured matrices. Important work in construction
of structured matrices includes deterministic matrices [48, 83, 4, 78, 20] and structured
random matrices [75, 105, 106].

Besides the difficulties in hardware implementation, research on projection matrices
is also motivated by the improvement of recovery conditions. New theoretical and prac-
tical results concern matrices that are more efficient than random Gaussian or Bernoulli
projections. Therefore, another research direction investigates the construction of matri-
ces that lead to fewer necessary measurements or improve the performance of the algo-
rithms deployed in sparse recovery. An interesting approach involves optimized projec-
tions [57, 145, 82].

5.2.1 Deterministic projections

From a computational and an application oriented viewpoint it is desirable to have mea-
surement matrices with structure. One class of such matrices includes deterministic ma-
trices. Deterministic constructions [48, 83, 4, 78, 20] may provide the convenience to
verify RIP without checking up all s-column submatrices. However, the main drawback
of deterministic matrices is that they satisfy poor recovery conditions.

Known deterministic matrices with optimal or near optimal mutual coherence are
equiangular tight frames [119] and the Gabor frames generated from the Alltop sequence
(78], which are of size m x m?. Considering a deterministic matrix with mutual coherence
1/4/m, the sparsity level must be of the order of \/m (square root bottleneck), or, equiva-
lently, the maximum number of measurements m that must be obtained to ensure a unique
solution is O(s?). The aforementioned constructions restrict the number of measurements
needed to recover an s-sparse signal to O(s*log N). A construction that managed to go
beyond the square root bottleneck [20] provided only a slight improvement.

It is also possible to deterministically construct matrices of size m x N that satisfy the
RIP of order s, but such constructions also require m to be relatively large [48, 83, 20]. For
example, the construction in [48] requires m = O(s*log N) while the construction in [83]
requires m = O(sN”?) for some constant 4. In many practical settings, this result would
lead to an unacceptably large requirement on m. A more optimistic result concerning a
specific deterministic construction can be found in [10]; the authors conjecture that ETFs
corresponding to Paley graphs of prime order [107] are RIP in a manner similar to random

matrices.
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5.2.2 Structured random projections

Since it is hard to prove good recovery conditions for deterministic matrices as outlined
above, many structured constructions allow some randomness to come into play. This
leads to structured random matrices. These matrices are of great interest for computa-
tionally efficient sparse recovery, even though they do not precicely attain recovery con-
dition (5.10). The best recovery bounds have the form O(Cslog®(N/e)), a > 1, where
e € (0,1) corresponds to the probability of failure [105]. The important linear scaling of
m in s up to log-factors is retained.

An important type of structured random matrices is based on randomly sampled
functions [105]. Let D C R Consider a function of the form

N
Ft) = ww(t), teD, (5.11)
k=1
where xq,...,z5y € C. Let t1,...,txy € D be some points and suppose we are given the
sample values
N
ye=ft) =D azpp(t), L=1,...,m. (5.12)
k=1
The corresponding measurement matrix has entries Ppy = (¢Yx(te)), ¢ = 1,...,m, k =
1,...,N. Assuming that the sampling points ¢, are selected independently at random,

P, i, becomes a structured random matrix. So the structure is determined by the function
system 1, while the randomness comes from the sampling locations. Sufficient con-
ditions for sparse recovery for CS matrices of the above form require O(CsIn*(6N/e))
measurements [105].

The random partial Fourier matrices, which consist of randomly chosen rows of the
discrete Fourier matrix can be viewed as a special case of this setup and was studied
already in the very first papers on compressed sensing [25]. For these matrices the recovery
condition requires O(C'slog(N/e)) measurements. A fast application of a partial Fourier
matrix can be computed using the fast Fourier transform (FFT) algorithm.

Another type of structured matrices are partial random circulant and Toeplitz matrices
(75, 105, 106]; they were first inspired by applications in communications. A circulant
matrix U is a square matrix where the entries in each diagonal are all equal, and where
the first entry of the second and subsequent rows is equal to the last entry of the previous
row. Since this matrix is square, we perform random subsampling of the rows to obtain
a CS matrix P = RU, with R being an m x N subsampling matrix, i.e., a submatrix of
the identity N x N matrix. Circulant and Toeplitz matrices can be applied efficiently
using FFT, and they greatly reduce the computational and storage complexity in large-
dimensional problems. The recovery gurantees for these matrices require m to be of order
O(s"°log"® N) [54].
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5.2.3 Optimized projections

Given a sparse signal # under a dictionary D, the main criterion when designing a pro-
jection matrix P is to enable unique identification of # from its measurements y = PD#.
While the aforementioned matrix constructions concern non-adaptive projection matri-
ces, designing a projection matrix with respect to a given sparsifying dictionary leads to
optimized projections.

A major obstacle in the construction of projection matrices is that verifying RIP is
combinatorially complex; we must examine (]j ) possible combinations of s nonzero entries
in the N-length vector #. Thus, existing optimization techniques concern incoherence.
Incoherence is often not satisfied by arbitrary represenation dictionaries. As the choice
of the sparsifying dictionary is dictated by the nature of the signals we want to measure,
one way to improve the structure of the effective dictionary F' = PD is the optimization
of the projection matrix P. Projections’ optimization was first proposed by Elad [57] and
involved the improvement of the mutual coherence.

Optimized projections proposed in [57] are based on a “shrinkage” process on the Gram
matrix. Suppose we want to obtain CS measurements of a signal that is sparse under a
dictionary D. Using a random Gaussian projection matrix P, the sensing mechanism
involves the effective dictionary F' = PD. Let G = FTF be the corresponding Gram
matrix. To improve the mutual coherence, the optimization process “shrinks” the values
of the off-diagonal elements of the Gram matrix in order to reduce the correlation between
the columns of F'. Entries in G with magnitude above a threshold ¢ are “shrunk” by a
factor v. Entries with magnitude below ¢ but above ¢ are “shrunk” by a smaller amount.
Let g;; be the (7,7) entry of the initial Gram matrix. The new Gram matrix elements,
gij, are obtained according to

V9ij l9ij| > 1,
9i; = vt -senlgij),  t>1gi| >, (5.13)
Gijs vt > |gijl -

The “shrinkage” process is applied iteratively. The new Gram matrix yields an effec-
tive dictionary F with improved mutual coherence. The optimized projection matrix is
obtained solving the least squares problem minp |[PD — F||.

