
Mapping Loop-Based Programs onto a Multithreaded Processor

Η

 ΓΙΓΑΚΣΟΡΙΚΗ ΓΙΑΣΡΙΒΗ

Τπνβάιιεηαη ζηελ

νξηζζείζα από ηελ Γεληθή πλέιεπζε Δηδηθήο ύλζεζεο

ηνπ Σκήκαηνο Πιεξνθνξηθήο

Δμεηαζηηθή Δπηηξνπή

από ηνλ

ανύγθν Γεκήηξην

σο κέξνο ησλ Τπνρξεώζεσλ

γηα ηε ιήςε

ηνπ

ΓΙΓΑΚΣΟΡΙΚΟΤ ΓΙΠΛΩΜΑΣΟ ΣΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Οθηώβξηνο 2014

 ii

DEDICATION

 This work is dedicated to Catherine. She fought until the very end and will

always be in our hearts and minds.

 iii

ACKNOWLEDGEMENTS

 This thesis contains the results of a research that started in 2008 but

culminated in 2011 to 2012. Its progress reflected my personal life which was marked

by both the brightest and the darkest of times. For this reason alone I would like to

thank my Supervisor, George Manis, who not only guided me (and insisted on some

choices even when I vehemently insisted that “that can’t be done!”) but also

demonstrated Jobian levels of patience when dealing with me. I would also like to

thank my consulting committee members Chris Jesshoppe and Nikolaos Papaspyrou

for helping me improve on my work and my thesis. Of course special mention goes to

my family, my parents George and Anthoula as well as my siblings, Vasilis, Catherine

and Joan for all the support they have given me over the years. Finally I would like to

thank my close friends George(x3), Mary, Helen, Socrates and Lee for being there for

me when I needed them the most. This thesis would not exist without any of these

people.

iv

TABLE OF CONTENTS

 Pg.

Chapter 1. Introduction 1
Chapter 2. Related Work 4

2.1. Introduction on Parallel Systems and Threads 4
2.2. Developer Tools which Enable Parallel Programming 6

2.3. Dependencies and Parallelism Detection 11
2.4. The Polyhedral Model and Related Methods 14
2.5. General Parallelization and Run-Time Methods 15

2.6. Overviews, Surveys, Tutorials and Books on Automatic Parallelization 17

2.7. List of Parallelizing Compilers 19
Chapter 3. Loop Transformations 26

3.1. Data Dependencies and the Polyhedral Representation 26

3.2. Loop Transformations 29
3.2.1. First Pass Transformations 29

3.2.2. Unimodular Matrices 34
3.2.3. Prime Loop Transformations 35

Chapter 4. SVP 43

4.1. Introduction and Prerequisites 43
4.2. The SVP Processor and Model 44

4.3. The SL Programming Language 49
4.4. The Toolchain 52

CHAPTER 5. THE C2κTC/SL COMPILER 55
5.1. Introduction 55
5.2. Single-Dimensional Loops 56

5.2.1. Loops without Dependencies 56
5.2.2. Loops with a Single Dependence 57

5.2.3. Loops with Multiple Dependencies 61
5.2.4. Loops with Anti-Dependencies 62

5.3. Multi-Dimensional Loops 63

5.3.1. The Fixed-Size Algorithm 64
5.3.2. The Self-Adaptive Algorithm 71

5.3.3. Anti-dependences 77

5.4. From C to SL 78

5.4.1. The Masterloops 79
5.4.2. Dependence Analysis in a Masterloop 80
5.4.3. Transformation of a Masterloop 81
5.4.4. Code Generation 82

CHAPTER 6. EVALUATION OF THE C2κTC/SL COMPILER 88
6.1. Introduction 88

v

6.2. Single-Dimensional Loops 89

6.3. Multi-Dimensional Loops 99
6.3.1. No Dependences 100
6.3.2. The Run-Time Algorithm 108

6.4. The Livermore Loops 120
Chapter 7. Final Thoughts 124
References 128
APPENDIX A. The SL Language 135
APPENDIX B. Supported C subset 146

Author’s Publications 152
Short Curriculum Vitae 153

vi

TABLE INDEX

Table Pg.

Table 2.1 Flyn's classification of Parallel Systems. 4
Table 6.1. The Results of the Execution Times (in Cycles) of a Simple Sequential and

Parallel Application. 90
Table 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads

Running the Same Code. 91

Table 6.3. Comparison Between the Sequential for and the Transformed SL Code. 92
Table 6.4. Results of the Transformed Loop with a Dependency of Length 2. 93

Table 6.5. Results of the Transformed Loop with a Dependency of Length 5. 94
Table 6.6. Comparing Sequential and SL Codes with 2 Dependences. 96
Table 6.7. Comparing Sequential and SL Codes with 3 Dependences 97
Table 6.8. Comparing Sequential and SL Codes with 4 Dependences. 97

Table 6.9. Comparing Sequential and SL Codes with 5 Dependences. 97
Table 6.10. Comparing Sequential and SL Codes with an Anti-Dependence. 99

Table 6.11. The Results of the Game of Life in Absolute CPU Cycles. 100
Table 6.12. Continuation of the Results in Table 6.11. 100
Table 6.13. Speedups for the Game of Life Derived from Table 6.11. 101

Table 6.14. Speedups Derived from Table 6.12. 101
Table 6.15. The Resulting Data of the Mandelbrot Calculation (1 to 4 cores). 102

Table 6.16. The Resulting Data of the Mandelbrot Calculation (8 to 64 cores). 103
Table 6.17. Corresponding Speedups of the Mandelbrot calculation. 103

Table 6.18. Corresponding Speedups of the Mandelbrot Calculation (cont.). 103
Table 6.19. CPU Cycles for the Sequential and Parallel Executions of Matrix

Multiplication. 105
Table 6.20. Continuation of the Results from Table 6.19. 105
Table 6.21. Corresponding Speedups Gained from Parallel Matrix Multiplication. 105

Table 6.22. Corresponding Speedups from Matrix Multiplication (cont.). 106
Table 6.23. MasterCPU Cycles for the Game of Life for Various Problem and Tile

Sizes. 107

Table 6.24. Comparing execution times between sequential, transformed and

manually written parallel code. 111

Table 6.25. Speedups Gained from the two methods for various problem sizes. 111
Table 6.26. The Optimal Tile Size for Various Problem Sizes. 112
Table 6.27. Speedups for Problem Size of (2, 3, 4)000x (2, 3, 4)000 for the Loop With

Dependence Vector D={(1,0), (0,1)} 112

Table 6.28. CPU Cycles and Speedup Gained for Various Tile Sizes for the Compile-

time Hyperplane Method (Problem size: 4000 x 4000). 112
Table 6.29. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the

{(1,0),(0,1)} Problem. 113
Table 6.30. Comparing the Speedups of the two Methods for the {(1,0),(0,1)}

Problem. 114

vii

Table 6.31. Comparing the Resulting Data of the Two Run-time Algorithms for the

D={(0,1), (1,1), (1,0), (1,-1)} Problem. 116
Table 6.32. Comparing the Speedups of the Two Run-time Algorithms for the Loop

with D={(0,1), (1,1), (1,0), (1,-1)} 116

Table 6.33. CPU Cycles for the {(2,0), (0,2)} Problem. 118
Table 6.34. Speedups Achieved by the two Algorithms. 118
Table 6.35. A Summary of the Results of the Livermore Loops Transformations by

C2κTC/SL. 123

viii

FIGURE INDEX

Figure Pg.

Figure 2.2. Using OpenMP to Calculate the Value of pi in Parallel. Letters in Bold

Indicate where the Computation Takes Place. 9
Figure 2.3. Using MPI to Calculate the Value of PI in Parallel. Letters in Bold

Indicate MPI-specific Directives. 10

Figure 3.1. A Perfectly Nested Loop in C. Unit Stride of 1 is Assumed. 27
Figure 3.2. A Typical Example of a Perfectly Nested Loop in C with Two Loop

Carried Dependencies. 28

Figure 3.3. Using Data Privatization in Order to Simplify and Remove a False (Anti)

Dependency. 30
Figure 3.4. Using Data Expansion in Order to Simplify and Remove a False (Anti)

Dependency. 30

Figure 3.5. An Example of Induction Variable Elimination. 31
Figure 3.6. An Example of Loop Normalization. 31

Figure 3.7. An Example of Forward Substitution. 32
Figure 3.8. An Example of Loop Distribution Which can Help Improve Cache

Performance. 32

Figure 3.9. Another Example of Loop Distribution Where an Imperfectly Nested

Loop is Split Into two Perfectly Nested Ones. 32

Figure 3.10. An Example of Loop Fusion. Two Parallel Loops are Fused Together

with the Aim to Reduce Overhead. 33

Figure 3.11. An Example of Reduction. The Summation of A into the Scalar “sum” is

Partially Parallelized. 34
Figure 3.12. A Perfectly Nested Loop with Nesting Level of 2 and its Graphical

Representation in the Two-Dimensional Space. 35
Figure 3.13. The Loop of Figure 3.12 and its Graphic Representation After a Tiling

Transformation. A Stride of 3 was Used in Each Dimension. 36
Figure 3.14. The Unimodular Transformation of Loop Interchange. 37
Figure 3.14. A Nested Loop Before and After Loop Interchange. 37

Figure 3.15. Creating a Permutation Unimodular Matrix by Swapping the Rows of the

Original Identity Matrix. 37

Figure 3.16. Applying the Constructed Unimodular Matrix from Figure 3.15 to an

Index Set. 38

Figure 3.17. A Code Example where Skewing can Expose Hidden Parallelism. 38
Figure 3.18. The Graphical Representation of the Loop and the Loop Carried

Dependences it contains. 39
Figure 3.19. A Typical Skewing Unimodular Matrix. f1, f2,…, fn are the Skew Factors.

 39

ix

Figure 3.20. The Skewed Result from the Original Loop of Figure 3.17 when the

Matrix of Figure 3.19 was Applied on it. 40
Figure 3.21. The Polytope Representation of the Skewed Loop Presented in Figure

3.20. The Inner Level Parallelism per Iteration of i’ is Obvious. 41

Figure 3.22. From Left to Right the Wavefront (Black Dashed Rectangle) Moves

Through the Computation data. Grayed Points Indicate Already Processed Index

Instances. 41
Figure 4.1. An SVP Family of Microthreads. The Global Channel is Available to all

Threads While the Shared one Creates a Data-chain from One Thread to the Next.

 46
Figure 4.2. An SVP Hierarchy with the Accompanying Asynchronous Memory. 47
Figure 4.3. A Typical Code Fragment which Calculates the Product of two n x n

Matrices. 48
Figure 4.4. The Execution Hierarchy Created for the Concurrent Matrix

Multiplication. Single-pointed Arrows Indicate Dataflow Direction. 49

Figure 4.5. Calculating the nth Term of the Fibonacci Sequence. After the Thread’s

Termination, Reading the Shared Channel c Provides the Final Result. 51

Figure 4.5. An Application which Concurrently Multiplies two Matrices a, b (10x10

size) and Stores the Result in the c Matrix. 52
Figure 4.6. The Typical SL/SVP Toolchain. 53

Figure 4.7. The Augmented SVP Toolchain. 54
Figure 5.1. Typical Loop Without Dependencies. 56
Figure 5.2. Another Example of a Loop Without Dependencies. 56

Figure 5.3. The End Result of the Transformation of the Loop in Figure 5.2. 57
Figure 5.4. Invoking the Family of Threads of Figure 5.3 from the Parent Thread. 57

Figure 5.5. A Typical Example of Unary Dependency. 57
Figure 5.6. Visualization of the Index Space that Figure 5.5 Produces. The Dashed

Arrow Indicates the Direction and Length of the Loop Carried Dependence. 57

Figure 5.7. The Transformed Result of the Code in Figure 5.5. 58

Figure 5.8. A Typical Code Example of a Uniform Dependency with Length x. 59
Figure 5.9. Index Space Visualization of a Single Dependence of Length x=2. 59
Figure 5.10. Transforming the Code of Figure 5.8. Notice the Increase in Hierarchy

Complexity. 60

Figure 5.11. A Loop With x Different Dependencies. 61
Figure 5.12. Visualization of the Loop of Figure 5.11. 61
Figure 5.13. Transformation and Invocation of a Loop with Multiple Dependencies.

 62
Figure 5.14. A Typical Loop with an Anti-dependence. 62

Figure 5.15. Transformation and Invocation of the Anti-Dependence Loop. 63
Figure 5.16. A Random State of the Index Space of a Nested Loop with two

Dimensions. Arrows Indicate Dependences (2 in this Example). 64
Figure 5.17. A Two-Dimensional Index Space Before and After Tiling. Each Tile has

a Length of 3. 65
Figure 5.18. The Original Code to be Transformed. The Corresponding Dependence

Vector D={ (1,0), (0,1) }. 67

Figure 5.19. The Dependence Array as it is Initialized for a Nested Loop with a

Dependence Vector D={ (1,0), (0,1) } 67
Figure 5.20. How the Dependence Array is Initialized Based on the Dependence

Vector {(a,0),(0,b)}. 68

x

Figure 5.21. The Dependency Array at a Random State During Execution. 70

Figure 5.22. The Initialized Dependence Array for a Dependence Vector of

D={(1,0),(0,*)} 74
Figure 5.23. A Random State of the Dependency Array with the Executing Tiles. 77

Figure 5.24. A Perfect Loop Construct Which Comprises a Single Masterloop. 79
Figure 5.25. A Typical Matrix Multiplication Code which Contains Two Masterloops.

 79
Figure 5.26. A Loop that Calculates the nth Fibonacci Number (n > 2, a and b are

Initialized to 0 and 1 Respectively, c Carries the End Result). 80

Figure 5.27. The Necessary Change in the Original Matrix Multiplication Code

Needed for the Partial sums to be Calculated in Parallel. 83
Figure 5.28. The parallel result of the code in Figure 5.25. 84
Figure 5.29. Original code that performs bubble sort. 85
Figure 5.30. The entire transformation (including invokation at the bottom) of the

bubble sort while-loop of Figure 5.29. 86

Figure 6.1. Comparing the Data of Sequential and Parallel Code in Graph Form. 90
Figure 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads.

 91
Figure 6.3. Loop with a Single Dependency of Length 1. 92
Figure 6.4. Comparing Sequential and SL Codes With a Dependency of Length=1.

 93
Figure 6.5. A Loop with a Dependency of Length 2. 93
Figure 6.6. Comparing Sequential and SL Codes with a Dependency of Length=2. 94

Figure 6.7. A Loop With a Single Dependency of Length 5. 94
Figure 6.8. Comparing Sequential and SL Codes with a Dependency of Length=5. 95

Figure 6.9. A General Form of a Loop with Multiple Dependences (2 to 5). 96
Figure 6.10. Comparing Sequential and SL Codes with 2 Dependences. 96
Figure 6.11. Comparing Sequential and SL Codes with 3 Dependences. 98

Figure 6.12. Comparing Sequential and SL Codes with 4 Dependences. 98

Figure 6.13. Comparing Sequential and SL Codes with 5 Dependences. 98
Figure 6.14. A Typical Anti-Dependence Example. 98
Figure 6.15. Comparing Sequential and SL Codes with an Anti-dependence. 99
Figure 6.16. Comparing the Sequential and SL Codes for the Game of Life (Cycles).

 101
Figure 6.17. Comparing the Sequential and SL Codes for the Game of Life (Speedup).

 102
Figure 6.18. The Resulting Data of the Mandelbrot Calculation (CPU cycles). 104
Figure 6.19.The Corresponding Speedups of the Mandelbrot Calculation. 104

Figure 6.20. Comparing Sequential and Parallel Matrix Multiplications (Cycles). 106
Figure 6.21. Comparing Parallel Matrix Multiplications (Speedups). 107
Figure 6.22. Speedups gained for the problem of D={(1,0),(0,1)} with a grid size of

4000x4000 and various tile sizes. The dashed line indicates the inferred trend. 109

Figure 6.23. Comparing cycles between original, SL and manual hyperplane codes.

 111
Figure 6.24. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the

D={(1,0),(0,1)} Problem. 114
Figure 6.25. Comparing the Speedups of the two Run-time Methods for the

D={(1,0),(0,1)} Problem. 115

xi

Figure 6.26. The Second Loop Nesting Under Evaluation. The Dependence Vector is

D={(0,1), (1,1), (1,0), (1,-1)} 115
Figure 6.27. Visualization of the Dependence vector in the 2-D index space. 115
Figure 6.28. Comparing the CPU Cycles of the two Run-time Algorithms for the

Loop with D={(0,1), (1,1), (1,0), (1,-1)} 117
Figure 6.29. Comparing the Speedups of the two Run-time Algorithms for the Loop

with D={(0,1), (1,1), (1,0), (1,-1)} 117
Figure 6.30. CPU Cycles for the {(2,0), (0,2)} Problem. 119
Figure 6.31. Comparing the Speedups Achieved by the two Algorithms for the

D={(2,0), (0,2)} Problem. 119

xii

ABSTRACT

Saougkos Dimitrios. PhD Candidate, Computer Science Department, University of

Ioannina, Greece. Graduation Month, Graduation Year. “Mapping Loop-Based

Programs onto a Multithreaded Processor”. Thesis Supervisor: Manis George.

 This thesis offers some insight into the automatic parallelization of loops by

introducing and describing a source-to-source parallelizing compiler developed from

scratch called C2κTC/SL. Once basic notions and ideas on the field of automatic

parallelization have been introduced, the SVP system is described in great detail. It is

a novel proposal on multi-core architectures and is what C2κTC/SL targets as output.

The SVP is a novel design for a multi-threaded processor that can be bundled together

with an OS-on-chip as part of the chip's ISA (Instruction Set Architecture). Several of

those SVP cores together form a microgrid. The programming paradigm followed by

the microgrid is that of a family of threads. Each family executes independently and

all the threads belonging in such a family run in parallel. A thread can create more ad-

hoc families so a whole hierarchy of families can exist at any given time.

Synchronization is achieved by a series of synchronizing channels that can carry

information from one thread in the family to its neighbors. The whole system can

revert back to complete sequential execution once all resources are taken. Two

programming languages were created for the high level programming / abstraction

layer of the SVP: κTC and SL. Both are explained later in the text however they both

are extensions of the basic C language. They extend the language with a series of

directives for the creation and execution of families of threads.

 The C2κTC/SL source-to-source compiler is described afterwards: its purpose

is to take as input any legacy C code and transform it into a parallel SL program.

Originally its output was the κTC language but with the advent of SL it changed to

that, hence the name C to κTC / SL (C2κTC/SL). The compiler’s main target

constructs are loops since a loop is where most of the execution time of an application

takes place. Since SVP works with families of threads that resemble single-

dimentional loops, transforming any kind of loop into a meaningful construct for the

SVP is an important step. For that reason, loops are divided into single-dimensional

and multi-dimensional ones with each category requiring a different transformation

method.

 Single-dimentional loops are further categorized by the number of the so-

called loop carried dependencies that they have and are treated accordingly. Loops

with no dependencies are just translated simply into parallel families. Loops with

dependencies utilize the SVP’s synchronizing channels to transfer data from one

thread to the next in a dataflow manner. This action alleviates the weight of each

thread having to access the global memory for a particular piece of data since

xiii

whatever it needs is simply transferred over via the synchronizing / shared channel.

Once each thread finishes computation it pushes all relevant data back to the shared

channel for use by the next thread. The combination of parallel executing independent

data-flows (data-chains) and the synchronizing channel to reduce accesses to the main

global memory brings tremendous increases in speedup and efficiency.

 Multi-dimensional loops are also subcategorized into two groups. The first

group is the one that contains no dependencies. Again each loop of the loop nesting is

simply transformed to a fully parallel family and it is up to the SVP to run the code

effectively. The second and most interesting group contains the perfect loop nestings

with a static dependency vector. Lamport’s hyperplane idea is applied in this case

however there is a novelty: Instead of precomputing any loop transformation, it is up

to the run-time environment to intuitively follow the dependency vector over the

index space and discover the different hyperplanes per cycle. This novel idea gave

birth to our first run-time algorithm: The fixed-size algorithm. It has the ability to

apply the hyperplane idea, discovered while running the actual computation code, into

the various tiles of a fixed size which divide the innermost dimension of the loop. The

fixed size algorithm proved to work properly, however for optimal or even good

results the size of the tile was needed to be known beforehand, effectively making the

whole algorithm not particularly useful except as a stepping stone and also a great tool

for comparisons.

 This glaring weakness of the Fixed-Size algorithm was covered by its

evolutionary “descendant”: the Self-Adaptive algorithm. Working on the same

principles as the Fixed-Size one, it can, at run-time, determine the optimal tile size to

use at any given computation cycle by reducing it or increasing it according to the

current needs.

 Experimental results indicate that not only the Self-Adaptive algorithm fares

very well with near-optimal results when compared with the Fixed-Size one, it is also

shown that for that particular type of parallelism (run-time execution of parallel

families discovered on the spot) the results obtained are the best possible results that

can be obtained. The algorithms were also compared with a standard compile-time

method (the hyperplane method) and it was found that their speedup is relatively close

to each other. This combined with the versatility offered by a run-time system (like

dealing with irregular index spaces) makes the Self-Adaptive algorithm especially

appealing.

xiv

ΕΚΣΕΝΗ ΠΕΡΙΛΗΨΗ ΣΑ ΕΛΛΗΝΙΚΑ

ανύγθνο Γεκήηξηνο. Τπνςήθηνο Γηδάθησξ, Σκήκα Πιεξνθνξηθήο, ρνιή Θεηηθώλ

Δπηζηεκώλ, Παλεπηζηήκην Ισαλλίλσλ. Μήλαο / Έηνο. «Απεηθόληζε Βξόρσλ ζε

Πνιπλεκαηηθό Δπεμεξγαζηή». Δπηβιέπσλ: Μαλήο Γεώξγηνο.

 Η παξνύζα δηαηξηβή πξνζθέξεη κία πεξηήγεζε ζηνλ θόζκν ηεο απηόκαηεο

παξαιιεινπνίεζεο ησλ βξόρσλ παξνπζηάδνληαο θαη πεξηγξάθνληαο παξάιιεια έλα

εξγαιείν απηόκαηνπ παξαιιειηζκνύ (πεγαίν ζε πεγαίν) πνπ δεκηνπξγήζεθε εθ ηνπ

κεδελόο θαη νλνκάδεηαη C2κTC/SL. Αθνύ παξνπζηαζηνύλ βαζηθέο έλνηεο ζηνλ ρώξν

ηνπ απηόκαηνπ παξαιιειηζκνύ, ην ζύζηεκα SVP πεξηγξάθεηαη: Μηα θαηλνηόκνο

πξόηαζε ζηηο πνιύ-πύξελεο αξρηηεθηνληθέο θαη απνηειεί ζηόρν - έμνδν ηνπ

C2κTC/SL. Σν SVP απνηειεί ην ζρέδην γηα έλαλ πνιύ-πύξελν επεμεξγαζηή θαη έρεη

ηελ ηδηόηεηα λα εθηειεί έλα νιόθιεξν ιεηηνπξγηθό ζύζηεκα ην νπνίν κπνξεί λα

θαηαιακβάλεη κέξνο ηνπ ISA (Instruction Set Architecture) ηνπ ππξήλα. Πνιινί από

απηνύο ηνπο ππξήλεο κπνξνύλ λα ζπλδπαζηνύλ ζην ιεγόκελν κηθξνπιέγκα

(microgrid). Ο πξνγξακκαηηζκόο ηνπ microgrid ζηεξίδεηαη ζε νηθνγέλεηεο από

λήκαηα. Κάζε νηθνγέλεηα εθηειείηαη απηόλνκα θαη όια ηα λήκαηα πνπ αλήθνπλ ζε

απηήλ ηελ νηθνγέλεηα κπνξνύλ λα εθηειεζηνύλ παξάιιεια. Δπίζεο, θάζε λήκα

κπνξεί λα δεκηνπξγήζεη όζεο νηθνγέλεηεο ρξεηάδεηαη θαηά βνύιεζε. Με απηόλ ηνλ

ηξόπν, κηα νιόθιεξε ηεξαξρία από λήκαηα κπνξεί λα εθηειείηαη αλά πάζα ζηηγκή ζην

microgrid. Ο ζπγρξνληζκόο κεηαμύ ησλ λεκάησλ επηηπγράλεηαη από ηελ ύπαξμε κηαο

ζεηξάο θαλαιηώλ πνπ κπνξνύλ λα κεηαθέξνπλ πιεξνθνξίεο από έλα λήκα ζε κηα

νηθνγέλεηα ζηα γεηηνληθά ηνπ. Δάλ νη πόξνη ηνπ ζπζηήκαηνο εμαληιεζνύλ, ηόηε ην

ζύζηεκα είλαη ηθαλό λα επηζηξέςεη ζε θαηάζηαζε ζεηξηαθήο εθηέιεζεο. Γύν γιώζζεο

πξνγξακκαηηζκνύ δεκηνπξγήζεθαλ γηα ηνλ πξνγξακκαηηζκό ηνπ microgrid ζε έλα

πςειόηεξν επίπεδν: κTC θαη SL. Καη νη δύν πεξηγξάθνληαη ζην θείκελν, θαη ε

βαζηθή ηνπο ιεηηνπξγία είλαη λα επεθηείλνπλ ηελ γιώζζα C κε ηέηνην ηξόπν ώζηε λα

κπνξνύλ λα ειέγρνπλ ηελ δεκηνπξγία θαη ηελ εθηέιεζε ησλ νηθνγελεηώλ από λήκαηα.

 ηελ ζπλέρεηα ν απηόκαηνο κεηαθξαζηήο C2κTC/SL παξνπζηάδεηαη θαη

πεξηγξάθεηαη: Ο ζθνπόο ηνπ είλαη λα δέρεηαη σο είζνδν έλα νπνηνδήπνηε πξόγξακκα

γξακκέλν ζε C θαη λα ην κεηακνξθώλεη ζε έλα παξάιιειν πξόγξακκα SL. Αξρηθά ε

έμνδόο ηνπ ήηαλ ε γιώζζα κTC αιιά κε ηελ εκθάληζε ηεο SL ν κεηαθξαζηήο

πξνζαξκόζηεθε αλάινγα, νπόηε θαη ην όλνκά ηνπ C2κTC/SL. Η βαζηθή δνκή γηα ηελ

νπνία ελδηαθέξεηαη ν κεηαθξαζηήο είλαη νη βξόρνη κηαο θαη ην κεγαιύηεξν πνζνζηό

ηνπ ρξόλνπ εθηέιεζεο ζε έλα πξόγξακκα είλαη νη βξόρνη. Δθ’ όζσλ ην SVP δνπιεύεη

κε νηθνγέλεηεο από λήκαηα πνπ κνηάδνπλ κε κνλνδηάζηαηνπο βξόρνπο, ε κεηαηξνπή

ελόο νπνηνδήπνηε βξόρνπ ζε νηθνγέλεηα λεκάησλ είλαη έλα ζεκαληηθό βήκα. Γηα ηνλ

ιόγν απηό, νη βξόρνη ρσξίδνληαη ζε κνλνδηάζηαηνπο θαη πνιπδηάζηαηνπο κε θάζε

xv

θαηεγνξία λα ρξεηάδεηαη θαη δηαθνξεηηθή αληηκεηώπηζε όζνλ αθνξά ηελ κεηαηξνπή

ηνπ θώδηθα πνπ ρξεηάδεηαη.

 Οη κνλνδηάζηαηνη βξόρνη ρσξίδνληαη πεξαηηέξσ ζε θαηεγνξίεο αλάινγα κε ηηο

εμαξηήζεηο πνπ βξίζθνληαη ζηνλ βξόρν (loop carried dependencies). Βξόρνη ρσξίο

εμαξηήζεηο απιά κεηαηξέπνληαη ζε πιήξσο παξάιιειεο νηθνγέλεηεο ελώ νη βξόρνη κε

εμαξηήζεηο κεηαηξέπνληαη ζε νηθνγέλεηεο πνπ ρξεζηκνπνηνύλ ηα εηδηθά θαλάιηα

ζπγρξνληζκνύ ηνπ SVP γηα λα κεηαθέξνπλ δεδνκέλα από ηνλ έλα λήκα ζην επόκελν

κε ηελ κνξθή ηεο ξνήο δεδνκέλσλ (data flow). Απηνύ ηνπ είδνπο ε κεηαηξνπή

επηηξέπεη ζηα λήκαηα λα έρνπλ ηα δεδνκέλα πνπ ρξεηάδνληαη ρσξίο λα ρξεηάδεηαη λα

ηα αλαδεηήζνπλ ζηελ θεληξηθή θνηλή κλήκε, πξάγκα «αθξηβό» από άπνςε ρξόλνπ.

Όηαλ θάζε λήκα ηειεηώζεη ηνλ ππνινγηζκό πνπ ηνπ αλαινγεί, όια ηα ζρεηηθά

δεδνκέλα κεηαθέξνληαη ζην επόκελν λήκα κέζσ ηνπ εηδηθνύ θαλαιηνύ επηθνηλσλίαο

ηνπ SVP. Ο ζπλδηαζκόο ηεο εθηέιεζεο παξάιιεισλ ξνώλ δεδνκέλσλ κε ηελ ρξήζε

ησλ εηδηθώλ θαλαιηώλ επηθνηλσλίαο πξνζθέξεη κεγάιεο απμήζεηο ζηελ

απνδνηηθόηεηα θαη ζηελ επηηάρπλζε ελόο πξνγξάκκαηνο.

 Οη πνιπδηάζηαηνη βξόρνη επίζεο ρσξίδνληαη ζε ππνθαηεγνξίεο. Η πξώηε δελ

πεξηέρεη εμαξηήζεηο θαη θάζε επίπεδν ζηνλ βξόρν κπνξεί λα κεηαηξαπεί ζε κηα

πιήξσο παξάιιειε νηθνγέλεηα αλαζέηνληαο ζην πεξηβάιινλ εθηέιεζεο ηνπ SVP ηελ

εμηζνξξόπεζε βάξνπο κεηαμύ ησλ ππξήλσλ ηνπ microgrid. Η δεύηεξε (θαη πην

ελδηαθέξνπζα) θαηεγνξία πεξηιακβάλεη βξόρνπο πνπ πεξηέρνπλ ζηαηηθέο εμαξηήζεηο.

Η πξνζέγγηζε ηνπ Lamport κε ηα ππεξεπίπεδα (hyperplanes) ρξεζηκνπνηείηαη ζε

απηήλ ηελ πεξίπησζε αιιά κε κηα θαηλνηνκία: Αληί λα γίλνπλ νη απαξαίηεηνη

(δύζθνινη ζε πνιιέο πεξηπηώζεηο) ππνινγηζκνί ζε ρξόλν κεηάθξαζεο, ην πεξηβάιινλ

εθηέιεζεο αλαιακβάλεη λα εληνπίζεη όια ηα ζηνηρεία πνπ κπνξνύλ λα εθηειεζηνύλ

παξάιιεια αλά θύθιν εθηέιεζεο αθνινπζώληαο δηαηζζεηηθά ηνλ πίλαθα εμαξηήζεσλ.

Απηή ε ηδέα νδήγεζε ζηελ δεκηνπξγία ηνπ πξώηνπ καο αιγνξίζκνπ ρξόλνπ

εθηέιεζεο: Σνλ αιγόξηζκν ζηαζεξνύ κεγέζνπο (Fixed Sized Algorithm). Δίρε ηελ

δπλαηόηεηα λα εληνπίδεη ηα θξπκκέλα ππεξεπίπεδα ηελ ίδηα ώξα πνπ εθηεινύζε ηνλ

ίδην ηνλ θώδηθα ηνπ πξνγξάκκαηνο. Ο ρώξνο αλαδήηεζεο ησλ δεηθηώλ ησλ βξόρσλ

ρσξίδεηαη ζε κεγέζε ζηαζεξνύ κήθνπο θαηά ην πην εζσηεξηθό βξόρν. Ο

παξαιιειηζκόο επηηπγράλεηαη κεηαμύ ησλ θνκκαηηώλ ζηαζεξνύ κήθνπο ελώ θάζε

ηκήκα εζσηεξηθά εθηειείηαη ζεηξηαθά. Δλώ ν αιγόξηζκνο δνύιεςε ζσζηά, θαιέο

επηηαρύλζεηο επηηπγράλνληαλ κόλν εάλ ην ζηαζεξό κήθνο ήηαλ θαηάιιεια επηιεγκέλν

εθ ησλ πξνηέξσλ, θάηη πξαθηηθά αδύλαηνλ αθνύ θάζε πξόβιεκα έρεη ην δηθό ηνπ

βέιηηζην κέγεζνο. Απηό ην πξόβιεκα κεηέηξεςε ηνλ αιγόξηζκν ζε έλα θαιό πξώην

βήκα θαη ζε έλα εξγαιείν γηα ζπγθξίζεηο.

