Mapping Loop-Based Programs onto a Multithreaded Processor

H
AIAAKTOPIKH AIATPIBH

YnoBdriietor otV
optobeica amd v ['evikn Zovédevon Ewdumg XHvOeong

tov Tunuatog ITAnpopopikng
E&etaotikn Emrponn

oo Tov

2a00yKo Anunplo

®G LEPOG TOV Y TTOYPEDCEMV

yio. T Aym
TOV

AIAAKTOPIKOY AIMTAQMATOZX XTHN ITAHPO®OPIKH

Oxtopprog 2014

DEDICATION

This work is dedicated to Catherine. She fought until the very end and will

always be in our hearts and minds.

ACKNOWLEDGEMENTS

This thesis contains the results of a research that started in 2008 but
culminated in 2011 to 2012. Its progress reflected my personal life which was marked
by both the brightest and the darkest of times. For this reason alone | would like to
thank my Supervisor, George Manis, who not only guided me (and insisted on some
choices even when I vehemently insisted that “that can’t be done!”) but also
demonstrated Jobian levels of patience when dealing with me. | would also like to
thank my consulting committee members Chris Jesshoppe and Nikolaos Papaspyrou
for helping me improve on my work and my thesis. Of course special mention goes to
my family, my parents George and Anthoula as well as my siblings, Vasilis, Catherine
and Joan for all the support they have given me over the years. Finally | would like to
thank my close friends George(x3), Mary, Helen, Socrates and Lee for being there for
me when | needed them the most. This thesis would not exist without any of these

people.

TABLE OF CONTENTS

Chapter 1. Introduction
Chapter 2. Related Work
2.1. Introduction on Parallel Systems and Threads
2.2. Developer Tools which Enable Parallel Programming
2.3. Dependencies and Parallelism Detection
2.4. The Polyhedral Model and Related Methods
2.5. General Parallelization and Run-Time Methods
2.6. Overviews, Surveys, Tutorials and Books on Automatic Parallelization
2.7. List of Parallelizing Compilers
Chapter 3. Loop Transformations
3.1. Data Dependencies and the Polyhedral Representation
3.2. Loop Transformations
3.2.1. First Pass Transformations
3.2.2. Unimodular Matrices
3.2.3. Prime Loop Transformations
Chapter 4. SVP
4.1. Introduction and Prerequisites
4.2. The SVP Processor and Model
4.3. The SL Programming Language
4.4. The Toolchain
CHAPTER 5. THE C2uTC/SL COMPILER
5.1. Introduction
5.2. Single-Dimensional Loops
5.2.1. Loops without Dependencies
5.2.2. Loops with a Single Dependence
5.2.3. Loops with Multiple Dependencies
5.2.4. Loops with Anti-Dependencies
5.3. Multi-Dimensional Loops
5.3.1. The Fixed-Size Algorithm
5.3.2. The Self-Adaptive Algorithm
5.3.3. Anti-dependences
5.4. From C to SL
5.4.1. The Masterloops
5.4.2. Dependence Analysis in a Masterloop
5.4.3. Transformation of a Masterloop
5.4.4. Code Generation
CHAPTER 6. EVALUATION OF THE C2uTC/SL COMPILER
6.1. Introduction

6.2. Single-Dimensional Loops
6.3. Multi-Dimensional Loops
6.3.1. No Dependences
6.3.2. The Run-Time Algorithm
6.4. The Livermore Loops
Chapter 7. Final Thoughts
References
APPENDIX A. The SL Language
APPENDIX B. Supported C subset
Author’s Publications
Short Curriculum Vitae

89

99

100
108
120
124
128
135
146
152
153

Vi

TABLE INDEX

Table Pg.
Table 2.1 Flyn's classification of Parallel Systems. 4
Table 6.1. The Results of the Execution Times (in Cycles) of a Simple Sequential and
Parallel Application. 90
Table 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads
Running the Same Code. 91

Table 6.3. Comparison Between the Sequential for and the Transformed SL Code. 92
Table 6.4. Results of the Transformed Loop with a Dependency of Length 2. 93
Table 6.5. Results of the Transformed Loop with a Dependency of Length 5. 94

Table 6.6. Comparing Sequential and SL Codes with 2 Dependences. 96
Table 6.7. Comparing Sequential and SL Codes with 3 Dependences 97
Table 6.8. Comparing Sequential and SL Codes with 4 Dependences. 97
Table 6.9. Comparing Sequential and SL Codes with 5 Dependences. 97
Table 6.10. Comparing Sequential and SL Codes with an Anti-Dependence. 99
Table 6.11. The Results of the Game of Life in Absolute CPU Cycles. 100
Table 6.12. Continuation of the Results in Table 6.11. 100
Table 6.13. Speedups for the Game of Life Derived from Table 6.11. 101
Table 6.14. Speedups Derived from Table 6.12. 101

Table 6.15. The Resulting Data of the Mandelbrot Calculation (1 to 4 cores). 102
Table 6.16. The Resulting Data of the Mandelbrot Calculation (8 to 64 cores). 103

Table 6.17. Corresponding Speedups of the Mandelbrot calculation. 103
Table 6.18. Corresponding Speedups of the Mandelbrot Calculation (cont.). 103
Table 6.19. CPU Cycles for the Sequential and Parallel Executions of Matrix
Multiplication. 105
Table 6.20. Continuation of the Results from Table 6.19. 105
Table 6.21. Corresponding Speedups Gained from Parallel Matrix Multiplication. 105
Table 6.22. Corresponding Speedups from Matrix Multiplication (cont.). 106
Table 6.23. MasterCPU Cycles for the Game of Life for Various Problem and Tile
Sizes. 107
Table 6.24. Comparing execution times between sequential, transformed and
manually written parallel code. 111
Table 6.25. Speedups Gained from the two methods for various problem sizes. 111
Table 6.26. The Optimal Tile Size for Various Problem Sizes. 112
Table 6.27. Speedups for Problem Size of (2, 3, 4)000x (2, 3, 4)000 for the Loop With
Dependence Vector D={(1,0), (0,1)} 112
Table 6.28. CPU Cycles and Speedup Gained for Various Tile Sizes for the Compile-
time Hyperplane Method (Problem size: 4000 x 4000). 112
Table 6.29. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the
{(1,0),(0,1)} Problem. 113

Table 6.30. Comparing the Speedups of the two Methods for the {(1,0),(0,1)}
Problem. 114

vii

Table 6.31. Comparing the Resulting Data of the Two Run-time Algorithms for the

D={(0,1), (1,2), (1,0), (1,-1)} Problem. 116
Table 6.32. Comparing the Speedups of the Two Run-time Algorithms for the Loop
with D={(0,1), (1,1), (1,0), (1,-1)} 116
Table 6.33. CPU Cycles for the {(2,0), (0,2)} Problem. 118
Table 6.34. Speedups Achieved by the two Algorithms. 118

Table 6.35. A Summary of the Results of the Livermore Loops Transformations by
C2uTC/SL. 123

viii

FIGURE INDEX

Figure Pg.
Figure 2.2. Using OpenMP to Calculate the Value of pi in Parallel. Letters in Bold
Indicate where the Computation Takes Place. 9
Figure 2.3. Using MPI to Calculate the Value of Pl in Parallel. Letters in Bold

Indicate MPI-specific Directives. 10
Figure 3.1. A Perfectly Nested Loop in C. Unit Stride of 1 is Assumed. 27
Figure 3.2. A Typical Example of a Perfectly Nested Loop in C with Two Loop

Carried Dependencies. 28
Figure 3.3. Using Data Privatization in Order to Simplify and Remove a False (Anti)

Dependency. 30
Figure 3.4. Using Data Expansion in Order to Simplify and Remove a False (Anti)

Dependency. 30
Figure 3.5. An Example of Induction Variable Elimination. 31
Figure 3.6. An Example of Loop Normalization. 31
Figure 3.7. An Example of Forward Substitution. 32
Figure 3.8. An Example of Loop Distribution Which can Help Improve Cache

Performance. 32
Figure 3.9. Another Example of Loop Distribution Where an Imperfectly Nested

Loop is Split Into two Perfectly Nested Ones. 32
Figure 3.10. An Example of Loop Fusion. Two Parallel Loops are Fused Together

with the Aim to Reduce Overhead. 33
Figure 3.11. An Example of Reduction. The Summation of A into the Scalar “sum” is

Partially Parallelized. 34
Figure 3.12. A Perfectly Nested Loop with Nesting Level of 2 and its Graphical

Representation in the Two-Dimensional Space. 35
Figure 3.13. The Loop of Figure 3.12 and its Graphic Representation After a Tiling

Transformation. A Stride of 3 was Used in Each Dimension. 36
Figure 3.14. The Unimodular Transformation of Loop Interchange. 37
Figure 3.14. A Nested Loop Before and After Loop Interchange. 37
Figure 3.15. Creating a Permutation Unimodular Matrix by Swapping the Rows of the

Original Identity Matrix. 37
Figure 3.16. Applying the Constructed Unimodular Matrix from Figure 3.15 to an

Index Set. 38

Figure 3.17. A Code Example where Skewing can Expose Hidden Parallelism. 38
Figure 3.18. The Graphical Representation of the Loop and the Loop Carried
Dependences it contains. 39
Figure 3.19. A Typical Skewing Unimodular Matrix. fy, f,,..., f;, are the Skew Factors.
39

Figure 3.20. The Skewed Result from the Original Loop of Figure 3.17 when the

Matrix of Figure 3.19 was Applied on it. 40
Figure 3.21. The Polytope Representation of the Skewed Loop Presented in Figure
3.20. The Inner Level Parallelism per Iteration of i’ is Obvious. 41

Figure 3.22. From Left to Right the Wavefront (Black Dashed Rectangle) Moves
Through the Computation data. Grayed Points Indicate Already Processed Index
Instances. 41

Figure 4.1. An SVP Family of Microthreads. The Global Channel is Available to all
Threads While the Shared one Creates a Data-chain from One Thread to the Next.

46

Figure 4.2. An SVP Hierarchy with the Accompanying Asynchronous Memory. 47

Figure 4.3. A Typical Code Fragment which Calculates the Product of two n x n

Matrices. 48
Figure 4.4. The Execution Hierarchy Created for the Concurrent Matrix
Multiplication. Single-pointed Arrows Indicate Dataflow Direction. 49
Figure 4.5. Calculating the ngy Term of the Fibonacci Sequence. After the Thread’s
Termination, Reading the Shared Channel ¢ Provides the Final Result. 51
Figure 4.5. An Application which Concurrently Multiplies two Matrices a, b (10x10
size) and Stores the Result in the ¢ Matrix. 52
Figure 4.6. The Typical SL/SVP Toolchain. 53
Figure 4.7. The Augmented SVP Toolchain. 54
Figure 5.1. Typical Loop Without Dependencies. 56
Figure 5.2. Another Example of a Loop Without Dependencies. 56
Figure 5.3. The End Result of the Transformation of the Loop in Figure 5.2. 57
Figure 5.4. Invoking the Family of Threads of Figure 5.3 from the Parent Thread. 57
Figure 5.5. A Typical Example of Unary Dependency. 57

Figure 5.6. Visualization of the Index Space that Figure 5.5 Produces. The Dashed
Arrow Indicates the Direction and Length of the Loop Carried Dependence. 57
Figure 5.7. The Transformed Result of the Code in Figure 5.5. 58
Figure 5.8. A Typical Code Example of a Uniform Dependency with Length x. 59
Figure 5.9. Index Space Visualization of a Single Dependence of Length x=2. 59
Figure 5.10. Transforming the Code of Figure 5.8. Notice the Increase in Hierarchy

Complexity. 60
Figure 5.11. A Loop With x Different Dependencies. 61
Figure 5.12. Visualization of the Loop of Figure 5.11. 61
Figure 5.13. Transformation and Invocation of a Loop with Multiple Dependencies.

62
Figure 5.14. A Typical Loop with an Anti-dependence. 62
Figure 5.15. Transformation and Invocation of the Anti-Dependence Loop. 63
Figure 5.16. A Random State of the Index Space of a Nested Loop with two

Dimensions. Arrows Indicate Dependences (2 in this Example). 64
Figure 5.17. A Two-Dimensional Index Space Before and After Tiling. Each Tile has

a Length of 3. 65
Figure 5.18. The Original Code to be Transformed. The Corresponding Dependence

Vector D={ (1,0), (0,1) }. 67
Figure 5.19. The Dependence Array as it is Initialized for a Nested Loop with a

Dependence Vector D={ (1,0), (0,1) } 67

Figure 5.20. How the Dependence Array is Initialized Based on the Dependence
Vector {(a,0),(0,b)}. 68

Figure 5.21. The Dependency Array at a Random State During Execution. 70
Figure 5.22. The Initialized Dependence Array for a Dependence Vector of
D={(1,0),(0,*)} 74

Figure 5.23. A Random State of the Dependency Array with the Executing Tiles. 77
Figure 5.24. A Perfect Loop Construct Which Comprises a Single Masterloop. 79
Figure 5.25. A Typical Matrix Multiplication Code which Contains Two Masterloops.

79

Figure 5.26. A Loop that Calculates the ny, Fibonacci Number (n > 2, a and b are
Initialized to 0 and 1 Respectively, ¢ Carries the End Result). 80

Figure 5.27. The Necessary Change in the Original Matrix Multiplication Code
Needed for the Partial sums to be Calculated in Parallel. 83
Figure 5.28. The parallel result of the code in Figure 5.25. 84
Figure 5.29. Original code that performs bubble sort. 85

Figure 5.30. The entire transformation (including invokation at the bottom) of the
bubble sort while-loop of Figure 5.29. 86

Figure 6.1. Comparing the Data of Sequential and Parallel Code in Graph Form. 90
Figure 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads.

91
Figure 6.3. Loop with a Single Dependency of Length 1. 92
Figure 6.4. Comparing Sequential and SL Codes With a Dependency of Length=1.
93
Figure 6.5. A Loop with a Dependency of Length 2. 93
Figure 6.6. Comparing Sequential and SL Codes with a Dependency of Length=2.94
Figure 6.7. A Loop With a Single Dependency of Length 5. 94
Figure 6.8. Comparing Sequential and SL Codes with a Dependency of Length=5.95
Figure 6.9. A General Form of a Loop with Multiple Dependences (2 to 5). 96
Figure 6.10. Comparing Sequential and SL Codes with 2 Dependences. 96
Figure 6.11. Comparing Sequential and SL Codes with 3 Dependences. 98
Figure 6.12. Comparing Sequential and SL Codes with 4 Dependences. 98
Figure 6.13. Comparing Sequential and SL Codes with 5 Dependences. 98
Figure 6.14. A Typical Anti-Dependence Example. 98
Figure 6.15. Comparing Sequential and SL Codes with an Anti-dependence. 99
Figure 6.16. Comparing the Sequential and SL Codes for the Game of Life (Cycles).
101
Figure 6.17. Comparing the Sequential and SL Codes for the Game of Life (Speedup).
102
Figure 6.18. The Resulting Data of the Mandelbrot Calculation (CPU cycles). 104
Figure 6.19.The Corresponding Speedups of the Mandelbrot Calculation. 104
Figure 6.20. Comparing Sequential and Parallel Matrix Multiplications (Cycles). 106
Figure 6.21. Comparing Parallel Matrix Multiplications (Speedups). 107

Figure 6.22. Speedups gained for the problem of D={(1,0),(0,1)} with a grid size of
4000x4000 and various tile sizes. The dashed line indicates the inferred trend. 109
Figure 6.23. Comparing cycles between original, SL and manual hyperplane codes.