Elad’s technique provoked several algorithms for projections’ optimization each of
them employed a different “shrinkage” process on the off-diagonal entries of the Gram
matrix [145, 82]. In [145] the authors modify the Gram matrix according to

L, =7,
L gij =9 9> 9ii| < pa,
sgn(gi;) - g, otherwise,

2. Gp1 = AG,+ (1 =XN)G,q, 0< A<,
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where (i is the lowest possible achievable correlation (eq. (2.25)) and G, is the Gram
matrix in the p-th iteration. Similarly, in [82] the proposed “shrinkage” operation is given
by the following formula,

9ij = sgn(gi;)(|9i] — 0.5 939)

A similar approach is presented in [55]. Here, the authors’ goal is to produce a Gram
matrix that is as close as possible to the identity matrix, introducing the minimization
problem

. T
mI;nHF F—IHI, (5.14)

where ||-|| - denotes the Frobenius norm and I the N x NNV identity matrix. Their solution,
based on SVD, can work for either the single optimization of the projection matrix given
the dictionary or the joint design and optimization of the dictionary and the projection
matrix, from a set of training images. In the latter case the authors combine their method
with K-SVD [2]. If the dictionary learning process is omitted, the projection matrix
optimization is very fast, in constrast to most existing methods that lead to iterative
algorithms. Problem (5.14) is also treated in [1], where a solution based on gradient
descent is proposed.

5.3 Compressed sensing with the proposed frame constructions

In compressed sensing, we may consider either naturally sparse signals or signals that are
sparse with respect to a representation dictionary D. For naturally sparse signals, we
employ a projection matrix with the desired properties and take measurements according
to y = P#. If the treated signals are sparse under a representation dictionary D, then
the sensing process is described by y = PD#@. In this case, we may consider the product
F = PD and optimize F' over P such that the projection matrix yields an effective dic-
tionary satisfying the desired properties. In this section we directly employ the proposed
frame constructions as projection matrices. The latter consideration involving optimized
projections is presented in the next section.

Considering the high incoherence level and the small spectral norm of the frame con-
structions proposed in Chapter 3, it is of interest to investigate their performance in re-
covering sparse signals obtained with compressed sensing and compare them with random
Gaussian matrices. Therefore, the experiments presented here involve projection matrices
of the form of random Gaussian matrices, incoherent UNTF's, nearly equiangular frames
and nearly equiangular, nearly tight frames. For the construction of an incoherent UNTF
we employ Algorithm 1, while for the construction of nearly equiangular frames we employ
Algorithm 5 and Algorithm 6.

Our simulations involve synthetic sparse signals 6 of length N = 120, with s = 4
nonzero coefficients. Considering a projection matrix P of size m x N, with m = 15:5: 35
and N = 120, we obtain measurements according to y = P6f. The obtained measurements
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Table 5.1: Recovery rates for sparse signals of length N = 120 obtained with CS, for
variable number of measurements, m = 15 : 5 : 35, and various types of projection

matrices.

MSE
Gaussian Alg. 1 Alg. 5 Alg. 6
15 0.01000 0.00821 0.00837 0.00825
20 0.00506 0.00287 0.00300 0.00287
25 0.00180 0.00056 0.00059 0.00059
30 0.00038 | 5.650- 107> | 5.609 - 107° | 6.887 - 10~°
35| 9.115-107° | 3.300-107% | 2.768 - 1076 | 5.071 - 10~°

Table 5.2: Properties of sensing matrices employed in CS experiments. Results involve
m x N matrices with m € {20,30}, N = 120.

Mutual coh. | Average coh. | Spectral norm

20 30 20 30 20 30
Type
Gaussian | 0.751 | 0.647 | 0.050 | 0.033 | 3.290 | 2.876
Alg. 1 0.354 | 0.237 | 0.042 | 0.025 | 2.449 | 2.000
Alg. 5 0.463 | 0.332 | 0.042 | 0.025 | 2.512 | 2.075
Alg. 6 0.445 | 0.319 | 0.042 | 0.025 | 2.459 | 2.015

are used to find the “unknown” sparse signal, using OMP. For every value of m, we per-
form 10000 experiments. The quality of the recovered signal is measured computing the
Mean Squared Error (MSE). The results demonstrated in Table 5.1 include average val-
ues. According to Table 5.1, all proposed frames outperform random Gaussian matrices,
improving reconstruction accuracy substantially. In agreement with the established the-
ory, the results depend on the number of acquired measurements, with all types of the
proposed frames attaining similar quality of reconstruction for given m.

In order to associate the obtained results for sparse recovery with the properties of
the employed projection matrices, we also present results concerning mutual coherence,
average coherence and spectral norm. Table 5.2 includes average values over 10000 real-
izations for projection matrices with dimensions 20 x 120 and 30 x 120. According to these
results, the superiority of the proposed frames against random Gaussian matrices is plau-
sible, considering mainly the attained incoherence level. Compared to random Gaussian
matrices, nearly equiangular frames produced with Algorithm 5 and Algorithm 6 exhibit
reduced mutual coherence by a factor 40 — 50%, while the improvement for incoherent
UNTFs produced with Algorithm 1 is higher than 50%.

The next important observations concern a comparison between the proposed frame
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constructions. Incoherent UNTFs obtained with Algorithm 1 attain optimal values of
spectral norm and the smallest values of mutual coherence, especially when the frames
are of high redundancy. According to theoretical results presented in previous sections
(see Theorem 4.4.1), one could expect that these frames would yield the highest recon-
struction accuracy. However, this is not confirmed by the demonstrated results, which
show that the attained reconstruction accuracy is not analogous to the improvement of
the aforementioned properies of the employed projection matrices. These results are not
that surprising, if we take into account that many authors have argued that mutual coher-
ence may not express well the effectiveness of a matrix in sparse signal recovery [57, 8, 9].
Clearly, other properties of the projection matrix such as average coherence seem to in-
fluence the effectiveness of the employed matrix as well. Recall that the notion of average
coherence was introduced in [8, 9], where the authors studied its relation to mutual coher-
ence and provided probabilistic guarantees for sparse recovery. While incoherent UNTF's
exhibit the smallest mutual coherence and spectral norm values, the values of average co-
herence are identical for all matrix constructions except from random Gaussian matrices.
We conclude that the results obtained in Tables 5.1 and 5.2 indicate that the effectiveness
of a matrix involved in sparse recovery seems to depend on all afformentioned properties,
with average coherence playing a rather important role.

Concluding, we would like to make a comment concerning the computational cost of
Algorithm 5 and Algorithm 6. While Algorithm 6 produces frames with better spectral
norm, the achieved improvement slightly affects the reconstruction performance of OMP.
Taking into account the additional computational cost introduced by Algorithm 6 and
the fact that the matrices employed in CS are practically of large dimensions, we suggest
Algorithm 5 as the best choice for the construction of sensing matrices, considering both
effectiveness and computational cost. Comparison between Algorithm 5 and Algorithm
1 leads to a similar conclusion, strengthening our preference to Algorithm 5, especially
when the application necessitates limitation of resources.