 Απηή ε αδπλακία ηνπ αιγνξίζκνπ ζηαζεξνύ κεγέζνπο θαιύθζεθε κε ηνλ

αιγόξηζκν πνπ ππήξμε ν εμειηθηηθόο απόγνλνο ηνπ αξρηθνύ. Σνλ αιγόξηζκν απηό-

κεηαβαιιόκελνπ κεγέζνπο (Self-Adaptive Algorithm). Υξεζηκνπνηώληαο ηηο ίδηεο

αξρέο κε ηνλ αιγόξηζκνπ ζηαζεξνύ κεγέζνπο, κπνξνύζε ζε ρξόλν εθηέιεζεο λα

κεηαβάιιεη ην κέγεζνο ηνλ ηκεκάησλ βάζεη θάπνησλ κεηξηθώλ από θύθιν ζε θύθιν.

 Σα πεηξακαηηθά απνηειέζκαηα δείρλνπλ όηη ν αιγόξηζκνο κεηαβαιιόκελνπ

κεγέζνπο επηηπγράλεη επηηαρύλζεηο ζρεδόλ ίζεο κε ηα βέιηηζηα απνηειέζκαηα γηα

απηνύ ηνπ ηύπνπ ηνλ παξαιιειηζκό. Οη αιγόξηζκνη επίζεο ζπγθξίζεθαλ κε κηα

ηππηθή κέζνδν ρξόλνπ κεηάθξαζεο θαη βξέζεθε όηη ζε θάπνηεο πεξηζηάζεηο ηα

απνηειέζκαηα είλαη θνληά. Απηό καδί κε ηελ επειημία ηεο κεζόδνπ ηνπ ρξόλνπ

εθηέιεζεο (π.ρ. αληηκεηώπηζε κε νξζνθαλνληθώλ βξόρσλ) θάλεη ηνλ απηό-

κεηαβαιιόκελν αιγόξηζκν εηδηθά ειθπζηηθό.

1

CHAPTER 1. INTRODUCTION

 Concurrency in computation is by no means a new concept. It has existed

since the 1960s and has steadily improved since then. The reason is simple, to speed-

up an application, one either needs a faster CPU, or more than one CPUs sharing the

computational load. Thusly, concurrent research was an entirely different research

branch that took place in tandem with traditional CPU research. However, only

recently has the existence of multiple cores in systems become prevalent. The latest

generations of PC CPUs carry 2 or 4 or even 6 cores inside them and the trend has

moved to include smart phones (it is common to see smart phones with 2 or 4 cores),

tablets and more. It is safe to assume that with the current technology on CPUs

reaching its limitations that multi-cores will become ever more prevalent in the

technological world.

 Programming a parallel system though is much harder than programming a

sequential one. A coder will either write an application from scratch utilizing some

parallel library, or will use pre-existing modules that have been proven to work and

orchestrate them together. Moreover, there is plenty of legacy code in existence that

was created with only one core in mind. The challenges involved with writing good

parallel code coupled with the existence of sequential code led to the development of

automatic parallelizing tools. These tools are compilers that either compile from

source code to a different parallel source code (source-to-source) or compile to

parallel binary code directly. Creating such an automatic parallelizing compiler

though is not without its own challenges and the purpose of this paper is to describe

such a compiler.

 Prior to the presentation of our compiler, some general information is firstly

required: The second chapter offers a small glimpse on the tremendously huge

research work that has been done on the automatic parallelization area mentioning not

only techniques and algorithms but whole compiler projects that existed (and some

2

still do). The third chapter offers some insight on some of the loop transformation

techniques that exist before moving on to the fourth chapter which introduces the SVP

architecture.

 The SVP architecture is a novel contribution which describes a new type of

multi-core system. Each core can carry its own OS as an extension of the instruction

set and can achieve high memory latency tolerance coupled with low energy needs

(and thusly low heat emission and distribution). Many SVP cores form a microgrid

which is capable of offering true parallel execution of code as well as automatic

resource allocation and graceful degradation when it starts to run out of resources. Its

novel contribution is the existence of synchronized data channels that can impose an

order on the execution of threads as well as carry data between threads in a dataflow

manner. The same chapter also describes the programming language which was

created specifically for the SVP: The κTC/SL language, an extension of C with added

constructs that describe concurrency.

 The fifth chapter presents the C2κTC/SL source-to-source automatic

parallelizing compiler. A tool capable of reading in a code written in the C language,

analyzing it to discover any potential for parallelism and finally outputting a different

program in the SL language which has the same functionality with the original one,

with the difference that it is faster since it takes advantage of SVP’s mechanisms.

Each type of loop is described alongside a way to transform it for the best possible

results.

 C2κTC/SL’s main contribution though is its approach on the multi-

dimensional loops with static dependency vectors. Borrowing heavily on the

hyperplane (wavefront) idea, it utilizes a run-time algorithm which discovers the

underlying hyperplanes. Instead of resorting to heuristic methods or expensive integer

programming functionality to calculate the hyperplanes, it delegates that discovery to

the run-time environment. The idea is simple: At any given time, when there is a

known set of executing threads and a known dependency vector, by applying the

vector to the set it is possible to find the set of the next computational cycle. It is an

elegant and intuitive idea that of course became much more convoluted when it was

actualized as part of the code.

 Chapter six evaluates the outputs of C2κTC/SL. For each different loop type,

an example is transformed into SL and then executed and compared with its original

3

form. More interestingly, the efficiency of the run-time algorithm is tested. A

theoretical target is first calculated for three different examples and then it is proven

that the run-time algorithm can reach it and even surpass it at some cases. It is also

compared to some standard compile-time transformation method. The results are

encouraging enough (as expected the run-time method can never compete against a

method that lacks all of its overheads but it can get relatively close).

 Finally, the last chapter (seventh) provides a discussion on everything

mentioned in the previous chapters as well as a conclusion and general thoughts on

current as well as future work.

4

CHAPTER 2. RELATED WORK

2.1. Introduction on Parallel Systems and Threads

2.2. Developer Tools which Enable Parallel Programming

2.3. Dependencies and Parallelism Detection

2.4. The Polyhedral Model and Related Methods

2.5. General Parallelization and Run-Time Methods

2.6. Overviews, Surveys, Tutorials and Books on Automatic Parallelization

2.7. List of Parallelizing Compilers

2.1. Introduction on Parallel Systems and Threads

 Parallel systems appeared early on in the history of computation. Soon after,

various types of systems had already existed and many more were on the way. In an

attempt to classify the ever increasing types of parallel system, Flynn on his work on

taxonomy [29] separated systems on whether they are Single Instruction or Multiple

ones i.e. whether there is a single Control Unit (CU) (which can direct Processing

Elements (PE)) or multiple ones and whether there is a single or Multiple Data

Streams. The resulting classification can be seen on Table 2.1.

Table 2.1 Flyn's classification of Parallel Systems.

 Single Data stream Multiple Data streams

Single Instruction SISD SIMD

Multiple Instructions MISD MIMD

5

From that table we can see that Flynn discerned four distinct categories:

 1. Single Instruction - Single Data (SISD).

A single controller directs a single Processing element to operate on data from a

single data stream. All conventional computers fall into this category.

 2. Single Instruction - Multiple Data (SIMD).

A single controller directs multiple Processing elements to operate on data from

multiple data streams. The old Vector computers (a vector is a single dimensional

array, so a vector computer could operate a single instruction on various parts of the

array simultaneously) belong to this category as well as the modern GPUs.

 3. Multiple Instructions - Single Data (MISD).

This category makes little sense in general. It involves a series of processing elements

performing calculations on a single data stream. In theory such a system can be used

for fault tolerance where a series of computers must agree on a result before it can be

accepted as correct. No computer of this category has ever been created.

 4. Multiple Instructions - Multiple Data (MIMD).

This is a rather diverse category of systems. It includes parallel systems with

processing units and memory systems created especially with parallelism in mind,

parallel systems built with off-the-shelf computers connected in some form of

interconnection network and so on.

 A 5
th

 category was later introduced, the Single Program – Multiple Data

(SPMD). More a programming style than an actual architecture itself, it became the

dominant paradigm for parallel programming. The main idea is that a number of

independent processors execute the same program at different points simultaneously.

This means that a single computer / processor begins executing the code and at

particular points in the code, it might spawn a parallel execution of that code. The

way this programming style is implemented differs depending on whether it is applied

on a distributed memory system or a shared memory one.

 A Distributed Memory System is a parallel system consisting of a series of

independent computers called nodes. Communication and synchronization are

achieved by message passing over any network such as TCP/IP or Ethernet. A Shared

Memory System is a computer with a series of CPUs which have access to the same

6

memory space. In such a system, the SPMD is actually a series of directives that mark

areas of the code as ones that should execute in parallel. Once control reaches these

points, the rest of the CPUs begin executing the marked code in parallel.

 The most commonly used parallel construct in a Shared Memory System is the

Thread. A thread is essentially a part of a program (a procedure or a function) which

can run independently from the main program. In the presence of more than one

processors / cores, threads can run simultaneously with the main program. Their

characteristic is that their creation and destruction are relatively light-weight

processes (especially when compared with Fork which duplicates the entire

application) and that large number of threads can exist at any given time with a very

small footprint on the host Operating System's (OS) resources. However, they are

anchored to the main application so if the program ceases to exist, so do all threads

associated with it. Threads share the same address space between themselves and the

main program so, basically, Multi-Threaded programming, and applications in

general, can only work on Shared Memory Systems.

2.2. Developer Tools which Enable Parallel Programming

 In order to utilize parallelism, there exist various different tools and APIs

which developers can utilize, depending on their applications and targeted

architectures. A small (and by no means comprehensive) list of such tools follows:

 PThreads

 OpenMP

 MPI

 Nvidia's CUDA

 Intel’s Cilk

 First and foremost is the lib-pthread library. The API (Application

Programmer Interface, a set of function / procedure calls that defines how a software

component interacts with the rest) was composed by IEEE as part of the POSIX

interface so that all POSIX-compatible OSes could offer the same functionality to

applications and ease the transitioning of code from one platform to the next. The

PThread interface offers the developer a multitude of tools with which to implement

parallel applications (thread management like creating, destroying, detaching threads

7

and so on, mutex functions and condition variables). Figure 2.1 Demonstrates the

creation of pthreads in the C language.

Figure 2.1. Using the Pthread Library to Create Threads.

 OpenMP (Open Multi-Processing) ([67], [68]) is a higher level tool than

threads (and PThreads) which allows multi-threaded programming in a cross-platform

way enabling both task parallelism and data parallelism. It can be used with the

C/C++ languages as well as FORTRAN and its main use is the transformation of

loops into a series of threads that can produce the same result in a concurrent manner.

 The programmer is responsible for marking the areas of the program that

OpenMP will assign into threads using specific macros (in the case of the C/C++

languages, #pragma is used to mark code areas). The programmer is also responsible

for identifying which variables are private, shared or induction ones and which

variables are reduction variables in order for OpenMP to work properly and offer

speed-ups to the original code. Once everything has been identified properly,

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *TheadBody(void *id)
{
 int id = (int)threadid;

 printf("thread #%d executing\n", id);

 return NULL;
}

int main (int argc, char *argv[])
{
 pthread_t threads[NUM_THREADS];
 int result;
 int t;

 for(t=0; t<NUM_THREADS; t++)
 {
 printf("creating thread %d\n", t);

 result =
 pthread_create(&threads[t], NULL, ThreadBody, (void *)t);

 if (result)
 {
 printf("ERROR! return code=%d\n", result);
 exit(1);
 }
 }

 for (t=0;t <NUM_THREADS;i++)
 pthread_join(threads[t], NULL);

 return (0);
}

8

OpenMP divides the whole index space of the loop into a number of threads (each

with each own id) that perform computation in parallel. Once all threads finish

computation they join with the original program and control moves on.

 Thread scheduling may also be configured by the programmer as OpenMP

offers a series of different schedules with the dynamic schedule being the most

popular, since it allows threads that have finished their part of the computation to pick

up some of the remaining work that awaits computation. This leads to better load

balancing at the cost of more expensive setting up and tearing down. The benefit of

OpenMP is that it offers a higher abstraction level to the programmer alleviating the

need of handling each thread manually and focusing on the actual idea behind the

program itself. Another advantage of it is that if the compiler is not an OpenMP

compatible one, it will just ignore all relevant #pragma directives and just compile the

program into a classic sequential form. Clearly, as OpenMP is a thread-enabled API,

its use was originally restricted only to Shared Memory Systems however a

combination of Message Passing and OpenMP could circumvent this restriction.

Additionally, extensions on the OpenMP model have allowed its use on non-Shared

Memory Systems as-is.

 Figure 2.2. shows a typical example of an OpenMP-enabled source code. It

applies an iterative method for the computation of the value of pi. It is worth noting

that the variable “sum” was declared as a reduction one (a summation variable) which

caused the system to adapt accordingly and add all the values in parallel.

 For the sake of completeness, MPI, CUDA / OpenCL and Cilk are also

mentioned, as they are important parallelization tools. MPI (Message Passing

Interface) [69] is an API that allows the programmer to transform any network of

computers into a parallel Distributed Memory System. With MPI a programmer can

divide a problem in smaller ones, scatter the data over the network to each computer

for computation and then gather back the results from for the final result.

 The clear advantage of MPI is that it provides an inexpensive way to perform

complex computations quickly and easily without requiring any sort of shared

memory between processors. Of course due to the fact that it relies on an

interconnection network (such as Ethernet) as a data transfer medium, this means that

it will get quite slowed down. In classic network cases (i.e. not ultra low latency ones)

9

the only way to offset the slow data transfer is to resort to coarse grain parallelism

when working with MPI. Working on a purely distributed system where each CPU

has access only on its own part of the data means that MPI is better suited for

problems which can be divided cleanly and without any dependencies hidden in the

loop. This makes MPI ideal for data parallel programs but inadequate to deal with

task-based parallelism. Figure 2.3. shows a simple MPI program which calculates the

value of pi over a network.

 CUDA [70] is a relatively new (since 2007) tool for parallel computations.

The main idea is that it opens the GPU of any system (which so far had been used

only for graphics related calculations) to the programmer for general programming.

GPUs support thousands of concurrent threads running simultaneously and by

exploiting that any application can become an order of magnitude faster. The CUDA

platform exists in various forms: from a series of libraries and compiler directives, to

extensions of industry-standard languages like C/C++, FORTRAN and more. Due to

the nature of a GPU (usually a SIMD machine), it is better suited for data parallel

applications.

Figure 2.2. Using OpenMP to Calculate the Value of pi in Parallel. Letters in Bold

Indicate where the Computation Takes Place.

#include <stdio.h>
#include "omp.h"
double f(double a) {return (4.0 / (1.0 + a*a));}
int main (int argc, char **argv) {
 int i,n=1000000;
 double sum= 0.0, x, h, mypi;
 int chunk;
 h = 1.0 / (double) n;
 chunk=n/4;
#pragma omp parallel private(i,x) shared(sum,n,h)
{
 #pragma omp for schedule(runtime) reduction(+:sum)
 for (i=1;i<=n;i++) {
 x=h*((double)i-0.5);
 sum=sum+f(x);}
}
 mypi = h * sum;
 printf("pi=%f\n",mypi);
 return (0);
}

10

Figure 2.3. Using MPI to Calculate the Value of PI in Parallel. Letters in Bold

Indicate MPI-specific Directives.

 Finally, Cilk [71] is a general-purpose programming toolset containing the

Cilk programming language and a runtime environment. It was originally developed

in MIT and was later acquired by Intel. Its driving principle is that the programmer is

responsible for exposing the parallelism in her code, identifying which parts can be

fully parallelized. In turn, the runtime environment handles everything from

delegating the work to any available processor/core to load balancing and scheduling.

This attributes Cilk programs with the “compile once, run anywhere” capability. The

language itself is a superset of C which supports the entire C language specification

extended by a few keywords that offer the necessary functionality. Load balancing is

achieved by a system of “work-stealing”: Each idle processor can attempt to “steal” a

#include "mpi.h"
#include <stdio.h>
#include <math.h>
double f(double a) {
 return (4.0 / (1.0 + a*a));
}
int main(int argc, char *argv[])
{
 int done = 0, n=0, myid, numprocs, i;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x;
 int namelen;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD,&myid);
 MPI_Get_processor_name(processor_name,&namelen);
 while (!done)
 {
 if (myid == 0)
 if (n==0) n=100; else n=0;
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) done = 1;
 else
 {
 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs)
 {
 x = h * ((double)i - 0.5);
 sum += f(x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM,
 0, MPI_COMM_WORLD);
 }
 }
 MPI_Finalize();
 return 0;
}

11

piece of workload in a queue of a non-idle processor through the scheduler. Since the

package can be stolen from the end of the queue, it would be the last piece of load that

its original owner would have to work on.

2.3. Dependencies and Parallelism Detection

 The tools mentioned so far are the ones most commonly used when it comes to

making an application which exploits hardware parallelization. However they are too

low-level in their abstraction level and require the developers themselves to know

when and how to properly use them. Automatic Parallelization solves that problem

but it requires a different set of actions.

 The first step to automatic parallelization is the examination and analysis of

the source code of the application in question. The analysis will decide whether the

code can be executed in parallel or not. Most of the analyzer techniques and tools

focus solely on loops (for reasons that will be later described) and whether or not they

carry dependencies.

 A dependency between two statements (S1 and S2) in a code exists when both

statements access the same memory location. Four types of dependencies exist: (i)

Flow Dependency: S2 is flow dependent on S1 when S1 writes to a memory location

which is later read by S2. (ii) Anti Dependency: S2 is anti dependent on S1 when S1

reads the value of a memory location which is later written by S2. (iii) Output

Dependency: S2 is output dependent on S1 when S1 writes a value to a memory

location which is later re-written by S2. (iv) Input Dependency: S2 is input dependent

on S1 when S1 reads the value of a memory location which is later re-read by S2.

 From all these types, Anti, Output and Input are not real dependencies and can

be removed with various techniques that will presented later on. Dependencies that

exist inside a loop but between statements of different index instances are called Loop

Carried Dependencies. Dependencies that exist inside the same loop iteration are

called Loop Independent Dependencies because they do not affect the re-ordering of

the loop iterations in any way.

 The existence of a dependency effectively imposes an order in the execution

scheme of the loop statements (and iterations accordingly). Since an ordering exists, it

becomes harder or even impossible to parallelize a loop with dependencies. The

12

ordering of a loop carried dependency on a loop can be seen by unrolling the loop. All

statements need to be executed in the precise order that the dependencies allow.

 Because of the existence of such dependencies, parallelizing compilers apply a

series of tests on the statements of the loop in order to deduce whether the loop can be

fully parallelized or not. These tests usually rely on array subscript accesses and can

be either certain that there are no dependencies and hence the compiler can proceed to

fully parallelizing the loop or be uncertain and thusly most compilers would just leave

the loop intact. Since an array index can be any expression, usually the simple

expressions in the form of c1*i+c2 are examined where c1 and c2 are constants. More

complex expressions usually classify a loop as non-parallelizable. A random loop may

contain statements which access an array in the following style:

Array[c1*i1+c2]=…

…=Array[c3*i2+c4]

 A dependency will exist if c1*i1+c2=c3*i2+c4 or c1*i1-c3*i2=c4-c2. As with

any Diophantine equation, if the Greater Common Divisor (GCD) of (c1, c3) divides

(c4-c2) then the equation has a solution and hence a dependency exists. Hence the

GCD test can safely reply that there is no dependency when the GCD of the left-hand

side of the equation does not divide the right-hand side of it for every equation in the

loop.

 However the usual case has it that the left-hand side GCD equals to 1 which

will always divide the right-hand side and hence its reply will be that there might be a

dependency. Hence other tests came to existence to cover for this weakness. The

extreme value test calculates the minimum and maximum possible values of the left-

hand side of the dependency equation and compares it to the right-hand side. If the

maximum value of the right-hand side is greater than the maximum of the left-hand

side or if its minimum value is lesser than the minimum value of the left-hand side

then there are no dependencies. A combination of the Extreme Value test and the

GCD usually provide satisfactory results.

 Another classic dependency analysis test is the Omega Test [56]. It uses the

Diophantine equation to create an linear programming problem and then attempts to

solve it quickly by applying Fourier-Motzkin Elimination. Even though at its worst

case it completes in an exponential time, at most real life programs it finishes quickly

13

at a polynomial time. Other tests include the Lambda test [30] (an increased-precision

form of the Extreme Value test), the I test [43] (a combination of the GCD and

Extreme Value tests but more precise than the application of the two tests

individually) the Generalized GCD test, built on Gaussian Elimination (adapted for

integers) and the Power Test [64] (first uses the Generalized GCD test then it uses

constraints derived from the program to determine lower and upper bounds on the free

variables of the parameterized solution. Fourier-Motzkin elimination is used to

combine the constraints of the program for this purpose)

 There exist more methods for the detection of inherent parallelism. In [12] the

authors approach actual real life complex programs and propose symbolic analysis in

order to make conclusions about the code. Symbolic analysis, in general, relies on

scanning all the statements of the code and for each statement mentioned information

is kept about the potential values of all the involved variables. These value ranges can

then be used to make deductions about various aspects of the code including array

accesses and parallelism. Using symbolic analysis, the Range Test [18] extends the

Extreme Value Test to support symbolic and non-linear array subscript expressions.

In a similar manner, the same kind of analysis is used on [35] in order to discover

parallelism that can be exploited between procedure calls.

 Most of the tests (and especially symbolic analysis) rely on statically defined

variables and their interactions in the code. In [49] the authors innovate by checking

for the existence of heap based variables and data structures. Examples include linked

lists, binary trees, heaps and so on. A methodology is presented where the algorithm

tries to detect the shape of the dynamic structure and depending on that, determine

what kind of dependencies exist in that structure.

 Finally, loops which carry loop carried dependencies are examined in [25]. A

dependency can be seen as a distance between loop iterations. These distances

between array accesses form a vector. All the vectors are grouped together in a set

called distance or dependency vector. If the distances are of a constant size throughout

the computation then some degree of parallelism is possible as we will discuss later.

The authors of this paper not only detect the possibility of the existence of hidden

parallelism but also define the granularity that must be used for better results.

14

2.4. The Polyhedral Model and Related Methods

 As mentioned in the previous paragraph, early automatic parallelizing

compilers would operate on a black or white state. If there were no dependencies

detected inside a loop, then the loop would be fully parallelized in various forms

depending on the architecture. However, the existence of any dependency would

signal the compiler to leave the loop completely intact and move on.

 Lamport with his work on the Polyhedral model [46], introduced a

methodology according to which a perfectly nested loop with a static dependency

vector could be transformed into an equivalent loop whose innermost dimension

could be fully executed in parallel. In this manner, even though it would be

impossible to gain full parallelism, some partial form of it would still be exposed and

exploited. If the whole index space of the loop is visualized in N dimensions then it is

bound by a polyhedron and through transformations it is possible to have a series of

hyperplanes move through that polyhedron. Each index set that belongs to a certain

hyperplane is independent from the rest of the index sets on the same hyperplane.

Since the hyperplanes resemble a wave moving through the data, this method is also

referenced as the wavefront model. More information on the wavefront transformation

can be found in Chapter 3.

 In [65] the writers propose a unified transformation model that is based on

matrices. Matrix transformations are an intuitive method that can be applied to nested

loops and offer a variety of results according to the current needs. A special form of

such a matrix is the unimodular matrix (a matrix whose determinant is equal to 1 or -1

composed of integers) and in that paper these matrices are the basis of the unified

model proposed. Their technique can also be applied to general nested loops where

the dependencies not only form a static dependency vector but also a more general

direction vector (the distances are variable and only the directions are known). The

use of unimodular matrices has also been proposed by [48]. In that paper an algorithm

based on unimodular transformations is proposed which maximizes parallelism and

minimizes communications while at the same time keeping a minimum degree of

synchronizations in programs with arbitrary loop nests.

 A general automatic source-to-source framework based on the polyhedral

model that can optimize programs (even sequences of possibly imperfectly nested

15

loops) for parallelism and locality is introduced in [21]. This is achieved by the use of

integer linear optimizations which aim to detect good tiling schemes that lead to better

locality. Locality is important since it allows for better cache utilization and a great

boost in efficiency overall. A similar methodology is described in [20], where an

algorithm is described which can calculate hyperplanes of tiles in a sequence of

arbitrarily nested loops which minimize communication and improve on data locality.

 Finally, a framework that incorporates a series of methods and which is able to

utilize a variety of functions including non-uniform and even non-unimodular

transformations is proposed in [14]. In addition to the suggested framework, a series

of improvements on existing algorithms are proposed.

2.5. General Parallelization and Run-Time Methods

 It goes without saying that not all automatic parallelizing compilers and

techniques in general are based on the polyhedral model. In [60] a technique is used

for automatic array privatization. Array privatization is the analogue of scalar data

privatization presented in Chapter 3. If it is safe to do so, an entire array can be copied

to a thread’s local memory for local accesses. Each concurrent thread has its own

version of the array. Not only this technique can help increase efficiency but it also

helps to remove false dependencies. Array privatization is an important part of any

array access analysis and it enables the full parallelization of a loop and is especially

useful for vector and super scalar machines. In the current paper, data flow analysis is

used to identify privatizable arrays inside and between procedure calls. On the subject

of vector machines, [1] introduces a method where dependency analysis is used in

FORTRAN loops in order to transform them into parallel constructs which can be

executed by vector machines for better data parallelism.

 A compiler is proposed in [4] which not only applies a series of

transformations on programs with the intent to minimize synchronization and data

sharing but is also capable of re-arranging parts of an array and its layout in order to

improve data locality and increase efficiency of the memory subsystem. An algorithm

is also suggested in [5] which optimizes parallelism and data locality at the same time,

but its novelty lies with the fact that the algorithm can target both shared memory

systems and distributed memory ones.

16

 The majority of analyses on loops would not try to tackle loops which

contained procedure calls. The need to deal with function/procedure calls from the

inside of a piece of code in question gave birth to interprocedural analysis and

transformations. Such an analysis tries to apply the side effects of the procedure on

the resulting call in order to help expose parallelism to the code in question. The most

common interprocedural transformation is procedural inlining which substitutes the

procedures code into the place of the call.

 In [33] the authors suggest a methodology, according to which, two different

kinds of interprocedural transformations are applied to loops which contain procedure

calls (something that the original hyperplane method cannot deal with, since it

requires that any function / procedure call must not alter data in any way, in other

words, contain no side effects) for parallel code generation. Perfectly nested loops are

also the main research target of [15] but its purpose is to use linear transformations for

the parallelization of loops with no uniform dependencies.

 Finally in [6] interprocedural analysis is used to determine the shape of

dynamic data structures based on the heap and its subsequent parallelization while

instruction level parallelism is the focus of [61]. It is an idea that any parallelizing

compiler can use in theory, since it can be applied to any statement, inside and outside

of loops. The aforementioned paper examines the limits of instruction level

parallelism as well as the amount of said parallelism that exists inside a typical

program.

 There is also an entirely different category of methodologies for automatic

parallelization. It incorporates the run-time environment into the solution of the

problem. It is a bold and novel way of approaching this problem since the run-time

environment by definition contains a lot more information that can be used. The

methods that belong to this category usually gather enough information and perform

some computation during compile time but the rest is delegated to the actual

execution of the application.

 [13] proposes such a solution. According to the authors, an automatic

parallelization method is proposed which is split in two parts. The first part takes

place during compilation and it generates code which will enable dependency

detection between tiles at run time. At run time, execution of the generated code takes

17

place alongside the second part of the method which is responsible for proper load

balancing between cores in order to improve scalability. Similar to that method is

[57], where two pieces of code are generated during compile time. During execution,

the first piece of code can be executed fully in parallel as it follows the dependencies’

access patterns and the second schedules the execution of the threads. Array

privatization and reduction are also applied in that method. Likewise in [59] there is

an attempt to solve the problem by exploiting the run-time environment. Its main

difference is that it is aimed at FORTRAN programs and that it proposes a different

loop structure altogether: the “DoConsider”. DoConsider encapsulates a number of

transformations that can expose hidden parallelism in a loop with dependencies.

Predominant is the wavefront transformation yet other topological methods are also

used. In compile time a dependene analysis framework is created which is executed at

the start of the code. During run time, both analysis / transformation and load

balancing take place.

2.6. Overviews, Surveys, Tutorials and Books on Automatic Parallelization

 Since automatic parallelization tools have been around for a very long time,

there is a lot of experience and expertise gathered on the subject. A series of

overviews and tutorials exist that describe various methods and aspects of automatic

parallelization for any architecture or programming language and paradigm.

 The authors of [50] mostly focus on FORTRAN and discuss many common

and uncommon traits a parallelizing compiler must have in order to efficiently

generate parallel code for vector and multiprocessor systems. Standard compiler

techniques are also examined and related to / compared with their corresponding

parallelizing ones.

 A survey on automatic parallelization techniques which covers a broad range

from dependency analysis to program / loop transformations is the main subject of

[12]. It even goes into the parallelization of recursive functions and ends up with an

experimental study on the efficiency of several parallelizing compilers.

 In [7] the authors present a comprehensive study on all the important

parallelization techniques for C and FORTRAN. Each transformation is covered in

depth, its purpose is clearly explained and examples are given for its applications on

18

various types of parallel (or even sequential) architectures. Tests on legality of each

transformation are also explained and applied.

 Dependency analysis is the interest of [37], both on whether dependencies do

exist and if they do, which is the resulting direction vector. Various concepts are

considered based on the dependency vectors that might exist, while computation on

parallel, vector and serial DO loops (FORTRAN) is covered. Several transformation

examples where data dependency analysis is required are given such as vectorization,

concurrentization, scalarization, loop interchanging and loop fusion.

 The writers of [45] present an overview in the form of a tutorial on the

restructuring of sequential programs so as for them to have increased efficiency in

parallel machines. Work (either previous or at that time current) on the

transformations and partitioning of loop structures and data is presented. These

transformations aim to improve parallelism, data locality and load balance. Finally a

unified parallelizing framework is suggested by the authors.

 The authors’ aim in [39] is two-fold. At first, a comprehensive overview is

given on parallelizing algorithms. Each algorithm is exhaustively analyzed, from the

type of internal representation it uses to store the dependencies, to the code they

generate and their optimizing criteria (for example if each algorithm aims for

maximum parallelism, or minimal communication or even ease of code generation).

The second part covers a discussion on a particular class of multi-dimensional

schedule referred as shifted linear schedules and that algorithms based on that produce

simpler code.

 Finishing with the various surveys and overviews two more need to be

mentioned. An early work on researching and documenting techniques on the

parallelization of FORTRAN loops that contain dependencies is presented in [54].

Those techniques aim to transform loops in DOALL and DOACROSS forms while in

[41] a rather comprehensive survey on a multitude of techniques that exist and used

by parallelizing and vectorizing compilers is presented. In addition to all the

aforementioned papers, there exist a series of books on automatic parallelization and

associated compilers. [31], [9], [44], [63], [3], [10], [2], [26] and [66] is just a small

sample of the work on this particular subject.

19

2.7. List of Parallelizing Compilers

 This chapter will finish by listing a few well-known automatic parallelizing

compilers. First in the list is the OSCAR compiler [34], [36]. OSCAR tries to exploit

parallelism in multiple levels. It starts with parallelism existing between procedure

calls, moves to loops, basic blocks and finally attempts to exploit the finest grain of

parallelism possible by attempting to parallelize on a per-statement basis (instruction

level parallelism). OSCAR consists of three parts. The first is the FORTRAN frontend

which translates code to some internal representation (IR), then the middle part where

all parallelizing transformations take place and finally there exist a series of backends,

one for each target architecture. The range of various architectures is quite large as it

encompasses SMP systems that use OpenMP, Clusters that support MPI and even the

on-chip multiprocessor called OSCAR.

 OSCAR decomposes a source program into three kinds of grain tasks namely

MacroTasks(MTs) such as the Block of Pseudo Assignment statements (BPA), the

Repetition Block (RB) and the Subroutine Block (SB). A BPA is defined as an

ordinary basic block. However, a basic block is decomposed into several BPAs to

extract larger parallelism when that basic block includes independent blocks. The

compiler builds a Macro Flow Graph (MFG) which represents control flow among

MTs. Next it analyzes the Earliest Executable Condition of each MacroTask to find

maximum parallelism from a MFG. The Earliest Executable Condition for a MT

represents a condition under which the MT can begin execution.

 If a macro-task graph has only data dependencies and is deterministic, static

scheduling is selected. In the static scheduling, an assignment of macro-tasks to

threads is determined at compile time by the scheduler in the compiler. If a macro-

task graph has control dependencies, the dynamic scheduling is selected to handle

runtime uncertainties like conditional branches. The scheduling routines for the

dynamic scheduling are generated by the compiler and inserted into a parallelized

program with macro-task code. OSCAR also supports mechanisms for the reduction

of Cache Conflict Misses.

 The PROMIS compiler [23], [58] is multilingual, retargeting, parallelizing

compiler. Again it is based on an internal representation (called Unified Internal

Representation - UIR) but instead of opting for modular front-ends and back-ends,

20

both are integrated into the system. The designers made this choice because, at the

time, modular systems lacked the ability to store and propagate dependency

information. PROMIS exploits multiple levels of parallelism ranging from task-based

parallelism, to loop level, to instruction level based on the target architecture. It relies

on symbolic analysis which is further refined and augmented by pointer analysis for

better results. Many standard optimization techniques are applied in the middle stage

such as array privatization.