111
Figure 6.24. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the
D={(1,0),(0,1)} Problem. 114

Figure 6.25. Comparing the Speedups of the two Run-time Methods for the
D={(1,0),(0,1)} Problem. 115

Xi

Figure 6.26. The Second Loop Nesting Under Evaluation. The Dependence Vector is

D={(0,1), (1,2), (1,0), (1,-1)} 115
Figure 6.27. Visualization of the Dependence vector in the 2-D index space. 115
Figure 6.28. Comparing the CPU Cycles of the two Run-time Algorithms for the

Loop with D={(0,1), (1,1), (1,0), (1,-1)} 117
Figure 6.29. Comparing the Speedups of the two Run-time Algorithms for the Loop

with D={(0,1), (1,1), (1,0), (1,-1)} 117
Figure 6.30. CPU Cycles for the {(2,0), (0,2)} Problem. 119

Figure 6.31. Comparing the Speedups Achieved by the two Algorithms for the
D={(2,0), (0,2)} Problem. 119

xii

ABSTRACT

Saougkos Dimitrios. PhD Candidate, Computer Science Department, University of
loannina, Greece. Graduation Month, Graduation Year. “Mapping Loop-Based
Programs onto a Multithreaded Processor”. Thesis Supervisor: Manis George.

This thesis offers some insight into the automatic parallelization of loops by
introducing and describing a source-to-source parallelizing compiler developed from
scratch called C2uTC/SL. Once basic notions and ideas on the field of automatic
parallelization have been introduced, the SVP system is described in great detail. It is
a novel proposal on multi-core architectures and is what C2uTC/SL targets as output.
The SVP is a novel design for a multi-threaded processor that can be bundled together
with an OS-on-chip as part of the chip's ISA (Instruction Set Architecture). Several of
those SVP cores together form a microgrid. The programming paradigm followed by
the microgrid is that of a family of threads. Each family executes independently and
all the threads belonging in such a family run in parallel. A thread can create more ad-
hoc families so a whole hierarchy of families can exist at any given time.
Synchronization is achieved by a series of synchronizing channels that can carry
information from one thread in the family to its neighbors. The whole system can
revert back to complete sequential execution once all resources are taken. Two
programming languages were created for the high level programming / abstraction
layer of the SVP: uTC and SL. Both are explained later in the text however they both
are extensions of the basic C language. They extend the language with a series of
directives for the creation and execution of families of threads.

The C2uTC/SL source-to-source compiler is described afterwards: its purpose
is to take as input any legacy C code and transform it into a parallel SL program.
Originally its output was the uTC language but with the advent of SL it changed to
that, hence the name C to uTC / SL (C2uTC/SL). The compiler’s main target
constructs are loops since a loop is where most of the execution time of an application
takes place. Since SVP works with families of threads that resemble single-
dimentional loops, transforming any kind of loop into a meaningful construct for the
SVP is an important step. For that reason, loops are divided into single-dimensional
and multi-dimensional ones with each category requiring a different transformation
method.

Single-dimentional loops are further categorized by the number of the so-
called loop carried dependencies that they have and are treated accordingly. Loops
with no dependencies are just translated simply into parallel families. Loops with
dependencies utilize the SVP’s synchronizing channels to transfer data from one
thread to the next in a dataflow manner. This action alleviates the weight of each
thread having to access the global memory for a particular piece of data since

Xiii

whatever it needs is simply transferred over via the synchronizing / shared channel.
Once each thread finishes computation it pushes all relevant data back to the shared
channel for use by the next thread. The combination of parallel executing independent
data-flows (data-chains) and the synchronizing channel to reduce accesses to the main
global memory brings tremendous increases in speedup and efficiency.

Multi-dimensional loops are also subcategorized into two groups. The first
group is the one that contains no dependencies. Again each loop of the loop nesting is
simply transformed to a fully parallel family and it is up to the SVP to run the code
effectively. The second and most interesting group contains the perfect loop nestings
with a static dependency vector. Lamport’s hyperplane idea is applied in this case
however there is a novelty: Instead of precomputing any loop transformation, it is up
to the run-time environment to intuitively follow the dependency vector over the
index space and discover the different hyperplanes per cycle. This novel idea gave
birth to our first run-time algorithm: The fixed-size algorithm. It has the ability to
apply the hyperplane idea, discovered while running the actual computation code, into
the various tiles of a fixed size which divide the innermost dimension of the loop. The
fixed size algorithm proved to work properly, however for optimal or even good
results the size of the tile was needed to be known beforehand, effectively making the
whole algorithm not particularly useful except as a stepping stone and also a great tool
for comparisons.

This glaring weakness of the Fixed-Size algorithm was covered by its
evolutionary “descendant”: the Self-Adaptive algorithm. Working on the same
principles as the Fixed-Size one, it can, at run-time, determine the optimal tile size to
use at any given computation cycle by reducing it or increasing it according to the
current needs.

Experimental results indicate that not only the Self-Adaptive algorithm fares
very well with near-optimal results when compared with the Fixed-Size one, it is also
shown that for that particular type of parallelism (run-time execution of parallel
families discovered on the spot) the results obtained are the best possible results that
can be obtained. The algorithms were also compared with a standard compile-time
method (the hyperplane method) and it was found that their speedup is relatively close
to each other. This combined with the versatility offered by a run-time system (like
dealing with irregular index spaces) makes the Self-Adaptive algorithm especially
appealing.

Xiv

EKTENHX ITEPIAHYH XTA EAAHNIKA

2a00yKog Anuntpog. Yroynoeog Awdktwp, Tuqua [TAnpoeopikng, ZyoAn Octikmv
Emomudv, Tavemomuo Iloavvivev. Mavag / 'Etoc. «Amewkdvion Bpoyov oe
[ToAvvnuotikd Enegepyaot». EmPAénwv: Mavig N'empyroc.

H mapovoa dwtpipn mpoceépel pio mepmynon 6tov KOGUO TG OVTOHOTNG
naparliniomoinong tov Ppdywv Tapovstalovtag Kot TeEPypAPoVTaS TapdAAnAa Eva
EPYOAEID OWTOLOTOV TaPaAANAopOD (Tnyaio og mnyaio) Tov dNUOVPYHONKE €K TOV
undevog kar ovopaletor C2uTC/SL. Apod Topovolastodv Pactkég £VOlEg 6TOV YHPO
TOV OVTOUOATOV TOPUAANAGHOD, To cvotnuoe SVP meprypdopetor: Mo Kovotopog
TPOTOCT OTLG TOAD-TOPNVES OPYITEKTOVIKEG Kol omotehel otdyo - £€E0d00 TOL
C2uTC/SL. To SVP anotehei t0 0)€610 Yo Evay TOAD-TOPNVO ETEEEPYAOGTI] KOl EYEL
™V 1310TTo Vo ekTeAEl va OAOKANPO AELTOVPYIKO GUOTNUO TO Omoio pmopel vo
katadapupaver pépog tov ISA (Instruction Set Architecture) tov moprva. [ToAloi amod
OLTOVG TOVUG TULPNVEG UTOPOLV VO GLVOVOGTOVV GTO AEYOUEVO UIKPOTAEYLLOL
(microgrid). O mpoypoupatiopndc tov microgrid otnpiletor ce oKOyEVEIEG A0
viunata. KdBe owoyévela extedeitanr avtdévopa Kot OAQ TO VIUOTO TOV OVIKOLV GE
OLTV TNV OWKOYEVEWL UTOPOVV VO €KTEAEGTOLV TapaAinia. Emiong, xabe viua
pmopel va dnpovpynoel 0ceg okoyéveleg ypetdletor katd fovAnon. Me avtdv tov
TPOTO, oL OLOKANPY| tepapyio ammd viHaTo Hopel va EKTEAEITAL OV TAGH GTIYUT OTO
microgrid. O cvyypoVIGHOG HETAED TV VILATOV EMTVYYAVETOL 0O TNV VTopén piog
OEPAG KAVOADV TOV UTOPOVV VO HETAPEPOVY TANPOPOPIES Amd £va VIO GE 1oL
OKOYEVELL GTO YEITOVIKA Tov. Edv o1 mopotl tov cvotipatog eEavtAnbovv, tote 10
oVoTNUA VoL IKOVO VO EMGTPEYEL GE KATAGTAOT] GEWPLOKNG EKTEAEOTG. AVO YADGOESG
TPOYPOULOTIGHOD dMovpyndnkav yio tov mpoypoupatiopnd tov microgrid og éva
vyniotepo enimedo: PTC kor SL. Kot ot dvo meprypdeovion o610 keipevo, kot m
Baoikn Tovg Aettovpyia glvar va emekteivouy v yAdooo C pe 1€1010 TpOTO OOTE VoL
LITOPOLV VoL EAEYYOLV TNV ONULOLPYIL KoL TNV EKTEAECT] TV OIKOYEVELDV OO VILLATO.

v ovvéxelo o owtopatog petappootng C2uTC/SL mapovoidletor Kot
neptypagpetatl: O okomdg tov gival va d€xeTal g 16000 £vol OTOL0OMTOTE TPOYPOLLLLOL
ypappévo og C Kot vo T0 HETAHOPPOVEL 6 Eva TopaAAnio Tpoypoppa SL. Apyucd n
£€000¢ tov Ntav N yhdoco puTC aAld pe v epedavion ™ SL o petagpactic
TPOGOPUOCTNKE avaroya, omdte Kot To dvopud tov C2uTC/SL. H Bacikn doun yio v
omoio EVOLPEPETOL O HETAPPACTAG efvarl ot BpoOYOL HiaG Kot TO HUEYOADTEPO TOGOGTO
TOV ¥POVOVL eKTEAEONG 0€ Eva TPOYpappa ivar ot fpdyot. E@’ 6cmv 10 SVP dovievet
LE OIKOYEVELEG OO VAT TTOL HOlAlOVV LE POVOSIACTOTOVS BPOYOVG, 1 LETATPOTN
evOg omolodnmote PpoOyov oe owoyEvela VifUAToVY givon Eva onuovtikd Prua. o tov
AOy0 awtd, ot Bpodyor ywpiloviol 6e LOVOSIAGTATOVS Kol TOAVIIACTOTOVG HE KAOE

XV

Katnyopia vo ypeldletol Kot SpOpPETIKN OVTILETOTION OGOV OPOPE TNV LETATPOT)
TOV KOOKO OV YpedleTal.

O1 povodidotatot Bpdyot xwpiloviol Tepattépm Ge KATNYOPIEG OVAAOYX LUE TIG
eoptnoelg mov Ppiokovrar otov Ppdyo (loop carried dependencies). Bpdoyor ywpig
e€OPTNOELG AN LETUTPETOVTOL GE TANPMG TUPAAANAES OIKOYEVELES EVD OL BPOYOL LE
eCAPTNOELS HETOTPEMOVTOL GE OIKOYEVEIEC TOV YPNOULOTOOVV T EWOIKA KOVOALOL
ovyypoviopov Tov SVP yia va petapépouy dedopéva amd Tov va VIO 6TO ETOUEVO
ue TV popen g pong dedouévev (data flow). Avtod tov gidovg M petoTpomn
EMUTPENEL GTO. VALOITOL VoL £Y0VV To. dedopéva Tov ypetdlovtol ympic va xpetdleTon va
T avalNTHoOVY GTNV KEVIPIKY KON UVAUN, TPAYH «okpio» amd dmoyn ypovov.
Otav kdbe vpo TEAEIOOEL TOV LTOAOYIGUO TOV TOV OVOAOYEl, OAOL TO. CYETIKA
OedOUEVOL LETOPEPOVTOL GTO ETOUEVO VIO LECH TOV E10TKOV KOVOALOD ETIKOIVOVIOG
t0v SVP. O cuvdlooudg g ektéreons TopIAANA®Y pOdY SEOUEVMV LLE TNV XPNON
TOV EWIKOV KOVOAIDV ETKOWOVIOG TPooeEpel peydheg avénoelg oty
AOd0TIKOTITO KO GTNV EMLTAYVVOT) VOGS TPOYPAUUATOG.

Ot moAvdidotator Bpoyot eniong ympilovtar oe vokatnyopiec. H mpotn dev
nepiEyel e€aptoelg kol Kabe eminedo otov Ppodyo pmopet vo petatpamel ce po
TANP®G TOPAAANAN owkoyévela avabétovtag oto meptBdArov ektédeong tov SVP v
elooppommon Papovg peta&d tov mupriveov tov Mmicrogrid. H devtepn (ko mo
evolapépovoa) katnyopio meptAapPavet fpoyovs mov mEPLEYOVY OTATIKEG EEAPTNOELG.
H mpocéyyion tov Lamport pe to vrepenineda (hyperplanes) ypnowomnoteitor e
auTV TNV mepinTmon oAAd pe po kouvotopio: Avti vo yivouv ot amapaitntot
(00oKOAOL GE TOMAEG TTEPITTMOGELS) VITOAOYIGHOL GE XPOVO LETAPPAOTG, TO TEPIPAAAOV
eKTEAEONC avoAapUPAvEL va evTomicel OAX TOL GTOLEI TOV UTOPOVV VO EKTEAEGTOVV
TOPAAAN A avE KOKAO eKTEAEON G akoAoVO®VTOG dtocOnTikd Tov mivaka eEapTnoemv.
Avt 1 1¥éa odnynoe ommv Onpovpyic TOL TPMOTOL G aAyopiBuov ypdvov
exktéleonc: Tov adydpiBuo otabepod peyébouvg (Fixed Sized Algorithm). Eiyxe v
duvatdtto v evtomilel 1o KPLUUEVO VITEPETIMES TNV 10100 MPOL TOV EKTEAOVGE TOV
010 ToV KOO TV TPOYPAUHTOC. O YdPog avalTnong TV JEIKTOV TOV BpoywV
yopiletor oe peyédn otabepod pnikovg Kotd T0 MO gomtepkd Ppdyo. O
TOUPUAAACUOG EMTVYYAVETOL UETOED TOV KOUUOTIOV oTafepod UNKovg evad kdbe
TUUO ecmTePKd extereital oeplakd. Evd o adydpiBuog dovieye cwotd, KaAég
EMTAYVVOELS EMTVYYAVOVTAY LOVO €AV TO 6TAfEPO UNKOG MTOV KATAAANAQ ETAEYUEVO
EK TOV TPOTEPMV, KATL TPOKTIKE 0dvvatov aeov kdbe mpdfAnua €xel to dkd TOL
BéArtioto péyeboc. Avtd to TpoOPAnNpa peTéTpeye TOV aAYOpIOHo € Eva KOAO TPpdTO
Bruo kot og £va epyareio Yo cuyKpioELS.

Avt 1 advvopio Tov adyopiBuov otabepov peyéBovg koAvEONKE pe TOV
alyopBpo mov vrnpée o e€eMkTikdg amdyovog tov apytkov. Tov alyoplBpo avtd-
uetafarropevov peyébovg (Self-Adaptive Algorithm). Xpnowomowdvtag Tig 1d1eg
apyés pe tov alyopipov otabepol peyéBovg, pmopovoe e ypOVO EKTEAECNG V.
petafdidet to péyeboc tov TuNUATOV PACEL KATOLOV UETPIKAOV 0md KOKAO G€ KOKAO.