5.4 Proposed optimized projections

Another way to employ the proposed frame constructions in compressed sensing is the
method of optimized projections. The method proposed here is based on the alternat-
ing and averaged projections algorithms presented in Chapter 3 that produce incoherent
UNTFs. As we will explain in the sequel, nearly equiangular frames can be employed to
obtain optimized projections in a similar way, with the restriction that the treated signals
are sparse under an orthonormal basis.

Despite the existence of theoretical results that highlight the important role of spec-
tral norm, none of the existing methods for the optimization of the projection matrix
aims at the construction of effective dictionaries that form tight frames. Tightness was
firstly introduced in the optimization of the projection matrix in our preliminary work
[128]. Nevertheless, our initial concern when we proposed the algorithm in [128] involved

77



minimizing the mutual coherence rather than attaining tightness. Based on the observa-
tion that the best incoherence levels are obtained by ETFs, which, besides small mutual
coherence, also exhibit minimal spectral norm, the algorithm proposed [128] is our first
attempt to produce frames close to ETFs.

In optimized projections, we consider the product of the projection matrix and the
representation dictionary, that is, F' = PD, and optimize F' over P. The method de-
veloped in [128] involves the following operations on the effective dictionary: First, we
apply the “shrinkage” process proposed in [57] (see eq. (5.13)) and obtain an effective
dictionary with better mutual coherence. Then, we improve the spectral norm of the ob-
tained dictionary finding the nearest (N/m)-tight frame according to Theorem 3.3.1. A
third step involves computing the optimized projection matrix solving the minimization
problem minp ||[PD — F||. Aiming at the improvement of this algorithm, we were led to
the construction of incoherent UNTF's proposed in [129].

The appropriateness of the projection matrices proposed in [128] is confirmed by the
results established in Theorem 4.4.1 [125]. Rephrasing Theorem 4.4.1 to apply to CS, we
consider CS measurements of a sparse signal § € RY under a dictionary D € RE*N K <
N, according to y = PD#@, where P € R™* X m <« K, is the projection matrix. Theorem
4.4.1 states that 6 can be recovered with high probability from O(slog N) measurements
as long as the effective dictionary F' = PD forms an incoherent UNTF. Consequenlty, an
optimization of F' over P involves the computation of a projection matrix P such that F'
is as close to an incoherent UNTF as possible.

Considering the existing optimization techniques for projection matrices and the re-
sults established in Theorem 4.4.1, the main steps of an algorithm that leads to optimized
projections may be the following:

1. Initialize projections with a random Gaussian matrix P.,; and compute the initial
effective dictionary F' = Py D.

2. Apply an algorithm that modifies F' to obtain a frame F exhibiting small mutual

coherence and spectral norm.
3. Obtain P, solving minp ||PD — ﬁ’”

Step 2 can be realized using one of the algorithms presented in Chapter 3. However,
the third step of the above process involves the solution of a least squares problem. The
obtained solution depends on the sparse representation dictionary D and the computed
frame . When the sparse representation dictionary is redundant, that is, K < N, mini-
mization of | PD — F| yields an approximate solution P,y;. Experiments have shown that
if the obtained frame F is an incoherent UNTF constructed with Algorithm 1 or Algorithm
2, then the optimized P,y yields an effective dictionary F,,; = Pop D that is close to F‘;
indeed, Fyp; forms an incoherent UNTE. On the other hand, if the obtained frame Fisa
nearly equiangular frame, then the optimized P, yields an effective dictionary that is far
from F. In this case, F,pt does not exhibit the properties of a nearly equiangular frame.
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A nearly equiangular frame could be used to produce optimized projections for signals
that are sparse under orthonormal bases, that is, when K = N. Then, minimization of
|PD — F| results in a projection matrix P,y satisfying Py, D = F. In order to present
a general solution concerning sparse signals under redundant representation dictionaries
and orthonormal bases as well, the optimization method that follows employs algorithms
yielding incoherent UNTFs.

5.4.1 Optimized projections using incoherent UNTF's

In Chapter 3 we presented two algorithms for constructing incoherent UNTFs. Both
algorithms yield similar constructions; therefore, we have decided to employ only one of
them in the experiments presented here. We choose the proposed alternating projections
(Alg. 1), as it exhibits higher convergence speed. Algorithm 1 is slightly modified to
incorporate the optimization step producing the optimized projection matrix. The method
yields effective dictionaries with small mutual coherence and small spectral norm.

In our experiments, the proposed optimized projections are compared to our prelim-
inary work [128] and existing constructions presented in [145] and [82]. Although our
experiments included the methods of [57], [55] and [1] as well, we only report results with
the methods of [145] and [82] since they seem to perform better.

The properties of the effective dictionary

Before proceeding to reconstruction performance of algorithms employed in CS, let us
present some results that demonstrate the properties of the obtained incoherent dictionary
constructions. The reconstruction experiments that follow involve varying number of
measurements, thus, we present here results for m x N dictionaries with m = 15:5: 35
and N = 120. For every value of m, we carry out 10000 experiments, in which we construct
incoherent matrices with all the methods involved in our CS simulations; All algorithms
are executed performing 50 iterations. The properties we are interested in include mutual
coherence and spectral norm.

Average results for the mutual coherence are presented in Fig. 5.1(a). We can see
that the proposed method leads to a significant reduction of the mutual coherence of
the initial matrix by a factor depending on redundancy (p = N/m). Achieved mutual
coherence becomes closer to the lowest possible bound when redundancy decreases (the
brown dash-dotted line, in Fig. 5.1(a) stands for the lowest possible bound (see eq. (2.25)).
This is a very significant improvement compared to the results of our work in [128] and
the other methods presented here. The fact that the proposed method performs well even
for very redundant frames is an important advantage over the other competing methods.
In Fig. 5.1(b) we demonstrate the spectral norm of the frames under testing, answering
the question “how close are the obtained constructions to UNTFs?”. The measurements
corresponding to the proposed incoherent UNTFs and our preliminary construction [128]
coincide with the lowest bound N/m, confirming that the proposed methodology leads to
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Figure 5.1: Properties of the effective dictionaries involved in CS reconstruction experi-
ments. In (a) we present mutual coherence as a function of the number of measurements.
The bottom brown dash-dotted line represents the lowest possible bound (see eq. (2.25)).
In (b) we present spectral norm as a function of the number of measurements. The red
dotted line corresponding to our methodology coincide with the lowest possible bound.
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Figure 5.2: Changes in the distribution of the column correlation of a 25 x 120 frame.

UNTFs.

Another way to evaluate the obtained incoherent dictionaries is to consider the dis-
tribution of the inner products between distinct columns. Figure 5.2 illustrates a repre-
sentative example of a 25 x 120 matrix. The histogram depicts the distribution of the
absolute values of the corresponding Gram matrix entries. The results concern the initial
matrix and all matrices produced by the employed iterative algorithms, after 50 iterations.
The yellow bar rises at the critical interval that includes the minimal achievable corre-
lation, corresponding to the distribution of an optimal Grassmannian frame (the bar’s
actual height is constrained for clear demonstration of the methods under testing). The
proposed method exhibits a significant concentration near the critical interval, combined
with a short tail after it, showing that the number of the Gram entries that are closer to
the ideal Welch bound is larger than in any other method presented here. Such a result
is in agreement with the small mutual coherence values depicted in Fig. 5.1(a).