 The frontend and backend operate on the same internal representation which

maintains all vital program structures and provides a robust interface to users. The IR

structures are semantic entities rather than syntactic constructs. It is based on the

Hierarchical Task Graph (HTG) which is a hierarchical control flow graph overlaid

with hierarchical data and dependency graphs. In the HTG hierarchical nodes capture

the hierarchy of program statements and hierarchical dependency edges represent the

dependency structure between tasks at the corresponding level of hierarchy. Therefore

parallelism can be exploited at each level of the HTG: between statements, blocks of

statements, blocks of blocks of statements and so on. The entire IR framework

consists of the following: Symbol Table, Expression Trees, Control Flow Edges,

Control Dependency Edges, Data Dependency Edges, Hierarchical Task Graphs and

Call Graphs.

 PROMIS aims at generating high performance code for the mainstream

imperative programming languages such as C, C++ and FORTRAN. The IR

represents a subset of the union of the language features of C++, FORTRAN and

Java. This subset includes assignments, function calls, multi-dimensional array

accesses and pointers arithmetic. Stack-based Java bytecode is translated into register-

based statements and is applied with language independent analyses and

optimizations. For example, exception detection code can be eliminated as deadcode

if the compiler can prove the lack of exception. Such proof usually involves

evaluation of symbolic expressions. If all catch blocks of a try block are eliminated

the compiler may be able to convert the try block into a normal block.

 The UIR propagates vital dependency information obtained in the frontend to

the backend. Statements are represented as HTG nodes. During the construction of the

HUIR (Higher UIR), expression trees are normalized to have a single side effect per

21

statement. Function calls and assignments to pointer dereferences are identified and

isolated as separate statements. During IR lowering (from HUIR to LUIR – Lower

UIR), complex expression trees are broken down to collections of simple expression

trees, each of which is similar to quadruples. Data dependency information is

maintained and propagated throughout the lowering process.

 Symbolic analysis is performed via symbolic interpretation. Values (or ranges

of values) for each variable are maintained by the interpreter in environments. These

environments are propagated to each statement. Each statement is interpreted and its

side effects are computed. These side effects are applied to the incoming environment

of a statement resulting in new versions for the affected variables. Successive

application of these side effects simulates the execution of the program. Pointer

analysis is performed during interpretation.

 Interprocedural analysis seamlessly integrates into the symbolic analysis

framework. When a function call is encountered by the interpreter, its side effects are

calculated and applied to the incoming environment, like any other expression. Once

calculated, the side effects of a function call can be saved for subsequent

interpretations. Several optimizations have been re-engineered within the symbolic

analysis framework such as strength reduction, static performance analysis, induction

variable elimination, symbolic dependency analysis and array privatization. Other

techniques include constant propagation, dead code elimination and available

expression analysis. The machine independent phase includes classical optimizations

such as common sub expression elimination, copy propagation and strength reduction.

 The Cetus Compiler Infrastructure [47], [8], [41], although not a full

parallelizing compiler per se, is still a very helpful platform that can be easily molded

into any kind of compiler the programmer wants. The Symbolic Manipulation

provided includes the following techniques:

 1 + 2*a + 4 – a => 5+a (folding)

 a*(b + c) => a*b + a*c (distribution)

 (a*2) / (8*c) => a / (4*c) (division)

 (1-a)<(b+2) => (1+a+b)>0 (normalization)

 a && 0 && b => 0 (short-circuit evaluation)

22

 Cetus’ symbol table functionality provides information about identifiers and

data types. Its implementation makes direct use of the information stored in

declaration statements stored in the IR. There is no separate and redundant table

storage. Cetus also provides data dependency analysis and tests: The framework

identifies eligible loops. Eligibility currently defines the scope of dependency testing

in Cetus. For example, it can handle perfectly nested loops and loops in the form for

(i=lb;i<ub;i++) (canonical form loops). Loop information (such as loop bounds, loop

step and enclosing loops) and array access-related information (such as array

references, enclosing loops and parent statements) is collected in data structures and

provided as input to the dependency test interface. The tests try to disprove

dependency between a pair of array accesses and if unable to do so return a

dependency vector representing the direction of dependency in each dimension of the

iteration space spanned by the enclosing loop nest. Tests can be expanded to use

standard tests like the GCD. The output of testing is a Dependency Graph (DG).

 Cetus’ Basic Parallelizing Transformation Passes include privatization,

reduction variable recognition and induction variable substitution. Cetus also includes

an automatic OpenMP to CUDA GPU translator and optimization techniques. It

includes systems for dynamically adaptive applications which target MPI-based

distributed irregular applications as well. More features include:

 Debugging aids: Cetus provides basic debugging support through the Java

language which contains exceptions and assertions as built-in features. Cetus

executes within a Java virtual machine so a full stack trace including source

line numbers is available whenever an exception is caught or the compiler

terminates abnormally.

 Readability of the Transformed Code

 Expression Simplifier

 Parallel Parsing: Use of Java threads to parse and generate IR for several input

files at once.

 Detecting loop-carried dependencies in programs with dynamic data structures

23

 Pointer analysis has also received significant attention. It can be divided into

two distinct sub problems: stack-directed analysis and heap-directed analysis. The

heap is represented as a storage shape graph and the analysis tries to capture some

shape properties of the heap data structures. This type of analysis is called shape

analysis and can help in detecting data dependencies induced by heap-directed

pointers on loops that access pointer-based dynamic data structures, particularly in the

detection of the loop-carried dependencies that may arise between the statements in

two iterations of the loop. Shape analysis maintains topological information of the

connections among the different nodes (memory locations) in the data structure. This

representation provides a more accurate description of the memory locations reached

when a statement is executed. The novelty is that this approach symbolically

interprets the statements of the loop being analyzed and allows annotation in the real

memory locations reached by each statement with read/write information.

 Before the analysis the programs have to be preprocessed in order to

normalize the pointer statements. That is, each statement dealing with pointers must

contain only simple access paths each of which has the form p->field where p is a

pointer variable and field is a field name. The following six simple instructions are

considered:

 x = NULL

 x = malloc

 x =y

 x-> field = NULL

 x->field = y

 x=y->field

 Basically the analysis is based on approximating by graphs (named Reference

Shape Graphs – RSGs) all possible memory configurations that can appear after the

execution of a statement in the code. Memory configuration means a collection of

dynamic structures. Two statements in a loop induce a loop carried dependency

(LCD) if a memory location accessed by one statement in a given iteration is accessed

by the other statement in a future iteration with one of the accesses being a write

access.

24

 The POLARIS compiler [19], [55], [28] is a parallelizing compiler which uses

FORTRAN codes as input and outputs FORTRAN code augmented with parallel

directives. The main idea behind its design was the creation of a strong IR which

would not allow any kind of error to exist and propagate to the output. Thusly the

programmer is prevented from violating any rules and leaving the IR at an invalid or

incorrect state. For that reason the IR contained not only static information but also

data and data ownership information as well. Several transformation techniques are

used such as inlining, induction variable elimination, symbolic dependency analysis,

array privatization and even a framework exists for run-time analysis.

 The SUIF (Stanford University Intermediate Format) Compiler system [32],

[62] was originally designed to be a platform for research on high performance

computing techniques on compilers. It is capable of producing code for multi-

processors by detecting a coarse enough granularity size, ideal to be used for

parallelization. Moreover, SUIF is equipped with a series of standard compiler

techniques such as data dependency analysis, scalar and array privatization, reduction

and induction variable elimination. In addition it employs basic data dependency tests

on arrays to test whether two accesses are referring to the same location.

 Interprocedural analysis is not actualized by the use of inlining but instead by

analyzing the side effects of a procedure and then applying them to every statement in

the code which calls that procedure. When the context differs, then a clone of that

procedure is inlined and analyzed for further use. There is also a memory optimization

module which allocates data in memory in continuous positions for shared memory

systems. This improves data locality and cache usage while reducing false sharing.

 Pluto [20], [21] is a source-to-source, automatic parallelization framework that

uses the polyhedral model. It can transform arbitrarily nested loops with affine

dependencies (defined as affine expressions of the indices and their coefficients) in

such a manner where optimizations on locality and parallelism take place

simultaneously. The approach aims at finding good hyperplanes (tiled) by applying

integer programming with a cost function the authors developed. It has been

assembled by a series of pre-existing tools such as CLooG (polyhedral scanning and

code generator tool), Piplib (integer programming solver) and Polylib (a library that

operates on objects made of unions of polyhedral) which were assembled together

25

with the authors’ cost function in order to produce very efficient results. Code output

can be either in OpenMP or CUDA.

 Finally for the sake of completeness some lesser-known compilers will be

briefly mentioned. Parafrase-2 [51], [52] is a parallelizing / vectorizing source-to-

source code restructurer. It incorporates a series of analyses such as dependency

analysis, overhead analysis and automatic scheduling. The renewed Paraphrase

project was a system of code/design patterns. Each pattern would express high-level

parallelism and had the ability to be refactored / redeployed in various heterogeneous

hardware pools (a pool can have many different processing elements at each

architecture). More information (with a list of papers on that project) can be found in

[72].

 The PARADIGM [11] compiler is a parallelizing compiler that targets

multiprocessors that work with some form of message passing system (such as MPI).

The compiler takes as input FORTRAN code and generates FORTRAN code

augmented with message passing structures. PARADIGM employs a series of tools

such data partitioning, communication costs estimation, exploitation of task and data

parallelism and automatic support for multithreaded execution.

 The ParaScope Programming Environment [24] is a parallel programming

environment which incorporates the tools needed by researchers to create and debug

parallel applications. It offers a parallel program editor, a compilation system and a

parallel debugger. The editor assists the programmer by offering a series of analyses

and interactive program transformations while the debugger uses run-time methods to

detect and report timing-related errors.

 Lastly, OMPi [27] is a lightweight, open source OpenMP compiler and

runtime system for C, conforming to version 3.0 of the specifications. It takes C

source code augmented with OpenMP #pragmas and produces transformed

multithreaded C code, which can be compiled by the native compiler of the system.

An optimized library has also been created which provides efficient runtime support.

That library is linked against the program executable during compilation.

26

CHAPTER 3. LOOP TRANSFORMATIONS

3.1. Data Dependencies and the Polyhedral Representation

3.2. Loop Transformations

3.1. Data Dependencies and the Polyhedral Representation

 In this chapter some of the most common loop transformations and

restructuring methods will be presented. Most of the information presented in the

entire chapter can also be found in more detail in [45] and [41].

 Firstly a definition of dependency is needed. A dependency between two

statements in the code exists when both statements access (by assigning a value or by

referencing the value of) the same memory location (variable). According to that

definition, four different types of dependencies can exist:

1. Flow Dependency. A Statement S2 is flow dependent on Statement S1 when

S1 assigns a value to a variable which is later referenced by S2. It is also

called a “WRITE before READ” dependency and is characterized as true

dependency.

2. Anti Dependency. A Statement S2 is anti dependent on Statement S1 when S1

references the value of a variable which is later assigned by S2. It is also

called a “READ before WRITE” dependency.

3. Output Dependency. A Statement S2 is output dependent on Statement S1

when S1 assigns a value to a variable which is later reassigned by S2. It is also

called a “WRITE before WRITE” dependency.

4. Input Dependency. A Statement S2 is input dependent on Statement S1 when

S1 references the value of a variable which is later referenced by S2. It is also

called a “READ before READ” dependency.

27

 It is obvious that from all the mentioned dependencies, Anti, Output and Input

are not real dependencies and there are ways for them to be removed from code as

will be later demonstrated. Generally, a (true) data dependency between two

statements defines their execution order. Even after all the transformations and

restructuring, those statements must still be executed in the original order as indicated

by the dependency.

 Dependencies that exist inside a loop but between statements of different

index instances are called Loop Carried Dependencies. These kinds of dependencies

can be made clear by completely unrolling the loop. Dependencies that exist inside

the same loop iteration are called Loop Independent Dependencies because they do

not affect the transformation of the loop in any way.

 Let us consider a typical perfectly nested loop like the one presented in Figure

3.1. We can see that for a nesting level of n there exist n indices (i1, i2, …, in), each

one with its own lower (L1, L2, …, Ln) and upper bound (U1, U2, …, Un). These

bounds can be a function of all the previous indices. So each for each ik in the index

space, there exist these inequalities: 𝐿𝑘 𝑖1, 𝑖2, … , 𝑖𝑘−1 ≤ 𝑖𝑘 ≤ 𝑈𝑘 (𝑖1, 𝑖2, … , 𝑖𝑘−1),

where 1 ≤ k ≤ n. The vector I which contains all those in I={i1, i2, …, in} is the

iteration space.

Figure 3.1. A Perfectly Nested Loop in C. Unit Stride of 1 is Assumed.

 There is another way to represent the problem: If we consider two n x 1

matrices, L and U that contain the lower and upper bounds respectively and the n x 1

matrix I which contains the indices of the loop, then we can construct 2 more matrices

SL and SU in such a manner that SL * I >= L and SU * I <= U. SL is a lower triangular

matrix and SU is an upper triangular one. The second inequality can also be written as

for (i1= L1 ; i1 <= U1 ; i1++)

 for (i2= L2(i1) ; i2 <= U2(i1) ; i2++)

 . . .

 for (in= Ln(i1, i2. …, in-1) ; in <= Un(i1, i2, …, in-1) ; in++)

 Statements (i1, i2, …, in);

28

-SU * I >= -U. A typical example of such matrices is the identity matrix. The entire set

(SL, -SU, L, -U) is the polyhedral representation of the entire nested loop.

 Considering a d-dimensional array A, two index instances i1 and i2 and two

functions of i1 and i2, F and G respectively, then a loop carried dependency between

i1 and i2 will exist if A[F(i1)] and A[G(i2)] reference the same memory position. This

means F(i1)=G(i2). The dependency problem then turns into a linear programming

problem where SL * i1 >= L, -SU * i1 >= -U, SL * i2>=L, -SU * i2 >=-U and F(i1) =

G(i2). The solution will show whether a dependency exists or not. Unfortunately, in

this general case, the problem has been proven to be NP-Complete (it is equivalent to

finding solutions to a system of Diophantine equations), thus a precise answer might

take a long time to be computed. That is the reason that many of the dependency tests,

such as the Banerjee, the Omega and the Range test exist. They can provide fast

results under simplified conditions or special situations. A dependency test’s reply can

belong in one of these three outcomes: (i) A dependency exists, (ii) A dependency

does not exist and (iii) Not sure. Tests that answer only (i) and (ii) are called exact

tests otherwise they are called inexact tests.

 Assuming a dependency between index instance i=(i1, i2, …, in) and j=(j1, j2,

…, jn) exists, then the vector j - i = (j1 – i1, j2 – i2, …, jn – in) is the dependency

distance vector. If the vector consists only of constants then it is called a static or

uniform dependency vector. If the values are not constant then the vector which

contains the signs of each subtraction sign (j – i) = (sign (j1 – i1), sign (j2 – i2), …,

sign(jn – in)) is the direction dependency vector. For example, let us consider the loop

in Figure 3.2.

Figure 3.2. A Typical Example of a Perfectly Nested Loop in C with Two Loop

Carried Dependencies.

 In that example, first we compute the polyhedron representation. Since all

bounds are fixed constants, we can see that SL = SU =
1 0
0 1

 , I =
 𝑖
 𝑗

 , L=
0
0
 and

for (i=0; i< 5; i++)

 for (j=0; j< 5; j++)

 A[i][j] = A[i – 1][j] + A[i][j – 1];

29

U=
4
4
 so –U=

−4
−4

 . In the statement we can see that for any current iteration (i, j) the

array A is referenced in two previous iterations, (i-1, j) and (i, j-1). This means that

there exist two dependencies with vectors d1=((i)-(i-1),(j)-(j)) = (1,0) and d2=((i)-

(i),(j)-(j-1))=(0,1). The set of all dependencies is the dependency vector D=
1 0
0 1

and the direction vector is the same since it carries the signs of the values of D.

3.2. Loop Transformations

3.2.1. First Pass Transformations

 Before the actual transformations transpire and even before the dependency

analysis of the code, parallelizing compilers usually perform a first pass of

transformations. These transformations are mostly aimed at simplifying expressions in

order to facilitate ease of analyzing array subscripts, loop bounds etc. Such

transformations fall into the idiom recognition category (as they mostly search for

certain expressions inside the code) and they include (but are not limited to):

 Interprocedural Dependency Analysis. It is very probable that a

computation might span across a multitude of different procedures inside the code of

a program. This is the very essence of modular programming which allows for the

creation of easy-to-read, well structured code. However due to the compiler’s inability

to know the side-effects of each procedure call (i.e. what effects a call might have to

any other variable of the program), most procedure calls are left untouched by the

automatic optimization tool which essentially means that the programmer is penalized

for using procedure calls inside a loop. Interprocedural dependency analysis is the

type of analysis that crosses the boundaries of procedures and analyzes side effects or

trying to incorporate a procedure call into the automatic loop transformation. As has

been mentioned earlier, one way to simplify a procedure call is to inline the entire

procedure on the place of the call and then analyze the code as usual. This however

might not be optimal.

 False Dependency Elimination. Out of the four different types of

dependencies, it has already been demonstrated that only one type is the true form of

30

dependency. The rest are false dependencies and they only obfuscate code. In order to

simplify the code and be rid of anti-dependencies a compiler can either use data

privatization or data expansion. An example of data privatization is given in Figure

3.3. In this example, assigning of any value to tmp seems like a critical section and

that it can’t be parallelized. However, tmp is first written and then read. It is a Write

before Read type of dependency. By assigning the attribute PRIVATE to tmp the

transformation makes sure that each instance of tmp will exist inside each thread’s

local storage and thusly the whole loop can be parallelized. Figure 3.4. displays the

use of data expansion. Each different instance of tmp is assigned in a new temporary

array which can be accessed at a later step for the actual computation. The

PARALLEL directive in these cases means that the loop should be fully parallelized.

Figure 3.3. Using Data Privatization in Order to Simplify and Remove a False (Anti)

Dependency.

Figure 3.4. Using Data Expansion in Order to Simplify and Remove a False (Anti)

Dependency.

for (i=0; i<n-1; i++)

 for (j=0; j<n-1; j++)

 A[i][j]=A[i+1][j] + A[i][j+1];

PARALLEL for (i=0; i<n-1; i++)

 PARALLEL for (j=0; j<n-1; j++)

 T[i][j]=A[i][j];

PARALLEL for (i=0; i<n-1; i++)

 PARALLEL for (j=0; j<n-1; j++)

 A[i][j]=T[i+1][j] + T[i][j+1];

PARALLEL for (i=0; i<n; i++)

{

 PRIVATE tmp=…;

 A[i]=tmp;

}

for (i=0; i<n; i++)

{

 tmp=Code irrelevant to tmp;

 A[i]=tmp;

}

31

 Symbolic analysis. Symbolic analysis is a general term. Most of the times,

compilers who perform such an analysis monitor each variable and track its value

range from statement to statement. This way, it is possible to be able to know all the

ranges of all variables (including ranges of array subscripts as well as the values of

the arrays themselves) and thusly reach some conclusions regarding the code in

question. Certain loops that seem un-parallelizable might end up containing some

parallelism and that is because certain indices might not end up overlapping or

referencing the same memory location in order to create dependencies.

 Induction Variable Elimination. An induction variable is one that its value is

updated in each loop iteration in such a manner that it can be replaced by a closed

mathematical formula. Figure 3.5. gives an example of an induction variable and its

elimination from the code. “sum” is identified as an induction variable and is replaced

by its closed mathematical formula (2 in the power of i) which at first creates an anti-

dependency but one that is easily eliminated from the code in the final fully parallel

loop.

Figure 3.5. An Example of Induction Variable Elimination.

 Loop Normalization. Most idiom recognition algorithms assume that any

given loop index starts with the value of 0 and has a unit stride. If that is not the case

for a loop then normalization transforms the loop in order to meet that requirement as

is demonstrated in Figure 3.6.

Figure 3.6. An Example of Loop Normalization.

for (i=2; i<2 * n; i+=2)
 A[i]=…;

for (i=0; i<n; i++)

 A[2*i+2]=…;

sum=1;

for (i=1; i<=n; i++)

{

 sum=sum * 2;

 A[i] = sum;

}

PARALLEL for (i=1; i<=n; i++)

{

 sum= pow (2, i);

 A[i] = sum;

}

PARALLEL for (i=1; i<=n; i++)

 A[i]=pow (2, i);

32

 Global Forward Substitution. By substituting all constant variables with the

expressions they evaluate to, an automatic parallelizer can help make dependency

analysis easier. Figure 3.7. shows an example of substitution.

Figure 3.7. An Example of Forward Substitution.

 Loop Distribution. Loop Distribution is the technique where a single loop

(probably nested, perfectly or not) is split into a series of different loops, each with

the same iteration range as the original loop. Every one of the new loops carries a

smaller part of the original loop’s body as its own. This technique can be useful in

improving cache usage and in the case of a multi-processor system where each

processor can handle a single loop if they are independent from each other. Extra care

must be taken to preserve the order of execution of dependent statements. Figures 3.8.

and 3.9. give two different examples of Loop Distribution.

Figure 3.8. An Example of Loop Distribution Which can Help Improve Cache

Performance.

Figure 3.9. Another Example of Loop Distribution Where an Imperfectly Nested

Loop is Split Into two Perfectly Nested Ones.

ex=2*k+1;

for (i=0; i<n; i++)

 A[i]=i+ex;

for (i=0; i<n; i++)

 A[i]=i+2*k+1;

for (i=0; i<n; i++)

{

 A[i]=C[i];

 B[i]=D[i];

}

for (i=0; i<n; i++)

 A[i]=C[i];

for (i=0; i<n; i++)

 B[i]=D[i];

for (i=0; i<n; i++)

{

 A[i]=B[i];

 for (j=0; j<n; j++)

 C[i][j]=D[i][j];

}

for (i=0; i<n; i++)

 A[i]=B[i];

for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 C[i][j]=D[i][j];

33

 Loop Fusion. Loop Fusion is exactly the opposite act of Loop Distribution. It

can be useful in cases where the overhead of a loop is significant and as such, it can

lead to reduced overhead and better run-time speed overall. Such a case is when the

loop is in fact, some parallel construct which requires time to set up all the threads

necessary in order to complete execution. Fusion is possible when the legality of the

dependencies is preserved and when the index ranges match (although if they don’t,

maybe some type of normalization might be possible to be applied to match the

other). Figure 3.10 gives an example of Loop Fusion. In that example we can see that

both loops can execute in parallel and so the new loop has a potentially smaller

overhead than the initial two loops.

Figure 3.10. An Example of Loop Fusion. Two Parallel Loops are Fused Together

with the Aim to Reduce Overhead.

 Reductions. A reduction variable is one that exists in the form of multiple

copies in a series of threads’ local storages and the need exists to reduce them all into

one final and single variable. Summing up an array is a usual example of such an

action. Figure 3.11 shows an example of a reduction variable and how it can be

transformed to exploit some parallelism. In this example, PE is the number of

processing elements we can use to speed up the reduction and P is the ceiling of the

result of the division of the total number of array elements n divided by PE.

Essentially, P is the total number of partial sums we will calculate and then reduce.

The first loop initializes the partial sums s[i] in parallel, then the second loop sums up

the P different parts of n into each s[i] and the final loop calculates the final value of

sum by adding up all the partial sums s[i]. If the granularity is coarse enough then the

speedup of the parallelism is higher than any overheads that might exist.

PARALLEL for (i=0; i<n; i++)

 A[i]=B[i];

PARALLEL for (i=0; i<n; i++)

 C[i]=D[i];

PARALLEL for (i=0; i<n; i++)

{

 A[i]=B[i];

 C[i]=D[i];

}

34

Figure 3.11. An Example of Reduction. The Summation of A into the Scalar “sum” is

Partially Parallelized.

3.2.2. Unimodular Matrices

 Choosing to represent the polyhedron and the dependencies of a loop via the

use of matrices offers a significantly helpful tool when it comes to transformations:

the Unimodular matrices. A Unimodular matrix is nothing more than an integer

matrix whose determinant equals to 1 or -1. A loop transformation can be encoded

inside such a matrix and then that matrix can be multiplied with the polyhedron and

the dependency vector to produce a transformed loop. Unimodular matrices contain

integer elements so that the transformed polytope will also contain integer values and

its unimodularity guarantees a one-to-one mapping with a stride of one.

 With the help of these matrices we can apply a series of transformations by

multiplying their respective Unimodular matrices in the reverse order of the

transformations’ application. This way, compound transformations are created. At this

point it is important to note that not all transformations are legal. In order for a

transformation to be accepted for use, the new dependence vector D’ must contain

lexicographically positive dependences. In general, a tuple (a, b, c, ….) is

lexicographically positive when the first non-zero element in the tuple is a positive

number. Lexicographic positivity is a strong condition for all transformations

otherwise anti-dependences will be created. There are some cases when the existence

of anti-dependences might not matter but if a cyclical dependency appears then it is

impossible for the compiler to produce any meaningful code.

sum=0;

for (i=0; i<n; i++)

 sum += A[i];

P=
𝑛

𝑃𝐸
 ;

PARALLEL for (i=0; i<P; i++)

 s[i] = 0;

PARALLEL for (i=0; i<P; i++)

 For (j=i*P; j<(i+1)*P;j++)

 s[i]=s[i]+A[i];

sum=0;

For (i=0; i<P; i++)

 sum+=s[i];

35

3.2.3. Prime Loop Transformations

 Once all idiom recognitions have transpired then an automatic compiler can

proceed to perform the main or Prime loop transformations. In contrast to the first

pass transformations, Primes do not seek to simplify some expression or find inter

procedural dependences but, according to the current needs they usually aim to

increase code efficiency (both in a parallel code but on occasion on a sequential one

as well) and apply much more drastic alterations to a given loop. The most common

of these transformations are listed below and elaborated upon:

 Loop Tiling. Loop Tiling, Loop Blocking, or Strip-mining is a loop

transformation technique aimed at increasing the efficiency of any sequential loop.

The main idea is that any given loop can be transformed to an equal one but where the

entire index space is partitioned in smaller tiles (of a fixed size each on every

dimension) and then execution takes place on a per tile basis. Figures 3.12 and 3.13

give an example of a loop before and after tiling with its accompanying graphic

illustration. It is important to note here that there must be no dependency conflicts

with the change in the execution schedule so the ordering imposed by dependences is

still preserved in the tiled version of the original loop.

Figure 3.12. A Perfectly Nested Loop with Nesting Level of 2 and its Graphical

Representation in the Two-Dimensional Space.

for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 …

36

Figure 3.13. The Loop of Figure 3.12 and its Graphic Representation After a Tiling

Transformation. A Stride of 3 was Used in Each Dimension.

 The increase in efficiency is mostly accomplished by exploiting data locality

in the CPU’s cache. Tiling can also be a first step in various other transformations

where each tile serves as the basic parallelization unit (in other words, coarse grain

granularity can be achieved by first tiling close indices together and execute them in

some sequential manner while each tile can execute independently from the others

either in different CPUs or in different threads).

 Loop Interchange. As the name suggests, the technique of loop interchange

exchanges the levels of two iteration variables in a nested loop. A dependence of (a,

b) becomes (b, a) which means that extra care must be given in order to safeguard the

legality of the whole transformation. If b in that case is a negative number, then by

performing interchange, the dependence is no longer lexicographically positive and

the legality is forfeit. The Unimodular matrix for this operation is demonstrated in

Figure 3.14 while Figure 3.15 gives an example of a nested loop before and after loop

interchange. Loop interchange can generally improve efficiency by exploiting locality

of reference and cache usage. It can also enhance inner or outer loop parallelization or

enable vectorization. However it may also adversely affect performance if not enough

care is given by hindering cache usage altogether. Overall, the effectiveness of

interchange relies heavily on the underlying cache model the system’s hardware

architecture is using. It is important to state here that if the loop bounds of the original

loop are not simple, then computing the new loop bounds is generally non-trivial.

for (i=0; i<n; i+=3)

 for (j=0; j<n; j+=3)

 for (i’=i; i’<min(i+3, n); i’++)

 for (j’=j; j’<min(j+3, n); j’++)

 ….

37

𝑖′
𝑗′
 =

0 1
1 0

𝑖
𝑗

𝑖′ = 𝑗

𝑗′ = 𝑖

Figure 3.14. The Unimodular Transformation of Loop Interchange.

Figure 3.14. A Nested Loop Before and After Loop Interchange.

 Loop Permutation. Loop Permutation is a more general method of Loop

interchange. For any perfectly nested loop of nesting level of n, then pairs of loops

can swap their place in the nesting. Dependences obey that swapping as well. For

example a dependence of dimensionality 3, (a, b, c) with a permutation of

1 2 3
2 3 1

 , becomes (b, c, a). The necessary Unimodular matrix for this

transformation is constructed by swapping the corresponding rows of the identity

matrix I (of a suitable dimensionality), as is demonstrated by Figure 3.15. Figure 3.16

displays the application of such a matrix on an index set. As this technique is a

generalization of loop interchange then the automatic compiler needs to be aware of

and avoid the same pitfalls as with loop interchange: A transformed dependency must

never become lexicographically negative so again extra care is needed when applying

this technique. The only way the compiler can be sure of any permutation’s legality is

to perform an analysis on all dependences. If all distances are positive then any

permutation is legal.

1 0 0
0 1 0
0 0 1

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ 1

0 1 0
1 0 0
0 0 0

⋯
0
0
1

⋮ ⋱ ⋮
0 0 1 ⋯ 0

Figure 3.15. Creating a Permutation Unimodular Matrix by Swapping the Rows of the

Original Identity Matrix.

for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 A[i][j]=i+j;

for (j=0; j<n; j++)
 for (i=0; i<n; i++)

 A[i][j]=i+j;

38

𝑖′1
𝑖′2
𝑖′3
⋮

𝑖′𝑛

=

0 1 0
1 0 0
0 0 0

⋯
0
0
1

⋮ ⋱ ⋮
0 0 1 ⋯ 0

𝑖1

𝑖2

𝑖3

⋮
𝑖𝑛

𝑖′1 = 𝑖2

𝑖2
′ = 𝑖1

𝑖3
′ = 𝑖𝑛
⋮

𝑖𝑛
′ = 𝑖3

Figure 3.16. Applying the Constructed Unimodular Matrix from Figure 3.15 to an

Index Set.

 Loop Reversal. Loop Reversal is a technique which reverses the bounds of a

loop. For example, a simple loop with bounds L and U will be transformed to one

with bounds –U and –L respectively. The corresponding dependence of that loop

automatically switches sign. In a nested loop this effectively means that the loop

which corresponds to the first positive distance in any dependence cannot be reversed

otherwise the dependence will no longer be lexicographically positive. In a loop of

nesting level 3, a dependence (a, b, c) becomes (a, -b, -c) after such a transformation

is applied to levels 2 and 3. Loop reversal rarely possesses any inherent ability to

increase code efficiency however it can help eliminate dependences and thusly pave

the way for other optimizations.

 Loop Skewing. Loop skewing is a technique where a dependency (a, b) is

transformed into a form of (a, f*b + c) where f is the skew factor. The same skew

factor is applied on the shape of the polytope representation and changes it into a new

shape with a different representation (a skewed version of the original polytope). The

fact that dependences retain their lexicographic positivity after such a transformation

means that skewing is always safe to apply. In fact such a transformation is always

possible to be discovered. Skewing is a very important transformation as it has the

capability to expose parallelism in the innermost loop of a perfect nesting. Figure 3.17

displays a code example which denies any kind of parallelism at first sight (or even

interchange for that matter).

Figure 3.17. A Code Example where Skewing can Expose Hidden Parallelism.

for (i=1; i<n; i++)

 for (j=1; j<n; j++)

 A[i][j]=A[i-1][j]+A[i][j-1];

39

 It is straightforward to calculate the dependences in that code snippet: (1,0)

and (0,1). Figure 3.18 shows a graphical representation of the loop’s polytope and the

corresponding dependences.

Figure 3.18. The Graphical Representation of the Loop and the Loop Carried

Dependences it contains.

 There are many different Unimodular matrices that can describe various types

of skewing, however a typical one is described in Figure 3.19.

1 𝑓1 𝑓2

0 1 0
0 0 1

⋯
𝑓𝑛
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ 1

Figure 3.19. A Typical Skewing Unimodular Matrix. f1, f2,…, fn are the Skew Factors.

 In our example the Unimodular matrix becomes
1 1
0 1

 (skewing factor of

one). If we apply this transformation to the index set, we get the new indices of the

transformed loop:
𝑖′
𝑗′
 =

1 1
0 1

𝑖
𝑗
 =

𝑖 + 𝑗
𝑗

 . The dependences are also transformed

by the same matrix:
1 1
0 1

1
0
 =

1
0
 and

1 1
0 1

0
1
 =

1
1
 . The new dependence

vector has been transformed to the set D’ = {(1,0), (1,1)}. Generally speaking,

40

calculating the loop bounds of a skewing operation is a non-trivial and difficult

endeavor altogether, however in this example it is rather simple and straightforward.