Ta mepopatikd amoteléopato deiyvovv 0Tt 0 aAydpOpog peTafaAlOpeVoL
peyébovg emrvyydver emtayhvoelg oyedov ioeg pe tor PEATIOTO AMOTEAECUATO Y0l
aVTOV TOL TOTOL TOV TAPUAANAoUO. Ot odyopiBpol emiong cvykpidnkav pe pio
Tomik HEB0dO ypoOVoL peThppoons Ko Ppébnke OTL o0 KAMOEG TMEPIGTAGELS TO
amoteAéopato eivor kKovtd. Avtd palli pe v gveMéila g pebddov tov YPOVOL
exktéleong (my. ovtpuetomion pn opbokavovikdv Ppoymv) kdaver Tov 0vTO-
HETABOAAOEVO OAYOPIOLO E1O1IKE EAKVGTIKO.

CHAPTER 1. INTRODUCTION

Concurrency in computation is by no means a new concept. It has existed
since the 1960s and has steadily improved since then. The reason is simple, to speed-
up an application, one either needs a faster CPU, or more than one CPUs sharing the
computational load. Thusly, concurrent research was an entirely different research
branch that took place in tandem with traditional CPU research. However, only
recently has the existence of multiple cores in systems become prevalent. The latest
generations of PC CPUs carry 2 or 4 or even 6 cores inside them and the trend has
moved to include smart phones (it is common to see smart phones with 2 or 4 cores),
tablets and more. It is safe to assume that with the current technology on CPUs
reaching its limitations that multi-cores will become ever more prevalent in the
technological world.

Programming a parallel system though is much harder than programming a
sequential one. A coder will either write an application from scratch utilizing some
parallel library, or will use pre-existing modules that have been proven to work and
orchestrate them together. Moreover, there is plenty of legacy code in existence that
was created with only one core in mind. The challenges involved with writing good
parallel code coupled with the existence of sequential code led to the development of
automatic parallelizing tools. These tools are compilers that either compile from
source code to a different parallel source code (source-to-source) or compile to
parallel binary code directly. Creating such an automatic parallelizing compiler
though is not without its own challenges and the purpose of this paper is to describe
such a compiler.

Prior to the presentation of our compiler, some general information is firstly
required: The second chapter offers a small glimpse on the tremendously huge
research work that has been done on the automatic parallelization area mentioning not

only techniques and algorithms but whole compiler projects that existed (and some

still do). The third chapter offers some insight on some of the loop transformation
techniques that exist before moving on to the fourth chapter which introduces the SVP
architecture.

The SVP architecture is a novel contribution which describes a new type of
multi-core system. Each core can carry its own OS as an extension of the instruction
set and can achieve high memory latency tolerance coupled with low energy needs
(and thusly low heat emission and distribution). Many SVP cores form a microgrid
which is capable of offering true parallel execution of code as well as automatic
resource allocation and graceful degradation when it starts to run out of resources. Its
novel contribution is the existence of synchronized data channels that can impose an
order on the execution of threads as well as carry data between threads in a dataflow
manner. The same chapter also describes the programming language which was
created specifically for the SVP: The uTC/SL language, an extension of C with added
constructs that describe concurrency.

The fifth chapter presents the C2uTC/SL source-to-source automatic
parallelizing compiler. A tool capable of reading in a code written in the C language,
analyzing it to discover any potential for parallelism and finally outputting a different
program in the SL language which has the same functionality with the original one,
with the difference that it is faster since it takes advantage of SVP’s mechanisms.
Each type of loop is described alongside a way to transform it for the best possible
results.

C2uTC/SL’s main contribution though is its approach on the multi-
dimensional loops with static dependency vectors. Borrowing heavily on the
hyperplane (wavefront) idea, it utilizes a run-time algorithm which discovers the
underlying hyperplanes. Instead of resorting to heuristic methods or expensive integer
programming functionality to calculate the hyperplanes, it delegates that discovery to
the run-time environment. The idea is simple: At any given time, when there is a
known set of executing threads and a known dependency vector, by applying the
vector to the set it is possible to find the set of the next computational cycle. It is an
elegant and intuitive idea that of course became much more convoluted when it was
actualized as part of the code.

Chapter six evaluates the outputs of C2uTC/SL. For each different loop type,

an example is transformed into SL and then executed and compared with its original

form. More interestingly, the efficiency of the run-time algorithm is tested. A
theoretical target is first calculated for three different examples and then it is proven
that the run-time algorithm can reach it and even surpass it at some cases. It is also
compared to some standard compile-time transformation method. The results are
encouraging enough (as expected the run-time method can never compete against a
method that lacks all of its overheads but it can get relatively close).

Finally, the last chapter (seventh) provides a discussion on everything
mentioned in the previous chapters as well as a conclusion and general thoughts on

current as well as future work.

CHAPTER 2. RELATED WORK

2.1. Introduction on Parallel Systems and Threads

2.2. Developer Tools which Enable Parallel Programming

2.3. Dependencies and Parallelism Detection

2.4. The Polyhedral Model and Related Methods

2.5. General Parallelization and Run-Time Methods

2.6. Overviews, Surveys, Tutorials and Books on Automatic Parallelization

2.7. List of Parallelizing Compilers

2.1. Introduction on Parallel Systems and Threads

Parallel systems appeared early on in the history of computation. Soon after,
various types of systems had already existed and many more were on the way. In an
attempt to classify the ever increasing types of parallel system, Flynn on his work on
taxonomy [29] separated systems on whether they are Single Instruction or Multiple
ones i.e. whether there is a single Control Unit (CU) (which can direct Processing
Elements (PE)) or multiple ones and whether there is a single or Multiple Data

Streams. The resulting classification can be seen on Table 2.1.

Table 2.1 Flyn's classification of Parallel Systems.

Single Data stream Multiple Data streams

Single Instruction SISD SIMD

Multiple Instructions MISD MIMD

From that table we can see that Flynn discerned four distinct categories:

1. Single Instruction - Single Data (SISD).

A single controller directs a single Processing element to operate on data from a
single data stream. All conventional computers fall into this category.

2. Single Instruction - Multiple Data (SIMD).

A single controller directs multiple Processing elements to operate on data from
multiple data streams. The old Vector computers (a vector is a single dimensional
array, so a vector computer could operate a single instruction on various parts of the
array simultaneously) belong to this category as well as the modern GPUs.

3. Multiple Instructions - Single Data (MISD).

This category makes little sense in general. It involves a series of processing elements
performing calculations on a single data stream. In theory such a system can be used
for fault tolerance where a series of computers must agree on a result before it can be
accepted as correct. No computer of this category has ever been created.

4. Multiple Instructions - Multiple Data (MIMD).

This is a rather diverse category of systems. It includes parallel systems with
processing units and memory systems created especially with parallelism in mind,
parallel systems built with off-the-shelf computers connected in some form of
interconnection network and so on.

A 5™ category was later introduced, the Single Program — Multiple Data
(SPMD). More a programming style than an actual architecture itself, it became the
dominant paradigm for parallel programming. The main idea is that a number of
independent processors execute the same program at different points simultaneously.
This means that a single computer / processor begins executing the code and at
particular points in the code, it might spawn a parallel execution of that code. The
way this programming style is implemented differs depending on whether it is applied
on a distributed memory system or a shared memory one.

A Distributed Memory System is a parallel system consisting of a series of
independent computers called nodes. Communication and synchronization are
achieved by message passing over any network such as TCP/IP or Ethernet. A Shared

Memory System is a computer with a series of CPUs which have access to the same

memory space. In such a system, the SPMD is actually a series of directives that mark
areas of the code as ones that should execute in parallel. Once control reaches these
points, the rest of the CPUs begin executing the marked code in parallel.

The most commonly used parallel construct in a Shared Memory System is the
Thread. A thread is essentially a part of a program (a procedure or a function) which
can run independently from the main program. In the presence of more than one
processors / cores, threads can run simultaneously with the main program. Their
characteristic is that their creation and destruction are relatively light-weight
processes (especially when compared with Fork which duplicates the entire
application) and that large number of threads can exist at any given time with a very
small footprint on the host Operating System's (OS) resources. However, they are
anchored to the main application so if the program ceases to exist, so do all threads
associated with it. Threads share the same address space between themselves and the
main program so, basically, Multi-Threaded programming, and applications in

general, can only work on Shared Memory Systems.

2.2. Developer Tools which Enable Parallel Programming
In order to utilize parallelism, there exist various different tools and APIs
which developers can utilize, depending on their applications and targeted

architectures. A small (and by no means comprehensive) list of such tools follows:

e PThreads
e OpenMP
e MPI

e Nvidia's CUDA
e Intel’s Cilk
First and foremost is the lib-pthread library. The APl (Application

Programmer Interface, a set of function / procedure calls that defines how a software
component interacts with the rest) was composed by IEEE as part of the POSIX
interface so that all POSIX-compatible OSes could offer the same functionality to
applications and ease the transitioning of code from one platform to the next. The
PThread interface offers the developer a multitude of tools with which to implement

parallel applications (thread management like creating, destroying, detaching threads

and so on, mutex functions and condition variables). Figure 2.1 Demonstrates

creation of pthreads in the C language.

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5

void *TheadBody(void *id)

}

int id = (int)threadid;
printf("thread #%d executing\n", id);

return NULL;

int main (int argc, char *argv[])

{

}

pthread_t threads[NUM_THREADS];
int result;
int t;

for(t=0; t<NUM_THREADS; t++)
{

printf("creating thread %d\n", t);

result =
pthread_create(&threads[t], NULL, ThreadBody, (void *)t);

if (result)
{
printf("ERROR! return code=%d\n", result);
exit(1);
}
}

for (t=0;t <NUM_THREADS;i++)
pthread_join(threads[t], NULL);

return (9);

Figure 2.1. Using the Pthread Library to Create Threads.

the

OpenMP (Open Multi-Processing) ([67], [68]) is a higher level tool than

threads (and PThreads) which allows multi-threaded programming in a cross-platform

way enabling both task parallelism and data parallelism. It can be used with the

C/C++ languages as well as FORTRAN and its main use is the transformation of

loops into a series of threads that can produce the same result in a concurrent manner.

The programmer is responsible for marking the areas of the program that

OpenMP will assign into threads using specific macros (in the case of the C/C++

languages, #pragma is used to mark code areas). The programmer is also responsible

for identifying which variables are private, shared or induction ones and which

variables are reduction variables in order for OpenMP to work properly and offer

speed-ups to the original code. Once everything has been identified properly,

OpenMP divides the whole index space of the loop into a number of threads (each
with each own id) that perform computation in parallel. Once all threads finish
computation they join with the original program and control moves on.

Thread scheduling may also be configured by the programmer as OpenMP
offers a series of different schedules with the dynamic schedule being the most
popular, since it allows threads that have finished their part of the computation to pick
up some of the remaining work that awaits computation. This leads to better load
balancing at the cost of more expensive setting up and tearing down. The benefit of
OpenMP is that it offers a higher abstraction level to the programmer alleviating the
need of handling each thread manually and focusing on the actual idea behind the
program itself. Another advantage of it is that if the compiler is not an OpenMP
compatible one, it will just ignore all relevant #pragma directives and just compile the
program into a classic sequential form. Clearly, as OpenMP is a thread-enabled API,
its use was originally restricted only to Shared Memory Systems however a
combination of Message Passing and OpenMP could circumvent this restriction.
Additionally, extensions on the OpenMP model have allowed its use on non-Shared
Memory Systems as-is.

Figure 2.2. shows a typical example of an OpenMP-enabled source code. It
applies an iterative method for the computation of the value of pi. It is worth noting
that the variable “sum” was declared as a reduction one (a summation variable) which
caused the system to adapt accordingly and add all the values in parallel.

For the sake of completeness, MPI, CUDA / OpenCL and Cilk are also
mentioned, as they are important parallelization tools. MPI (Message Passing
Interface) [69] is an API that allows the programmer to transform any network of
computers into a parallel Distributed Memory System. With MPI a programmer can
divide a problem in smaller ones, scatter the data over the network to each computer
for computation and then gather back the results from for the final result.

The clear advantage of MPI is that it provides an inexpensive way to perform
complex computations quickly and easily without requiring any sort of shared
memory between processors. Of course due to the fact that it relies on an
interconnection network (such as Ethernet) as a data transfer medium, this means that

it will get quite slowed down. In classic network cases (i.e. not ultra low latency ones)

the only way to offset the slow data transfer is to resort to coarse grain parallelism
when working with MPI. Working on a purely distributed system where each CPU
has access only on its own part of the data means that MPI is better suited for
problems which can be divided cleanly and without any dependencies hidden in the
loop. This makes MPI ideal for data parallel programs but inadequate to deal with
task-based parallelism. Figure 2.3. shows a simple MPI program which calculates the
value of pi over a network.

CUDA [70] is a relatively new (since 2007) tool for parallel computations.
The main idea is that it opens the GPU of any system (which so far had been used
only for graphics related calculations) to the programmer for general programming.
GPUs support thousands of concurrent threads running simultaneously and by
exploiting that any application can become an order of magnitude faster. The CUDA
platform exists in various forms: from a series of libraries and compiler directives, to
extensions of industry-standard languages like C/C++, FORTRAN and more. Due to
the nature of a GPU (usually a SIMD machine), it is better suited for data parallel

applications.

#include <stdio.h>
#include "omp.h"
double f(double a) {return (4.0 / (1.0 + a*a));}
int main (int argc, char **argv) {
int i,n=1000000;
double sum= 0.0, x, h, mypi;
int chunk;
h =1.0 / (double) n;
chunk=n/4;
t#tpragma omp parallel private(i,x) shared(sum,n,h)
{
t#tpragma omp for schedule(runtime) reduction(+:sum)
for (i=1;i<=n;i++) {
x=h*((double)i-0.5);
sum=sum+f(x);}

mypi = h * sum;
printf("pi=%f\n",mypi);
return (90);

t

Figure 2.2. Using OpenMP to Calculate the Value of pi in Parallel. Letters in Bold
Indicate where the Computation Takes Place.

10

#include "mpi.h"
#include <stdio.h>
#include <math.h>
double f(double a) {
return (4.0 / (1.0 + a*a));

int main(int argc, char *argv[])
{
int done = @, n=0, myid, numprocs, ij;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, Xx;
int namelen;
char processor_name[MPI_MAX_PROCESSOR_NAME];
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank (MPI_COMM_WORLD,&myid);
MPI_Get_processor_name(processor_name,&namelen);
while (!done)
{
if (myid == @)
if (n==0) n=100; else n=0;
MPI_Bcast(&n, 1, MPI_INT, ©, MPI_COMM_WORLD);
if (n == @) done = 1;
else
{
h =1.0
sum = 0.0;
for (i = myid + 1; i <= n; i += numprocs)

{

/ (double) nj;

x = h * ((double)i - 0.5);
sum += f(x);
}
mypi = h * sum;
MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM,
9, MPI_COMM_WORLD);
}
}
MPI_Finalize();
return 0;

Figure 2.3. Using MPI to Calculate the Value of PI in Parallel. Letters in Bold
Indicate MPI-specific Directives.