CS performance

Let us now continue with CS simulations. For each experiment, we generate an s-sparse
vector # € RY of length N, which constitutes a sparse representation of the K-length
synthetic signal 2 = Df, x € RX, K < N. We choose the dictionary D € RE*Y to be a
random Gaussian matrix. Experiments with DCT dictionaries lead to similar results. The
locations of the nonzero coefficients in the sparse vector are chosen at random. Besides

81



Relative Error

RANDOM AN 1
107 @ [128] .
Q82 e
[145] .
- © - PROPOSED AN
15 20 25 30 35

# of measurements

(a)

10
RANDOM
co @0 [128]
L9 [82] o
[145] P DR
= © = PROPOSED ,&
R4
-1 \\\‘, i
10 e
S > 9, ’
5 -0
[ RN 4
= N
® PR
© -
a4 N N
107 1
R4
o/
4
ad
10'3 P I I I I
1 2 3 4 5 6 7

Sparsity level

(b)

Figure 5.3: CS performance for random and optimized projection matrices by means of
relative MSE in a logarithmic scale. Numerical recovery deploys OMP. In (a) we keep the
sparsity level fixed and vary the number of measurements. In (b) we keep the number of
measurements fixed and vary the sparsity level. A vanishing graph implies a zero error

rate.
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Figure 5.4: CS performance for random and optimized projection matrices by means of
relative MSE in a logarithmic scale. Numerical recovery deploys BP. In (a) we keep the
sparsity level fixed and vary the number of measurements. In (b) we keep the number of
measurements fixed and vary the sparsity level. A vanishing graph implies a zero error

rate.
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the effectiveness of the projection matrix P, the reconstruction results also depend on
the number of measurements m and the sparsity level of the representation s. Thus,
our experiments include varying values of these two parameters. For a specified number
of measurements m < K, we create a random projection matrix P € R™* X After the
optimization process, we obtain m projections of the original signal according to y = PD#.
We reconstruct the original sparse signal with OMP and BP.

In all experiments presented here, the synthetic signals are of length K = 80 and the
respective sparse representations, under the dictionary D, of length N = 120. The execu-
tion of the optimization algorithm included up to 50 iterations. Two sets of experiments
have been considered; the first one includes varying values of the number of measure-
ments m and the second one includes varying values of the sparsity level s of the treated
signals. For every value of the aforementioned parameters we perform 10000 experiments
and calculate the relative error rate; if the mean squared error of a reconstruction exceeds
a threshold of order O(107%), the reconstruction is considered to be a failure.

Figure 5.3 demonstrates results for OMP. Figure 5.3 (a) presents the relative errors as a
function of the number of measurements m, for a fixed sparsity level (s = 4) of the treated
signal. Figure 5.3 (b) presents the relative errors for a fixed number of measurements
(m = 25) and varying values of the sparsity level of the signal. It is clear that the
projections matrix obtained with the proposed algorithm leads to better reconstruction
results compared to random matrices and to matrices produced by the other methods.
The observed results are due to the improvement in the effective dictionary properties.
Similar results for BP are demonstrated in Figure 5.4.

An important observation regarding CS performance, we have also made in the pre-
vious section, is that although we achieved a high quality of reconstruction, the fact that
for some values of measurements (e.g., 15) this improvement is not of the same order as
the improvement in the mutual coherence, indicates that additional properties should be
taken into consideration to decide about the appropriateness of the effective dictionary.
This has been pointed out by other authors [57, 55] as well and should be explored both
theoretically and experimentally.

5.5 Preconditioning in compressed sensing

Often choosing the projection matrix in a CS application is dictated by specific constraints
depending on the application. A major obstacle in most applications is the design of
acquisition hardware. Binary random matrices are considered the best option for practical
implementation [92, 91]. However, the recovery rates they yield are similar to the ones
achieved with random Gaussian matrices at best [11, 91] while certain types of binary
projections work well only when combined with specific representation dictionaries [54].
Motivated by the improved performance of sparse recovery algorithms in sparse repre-
sentations when preconditioning is applied, for the first time to the best of our knowledge,
we propose the use of preconditioning in compressed sensing [130]. When sparse signals
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are acquired with binary projections, preconditioning can improve the incoherence of the
effective dictionary leading to higher accuracy in sparse recovery.

The goal of preconditioning is to transform the linear system describing the measure-
ment process, y = PDf, P € R™X D ¢ Rf¥*N into a form that is more suitable for

numerical treatment. Employing a preconditioner C' € R™*™ we obtain the system
Cy=CPDf# or z=F0, (5.15)

where F' = C'PD is the new system matrix. Computing an appropriate preconditioner
C' is equivalent to constructing a matrix F' exhibiting small mutual coherence and small
spectral norm. Moreover, the preconditioner C' must be an invertible matrix such that
Cy=CPD0 and y = PD# are equivalent.

The method developed here is similar to the one proposed in sparse representations.
Initializing the preconditioner C' with a random Gaussian matrix, the effective dictionary
is modified such as the new system matrix F' = C'PD forms an incoherent UNTF.

1. Initialize preconditioner with a random Gaussian matrix C' = Cj;.
2. Compute the new system matrix F' = C'PD.

3. Modify F such that it forms an incoherent UNTF F.

4. Compute a suitable preconditioner C' solving min¢ ||[CPD — F||.

To produce an incoherent UNTF, we employ Algorithm 1 proposed in Chapter 3.
Algorithm 1 is modified to incorporate the last step described in the above process such
as a preconditioner C' is computed in every iteration. We cannot guarantee that the above
algorithm yields an invertible matrix C'. However, according to our analysis in [129], there
is strong evidence that the algorithm converges locally, meaning that the output matrix
C is close to the initial matrix Ci,;;. Having selected an invertible initial matrix, the
probability that the obtained matrix is singular is very small.