 We know that 𝑖′ = 𝑖 + 𝑗 (1) and that 𝑗′ = 𝑗 (2). We also know that 1 ≤ 𝑖 ≤

𝑛 − 1 (3) and that 1 ≤ 𝑗 ≤ 𝑛 − 1 (4). By adding (3) and (4) we get that 2 ≤ 𝑖 + 𝑗 ≤

2𝑛 − 2

 2 ≤ 𝑖′ ≤ 2𝑛 − 2 (5). Now we use (1) and (2) and solve for i and j: 𝑗 = 𝑗′

(6) and 𝑖 = 𝑖 ′ − 𝑗′ (7). By combining (3) and (7) we can see that 1 ≤ 𝑖′ − 𝑗′ ≤ 𝑛 − 1

(8). This double inequality can be split into two separate ones: 1 ≤ 𝑖′ − 𝑗′ (9) and

𝑖′ − 𝑗′ ≤ 𝑛 − 1 (10). Out of (9) we get that 𝑗′ ≤ 𝑖′ − 1 (11) and out of (10) we get

that 𝑗′ ≥ 𝑖′ − 𝑛 + 1 (12). Since 𝑗′ = 𝑗 and by using (4) we learn that 𝑗′ ≥ 1 (13) and

𝑗′ ≤ 𝑛 − 1 (14). From (12) and (13) we get that 𝑗′ ≥ 1 and 𝑗′ ≥ 𝑖′ − 𝑛 + 1. Since we

need 𝑗′ to always have valid values, then 𝑗′ ≥ max(1, 𝑖′ − 𝑛 + 1) (15). By combining

(11) and (14) we know that 𝑗′ ≤ 𝑖′ − 1 and that 𝑗′ ≤ 𝑛 − 1. Again according to the

same principle, we reach the conclusion that 𝑗′ ≤ min(𝑖′ − 1, 𝑛 − 1) (16). Finally, by

using (5), (15) and (16) we know the new loop bounds and can create the new

transformed loop which is displayed in Figure 3.20. Figure 3.21 demonstrates the

skewed result in the graphic representation of the polytope.

 Observation of the skewed result makes the hidden parallelism obvious. For

every different i’ of the loop, all the j’ belonging to that iteration of i’ are independent

from one another and so they can execute in parallel. This technique can also be

applied after tiling in order to offer a more coarse grain form of parallelism. In the

case where tiling has already been applied, then each position in the iteration space

corresponds to a single tile instead of a single iteration instance of the loop. Skewing

is a very important tool in the arsenal of a parallelizing compiler as it offers varying

levels of granularity of parallelism that lies hidden in the innermost loop, and as such

it is the most important part of the wavefront method.

Figure 3.20. The Skewed Result from the Original Loop of Figure 3.17 when the

Matrix of Figure 3.19 was Applied on it.

for (i’ = 2; i’ <= 2*n-2; i’++)

 for (j’ = max(1,i’-n+1); j’ <= min(i’-1, n-1); j’++)

 {

 i=i’-j’;

 j=j’;

 A[i][j]=A[i-1][j]+A[i][j-1];

 }

41

Figure 3.21. The Polytope Representation of the Skewed Loop Presented in Figure

3.20. The Inner Level Parallelism per Iteration of i’ is Obvious.

 The Wavefront. The wavefront method is a compound transformation which

encompasses loop skewing, loop reversal and loop interchange / permutation. The

main purpose behind the wavefront model is to find a series of hyperplanes, each

covering a subset of the original polytope, with the property that all indices on a

certain hyperplane are independent between them and can thusly be run in parallel. By

visualizing the wavefront method on the code of Figure 3.17 (and after application of

the skewing transformation discussed before) we can see (in Figure 3.22) that

essentially the wavefront method creates an imaginary wave which moves through the

data.

Figure 3.22. From Left to Right the Wavefront (Black Dashed Rectangle) Moves

Through the Computation data. Grayed Points Indicate Already Processed Index

Instances.

42

 All index points on the front are the ones that can be executed in parallel in

that iteration. This is the reason that this general methodology is called a wavefront

and essentially, it is the hyperplane method originally proposed by Lamport where

each hyperplane is driving the front by being executed sequentially and each front

being executed in parallel. Calculating a proper compound unimodular matrix in order

to have an efficient wavefront is a difficult task and there is no single direct algorithm

for it. Most automatic parallelizing compilers resort to heuristic methods in order to

pick the best transformation out of all the possible wavefronts that exist for any given

problem. Finally, it is worth mentioning that the wavefront method (as well as the

skewing one) require a uniform dependence vector in order to work properly.

43

CHAPTER 4. SVP

4.1. Introduction and Prerequisites

4.2. The SVP Processor and Model

4.3. The SL Programming Language

4.4. The Toolchain

4.1. Introduction and Prerequisites

 With Moore’s law (an empirical observation made by Gordon E. Moore which

states that the number of transistors in integrated circuits doubles every 18 months)

still in effect, it is becoming increasingly clear that the only way to push forward with

improving efficiency and speed in systems is via multi-core architectures. multi-core

processors (multiple cores on chip) have the ability to utilize the ever increasing on-

chip resources while simultaneously handling the increase of complexity of the

circuitry.

 However, there are some issues that need handling. A multiprocessor must

define a model of parallelism that is similar to the sequential model that users have

been accustomed to. In addition, binary compatibility across a range of different

generations of processor implementations is very desirable. In the spirit of the

sequential model, the Multiprocessor system should also be deterministic (which

means that given a certain input it will always produce the same output) and ideally it

can provide deadlock avoidance mechanisms. When it comes to the aspect of

parallelism, a Multiprocessor needs to be able to capture and exploit maximal

concurrency while at the same time gracefully degrade when it runs low on resources.

As such, automatic resource allocation is an important prerequisite since hand-

mapping applications onto available resources is not feasible (neither sensible).

44

4.2. The SVP Processor and Model

 The SVP (Self-Adaptive Virtual Processor) model is a system designed and

implemented to cover for all the afore-mentioned prerequisites. By design, it is a

general concurrent processor model which bases its abstract execution model on a

hierarchy of "microthreads". A microthread is an entity very similar to a regular

thread (i.e. it is a sequence of sequentially executed statements that can run in parallel

with other threads or the main application that spawned them) but with the added

property of blocking its execution when there are no data available to them for

calculations [16]. This essentially places the SVP into a more generalized SPMD

category since its API exports directives for synchronization. SVP is designed to be

deterministic and approaches parallelism in a highly dynamic manner through its

ability to be self-adaptive. It is also meant to target the entire range of applications

instead of just a few specific ones. The self-adaptiveness of the model is realized by

three distinct properties: (i) It can capture the concurrency of an application in its

entirety, (ii) It captures and enforces locality of communications between threads and

(iii) keeps everything as dynamic as possible [38].

 A novel property of the SVP is that it can be implemented in its entirety

(including the run-time environment) in a processor’s Instruction Set Architecture

(ISA) and thus it can be considered as an Operating System (OS) on chip [22]. An

ISA implementation offers the advantage of backwards compatibility with any pre

existing sequential code (which is not affected at all) and also provides the ability for

any SVP program to revert back to a sequential form of execution if such a need

arises. A series of such cores (SVP cores) forms a Microgrid. A Microgrid offers

binary compatibility over any cluster of such processors, is inherently scalable when it

comes to both area utilization and performance and can support a great degree of

parallelism through the use of a large number of Microthreads and high memory

tolerance. The OS deals with managing any dynamically created content through

delegation. Delegation refers to the process where a computation can be mapped to

any part of the microgrid remotely during run time.

 The abstract execution model of the SVP is quite general. Applications (and

by extension, developers) need not concern themselves with any kind of mapping of

threads or their scheduling, as the run-time system dynamically allocates resources to

45

threads as needed and the scheduling is achieved through synchronizing

communication: There exist two types of synchronizing channels, the shared ones and

the global ones. The existence of these channels inside the code decides whether

threads will run sequentially or in parallel. Proper use of these channels (i.e. the

channels are read from and written to when they are supposed to) guarantees a

deadlock-free execution of the application.

 Moreover, the execution model presents a recursive / hierarchical structure of

parallelism. Microthreads do not exist autonomously but they are always part of a

family. This makes the family the basic unit of work in the SVP model. Families can

be of any arbitrary size (even infinite) and individual threads inside those families are

created only when there are available resources. When there is a lack of resources, the

model falls back to a sequential mode where the family executes entirely in its parent

thread’s context.

 A thread has the ability to create another family and thusly a hierarchy of

families is formed. The synchronizing channels exist solely inside a family between

its threads. A smaller form of communication exists between a parent thread and its

subservient family. The created family can receive data (in the beginning) and return

data (after termination) to its creator but this is the only form of communication

allowed between threads in the entire concurrency tree, at a user’s level of perspective

at least. Any other form would be at the very least inefficient and normally avoided.

 The global synchronizing channel is immediately accessible by all the threads

of a family (each thread can decouple data from any global channel) and offers a set

of read-only data from the creator of the family. The shared channel works differently

by adopting a data-flow behavior: Each thread of the family can read (decouple into

shared variables) from that channel once and write back a value to it (couple) also

once. If a thread finds no data inside the channel at the moment it tries to read it, then

it blocks its execution until data is available.

 Threads identify themselves inside the family by the use of an index and once

a thread has written a value to the shared channel, then that value will be instantly

accessible by the thread with the next index value. The original value in the chain is

designated by the creator / parent thread, while its final value is accessible by the

creator thread. Whenever a sequential form of execution is needed between the

46

threads of a single family, then a shared channel can also be applied to enforce an

order of execution. In this case the value of the data moving from thread to thread is

completely irrelevant as long as there is some data moving. Figure 4.1 demonstrates a

typical SVP family of microthreads during its execution: Each time a thread writes a

value on a shared channel, the next thread (which blocked on reading that channel)

can resume computation. Local computations can take place in parallel outside of the

reading / writing of the shared variable. The global channel is visibly available to all

the family threads.

 Figure 4.1. An SVP Family of Microthreads. The Global Channel is Available to all

Threads While the Shared one Creates a Data-chain from One Thread to the Next.

 In addition to those two types of channels, a global asynchronous memory (in

the form of a flat address space) exists which is accessible by all threads. At any given

time, each thread “sees” a view of a particular memory section which will remain

consistent so long as no other thread writes to that particular place. Once the family

finishes its execution, then all such “views” are shared and a final view of the entire

subsection involved in the execution is considered to be at a stable, synchronized

state. Specifically, the consistency model does not guarantee that a thread will see any

changes performed by an unrelated thread at any given time [40], [17], [39]. Figure

47

4.2. demonstrates an SVP hierarchy with the bulk asynchronous memory available to

all threads.

 The global asynchronous memory coupled with the synchronizing channels

(which offer parent-child and intra-family communication) are sufficient to capture all

kinds of dependencies inside a program, since the synchronizing channel can impose

the same ordering as a loop carried dependency and the rest dependency types aren’t

real dependencies. It is obvious though that the only way for flow dependences to be

expressed in the SVP model in any sensible manner is through the use of dataflow

semantics and the various communication channels. This means that legacy code

cannot be executed as-is in a parallel manner. Certain types of transformations are

required in order for dependencies (most importantly loop-carried ones) to be mapped

into threads and families. In summary, loops (parallel or sequential ones) and function

calls must be implemented as families where the blocking nature of the threads will

offer the proper ordering of execution.

Figure 4.2. An SVP Hierarchy with the Accompanying Asynchronous Memory.

48

 A typical example where the multiple types of communications channels are

of use is the matrix multiplication. The code fragment that performs multiplication

between two two-dimensional matrices A and B is displayed on Figure 4.3. The result

is stored in a similar matrix C. For simplicity reasons we assume the matrix

dimensions are n x n. It is clear from that code sample that the two outermost loops (i

and j) that compute the elements of C are independent from the rest. The only loop

carried dependency appears inside the innermost loop (k) where sum is updated once

per loop iteration. In the SVP model this would translate to three families: i, j and k.

The threads in family i are all independent between them (hence there is no need for a

shared channel) and each thread invokes family j, where again its threads can be

executed in a concurrent manner.

Figure 4.3. A Typical Code Fragment which Calculates the Product of two n x n

Matrices.

 Each of these threads (in the j families) initializes a thread-local variable sum

with the value 0, and then invokes (spawns or creates) family k. This is where most of

the computation takes place and indeed we can see that at first glance it is not possible

to increase efficiency more. However, each of the threads in the k family first

computes the product A[i][k]*B[k][j] and then updates the variable sum (which

carries the total sum and hence is represented as a shared channel). Since each of

those products is independent from the other threads, then it is prudent to have all the

threads of the family k compute that product concurrently before beginning to update

the total sum. In summary, each “k” thread performs the following steps: (i) calculate

the result of the product A[i][k]*B[k][j] in parallel and store it in a temporary

variable, (ii) perform a read on the shared channel “sum” (and block if it’s not

available), (iii) Add the temporary variable to the sum variable, (iv) write the value of

the sum variable back to the “sum” shared channel, (v) terminate.

for (i=0; i<n; i++)

 for (j=0; j<n; j++) {

 sum=0;

 for (k=0; k<n; k++)

 sum += A[i][k] * B[k][j];

 C[i][j]=sum;

 }

49

 The hierarchy that such a computation creates is demonstrated in Figure 4.4: A

tree of execution with three levels is created. Since the threads in level 1 (Family i)

execute concurrently, this means that the n x n threads of level 2 (Family j) will

execute concurrently and thusly each of the n x n elements of matrix C will compute

independently from the rest. The k families display the dataflow created by the sum

variable travelling through the shared channel. It is initialized at each parent locally, it

traverses through all the threads one by one and then returns back to the originator.

Figure 4.4. The Execution Hierarchy Created for the Concurrent Matrix

Multiplication. Single-pointed Arrows Indicate Dataflow Direction.

4.3. The SL Programming Language

 It was made abundantly clear that a programming language which could

support the API exported by the SVP was needed. Initially a series of extensions were

designed and added to the C language (a well-known language used world-wide) and

50

the κTC [37] language (micro-threaded C) was born. As development proceeded,

certain problems emerged that led to the creation of the SL language. While κTC was

implemented by modifying the gcc compiler, SL used a series of macros to help pass

the code through the original unaltered gcc compiler and used post processing to

provide the necessary functionality and optimization. It provides mechanisms for the

bulk creation and synchronization of threads, the passing of variables and values

through the global and shared channels and more. Some key macros and their

explanation follows:

 sl_def(){code} sl_enddef. sl_def defines a thread with a programmer defined

name and a defined return (usually void). A series of arguments is listed in the

parentheses. Arguments are passed by value. sl_enddef denotes the end of the

thread definition. Similar to the classic join for threads, sl_sync() will halt

execution of the parent thread that created a family and wait till that family

terminates to continue execution.

 sl_create(). It creates a family of threads whose index’ starting value, ending

value and step will be defined inside the argument list of sl_create.

 sl_sync(). The sl_sync macro causes the invoking thread to pause and wait

until the created family has finished computation and returned control to the

parent.

 sl_index(variable_name). A macro that can be called inside a thread function

code. It stores the index of the current thread to the variable designated by

variable_name.

 A more detailed description of the SL language can be found in the Appendix at the

end of the thesis.

sl_def(fib, void, sl_shparm(int, _a), sl_shparm(int, _b), sl_shparm(int, _c))
{
 int a=sl_getp(_a);
 int b=sl_getp(_b);
 int c=sl_getp(_c);

 c=a+b;
 a=b;
 b=c;

 sl_setp(_a, a);
 sl_setp(_b, b);
 sl_setp(_c, c);
}
sl_enddef

51

Figure 4.5. Calculating the nth Term of the Fibonacci Sequence. After the Thread’s

Termination, Reading the Shared Channel c Provides the Final Result.

By combining SL directives and standard C code, it is easy to create SVP applications

that exploit concurrency. For example, consider the code that computes the nth number

of a Fibonacci sequence. For simplicity we assume than n is greater or equal to 2.

Using SL over SVP this code would look like the one in Figure 4.5 which

demonstrates the thread definition and invocation.

sl_def(t_main, void)
{
 int a=0;
 int b=1;
 int n=5;
 int c;

 sl_create(,,2,n+1,1,,,sl_sharg(int, _a, a), sl_sharg(int, _b, b),
 sl_sharg(int, _c, c));
 sl_sync();
 c=sl_geta(_c);

 printf(“%d\n”,c);
}
sl_enddef

#include<stdio.h>

typedef int[10] type1;
typedef type1[10] type2;

sl_def(family_k, void, sl_glparm(type2, _a), sl_glparm(type2, _b), sl_shparm(int, _sum),
 sl_glparm(int, _i), sl_glparm(int, _j))
{
 sl_index(k);
 type2 a=sl_getp(_a); int ype2 b=sl_getp(_b);
 int i=sl_getp(_i); int j=sl_getp(_j);
 int tmp=a[i][k]*b[k][j]; int sum=sl_getp(_sum);
 sum+=tmp;
 sl_setp(_sum, sum);
}
sl_enddef

sl_def(family_j, void, sl_glparm(type2,_a), sl_glparm(type2,_b), sl_glparm(int, _i),
 sl_glparm(type2, _c))
{
 sl_index(j);

 type2 a=sl_getp(_a);
 type2 b=sl_getp(_b);
 type2 c=sl_getp(_c);
 int i=sl_getp(_i);

 int sum=0;
 sl_create(,,0,10,1,,,family_k, sl_glarg(type2, _a, a), sl_glarg(type2, _b, b),
 sl_sharg(int, _sum, sum), sl_glarg(int, _i, i), sl_glarg(int, _j, j));
 sl_sync();
 sum=sl_geta(_sum);
 c[i][j]=sum;
}
sl_enddef

52

Figure 4.5. An Application which Concurrently Multiplies two Matrices a, b (10x10

size) and Stores the Result in the c Matrix.

Another more complex example is the matrix multiplication one, already described in

Figures 4.3 and 4.4. The SL / SVP implementation is illustrated in Figure 4.6.

4.4. The Toolchain

 The SVP’s toolchain is simple and efficient. The main component is the SL

compiler which takes as input a program written in the SL language and produces a

binary output ready to be executed by an SVP-compatible multicomputer system. For

the convenience of the developer, the compiler may output a binary file that is

essentially sequential. This option exists so that the programmer can check whether

the code works properly in a sequential manner before proceeding into the actual

parallel form. In the case of a fully parallel code, a simulator system is also provided.

That system is an environment capable of simulating any type and size of microgrid

with the OS-on-chip attached. The simulator can be used both to debug code and to

evaluate it. Once the simulation completes, the programmer receives a number of

helpful metrics about the application such as total master CPU cycles and so on.

Schematically the Toolchain can be visualized by Figure 4.6.

 Since the SL language is an intermediate level between high level and

machine level, it is not expected by a user to code in SL (although that is perfectly

sl_def(family_i, void, sl_glparm(type2, _a), sl_glparm(type2, _b), sl_glparm(type2, _c))
{
 Sl_index(i);
 type2 a=sl_getp(_a);
 type2 b=sl_getp(_b);
 type2 c=sl_getp(_c);

 sl_create(,,0,10,1,,,family_j, sl_glarg(type2, _a, a), sl_glarg(type2, _b, b),
 sl_glarg(int, _i, i), sl_glarg(type2, _c, c));
 sl_sync();
}
sl_enddef
sl_def(t_main, void)
{
 Type2 a, b, c;
 sl_create(,,0,10,1,,,family_i, sl_glarg(type2, _a, a), sl_glarg(type2, _b, b),
 sl_glarg(type2, _c, c));
 sl_sync();
}
sl_enddef

53

acceptable and normal). Instead the Toolchain is augmented with two more tools: An

automatic compiler which transforms sequential C code to SL (The C2κTC/SL

presented in this thesis) as well as an automatic compiler which transforms SaC

(Single Assignment C) [73] to SL. These two compilers allow legacy code in C and

data parallel code in SaC to be automatically parallelized. The main idea behind the

toolchain is that ideas can be expressed in a high level language such as SaC or a

(rather) structured C code and then see them run in a many-core environment.

“Communication” in the toolchain takes part completely via the use of files. Each

program takes an input and generates an output which in turn is used as the input of

the next program. The augmented Toolchain is depicted in Figure 4.7. More

information on the SVP model can be found in [74] and [75].

Figure 4.6. The Typical SL/SVP Toolchain.

54

Figure 4.7. The Augmented SVP Toolchain.

55

CHAPTER 5. THE C2μTC/SL COMPILER

5.1. Introduction

5.2. One-Dimensional Loops

5.3. Multi-Dimensional Loops

5.4. From C to SL

5.1. Introduction

 As it was stated in the previous chapter, SVP requires a different way of

thinking when describing parallelism to the system through the use of SL. This also

means that mapping loops created in a traditional sequential language (like C) onto

SL automatically requires a new compiler. For that reason, C2κTC/SL was created. It

is a source-to-source compiler which takes as input sequential C code and attempts to

discover and expose as much of the hidden parallelism inside the code and then

rewrite it into SL.

 C2κTC/SL focuses on loop structures. The reasoning behind this design

choice is threefold: (i) loops have the potential for high degrees of parallelism (ii)

most of the execution time of a program is spent inside loops and (iii) the SVP model

offers special mechanisms that help accelerate single-dimensional loops. Hence,

C2κTC/SL’s goal is the transformation of loops into families. In the case where no

dependences exist inside the original loop, then everything is mapped onto completely

parallel threads inside a family otherwise the synchronizing channels are used to

impose proper statement order.

 Due to the fact that an SVP family is by definition a single-dimensional entity,

translating multi-dimensional loops with loop carried dependences to families is a

non-trivial task. That is why C2κTC/SL differentiates between loops of a single

dimension and loops of multiple dimensions and acts accordingly in each case.

56

5.2. Single-Dimensional Loops

 Single-dimensional loops can be mapped directly on SVP families and are

categorized based on whether they contain loop carried dependencies (which indicates

that a loop can be fully executed in parallel) or not and on what kind of ordering the

loop carried dependencies impose on the execution (which even though it denies full

parallelism, some might still be possible to expose). There are several categories that

emerge based on this distinction and a list of them (alongside their transformation to

SL) follows:

5.2.1. Loops without Dependencies

 This is the simplest category of loops. A typical example looks like the one in

Figure 5.1. (c is considered a constant or an expression which does not access A in

any way). Figure 5.2 illustrates a slightly different loop that belongs to the same

category: Even though there is a reference to A on the left-hand side of the

assignment, there is no loop carried dependency, since each iteration of i only

references itself and no other.

Figure 5.1. Typical Loop Without Dependencies.

Figure 5.2. Another Example of a Loop Without Dependencies.

 The way to transform these loops is quite simple and straightforward. A

family of threads is created with the same bounds and stepping as the original loop

and without any synchronization channel since each thread inside that family can

execute in parallel. The code that each thread executes is the same code as the loop

body, augmented with statements that deal with the decoupling of values from the

for (i=0; i< N; i++)

 A[i] = c;

for (i=0; i<N; i++)

 A[i] = A[i] + c;

57

various global channels into local variables. The transformed code is depicted in

Figure 5.3. Invocation of that family from the parent thread is illustrated in Figure 5.4.

Figure 5.3. The End Result of the Transformation of the Loop in Figure 5.2.

Figure 5.4. Invoking the Family of Threads of Figure 5.3 from the Parent Thread.

5.2.2. Loops with a Single Dependence

 A more complicated situation arises when a loop carries a single dependence

of an arbitrary length of x, where x ≥ 1. In the extreme case where x=1 (a unary

dependency), the original (pre-transformation) code looks like the one in Figure 5.5.

The index space with the appropriate dependences is visualized in Figure 5.6.

Figure 5.5. A Typical Example of Unary Dependency.

Figure 5.6. Visualization of the Index Space that Figure 5.5 Produces. The Dashed

Arrow Indicates the Direction and Length of the Loop Carried Dependence.

sl_create(thread, void, sl_glparm(int, _c), sl_glparm(int *, _a))

{

 sl_index(i);

 int *A=sl_getp(_a);

 int c=sl_getp(_c);

 A[i] = A[i] + c;

}

sl_enddef

sl_create(,,0,N,1,,,thread, sl_glarg(int, _c, c), sl_glarg(int *, _a, A));

sl_sync();

for (i=1;i<N;i++)

 A[i]=A[i-1]+c;

58

 It is clear that the synchronizing channel mechanism must be used to ensure

proper statement order inside the family of threads that will replace this loop.

However, since each iteration is expecting the result of the previous one, it is a perfect

opportunity to utilize the synchronizing memory’s ability to transfer data between

threads. By passing the result of the computation of each thread to its successor

through a shared variable, then each thread will not need to read the value from the

global memory (A[i-1] per i) before it will perform its own calculation. This

mechanism offers a high increase in efficiency by utilizing SVP’s channels (that can

be implemented in hardware) in a smart manner. Figure 5.7 displays the transformed

result alongside its invocation code from the parent thread. Statements in bold

indicate the beginning and end of the critical section inside the thread.

Figure 5.7. The Transformed Result of the Code in Figure 5.5.

 All the family threads will initialize (decouple) their variables in parallel,

calculate the result variable in a critical section, store it in the respective global

memory place and then pass it over to their successor thread in the chain through the

sl_def(thread, void, sl_shparm(int,_shared), sl_glparm(int *,_a), sl_glparm(int, _c))

{

 sl_index(i);

 int c = sl_getp(_c);

 int *A = sl_getp(_a);

 int result;

 int shared=sl_getp(_shared);

 result=shared+c;

 A[i]=result;

 sl_setp(_shared, result);

}

sl_enddef

sl_create(,,1,N,1,,,thread, sl_sharg(int, _shared, A[0]), sl_glarg(int *, _a, A),

 sl_glparm(int, _c, c));

sl_sync();

59

shared variable. In order for this computation to work properly, the original value of

A[0] must be passed through to the first thread through the synchronizing channel and

that is the purpose of the initializing part in the sl_create statement. It is worth noting

here that the dependent family is always executed on a single core and allows multiple

threads to tolerate high memory access latencies. Additionally, although it would

make more sense for the compiler to emit the sl_setp directive as early as possible in

the code to allow for maximum parallelism, such a feature is not currently supported.

 A more general example of the single dependence category is depicted in

Figure 5.8. (code) and the corresponding index space visualization is illustrated in

Figure 5.9.

Figure 5.8. A Typical Code Example of a Uniform Dependency with Length x.

Figure 5.9. Index Space Visualization of a Single Dependence of Length x=2.

 The way C2κTC/SL deals with such a situation is a bit more complex than the

previous case: A dependence of length x, creates a series of implied data chains.

Careful examination of Figure 5.9 shows that indices 2, 4, 6, 8, … belong to one data-

chain while indices 3, 5, 7, … belong to another. Moreover, those two data-chains are

completely independent from one another. Generally, a single dependence of length x,

implies x completely independent data-chains. The first contains the index set (x, 2x,

3x, …) the second contains the set (x+1, 2x+1, 3x+1, …) etc. with the final one

containing the set (2x-1, 3x-1, 4x-1, …).

for (i=x;i<N;i++)

 A[i]=A[i-x]+c;

60

 In essence, even though a dependence exists, there is still parallelism to be

exploited. All x data-chains can be executed in parallel which signifies a theoretical

(in an ideal universe) increase of efficiency by a factor of x compared to the

sequential model of execution. Taking into consideration the fact that each data chain

is implemented by a single family (with a single shared variable which carries the

value throughout the family), and that all x families need to run in parallel, which

makes these families themselves children of another family of concurrently running

threads, means that the hierarchy in the end is a bit more complex than the previous

one since it now involves one more level in the concurrency tree. Figure 5.10

demonstrates the transformed code for such a paradigm alongside the invocation of

the whole hierarchy that needs to be called in the parent thread.

Figure 5.10. Transforming the Code of Figure 5.8. Notice the Increase in Hierarchy

Complexity.

sl_def(sequential, void, sl_shparm(int, _shared), sl_glparm(int *, _a), sl_glparm(int, _c))

{

 sl_index(i);

 int *A=sl_getp(_a);

 int c=sl_getp(_c);

 int result;

 int shared=sl_getp(_shared);

 result=shared+c;

 A[i]=result;

 sl_setp(_shared, result);

}

sl_enddef

sl_def(parallel, void, sl_glparm(int *, _a), sl_glparm(int, _c))

{

 sl_index(i);

 int *A=sl_getp(_a);

 int c=sl_getp(_c);

 sl_create(,,i,N,x,,,sequential, sl_sharg(int, _shared, A[i]), sl_glparm(int *, _a, A),

 sl_glparm(int, _c, c));

 sl_sync();

}

sl_enddef

sl_create(,,x,2*x-1,1,,,parallel,sl_glarg(int *, _a, A), sl_glarg(int, _c, c));

sl_sync();

61

5.2.3. Loops with Multiple Dependencies

 As the last test case, loops with multiple dependencies are examined. A typical

one dimensional loop with a series of different dependences is depicted in Figure

5.11, while Figure 5.12 demonstrates the (rather complex) index space. More specific

cases might lack some of the dependences displayed, yet they are no different in their

transformation than the general case. Considering that there are a total of x

dependencies in the loop, we can see that in the end there will be x different shared

variables, each shifting one place per iteration, and all of them are used to calculate

the final result for every thread.

Figure 5.11. A Loop With x Different Dependencies.

Figure 5.12. Visualization of the Loop of Figure 5.11.

for (i=x; i<N;i++)

 A[i]=A[i-1] + A[i-2] + … + A[i-x] + c;

sl_def(thread, void, sl_shparm(int, _s1), sl_shparm(int, _s2), …, sl_shparm(int, _sx),

 sl_glparm(int *, _a), sl_glparm(int, _c))

{

 sl_index(i); int result;

 int *A=sl_getp(_a);

 int c=sl_getp(_c);

 int s1=sl_getp(_s1), s2=sl_getp(_s2), …, sx=sl_getp(_sx);

 result=s1+s2+s3+…+sx+c;

 A[i]=result;

 sl_setp(_s1, s2); sl_setp(_s2, s3); …; sl_setp(_sx, result);

}

sl_enddef

62

Figure 5.13. Transformation and Invocation of a Loop with Multiple Dependencies.

 It is worth noting here that at first glance nothing is gained. Both the original

and the transformed code run sequentially. However the transformed code passes all

the relevant data from thread to thread via the hardware synchronizing channel which

helps alleviate the burden of accessing the global memory for every element needed.

This helps increase speedup quite substantially.

5.2.4. Loops with Anti-Dependencies

 As has been mentioned at a previous chapter, anti-dependencies are not true

dependencies. When such a case of false dependency emerges, C2κTC/SL ustilizes a

typical false dependence elimination technique: it copies the original array into a

temporary array and then performs the actual computation. Figure 5.14 demonstrates

code with an anti-dependence while Figure 5.15 shows the transformed code.

Figure 5.14. A Typical Loop with an Anti-dependence.

for (i=0; i<N-x; i++)

 A[i] = A[i+x]+c;

sl_def(thread, void, sl_glparm(int *, _A), sl_glparm(int *, _Temp),

 sl_glparm(int, _c), sl_glparm(int, _step))

{

 sl_index(i);

 int *A=sl_getp(_A);

 int *Temp=sl_getp(_Temp);

 int step=sl_getp(_step);

 if (step==1) Temp[i]=A[i]; else A[i]=Temp[i+x]+c;

}

sl_enddef

sl_create(,,x,N,1,,,sl_sharg(int, _s1, A[0]), sl_sharg(int, _s2, A[1]), …,

 sl_sharg(int, _sx, A[x-1]), sl_glarg(int *, _a, A), sl_glarg(int, _c, c));

sl_sync();

63

Figure 5.15. Transformation and Invocation of the Anti-Dependence Loop.

This method completes the task with maximal parallelism albeit at the cost of

reserving extra memory for the temporary array.

5.3. Multi-Dimensional Loops

 Multi-dimensional loops are again divided into two major categories. Loops

free from loop-carried dependencies and ones with dependencies. As we already

know, lack of dependencies completely removes the need for maintaining any

ordering in the execution of the code. So these kinds of loops are trivially transformed

into fully parallel families. Each level in the loop-nesting corresponds to a family that

executes completely in parallel. This creates a loop hierarchy similar to the one of the

matrix multiplication example but without the sequential innermost loop.

 However, in the case where loop carried dependencies do exist, the status quo

changes. There is an ordering imposed in multiple dimensions now. C2κTC/SL can

transform perfectly nested loops with a dependence vector into parallel constructs by

utilizing the idea of Lamport’s hyperplane method. However, since finding the

optimal execution schedule for the hyperplances is not a trivial case, C2κTC/SL opted

for a novel solution: Instead of pre-calculating the entire transformation (in compile

time), most of the calculations are delegated to run-time. The hyperplanes are

intuitively discovered and scheduled by tracing the dependence vector while

executing the loop body. The whole algorithm is quite complex and so it will be

presented in two steps: (i) The fixed size algorithm, which is the original and the main

idea behind (ii) The self-adaptive algorithm which builds on (i) but completes it.

sl_create(,,x,N,1,,,thread, sl_glarg(int *, _A, A), sl_glarg(int *, _Temp, Temp),

 sl_glarg(int, _c, c), sl_glarg(int, _step, 1));

sl_sync();

sl_create(,,0,N-x,1,,,thread, sl_glarg(int *, _A, A), sl_glarg(int *, _Temp,

 Temp), sl_glarg(int, _c, c), sl_glarg(int, _step, 2));

sl_sync();

64

5.3.1. The Fixed-Size Algorithm

 The main idea of the run-time algorithm is simple. If at any given moment, we

know which sets of indices (index tuples) can execute, then by applying the

dependence vector on that set, we can find out which tuples will execute at the next

step. Consider Figure 5.16 which displays an excerpt from a random state of program

execution. The grayed out index points indicate which indices execute at the current

time (execution cycle). By applying the dependence vector (the arrows) in the set of

indices currently executing, we can derive the set of indices that will execute in the

next cycle (the white ones).