Finally, Cilk [71] is a general-purpose programming toolset containing the
Cilk programming language and a runtime environment. It was originally developed
in MIT and was later acquired by Intel. Its driving principle is that the programmer is
responsible for exposing the parallelism in her code, identifying which parts can be
fully parallelized. In turn, the runtime environment handles everything from
delegating the work to any available processor/core to load balancing and scheduling.
This attributes Cilk programs with the “compile once, run anywhere” capability. The
language itself is a superset of C which supports the entire C language specification
extended by a few keywords that offer the necessary functionality. Load balancing is

achieved by a system of “work-stealing”: Each idle processor can attempt to “steal” a

11

piece of workload in a queue of a non-idle processor through the scheduler. Since the
package can be stolen from the end of the queue, it would be the last piece of load that

its original owner would have to work on.

2.3. Dependencies and Parallelism Detection

The tools mentioned so far are the ones most commonly used when it comes to
making an application which exploits hardware parallelization. However they are too
low-level in their abstraction level and require the developers themselves to know
when and how to properly use them. Automatic Parallelization solves that problem
but it requires a different set of actions.

The first step to automatic parallelization is the examination and analysis of
the source code of the application in question. The analysis will decide whether the
code can be executed in parallel or not. Most of the analyzer techniques and tools
focus solely on loops (for reasons that will be later described) and whether or not they
carry dependencies.

A dependency between two statements (S1 and S2) in a code exists when both
statements access the same memory location. Four types of dependencies exist: (i)
Flow Dependency: S2 is flow dependent on S1 when S1 writes to a memory location
which is later read by S2. (ii) Anti Dependency: S2 is anti dependent on S1 when S1
reads the value of a memory location which is later written by S2. (iii) Output
Dependency: S2 is output dependent on S1 when S1 writes a value to a memory
location which is later re-written by S2. (iv) Input Dependency: S2 is input dependent
on S1 when S1 reads the value of a memory location which is later re-read by S2.

From all these types, Anti, Output and Input are not real dependencies and can
be removed with various techniques that will presented later on. Dependencies that
exist inside a loop but between statements of different index instances are called Loop
Carried Dependencies. Dependencies that exist inside the same loop iteration are
called Loop Independent Dependencies because they do not affect the re-ordering of
the loop iterations in any way.

The existence of a dependency effectively imposes an order in the execution
scheme of the loop statements (and iterations accordingly). Since an ordering exists, it

becomes harder or even impossible to parallelize a loop with dependencies. The

12

ordering of a loop carried dependency on a loop can be seen by unrolling the loop. All
statements need to be executed in the precise order that the dependencies allow.

Because of the existence of such dependencies, parallelizing compilers apply a
series of tests on the statements of the loop in order to deduce whether the loop can be
fully parallelized or not. These tests usually rely on array subscript accesses and can
be either certain that there are no dependencies and hence the compiler can proceed to
fully parallelizing the loop or be uncertain and thusly most compilers would just leave
the loop intact. Since an array index can be any expression, usually the simple
expressions in the form of c1*i+c2 are examined where c1 and c2 are constants. More
complex expressions usually classify a loop as non-parallelizable. A random loop may
contain statements which access an array in the following style:

Array[cl*il+c2]=...
...=Array[c3*i2+c4]

A dependency will exist if c1*il+c2=c3*i2+c4 or c1*il-c3*i2=c4-c2. As with
any Diophantine equation, if the Greater Common Divisor (GCD) of (c1, c3) divides
(c4-c2) then the equation has a solution and hence a dependency exists. Hence the
GCD test can safely reply that there is no dependency when the GCD of the left-hand
side of the equation does not divide the right-hand side of it for every equation in the
loop.

However the usual case has it that the left-hand side GCD equals to 1 which
will always divide the right-hand side and hence its reply will be that there might be a
dependency. Hence other tests came to existence to cover for this weakness. The
extreme value test calculates the minimum and maximum possible values of the left-
hand side of the dependency equation and compares it to the right-hand side. If the
maximum value of the right-hand side is greater than the maximum of the left-hand
side or if its minimum value is lesser than the minimum value of the left-hand side
then there are no dependencies. A combination of the Extreme Value test and the
GCD usually provide satisfactory results.

Another classic dependency analysis test is the Omega Test [56]. It uses the
Diophantine equation to create an linear programming problem and then attempts to
solve it quickly by applying Fourier-Motzkin Elimination. Even though at its worst

case it completes in an exponential time, at most real life programs it finishes quickly

13

at a polynomial time. Other tests include the Lambda test [30] (an increased-precision
form of the Extreme Value test), the | test [43] (a combination of the GCD and
Extreme Value tests but more precise than the application of the two tests
individually) the Generalized GCD test, built on Gaussian Elimination (adapted for
integers) and the Power Test [64] (first uses the Generalized GCD test then it uses
constraints derived from the program to determine lower and upper bounds on the free
variables of the parameterized solution. Fourier-Motzkin elimination is used to
combine the constraints of the program for this purpose)

There exist more methods for the detection of inherent parallelism. In [12] the
authors approach actual real life complex programs and propose symbolic analysis in
order to make conclusions about the code. Symbolic analysis, in general, relies on
scanning all the statements of the code and for each statement mentioned information
is kept about the potential values of all the involved variables. These value ranges can
then be used to make deductions about various aspects of the code including array
accesses and parallelism. Using symbolic analysis, the Range Test [18] extends the
Extreme Value Test to support symbolic and non-linear array subscript expressions.
In a similar manner, the same kind of analysis is used on [35] in order to discover
parallelism that can be exploited between procedure calls.

Most of the tests (and especially symbolic analysis) rely on statically defined
variables and their interactions in the code. In [49] the authors innovate by checking
for the existence of heap based variables and data structures. Examples include linked
lists, binary trees, heaps and so on. A methodology is presented where the algorithm
tries to detect the shape of the dynamic structure and depending on that, determine
what kind of dependencies exist in that structure.

Finally, loops which carry loop carried dependencies are examined in [25]. A
dependency can be seen as a distance between loop iterations. These distances
between array accesses form a vector. All the vectors are grouped together in a set
called distance or dependency vector. If the distances are of a constant size throughout
the computation then some degree of parallelism is possible as we will discuss later.
The authors of this paper not only detect the possibility of the existence of hidden

parallelism but also define the granularity that must be used for better results.

14

2.4. The Polyhedral Model and Related Methods

As mentioned in the previous paragraph, early automatic parallelizing
compilers would operate on a black or white state. If there were no dependencies
detected inside a loop, then the loop would be fully parallelized in various forms
depending on the architecture. However, the existence of any dependency would
signal the compiler to leave the loop completely intact and move on.

Lamport with his work on the Polyhedral model [46], introduced a
methodology according to which a perfectly nested loop with a static dependency
vector could be transformed into an equivalent loop whose innermost dimension
could be fully executed in parallel. In this manner, even though it would be
impossible to gain full parallelism, some partial form of it would still be exposed and
exploited. If the whole index space of the loop is visualized in N dimensions then it is
bound by a polyhedron and through transformations it is possible to have a series of
hyperplanes move through that polyhedron. Each index set that belongs to a certain
hyperplane is independent from the rest of the index sets on the same hyperplane.
Since the hyperplanes resemble a wave moving through the data, this method is also
referenced as the wavefront model. More information on the wavefront transformation
can be found in Chapter 3.

In [65] the writers propose a unified transformation model that is based on
matrices. Matrix transformations are an intuitive method that can be applied to nested
loops and offer a variety of results according to the current needs. A special form of
such a matrix is the unimodular matrix (a matrix whose determinant is equal to 1 or -1
composed of integers) and in that paper these matrices are the basis of the unified
model proposed. Their technique can also be applied to general nested loops where
the dependencies not only form a static dependency vector but also a more general
direction vector (the distances are variable and only the directions are known). The
use of unimodular matrices has also been proposed by [48]. In that paper an algorithm
based on unimodular transformations is proposed which maximizes parallelism and
minimizes communications while at the same time keeping a minimum degree of
synchronizations in programs with arbitrary loop nests.

A general automatic source-to-source framework based on the polyhedral

model that can optimize programs (even sequences of possibly imperfectly nested

15

loops) for parallelism and locality is introduced in [21]. This is achieved by the use of
integer linear optimizations which aim to detect good tiling schemes that lead to better
locality. Locality is important since it allows for better cache utilization and a great
boost in efficiency overall. A similar methodology is described in [20], where an
algorithm is described which can calculate hyperplanes of tiles in a sequence of
arbitrarily nested loops which minimize communication and improve on data locality.

Finally, a framework that incorporates a series of methods and which is able to
utilize a variety of functions including non-uniform and even non-unimodular
transformations is proposed in [14]. In addition to the suggested framework, a series

of improvements on existing algorithms are proposed.

2.5. General Parallelization and Run-Time Methods

It goes without saying that not all automatic parallelizing compilers and
techniques in general are based on the polyhedral model. In [60] a technique is used
for automatic array privatization. Array privatization is the analogue of scalar data
privatization presented in Chapter 3. If it is safe to do so, an entire array can be copied
to a thread’s local memory for local accesses. Each concurrent thread has its own
version of the array. Not only this technique can help increase efficiency but it also
helps to remove false dependencies. Array privatization is an important part of any
array access analysis and it enables the full parallelization of a loop and is especially
useful for vector and super scalar machines. In the current paper, data flow analysis is
used to identify privatizable arrays inside and between procedure calls. On the subject
of vector machines, [1] introduces a method where dependency analysis is used in
FORTRAN loops in order to transform them into parallel constructs which can be
executed by vector machines for better data parallelism.

A compiler is proposed in [4] which not only applies a series of
transformations on programs with the intent to minimize synchronization and data
sharing but is also capable of re-arranging parts of an array and its layout in order to
improve data locality and increase efficiency of the memory subsystem. An algorithm
is also suggested in [5] which optimizes parallelism and data locality at the same time,
but its novelty lies with the fact that the algorithm can target both shared memory

systems and distributed memory ones.

16

The majority of analyses on loops would not try to tackle loops which
contained procedure calls. The need to deal with function/procedure calls from the
inside of a piece of code in question gave birth to interprocedural analysis and
transformations. Such an analysis tries to apply the side effects of the procedure on
the resulting call in order to help expose parallelism to the code in question. The most
common interprocedural transformation is procedural inlining which substitutes the
procedures code into the place of the call.

In [33] the authors suggest a methodology, according to which, two different
kinds of interprocedural transformations are applied to loops which contain procedure
calls (something that the original hyperplane method cannot deal with, since it
requires that any function / procedure call must not alter data in any way, in other
words, contain no side effects) for parallel code generation. Perfectly nested loops are
also the main research target of [15] but its purpose is to use linear transformations for
the parallelization of loops with no uniform dependencies.

Finally in [6] interprocedural analysis is used to determine the shape of
dynamic data structures based on the heap and its subsequent parallelization while
instruction level parallelism is the focus of [61]. It is an idea that any parallelizing
compiler can use in theory, since it can be applied to any statement, inside and outside
of loops. The aforementioned paper examines the limits of instruction level
parallelism as well as the amount of said parallelism that exists inside a typical
program.

There is also an entirely different category of methodologies for automatic
parallelization. It incorporates the run-time environment into the solution of the
problem. It is a bold and novel way of approaching this problem since the run-time
environment by definition contains a lot more information that can be used. The
methods that belong to this category usually gather enough information and perform
some computation during compile time but the rest is delegated to the actual
execution of the application.

[13] proposes such a solution. According to the authors, an automatic
parallelization method is proposed which is split in two parts. The first part takes
place during compilation and it generates code which will enable dependency

detection between tiles at run time. At run time, execution of the generated code takes

17

place alongside the second part of the method which is responsible for proper load
balancing between cores in order to improve scalability. Similar to that method is
[57], where two pieces of code are generated during compile time. During execution,
the first piece of code can be executed fully in parallel as it follows the dependencies’
access patterns and the second schedules the execution of the threads. Array
privatization and reduction are also applied in that method. Likewise in [59] there is
an attempt to solve the problem by exploiting the run-time environment. Its main
difference is that it is aimed at FORTRAN programs and that it proposes a different
loop structure altogether: the “DoConsider”. DoConsider encapsulates a number of
transformations that can expose hidden parallelism in a loop with dependencies.
Predominant is the wavefront transformation yet other topological methods are also
used. In compile time a dependene analysis framework is created which is executed at
the start of the code. During run time, both analysis / transformation and load
balancing take place.

2.6. Overviews, Surveys, Tutorials and Books on Automatic Parallelization

Since automatic parallelization tools have been around for a very long time,
there is a lot of experience and expertise gathered on the subject. A series of
overviews and tutorials exist that describe various methods and aspects of automatic
parallelization for any architecture or programming language and paradigm.

The authors of [50] mostly focus on FORTRAN and discuss many common
and uncommon traits a parallelizing compiler must have in order to efficiently
generate parallel code for vector and multiprocessor systems. Standard compiler
techniques are also examined and related to / compared with their corresponding
parallelizing ones.

A survey on automatic parallelization techniques which covers a broad range
from dependency analysis to program / loop transformations is the main subject of
[12]. It even goes into the parallelization of recursive functions and ends up with an
experimental study on the efficiency of several parallelizing compilers.

In [7] the authors present a comprehensive study on all the important
parallelization techniques for C and FORTRAN. Each transformation is covered in

depth, its purpose is clearly explained and examples are given for its applications on

18

various types of parallel (or even sequential) architectures. Tests on legality of each
transformation are also explained and applied.

Dependency analysis is the interest of [37], both on whether dependencies do
exist and if they do, which is the resulting direction vector. Various concepts are
considered based on the dependency vectors that might exist, while computation on
parallel, vector and serial DO loops (FORTRAN) is covered. Several transformation
examples where data dependency analysis is required are given such as vectorization,
concurrentization, scalarization, loop interchanging and loop fusion.

The writers of [45] present an overview in the form of a tutorial on the
restructuring of sequential programs so as for them to have increased efficiency in
parallel machines. Work (either previous or at that time current) on the
transformations and partitioning of loop structures and data is presented. These
transformations aim to improve parallelism, data locality and load balance. Finally a
unified parallelizing framework is suggested by the authors.

The authors’ aim in [39] is two-fold. At first, a comprehensive overview is
given on parallelizing algorithms. Each algorithm is exhaustively analyzed, from the
type of internal representation it uses to store the dependencies, to the code they
generate and their optimizing criteria (for example if each algorithm aims for
maximum parallelism, or minimal communication or even ease of code generation).
The second part covers a discussion on a particular class of multi-dimensional
schedule referred as shifted linear schedules and that algorithms based on that produce
simpler code.

Finishing with the various surveys and overviews two more need to be
mentioned. An early work on researching and documenting techniques on the
parallelization of FORTRAN loops that contain dependencies is presented in [54].
Those techniques aim to transform loops in DOALL and DOACROSS forms while in
[41] a rather comprehensive survey on a multitude of techniques that exist and used
by parallelizing and vectorizing compilers is presented. In addition to all the
aforementioned papers, there exist a series of books on automatic parallelization and
associated compilers. [31], [9], [44], [63], [3], [10], [2], [26] and [66] is just a small

sample of the work on this particular subject.