Experimental results

In our experiments we consider a practical problem, assuming that the sensing mechanism
is implemented by a binary random matrix obtained from a Bernoulli (0, 1) distribution.
The first group of experiments involves sparse representation dictionaries D realized by
random Gaussian matrices of size 128 x 256, while the second group of experiments
involves overcomplete Haar-DCT dictionaries of size 128 x 255. Assuming sparse signal
under the concerned represenation dictionary, we construct synthetic signals € of length
N = 256 or N = 255 depending on the employed dictionary, with varying sparsity
level. Signal acquisition is performed according to y = PD6, where P is a 64 x 128
random projection matrix with entries 0,1. Recovery of the “unknown” @ is performed
using OMP and BP. preconditioning is initialized by a 64 x 64 random Gaussian matrix
and is obtained following the steps described above. The performance of the deployed
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Bernoulli projections and Gaussian dictionary
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Figure 5.5: Support recovery rates for OMP and BP, for signals with varying support
size acquired with Bernoulli random projections. The signals considered in (a) are sparse
under a random Gaussian dictionary. The signals considered in (b) are sparse under a
Haar-DCT dictionary.
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Table 5.3: Recovery rates for CS with Bernoulli and optimized projections. When

Bernoulli projections are used, recovery involves preconditioning.

) OMP BP
Support Size - — - —
Bernoulli-Prec. Optimized || Bernoulli-Prec. Optimized
4 1.000 1.000 1.000 1.000
8 0.996 1.000 0.998 1.000
12 0.860 0.870 0.924 0.928
16 0.250 0.248 0.398 0.380
20 0.004 0.006 0.042 0.054

algorithms is quantified by computing the percentage of fully recovered support, referred
to as recovery rate.

For the first group of experiments concerning sparse synthetic signals under random
Gaussian dictionaries, recovery rates for OMP and BP are presented in Fig. 5.5(a). Av-
eraged over 500 realizations, the results show that preconditioning yields significant im-
provement in the performance of OMP, and particularly of BP, implying that the proposed
technique can be applied successfully in CS. For the second group of experiments concern-
ing sparse synthetic signals under Haar-DCT dictionaries, the recovery rates obtained for
OMP and BP are presented in Fig. 5.5(b), confirming that preconditioning can substan-
tially improve the performance of the deployed algorithms.

For further evaluation of the proposed technique, we compare the above results with
optimized projections. We consider the first group of experiments, concerning sparse
signals under 128 x 256 random Gaussian dictionaries, and acquire these signals with
optimized projection matrices obtained with the method described in the previous sec-
tion. Table 5.3 demonstrates recovery rates for OMP and BP. The results are similar
for both methods, showing that the performance of the deployed algorithms when used
with Bernoulli projections and preconditioning is comparable to optimized projections.
Considering that Bernoulli matrices are more convenient for hardware implementation,

this is an important result for practical compressed signal acquisition.
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CHAPTER 6

SPREADING SEQUENCES FOR s-CDMA

6.1 S-CDMA model
6.2 Design of spreading sequences
6.3 Optimal spreading sequences for varying number of users

6.4 Codebooks from nearly equiangular, nearly tight frames

Code Division Multiple Access (CDMA) is an important multiple access technique in
wireless networks and other common channel communication systems where a number
of users transmit their data using the same physical channel. To distinguish each user
from the other, every user is assigned a code, also known as spreading sequence, which he
uses to spread its information on the common channel through modulation. In symbol-
synchronous CDMA (s-CDMA) systems, all users are in exact synchronism relative to
the receiver, that is, their data symbols are alligned in time. The receiver demodulates
the transmitted message upon observing the sum of the transmitted signals embedded in
noise.

Our main concern in such systems is to achieve reliable and fair communication using
maximum sum rate. The set of information rates at which the users can transmit while
retaining reliable transmission is known as capacity region. The information theoretic
capacity region of Gaussian multiple access channels was addressed in [135] where it was
characterized as a function of spreading sequences and average input power constraints
of the users. It was suggested in [135] that the choice of the spreading sequence set or the
codebook is left open to the designer of the CDMA system; the spreading sequences could
be optimized given the constraints of the problem.

Optimal spreading sequences maximize the sum capacity, which is defined as the max-
imum sum of achievable rates of all users per unit processing gain and the maximum
is taken over all choices of spreading sequences. According to results from [111], [136],
optimal codebooks are fundamentally a function of the number of active users and the
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number of chips. In [111] the authors proved that the spreading sequences that maximize
the sum capacity are the ones that minimize the interuser interference. These codebooks
form equal norm tight frames, which are also referred to as Welch Bound Equality (WBE)
sequences [95].

While WBE sequence sets are of considerable interest in CDMA communication sys-
tems, we must note that the properties of a WBE sequence set do not always apply to
subsets, meaning that a codebook designed for a specific number of users is no longer
optimal, if some users are silent [112, 132]. Therefore, it is of interest to find sequence
sets that perform well even when subsets of the available codes are active. This problem
was addressed in [77, 76], where the authors constructed codebooks from equiangular
tight frames (ETFs) and proved that such codebooks are less sensitive to changes in the
number of active users. However, the codebooks proposed in [76], based on conference
matrices (see section 2.4), are restricted to certain dimensions.

In this Chapter, first, we briefly review well-known results regarding the design of
spreading sequences and characterize optimal spreading sequences for s-CDMA systems.
Then, we employ as spreading sequences the proposed nearly equiangular, nearly tight
frames and study their performance.

6.1 S-CDMA model

Consider a discrete time symbol synchronous CDMA system with K independent users
and processing gain L. The K users want to transmit their information symbols B®*),

k =1,..., K. Bach user is assigned an individual real spreading sequence s*) of length
L, that is, s = [sgk),sgk),...,s(f)], where L is known as the spreading factor of the

spread-spectrum system. BEach spreading sequence s*) is assumed to have energy L, i.e.,
(s sy =, (6.1)

The users encode their information into real +1 valued symbols B%*), which are as-
sumed to be independent Gaussian random variables, with E [|[B®|?] = 1. In the i-th
symbol interval, the users spread their real-valued encoded symbols B(k), Ek=1,... K,

i

by the spreading sequences s*) and then transmit the L-dimensional symbols
BIHS0 _ [pH0 g0 0 g+
In this manner, the k-th user creates the sequence
cee ngl)s(k), B(()k)s(k), B%k)s(k), e

Transmitting over a Gaussian multiple access channel and assuming perfect synchro-
nization, the receiver during the i-th symbol period observes the i-th data symbol

K
ri=w Z BZ.(k)s(k) + n;, (6.2)
k=1
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where w is the received power, assumed the same for all users, n; is a zero mean Gaussian
random vector with correlation matrix E[NNT] = n%I}, and I, denotes the L x L identity

matrix.

6.2 Design of spreading sequences

Optimal spreading sequences maximize the sum capacity and lead to minimum interuser
interference experienced by each user. In [95] Massey and Mittelholzer first identified
that spreading sequence sets that minimize interuser interference exhibit minimum total
squared correlation. The sequence sets having this property were identified as WBE se-
quences [95]. Considering the problem of maximizing the capacity of s-CDMA systems, it
was shown in [111] that sum capacity is maximized precisely by the same WBE sequences.