 This algorithm emulates a mechanism where each index tuple locks down on

itself (through the use of semaphores, one for each dependence) and each index tuple

that executes, sends an unlock signal to the ones that depend on it (according to the

vector). Since it is not possible to have a system with that many semaphores and in

order to emulate the mechanism we need an n-dimensional array (2-d in the

aforementioned example) which is initialized with 0 in all its cells. This array will

store the number of dependences each cell satisfies at any given time. Before that

array is created however, tiling needs to be applied to the index space since this

algorithm does not offer satisfactory results at the finest level of granularity (as will

be demonstrated in Chapter 6. Tiling is only applied on the innermost dimension as is

demonstrated by Figure 5.17.

Figure 5.16. A Random State of the Index Space of a Nested Loop with two

Dimensions. Arrows Indicate Dependences (2 in this Example).

65

Figure 5.17. A Two-Dimensional Index Space Before and After Tiling. Each Tile has

a Length of 3.

 There are two reasons explaining the single dimensionality of the tiles: (i) A

single dimensional tile can be applied on the SVP logic and architecture as a single

family and thus be efficiently executed thanks to the relevant mechanisms. (ii) By

organizing indices of the innermost loop (of the loop nesting) together cache usage is

improved since these elements are usually mapped in neighboring memory addresses.

Once tiling has been applied with a length of N per tile, then the algorithm begins

execution (note that everything described is done during the actual execution and not

during compile time) and a n-dimensional array is created with each cell

corresponding to a tile. The cells of the array are then initialized with the number of

dependences the corresponding tile has satisfied at the start of the execution. All the

tiles that satisfy all their dependences store their index coordinates (in the form of

tuples) inside a set of tuples V1. At this point, a two-step computation takes place:

1. Create |V1|+1 threads and synchronize. |V1| returns the number of tuples stored

inside V1. All threads “Perform Computation”.

2. If |V2| = 0 then computation ends. Otherwise copy V2 into V1, clear V2 and

goto 1.

“Perform Computation” comprises of the following steps (in the form of a pseudo-

code function):

66

Perform_Computation()

{

 index i;

 if (i<length((V1)+1)

 {

 create family of N threads with coordinates of the ith tuple in V1;

 sync_family ;

 return ;

 }

 else

 {

 for each tuple v in V1

 for each dependence d in dependence vector D

 {

 index tuple t= v + d;

 array[t]++;

 if (array[t]==length(D))

 add t to set V2;

 }

 }

}

 In short, at any given computation cycle, |V1|+1 threads are created that run

concurrently. |V1| of them perform the actual original code’s computation. This is

actualized by creating a single family per V1 tuple with size of N threads. The first

thread in the family has the coordinates of the particular tuple that spawned the family

while the rest of the threads follow on from that. Each of these families is executed in

a sequential manner which means that parallelism in this algorithm is exploited

between different families (hence the coarse level of granularity).

 While those |V1| threads execute their computation, the last thread (called the

scheduler thread) is actually traversing |V1| and adds each dependency from the

dependence vector to each tuple of V1. The new tuples that are produced that way are

used as coordinates on the array which stores the number of currently satisfied

dependences. Each of these new cells’ values are increased by 1 per dependency and

if that value reaches the total number of dependences, then those coordinates are

added in set V2. This means that V2 stores the coordinates of the index tuples that will

execute in the next computational cycle. If at the end of the computation cycle V2 is

empty, then this means that the entire index space has been covered and the

computation ends.

67

 For the sake of completeness a pseudo-code example is provided to help

clarify its inner workings and help provide better understanding of the self-adaptive

algorithm. Suppose the original code looks like the one in Figure 5.18. In this

example there are clearly two dependences at work: (1,0) and (0,1). This means that

the dependence vector D is the set D={(1,0), (0,1)}. C2κTC/SL will output the entire

algorithm as the transformed version of the loop and everything else will take place at

run time.

Figure 5.18. The Original Code to be Transformed. The Corresponding Dependence

Vector D={ (1,0), (0,1) }.

 The algorithm, firstly, creates (dynamically) a two-dimensional array of size n

x (n / N) where N is the fixed size of the tiles that will be used and then initializes the

whole array. Initialization is pre-computed by the compiler and as such, it is tailored

to that particular problem. This happens in order to reduce the initialization overhead.

In the current problem with the particular dependence vector, the algorithm initializes

the entire array except the first row and column with the value 0, the entire first row

and column with the value of 1 and the corner at that intersection (index tuple (0,0))

with the value of 2. Since the total number of dependences is 2, that particular tuple is

added to V1. V2 is set to be empty at this point. Figure 5.19 demonstrates the array as

it is inialized. With this setup we know how many dependencies each tile has

satisfied, which tiles can execute and which ones should stay dormant.

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

2 1 1 1 1 1

Figure 5.19. The Dependence Array as it is Initialized for a Nested Loop with a

Dependence Vector D={ (1,0), (0,1) }

for (i =1; i < n ; j ++)

 for (j = 1; j < n; j++)

 a[i][j] = a[i-1][j] + a[i][j-1];

68

 C2κTC/SL analyses the dependence vector and outputs the necessary code

that will have each cell to be initialized with an appropriate value. Figure 5.20

demonstrates how these values are assigned to an array given a dependence vector of

{(a, 0), (0,b)} where a and b are greater than 0.

Figure 5.20. How the Dependence Array is Initialized Based on the Dependence

Vector {(a,0),(0,b)}.

 Cells near the edge of the array will always have at least one dependence

satisfied (the one that comes from outside the grid) and cells where those areas

intersect will contain the result of the summation of the each comprising area. In the

case of having a dependency with negative components then the upper row of the

array needs to be also initialized with appropriate values. Additionally, dependencies

non-parallel to the axes are split into multiple dependencies parallel to the axes. I.e. a

dependency of (1,1) becomes (1,0) , (0,1).

The main loop of the algorithm is simple enough:

while (true)

{

 Create (sizeof(V1) + 1) threads;

 Synchronize threads();

 if (sizeof(V2)==0) then break;

 Copy(V2, V1);

 Empty (V2);

}

Each thread runs the following code:

ThreadBody

69

{

 Thread_index in;

 if (in < sizeof(V1)) then

 {

 coordinates[] = V1.tuple[in];

 i = coordinates[0];

 j = coordinates[1];

 create a sequential family of N threads with thread body

 the main program procedure(i, j);

 Synchronize threads();

 }

 else

 {

 for (a = 0 ; a < sizeof(V1) ; a ++)

 {

 coordinates[] = V1.tuple[a];

 i=coordinates[0];

 j=coordinates[1];

 if (i+1 < n)

 {

 Array[i+1][j]++;

 if (Array[i+1][j]==2) addToSet(V2, i+1, j);

 }

 if (j+1 < n)

 {

 Array[i][j+1]++;

 if (Array[i][j+1]==2) addToSet(V2, i, j+1);

 }

 }

 }

}

The addToSet procedure adds a new index tuple into V2. Each set is essentially a

dynamic array which can continually expand when the need for more data arises. The

main program procedure actually executes the original loop body:

main program procedure (i, j)

{

 Thread_index in;

 a[i][j+in] = a[i-1][j+in] + a[i][j+in-1];

}

70

 Once the whole grid of coordinates is filled the V2 set will eventually come up

empty and the computation will end. The dependence array at a random state looks

like Figure 5.21. In this example, the bottom left tiles indicate computations that have

already taken place. The light grey ones indicate the tiles being computed in the

current cycle. The scheduler thread follows each arrow (which signifies a

dependency) and increases the number in that cell by 1. The dark grey tiles will all

end up with 2 dependencies satisfied and thusly they will be added to the V2 set for

calculation in the next cycle.

Figure 5.21. The Dependency Array at a Random State During Execution.

 This run-time algorithm does away with trying to solve an NP-Complete

problem and instead aims to intuitively discover the underlying parallelism. No

hyperplanes are calculated, instead the dependence vector is applied on the index

space and sets of tuples that can execute concurrently are discovered and scheduled.

The end result is similar to any of the pre-computed methods which reduce the

problem to a linear algebra one, while offering no need for heuristics. An added

advantage of moving the solution to the run time is that irregular loops (i.e. triangular

ones) can be dealt with exactly the same way by mapping the exploration space into

the loop bounds. This versatility however does not come without a cost. There is an

overhead incurred both during initialization (even if that can happen in parallel for

maximal efficiency) and when the scheduler thread is running concurrently with the

71

rest of the computing threads so this run-time method will never be able to achieve

the speedups offered by other methods however it can get rather close.

5.3.2. The Self-Adaptive Algorithm

 The fixed-size algorithm described in 5.3.1 (so called due to the fact that the

tiles are of a fixed pre-determined size) proved to be efficient however a disadvantage

became soon apparent. The size of the tile was not, and could not be, known

beforehand at the beginning of the execution. This number is a crucial parameter for

the efficacy of the whole algorithm and picking the proper size proved to be a

challenge not easily solved in the existing form of the run-time system.

 The problem stems from the fact that too small a size results in too many tiles

running in parallel, while too large a size means too few parallel tiles execute per

cycle. The former situation means that each V1 set is too large and consequently the

scheduler must spend too much time traversing it while the rest of the computation

threads have finished their computation. This in turn means that the main loop will

idle for some time until the scheduler finishes. In the opposite situation, the scheduler

finishes rather quickly however there is not enough parallelism to offset the overheads

and so performance suffers.

 It is reasonable to assume that the best solution lies somewhere in the middle:

Where both the scheduler and the computation threads finish at the same time. Since

that is practically impossible to achieve, a better solution would require all threads to

finish their task as close to each other as possible. Measurements have validated this

assumption, hence our best approach to a good tile size is the one that will create as

many parallel tiles as are needed so as not to overwhelm the scheduler thread. Since

this magic number is dependent on the problem, it becomes apparent that there is no

method of calculating it. This led to the creation of a new algorithm, based on the

fixed size one, however equipped with the ability to alter that tile size during

execution in order to fine tune execution and aim for the optimal result. The self-

adaptive algorithm is the next logical step to the fixed-size one. It incorporates all the

versatility of moving the solution to the run time while at the same time abolishes the

need for pre-existing knowledge of the tile size (or even resorting to some heuristics).

72

In order for the self-adaptive system to work, various changes and additions to the

main algorithm were needed.

 Firstly, a methodology was required which could determine at any given

computation cycle whether the tile size needs to be increased or decreased: The

execution time of all tiles that run in parallel and the execution time of the scheduler

thread during each iteration are measured. Once each tile finishes, it stores its total

execution time (in master CPU cycles) in an array. At the iteration’s end, the slowest

tile is selected and its timings are compared with the scheduler’s ones. A distance

between those two numbers is calculated which models the value of one as a

percentage of the other. According to that distance then the following take place:

 If the absolute value of the distance is less than or equal to 0.25 (25%) then the

two numbers are considered close to each other and no change is needed in the

tile size.

 Otherwise:

- If the scheduler finished before the tiles, then more tiles are needed to keep

the scheduler occupied and hence the tile size needs to be reduced by 1.

- If the scheduler finished after the tiles did, then fewer tiles are needed so

the tile size needs to be increased by 1.

 The main idea of the self adaptive algorithm is that once a particular tuple of

indices finishes execution, then the following tuple in the lexicographic order will

execute as well. In order for this to happen, a dependency is needed with the form of

(0, 0. . . 0, a). When such dependence exists then “a” is considered to be of value of 1

since the length is irrelevant: the next tuple will execute from the point the current one

ends. If there is no such dependency in the dependency vector then loop interchange

is applied with the aim of creating one.

 The algorithm solves the problem in an idealized index space that starts at (0,

0… 0) and its volume extends in all dimensions ad infinitum. The tiles before their

execution transform those coordinates into proper index variables by adding the

offsets for each dimension. The solving part is only interested in sets of indices in the

form of (a, b, c, d… 0) since it is not possible to calculate which family in the

innermost dimension can start due to the fact that the task size changes all the time.

73

However, based on the premise that once a tile starts working in the (a, b, c, d… 0)

coordinates, we know that all of its subsequent successors will always be added in the

queue to be executed since the dependency (0, 0, 0, …, 1) is always satisfied.

 There is one final element that is needed for the self-adaptive algorithm to

work properly. A method is needed to keep track of the index space that has been

already covered by computation. This is necessary since with all the fluctuations of

the tile size, a tile might be created with a length that surpasses this limitation and

thusly be in danger of ruining the dependency order. To avoid such a situation, an

extra array is used which stores the lengths covered for each coordinate of the form (a,

b, c, …, 0). This array is called the front since it tracks the computational front as it

expands over the index space from iteration cycle to iteration cycle. With everything

mentioned so far in mind, during each iteration cycle the following series of events

takes place:

 1. The set of coordinates from the V1 set is passed to the processing threads.

There they are converted into proper index coordinates (by adding the corresponding

offsets) and then the current front in the innermost dimension is assigned to be the

starting coordinate. The current tile size is added and the ending coordinate is

calculated. If it exceeds the loop bounds or the adjacent front (in the case where the

task size grew since the previous cycle) then it is clamped accordingly. A second

array which acts as a temporary front is updated when this computation finishes with

the new front value for the current coordinates.

 2. A thread family creation takes place which runs sequentially and performs

computations on the set of the calculated indices. This family is timed and the amount

of cycles it took is stored in an array.

 3. The scheduler thread computes the next set of indices but it is only

interested in families that will begin execution in the innermost dimension. Once the

total number of dependencies satisfied reaches the total number of dependencies, then

the particular tuple is added in the set of indices to be executed in the next cycle. The

scheduler also adds to the same set the lexicographical successors of the tuples that

are already running, as long as they don’t exceed the front or the loop bounds.

 4. The new temporary front array values are copied in parallel to the current

front values.

74

 5. The tile that took the longest time to complete is selected and its total time

is compared to the time that the scheduler thread needed to complete and their

distance is calculated. Once the distance is known,

 (a) If the distance is lesser than or equal to 25% tile size remains the same.

 (b) If the distance is greater than 25% and the scheduler finished first the tile

size is reduced by one since more tasks are needed.

 (c) If the scheduler finished after the computations then the tile size is

increased by one.

 This continues until the V2 set returns empty which signifies the

computation’s end. The whole algorithm in pseudo-code form follows:

 The dependency array now changes and has its dimensionality reduced by one

(since there is no point tracking dependences in the innermost dimension). In the case

of the previous example with a two-dimensional loop and a dependence vector of

{(1,0),(0,1)} it looks like Figure 5.22.

2 1 1 1 1 1 1 1 1 1

Figure 5.22. The Initialized Dependence Array for a Dependence Vector of

D={(1,0),(0,*)}

 By following that dependence array, we can see that in this example the first

column with coordinates (0,0) gets “activated” first. Once it is activated, its

successors (all tiles with coordinates in the form of (0,x)) will be queued for execution

one by one. When the first tile finishes the second column (1,0) will activate and

begin executing and so on.

The main tile procedure is:

main program procedure (i, j)

{

 Thread_index in;

 j = j + in;

 a[i][j] = a[i – 1][j] + a[i][j – 1];

}

The ThreadBody now becomes as follows:

75

ThreadBody

{

 Thread_index in;

 if (in < sizeof(V1)) then

 {

 coordinates[] = V1.tuple[in];

 i = coordinates[0] + offset_i ;

 Depending on the status of Nold and Ncurrent

 calculate the “newFront[]” “length” and “coordinate” variables

 clockStart=getClock();

 if (length > 0) then

 {

 create a sequential family of length threads with

 thread body the main program procedure(i, j);

 Synchronize Threads();

 }

 clocks[in]=getClock() – clockStart;

 }

 else

 {

 clockStart = getClock();

 for (a = 0; a < sizeof(V1) ; a++)

 {

 coordinates[] = V1.tuple[a];

 i = coordinates[0] + 1;

 j = coordinates[1];

 if (i>=offset_i AND i<n and j==0) then Array[i][j]++;

 if (Array[i][j]==2) then addToSet(V2, i, j);

 i = coordinates[0];

 j = coordinates[1] + 1;

 if (Front[i+offset_i] < n) then addToSet(V2, i, j);

 }

 Clocks[in]=getClock() – clockStart;

 }

}

The main while loop also changes into the following (Ncurrent stores the current tile

size):

Nold = Ncurrent;

while (true)

{

 Create sizeof(V1) + 1 threads

 Synchronize threads();

 if (sizeof(V2)==0) then break;

 Copy NewFront[] to Front[] in parallel;

76

 max=Clocks[0];

 for (a=1; a<sizeof(V1); a++)

 if (Clocks[a]>max) then max=Clocks[a];

 percentage=(Clocks[sizeof(V1)] – max) / Clocks[sizeof(V1)];

 Nold = Ncurrent;

 if (Absolute(percentage) > 0.25) then

 {

 if (percentage < 0) then Ncurrent--;

 else Ncurrent++;

 }

 Copy(V2, V1);

 Empty (V2);

}

 Figure 5.23 illustrates a random state of the dependency array. It is also worth

noting that the only time the dependence (1,0) is taken into consideration when it

points to a coordinate in the form of (a, 0) otherwise it is completely ignored since

each tile queues the one above it in the V2 set. Light grey tiles indicate the ones that

are executing in the current iteration cycle while the arrows point to the ones that will

be queued for execution in the next cycle. In that particular state, we can see that five

on the “columns” have already been activated. Each activated column will keep rising

until the loop bounds are reached. At the same time, each tile running on a column

checks the front value of the column on its left in order not to move past it. Such an

action might result in some computation taking place before its data are ready and

produce false results. As the scheduler traverses all the running tiles, it eventually will

notice that the fifth column increases the value at its right by one and this signifies

that in the next cycle the sixth column can be activated as well.

77

Figure 5.23. A Random State of the Dependency Array with the Executing Tiles.

5.3.3. Anti-dependences

 While, in single-dimensional loops, anti-dependences are simply treated by

utilizing a temporary array to copy the current one, when it comes to multi-

dimensional loops, C2κTC/SL uses a different transformation. Instead of creating a

copy array which might require large amounts of memory, it treats anti-dependences

as dependences. For example a dependence vector of D={(-1,0), (0,-1)} is a vector

that contains anti-dependences. In this case, C2κTC/SL without altering the code at

all, multiplies the vector with the number -1. The new vector becomes D’={(1,0),

(0,1)} which is a vector with dependences. When this happens it is a simple matter of

employing the Self-Adaptive algorithm to deal with the problem.

 This method solves the anti-dependence problem without sacrificing more

memory and at the same time with some amount of parallelism exploited (although

not full parallelism as would be the original case). This solution incorporates

dependences and anti-dependences into one problem. An example loop which carries

both types of dependences is one with a dependence vector of D={(1,0), (0,1), (-1,0),

(0,-1)}. By switching the signs of the anti-dependences the new vector becomes

D’={(1,0), (0,1), (1,0), (0,1)} which after simplification (since the same dependences

appear more than once) ends up as D’={(1,0), (0,1)}. That way, the same Self-

Adaptive algorithm that would have to be employed in the first place takes care of the

anti-dependence problem as well in a parallel manner. More information on the Self-

Adaptive Algorithm can be found in [1] from the Author’s Publications.

78

5.4. From C to SL

 Due to a series of software engineering related choices (affected by time

constraints), C2κTC/SL works on a subset of the C language. In particular, the

compiler only allows and attempts to parallelize the main function on an application's

source file. Any other functions can be declared and implemented in other external

files. The final executable can be produced by compiling all of the files together.

 Since C2κTC/SL does not try to perform any sort of inter-procedural analysis,

that is not a problem by itself. In addition, the existence of any jump statement (like

goto or continue / break) is not supported. Jumps disrupt the natural flow of the code

and can give the impression of a loop to the loop analysis component when jumping

back into the code. Similarly, break and continue can also cause flow control

problems hence they too are unsupported. Additionally, global variables are not

supported; all should be declared inside main. Appendix B illustrates the subset of the

C grammar (in BNF form) that is formally supported by C2κTC/SL. Unsupported

programs do go through but the output of the compiler cannot be predicted and is at

best random and chaotic and may even fail to compile.

 Regardless of the source code being properly supported or not, the actual

transformation is a two-part process: (i) Phase one entails parsing and analyzing the

original source code and its loops. If everything goes well, an equivalent to the source

code is produced but in a different, intermediate representation (IR). The IR contains

the entire source code, broken down in basic blocks, with partially simplified

expressions and where flow of code is only directed with gotos. Phase One is

performed by an external compiler tool, called CoSy [76]. (ii) Phase Two is using the

output of phase one (IR, loop analysis) as input to produce the final result. The code

from the IR is reverse-transformed back into C-type code while knowledge of all the

loops (index variables, boundaries, step values, basic blocks included in the loop) is

used for loop analysis. That kind of analysis however first needs the loops to be

organized into single units and to be examined as such units. These units form the

basis of C2κTC/SL's functionality as they are the fundamental blocks that get

analyzed and transformed (depending on the analysis). These loop groups are called

Masterloops.

79

5.4.1. The Masterloops

 A masterloop is nothing more than a perfect nesting of loops. It contains, in its

loop body, statements as well as more masterloops. All analyses and transformations

take place on a per masterloop basis and they are all independent from one another.

Figure 5.24 demonstrates a code snippet where everything belongs to one masterloop,

masterloop 1, which is comprised of loops i and j and contains a single statement as

its body.

Figure 5.24. A Perfect Loop Construct Which Comprises a Single Masterloop.

 Figure 5.25 displays the classic matrix multiplication code that has been used

before. Loops i and j are perfectly nested and behave as a single structure while loop k

is independent from the previous ones and performs its own calculations. If loop k

was missing, then the original nesting would still make sense: For each iteration (i, j)

the variable sum would take the value of 0 and each element of C[i][j] would take the

value of sum. Following this logic, C2κTC/SL separates that code into two

masterloops: Masterloop 1 is created by loops i and j, and its loop body contains the

statement “sum=0”, another masterloop and the statement “C[i][j]=sum”. Masterloop

2 is comprised only of loop k and its body is the same as the loop body of k. Each

masterloop is analyzed independently. In the end, once all transformations are done

and each piece of the final code comes into place the result will be a proper

transformed parallel matrix multiplication code.

Figure 5.25. A Typical Matrix Multiplication Code which Contains Two Masterloops.

for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 A[i][j]=0;

for (i=0; i<n; i++)

 for (j=0; j<n; j++)

 {

 sum=0;

 for (k=0; k<n; k++)

 sum=sum+A[i][k]*B[k][j];

 C[i][j]=sum;

 }

80

5.4.2. Dependence Analysis in a Masterloop

 Each Masterloop is analyzed for the existence of loop carried dependences.

This takes place as a two-fold process. Firstly scalar variables are examined. Those

who carry data from one loop iteration to the next signify dependence and hence those

variables will become shared ones in the transformed code. Detecting these kinds of

variables is relatively trivial and straightforward: Each variable inside the loop body is

examined. If during an iteration that variable is read before it is written then it has to

become a shared one, otherwise it is a temporary variable only viable for the current

iteration and thusly does not impose any particular ordering in the loop. Moreover, for

each variable under examination, the source code is further analyzed. If the current

variable is accessed (for reading) again at some later point in the code then this means

that this variable is carrying the result of some computation and should, again, be

marked as a shared one. The difference is slight and can only appear in certain

situations. Consider the code in Figure 5.26. It calculates the nth Fibonacci number.

Figure 5.26. A Loop that Calculates the nth Fibonacci Number (n > 2, a and b are

Initialized to 0 and 1 Respectively, c Carries the End Result).

 When transforming this code, the variable C is first written and then read. This

means that the compiler can detect it as a thread local one. Only by accessing c after

the end of the loop (e.g. by printing it) can the compiler see that its value is needed

and thusly mark it as shared so that it can be accessed after syncing.

 The second part of the process deals with arrays and their subscripts.

C2κTC/SL looks for expressions in the form of array[index] =array[index ± constant].

Through expressions like that it is able to deduce the various dependences that may

exist and so build the dependence vector. Any other form of expression when it comes

to array access is currently not recognized and the loop is marked as one not to be

transformed. If no shared scalar variable is found or no array access that will result in

for (i = 2; i < n; i++)
{
 c = a + b;
 a = b;
 b = c;
}

81

a wavefront solution and if the current masterloop is not marked to be left

untransformed then it is assumed that it can be executed fully in parallel.

5.4.3. Transformation of a Masterloop

 During code transformation, each statement is copied into the output until a

Masterloop is met. At that point, the transformed Masterloop takes the place of the

original in the code and this continues until the end of the program. Each masterloop

is transformed according to the results of the analysis that transpired in the previous

step:

 (i) If no dependences are located and the loop is not marked to remain

untransformed then it is converted into a fully parallel construct. Each loop in the

masterloop, from the innermost to the outermost, is first implemented as a thread

function and then its corresponding invocation (through a pair of sl_create / sl_sync

calls) is added in the appropriate place in the code. There are some compiler options

that can dictate which of the outermost loops will be forced to run sequentially in the

case of a deep nesting. In such a case, by having all loops run in parallel, the SVP will

soon run out of resources and revert back into a sequential mode. In this situation it is

prudent to have the outermost loops run sequentially in order to exploit more

parallelism in the lower levels of the hierarchy.

 (ii) If one (or more) shared variables have been detected then in a similar

manner to the previous method, each loop is implemented and invoked, only this time

the arguments of the sl_create method incorporate some shared variables, whose

values are read right after the sl_sync (through the use of sl_geta).

 (iii) If a dependence vector was detected, then the loop is transformed

radically and the self-adaptive algorithm takes its place.

 (iv) Finally if neither of the previous options applied to the particular

masterloop, then it is copied in its entirety into the output without any transformation.

 Returning to the matrix multiplication example described in Figure 5.25,

C2κTC/SL makes the following deductions: The first Masterloop can be run

completely in parallel since the variable “sum” is initialized in its iteration and the

statement “C[i][j]=sum;” relies only on that variable which will have a place in the

thread local storage. The second Masterloop cannot be fully parallelized. “sum” is

82

first read and then written in each iteration, thusly it is marked as a shared variable.

Putting these deductions together results in the code illustrated by Figure 5.28.

Several things are worth noting about the code in that Figure:

 1) In order for the SL macro definitions to work properly all variable types

must be simplified. That is, each variable can have a name and optionally a '*' symbol

indicating a pointer to that type of variable. Multidimensional arrays cannot simply be

used on the macro definitions, hence types are defined (using C's typedef) which are

essentially some array of a basic type. Those new typedefs can then be easily pass

through the macro definitions. In that particular example, the arrays are considered of

size [10][x].

 2) Each create / sync is encompassed in a block of code (denoted by the { and

} symbols). This is needed as some SVP macros declared during the creation /

syncing might interfere with variables of the actual code. By having the whole process

in its own block helps to easily avert confusing the compiler and producing error

messages, interrupting the process altogether.

 3) There is no parallel calculation of the partial sums a[i][k]*b[k][j] in that

code. This happens due to the fact that C2κTC/SL pushes the reading of the shared

variable down in the code, just before the statement that needs it.

 However in this case the statement is calculating the partial sum and updating

sum in one statement and C2κTC/SL currently lacks the capability to break the

statement in order to interject the sl_getp statement (such a mechanism is to be

implemented at a later stage). In order for this code to work as intended, loop k’s body

should be like the one displayed in Figure 5.27 which also illustrates how the

resulting code would change.

5.4.4. Code Generation

 The final step in the code transformation is the actual code generation. Initially

all the typedefs are listed, followed by thread definitions for each masterloop that can

be transformed, in such an order that any thread definition always precedes that

thread's invocation. Each thread definition is designed to be self contained. All related

variables are passed as arguments and initialized at the beginning of the thread code

via the sl_getp() directive. The code body itself is the code of the masterloop. All

83

basic blocks are listed in the same order they appear in the original IR, so as not to

change the functionality of the code in question. Each basic block before code

emission is examined for ownership (masterloop basis). If it belongs in another

masterloop that means that instead of listing that code, invocation for that masterloop

is created instead in its place (assuming always that the masterloop can be

transformed). Invocations vary according to the type of transformation incurred on the

masterloop. After the sync, all shared variables related to that masterloop retrieve

their values (via the sl_geta() directive) and the code listing continues. When all the

masterloop's code has been emitted, all shared variables are written back to their

respective shared channels (sl_setp()) and the thread definition is finalised with the

sl_enddef keyword.

 Once all threads have been defined, the main thread is defined. All variables

are declared inside of the definition as local and then code generation begins in

exactly the same manner as before. Basic blocks are listed in turn until one is found

that belongs to a transformable masterloop (masterloops who were deemed

untransformable do not exist in the masterloop list so they just get emitted verbatim).

In this case the necessary invocation is placed and the code continues with the next

available basic block that does not belong to any loop.

 Thread invocation code can vary depending on the kind of transformation

applied to a masterloop and can range from simple invocations (a simple fully parallel

loop for example) to the most complicated ones (a nested loop with a dependence

vector where the Self-Adaptive algorithm is employed). There exists a templated code

for each transformation case that gets emitted every time with certain variables taking

code-specific values to ensure proper code execution.

 A

Figure 5.27. The Necessary Change in the Original Matrix Multiplication Code

Needed for the Partial sums to be Calculated in Parallel.

…

for (k=0; k<n; k++)

{

 int tmp=a[i][k]*b[k][j];

 sum=sum+tmp;

}

…

…

int tmp=a[i][k]*b[k][j];

int sum=sl_getp(_sum);

sum=sum+tmp;

sl_step(_sum, sum);
…

84

Figure 5.28. The parallel result of the code in Figure 5.25.

typedef int a10[10];
sl_def(masterloop_2_k, void, sl_glparm(a10 *, _a), sl_glparm(a10 *, _b), sl_shparm(int,
_sum), sl_glparm(int, _i), sl_glparm(int, _j))
{
 sl_index(k);
 int i=sl_getp(_i);
 int j=sl_getp(_j);
 a10 *a=sl_getp(_a);
 a10 *b=sl_getp(_b);

 int sum=sl_getp(_sum);
 sum=sum+a[i][k]*b[k][j];
 sl_setp(_sum,sum);
}
sl_enddef

sl_def(masterloop_1_j, void, sl_glparm(a10 *, _a), sl_glparm(a10 *, _b), sl_glparm(a10*, _c),
sl_glparm(int, _i))
{
 sl_index(j);
 int i=sl_getp(_i);
 a10* a=sl_getp(_a);
 a10* b=sl_getp(_b);
 a10* c=sl_getp(_c);
 int sum=0;
 {
 sl_create(,,0,n,1,,,masterloop_2_k, sl_glarg(a10*, _a, a), sl_glarg(a10*, _b,
b), sl_sharg(int, _sum, sum), sl_glarg(int, _i, i), sl_glarg(int, _j, j);
 sl_sync();
 sum=sl_geta(_sum);
 }
 c[i][j]=sum;
}
sl_enddef

sl_def(masterloop_1_i, void, sl_glparm(a10 *, _a), sl_glparm(a10 *, _b), sl_glparm(a10 *,
_c))
{
 sl_index(i);
 a10* a=sl_getp(_a);
 a10* b=sl_getp(_b);
 a10* c=sl_getp(_c);

 {
 sl_create(,,0,n,1,,,masterloop_1_j, sl_glarg(a10 *, _a, a), sl_glarg(a10 *, _b,
b), sl_glarg(a10 *, _c, c), sl_glarg(int, _i, i));
 sl_sync();
 }
}
sl_enddef

{
 sl_create(,,0,n,1,,,masterloop_1_i, sl_glarg(a10 *, _a, a), sl_glarg(a10 *, _b, b),
sl_glarg(a10 *, _c, c));
 sl_sync();
}

85

 Special mention goes to while loops. They are treated as for loops, however

there is one difference. The invocation code is wrapped inside a while loop. This way

there is actual loop transformation but each create takes a predefined number of

threads as an argument. The guard condition of the while loop is emitted at the

beginning of the thread code so that once it stops being valid, the thread invokes

sl_break and code execution resumes back in the invocation part. In order for the

invoker to know that the while loop issued a break, a certain boolean variable exists

which is associated with that particular masterloop that is set to TRUE when the break

is called. This tells the invoker code to stop its own while loop via C's break and

continue execution after that. As an example let's consider the code of Figure 5.29.

Figure 5.29. Original code that performs bubble sort.

 Figure 5.30 demonstrates the loop transformation. The innermost loop is

properly transformed into a sequentially executed loop (the shared variable f makes

sure of that) where each element of the array is checked with its subsequent and swap

places if necessary. The interest lies with the umloop_2 loop. Firstly it's made

sequential with the introduction of the shared variable _serialize since the analyzer

was unable to detect if it can be run in parallel or not. the if (TRUE) statement is the

transformation of the while(1) from the original code. If it was any other expression it

would have been copied as well. Every time a break statement is introduced in the

original code, an sl_break one is emitted in the result, with the addition that the array

int main(void)
{
 int a[10],i,f,c;

 while(1)
 {
 f=0;
 for (i=0;i<9;i++)
 if (a[i]>a[i+1])
 {
 c=a[i];
 a[i]=a[i+1];
 a[i+1]=c;
 f=1;
 }

 if (f==0) break;
 }

 return (0);
}

86

_result[#interal_loop_number (2 in this example)] becomes 1 to signify that the loop

has finished execution.