19

2.7. List of Parallelizing Compilers

This chapter will finish by listing a few well-known automatic parallelizing
compilers. First in the list is the OSCAR compiler [34], [36]. OSCAR tries to exploit
parallelism in multiple levels. It starts with parallelism existing between procedure
calls, moves to loops, basic blocks and finally attempts to exploit the finest grain of
parallelism possible by attempting to parallelize on a per-statement basis (instruction
level parallelism). OSCAR consists of three parts. The first is the FORTRAN frontend
which translates code to some internal representation (IR), then the middle part where
all parallelizing transformations take place and finally there exist a series of backends,
one for each target architecture. The range of various architectures is quite large as it
encompasses SMP systems that use OpenMP, Clusters that support MPI and even the
on-chip multiprocessor called OSCAR.

OSCAR decomposes a source program into three kinds of grain tasks namely
MacroTasks(MTSs) such as the Block of Pseudo Assignment statements (BPA), the
Repetition Block (RB) and the Subroutine Block (SB). A BPA is defined as an
ordinary basic block. However, a basic block is decomposed into several BPAS to
extract larger parallelism when that basic block includes independent blocks. The
compiler builds a Macro Flow Graph (MFG) which represents control flow among
MTs. Next it analyzes the Earliest Executable Condition of each MacroTask to find
maximum parallelism from a MFG. The Earliest Executable Condition for a MT
represents a condition under which the MT can begin execution.

If a macro-task graph has only data dependencies and is deterministic, static
scheduling is selected. In the static scheduling, an assignment of macro-tasks to
threads is determined at compile time by the scheduler in the compiler. If a macro-
task graph has control dependencies, the dynamic scheduling is selected to handle
runtime uncertainties like conditional branches. The scheduling routines for the
dynamic scheduling are generated by the compiler and inserted into a parallelized
program with macro-task code. OSCAR also supports mechanisms for the reduction
of Cache Conflict Misses.

The PROMIS compiler [23], [58] is multilingual, retargeting, parallelizing
compiler. Again it is based on an internal representation (called Unified Internal

Representation - UIR) but instead of opting for modular front-ends and back-ends,

20

both are integrated into the system. The designers made this choice because, at the
time, modular systems lacked the ability to store and propagate dependency
information. PROMIS exploits multiple levels of parallelism ranging from task-based
parallelism, to loop level, to instruction level based on the target architecture. It relies
on symbolic analysis which is further refined and augmented by pointer analysis for
better results. Many standard optimization techniques are applied in the middle stage
such as array privatization.

The frontend and backend operate on the same internal representation which
maintains all vital program structures and provides a robust interface to users. The IR
structures are semantic entities rather than syntactic constructs. It is based on the
Hierarchical Task Graph (HTG) which is a hierarchical control flow graph overlaid
with hierarchical data and dependency graphs. In the HTG hierarchical nodes capture
the hierarchy of program statements and hierarchical dependency edges represent the
dependency structure between tasks at the corresponding level of hierarchy. Therefore
parallelism can be exploited at each level of the HTG: between statements, blocks of
statements, blocks of blocks of statements and so on. The entire IR framework
consists of the following: Symbol Table, Expression Trees, Control Flow Edges,
Control Dependency Edges, Data Dependency Edges, Hierarchical Task Graphs and
Call Graphs.

PROMIS aims at generating high performance code for the mainstream
imperative programming languages such as C, C++ and FORTRAN. The IR
represents a subset of the union of the language features of C++, FORTRAN and
Java. This subset includes assignments, function calls, multi-dimensional array
accesses and pointers arithmetic. Stack-based Java bytecode is translated into register-
based statements and is applied with language independent analyses and
optimizations. For example, exception detection code can be eliminated as deadcode
if the compiler can prove the lack of exception. Such proof usually involves
evaluation of symbolic expressions. If all catch blocks of a try block are eliminated
the compiler may be able to convert the try block into a normal block.

The UIR propagates vital dependency information obtained in the frontend to
the backend. Statements are represented as HTG nodes. During the construction of the

HUIR (Higher UIR), expression trees are normalized to have a single side effect per

21

statement. Function calls and assignments to pointer dereferences are identified and
isolated as separate statements. During IR lowering (from HUIR to LUIR — Lower
UIR), complex expression trees are broken down to collections of simple expression
trees, each of which is similar to quadruples. Data dependency information is
maintained and propagated throughout the lowering process.

Symbolic analysis is performed via symbolic interpretation. Values (or ranges
of values) for each variable are maintained by the interpreter in environments. These
environments are propagated to each statement. Each statement is interpreted and its
side effects are computed. These side effects are applied to the incoming environment
of a statement resulting in new versions for the affected variables. Successive
application of these side effects simulates the execution of the program. Pointer
analysis is performed during interpretation.

Interprocedural analysis seamlessly integrates into the symbolic analysis
framework. When a function call is encountered by the interpreter, its side effects are
calculated and applied to the incoming environment, like any other expression. Once
calculated, the side effects of a function call can be saved for subsequent
interpretations. Several optimizations have been re-engineered within the symbolic
analysis framework such as strength reduction, static performance analysis, induction
variable elimination, symbolic dependency analysis and array privatization. Other
techniques include constant propagation, dead code elimination and available
expression analysis. The machine independent phase includes classical optimizations
such as common sub expression elimination, copy propagation and strength reduction.

The Cetus Compiler Infrastructure [47], [8], [41], although not a full
parallelizing compiler per se, is still a very helpful platform that can be easily molded
into any kind of compiler the programmer wants. The Symbolic Manipulation
provided includes the following techniques:

o 1+2*a+4-a => 5+a (folding)

e a*(b+c) => a*b + a*c (distribution)

o (a*2)/(8*c) => al (4*c) (division)

o (1-a)<(b+2) => (1+a+b)>0 (normalization)

e a&&0&&DLD => 0 (short-circuit evaluation)

22

Cetus’ symbol table functionality provides information about identifiers and
data types. Its implementation makes direct use of the information stored in
declaration statements stored in the IR. There is no separate and redundant table
storage. Cetus also provides data dependency analysis and tests: The framework
identifies eligible loops. Eligibility currently defines the scope of dependency testing
in Cetus. For example, it can handle perfectly nested loops and loops in the form for
(i=Ib;i<ub;i++) (canonical form loops). Loop information (such as loop bounds, loop
step and enclosing loops) and array access-related information (such as array
references, enclosing loops and parent statements) is collected in data structures and
provided as input to the dependency test interface. The tests try to disprove
dependency between a pair of array accesses and if unable to do so return a
dependency vector representing the direction of dependency in each dimension of the
iteration space spanned by the enclosing loop nest. Tests can be expanded to use
standard tests like the GCD. The output of testing is a Dependency Graph (DG).

Cetus’ Basic Parallelizing Transformation Passes include privatization,
reduction variable recognition and induction variable substitution. Cetus also includes
an automatic OpenMP to CUDA GPU translator and optimization techniques. It
includes systems for dynamically adaptive applications which target MPI-based
distributed irregular applications as well. More features include:

e Debugging aids: Cetus provides basic debugging support through the Java
language which contains exceptions and assertions as built-in features. Cetus
executes within a Java virtual machine so a full stack trace including source
line numbers is available whenever an exception is caught or the compiler
terminates abnormally.

e Readability of the Transformed Code

e Expression Simplifier

e Parallel Parsing: Use of Java threads to parse and generate IR for several input
files at once.

e Detecting loop-carried dependencies in programs with dynamic data structures

23

Pointer analysis has also received significant attention. It can be divided into
two distinct sub problems: stack-directed analysis and heap-directed analysis. The
heap is represented as a storage shape graph and the analysis tries to capture some
shape properties of the heap data structures. This type of analysis is called shape
analysis and can help in detecting data dependencies induced by heap-directed
pointers on loops that access pointer-based dynamic data structures, particularly in the
detection of the loop-carried dependencies that may arise between the statements in
two iterations of the loop. Shape analysis maintains topological information of the
connections among the different nodes (memory locations) in the data structure. This
representation provides a more accurate description of the memory locations reached
when a statement is executed. The novelty is that this approach symbolically
interprets the statements of the loop being analyzed and allows annotation in the real
memory locations reached by each statement with read/write information.

Before the analysis the programs have to be preprocessed in order to
normalize the pointer statements. That is, each statement dealing with pointers must
contain only simple access paths each of which has the form p->field where p is a
pointer variable and field is a field name. The following six simple instructions are
considered:

e XxX=NULL

e Xx=malloc

e X :y

e x->field=NULL
o x->field=y

o x=y->field

Basically the analysis is based on approximating by graphs (named Reference
Shape Graphs — RSGs) all possible memory configurations that can appear after the
execution of a statement in the code. Memory configuration means a collection of
dynamic structures. Two statements in a loop induce a loop carried dependency
(LCD) if a memory location accessed by one statement in a given iteration is accessed
by the other statement in a future iteration with one of the accesses being a write

access.

24

The POLARIS compiler [19], [55], [28] is a parallelizing compiler which uses
FORTRAN codes as input and outputs FORTRAN code augmented with parallel
directives. The main idea behind its design was the creation of a strong IR which
would not allow any kind of error to exist and propagate to the output. Thusly the
programmer is prevented from violating any rules and leaving the IR at an invalid or
incorrect state. For that reason the IR contained not only static information but also
data and data ownership information as well. Several transformation techniques are
used such as inlining, induction variable elimination, symbolic dependency analysis,
array privatization and even a framework exists for run-time analysis.

The SUIF (Stanford University Intermediate Format) Compiler system [32],
[62] was originally designed to be a platform for research on high performance
computing techniques on compilers. It is capable of producing code for multi-
processors by detecting a coarse enough granularity size, ideal to be used for
parallelization. Moreover, SUIF is equipped with a series of standard compiler
techniques such as data dependency analysis, scalar and array privatization, reduction
and induction variable elimination. In addition it employs basic data dependency tests
on arrays to test whether two accesses are referring to the same location.

Interprocedural analysis is not actualized by the use of inlining but instead by
analyzing the side effects of a procedure and then applying them to every statement in
the code which calls that procedure. When the context differs, then a clone of that
procedure is inlined and analyzed for further use. There is also a memory optimization
module which allocates data in memory in continuous positions for shared memory
systems. This improves data locality and cache usage while reducing false sharing.

Pluto [20], [21] is a source-to-source, automatic parallelization framework that
uses the polyhedral model. It can transform arbitrarily nested loops with affine
dependencies (defined as affine expressions of the indices and their coefficients) in
such a manner where optimizations on locality and parallelism take place
simultaneously. The approach aims at finding good hyperplanes (tiled) by applying
integer programming with a cost function the authors developed. It has been
assembled by a series of pre-existing tools such as CLooG (polyhedral scanning and
code generator tool), Piplib (integer programming solver) and Polylib (a library that

operates on objects made of unions of polyhedral) which were assembled together

25

with the authors’ cost function in order to produce very efficient results. Code output
can be either in OpenMP or CUDA.

Finally for the sake of completeness some lesser-known compilers will be
briefly mentioned. Parafrase-2 [51], [52] is a parallelizing / vectorizing source-to-
source code restructurer. It incorporates a series of analyses such as dependency
analysis, overhead analysis and automatic scheduling. The renewed Paraphrase
project was a system of code/design patterns. Each pattern would express high-level
parallelism and had the ability to be refactored / redeployed in various heterogeneous
hardware pools (a pool can have many different processing elements at each
architecture). More information (with a list of papers on that project) can be found in
[72].

The PARADIGM [11] compiler is a parallelizing compiler that targets
multiprocessors that work with some form of message passing system (such as MPI).
The compiler takes as input FORTRAN code and generates FORTRAN code
augmented with message passing structures. PARADIGM employs a series of tools
such data partitioning, communication costs estimation, exploitation of task and data
parallelism and automatic support for multithreaded execution.

The ParaScope Programming Environment [24] is a parallel programming
environment which incorporates the tools needed by researchers to create and debug
parallel applications. It offers a parallel program editor, a compilation system and a
parallel debugger. The editor assists the programmer by offering a series of analyses
and interactive program transformations while the debugger uses run-time methods to
detect and report timing-related errors.

Lastly, OMPi [27] is a lightweight, open source OpenMP compiler and
runtime system for C, conforming to version 3.0 of the specifications. It takes C
source code augmented with OpenMP #pragmas and produces transformed
multithreaded C code, which can be compiled by the native compiler of the system.
An optimized library has also been created which provides efficient runtime support.

That library is linked against the program executable during compilation.

26

CHAPTER 3. LOOP TRANSFORMATIONS

3.1. Data Dependencies and the Polyhedral Representation

3.2. Loop Transformations

3.1. Data Dependencies and the Polyhedral Representation

In this chapter some of the most common loop transformations and
restructuring methods will be presented. Most of the information presented in the
entire chapter can also be found in more detail in [45] and [41].

Firstly a definition of dependency is needed. A dependency between two
statements in the code exists when both statements access (by assigning a value or by
referencing the value of) the same memory location (variable). According to that

definition, four different types of dependencies can exist:

1. Flow Dependency. A Statement S2 is flow dependent on Statement S1 when
S1 assigns a value to a variable which is later referenced by S2. It is also
called a “WRITE before READ” dependency and is characterized as true
dependency.

2. Anti Dependency. A Statement S2 is anti dependent on Statement S1 when S1
references the value of a variable which is later assigned by S2. It is also
called a “READ before WRITE” dependency.

3. Output Dependency. A Statement S2 is output dependent on Statement S1
when S1 assigns a value to a variable which is later reassigned by S2. It is also
called a “WRITE before WRITE” dependency.

4. Input Dependency. A Statement S2 is input dependent on Statement S1 when
S1 references the value of a variable which is later referenced by S2. It is also
called a “READ before READ” dependency.

27

It is obvious that from all the mentioned dependencies, Anti, Output and Input
are not real dependencies and there are ways for them to be removed from code as
will be later demonstrated. Generally, a (true) data dependency between two
statements defines their execution order. Even after all the transformations and
restructuring, those statements must still be executed in the original order as indicated
by the dependency.

Dependencies that exist inside a loop but between statements of different
index instances are called Loop Carried Dependencies. These kinds of dependencies
can be made clear by completely unrolling the loop. Dependencies that exist inside
the same loop iteration are called Loop Independent Dependencies because they do
not affect the transformation of the loop in any way.

Let us consider a typical perfectly nested loop like the one presented in Figure
3.1. We can see that for a nesting level of n there exist n indices (iy, Iy, ..., in), €ach
one with its own lower (L1, Lo, ..., Ly) and upper bound (U;, Uy, ..., Up). These
bounds can be a function of all the previous indices. So each for each iy in the index
space, there exist these inequalities: Ly (i1, iz, ..., ix—1) < ik < Up (ig, 02,) ig—1),
where 1 < k < n. The vector | which contains all those in 1={iy, iy, ..., in} IS the

iteration space.

for (i1= Ll X il <= Ul ; il++)
for (i2= L2(|1) yip <= U2(|1) ; i2++)

for (in: Ln(i11 i2~ [EXT) in-l) ; in <= Un(ila i27 [EXT} in—l) ' in++)
Statements (iy, iy, ..., in);

Figure 3.1. A Perfectly Nested Loop in C. Unit Stride of 1 is Assumed.