6.2.1 Interuser Interference

The observed sequence r; = [r1, 7io, . . ., 7] at the receiver is correlated with the spreading
sequence s*) to produce the detection statistic Si(k) for the user k,

L

S = (i, s®y = rygstt.

j=1

Assuming that <s(k), s(k)) = L, the data symbol detection statistic for the user & becomes

K
S =wLB +w B, s0) 4, (6.3)

=1
£k

where ") = (n;, s®). The sum

i

K
k ¢
&Y =wy BO(sW,s) (6.4)
=1
(+k
represents the interuser interference experienced by the user k. Because the data symbols

of the K users are themselves statistically independent and each has mean 0 and variance
1, the interuser interference given by the sum (6.4) has mean 0 and variance

o’(k) = [(s®, sO). (6.5)

The term o2(k) is also referred to as interference power. Equation (6.5) can also be written
in the form

o’ (k) = 1(s®), s — L. (6.6)

/=1

91



The interference caused by the spreading sequences has an effect on the quality of

transmission, reducing the signal-to-noise plus interference (SINR) ratio
1
SINR(K) = ———x . k=1,... K. (6.7)
07 T 2 gt | (s, 52

Increasing interference results in performance degradation of the ss-CDMA system.

Therefore, the sequence design problem for ss=CDMA can be formulated as follows:

Problem 6.2.1 (Minimize worst interuser interference). Choose sequences sV, s, ... s)
of length L to minimize

wce

K
2 _ 2 _ (k) (O\N12 12
O = maxo® (k) m]?x;m sV — L2, (6.8)

where o, stands for the worst interuser interference.

The optimally solution to problem 6.2.1 will result from a solution, when it exists, to
the following problem:

Problem 6.2.2 (Minimize Total Squared Correlation). Choose sequences sV, s, ... &)

of length L to minimize

K K
Fror =33 [(s®), sO)? - KI2. (6.9)

It is easy to show that the necessary and sufficient condition for no interuser interfer-
ence is

(s® s®y =0, forall k+#0¢. (6.10)

However, this holds only when K < L, since there can be at most L orthogonal non-zero
sequences of length L.

6.2.2 Welch Bound Equality (WBE) sequences

While orthogonal sequences eliminate interuser interference, it has been shown that non-
orthogonal codes are sum capacity optimal. A quarter-century ago, Welch [143] published
a collection of lower bounds on the maximum magnitude of the inner products of a set of
vectors. One of the main results of [143] concerns lower bounds for the 2m-th power of
the sum of the inner products between pairs of vectors
K K
|<S(k), S(Z)) |2m

k=1 (=1

K2L2m

m

(6.11)

Setting m = 1 in (6.11), we obtain the Welch bound on the total squared correlation. In
[95], Massey and Mittelholzer provided a simple derivation of this bound and first stated
the condition for equality.
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Theorem 6.2.1 (Bound Total Squared Correlation [95]). If sV, s ... s) are se-

quences in C¥ and all have the same energy L, i.e.,

[s®)? = (s® s"Y =1, k=1,...,K, (6.12)

then

K K

SN [sW s > K7L (6.13)

k=1 =1
with equality if and only if the rows ¥ @ . . r) of the L x K array whose columns
are s, 5@ .. s are orthogonal and all rows have the same energy, i.e.,

|rO2 =K, ¢=1,...,L. (6.14)

The sequences satisfying (6.13) with equality are known as Welch Bound Equality
(WBE) sequences [95]. When equality holds the sequences are also characterized as
uniformly good [95] in the sense that

K
D Us® s =KL, k=1,...,K. (6.15)
(=1

Recall that the sum in equation (6.15) expresses the variance o?(k) of the interuser inter-
ference (see (6.5)). Therefore, WBE sequences designed for K users when employed as
spreading sequences in s-CDMA yield the same interference for every user. From (6.15),
(6.7) we see that the SINR is also constant and depends only on K and L.

6.2.3 Sum capacity

Sum capacity is an important measure of overall information capacity of a multiple access
channel. It was shown in [135] that the sum capacity is a function of users’ spreading
sequences and received powers. Sum capacity optimal spreading sequences have been
characterized for Gaussian channels [111], [112], fading channels with white noise [136],
fading channels with colored noise [137], [3], and with different receivers [138], [73].

Let S be the L x K matrix with the users’ spreading sequences as its columns, S =
[s1) 5@ s and W = diag{w, ws, ..., wx} be the K x K diagonal matrix of users’
received powers. Considering a multiple access channel with zero mean Gaussian noise

with correlation matrix E[NNT] = n?I}, the maximum capacity was derived to be [135]
1
Csum = 5 log[det (I}, +n 2SWST)]. (6.16)

When the received powers of the users are the same, wy, = w for all k, (6.16) reduces

to
1 w
Coum = 5 log[det (I, + ESST)]. (6.17)

A necessary and sufficient condition to attain (6.17) is [111]

STS =1Ix, when K<L, (6.18)
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Sﬁ:%&,mszg (6.19)
where I, I are the K x K and N x N identity matrices, respectively. Therefore, a
spreading sequence set should form a set of orthogonal sequences, if the number of users
is equal or less than the processing gain, and a unit norm tight frame (UNTF), otherwise.
In [3] it was shown that a spreading sequence set satisfying (6.17) exhibits also mini-
mum total squared correlation (WBE sequences). Therefore, the problem of maximizing
the capacity of an s-CDMA system is equivalent to minimizing interuser interference. In
[140] it was shown that WBE sequence sets defined in [95] are precisely equal norm tight
frames.
In Chapter 2 we have seen that equal norm tight frames and unit norm tight frames
exist for any frame dimensions; thus, maximum sum capacity and minimum interuser
interference can be always achieved. Constructions of WBE sequences have been described

in [95, 112, 127].

6.3 Optimal spreading sequences for varying number of users

Considering that optimal codebooks are a function of the number of active users, practical
application of WBE sequences raises the need of reassignment as the number of active
users changes. While a WBE sequence designed for K users is capacity optimal and
has a nice interference invariance property, the sequence subset ceases to satisfy Welch’s
bound with equality if any M < K signatures are removed. Therefore, whenever a user
leaves or a new user arrives, the subset of remaining sequences will no longer be optimal
(112, 132, 77, 76].

Theorem 6.3.1 ([76]). Let S = [s(V), 52 ... s8] be a set of WBE sequences of length
L and assume K > L. If we remove any M < L sequences from or add any M < L equal
norm sequences to this set, then the resulting set does not satisfy the Welch’s bound with
equality.

Employing a subset of spreading sequences that are not optimal leads to the undesir-
able property that users would see different amount of interference as a function of their
sequence assignment, which can result in capacity or bit error probability degradations.
Thus, a system that fully exploits WBE sequences would need (i) a set of spreading se-
quences for every possible K and (ii) would need to reassign all sequences every time a
user arrived or departed from the system.