Figure 5.30. The entire transformation (including invokation at the bottom) of the

bubble sort while-loop of Figure 5.29.

sl_def(mloop_1_inner,void,sl_glparm(int4*,_a),sl_glparm(int4,_c),sl_shparm(int4,_f))
{
 sl_index(i);
 int4* a = sl_getp(_a);
 int4 c = sl_getp(_c);
 int4 f = sl_getp(_f);

 if (a[i] > a[(i+1)]) goto bb9; else goto bb10;
bb9:;
 c = a[i] ;
 a[i] = a[(i+1)] ;
 a[i+1] = c ;
 f = 1 ;
bb10:;
bb11:;
 sl_setp(_f, f);
}
sl_enddef

sl_def(umloop_2,void,sl_glparm(int4,_f),sl_glparm(int4,_i),sl_glparm(int4*,_a),sl_gl
parm(int4,_c),sl_shparm(int,_serialize))
{
 int4 f = sl_getp(_f);
 int4 i = sl_getp(_i);
 int4* a = sl_getp(_a);
 int4 c = sl_getp(_c);
 int serialize= sl_getp(_serialize);

 if (TRUE) ; else {_result[2]=1;sl_break();};

 f = 0 ;
 i = 0 ;

 {
 sl_create(,,0,9,1,,,mloop_1_inner,sl_glarg(int4*,_a,a),sl_glarg(int4
,_c,c),sl_sharg(int4,_f,f));
 sl_sync();

 f = sl_geta(_f);
 }

 if (f == 0) {_result[2]=1;sl_break();} else goto bb14 ;

bb14:;
bb15:;
 sl_setp(_serialize, serialize+1);
}
sl_enddef

while(1)
{
 {

sl_create(,,0,_MAX_THREADS,1,,,umloop_2,sl_glarg(int4,_f,f),sl_glarg(int4,_i,i),sl_g
larg(int4*,_a,a),sl_glarg(int4,_c,c),sl_sharg(int,_serialize,0));
 sl_sync();
 }

 if (_result[2]==1) break;
}

87

 Finally in the invocation, we can see that a while(1) is emitted that runs the

loop sequentially for MAX_THREADS number of iterations and then the _result[2] is

checked. If it has the value of 1 then the loop is considered to have finished and contol

breaks out of the while.

88

CHAPTER 6. EVALUATION OF THE C2μTC/SL

COMPILER

Introduction

Single-Dimensional Loops

Multi-Dimensional Loops

Livermore Loops

6.1. Introduction

 Evaluating C2κTC/SL is a more complex process than just simply running and

timing the transformed programs. Since its output is the SL language, the only way to

execute the parallel applications is to utilize the SVP pipeline. This effectively means

running the simulator system bundled with the SL compiler. However, moving into a

simulated environment means that a simple timing methodology would not provide

any meaningful results.

 Selecting the metric we’d use for the evaluation meat turning to the simulator

itself. Once the program runs, its internal Master CPU cycles counter starts counting

from 0. Then the simulator sets up a series the whole execution environment and once

everything is complete then the SL application starts executing. The Master CPU

cycles counts the number of parallel cycles all cores executed. It can be used to

determine the number of cycles (throughout all the cores) that were needed for any

program to execute. A faster running application needs fewer cycles. “CPU cycles” is

a constant metric unaffected by the host’s CPU clock or anything else and is directly

proportionate to the overall speed of an application. It also allows for percentile

comparisons to take place between different applications.

89

 For any program to be measured and compared, this would effectively mean

that the program would have to be compiled and executed inside the SVP simulator

environment even if that meant rewriting portions of the original code into SL form.

All measurements presented in this chapter were obtained by simulating an

environment of 8 cores (unless stated otherwise) and all results, as stated above, are in

CPU cycles and the measurements were taken from the actual computation part of

each program ignoring system and program and system initializations. SL offers two

macros that can be inserted between two places in a code. The output of the simulator

then can display the number of master cpu cycles that were spent inside that piece of

code. We marked only the part of code that performs the actual computation. Using

the master cpu cycles we could measure speedups gained with this formula:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠

𝑆𝐿 𝐶𝑦𝑐𝑙𝑒𝑠

 Essentially, an SL code that completes in half the time of the original

sequential version will have a Speedup of 2 while codes that are slower than the

original version will have speedups less than 1. In a manner similar to Chapter 5,

evaluation is split into two general categories: Single-Dimensional loops and Multi-

Dimensional loops. A well-known benchmark suite was also used to test the

C2κTC/SL’s general parallelizing abilities, the Livermore Loops.

6.2. Single-Dimensional Loops

 The first and simplest example measured was that of a single dimensional for

loop with no loop carried dependencies. The loop body consisted only of the

statement “A[i]=i+1;”. Table 6.1 demonstrates the results of measuring the two codes

(sequential and parallel) and the speedup achieved, while Figure 6.1 illustrates these

results graphically. It is clear that the transformed parallel code is much faster than a

pure untransformed loop (as was anticipated).

90

Table 6.1. The Results of the Execution Times (in Cycles) of a Simple Sequential and

Parallel Application.

Problem Size (N) Sequential For Fully Parallel SL Speedup

100 9120 3616 2,522

200 16808 4348 3,866

300 23408 5068 4,619

400 31160 6380 4,884

500 37888 6812 5,562

600 44972 7304 6,157

700 52204 8288 6,299

800 59400 9184 6,468

900 66656 9692 6,877

1000 73852 11060 6,677

Figure 6.1. Comparing the Data of Sequential and Parallel Code in Graph Form.

 A small variation was also implemented (manually): The SL parallel code was

changed into a fully sequential one (This was achieved by adding a shared channel

that transferred dummy data between threads and kept the sequential ordering. The

entire thread body was turned into a critical section). The aim of that change was to

test the SVP model and how it fares when a fully sequential loop running without

using any of the amenities provided by the system against a classic for-loop. Table 6.2

displays the results while Figure 6.2 visualizes the data.

0

20000

40000

60000

80000

100 200 300 400 500 600 700 800 900 1000

M
a

st
er

 C
P

U
 C

y
cl

es

Problem Size

Sequential For Fully Parallel SL

91

Table 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads

Running the Same Code.

Problem Size For Loop Sequential SL Speedup

100 9120 9016 1,012

200 16808 16012 1,050

300 23408 22048 1,062

400 31160 29000 1,074

500 37888 35016 1,082

600 44972 41512 1,083

700 52204 47844 1,091

800 59400 54644 1,087

900 66656 60912 1,094

1000 73852 67744 1,090

Figure 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads.

 There is an increase in speedup stems from two factors: (i) hardware

controlled iterations: there is no actual software increment of the index variable or test

to see if it exceeds its bounds and (ii) minimal synchronization overhead. This

example makes it clear that even if a loop cannot be transformed in any meaningful

way, (either by taking advantage the shared memory system or by exposing some

hidden parallelism) re-writing it into SL form will offer a small increase in the overall

speed of the program.

0

10000

20000

30000

40000

50000

60000

70000

80000

100 200 300 400 500 600 700 800 900 1000

M
a

st
er

 C
P

U
 C

y
cl

es

Problem Size

For Loop Sequential SL

92

 The next category of problems contains loops with a single dependency.

Dependency of length 1 is examined firstly (Figure 6.3). The comparison data is

displayed on Table 6.3 and its visualization is given on Figure 6.4. Even if the

simulator setup contains 8 cores, such an example will be constrained in one core both

in its original version and its transformed one and so the expected speedup should not

be around 8.

 There is only one data chain hence there can be no parallelism in its execution.

However there can be instruction level parallelism by exploiting SVP’s high memory

latency tolerance: Memory related operations can be overlapped with other

instructions and thusly speedups higher than 1 can appear. In addition to memory

tolerance, by utilizing the synchronizing channel as a data carrier, each thread can do

away with looking up the global memory for information, an action that also increases

efficiency by a remarkable degree.

Figure 6.3. Loop with a Single Dependency of Length 1.

Table 6.3. Comparison Between the Sequential for and the Transformed SL Code.

Problem Size (N) Sequential For SL code Speedup

100 10920 8552 1,277

200 20360 14932 1,364

300 28380 19356 1,466

400 37760 25292 1,493

500 45800 29668 1,544

600 54540 34912 1,562

700 63196 39644 1,594

800 72016 45096 1,597

900 80588 49952 1,613

1000 89548 55252 1,621

for (i=1; i<n; i++)

 a[i]=a[i-1]+1;

93

Figure 6.4. Comparing Sequential and SL Codes With a Dependency of Length=1.

 The problem of a single dependency of length 2 was subsequently

transformed, executed and evaluated. This time the existence of 2 independent data

chains means that 2 cores would be utilized. Figure 6.5 illustrates the original code,

Table 6.4 contains the results of the executions and Figure 6.6 visualizes that data.

Figure 6.5. A Loop with a Dependency of Length 2.

Table 6.4. Results of the Transformed Loop with a Dependency of Length 2.

Problem Size Original Loop SL code Speedup

100 10836 7604 1,425

200 20116 11372 1,769

300 28140 16092 1,749

400 37432 20792 1,800

500 45476 25200 1,805

600 54048 29552 1,829

700 62616 32948 1,900

800 71364 37740 1,891

900 80004 41572 1,924

1000 88808 45960 1,932

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 200 300 400 500 600 700 800 900 1000

M
a
st

er
 C

P
U

 C
y
cl

es

Problem Size

Sequential For SL code

for (i=2; i<n; i++)

 a[i]=a[i-2]+1;

94

Figure 6.6. Comparing Sequential and SL Codes with a Dependency of Length=2.

 In a similar manner, the problem of a single dependency but of length 5 was

transformed and evaluated (5 cores utilized). Figure 6.7. illustrates the original source

code while Table 6.5 and Figure 6.8 display the resulting data.

Figure 6.7. A Loop With a Single Dependency of Length 5.

Table 6.5. Results of the Transformed Loop with a Dependency of Length 5.

Problem Size Original Loop SL code Speedup

100 9960 7252 1,373

200 18748 10540 1,779

300 26228 14472 1,812

400 35116 17632 1,992

500 42724 21444 1,992

600 50800 25264 2,011

700 59016 28384 2,079

800 67244 32400 2,075

900 75484 35780 2,110

1000 83680 39312 2,129

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 200 300 400 500 600 700 800 900 1000

M
as

te
r

C
P

U
 C

yc
le

s

Problem Size

Original Loop SL code

for (i=5; i<n; i++)

 a[i]=a[i-5]+1;

95

Figure 6.8. Comparing Sequential and SL Codes with a Dependency of Length=5.

 For a problem size of N=1000, a dependency of length 2 (which produces 2

parallel data-chains running) offers a speedup of about 1,9 while a dependency of

length 5 (which creates 5 parallel data chains) offers a speedup of about 2,13. This

means that the increase in efficiency is not proportional to the increase of the number

of parallel chains in existence. This result deviates from the expected speedup of 2 for

a dependency of length 2 and 5 from one of length 5. This deviation can be attributed

to the overhead introduced by SVP’s housekeeping: 5 parallel chains require more

time spent context switching and a lot more resources since each chain also creates

one synchronizing channel. If the SVP runs out of resources then it gracefully reverts

back into a sequential execution mode in order to serve the rest of the requests.

Adding to the overall overhead is the fact that more families equal to more

communication between parent and descendant threads.

 Loops with multiple dependences were examined next. The general form is the

one illustrated in Figure 6.9. We tested loops with 2, 3, 4, and 5 multiple dependences

and the results are shown in Tables 6.6 to 6.9 respectively and visualized in Figures

6.10 to 6.13. It is becoming apparent that the more shared variables (channels) are

involved in the process, the slower the execution becomes.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100 200 300 400 500 600 700 800 900 1000

M
as

te
r

C
P

U
 C

yc
le

s

Problem Size

Original Loop SL code

96

 Finally, the anti-dependency example (Figure 6.14) is evaluated. Table 6.10

illustrates the results and Figure 6.15 the visualization of that data. Even though the

transformed code entails a two-step process, the fact that everything takes place in

parallel in an 8 core environment, with the help of cache utilization when it comes to

the second step of copying back, provides a very good speedup of about 4.45. The

only drawback is the allocation of extra space for a temporary array.

Figure 6.9. A General Form of a Loop with Multiple Dependences (2 to 5).

Table 6.6. Comparing Sequential and SL Codes with 2 Dependences.

Problem Size Original Loop SL code Speedup

100 11600 8912 1,302

200 21896 15660 1,398

300 30700 21100 1,455

400 40848 27980 1,460

500 49748 33452 1,487

600 59328 39760 1,492

700 68676 45560 1,507

800 78356 51884 1,510

900 87696 57760 1,518

1000 97512 64172 1,520

Figure 6.10. Comparing Sequential and SL Codes with 2 Dependences.

0

20000

40000

60000

80000

100000

100 200 300 400 500 600 700 800 900 1000

M
as

te
r

C
P

U
 C

yc
le

s

Problem Size

Original Loop SL code

for (i=2, 3, 4, 5; i<n; i++)

 a[i]=a[i-1]+a[i-2](+a[i-3](+a[i-4](+a[i-5])));

97

Table 6.7. Comparing Sequential and SL Codes with 3 Dependences

Problem Size Original Loop SL code Speedup

100 12036 9524 1,264

200 22744 15552 1,462

300 32088 22436 1,430

400 42632 28928 1,474

500 52068 35932 1,449

600 61996 43040 1,440

700 71896 49176 1,462

800 81960 56180 1,459

900 91848 62676 1,465

1000 102076 69124 1,477

Table 6.8. Comparing Sequential and SL Codes with 4 Dependences.

Problem Size Original Code SL code Speedup

100 11936 9224 1,294

200 23140 16468 1,405

300 32408 24152 1,342

400 43508 31112 1,398

500 52904 38648 1,369

600 63232 45292 1,396

700 73516 52832 1,392

800 83676 59704 1,402

900 93824 67124 1,398

1000 104472 74844 1,396

Table 6.9. Comparing Sequential and SL Codes with 5 Dependences.

Problem Size Original Code SL code Speedup

100 13172 14680 0,897

200 23612 23824 0,991

300 34992 33936 1,031

400 45816 43276 1,059

500 57056 53296 1,071

600 68884 63612 1,083

700 79284 72556 1,093

800 90960 83052 1,095

900 101500 92020 1,103

1000 112732 102152 1,104

98

Figure 6.11. Comparing Sequential and SL Codes with 3 Dependences.

Figure 6.12. Comparing Sequential and SL Codes with 4 Dependences.

Figure 6.13. Comparing Sequential and SL Codes with 5 Dependences.

Figure 6.14. A Typical Anti-Dependence Example.

0
20000
40000
60000
80000

100000
120000

M
as

te
r

C
P

U
 C

yc
le

s

Problem Size

Original Loop

SL code

0

20000

40000

60000

80000

100000

120000

M
a
st

er
 C

P
U

 C
y

cl
es

Problem Size

Original Code

SL code

0
20000

40000
60000

80000
100000
120000

100 200 300 400 500 600 700 800 900 1000

M
a

st
er

 C
P

U
 C

y
cl

es

Problem Size

Original Code

SL code

for (i=0;i<n-1;i++)

a[i]=a[i+1];

99

Table 6.10. Comparing Sequential and SL Codes with an Anti-Dependence.

Problem Size Original Loop SL code Speedup

100 11636 6420 1,812

200 21860 8036 2,720

300 30596 8992 3,403

400 40680 10756 3,782

500 49516 12336 4,014

600 59028 14592 4,045

700 68384 15572 4,391

800 77928 17192 4,533

900 87276 19348 4,511

1000 97020 21812 4,448

Figure 6.15. Comparing Sequential and SL Codes with an Anti-dependence.

6.3. Multi-Dimensional Loops

 Evaluating Multi-Dimensional Loops (i.e. loop nestings) is a process which is

further sub-categorized into two general cases: (i) Loops with no dependences and (ii)

Loops with a dependence vector. These two sub-categories are treated completely

differently by C2κTC/SL. The former is automatically translated as-is into a nesting

of fully parallel families and relies on SVP to provide most of the efficiency-

improving mechanisms. The latter is transformed into a self-adaptive algorithm trying

to apply the dependence vector on the index space in order to discover the underlying

hyperplane.

0

50000

100000

100 200 300 400 500 600 700 800 900 1000

M
a

st
e

C
P

U
 C

y
cl

es

Problem Size

Original Loop SL code

100

6.3.1. No Dependences

 In this sub-category, three real life applications were evaluated: (i) Conway’s

Game of Life, (ii) 2-Dimensional Matrix Multiplication and (iii) computation of the

Mandelbrot Fractal. The overall evaluation of the data gained from these three

examples will be presented at the end of this sub-chapter.

 A single pass of Conway’s Game of Life [77] was implemented, transformed

and evaluated. Tables 6.11 and 6.12 present the results of this simulation in CPU

cycles while tables 6.13 and 6.14 do so in terms of speedup achieved. In both

situations the size of the board is given as the length of one of its sizes (for every N,

the board is a NxN array). Figures 6.16 and 6.17 visualize the data.

Table 6.11. The Results of the Game of Life in Absolute CPU Cycles.

Board

Size

Original

Code

SL code

(1 core)

SL code

(2 cores)

SL code

(4 cores)

10 166488 93564 50152 32308

20 660108 366084 182004 94924

30 1467900 825020 426492 245984

40 2639280 1538716 744372 392088

50 4076948 2431700 1185480 726584

60 5872288 3465252 1668440 836252

70 7993908 4733720 2354340 1362200

80 10566976 6268056 3083648 1552796

90 12669380 7625316 3823188 2079436

100 16319956 9496204 4711040 2377932

Table 6.12. Continuation of the Results in Table 6.11.

Board

Size

Original

Code

SL code

(8 cores)

SL code

(16 cores)

SL code

(32 cores)

SL code

(64 cores)

10 166488 24820 17272 18636 21264

20 660108 61544 45460 30660 33200

30 1467900 152880 108776 89936 91524

40 2639280 300084 184092 163256 116716

50 4076948 498760 278788 192824 142540

60 5872288 581140 312780 222092 166564

70 7993908 797616 504940 339972 259640

80 10566976 990736 573208 400620 289568

90 12669380 1235200 686572 428492 319044

100 16319956 1472436 837760 564340 350828

101

Table 6.13. Speedups for the Game of Life Derived from Table 6.11.

Board

Size

Speedup

(1 core)

Speedup

(2 cores)

Speedup

(4 cores)

10 1,779 3,320 5,153

20 1,803 3,627 6,954

30 1,779 3,442 5,967

40 1,715 3,546 6,731

50 1,677 3,439 5,611

60 1,695 3,520 7,022

70 1,689 3,395 5,868

80 1,686 3,427 6,805

90 1,661 3,314 6,093

100 1,719 3,464 6,863

Table 6.14. Speedups Derived from Table 6.12.

Board

Size

Speedup

(8 cores)

Speedup

(16 cores)

Speedup

(32 cores)

Speedup

(64 cores)

10 6,708 9,639 8,934 7,830

20 10,726 14,521 21,530 19,883

30 9,602 13,495 16,322 16,038

40 8,795 14,337 16,167 22,613

50 8,174 14,624 21,143 28,602

60 10,105 18,774 26,441 35,255

70 10,022 15,831 23,513 30,788

80 10,666 18,435 26,377 36,492

90 10,257 18,453 29,567 39,710

100 11,084 19,480 28,919 46,518

Figure 6.16. Comparing the Sequential and SL Codes for the Game of Life (Cycles).

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

10 20 30 40 50 60 70 80 90 100

M
a

st
er

 C
P

U
 C

y
cl

es

Problem Size (N x N)

Original Code

SL code (1 core)

SL code (2 cores)

SL code (4 cores)

SL code (8 cores)

SL code (16 cores)

SL code (32 cores)

SL code (64 cores)

102

Figure 6.17. Comparing the Sequential and SL Codes for the Game of Life (Speedup).

 There are plenty of algorithms which compute a variety of fractals. The

Mandelbrot set is one of the most well known. For each pixel inside an area, its color

is computed based on whether a repeating complex number remains bounded or not.

A small variation of the one displayed in [78] was implemented, transformed and

evaluated. Tables 6.15 and 6.16 present the results in absolute CPU cycles while

Tables 6.17 and 6.18 present the relative speedups as a percentage. Figures 6.18 and

6.19 illustrate the corresponding visualization of the data.

Table 6.15. The Resulting Data of the Mandelbrot Calculation (1 to 4 cores).

Problem

Size

Original

Code

SL code

(1 core)

SL code

(2 cores)

SL code

(4 cores)

10 16821836 6767880 3295252 3089844

20 67276200 26932780 12882604 7223820

30 151365640 69262156 34191264 22343312

40 269089788 131208400 65962844 37225076

50 420448960 210622756 105590812 64502364

60 605442832 303288432 159472340 75819036

70 824071716 412803456 213093056 119519364

80 1076336380 539117484 279323540 139472836

90 1362235208 682315352 351445964 218051464

100 1681769536 842362200 423456808 235388732

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

10 20 30 40 50 60 70 80 90 100

Sp
e

e
d

u
p

 A
ch

ie
ve

d

Problem Size (N x N)

1 core

2 cores

4 cores

8 cores

16 cores

32 cores

64 cores

103

Table 6.16. The Resulting Data of the Mandelbrot Calculation (8 to 64 cores).

Problem

Size

Original

Code
SL code

(8 cores)

SL code

(16 cores)

SL code

(32 cores)

SL code

(64 cores)

10 16821836 2408284 2087464 2028192 2029608

20 67276200 4415792 2973392 1811400 1812764

30 151365640 14963196 11754664 10099072 10100592

40 269089788 22437260 19189784 19280972 13016172

50 420448960 39762104 21276524 21051632 19188528

60 605442832 47393724 27150204 24645572 23621364

70 824071716 69015716 37675340 24850712 22800804

80 1076336380 80823444 41800372 29247892 29238572

90 1362235208 108647180 54736592 28935624 37195796

100 1681769536 127280356 69986580 40990652 34929436

Table 6.17. Corresponding Speedups of the Mandelbrot calculation.

Problem

Size

Speedup

(1 core)

Speedup

(2 cores)

Speedup

(4 cores)

10 2,486 5,105 5,444

20 2,498 5,222 9,313

30 2,185 4,427 6,775

40 2,051 4,079 7,229

50 1,996 3,982 6,518

60 1,996 3,797 7,985

70 1,996 3,867 6,895

80 1,996 3,853 7,717

90 1,996 3,876 6,247

100 1,996 3,972 7,145

Table 6.18. Corresponding Speedups of the Mandelbrot Calculation (cont.).

Problem

Size

Speedup

(8 cores)

Speedup

(16 cores)

Speedup

(32 cores)

Speedup

(64 cores)

10 6,985 8,059 8,294 8,288

20 15,235 22,626 37,140 37,112

30 10,116 12,877 14,988 14,986

40 11,993 14,023 13,956 20,673

50 10,574 19,761 19,972 21,911

60 12,775 22,300 24,566 25,631

70 11,940 21,873 33,161 36,142

80 13,317 25,749 36,800 36,812

90 12,538 24,887 47,078 36,623

100 13,213 24,030 41,028 48,148

104

Figure 6.18. The Resulting Data of the Mandelbrot Calculation (CPU cycles).

Figure 6.19.The Corresponding Speedups of the Mandelbrot Calculation.

 Finally, matrix multiplication was implemented and evaluated. Tables 6.19

and 6.20 illustrate the results in CPU cycles while Tables 6.21 and 6.22 feature the

speedups gained. Figures 6.20 and 6.21 visualize the results.

0

20000000

40000000

60000000

80000000

1E+09

1.2E+09

1.4E+09

1.6E+09

1.8E+09

10 20 30 40 50 60 70 80 90 100

M
as

te
r

C
P

U
 C

yc
le

s

Problem Size

Original Code

SL code (1 core)

SL code (2 cores)

SL code (4 cores)

SL code (8 cores)

SL code (16 cores)

SL code (32 cores)

SL code (64 cores)

0.000
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000

10 20 30 40 50 60 70 80 90 100

S
p

ee
d

u
p

 A
ch

ie
v

ed

Problem Size (N x N)

1 core 2 cores 4 cores 8 cores

16 cores 32 cores 64 cores

105

Table 6.19. CPU Cycles for the Sequential and Parallel Executions of Matrix

Multiplication.

Problem

Size

Original

Code

SL code

(1 core)

SL code

(2 cores)

SL code

(4 cores)

10 93960 63756 31784 30380

20 701324 329852 182024 98508

30 2393432 1413860 948320 616752

40 6084044 2871192 1918756 1520672

50 11734632 4779272 4293760 2936856

60 22983224 8535988 6758848 4722192

70 35755880 12419688 9468416 6822220

80 56068460 19500748 12543716 9817144

90 80046760 27364724 16010600 14203676

100 111533084 35371188 17714700 16862152

Table 6.20. Continuation of the Results from Table 6.19.

Problem

Size

Original

Code

SL code

(8 cores)

SL code

(16 cores)

SL code

(32 cores)

SL code

(64 cores)

10 93960 27096 24800 25392 26668

20 701324 60148 46604 35036 36152

30 2393432 382776 267008 164556 166160

40 6084044 1472944 745260 909824 763284

50 11734632 1654540 1682060 1535856 1286524

60 22983224 3135788 2452056 2620348 2181996

70 35755880 5108300 2850672 2997772 3358756

80 56068460 5781756 3957952 3732792 3488408

90 80046760 9946904 5046460 5418156 4042052

100 111533084 11741328 6581304 5167396 5848620

Table 6.21. Corresponding Speedups Gained from Parallel Matrix Multiplication.

Problem Size Speedup (1 core) Speedup (2 cores) Speedup (4 cores)

10 1,474 2,956 3,093

20 2,126 3,853 7,119

30 1,693 2,524 3,881

40 2,119 3,171 4,001

50 2,455 2,733 3,996

60 2,693 3,400 4,867

70 2,879 3,776 5,241

80 2,875 4,470 5,711

90 2,925 5,000 5,636

100 3,153 6,296 6,614

106

Table 6.22. Corresponding Speedups from Matrix Multiplication (cont.).

Problem

Size

Speedup

(8 cores)

Speedup

(16 cores)

Speedup

(32 cores)

Speedup

(64 cores)

10 3,468 3,789 3,700 3,523

20 11,660 15,049 20,017 19,399

30 6,253 8,964 14,545 14,404

40 4,131 8,164 6,687 7,971

50 7,092 6,976 7,640 9,121

60 7,329 9,373 8,771 10,533

70 7,000 12,543 11,927 10,646

80 9,697 14,166 15,021 16,073

90 8,047 15,862 14,774 19,803

100 9,499 16,947 21,584 19,070

Figure 6.20. Comparing Sequential and Parallel Matrix Multiplications (Cycles).

0

20000000

40000000

60000000

80000000

10000000

12000000

10 20 30 40 50 60 70 80 90 100

M
a

st
er

 C
P

U
 C

y
cl

es

Problem Size (N x N)

Original Code SL code (1 core) SL code (2 cores)

SL code (4 cores) SL code (8 cores) SL code (16 cores)

SL code (32 cores) SL code (64 cores)

107

Figure 6.21. Comparing Parallel Matrix Multiplications (Speedups).

 Finally we tested the Game of Life for various larger problem sizes but tiled

with various tile sizes (1,2,4,8,16,32,64 and 128). The idea behind this was to test

SVP’s throughput while being oversaturated and how applying the tiling method

helps alleviate it. Table 6.23 presents the results. Increasing the tile size certainly

reduces the overall cycles needed however this effect works until a point. After that

size the overall parallelism exposed becomes smaller due to the very large tile sizes.

 Table 6.23. MasterCPU Cycles for the Game of Life for Various Problem and

Tile Sizes.

Problem Size

1000 2000 3000 4000 5000

Tile

Size

1 183105732 728808580 1624787896 2924394636 4721679540

2 138375388 545503468 1205679672 2198231048 3674882208

4 129602680 522952608 1144788964 2078213420 3492057336

8 136373840 507765180 1102716796 2006374452 3275702220

16 159121700 560260192 1143944816 2069512704 3267163724

32 149057836 639955024 1275310076 2224032312 3426920124

64 116219276 594489528 1504648036 2544091388 3905988888

0.000

5.000

10.000

15.000

20.000

10 20 30 40 50 60 70 80 90 100

S
p

ee
d

u
p

 A
c
h

ie
v

ed

Problem Size (N x N)

1 core

2 cores

4 cores

8 cores

16 cores

32 cores

64 cores

108

There are several conclusions that can be reached by the data obtained from the three

aforementioned applications:

 (i) Even one SVP core can increase efficiency substantially in a fully parallel

program. This indicates the SVP’s ability to speed up a loop even in a sequential

environment (One core does not offer actual parallel execution). This ability is the

result of a combination of SVP’s characteristics: (a) High memory latency tolerance:

memory access instructions are overlapped with the rest of the operation in order to

eliminate idle time and (b) hardware control of thread iterations. There is no need for

the software to check and branch depending on the index value per iteration.

 (ii) The greater the number of cores in a system, the better the results.

However the system becomes oversaturated when there is an excessively high number

of cores in existence since much time is lost in communication overheads in the

memory network, especially when it comes to memory store instructions just prior to

synchronization. There are no other operations to overlap with these memory

instructions and so there is no latency tolerance to take advantage of. This effect can

be alleviated by tiling the index space and exposing parallelism on an inter-tile basis.

 (iii) The overall speedup increases with the problem size for any number of

cores in the system. Since the family creation overheads remain the same, increasing

the problem size results in those overheads offering less and less percentage in the

whole execution time. Reducing the overhead of family management in addition to

having more threads and hence greater memory latencies tolerance leads to improved

efficiency altogether.

6.3.2. The Run-Time Algorithm

 Perfectly nested loops with a dependence vector belong in this category. In

order to evaluate the efficiency of the Self-Adaptive algorithm employed by

C2κTC/SL, just the speed-up gained was not enough. There remained two questions:

(i) how close to the optimal result the Self-Adaptive method can get and (ii) How

does it fare compared to a compile-time method. The optimal goal is the highest

speedup that can be achieved by a tile-based run-time method utilizing a scheduler

thread. To answer these questions, the optimal result of the fixed-size algorithm was

calculated. The reasoning behind this choice is two-fold:

109

 (i) Generally it is trivial, albeit time consuming, to find the optimal result. The

algorithm is executed multiple times with varying tile sizes and the best result is

considered optimal. There are many local optima in such a case and that’s why it’s not

enough to just stop once the first peak is reached. Figure 6.22. demonstrates the

speedups gained by the fixed-size algorithm for a two-dimensional loop of size 4000

x 4000 with a dependence vector of D={(1,0), (0,1)}. This figure illustrates that even

though the speedups follow the trend line in the middle, they alternate above and

below that line constantly in a rather jaggy manner.

 (ii) The fixed-size algorithm bears a great resemblance to the Self-Adaptive

one, while being a bit simpler both conceptually and programmatically. Thusly it

serves as a target for the results that the Self-Adaptive algorithm can offer.

 Due to these two reasons, the target goal for the Self-Adaptive algorithm is

roughly the optimal result of the Fixed-Size algorithm, gained by repeated execution

of different tile sizes. That optimal result per problem size is subsequently compared

to a compile time algorithm. The method used is the skewed loop described in Figures

3.20 and 3.21.

Figure 6.22. Speedups gained for the problem of D={(1,0),(0,1)} with a grid size of

4000x4000 and various tile sizes. The dashed line indicates the inferred trend.

0

0.5

1

1.5

2

2.5

3

3.5

4

4
0

4
6

5
2

5
8

6
4

7
0

7
6

8
2

8
8

9
4

1
0

0

1
0

6

1
1

2

1
1

8

1
2

4

1
3

0

1
3

6

1
4

2

1
4
8

1
5

4

1
6

0

1
6

6

1
7

2

1
7

8

1
8

4

1
9

0

1
9

6

Family (Tile) Size

Speedup Per Tile Size for Problem Size of

N=4000

110

 The innermost loop in such a case can be fully parallelized. In order for the

comparison to be proper, the hyperplane method (compile-time) was implemented

manually in SL and was simulated over SVP. Comparison results are displayed in

Table 6.24 and visualized in Figure 6.23. Table 6.25 presents the different speedups

gained by the two different methods. Finally, Table 6.26 demonstrates the optimal tile

size picked per problem.

 It is worth noting that even though the Hyperplane method was implemented

in the finest of granularities possible (1 thread per iteration), it offers a speedup of

5,392 which is much higher than the 1,737 gained by the fixed size algorithm. This

difference, however, is alleviated as the problem size increases. Table 6.27 shows the

results obtained from executing the algorithms with a problem size of 4000x4000

(N=4000). At this size, the fine-grain hyperplane method becomes oversaturated and

its speedup is worse than the fixed-size method. Of course, as has already been

demonstrated the compile-time method can be improved by applying tiling on it.