There is another way to represent the problem: If we consider two n x 1
matrices, L and U that contain the lower and upper bounds respectively and the n x 1
matrix | which contains the indices of the loop, then we can construct 2 more matrices
SL and Sy in such amanner that S| * 1 >= L and Sy * | <= U. S is a lower triangular

matrix and Sy is an upper triangular one. The second inequality can also be written as

28

-Sy * | >=-U. A typical example of such matrices is the identity matrix. The entire set
(SL, -Su, L, -U) is the polyhedral representation of the entire nested loop.

Considering a d-dimensional array A, two index instances i; and i, and two
functions of il and i2, F and G respectively, then a loop carried dependency between
11 and i2 will exist if A[F(i1)] and A[G(i,)] reference the same memory position. This
means F(i1)=G(i,). The dependency problem then turns into a linear programming
problem where S| * iy >= L, -Sy * iy >=-U, S| * i,>=L, -Sy * i, >=-U and F(i;) =
G(i2). The solution will show whether a dependency exists or not. Unfortunately, in
this general case, the problem has been proven to be NP-Complete (it is equivalent to
finding solutions to a system of Diophantine equations), thus a precise answer might
take a long time to be computed. That is the reason that many of the dependency tests,
such as the Banerjee, the Omega and the Range test exist. They can provide fast
results under simplified conditions or special situations. A dependency test’s reply can
belong in one of these three outcomes: (i) A dependency exists, (ii) A dependency
does not exist and (iii) Not sure. Tests that answer only (i) and (ii) are called exact
tests otherwise they are called inexact tests.

Assuming a dependency between index instance i=(iy, iy, ..., in) and j=(j1, Ja,
..., jn) exists, then the vector j - i = (1 — Iy, Jo — I2, ..., jn — In) IS the dependency
distance vector. If the vector consists only of constants then it is called a static or
uniform dependency vector. If the values are not constant then the vector which
contains the signs of each subtraction sign (j — 1) = (sign (j1 — i), sign (j2 — i2), ...,
sign(jn — in)) is the direction dependency vector. For example, let us consider the loop
in Figure 3.2.

for (i=0; i< 5; i++)
for j=0; j<5;j++) _
ALLIL I =AL-1100 1+ AL -1];

Figure 3.2. A Typical Example of a Perfectly Nested Loop in C with Two Loop
Carried Dependencies.

In that example, first we compute the polyhedron representation. Since all

. _ _1r o _Ti _[0
bounds are fixed constants, we can see that S = Sy = 0 1], | = [j] L—[O] and

29

U:[ﬂ o) —U:[:ﬂ. In the statement we can see that for any current iteration (i, j) the

array A is referenced in two previous iterations, (i-1, j) and (i, j-1). This means that
there exist two dependencies with vectors d1=((i)-(i-1),(j)-()) = (1,0) and d2=((i)-

(i),(1)-(-1))=(0,1). The set of all dependencies is the dependency vector D:[é (1)]

and the direction vector is the same since it carries the signs of the values of D.
3.2. Loop Transformations

3.2.1. First Pass Transformations

Before the actual transformations transpire and even before the dependency
analysis of the code, parallelizing compilers usually perform a first pass of
transformations. These transformations are mostly aimed at simplifying expressions in
order to facilitate ease of analyzing array subscripts, loop bounds etc. Such
transformations fall into the idiom recognition category (as they mostly search for
certain expressions inside the code) and they include (but are not limited to):

Interprocedural Dependency Analysis. It is very probable that a
computation might span across a multitude of different procedures inside the code of
a program. This is the very essence of modular programming which allows for the
creation of easy-to-read, well structured code. However due to the compiler’s inability
to know the side-effects of each procedure call (i.e. what effects a call might have to
any other variable of the program), most procedure calls are left untouched by the
automatic optimization tool which essentially means that the programmer is penalized
for using procedure calls inside a loop. Interprocedural dependency analysis is the
type of analysis that crosses the boundaries of procedures and analyzes side effects or
trying to incorporate a procedure call into the automatic loop transformation. As has
been mentioned earlier, one way to simplify a procedure call is to inline the entire
procedure on the place of the call and then analyze the code as usual. This however
might not be optimal.

False Dependency Elimination. Out of the four different types of
dependencies, it has already been demonstrated that only one type is the true form of

30

dependency. The rest are false dependencies and they only obfuscate code. In order to
simplify the code and be rid of anti-dependencies a compiler can either use data
privatization or data expansion. An example of data privatization is given in Figure
3.3. In this example, assigning of any value to tmp seems like a critical section and
that it can’t be parallelized. However, tmp is first written and then read. It is a Write
before Read type of dependency. By assigning the attribute PRIVATE to tmp the
transformation makes sure that each instance of tmp will exist inside each thread’s
local storage and thusly the whole loop can be parallelized. Figure 3.4. displays the
use of data expansion. Each different instance of tmp is assigned in a new temporary
array which can be accessed at a later step for the actual computation. The

PARALLEL directive in these cases means that the loop should be fully parallelized.

for (i=0; i<n; i++) PARALLEL for (i=0; i<n; i++)
{ {
tmp=Code irrelevant to tmp; |::> PRIVATE tmp=...;
Ali]=tmp; Ali]=tmp;
} }

Figure 3.3. Using Data Privatization in Order to Simplify and Remove a False (Anti)
Dependency.

for (i=0; i<n-1; i++)
for (j=0; j<n-1; j++)
AliI=AL+1]0] + AL L+11;

U

PARALLEL for (i=0; i<n-1; i++)
PARALLEL for (j=0; j<n-1; j++)
TOIOI=ALILT

PARALLEL for (i=0; i<n-1; i++)
PARALLEL for (j=0; j<n-1; j++)
ADNOI=TO+110] + TOIO+11;

Figure 3.4. Using Data Expansion in Order to Simplify and Remove a False (Anti)
Dependency.

31

Symbolic analysis. Symbolic analysis is a general term. Most of the times,
compilers who perform such an analysis monitor each variable and track its value
range from statement to statement. This way, it is possible to be able to know all the
ranges of all variables (including ranges of array subscripts as well as the values of
the arrays themselves) and thusly reach some conclusions regarding the code in
question. Certain loops that seem un-parallelizable might end up containing some
parallelism and that is because certain indices might not end up overlapping or
referencing the same memory location in order to create dependencies.

Induction Variable Elimination. An induction variable is one that its value is
updated in each loop iteration in such a manner that it can be replaced by a closed
mathematical formula. Figure 3.5. gives an example of an induction variable and its
elimination from the code. “sum” is identified as an induction variable and is replaced
by its closed mathematical formula (2 in the power of i) which at first creates an anti-
dependency but one that is easily eliminated from the code in the final fully parallel

loop.
sum=1; _ _ _
for (i=1; i<=n; i++) PARALLEL for (i=1; i<=n; i++)
{ { |
sum=sum * 2; |::> sum= pow (2, i);
AJi] = sum;

A[i] = sum;

} } ﬂ
PARALLEL for (i=1; i<=n; i++)
Ali]=pow (2, i);

Figure 3.5. An Example of Induction Variable Elimination.

Loop Normalization. Most idiom recognition algorithms assume that any
given loop index starts with the value of 0 and has a unit stride. If that is not the case
for a loop then normalization transforms the loop in order to meet that requirement as

is demonstrated in Figure 3.6.

for (i=2; i<2 * n; i+=2) for (i=0; i<n; i++)
Alil=...; |::> AR¥H2]=..

Figure 3.6. An Example of Loop Normalization.

32

Global Forward Substitution. By substituting all constant variables with the
expressions they evaluate to, an automatic parallelizer can help make dependency

analysis easier. Figure 3.7. shows an example of substitution.

ex=2*k+1; for (i=0; i<n; i++)
for (i=0; i<n; i++) I:> Alfi]=i+2*k+1;
Ali]=i+ex;

Figure 3.7. An Example of Forward Substitution.

Loop Distribution. Loop Distribution is the technique where a single loop
(probably nested, perfectly or not) is split into a series of different loops, each with
the same iteration range as the original loop. Every one of the new loops carries a
smaller part of the original loop’s body as its own. This technique can be useful in
improving cache usage and in the case of a multi-processor system where each
processor can handle a single loop if they are independent from each other. Extra care
must be taken to preserve the order of execution of dependent statements. Figures 3.8.

and 3.9. give two different examples of Loop Distribution.

for (i=0; i<n; i++) for (i=0; i<n; i++)
{ Ali=C[iJ;
A[i]=CIi]; ﬁ>
B[i]=D[il; for (i=0; i<n; i++)
} B[i]=DIil;
Figure 3.8. An Example of Loop Distribution Which can Help Improve Cache
Performance.
for (i=0; i<n; i++) for (i=0; i<n; i++)

Alil=BI[Il;

Alil=BIi];
for (j=0; j<n; j++) for (i=0; i<n; i++)
C[il[]1=D0I0T for (j=0; j<n; j++)
} C[i]G1=DO10I;

Figure 3.9. Another Example of Loop Distribution Where an Imperfectly Nested
Loop is Split Into two Perfectly Nested Ones.

33

Loop Fusion. Loop Fusion is exactly the opposite act of Loop Distribution. It
can be useful in cases where the overhead of a loop is significant and as such, it can
lead to reduced overhead and better run-time speed overall. Such a case is when the
loop is in fact, some parallel construct which requires time to set up all the threads
necessary in order to complete execution. Fusion is possible when the legality of the
dependencies is preserved and when the index ranges match (although if they don’t,
maybe some type of normalization might be possible to be applied to match the
other). Figure 3.10 gives an example of Loop Fusion. In that example we can see that
both loops can execute in parallel and so the new loop has a potentially smaller

overhead than the initial two loops.

PARALLEL for (i=0; i<n; i++) PARALLEL for (i=0; i<n; i++)
Ali]=BIi]; {
> Ali]=Bli];
PARALLEL for (i=0; i<n; i++) C[i]=DIil;
C[i]=DIil; }

Figure 3.10. An Example of Loop Fusion. Two Parallel Loops are Fused Together
with the Aim to Reduce Overhead.

Reductions. A reduction variable is one that exists in the form of multiple
copies in a series of threads’ local storages and the need exists to reduce them all into
one final and single variable. Summing up an array is a usual example of such an
action. Figure 3.11 shows an example of a reduction variable and how it can be
transformed to exploit some parallelism. In this example, PE is the number of
processing elements we can use to speed up the reduction and P is the ceiling of the
result of the division of the total number of array elements n divided by PE.
Essentially, P is the total number of partial sums we will calculate and then reduce.
The first loop initializes the partial sums s[i] in parallel, then the second loop sums up
the P different parts of n into each s[i] and the final loop calculates the final value of
sum by adding up all the partial sums s[i]. If the granularity is coarse enough then the

speedup of the parallelism is higher than any overheads that might exist.

34

PE
PARALLEL for (i=0; i<P; i++)
sum=0; s[i] =0
for (i=0; i<n; i++) P,
sum += A[i; PARALLEL for (i=0; i<P; i++)

For (j=i*P; j<(i+1)*P;j++)
s[i]=s[i]+Al[il;

sum=0;

For (i=0; i<P; i++)
sum+=s[i];

Figure 3.11. An Example of Reduction. The Summation of A into the Scalar “sum” is
Partially Parallelized.

3.2.2. Unimodular Matrices

Choosing to represent the polyhedron and the dependencies of a loop via the
use of matrices offers a significantly helpful tool when it comes to transformations:
the Unimodular matrices. A Unimodular matrix is nothing more than an integer
matrix whose determinant equals to 1 or -1. A loop transformation can be encoded
inside such a matrix and then that matrix can be multiplied with the polyhedron and
the dependency vector to produce a transformed loop. Unimodular matrices contain
integer elements so that the transformed polytope will also contain integer values and
its unimodularity guarantees a one-to-one mapping with a stride of one.

With the help of these matrices we can apply a series of transformations by
multiplying their respective Unimodular matrices in the reverse order of the
transformations’ application. This way, compound transformations are created. At this
point it is important to note that not all transformations are legal. In order for a
transformation to be accepted for use, the new dependence vector D’ must contain
lexicographically positive dependences. In general, a tuple (a, b, c,) is
lexicographically positive when the first non-zero element in the tuple is a positive
number. Lexicographic positivity is a strong condition for all transformations
otherwise anti-dependences will be created. There are some cases when the existence
of anti-dependences might not matter but if a cyclical dependency appears then it is

impossible for the compiler to produce any meaningful code.

35

3.2.3. Prime Loop Transformations

Once all idiom recognitions have transpired then an automatic compiler can
proceed to perform the main or Prime loop transformations. In contrast to the first
pass transformations, Primes do not seek to simplify some expression or find inter
procedural dependences but, according to the current needs they usually aim to
increase code efficiency (both in a parallel code but on occasion on a sequential one
as well) and apply much more drastic alterations to a given loop. The most common
of these transformations are listed below and elaborated upon:

Loop Tiling. Loop Tiling, Loop Blocking, or Strip-mining is a loop
transformation technique aimed at increasing the efficiency of any sequential loop.
The main idea is that any given loop can be transformed to an equal one but where the
entire index space is partitioned in smaller tiles (of a fixed size each on every
dimension) and then execution takes place on a per tile basis. Figures 3.12 and 3.13
give an example of a loop before and after tiling with its accompanying graphic
illustration. It is important to note here that there must be no dependency conflicts
with the change in the execution schedule so the ordering imposed by dependences is

still preserved in the tiled version of the original loop.

for (i=0; i<n; i++)

for (j=0; j<n; j++) <:> J

o~

Figure 3.12. A Perfectly Nested Loop with Nesting Level of 2 and its Graphical
Representation in the Two-Dimensional Space.

36

IBEINEEIEEE

299 000 000

for (i=0; i<n; i+=3) 00 (o080
for (j=0; j<n; j+=3)

for (i’=i; ’<min(i+3, n); i*++) |229 @00 @00

for (°=j; j"<min(j+3, n); " ++) /11999 229 00

- ks SIS 2

*e0 000 00

209000 0000

eob (608 (6-b-b

i
Figure 3.13. The Loop of Figure 3.12 and its Graphic Representation After a Tiling
Transformation. A Stride of 3 was Used in Each Dimension.

The increase in efficiency is mostly accomplished by exploiting data locality
in the CPU’s cache. Tiling can also be a first step in various other transformations
where each tile serves as the basic parallelization unit (in other words, coarse grain
granularity can be achieved by first tiling close indices together and execute them in
some sequential manner while each tile can execute independently from the others
either in different CPUs or in different threads).

Loop Interchange. As the name suggests, the technique of loop interchange
exchanges the levels of two iteration variables in a nested loop. A dependence of (a,
b) becomes (b, a) which means that extra care must be given in order to safeguard the
legality of the whole transformation. If b in that case is a negative number, then by
performing interchange, the dependence is no longer lexicographically positive and
the legality is forfeit. The Unimodular matrix for this operation is demonstrated in
Figure 3.14 while Figure 3.15 gives an example of a nested loop before and after loop
interchange. Loop interchange can generally improve efficiency by exploiting locality
of reference and cache usage. It can also enhance inner or outer loop parallelization or
enable vectorization. However it may also adversely affect performance if not enough
care is given by hindering cache usage altogether. Overall, the effectiveness of
interchange relies heavily on the underlying cache model the system’s hardware
architecture is using. It is important to state here that if the loop bounds of the original

loop are not simple, then computing the new loop bounds is generally non-trivial.