To mitigate the problems caused by the loss of the WBE property, in [77, 76] the
authors studied equiangular frames and employed them as spreading sequences. Perhaps
the most interesting property of equiangular sequence sets is that the total interference
power for every sequence is only a function of the current number of active sequences and
the original dimensionality of the codebook.
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Let I denote the set of integers 1,2,..., K, and A a subset of I that indexes the
active sequences. For an arbitrary active sequence k, the interference power is

= Is* = (A -1, k=1,...,K, (6.20)

le A
£k

where ¢ is the equiangular constant, ¢ = |(s*), 5())| for any ¢ # k. Note that (6.20)
is independent of £ and depends only on the number of the active users given by the
cardinality of A. This byproduct of the equiangular property is stated in the following
theorem.

Theorem 6.3.2 (Interference Invariance [77]). The total interference power for any
equiangular sequence set is identical for all sequences and depends only on the total number
of active sequences.

A consequence of this theorem is that ETFs are the best of all equiangular sequences
since they achieve the lowest bound on the maximum correlation with equality (and thus
have the smallest possible ¢). Considering that for L x K ETFs there holds

‘<S(k >} SR (6.21)
Is® [ sO1 L(K— 1)’
we obtain
K-L
_ 1B Oy — iy 22
o= I(s.50)| = fm gt kAL (6.22)
where we assumed that ||s*)|| = L, for all k. Therefore, for sequence sets obtained by

ETFs, the interference power experienced by the k-th user is

ZGZA| = (JA| - 1)%& (6.23)
0Lk

which is the same for K =1,2,... K.
It is clear that ETF's are a subclass of WBE sequences since

S350, 50 ZZI SOy 1

k=1 (=1 k=1 \ ¢=
E;ﬁk

=K ((K — 1)%L2 + LZ) (6.24)

K- L
:K( 7 L2+L2)

= K°L.

Welch’s bound was originally stated as a lower bound on the maximum value of |(s*), ()|
for k # ¢ (see eq. (3.4.1)), also referred to as mazimum Welch bound. Recall that ETFs
satisfy the maximum Welch bound with equality and constitute a very important subclass
of WBE sequences, also known as maximal WBE (MWBE) sequences [112].
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Figure 6.1: Standard deviation of the interference term for variable number of active users
in an s-CDMA system designed for 128 users.

6.4 Codebooks from nearly equiangular, nearly tight frames

In Chapter 3 we have seen that Algorithm 6 may produce nearly equiangular, nearly tight
frames of any dimensions. As these frames exhibit approximately minimal spectral norm,
they are very close to UNTFSs; thus, we expect that the frame vectors approximately
minimize the total squared correlation as well. Moreover, as the frame vectors exhibit
similar correlation, it is expected that the proposed frames lead to similar values of o (k) =
S (s®), sOY2 ¢ # K, for all k. As we have discussed, this term is related to the
interuser interference and results in variation in the quality of the signal received by the
users. Therefore, we propose the employment of nearly equiangular, nearly tight frames
as spreading sequences in s-CDMA. We also employ as spreading sequences the proposed
incoherent UNTFs produced by Algorithm 1. These frames belong to WBE sequences
and are expected to minimize TSC and maximize sum capacity. The proposed frames are
compared to a UNTF construction presented in [124] for application to s-CDMA.

Our simulations consider an s-CDMA system with varying activity, that is, the number
of users in the system changes, resulting in different subsets of active users. The system is
designed for at most NV = 128 users. The code set includes codes with length 64, thus, it
forms a 64 x 128 frame. For every subset of K active users, the system randomly chooses
K frame vectors as codes. The considered subsets of users are of varying size. In every
situation, we examine the interference term o(k). As a measure of how close we are to the
target that all users experience the same interference, we compute the standard deviation
of o%(k). The results are averaged over a series of random trials and are demonstrated in
Figure 6.1. Clearly, the obtained results show that nearly equiangular, nearly tight frames,
outperform UNTFs (WBE sequences), when the system works with a load up to 85% its
total load, exhibiting similar interuser interference for all considered scenarios of activity,

96



Table 6.1: Average total squared correlation (TSC) for variable number of active users.

: TSC
# of active users - -
Algorithm 6 | Algorithm 1 | [124]
64 95.720 95.742 95.868
80 129.812 129.773 129.706
96 167.769 167.763 167.821
112 209.932 209.876 209.805
128 256.094 256.000 256.000

regardless of the number of active users in the system. On the contrary, concerning UNTF
constructions, we see that the smaller the number of active users the higher the variance
in interuser interference. However, UNTFs exhibit optimal performance for K = N, when
o?(k) is identical for all k, leading to the same interference for every user (see (6.15)).

In Table 6.1, we present average values of the total squared correlation (TSC) ob-
served in the above scenarios of active subsets of users. Both UNTF constructions attain
the minimum bound as expected, while nearly equiangular, nearly tight frames exhibit
a small discrepancy. As discussed in section 6.2.3, frames that minimize TSC result in
optimal sum capacity. Computing the sum capacity corresponding to each frame from
(6.17), the observed discrepancy becomes even smaller. We conclude that the proposed
nearly equiangular, nearly tight frames satisfy the condition for near optimal sum ca-
pacity. Considering that we may produce such frames of any dimensions, the proposed
construction offers flexibility when designing codes for an s-CDMA system and provides
spreading sequences that lead to near optimal performance.

97






CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis, we relied on well-known results from frame theory and proposed novel
frame constructions that attain small mutual coherence and spectral norm, approximating
the corresponding optimal bounds. The proposed frames are succesfully employed in
sparse representations, compressed sensing, and communications. More particularly, the
numerical methods presented here yield three types of frames, namely incoherent UNTF's,
nearly equiangular frames and nearly equiangular, nearly tight frames. All proposed
frames exhibit remarkable performance, when used to acquire sparse signals in compressed
sensing, improving the recovery rates of the deployed algorithms. Incoherent UNTFs are
suitable for designing optimized projection matrices for compressed sensing and efficient
preconditioners for underdetermined linear systems with sparse solutions that are met in
sparse representations and compressed sensing. Nearly equiangular, nearly tight frames
approximate UNTFs, which are considered optimal spreading sequences for s-CDMA
systems. Exhibiting the additional advantage of approximate equiangularity, they can be
employed as spreading sequences in multi-access systems with varying number of users,
as they minimize interuser interference.

The mathematical tools used to develop the proposed constructions involve optimiza-
tion techniques that concern projections onto non-convex sets and numerical methods for
the solution of inverse eigenvalue problems. Most theoretical results in these fields have
been established over the past decades, yet, important questions such as the projections
onto non-convex sets have not been completely answered. It is obvious that any progress
in these fields may offer a better insight of the developed techniques and contribute to
the improvement of the efficiency of the proposed algorithms.