However what kind of tile size to be used is unknown. Table 6.28 demonstrates the

speedup gained from the tiled version of the compile-time version of the hyperplane

for various tile sizes.

 It is clear that the compile-time method outperforms the self-adaptive run-time

algorithm by various degrees depending on the tile size. However choosing a proper

tile size is an impossible task since, as in the run-time method, too small or too large a

size has an adverse effect on the efficiency. In addition, the self-adaptive method

offers a series of other advantages: (i) the run time algorithm does away with the need

to solve any NP-Complete problem, (ii) it can work with index spaces of irregular

shapes (e.g. triangular spaces) and (iii) the size of the tile is not necessary to be

decided before execution, usually by estimations (or by extensive repetitions in the

fixed-size algorithm’s case). Finally there is no standard way to calculate a proper

compile-time transformation due to the complexity of the NP-Complete problem. This

compile-time method presented here is an idealized method just for comparisons and

interpretations.

111

Figure 6.23. Comparing cycles between original, SL and manual hyperplane codes.

Table 6.24. Comparing execution times between sequential, transformed and

manually written parallel code.

Problem Size Original Code SL code Manual Code

100 731040 1314584 344800

200 2927336 4642112 1044456

300 9062496 10801192 2131344

400 13201516 17474616 3664328

500 27320340 25940796 5632024

600 40170528 32808312 6752076

700 55277512 43149216 10869036

800 73727150 51961456 14040020

900 92176788 60744780 17445424

1000 114073668 70149652 21268804

1100 138258288 79585768 25639544

Table 6.25. Speedups Gained from the two methods for various problem sizes.

Problem

Size

Speedup

SL

Speedup

Hyperplane

100 0,556 2,120

200 0,631 2,803

300 0,839 4,252

400 0,755 3,603

500 1,053 4,851

600 1,224 5,949

700 1,281 5,086

800 1,419 5,251

900 1,517 5,284

1000 1,626 5,363

1100 1,737 5,392

-1000000

40000000

90000000

14000000

100 200 300 400 500 600 700 800 900 1000 1100

M
as

te
r

C
P

U
 C

yc
le

s

Problem Size

Original Code SL code Manual Hyperplane Code

112

Table 6.26. The Optimal Tile Size for Various Problem Sizes.

Problem Size Optimal Tile Size

100 5

200 5

300 6

400 7

500 30

600 30

700 31

800 39

900 41

1000 42

1100 43

Table 6.27. Speedups for Problem Size of (2, 3, 4)000x (2, 3, 4)000 for the Loop With

Dependence Vector D={(1,0), (0,1)}

Problem

Size

Speedup

SL

Speedup

Hyperplane

2000 2,654 5,107

3000 2,745 3,887

4000 3,739 3,187

Table 6.28. CPU Cycles and Speedup Gained for Various Tile Sizes for the Compile-

time Hyperplane Method (Problem size: 4000 x 4000).

Tile

Size

Master

CPU Cycles
Speedup

1 592101356 3,111

2 287120992 6,416

4 277922988 6,628

8 265680920 6,934

16 276058308 6,673

32 173013796 10,64

64 139595836 13,19

128 142822016 12,89

 The Self-Adaptive method is next compared with the Fixed-size one in three

problems with different dependence vectors: (i) D={(1,0), (0,1)}, (ii) D={(0,1), (1,1),

(1,0), (1,-1)} and (iii) D={(2,0), (0,2)}. Each of these problems has a different

113

characteristic. The first is a typical example, the second is augmented with two more

dependences and finally the third offers more parallelism by letting two different

columns execute simultaneously at any time.

 As far as the first problem is concerned, Table 6.29 illustrates the results of the

two methods in CPU cycles, while Table 6.30 illustrates the speedups offered by each

algorithm. Figures 6.24 and 6.25 provide a graphic representation of the data. It is

clear that the Self-Adaptive algorithm not only reached the Fixed-Size algorithm’s

efficiency levels, in some cases it slightly surpassed it. It fares a lot worse in smaller

problem sizes due to two different situations: (i) as previously discussed, larger

problem sizes reduce the percentage of the overall overheads in the total execution

time. Consequently, small problems don’t amortize the overheads enough and (ii)

there simply is not enough time for the algorithm to reach a conclusion about the

proper tile size and that results in the lower levels of efficiency illustrated in Table

6.30 and Figure 6.25. However, with enough time (in greater problem sizes), the

algorithm not only results in finding an optimal size, it also makes up for its slow

start.

 The second problem (loop) has a dependence vector of D={(0,1), (1,1), (1,0),

(1,-1)}. Figure 6.26 demonstrates the actual loop while Figure 6.27 visualizes the full

dependence vector in an index space. Table 6.31 demonstrates the results in CPU

cycles and Table 6.32 presents the speedups offered by the two run-time algorithms.

Table 6.29. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the

{(1,0),(0,1)} Problem.

Problem

Size

Original

Code

Fixed Size

code

Self Adaptive

Code

100 731040 1314584 1843368

200 2927336 4642112 6938972

300 9062496 10801192 13052524

400 13201516 17474616 19550652

500 27320340 25940796 24905396

600 40170528 32808312 34408864

700 55277512 43149216 40316528

800 73727150 51961456 49048212

900 92176788 60744780 55648768

1000 114073668 70149652 66257132

114

Table 6.30. Comparing the Speedups of the two Methods for the {(1,0),(0,1)}

Problem.

Problem

Size

Fixed Size

Speedup

Self Adaptive

Speedup

100 0,556 0,397

200 0,631 0,422

300 0,839 0,694

400 0,755 0,675

500 1,053 1,097

600 1,224 1,167

700 1,281 1,371

800 1,419 1,503

900 1,517 1,656

1000 1,626 1,722

Figure 6.24. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the

D={(1,0),(0,1)} Problem.

0

20000000

40000000

60000000

80000000

10000000

12000000

14000000

100 200 300 400 500 600 700 800 900 1000 1100

M
a

st
er

 C
P

U
 C

y
cl

es

Problem Size

Original Code Fixed Size code Self Adaptive Code

115

Figure 6.25. Comparing the Speedups of the two Run-time Methods for the

D={(1,0),(0,1)} Problem.

Figure 6.26. The Second Loop Nesting Under Evaluation. The Dependence Vector is

D={(0,1), (1,1), (1,0), (1,-1)}

Figure 6.27. Visualization of the Dependence vector in the 2-D index space.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

100 200 300 400 500 600 700 800 900 1000

S
p

ee
d

u
p

 A
c
h

ie
v

ed

Problem Size (N x N)

Fixed Size Algorithm Self-Adaptive Algorithm

for (i=1;i<n-1;i++)

 for (j=1;j<n-1;j++)

 A[i][j]=A[i][j-1]+A[i-1][j-1]+A[i-1][j]+A[i-1][j+1];

116

Table 6.31. Comparing the Resulting Data of the Two Run-time Algorithms for the

D={(0,1), (1,1), (1,0), (1,-1)} Problem.

Problem

Size

Original

Code

Fixed Size

Algorithm

Self Adaptive

Algorithm

100 1069512 1955432 2628388

200 4339096 6490840 9814264

300 10227620 14517088 22626908

400 19030496 23745432 37218680

500 30405836 38530916 46855584

600 44332336 54702360 69131064

700 60793824 72207180 100495712

800 80959556 87373276 102670936

900 101352808 110178980 131357372

1000 125461936 137689188 148974992

1100 152135436 160506780 177237064

1200 181264208 177854256 198504028

1300 213046836 189210796 183085240

1400 247357888 218266376 231859332

1500 284153852 249275952 238125204

1600 328077396 263238604 304201800

1700 365474704 319817604 316397112

1800 409992824 336841140 328592424

Table 6.32. Comparing the Speedups of the Two Run-time Algorithms for the Loop

with D={(0,1), (1,1), (1,0), (1,-1)}

Problem

Size

Fixed Size

Speedup

Self Adaptive

Speedup

Problem

Size

Fixed Size

Speedup

Self Adaptive

Speedup

100 0,547 0,407 1000 0,911 0,842

200 0,668 0,442 1100 0,948 0,858

300 0,705 0,452 1200 1,019 0,913

400 0,801 0,511 1300 1,126 1,164

500 0,789 0,649 1400 1,133 1,067

600 0,810 0,641 1500 1,140 1,193

700 0,842 0,605 1600 1,246 1,078

800 0,927 0,789 1700 1,143 1,155

900 0,920 0,772 1800 1,217 1,248

 Figures 6.28 and 6.29 visualize the comparisons. The fact that there is less

parallelism to exploit is indicated by the inability of both algorithms’ to offer any

significant speedup until the problem size of between N=1200 and N=1300. This size

is much larger than the problem of D={(1,0), (0,1)}. Once again though, the self-

117

adaptive variant quickly catches up and follows the fixed-size one after a while.

Again, this proves the effectiveness of the adaptive algorithm.

Figure 6.28. Comparing the CPU Cycles of the two Run-time Algorithms for the

Loop with D={(0,1), (1,1), (1,0), (1,-1)}

Figure 6.29. Comparing the Speedups of the two Run-time Algorithms for the Loop

with D={(0,1), (1,1), (1,0), (1,-1)}

0

50000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

M
as

te
r

C
P

U
 C

yc
le

s

Problem Size

Original Code Fixed Size Algorithm Self Adaptive Algorithm

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

S
p

ee
d

u
p

 A
c
h

ie
v

ed

Problem Size (N x N)

Fixed Size Algorithm Self Adaptive Algorithm

118

 The final problem is the loop nesting with a dependence vector of D={(2,0),

(0,2)}. The dependency of (0,2) is actually internally treated as (0,1) by both

algorithms as has been already mentioned. The (2,0) dependency however allows two

simultaneous columns to execute at any given time, effectively doubling the amount

of parallelism that can be exploited. Table 6.33 displays the results in CPU cycles and

Table 6.34 displays the speedups achieved for each problem size. Figures 6.30 and

6.31 help visualize the data.

Table 6.33. CPU Cycles for the {(2,0), (0,2)} Problem.

Problem

Size

Original

Code

Fixed Size

Algorithm

Self Adaptive

Algorithm

100 774108 516520 1698932

200 3771708 1735864 4127672

300 9148748 6529064 7743552

400 16099372 11497204 11801488

500 25195468 17515188 15020296

600 36275752 24898940 19725720

700 49041688 32041456 25317360

800 64890712 40364832 29403340

900 85394952 49834420 36329496

1000 111067292 58711484 40422532

Table 6.34. Speedups Achieved by the two Algorithms.

Problem Size Fixed Size Speedup Speedup Self Adaptive

100 1,499 0,456

200 2,173 0,914

300 1,401 1,181

400 1,400 1,364

500 1,438 1,677

600 1,457 1,839

700 1,531 1,937

800 1,608 2,207

900 1,714 2,351

1000 1,892 2,748

119

Figure 6.30. CPU Cycles for the {(2,0), (0,2)} Problem.

Figure 6.31. Comparing the Speedups Achieved by the two Algorithms for the

D={(2,0), (0,2)} Problem.

 In this case the Self-Adaptive algorithm fared much better and closer to the

ideal target of a doubling the speedup of the D={(1,0), (0,1)} problem than the fixed

size method. This can be explained by the fact that the real optimal tile size for the

fixed size algorithm was outside the range of the numbers that were tried (2 to 40) and

thusly was lost.

0

20000000

40000000

60000000

80000000

10000000

12000000

100 200 300 400 500 600 700 800 900 1000

M
a

st
er

 C
P

U
 C

y
cl

es

Problem Size

Original Code Fixed Size Algorithm Self Adaptive Algorithm

0.000

0.500

1.000

1.500

2.000

2.500

3.000

100 200 300 400 500 600 700 800 900 1000

S
p

ee
d

u
p

 A
ch

ie
v

ed

Problem Size (N x N)

Fixed Size Algorithm Self-Adaptive Algorithm

120

6.4. The Livermore Loops

 As a final evaluation test a suite of programs was needed where each test is

more complex than just simple perfectly nested loops. For that reason, the Livermore

loops [79] were chosen. It is a set of 24 kernels, each performing a particular task.

The suite was originally created to test parallelizing / vectorizing compilers so it was

selected to benchmark C2κTC/SL. It should be noted that, by definition, not all of the

kernels can be parallelized in the first place. A list of the kernels follows detailing

how C2κTC/SL fared against each of them. For each kernel there is an indication

whether C2κTC/SL did a proper transformation that increases efficiency/exposes

parallelism (PASS) while if it decided to err on the safe side and just transformed the

kernel into a sequentially executing family of threads(which can slightly increase

efficiency as well) (SAFE). There is a third result in some of the kernels called FAIL.

This happens when the code contains C constructs not included in the C subset that

C2κTC/SL supports (like goto). Instead of the compiler stopping at detection of those

constructs and not producing any output, instead it just proceeds to create some output

that is completely wrong and will not even compile properly.

 • Hydrodynamics fragment: The loop is rather simple and can be fully

executed in parallel. C2κTC/SL automatically parallelized it correctly (PASS).

 • Incomplete Cholesky conjugate gradient: The code is rather convoluted

and C2κTC/SL cannot distinguish any hidden parallelism to exploit (no proper

meaning can be extracted from some variables and an existing dependence is not

static). However, the whole loop is transformed into an infinite family of threads

which contains another family of threads with shared variables. As has been

demonstrated before this can increase efficiency by a small percentage (SAFE).

 • Inner product: This is a similar code to the innermost loop of matrix

multiplication. If the partial sums are first calculated in a temporary variable by hand

and then added to the accumulator variable, efficiency can be greatly sped up by

taking advantage of all the threads calculating their sum in parallel before locking

down on the shared channel (PASS).

 • Banded linear systems solution: C2κTC/SL cannot detect any meaningful

parallelism (there is a relationship which cannot be statically identified as a

121

dependence or an antidependence) in that code so it transforms both loops to families

of threads with shared variables (one of the loops is accumulating a value to a

variable) to increase efficiency slightly (SAFE).

 • Tridiagonal linear systems solution: This is a normal single-dimensional

loop with a unary dependency of length 1. C2κTC/SL acts appropriately (PASS).

 • General linear recurrence equations: Once again C2κTC/SL is unable to

perform a meaningful transformation (the existence of non-static dependences

prevents such an action) so it resorts to transform each loop into a family in order to

gain some efficiency (SAFE).

 • Equation of state fragment: Although it seems like a complicated loop, it is

in fact rather simple and it can be computed fully in parallel. C2κTC/SL provides the

correct transformation (PASS).

 • Alternating direction implicit integration: This loop is too complicated for

the compiler to “understand” so it fails (FAIL).

 • Integrate predictors: A fully parallel loop where each iteration writes some

value at the first column of the appropriate row. There are no dependences and

C2κTC/SL performs the proper parallel transformation (PASS).

 • Difference predictors: Another fully parallel loop which is properly

transformed by C2κTC/SL (PASS).

 • First sum: A single dimensional loop with a unary dependency of length 1.

A synchronizing channel is utilized to provide sequential execution and better

efficiency (PASS).

 • First difference: An obviously fully parallel loop which is transformed in an

appropriate manner by C2κTC/SL (PASS).

 • 2-D particle in a cell: An overly complex loop where C2κTC/SL fails to

detect any parallelism. The whole loop is transformed into a sequentially executed

family of threads (SAFE).

 • 1-D particle in a cell: This loop is comprised of 3 smaller loops. The first of

them is fully parallel and is understood as such by C2κTC/SL. The remaining loops

for various reasons are transformed into sequentially executing families of threads

(PASS/SAFE/SAFE).

122

 • Casual Fortran: This loop is considered too complicated by C2κTC/SL. It

is transformed into a sequentially executing family of threads (SAFE).

 • Monte Carlo search: The loop is so complicated (with the use of “goto”

aggravating the complexity) that C2κTC/SL fails to produce any meaningful code

(FAIL).

 • Implicit conditional computation: Again another loop too complex for

C2κTC/SL to produce correct code (“goto” is again present) (FAIL).

 • 2-D explicit hydrodynamics fragment: A loop comprised of 3 others but all

of them are fully parallel which C2κTC/SL understands as such and acts accordingly

(PASS).

 • General linear recurrence equations: This loop is comprised of 2 smaller

loops. Each of those two loops carries a shared variable in the code. C2κTC/SL

understands this and produces two sequentially executing families with a

synchronizing channel for the shared variable (PASS).

 • Discrete ordinates transport: C2κTC/SL is unable to detect any parallelism

(cross dependences are not handled) or variables to use as shared so it takes the safe

approach and transforms the entire loop into a sequentially executing family (SAFE).

 • Matrix-matrix product: A fully parallel loop nesting which C2κTC/SL

correctly identifies and transforms (PASS).

 • Planckian distribution: Another fully parallel loop which C2κTC/SL

understands properly and produces a correct transformed output (PASS).

 • 2-D implicit hydrodynamics fragment: This loop contains both two-

dimensional anti-dependences and dependences. By reversing the direction of the

anti-dependences (and essentially turn them into dependences), the loop is

transformed into a two-dimensional nesting with a dependence vector. C2κTC/SL

invokes the Self-Adaptive algorithm for this loop and produces a correct

transformation (PASS).

 • Location of a first array minimum: This is a simple loop which cannot be

parallelized. C2κTC/SL correctly identifies that the current minimum index variable

used in its iteration is a shared variable and transforms the loop accordingly (PASS).

123

Table 6.35. A Summary of the Results of the Livermore Loops Transformations by

C2κTC/SL.

Kernel

No. Kernel Name Result

1 Hydrodynamics fragment PASS

2 Incomplete Cholesky conjugate gradient SAFE

3 Inner product PASS

4 Banded linear systems solution SAFE

5 Tridiagonal linear systems solution PASS

6 General linear recurrence equations SAFE

7 Equation of state fragment PASS

8 Alternating direction implicit integration FAIL

9 Integrate predictors PASS

10 Difference predictors PASS

11 First sum PASS

12 First difference PASS

13 2-D particle in a cell SAFE

14 1-D particle in a cell PASS/SAFE/SAFE

15 Casual Fortran SAFE

16 Monte Carlo search FAIL

17 Implicit conditional computation FAIL

18 2-D explicit hydrodynamics fragment PASS

19 General linear recurrence equations PASS

20 Discrete ordinates transport SAFE

21 Matrix-matrix product PASS

22 Planckian distribution PASS

23 2-D implicit hydrodynamics fragment PASS

24 Location of a first array minimum. PASS

 Table 6.35 summarizes the results for all the Livermore loops. Qualitatively,

more than half of the loops are transformed properly and most of the rest are

transformed into some sort of family which produces correct results. Due to this,

C2κTC/SL should be considered relatively successful in its task. However it is

obvious that it needs a better symbolic analyzer in order to properly “understand”

more complex codes (i.e. codes where index accesses take place via pointer

dereferencing, codes where index accesses contain regular expressions etc.)

124

CHAPTER 7. FINAL THOUGHTS

 This paper presented the most basic elements and ideas regarding the

automatic parallelization of legacy sequential code. In addition, it described the

research on what –at the time of writing- was considered novel: Using the SVP model

to parallelize loops in ways that mainstream compilers could not. This research led to

the creation of C2κTC/SL compiler. Heavily in beta, C2κTC/SL served more as a

vessel to perform research than a commodity (or even commercial) compiler system

that would be available to the public. The beta aspect reflects upon almost all aspects

of the compiler in the form of a series of limitations:

(i) C2κTC/SL only compiles programs with a main() function and no other

functions in the same program. That means that the all functions must be

declared as external and linked against the transformed code during

compilation phase. In addition all external functions must have a return value

(they cannot be declared as void).

(ii) Due to some issues with the syntax analyzer, only statically declared arrays are

supported, hence no dynamic arrays with malloc or any other type of pointer

arithmetics are supported.

(iii) Input to the application is problematic due to some external reasons. There is

no direct way to get input save for batches of data saved in a file in FIBRE

format.

(iv) There is no way to “mark” which loops are going to be parallelized and which

should be left alone. C2κTC/SL blindly analyses and transforms all of them.

The only way to make a loop run sequentially is to utilize a variable which

increases by one. Such an act forces the compiler to sequentialize the loop

with that variable marked as shared.

125

 For those reasons, it is not possible for any real life application to be compiled

as-is. It will have to be re-written in order to comply with the above restrictions: Any

function calls that perform actual computation which needs to be parallelized should

be inlined in the main function. The rest of the functions need to be declared as

external in that source file and implemented in a different file. They can be linked

against the transformed file once C2κTC/SL is done with it. Since there is no way to

mark loops for parallelization, loops that only perform printouts (for example loops

that print the contents of a matrix) should not exist within the same main file or at the

very least they should be forced to be transformed in a sequential form (through the

use of shared variables). It is best for that kind of code to be factorized into an

external function call. Finally, input data should be declared statically inside the code

itself for any example or be batch-loaded through some helper FIBRE functions.

 Despite of that though, most of the research goals that were set were achieved:

Single dimensional loops, carrying dependences or not, can be transformed in a

manner which improves their efficiency by a large degree even if there is no

parallelism to exploit (thanks to the synchronising channels). Simple multi-

dimensional loops (without dependences) can also be transformed into fully parallel

SVP constructs (families) that produce the same result while providing great speedups

(46 in the case of 64 cores for example). Finally, perfectly nested loops with a static

dependence vector can be parallelized in a wavefront-like style. Instead of focusing

on compile-time methods which try to calculate the perfect hyperplane to utilize and

then only estimate or even guess at the tile size to use (since it has been proven that a

fully fine grain method will oversaturate at large problem sizes so tiling is a

necessity), a different approach was chosen: Utilising the information of the run-time

environment to the benefit of the compiler.

 This novel solution was met with many difficulties, mostly because of the

rather small bibliography on parallelizing in run-time, but in the end the Fixed-Size

Algorithm was born which eventually evolved to the Self-Adaptive system: An

algorithm that follows the dependence vector in order to choose which indices will

execute at a given cycle (similar to the hyperplane, only instead of a hyperplane there

are execution cycles). Not only does that algorithm intuitively find the best

126

hyperplane to use, it also finds the best tile size to utilise in order to achieve

performance as close to maximum as possible.

 There are several aspects though that find C2κTC/SL lacking and will need

addressing in some future work. Those aspects can be categorized into two sets,

software engineering and research.

 When it comes to software engineering aspects, all of the limitations that were

listed in the first paragraph must be fixed. There is nothing inherently difficult

however a rather large timespan and a great deal of work must be invested in that

aspect. Other areas also need improvement. The symbolic interpreter, albeit having

served its purpose perfectly, is at an infant stage and the process of dependence

detection relies on very simple expression identification (only the form of “A[i] = A[i

– constant]” is understood). A proper symbolic analyzer needs to be implemented

which will be able to comprehend complex expressions as well as dependences that

extend into multiple statements. Moreover, the compiler itself is entwined with SL

and the SVP in general. However, certain ideas and transformations it employs can be

applied in more general systems. A different branch of its development should focus

on producing output for libraries and systems widely in use: pthreads in a lower level

or OpenMP for a higher level of abstraction. This would allow not only C2κTC/SL’s

usage to become more widespread (which can lead to more people picking it up and

upgrading it) but also for some comparison with other commodity compilers in

existence today.

 Research-wise, even though the Self Adaptive Algorithm has proven to work

for the typical nested loop with a static dependence vector, there is still plenty of room

for improvement. Firstly, it is rather slow in its convergence rate. Since at each cycle

the tile size in use is altered by the value of one, it takes several cycles for it to reach

an optimal state. A smarter system needs to be implemented that will be increasing or

decreasing the tile size based on its distance from the target or at the very least in a

faster way than the current system. Secondly, the scheduler thread can in theory be

improved. The way it traverses the coordinates with the dependence vector, can be

executed in parallel and hence help the scheduler end faster. This will result in higher

amounts of parallelism in general and hence greater speedups. Lastly, some way to

deal with non-static dependences should be researched. If a dependence can be

127

described as an affine combination of a series of known variables (i.e. the indices)

then, in theory, it should be possible to extend the algorithm to transform these kinds

of cases as well.

 In conclusion, C2κTC/SL is an automatic parallelizing compiler which is

capable of transforming C code into parallel SL code that can be executed by an SVP

system. It provides a combination of compile time techniques (in cases of no

dependence existing or in single-dimensional loops) with a run-time technique that

was researched and developed especially for this compiler. Experimental results

indicate that the run-time method can offer significant improvements in execution

times and is definitely on the right path. Even though it can not compete with

traditional compile-time methods in pure speedup gain, its versatility (i.e. handling

irregular index spaces, calculating the optimal tile size, etc.) more than makes up for

that. More work is needed in various areas: The compiler should be able to deal with

more than one functions in a program, pointer arithmetics should be implemented in

order to deal with dynamically allocated arrays, I/O needs to be improved and the

symbolic analyser should also be expanded with the ability to “understand” more

diverse types of expressions inside array subscripts. Finally, the main Self-Adaptive

algorithm itself can also benefit from a few improvements. Convergence rate needs to

be improved, the scheduler thread can benefit from some inherent parallelism and

finally non static dependences need to be researched.

128

REFERENCES

[1] R. Allen and K. Kennedy. “Automatic Translation of FORTRAN programs to

Vector Form”, ACM Transactions on Programming Languages and Systems, pp:491-

542, 1987.

[2] R. Allen and K. Kennedy. “Optimizing Compilers for Modern Architectures”,

Morgan Kaufmann Publishers, 2001.

[3] G. Almasi and A. Gottlieb. “Highly Parallel Computing”, The Benjamin /

Cummings Publishing Company, Inc., 1994.

[4] J. M. Anderson, S. P. Amarasinghe and M. S. Lam. “Data and Computation

Transformations for Multiprocessors”, Proc. of the Fifth ACM SIGPLAN Symposium

on Principles and Practice of Parallel Processing, Jul. 1995.

[5] J. M. Anderson and M.S. Lam. “Global Optimizations for Parallelism and Locality

on Scalable Parallel Machines”, In Proc. Of SIGPlan '93 Conf. Programming

Language Design and Implementation, ACM Press, New York, pp. 112-125, 1993.

[6] R. Asenjo, R. Castillo, F. Corbera, A. Navarro, A. Tineo and E. L. Zapata.

“Parallelizing Irregular C Codes Assisted by Interprocedural Shape Analysis”, in

22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS'08),

2008.

[7] D. Bacon, S. Graham, O. Sharp. “Compiler Transformations for High-

Performance Computing”, Computing Surveys, v:26, pp:345 - 420, 1994.

[8] H. Bae, L. Bachega, C. Dave, S-I. Lee, S. Lee, S-J. Min, R. Eigenmann and S.

Midkiff. “Cetus: A Source-to-Source Compiler Infrastructure for Multicores”, In

Proc. Of the 14th Intl. Workshop on Compilers for Parallel Computing, 2009.

[9] U. Banerjee. “Dependence Analysis for Supercomputing”, Kluwer. Boston, MA,

1988.

[10] U. Banerjee. “Loop Transformations for Restructuring Compilers”, Kluwer

Academic, 1993.

129

[11] P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain, D. J. Palermo, S.

Ramaswamy and E. Su. “The Paradigm Compiler for Distributed Memory

Multicomputers”, IEEE Computer, Oct. 1995, v. 28, pp. 37-47, 1994.

[12] U. Banerjee, R. Eigenmann, A. Nicolau and D. Padua. “Automatic Program

Parallelization”, Proceedings of the IEEE, 81(2)pages 211-243, February 1993.

[13] M. Baskaran, N. Vydyanathan, U. Bondhugula, J. Ramanujam, A. Rountev and

P. Sadayappan. “Compiler-Assisted Dynamic Scheduling for Effective Parallelization

of Loop Nests on Multicore Processors”, in Proc. Of PoPP, pp:219-228, 2009.

[14] C. Bastoul. “Code Generation in the Polyhedral Model is Easier than You

Think”, In Proc. Of the 13th International Conference on Parallel Architectures and

Compilation Techniques, IEEE Computer society, Washington DC, USA, pp: 7 - 16,

2004.

[15] V. Beletskyy and M. Poliwoda. “Parallelizing Perfectly Nested Loops with Non-

Uniform Dependencies”, In Proc. Of the Advanced Computer Systems, pp:83-98,

2002.

[16] T. Bernard, K. Bousias, L. Guang, C. R. Jesshope, M. Lankamp, M. W. van Tol

and L. Zhang. “A General Model of Concurrency and its Implementation as Many-

core Dynamic RISC Processors”, In Proc. of Intl.Conf. on Embedded Computer

Systems: Architecture, Modeling and Simulation, SAMOS-2008, ISBN: 978-1-4244-

1985-2, pp. 1-9, Samos, Greece, 2008.

[17] T. A. M. Bernard, C. Jesshope, and M. Lankamp. “Evaluation of a Hardware

Implementation of the SVP Concurrency model”. ISCA 2010.

[18] W. Blume and R. Eigenmann. “The Range Test: A Dependence Test for

Symbolic, Non-linear Expressions”, Technical Report 1345, Univ. of Illinois at

Urbana-Champaign, Centr. for Supercomputing Res & Dev., April 1994.

[19] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P.

Petersen, W. Pottenger, L. Rauchwerger, P. Tu and S. Weatherford. “Effective

Automatic Parallelization with Polaris”, International Journal of Parallel

Programming, May 1995.

[20] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev

and P. Sadayappan. “Automatic Transformations for Communication-Minimized

Parallelization and Locality Optimization in the Polyhedral Model”, In Proc. Of the

the International Conference on Compiler Construction, 2008.

[21] U. Bondhugula, A. Hartono, J. Ramanujan and P. Sadayappan. “A Practical

Automatic Polyhedral Parallelizer and Locality Optimizer”, ACM SIGPLAN

Programming Languages Design and Implementation (PLDI), Tucson, Arizona, June

2008.

130

[22] K. Bousias, L. Guang, C.R. Jesshope and M. Lankamp. “Implementation and

Evaluation of a Microthread Architecture”, Journal of Systems Architecture, Volume

55, Issue 3, pp 149-161, March 2009.

[23] C. Brownhill, A. Nicolau, S. Novack and C. Polychronopoulos. “Achieving

Multi-Level Parallelization”, High Performance Computing, Lecture Notes in

Computer Science Volume 1336, pp 183-194, 1997.

[24] K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M.

Mellor-Crummey, L. Torczon and S. K. Warren. “The ParaScope Parallel

Programming Environment”, In Proc. of IEEE, pp. 244-263, Feb. 1993.

[25] A. Darte and F. Vivien. “Optimal Fine and Medium Grain Parallelism Detection

in Polyhedral Reduced Dependence Graphs”, International Journal of Parallel

Programming, v:25, pp:447-496, 1997.

[26] A. Darte, Y. Robert and F. Vivien. “Scheduling and Automatic Parallelization”,

Birkhäuser Boston, 2000.

[27] V.V. Dimakopoulos, E. Leontiadis and G. Tzoumas. "A portable C compiler for

OpenMP V.2.0", in Proc. EWOMP 2003, 5th European Workshop on OpenMP,

Aachen, Germany, Sept. 2003, pp. 5--11.

[28] K. A. Faigin, J. P. Hoeflinger, D. A. Padua, P. M. Petersen and S. A.

Weatherford. “The Polaris Internal Representation”, Technical report, Univ. of

Illionois at Urbana-Champaign, Cntr. for Supercomputing Res. and Dev. CSRD

Report No. 1317, UILU-ENG-93-8038, October 1993.

[29] M. Flynn. "Some Computer Organizations and Their Effectiveness". IEEE Trans.

Comput. C–21: 948. 1972.

[30] D. C. Grunwald. “Data Dependence Analysis for Supercompilers: the lambda

Test Revisited”, Technical report, Boulder University of Colorado Dept. of Computer

Science.

[31] M. R. Haghighat and C. D. Polychronopoulos. “Dependence Analysis”, Kluwer

Academic Publishers, 1995.

[32] M. W. Hall, J-A. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S-W. Liao, E.

Bugnion and M. S. Lam. “Maximizing Multiprocessor Performance with the SUIF

Compiler”, Digital Technical Journal, (10)1:71-80, 1998.

[33] M. W. Hall, K. Kennedy and K. S. McKinley. “Interprocedural Transformations

for Parallel Code Generation”, Supercomputing '91, pages 423-434, 1991.

[34] A. Hayashi, Y. Wada, H. Shikano, T. Kamiayama, T. Watanabe, T. Sekiguchi

and M. Mase. “OSCAR Parallelizing Compiler Cooperative Heterogeneous Multi-

131

Core Architecture”, The Eighteenth International Conference on Parallel

Architectures and Compilation Techniques (PACT2009), 2009.

[35] J. Hoeflinger and Y. Paek. “Unified Interprocedural Parallelism Detection”,

International Journal of Parallel Processing, 2000.

[36] K. Ishizaka, T. Miyamoto, J. Shirako, M. Obata, K. Kimura and H. Kasahara.

“Performance of OSCAR Multigrain Parallelizing Compiler on SMP Servers”, In

Proc. of 17th International Workshop on Languages and Compilers for Parallel

Computing, 2004.