37

=0 [=t

Figure 3.14. The Unimodular Transformation of Loop Interchange.

for (i=0; i<n; i++) for (j=0; j<n; j++)
for (j=0; j<n; j++) for (i=0; i<n; i++)
AlI[I=i4j; Alil[I=i+j;

Figure 3.14. A Nested Loop Before and After Loop Interchange.

Loop Permutation. Loop Permutation is a more general method of Loop
interchange. For any perfectly nested loop of nesting level of n, then pairs of loops
can swap their place in the nesting. Dependences obey that swapping as well. For
example a dependence of dimensionality 3, (a, b, c¢) with a permutation of

G 53

transformation is constructed by swapping the corresponding rows of the identity

), becomes (b, c, a). The necessary Unimodular matrix for this

matrix | (of a suitable dimensionality), as is demonstrated by Figure 3.15. Figure 3.16
displays the application of such a matrix on an index set. As this technique is a
generalization of loop interchange then the automatic compiler needs to be aware of
and avoid the same pitfalls as with loop interchange: A transformed dependency must
never become lexicographically negative so again extra care is needed when applying
this technique. The only way the compiler can be sure of any permutation’s legality is
to perform an analysis on all dependences. If all distances are positive then any

permutation is legal.

1 0 O Oy 0 1 O 07
0O 1 0 0 1 0 O 0
0 0 1 0[=10 0 O 1

o o0 0 --- 14 o 0 1 -+ 0O

Figure 3.15. Creating a Permutation Unimodular Matrix by Swapping the Rows of the
Original ldentity Matrix.

38

(1] 0 1 0 07 [ir] i1 =l
i'20 |1 0 0 0[] &2 =1
i's[=10 0 0 13> =i,
i, o o1 - Odhd =,

Figure 3.16. Applying the Constructed Unimodular Matrix from Figure 3.15 to an
Index Set.

Loop Reversal. Loop Reversal is a technique which reverses the bounds of a
loop. For example, a simple loop with bounds L and U will be transformed to one
with bounds —U and —L respectively. The corresponding dependence of that loop
automatically switches sign. In a nested loop this effectively means that the loop
which corresponds to the first positive distance in any dependence cannot be reversed
otherwise the dependence will no longer be lexicographically positive. In a loop of
nesting level 3, a dependence (a, b, ¢) becomes (a, -b, -c) after such a transformation
is applied to levels 2 and 3. Loop reversal rarely possesses any inherent ability to
increase code efficiency however it can help eliminate dependences and thusly pave
the way for other optimizations.

Loop Skewing. Loop skewing is a technique where a dependency (a, b) is
transformed into a form of (a, f*b + ¢) where f is the skew factor. The same skew
factor is applied on the shape of the polytope representation and changes it into a new
shape with a different representation (a skewed version of the original polytope). The
fact that dependences retain their lexicographic positivity after such a transformation
means that skewing is always safe to apply. In fact such a transformation is always
possible to be discovered. Skewing is a very important transformation as it has the
capability to expose parallelism in the innermost loop of a perfect nesting. Figure 3.17
displays a code example which denies any kind of parallelism at first sight (or even
interchange for that matter).

for (i=1; i<n; i++)

for (j=1; j<n; j++)
AlGI=AL-101+ALTD-1];

Figure 3.17. A Code Example where Skewing can Expose Hidden Parallelism.

39

It is straightforward to calculate the dependences in that code snippet: (1,0)
and (0,1). Figure 3.18 shows a graphical representation of the loop’s polytope and the

corresponding dependences.

4

>

*-90-90-0-0-9
46040
66040
ooeeee
46040
66660

a5
>

Figure 3.18. The Graphical Representation of the Loop and the Loop Carried
Dependences it contains.

There are many different Unimodular matrices that can describe various types

of skewing, however a typical one is described in Figure 3.19.

1 fl f2 fn_
0O 1 O 0
0O 0 1 0
L0 0 O 14

Figure 3.19. A Typical Skewing Unimodular Matrix. f, f,,..., f, are the Skew Factors.

In our example the Unimodular matrix becomes [(1) ﬂ (skewing factor of

one). If we apply this transformation to the index set, we get the new indices of the

transformed loop: [Jl,] = [(1) ﬂ [;] = [l —]U] The dependences are also transformed

by the same matrix: [(1) ﬂ [(1)] = [(1)] and [é 1 [2] = [ﬂ The new dependence

vector has been transformed to the set D’ = {(1,0), (1,1)}. Generally speaking,

40

calculating the loop bounds of a skewing operation is a non-trivial and difficult
endeavor altogether, however in this example it is rather simple and straightforward.

We know that i’ =i+ j (1) and that j' = j (2). We also know that 1 <i <
n—1@)andthat 1 <j<n-—1(4). By adding (3) and (4) we getthat 2 <i+j <
2n—2 ©2<i <2n—2(5). Now we use (1) and (2) and solve for i and j: j = j’
(6)and i =i —j (7). By combining (3) and (7)we canseethat 1 <i —j <n—1
(8). This double inequality can be split into two separate ones: 1 <i —j (9) and
i —j <n—1 (10). Out of (9) we get that j' < i — 1 (11) and out of (10) we get
that j' > i —n+ 1 (12). Since j = j and by using (4) we learn that j' > 1 (13) and
j < n—1(14). From (12) and (13) we get that j' > 1 and j' =i —n + 1. Since we
need j to always have valid values, then j' > maxiiil, i’ — n + 1) (15). By combining
(11) and (14) we know that j' < i — 1 and that j* < n — 1. Again according to the
same principle, we reach the conclusion that j' < miniigi' — 1,n — 1) (16). Finally, by
using (5), (15) and (16) we know the new loop bounds and can create the new
transformed loop which is displayed in Figure 3.20. Figure 3.21 demonstrates the
skewed result in the graphic representation of the polytope.

Observation of the skewed result makes the hidden parallelism obvious. For
every different i’ of the loop, all the j* belonging to that iteration of i’ are independent
from one another and so they can execute in parallel. This technique can also be
applied after tiling in order to offer a more coarse grain form of parallelism. In the
case where tiling has already been applied, then each position in the iteration space
corresponds to a single tile instead of a single iteration instance of the loop. Skewing
is a very important tool in the arsenal of a parallelizing compiler as it offers varying
levels of granularity of parallelism that lies hidden in the innermost loop, and as such
it is the most important part of the wavefront method.

for (i’ =2;1’ <= 2*n-2; i’++)

for (j° = max(1,i’-n+1); j” <= min(i’-1, n-1); j’++)
{

=)

=%
, ANIGI=AD-1IGI+ALIG-1T;

Figure 3.20. The Skewed Result from the Original Loop of Figure 3.17 when the
Matrix of Figure 3.19 was Applied on it.

41

e
) e
J f

! :ﬁ :‘ :G--:d
L »d

v

Figure 3.21. The Polytope Representation of the Skewed Loop Presented in Figure
3.20. The Inner Level Parallelism per Iteration of i’ is Obvious.

The Wavefront. The wavefront method is a compound transformation which
encompasses loop skewing, loop reversal and loop interchange / permutation. The
main purpose behind the wavefront model is to find a series of hyperplanes, each
covering a subset of the original polytope, with the property that all indices on a
certain hyperplane are independent between them and can thusly be run in parallel. By
visualizing the wavefront method on the code of Figure 3.17 (and after application of
the skewing transformation discussed before) we can see (in Figure 3.22) that
essentially the wavefront method creates an imaginary wave which moves through the
data.

O 000 OO0 :jf’"“\poooo e 0000

0O 000 OO0 o‘O O 00 @ e 00 00

|oooo0oo0o0 |:> |® ooo 0 0 |:> o @@ @ 00

loooooo lo o 500 O leoeoee

O 00 O0O0O0 @ 0 o ooo © o0 0 00

@ 00000 @0 00 oo © @0 000
I 1 1

Figure 3.22. From Left to Right the Wavefront (Black Dashed Rectangle) Moves
Through the Computation data. Grayed Points Indicate Already Processed Index
Instances.

42

All index points on the front are the ones that can be executed in parallel in
that iteration. This is the reason that this general methodology is called a wavefront
and essentially, it is the hyperplane method originally proposed by Lamport where
each hyperplane is driving the front by being executed sequentially and each front
being executed in parallel. Calculating a proper compound unimodular matrix in order
to have an efficient wavefront is a difficult task and there is no single direct algorithm
for it. Most automatic parallelizing compilers resort to heuristic methods in order to
pick the best transformation out of all the possible wavefronts that exist for any given
problem. Finally, it is worth mentioning that the wavefront method (as well as the

skewing one) require a uniform dependence vector in order to work properly.

43

CHAPTER 4. SVP

4.1. Introduction and Prerequisites
4.2. The SVP Processor and Model
4.3. The SL Programming Language
4.4. The Toolchain

4.1. Introduction and Prerequisites

With Moore’s law (an empirical observation made by Gordon E. Moore which
states that the number of transistors in integrated circuits doubles every 18 months)
still in effect, it is becoming increasingly clear that the only way to push forward with
improving efficiency and speed in systems is via multi-core architectures. multi-core
processors (multiple cores on chip) have the ability to utilize the ever increasing on-
chip resources while simultaneously handling the increase of complexity of the
circuitry.

However, there are some issues that need handling. A multiprocessor must
define a model of parallelism that is similar to the sequential model that users have
been accustomed to. In addition, binary compatibility across a range of different
generations of processor implementations is very desirable. In the spirit of the
sequential model, the Multiprocessor system should also be deterministic (which
means that given a certain input it will always produce the same output) and ideally it
can provide deadlock avoidance mechanisms. When it comes to the aspect of
parallelism, a Multiprocessor needs to be able to capture and exploit maximal
concurrency while at the same time gracefully degrade when it runs low on resources.
As such, automatic resource allocation is an important prerequisite since hand-

mapping applications onto available resources is not feasible (neither sensible).

44

4.2. The SVP Processor and Model

The SVP (Self-Adaptive Virtual Processor) model is a system designed and
implemented to cover for all the afore-mentioned prerequisites. By design, it is a
general concurrent processor model which bases its abstract execution model on a
hierarchy of "microthreads™. A microthread is an entity very similar to a regular
thread (i.e. it is a sequence of sequentially executed statements that can run in parallel
with other threads or the main application that spawned them) but with the added
property of blocking its execution when there are no data available to them for
calculations [16]. This essentially places the SVP into a more generalized SPMD
category since its APl exports directives for synchronization. SVP is designed to be
deterministic and approaches parallelism in a highly dynamic manner through its
ability to be self-adaptive. It is also meant to target the entire range of applications
instead of just a few specific ones. The self-adaptiveness of the model is realized by
three distinct properties: (i) It can capture the concurrency of an application in its
entirety, (ii) It captures and enforces locality of communications between threads and
(iii) keeps everything as dynamic as possible [38].

A novel property of the SVP is that it can be implemented in its entirety
(including the run-time environment) in a processor’s Instruction Set Architecture
(ISA) and thus it can be considered as an Operating System (OS) on chip [22]. An
ISA implementation offers the advantage of backwards compatibility with any pre
existing sequential code (which is not affected at all) and also provides the ability for
any SVP program to revert back to a sequential form of execution if such a need
arises. A series of such cores (SVP cores) forms a Microgrid. A Microgrid offers
binary compatibility over any cluster of such processors, is inherently scalable when it
comes to both area utilization and performance and can support a great degree of
parallelism through the use of a large number of Microthreads and high memory
tolerance. The OS deals with managing any dynamically created content through
delegation. Delegation refers to the process where a computation can be mapped to
any part of the microgrid remotely during run time.

The abstract execution model of the SVP is quite general. Applications (and
by extension, developers) need not concern themselves with any kind of mapping of

threads or their scheduling, as the run-time system dynamically allocates resources to

45

threads as needed and the scheduling is achieved through synchronizing
communication: There exist two types of synchronizing channels, the shared ones and
the global ones. The existence of these channels inside the code decides whether
threads will run sequentially or in parallel. Proper use of these channels (i.e. the
channels are read from and written to when they are supposed to) guarantees a
deadlock-free execution of the application.

Moreover, the execution model presents a recursive / hierarchical structure of
parallelism. Microthreads do not exist autonomously but they are always part of a
family. This makes the family the basic unit of work in the SVP model. Families can
be of any arbitrary size (even infinite) and individual threads inside those families are
created only when there are available resources. When there is a lack of resources, the
model falls back to a sequential mode where the family executes entirely in its parent
thread’s context.

A thread has the ability to create another family and thusly a hierarchy of
families is formed. The synchronizing channels exist solely inside a family between
its threads. A smaller form of communication exists between a parent thread and its
subservient family. The created family can receive data (in the beginning) and return
data (after termination) to its creator but this is the only form of communication
allowed between threads in the entire concurrency tree, at a user’s level of perspective
at least. Any other form would be at the very least inefficient and normally avoided.

The global synchronizing channel is immediately accessible by all the threads
of a family (each thread can decouple data from any global channel) and offers a set
of read-only data from the creator of the family. The shared channel works differently
by adopting a data-flow behavior: Each thread of the family can read (decouple into
shared variables) from that channel once and write back a value to it (couple) also
once. If a thread finds no data inside the channel at the moment it tries to read it, then
it blocks its execution until data is available.

Threads identify themselves inside the family by the use of an index and once
a thread has written a value to the shared channel, then that value will be instantly
accessible by the thread with the next index value. The original value in the chain is
designated by the creator / parent thread, while its final value is accessible by the

creator thread. Whenever a sequential form of execution is needed between the

46

threads of a single family, then a shared channel can also be applied to enforce an
order of execution. In this case the value of the data moving from thread to thread is
completely irrelevant as long as there is some data moving. Figure 4.1 demonstrates a
typical SVP family of microthreads during its execution: Each time a thread writes a
value on a shared channel, the next thread (which blocked on reading that channel)
can resume computation. Local computations can take place in parallel outside of the
reading / writing of the shared variable. The global channel is visibly available to all

the family threads.

Parent Thread
Shared Channel

Global Channel

~

Parallel Computation

Parallel Computation

Parallel Computation

—> Read shared variable | —> Read shared variable

|_—> Read shared variable
Critical section Critical section Critical section

Write to shared variable — Write to shared variable — Write to shared variable —

K Parallel Computation / K Parallel Computation / \ Parallel Computation /

Threadi-1 Threadi Threadi+1

Figure 4.1. An SVP Family of Microthreads. The Global Channel is Available to all
Threads While the Shared one Creates a Data-chain from One Thread to the Next.

In addition to those two types of channels, a global asynchronous memory (in
the form of a flat address space) exists which is accessible by all threads. At any given
time, each thread “sees” a view of a particular memory section which will remain
consistent so long as no other thread writes to that particular place. Once the family
finishes its execution, then all such “views” are shared and a final view of the entire
subsection involved in the execution is considered to be at a stable, synchronized
state. Specifically, the consistency model does not guarantee that a thread will see any

changes performed by an unrelated thread at any given time [40], [17], [39]. Figure

47

4.2. demonstrates an SVP hierarchy with the bulk asynchronous memory available to
all threads.