Theoretical study of the new frame constructions regarding their feasibility in practical
problems is an important working direction. While there exist several recovery guarantees
for incoherent frames and incoherent UNTFs, we have almost no result for frames that
approximate ETFs. It would be of great significance, if the proposed nearly equiangular,
nearly tight frames could be accompanied by theoretical results justifying their remark-
able performance in simulations. A deep investigation could provide performance bounds
deciding the appropriateness of the proposed frames in sparse recovery or their feasibil-
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ity to minimize interuser interference, when used as spreading sequences in multi-access
systems.

Towards this direction, a quantative characterization of approximate equiangularity
seems useful. The latest work of [23] introduces the concept of e-equiangularity. Consid-
ering an m x N frame @ = {¢;} Y|, ¢; € R™, and denoting by i, v the Welch bound (see
(4.3)), the frame is defined as e-equiangular if

(1 - 6)/Lm,N S |<8027 507>| S (1 + G)Mm,Na (71)

for any two distinct columns ¢;, ¢; of @. Regarding the recovery ability of e-equiangular
frames, the authors of [23] rephrase the square root bound on sparsity, s < y/m, to the

plausible bound s < 2(L Definitely, a further investigation of the advantages and

m
limitations of such framé;rei)s of great interest. A theoretical study could also consider e-
tight frames with spectral norm that slightly exceeds the minimum bound N/m (||®||* <
% + ¢€) and e-unit norm frames with columns of norm close to 1.

In compressed sensing, we have seen that practical problems impose certain restric-
tions on the design of projections matrices, arising from physical constraints in the related
applications. Binary matrices are considered best candidates for hardware implementa-
tion. A similar constraint in multi-access sytems is that the alphabet of the employed
codes may also be restricted. From this perspective, it is a challenge to develop methods
that produce frames with specific alphabet, e.g., binary entries, also exhibiting good inco-
herence and spectral properties. Concerning practical compressed sensing applications, it
is important that projection matrices also possess some structure. Recall that structured
frames facilitate the design of the acquisition hardware and offer fast and reliable signal
reconstruction, improving the performance of sensing devices. Incorporating the above
parameters in frame design, while also retaining incoherence and tightness, is a challenge.

The goal of this thesis was the construction of frames that exhibit good incoherence
and spectral properties. As equiangular tight frames form a class of frames satisfying
optimal bounds regarding incoherence and spectral norm, future research is inevitably
connected with new developments in frame theory and, more particularly, new results in
the design of ETFs and UNTFs. Of course, the construction of ETFs is an extremely
difficult problem—open for over half a century, and is connected with other important
problems and conjectures in frame theory that have been stated in [39, 74, 33]. However,
from the perspective of an engineer, besides perfect ETF and UNTF constructions, we are
also interested in approximate constructions as the ones proposed in this thesis. Any new
theoretical foundations contributing to a better understanding of ETFs or UNTFs may
provoke the development of new techniques, producing frames that are useful in practical
applications.

Sparse representations and compressed sensing have experienced a considerable growth
during the past decade. Still important theoretical and practical questions remain open
(59, 118]. The work presented here is a typical paradigm of how research in these fields
evolves. In the recent years, much of the progress has been inspired from results in
other research areas such as frame theory, graph theory, applied harmonic analysis, and
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information theory. On the other hand, compressed sensing and sparse representations
have played an important role to the evolution of advanced probability theory and, in
particular, random matrix theory, convex optimization, and applied harmonic analysis.
Furthermore, diffusion of sparse recovery and compressed sensing ideas in areas such as
radar analysis, medical imaging, distributed signal processing, and data quantization has
also provoked important progress in various practical applications. Clearly, the progress
in sparse representations and compressed sensing is a result of interdisciplinary collab-
orations motivated by one sensible reason: some important problems simply cannot be
solved otherwise! An interesting side of this collaborative culture is the way we are think-
ing about the development of hardware and software when designing sensors and other
devices. While, in the past, we addressed these problems separately, it seems that future
developments require an interdisciplinary approach, where hardware and algorithms are
treated in a truly intergrated manner [118].
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APPENDIX A

PROJECTIONS

Projection onto smooth manifolds

According to [88], a smooth manifold E is, loosely speaking, a set consisting locally of
the solutions of some smooth equations. More precisely, we say that a set M C E is a
C*-manifold (of codimension d) around a point x € M, if there exists an open set U C E
containing x such that
MNU={zeV:F(x)=0},

where F : U — R? is a C* function with surjective derivative throughout U.

Fixed rank matrices is an example of a smooth manifold. Let E = M,, y(R) be the
space of m x N matrices with the classical inner product (A4, B) = trace(A” B). Routine
calculations show that the set of matrices with fixed rank r,

Fy ={X € My n(R) : rank(X) = r},

is a smooth manifold around any matrix A € %,. Using the singular value decomposition
A =UDVT (the two matrices U = [uy, us, ..., u,] and V = [v1, vy, ..., v,,] being orthogo-
nal, and the diagonal entries in the diagonal matrix D being written in decreasing order),
the tangent space at A to %, is

Ta,(A) ={H € My x(R) : ] V; =0, forall r<i<N, r<j<m}
The following result states that smooth manifolds admit unique projections locally.

Theorem A.1 (Projection onto a manifold [88]). Let M C E be a manifold of class C*
(with k > 2) around a point & € M. Then the projection Py, is well-defined around T.

Projection onto fixed rank matrices is an example of projection onto manifolds and
can be computed with the truncated singular value decomposition. If X € M,, y(R) with
X =UXVT, then the nearest matrix with rank no more than r is

r

4 § : T

X = o;u;v;
=1

where o; are the r first singular values of X
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Projection onto spectral sets

According to [101], projections onto spectral sets of matrices, that is, sets of matrices
defined via properties of their eigenvalues, can be handled using spectral decomposition.
Let QN be the space of real symmetric N x N matrices, equipped with the trace inner
product. @ is an Euclidean space. A subset T is spectral if, for every matrix X € 7 and
every U in the group O of orthogonal matrices, we have UT XU € T'. The eigenvalue map
A: QN — RY maps any symmetric matrix X to its eigenvalues arranged in nonincreasing
order, A\{(X) > M(X) > --- > Ay(X). It is easy to see that any spectral set can be
written in the form \™}(K) = {X : A\(X) € K}, for some set K C R", and that we can
further restrict K to be permutation-invariant: for every vector x € K and every P in the

group PV of permutation matrices, we have Pz € K. The following result is established
in [88].

Theorem A.2 (Spectral projection [88]). If the point x in the permutation-invariant
set K C RY, is a nearest point to the point y € RN, then for any orthogonal matriz
U, the matriz UT diag(x)U is a nearest matriz in the spectral set \™1(K) to the matriz

UT diag(y)U.

A good example is the set of matrices of some fixed rank. More results regarding
projections onto spectral sets can be found in [88].
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