[37] C. R. Jesshope. “κTC – An Intermediate Language for Programming Chip

Multiprocessors”, In Proc. of Advances in Computer Systems Architecture, 11th

Asia-Pacific Conference, ACSAC 2006, Shanghai, China, September 6-8, pp. 147 –

160, 2006.

[38] C. R. Jesshope. “SVP and µTC - A Dynamic Model of Concurrency and its

Implementation as a Compiler Target”, Technical Teport, University of Amsterdam,

2007.

[39] C. Jesshope, M. Hicks, M. Lankamp, R. Poss and L. Zhang. “Making Multi-cores

Mainstream – From Security to Scalability”, In Parallel Computing: From Multicores

and GPU's to Petascale, Vol. 19, pp. 16-31, 2010.

[40] C. R. Jesshope, J-M Philippe and M. van Tol. “An Architecture and Protocol for

the Management of Resources in Ubiquitous and Heterogeneous Systems Based on

the SVP Model of Concurrency”, In Proc. of Intl. Workshops on Embedded Computer

Systems: Architecture, Modeling and Simulation, SAMOS-2008, LNCS 5114, pp.

218-228, Samos, Greece, 2008.

[41] T. A. Johnson, S-I. Lee, L. Fei, A. Basumallik, G. Upadhyaya, R. Eignmann and

S. P. Midkiff. “Experiences in Using Cetus for Source-to-Source Transformations”, In

Proc. Of the 17th Intl. Workshop on Languages and Compilers for Parallel

Computing, 2004.

[42] B. W. Kernighan and D. M. Ritchie. "The C programming language, 2nd edition,

Section A13", Prentice Hall, 1988.

[43] X. Kong, D. Klappholz and K. Psarris. “The I Test: An Improved Dependence

Test for Automated Parallelization and Vectorization”. IEEE Transactions on Parallel

and Distributed Systems 2 (1991), 342-349.

[44] D. J. Kuck. “High Performance Computing, Challenges for Future Systems”,

Oxford University Press, New York, 1996.

[45] D. Kulkarni and M. Stumm. “Loop and Data Transformations: A Tutorial”,

University of Toronto, 1993.

132

[46] L. Lamport. “The Parallel Execution of DO loops”, Commun. ACM, v:17, pp:83-

93, 1974.

[47] S-I. Lee, T. A. Johnson and R. Eigenmann. “Cetus - An Extensible Compiler

Infrastructure for Source-to-Source Transformation”, In Proc. Of the 16th Intl.

Workshop on Languages and Compilers for Parallel Computing, v:2958, pp:539-553,

2003.

[48] A. W. Lim, G. I. Cheong and M. S. Lam. “An Affine Partitioning Algorithm to

Maximize Parallelism and Minimize Communication”, Proc.of the 13th ACM

SIGARCH International Conference on Supercomputing, Jun.1999.

[49] A. G. Navarro, F. Corbera, A. Tineo, R. Asenjo and E. L. Zapata. “Detecting

Loop-Carried Dependences in Programs with Dynamic Data Structures”, Parallel

Distrib. Comput. v:67, pp: 47-62, 2007.

[50] D. A. Padua and M. J. Wolfe. “Advanced Compiler Optimizations for

Supercomputers”, Commun. ACM, v:29, pp:1184 – 1201.

[51] C. D. Polychronopoulos, M. Girkar, M. R. Haghighat, C. L. Lee, B. Leung and

D. Schouten. “Parafrase-2: An Environment for Parallelizing, Partitioning,

Synchronizing, and Scheduling programs on Multi-processors”, International Journal

of High Speed Computing, 1(1): 45-72, 1989.

[52] C. D. Polychronopoulos, M. B. Gikar, M. R. Haghighat, C. L. Lee, B. P. Leung

and D. A. Schouten. “The Structure of Parafrase-2: An Advanced Parallelizing

Compiler for C and Fortran”, In Languages and Compilers for Parallel Computing.

MIT Press, 1990.

[53] R. Poss. "On the realizability of hardware microthreading. Revisiting the general-

purpose processor interface: consequences and challenges", Technical Report,

University of Amsterdam, 2012. ISBN 978-94-6108-320-3.

[54] B. Pottenger. “Parallelism in Loops Containing Recurrences”, Technical report,

Univ. of Illinois at Urbana-Champaign, June 1996.

[55] B. Pottenger and R. Eigenmann. “Idiom Recognition in the Polaris Parallelizing

Compiler”, International Conference on Supercomputing, 1995.

[56] W. Pugh. “The Omega Test: A Fast and Practical Integer Programming

Algorithm for Dependence Analysis”, In Proc. of Super Computing ’91, 1991.

[57] L. Rauchwerger, N. M. Amato and D. A. Padua. “Run-Time Methods for

Parallelizing Partially Parallel Loops”, Proceedings of the 9th ACM International

Conference on Super computing, Barcelona, Spain, pages 137–146, Jul.1995.

133

[58] H. Saito, N. Stavrakos, S. Carroll, C. Polychronopoulos and A. Nicolau. “The

Design of the PROMIS Compiler”, Compiler Construction, Lecture Notes in

Computer Science Volume 1575, pp 214-228, 1999.

[59] J. Saltz, R. Mirxhandaney and K. Crowley. “Run-time Parallelization and

Scheduling of Loops”, IEEE Trans. Comput., 40(5), May 1991.

[60] P. Tu and D. Padua. “Automatic Array Privatization”, Proc. 6th Annual

Workshop on Languages and Compilers for Parallel Computing, 1993.

[61] D. W. Wall. “Limits of Instruction-level Parallelism”, In Proc. Of the 4th

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-IV), Apr. 1991.

[62] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S.

W. K. Tjiang, S-W. Liao, C-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy.

“SUIF: An Infrastructure for Research on Parallelizing and Optimizing Compilers”,

ACM SIGPLAN Notices, v: 29, pp: 31-37, 1994.

[63] M. Wolfe. “High Performance Compilers for Parallel Computing”, Addison-

Wesley Publishing Company, 1995.

[64] M. Wolfe and C.-W. Tseng. “The Power Test for Data Dependence”, IEEE

Transactions on Parallel and Distributed Systems, v:3, issue 5.

[65] M. E. Wolf and M.S. Lam. “A Loop Transformation Theory and an Algorithm to

Maximize Parallelism”, IEEE Transactions on Parallel Distributed Systems v:2

pp:452 - 471, 1991.

[66] H. Zima. “Supercompilers for Parallel and Vector Computers”, Addison-Wesley,

1991.

[67] [Online] http://openmp.org/wp/

[68] [Online] http://openmp.org/wp/openmp-specifications/

[69] [Online], http://www.mpi-forum.org/

[70] [Online], https://developer.nvidia.com/category/zone/cuda-zone

[71] [Online], https://www.cilkplus.org/

[72] [Online], http://www.paraphrase-ict.eu/

[73] [Online], http://www.sac-home.org/

[74] [Online], http://www.apple-core.info

134

[75] [Online], http://svp-home.org

[76] [Online], http://www.ace.nl/compiler/cosy.html

[77] [Online], http://en.wikipedia.org/wiki/Conway's_Game_of_Life

[78] [Online], http://en.wikipedia.org/wiki/Mandelbrot_set

[79] [95] [Online], http://en.wikipedia.org/wiki/Livermore_loops

135

APPENDIX A. THE SL LANGUAGE

 The information contained in this Appendix comes mostly from [53]. As has

been mentioned already, the SL language is essentially the C language expanded with

a series of macro definitions that help encapsulate all the parallel constructs

functionality. Due to this property, the grammar utilized by C2κTC/SL is the one

listed below (The original C language specification is listed in [42]) :

<translation-unit> ::= <external-declaration>*

<external-declaration> ::= <function-definition>

 | <thread-function-declaration>

 | <thread-function-definition>

 | <declaration>

<thread-function-definition> ::= sl_def (<identifier> {, <attributes>? {, <thread-parametre-

list>}?}?) <compound-statement> <sl-enddef>

<thread-function-declaration> ::= sl_decl (<identifier> , <thread-specifiers>? {, <thread-

parametre-list>}?) ;

<thread-parametre-list> ::= <thread-parametre-declaration>

 | <thread-parametre-declaration> , <thread-parametre-list>

<function-definition> ::= {<declaration-specifier>}* <declarator> {<declaration>}* <compound-

statement>

<declaration-specifier> ::= <storage-class-specifier>

 | <type-specifier>

 | <type-qualifier>

<storage-class-specifier> ::= auto

 | register

 | static

 | typedef

136

<type-specifier> ::= void

 | char

 | short

 | int

 | long

 | float

 | double

 | signed

 | unsigned

 | <struct-or-union-specifier>

 | <enum-specifier>

 | <typedef-name>

<struct-or-union-specifier> ::= <struct-or-union> <identifier> { {<struct-declaration>}+ }

 | <struct-or-union> { {<struct-declaration>}+ }

 | <struct-or-union> <identifier>

<struct-or-union> ::= struct

 | union

<struct-declaration> ::= {<specifier-qualifier>}* <struct-declarator-list>

<specifier-qualifier> ::= <type-specifier>

 | <type-qualifier>

<struct-declarator-list> ::= <struct-declarator>

 | <struct-declarator-list> , <struct-declarator>

<struct-declarator> ::= <declarator>

 | <declarator> : <constant-expression>

 | : <constant-expression>

<declarator> ::= {<pointer>}? <direct-declarator>

<pointer> ::= * {<type-qualifier>}* {<pointer>}?

<type-qualifier> ::= const

 | volatile

<direct-declarator> ::= <identifier>

 | (<declarator>)

 | <direct-declarator> [{<constant-expression>}?]

 | <direct-declarator> (<parameter-type-list>)

 | <direct-declarator> ({<identifier>}*)

<constant-expression> ::= <conditional-expression>

<conditional-expression> ::= <logical-or-expression>

137

 | <logical-or-expression> ? <expression> : <conditional-expression>

<logical-or-expression> ::= <logical-and-expression>

 | <logical-or-expression || <logical-and-expression>

<logical-and-expression> ::= <inclusive-or-expression>

 | <logical-and-expression && <inclusive-or-expression>

<inclusive-or-expression> ::= <exclusive-or-expression>

 | <inclusive-or-expression> | <exclusive-or-expression>

<exclusive-or-expression> ::= <and-expression>

 | <exclusive-or-expression> ^ <and-expression>

<and-expression> ::= <equality-expression>

 | <and-expression> & <equality-expression>

<equality-expression> ::= <relational-expression>

 | <equality-expression> == <relational-expression>

 | <equality-expression> != <relational-expression>

<relational-expression> ::= <shift-expression>

 | <relational-expression> < <shift-expression>

 | <relational-expression> > <shift-expression>

 | <relational-expression> <= <shift-expression>

 | <relational-expression> >= <shift-expression>

<shift-expression> ::= <additive-expression>

 | <shift-expression> << <additive-expression>

 | <shift-expression> >> <additive-expression>

<additive-expression> ::= <multiplicative-expression>

 | <additive-expression> + <multiplicative-expression>

 | <additive-expression> - <multiplicative-expression>

<multiplicative-expression> ::= <cast-expression>

 | <multiplicative-expression> * <cast-expression>

 | <multiplicative-expression> / <cast-expression>

 | <multiplicative-expression> % <cast-expression>

<cast-expression> ::= <unary-expression>

 | (<type-name>) <cast-expression>

<unary-expression> ::= <postfix-expression>

 | ++ <unary-expression>

 | -- <unary-expression>

 | <unary-operator> <cast-expression>

 | sizeof <unary-expression>

138

 | sizeof <type-name>

<postfix-expression> ::= <primary-expression>

 | <postfix-expression> [<expression>]

 | <postfix-expression> ({<assignment-expression>}*)

 | <postfix-expression> . <identifier>

 | <postfix-expression> -> <identifier>

 | <postfix-expression> ++

 | <postfix-expression> --

<primary-expression> ::= <identifier>

 | <constant>

 | <string>

 | (<expression>)

 | sl_geta (identifier)

 | sl_getp (identifier)

<constant> ::= <integer-constant>

 | <character-constant>

 | <floating-constant>

 | <enumeration-constant>

<expression> ::= <assignment-expression>

 | <expression> , <assignment-expression>

<assignment-expression> ::= <conditional-expression>

 | <unary-expression> <assignment-operator> <assignment-expression>

<assignment-operator> ::= =

 | *=

 | /=

 | %=

 | +=

 | -=

 | <<=

 | >>=

 | &=

 | ^=

 | |=

<unary-operator> ::= &

 | *

 | +

 | -

 | ~

 | !

<type-name> ::= {<specifier-qualifier>}+ {<abstract-declarator>}?

139

<parameter-type-list> ::= <parameter-list>

 | <parameter-list> , ...

<parameter-list> ::= <parameter-declaration>

 | <parameter-list> , <parameter-declaration>

<parameter-declaration> ::= {<declaration-specifier>}+ <declarator>

 | {<declaration-specifier>}+ <abstract-declarator>

 | {<declaration-specifier>}+

<abstract-declarator> ::= <pointer>

 | <pointer> <direct-abstract-declarator>

 | <direct-abstract-declarator>

<direct-abstract-declarator> ::= (<abstract-declarator>)

 | {<direct-abstract-declarator>}? [{<constant-expression>}?]

 | {<direct-abstract-declarator>}? ({<parameter-type-list>|?)

<enum-specifier> ::= enum <identifier> { <enumerator-list> }

 | enum { <enumerator-list> }

 | enum <identifier>

<enumerator-list> ::= <enumerator>

 | <enumerator-list> , <enumerator>

<enumerator> ::= <identifier>

 | <identifier> = <constant-expression>

<typedef-name> ::= <identifier>

<declaration> ::= {<declaration-specifier>}+ {<init-declarator>}*

 | <thread-index-declaration>

 | <thread-function-pointer-declaration>

 | <thread-function-pointer-typedef>

<thread-function-pointer-typedef> ::= sl_typedef_fptr (<identifier> { , <thread-specifiers>?

{ , <thread-parametre-list>}?}?) ;

<thread-function-pointer-declaration> ::= sl_decl_fptr (<identifier> , <thread-specifiers>? {

, thread-parametre-list}?) ;

<thread-index-declaration> ::= sl_index (identifier) ;

<thread-specifiers> ::= <thread-specifier-item>

 | (thread-specifier-list)

<thread-specifier-list> ::= <thread-specifier-item>

140

 | <thread-specifier-list> , <thread-specifier-item>

<thread-specifier-item> ::= <thread-specifier>

 | <thread-attribute>

<thread-specifier> ::= sl__static

<thread-atribute> ::= undefined

<init-declarator> ::= <declarator>

 | <declarator> = <initializer>

<thread-parametre-list> ::= <thread-parametre-declaration>

 | <thread-parametre-list> , <thread-parametre-declaration>

<thread-parametre-declaration> ::= sl_glparm (<declaration-specifiers> , <identifier>)

 | sl_glfparm (<declaration-specifiers> , <identifier>)

 | sl_shparm (<declaration-specifiers> , <identifier>)

 | sl_shfparm (<declaration-specifiers> , <identifier>)

<initializer> ::= <assignment-expression>

 | { <initializer-list> }

 | { <initializer-list> , }

<initializer-list> ::= <initializer>

 | <initializer-list> , <initializer>

<compound-statement> ::= { {<declaration>}* {<statement>}* }

 | { <create-construct> }

<statement> ::= <labeled-statement>

 | <expression-statement>

 | <compound-statement>

 | <selection-statement>

 | <iteration-statement>

 | <thread-argument-assignment>

 | <thread-parametre-assignment>

<thread-argument-assignment> ::= sl_seta (<identifier> , <assignment-expression>) ;

<thread-parametre-assignment> ::= sl_setp (<identifier> , (assignment-expression>) ;

<create-construct> ::= sl_create (, <create-parametres> , <create-specifiers>? , <assignment-

expression> {, <thread-argument-list>}?) ; <create-block-item-list>? sl_sync () ;

<create-parametres> ::= <assignment-expression>? , <range-parametres>

141

<range-parametres> ::= <assignment-expression>? , <assignment-expression>? , <assignment-

expression>? , <assignment-expression>?

<create-specifiers> ::= <create-specifier>

 | (<create-specifier-list>)

<create-specifier-list> ::= <create-specifier>

 | <create-specifier-list> , <create-specifier>

<create-specifier> ::= <thread-attribute>

<thread-argument-list> ::= <thread-argument-definition>

 | <thread-argument-list> , <thread-argument-definition>

<thread-argument-definition> ::= sl_glarg (<declaration-specifiers> , <identifier>? {,

<assignment-expression>}?)

 | sl_glfarg (<declaration-specifiers> , <identifier>? {,

<assignment-expression>}?)

 | sl_sharg (<declaration-specifiers> , <identifier>? {,

<assignment-expression>}?)

 | sl_shfarg (<declaration-specifiers> , <identifier>? {,

<assignment-expression>}?)

<create-block-item-list> ::= <create-block-item>

 | <create-block-item-list> , <create-block-item>

<create-block-item> ::= statement

 | <create-construct>

<labeled-statement> ::= <identifier> : <statement>

 | case <constant-expression> : <statement>

 | default : <statement>

<expression-statement> ::= {<expression>}? ;

<selection-statement> ::= if (<expression>) <statement>

 | if (<expression>) <statement> else <statement>

 | switch (<expression>) <statement>

<iteration-statement> ::= while (<expression>) <statement>

 | do <statement> while (<expression>) ;

 | for ({<expression>}? ; {<expression>}? ; {<expression>}?)

<statement>

<identifier> ::= <letter>* { <letter> | <digit> }*

<letter> ::= a | b | ... | z | A | B | ... | Z | _

142

<digit> ::= 0 | 1 | ... | 9

 It is clear that this grammar is a superset of the C language, so any C legacy

program can be compiled and executed under SVP with no change. However, taking

advantage of the parallelism offered by the hardware requires the code to declare

threads and invoke them from some other thread (main can also be considered a

thread). Alongside the syntax of SL, a list of constraints and semantics follows:

Constraints:

- The identifier used in sl_geta() must be a visible thread argument name.

- The identifier used in sl_getp() must be a thread parameter name in the

enclosing thread.

- The sl_geta function cannot be used in any thread function body.

- The sl_geta function can only appear inside its corresponding create

context.

- The sl_setp function cannot appear outside of a thread function body.

- A thread index declaration can only appear in a thread function body.

- Argument names cannot be used in any other create construct in the same

scope.

- A goto from outside a create construct cannot jump inside one and vice

versa.

- Thread functions cannot have a return statement.

- The identifier inside a thread function definition must be in the same name

space as C names.

Semantics:

- Each use of sl_getp generates a side effect.

- If execution reaches an expression using sl_getp after it has passed a

sl_setp statement using the same thread parameter identifier, the behavior

of the program becomes undefined.

- A thread function declaration declares a thread function with the specified

name and prototype, with external linkage unless the attribute “sl__static”

is specified.

143

- The thread specifier sl__static plays the same role as C’s storage qualifier

static on external declarations.

- A thread parameter definition specifies channel endpoints for the thread

program. The directives sl_glparm and sl_glfparm specify global channel

endpoints while the directives sl_shparm / sl_shfparm denote a shared

channel.

- sl_shparm / sl_glparm denote (directly or indirectly vie typedefs) integers.

sl_shfparm / sl_glfparm denote in the same way floats / doubles.

- Each execution is associated with a unique logical thread index, which can

be observed via a sl_index declaration in the designated thread program.

- If execution reaches a thread argument or parameter assignment statement

after it has passed another such statement designating the same channel

endpoint, the behavior of the program becomes undefined.

A list of the most important directives of SL alongside a description for each follows:

 sl_def(thread_name, return_type, …) {code} sl_enddef. sl_def defines a

thread named thread_name and a return type of return_type (usually void). In the (…)

part a series of arguments is listed. Arguments are passed by value exactly like the C

language. Once the thread body’s functionality is defined (i.e. the instruction

sequence is complete) between the brackets { }, sl_enddef designates to the compiler

the end of a thread definition.

 sl_shparm / sl_shfparm (parameter_type, parameter_name). Inside

sl_def()'s parameter list, each shared channel parameter is formally defined with this

directive. Parameter_type indicates the type of the data (int, char *, etc) while

parameter_name indicates the name of the particular shared channel. In the case of a

floating point value, the directive sl_shfparm needs to be used instead.

 sl_glparm / sl_glfparm (parameter_type, parameter, parameter_name).

Similar to the previous directive, this one defines a global channel parameter inside

the sl_def's parameter list. Again, in the case of a floating point type of variable, the

sl_glfparm directive needs to be used in place.

 sl_index(variable_name). Stores the index of the current thread to the

variable designated by variable_name.

144

 sl_getp(channel_name). Decouples the value from a channel named

channel_name and returns it for use or storage inside a thread local variable. The

channel can be either a global or a shared one and in the case of a shared channel, if

the channel is empty, sl_getp will block the execution of the entire thread. It shouldn't

be called more than once per channel so it is wise to store all such decouplings into

local variables.

 sl_setp(shared_channel_name, shared_value). Writes the value of

shared_value back into a shared channel named shared_channel_name. It is

meaningful only for shared channels and thusly it should be used only then and only

once. If a thread does not write back to the shared channel a deadlock might occur.

 sl_break(). Similar to C’s break, which breaks execution of a loop and

continues the execution past the point of the loop’s end, sl_break() terminates the

execution of the entire family of threads. Control of the program moves past the

family’s synchronization point.

 sl_create. Perhaps the most important directive of SL. Its usual invocation is

sl_create(,,from,to,step,,,thread_body,…). It creates a family of threads whose index

will have a starting value of "from", will go up to the value of "to" and have a step of

"step". This means that (to-from)/step threads will exist inside this family. The … is

the argument list that assigns values to the global and the shared channels.

 sl_sharg / sl_shfarg(value_type, shared_channel_name, initial_value). Part

of the formal parameter list of sl_create, it creates a shared channel named

shared_channel_name which carries a value of type value_type. Additionally, it can

be initialized with the value of initial_value. In the case of a floating type value,

sl_shfarg should be used instead. The sharg / shfarg directives set the two endpoints

of the shared channel that will be applied to all threads in the family. The initial value

is automatically set and the final value can be read after the synchronization point.

 sl_glarg / sl_glfarg(value_type, global_channel_name, initial_value).

Another part of the formal parameter list of sl_create, this set of directives creates and

initializes a global channel that permeates all threads in the family. The name of the

channel will be global_channel_name, its type will be of value_type and it will be

initialized with the value of initial_value. Again if the value is of floating point type

then the counterpart sl_glfparm needs to be used.

145

 sl_sync(). Similar to the classic join for threads, sl_sync() will halt execution

of the parent thread that created a family and wait till that family terminates to

continue execution.

 sl_geta(shared_channel_name). Once a family has terminated, the parent

thread can read the final value of a shared channel via sl_geta. It takes as argument

the name of the shared channel, decouples and returns its value for storage in a

variable or direct use.

 It should be stated here that all parameter types passed between threads are

basic types or pointers to / arrays of them (type-defined). Any other user defined type

(like compound types (i.e. structs / unions)) is not currently supported by SL. A

simple example code similar to the classic "Hello world" program is depicted below:

sl_def (void, print)
{
 sl_index(i);
 printf("Hello from thread %d\n",i);
}
sl_enddef

This thread declaration defines a thread that prints "Hello from thread " and its

accompanying index (its position inside the family chain). Creating a family of those

threads is also straightforward:

sl_create(,,0,N,1,,,print);

sl_sync();

 This code creates a family of N threads that will all execute in parallel. The

indices inside the family will range from 0 to N-1 and increment by 1. A full list of

constraints and semantics of SL can be found in Appendix I of [53].

146

APPENDIX B. SUPPORTED C SUBSET

 In a similar manner to Appendix A the supported subset of the C grammar (in

BNF form) is listed below:

<translation-unit> ::= <external-declaration>

<external-declaration> ::= <function-definition>

<function-definition> ::= <main-type> main {<declaration>}* <compound-statement>

<main-type> ::= int

 | void

<declaration-specifier> ::= <storage-class-specifier>

 | <type-specifier>

 | <type-qualifier>

<storage-class-specifier> ::= auto

 | register

 | static

 | typedef

<type-specifier> ::= void

 | char

 | short

 | int

 | long

 | float

 | double

 | signed

 | unsigned

 | <struct-or-union-specifier>

 | <enum-specifier>

 | <typedef-name>

<struct-or-union-specifier> ::= <struct-or-union> <identifier> { {<struct-declaration>}+ }

 | <struct-or-union> { {<struct-declaration>}+ }

 | <struct-or-union> <identifier>

147

<struct-or-union> ::= struct

 | union

<struct-declaration> ::= {<specifier-qualifier>}* <struct-declarator-list>

<specifier-qualifier> ::= <type-specifier>

 | <type-qualifier>

<struct-declarator-list> ::= <struct-declarator>

 | <struct-declarator-list> , <struct-declarator>

<struct-declarator> ::= <declarator>

 | <declarator> : <constant-expression>

 | : <constant-expression>

<declarator> ::= {<pointer>}? <direct-declarator>

<pointer> ::= * {<type-qualifier>}* {<pointer>}?

<type-qualifier> ::= const

 | volatile

<direct-declarator> ::= <identifier>

 | (<declarator>)

 | <direct-declarator> [{<constant-expression>}?]

 | <direct-declarator> (<parameter-type-list>)

 | <direct-declarator> ({<identifier>}*)

<constant-expression> ::= <conditional-expression>

<conditional-expression> ::= <logical-or-expression>

 | <logical-or-expression> ? <expression> : <conditional-expression>

<logical-or-expression> ::= <logical-and-expression>

 | <logical-or-expression || <logical-and-expression>

<logical-and-expression> ::= <inclusive-or-expression>

 | <logical-and-expression && <inclusive-or-expression>

<inclusive-or-expression> ::= <exclusive-or-expression>

 | <inclusive-or-expression> | <exclusive-or-expression>

<exclusive-or-expression> ::= <and-expression>

 | <exclusive-or-expression> ^ <and-expression>

<and-expression> ::= <equality-expression>

 | <and-expression> & <equality-expression>

148

<equality-expression> ::= <relational-expression>

 | <equality-expression> == <relational-expression>

 | <equality-expression> != <relational-expression>

<relational-expression> ::= <shift-expression>

 | <relational-expression> < <shift-expression>

 | <relational-expression> > <shift-expression>

 | <relational-expression> <= <shift-expression>

 | <relational-expression> >= <shift-expression>

<shift-expression> ::= <additive-expression>

 | <shift-expression> << <additive-expression>

 | <shift-expression> >> <additive-expression>

<additive-expression> ::= <multiplicative-expression>

 | <additive-expression> + <multiplicative-expression>

 | <additive-expression> - <multiplicative-expression>

<multiplicative-expression> ::= <cast-expression>

 | <multiplicative-expression> * <cast-expression>

 | <multiplicative-expression> / <cast-expression>

 | <multiplicative-expression> % <cast-expression>

<cast-expression> ::= <unary-expression>

 | (<type-name>) <cast-expression>

<unary-expression> ::= <postfix-expression>

 | ++ <unary-expression>

 | -- <unary-expression>

 | <unary-operator> <cast-expression>

 | sizeof <unary-expression>

 | sizeof <type-name>

<postfix-expression> ::= <primary-expression>

 | <postfix-expression> [<expression>]

 | <postfix-expression> ({<assignment-expression>}*)

 | <postfix-expression> . <identifier>

 | <postfix-expression> -> <identifier>

 | <postfix-expression> ++

 | <postfix-expression> --

<primary-expression> ::= <identifier>

 | <constant>

 | <string>

 | (<expression>)

<constant> ::= <integer-constant>

 | <character-constant>

149

 | <floating-constant>

 | <enumeration-constant>

<expression> ::= <assignment-expression>

 | <expression> , <assignment-expression>

<assignment-expression> ::= <conditional-expression>

 | <unary-expression> <assignment-operator> <assignment-expression>

<assignment-operator> ::= =

 | *=

 | /=

 | %=

 | +=

 | -=

 | <<=

 | >>=

 | &=

 | ^=

 | |=

<unary-operator> ::= &

 | *

 | +

 | -

 | ~

 | !

<type-name> ::= {<specifier-qualifier>}+ {<abstract-declarator>}?

<parameter-type-list> ::= <parameter-list>

 | <parameter-list> , ...

<parameter-list> ::= <parameter-declaration>

 | <parameter-list> , <parameter-declaration>

<parameter-declaration> ::= {<declaration-specifier>}+ <declarator>

 | {<declaration-specifier>}+ <abstract-declarator>

 | {<declaration-specifier>}+

<abstract-declarator> ::= <pointer>

 | <pointer> <direct-abstract-declarator>

 | <direct-abstract-declarator>

<direct-abstract-declarator> ::= (<abstract-declarator>)

 | {<direct-abstract-declarator>}? [{<constant-expression>}?]

 | {<direct-abstract-declarator>}? ({<parameter-type-list>|?)

150

<enum-specifier> ::= enum <identifier> { <enumerator-list> }

 | enum { <enumerator-list> }

 | enum <identifier>

<enumerator-list> ::= <enumerator>

 | <enumerator-list> , <enumerator>

<enumerator> ::= <identifier>

 | <identifier> = <constant-expression>

<typedef-name> ::= <identifier>

<declaration> ::= {<declaration-specifier>}+ {<init-declarator>}*

<init-declarator> ::= <declarator>

 | <declarator> = <initializer>

<initializer> ::= <assignment-expression>

 | { <initializer-list> }

 | { <initializer-list> , }

<initializer-list> ::= <initializer>

 | <initializer-list> , <initializer>

<compound-statement> ::= { {<declaration>}* {<statement>}* }

<statement> ::= <labeled-statement>

 | <expression-statement>

 | <compound-statement>

 | <selection-statement>

 | <iteration-statement>

<labeled-statement> ::= <identifier> : <statement>

 | case <constant-expression> : <statement>

 | default : <statement>

<expression-statement> ::= {<expression>}? ;

<selection-statement> ::= if (<expression>) <statement>

 | if (<expression>) <statement> else <statement>

 | switch (<expression>) <statement>

<iteration-statement> ::= while (<expression>) <statement>

 | do <statement> while (<expression>) ;

 | for ({<expression>}? ; {<expression>}? ; {<expression>}?)

<statement>

<identifier> ::= <letter>* { <letter> | <digit> }*

151

<letter> ::= a | b | ... | z | A | B | ... | Z | _

<digit> ::= 0 | 1 | ... | 9

 Essentially, the whole translation module becomes only a single function

(called main) while there are no declarations outside that main function. In addition,

jump statements of any form are not supported since they break normal code flow.

Everything else retains exactly the same grammar and semantics of the original

language.

152

AUTHOR’S PUBLICATIONS

[1] D. Saougkos, G. Manis, "Self Adaptive Run Time Scheduling for the Automatic

Parallelization of Loops with the C2κΣC/SL Compiler", Parallel Computing 39

(2013), pp. 603-614.

[2] D. Saougkos, G. Manis, “A Parallelizing Compiler for the Microgrid: Exploiting

Concurrency from Software Continuity”, In: The AppleCore Project Workshop

organized during High Performance and Embedded Architecture and Compilation

(HiPEAC) 2012, Paris.

[3] D. Saougkos, G. Manis, “Run Time Scheduling with the C2uTC Parallelizing

Compiler”, In: 2nd Workshop on Parallel Programming and Run - Time Management

Techniques for Many – Core Architectures, organized during 24th Conference on

Computing Systems (ARCS 2011), 2011, pp. 151-157.

[4] D.Saougkos, A. Mastoras, G. Manis, “Fine Grained Parallelism in Recursive

Function Calls”, In: Workshop on Languaged-Based Parallel Programming Models

organized during PPAM (Parallel Processing and Applied Mathematics) Conference,

Torun, Poland, September 2011.

[5] D. Saougkos, D.Evgenidou, and G.Manis. “Specifying Loop Transformations for

C2κTC source – to –source compiler”, in 14th Workshop on Compilers for Parallel

Computing (CPC ’09), 2009.

[6] D. Saougkos, G. Manis, K. Blekas, A. V. Zarras, "Revisiting Java Bytecode

Compression for Embedded and Mobile Computing Environments", IEEE

Transactions on Software Engineering, vol. 33, no. 7, pp. 478-495, Jul., 2007.

153

SHORT CURRICULUM VITAE

Dimitris Saougkos was born, raised and spent his formative years in Ioannina.

At the age of 17 he was accepted into the Computer Science Department of the

University of Ioannina with honors (Highest entry grade). Programming was always

an interest for him and, as such, the choice of major was easy. During his studies he

also received awards for being the first student in the first, second and third year of

studies. After graduation he was accepted with honors (highest entry grade) in the

Post Graduate department of the same Computer Science Department which he

finished after two years specialized in Software. Once he completed his mandatory

military duty, and after having discussed about the possibility of a PhD with assistant

professor George Manis, he was accepted as a PhD candidate in 2008 and also

worked as a researcher for the E.U. – funded project APPLECORE where he

developed a source-to-source compiler. He has also worked as IT support for the

DASTA office of the University of Ioannina. Currently (2014 - 2015) he is working

as a Software Design Engineer at the UK-based company Imagination Technologies.

His research interests include automatic (and general) parallelization, compilers and

system programming.