The global asynchronous memory coupled with the synchronizing channels
(which offer parent-child and intra-family communication) are sufficient to capture all
kinds of dependencies inside a program, since the synchronizing channel can impose
the same ordering as a loop carried dependency and the rest dependency types aren’t
real dependencies. It is obvious though that the only way for flow dependences to be
expressed in the SVP model in any sensible manner is through the use of dataflow
semantics and the various communication channels. This means that legacy code
cannot be executed as-is in a parallel manner. Certain types of transformations are
required in order for dependencies (most importantly loop-carried ones) to be mapped
into threads and families. In summary, loops (parallel or sequential ones) and function
calls must be implemented as families where the blocking nature of the threads will
offer the proper ordering of execution.

Root (Main) Thread]

00 l-.v’_% .-l.ll.]z[.ll.ln.]

A
v
:)
(e0@00).00880) |,
.......................... Asynchronous
Memory
[. 00006 -]4 - /

Figure 4.2. An SVP Hierarchy with the Accompanying Asynchronous Memory.

48

A typical example where the multiple types of communications channels are
of use is the matrix multiplication. The code fragment that performs multiplication
between two two-dimensional matrices A and B is displayed on Figure 4.3. The result
is stored in a similar matrix C. For simplicity reasons we assume the matrix
dimensions are n x n. It is clear from that code sample that the two outermost loops (i
and j) that compute the elements of C are independent from the rest. The only loop
carried dependency appears inside the innermost loop (k) where sum is updated once
per loop iteration. In the SVP model this would translate to three families: i, j and k.
The threads in family i are all independent between them (hence there is no need for a
shared channel) and each thread invokes family j, where again its threads can be
executed in a concurrent manner.

for (i=0; i<n; i++)
for (j=0; j<n; j++) {
sum=0;

for (k=0; k<n; k++)
sum += A[i][K] * B[KI[jI;

Clilf]=sum;
}
Figure 4.3. A Typical Code Fragment which Calculates the Product of two n x n
Matrices.

Each of these threads (in the j families) initializes a thread-local variable sum
with the value 0, and then invokes (spawns or creates) family k. This is where most of
the computation takes place and indeed we can see that at first glance it is not possible
to increase efficiency more. However, each of the threads in the k family first
computes the product A[i][K]*B[k][j] and then updates the variable sum (which
carries the total sum and hence is represented as a shared channel). Since each of
those products is independent from the other threads, then it is prudent to have all the
threads of the family k compute that product concurrently before beginning to update
the total sum. In summary, each “k” thread performs the following steps: (i) calculate
the result of the product A[i][K]*B[Kk][j] in parallel and store it in a temporary
variable, (i1) perform a read on the shared channel “sum” (and block if it’s not
available), (iii) Add the temporary variable to the sum variable, (iv) write the value of

the sum variable back to the “sum” shared channel, (v) terminate.

49

The hierarchy that such a computation creates is demonstrated in Figure 4.4: A
tree of execution with three levels is created. Since the threads in level 1 (Family i)
execute concurrently, this means that the n x n threads of level 2 (Family j) will
execute concurrently and thusly each of the n x n elements of matrix C will compute
independently from the rest. The k families display the dataflow created by the sum
variable travelling through the shared channel. It is initialized at each parent locally, it

traverses through all the threads one by one and then returns back to the originator.

[, gq] Family

Family] la Family j V A Family j
LI L L LI LI L LB L
A O O o

Families k Families k Families k

Figure 4.4. The Execution Hierarchy Created for the Concurrent Matrix
Multiplication. Single-pointed Arrows Indicate Dataflow Direction.

4.3. The SL Programming Language

It was made abundantly clear that a programming language which could
support the API exported by the SVP was needed. Initially a series of extensions were
designed and added to the C language (a well-known language used world-wide) and

50

the uTC [37] language (micro-threaded C) was born. As development proceeded,
certain problems emerged that led to the creation of the SL language. While uTC was
implemented by modifying the gcc compiler, SL used a series of macros to help pass
the code through the original unaltered gcc compiler and used post processing to
provide the necessary functionality and optimization. It provides mechanisms for the
bulk creation and synchronization of threads, the passing of variables and values
through the global and shared channels and more. Some key macros and their
explanation follows:

e sl _def(){code} sl _enddef. sl_def defines a thread with a programmer defined
name and a defined return (usually void). A series of arguments is listed in the
parentheses. Arguments are passed by value. sl_enddef denotes the end of the
thread definition. Similar to the classic join for threads, sl_sync() will halt
execution of the parent thread that created a family and wait till that family
terminates to continue execution.

e sl _create(). It creates a family of threads whose index’ starting value, ending
value and step will be defined inside the argument list of sl_create.

e sl sync(). The sl_sync macro causes the invoking thread to pause and wait
until the created family has finished computation and returned control to the
parent.

e sl_index(variable_name). A macro that can be called inside a thread function
code. It stores the index of the current thread to the variable designated by
variable_name.

A more detailed description of the SL language can be found in the Appendix at the
end of the thesis.

sl def(fib, void, sl_shparm(int, _a), sl_shparm(int, _b), sl_shparm(int, _c))
{

int a=sl_getp(_a);

int b=sl_getp(_b);

int c=sl_getp(_c);

c=a+b;
a=b;
b=c;

sl setp(_a, a);
sl _setp(_b, b);
sl setp(_c, c);

¥
sl_enddef

51

sl_def(t_main, void)
{

int a=o0;

int b=1;

int n=5;

int c;

sl_create(,,2,n+1,1,,,s1l_sharg(int, _a, a), sl_sharg(int, _b, b),
sl_sharg(int, _c, c));

sl _sync();

c=sl_geta(_c);

printf(“%d\n”,c);

}
sl_enddef

Figure 4.5. Calculating the ny, Term of the Fibonacci Sequence. After the Thread’s
Termination, Reading the Shared Channel ¢ Provides the Final Result.

By combining SL directives and standard C code, it is easy to create SVP applications
that exploit concurrency. For example, consider the code that computes the nyg, number
of a Fibonacci sequence. For simplicity we assume than n is greater or equal to 2.
Using SL over SVP this code would look like the one in Figure 4.5 which

demonstrates the thread definition and invocation.

#include<stdio.h>

typedef int[10] typel;
typedef typel[10] type2;

sl_def(family_k, void, sl_glparm(type2, _a), sl_glparm(type2, _b), sl_shparm(int, _sum),
sl_glparm(int, _i), sl_glparm(int, _j))
{

sl_index(k);

type2 a=sl_getp(_a); int ype2 b=sl_getp(_b);
int i=sl_getp(_i); int j=sl_getp(_j);

int tmp=a[i][k]*b[k][j]; int sum=sl_getp(_sum);
sum+=tmp;

sl_setp(_sum, sum);

}
sl_enddef

sl_def(family_ j, void, sl_glparm(type2,_a), sl_glparm(type2,_b), sl_glparm(int, _i),
sl_glparm(type2, _c))
{

s1l_index(j);

type2 a=sl_getp(_a);
type2 b=sl_getp(_b);
type2 c=sl_getp(_c);
int i=sl_getp(_i);

int sum=0;

sl create(,,0,10,1,,,family k, sl glarg(type2, _a, a), sl _glarg(type2, _b, b),
sl_sharg(int, _sum, sum), sl_glarg(int, _i, i), sl_glarg(int, _j, 3));

sl_sync();

sum=s1l_geta(_sum);

c[i][j]=sum;

}
sl_enddef

52

sl def(family_i, void, sl_glparm(type2, _a), sl_glparm(type2, _b), sl _glparm(type2, _c))
{
S1_index(i);
type2 a=sl_getp(_a);
type2 b=sl_getp(_b);
type2 c=sl_getp(_c);
sl _create(,,0,10,1,,,family j, sl _glarg(type2, _a, a), sl_glarg(type2, _b, b),
sl glarg(int, _i, i), sl_glarg(type2, _c, c));
sl _sync();
}
sl_enddef
sl _def(t_main, void)
{
Type2 a, b, c;
sl_create(,,9,10,1,,,family i, sl_glarg(type2, _a, a), sl_glarg(type2, _b, b),
sl_glarg(type2, _c, c));
sl sync();

¥
sl _enddef

Figure 4.5. An Application which Concurrently Multiplies two Matrices a, b (10x10
size) and Stores the Result in the ¢ Matrix.

Another more complex example is the matrix multiplication one, already described in
Figures 4.3 and 4.4. The SL / SVP implementation is illustrated in Figure 4.6.

4.4. The Toolchain

The SVP’s toolchain is simple and efficient. The main component is the SL
compiler which takes as input a program written in the SL language and produces a
binary output ready to be executed by an SVP-compatible multicomputer system. For
the convenience of the developer, the compiler may output a binary file that is
essentially sequential. This option exists so that the programmer can check whether
the code works properly in a sequential manner before proceeding into the actual
parallel form. In the case of a fully parallel code, a simulator system is also provided.
That system is an environment capable of simulating any type and size of microgrid
with the OS-on-chip attached. The simulator can be used both to debug code and to
evaluate it. Once the simulation completes, the programmer receives a number of
helpful metrics about the application such as total master CPU cycles and so on.
Schematically the Toolchain can be visualized by Figure 4.6.

Since the SL language is an intermediate level between high level and

machine level, it is not expected by a user to code in SL (although that is perfectly

53

acceptable and normal). Instead the Toolchain is augmented with two more tools: An
automatic compiler which transforms sequential C code to SL (The C2uTC/SL
presented in this thesis) as well as an automatic compiler which transforms SaC
(Single Assignment C) [73] to SL. These two compilers allow legacy code in C and
data parallel code in SaC to be automatically parallelized. The main idea behind the
toolchain is that ideas can be expressed in a high level language such as SaC or a
(rather) structured C code and then see them run in a many-core environment.
“Communication” in the toolchain takes part completely via the use of files. Each
program takes an input and generates an output which in turn is used as the input of
the next program. The augmented Toolchain is depicted in Figure 4.7. More
information on the SVP model can be found in [74] and [75].

SVP
hardware
execution

A

SVP
binaries

SL
compiler

SVP

Simulated
execution

Figure 4.6. The Typical SL/SVP Toolchain.

e e

SaC to
SL

compiler

Cto SL
compiler

S

SL
compiler

e

SVP
hardware

"

SVP SVP
emulation binaries

Figure 4.7. The Augmented SVP Toolchain.

54

55

CHAPTER 5. THE C2uTC/SL COMPILER

5.1. Introduction

5.2. One-Dimensional Loops
5.3. Multi-Dimensional Loops
5.4. From C to SL

5.1. Introduction

As it was stated in the previous chapter, SVP requires a different way of
thinking when describing parallelism to the system through the use of SL. This also
means that mapping loops created in a traditional sequential language (like C) onto
SL automatically requires a new compiler. For that reason, C2uTC/SL was created. It
IS a source-to-source compiler which takes as input sequential C code and attempts to
discover and expose as much of the hidden parallelism inside the code and then
rewrite it into SL.

C2uTC/SL focuses on loop structures. The reasoning behind this design
choice is threefold: (i) loops have the potential for high degrees of parallelism (ii)
most of the execution time of a program is spent inside loops and (iii) the S\VP model
offers special mechanisms that help accelerate single-dimensional loops. Hence,
C2uTC/SL’s goal is the transformation of loops into families. In the case where no
dependences exist inside the original loop, then everything is mapped onto completely
parallel threads inside a family otherwise the synchronizing channels are used to
impose proper statement order.

Due to the fact that an SVP family is by definition a single-dimensional entity,
translating multi-dimensional loops with loop carried dependences to families is a
non-trivial task. That is why C2uTC/SL differentiates between loops of a single

dimension and loops of multiple dimensions and acts accordingly in each case.

56

5.2. Single-Dimensional Loops

Single-dimensional loops can be mapped directly on SVP families and are
categorized based on whether they contain loop carried dependencies (which indicates
that a loop can be fully executed in parallel) or not and on what kind of ordering the
loop carried dependencies impose on the execution (which even though it denies full
parallelism, some might still be possible to expose). There are several categories that
emerge based on this distinction and a list of them (alongside their transformation to
SL) follows:

5.2.1. Loops without Dependencies

This is the simplest category of loops. A typical example looks like the one in
Figure 5.1. (c is considered a constant or an expression which does not access A in
any way). Figure 5.2 illustrates a slightly different loop that belongs to the same
category: Even though there is a reference to A on the left-hand side of the
assignment, there is no loop carried dependency, since each iteration of i only

references itself and no other.

for (i=0; i< N; i++)
Alil=c;

Figure 5.1. Typical Loop Without Dependencies.

for (i=0; i<N; i++)
Afi] = AJi] +¢;

Figure 5.2. Another Example of a Loop Without Dependencies.

The way to transform these loops is quite simple and straightforward. A
family of threads is created with the same bounds and stepping as the original loop
and without any synchronization channel since each thread inside that family can
execute in parallel. The code that each thread executes is the same code as the loop

body, augmented with statements that deal with the decoupling of values from the

57

various global channels into local variables. The transformed code is depicted in

Figure 5.3. Invocation of that family from the parent thread is illustrated in Figure 5.4.

sl_create(thread, void, sl_glparm(int, _c), sl_glparm(int *, _a))

{
sl_index(i);
int *A=sl_getp(_a);
int c=sl_getp(_c);
Ali] = Afi] +¢c;

}

sl_enddef

Figure 5.3. The End Result of the Transformation of the Loop in Figure 5.2.

sl_create(,,0,N,1,, thread, sl_glarg(int, _c, c), sl_glarg(int*, _a, A));
sl_sync();

Figure 5.4. Invoking the Family of Threads of Figure 5.3 from the Parent Thread.

5.2.2. Loops with a Single Dependence

A more complicated situation arises when a loop carries a single dependence
of an arbitrary length of x, where x > 1. In the extreme case where x=1 (a unary
dependency), the original (pre-transformation) code looks like the one in Figure 5.5.

The index space with the appropriate dependences is visualized in Figure 5.6.

for (i=1;i<N;i++)
A[i]=A[i-1]+c;

Figure 5.5. A Typical Example of Unary Dependency.

Figure 5.6. Visualization of the Index Space that Figure 5.5 Produces. The Dashed
Arrow Indicates the Direction and Length of the Loop Carried Dependence.

58

It is clear that the synchronizing channel mechanism must be used to ensure
proper statement order inside the family of threads that will replace this loop.
However, since each iteration is expecting the result of the previous one, it is a perfect
opportunity to utilize the synchronizing memory’s ability to transfer data between
threads. By passing the result of the computation of each thread to its successor
through a shared variable, then each thread will not need to read the value from the
global memory (A[i-1] per i) before it will perform its own calculation. This
mechanism offers a high increase in efficiency by utilizing SVP’s channels (that can
be implemented in hardware) in a smart manner. Figure 5.7 displays the transformed
result alongside its invocation code from the parent thread. Statements in bold

indicate the beginning and end of the critical section inside the thread.

sl_def(thread, void, sl_shparm(int,_shared), sl_glparm(int *,_a), sl_glparm(int, _c))

{
sl_index(i);
int c =sl_getp(_c);
int *A =sl_getp(_a);
int result;
int shared=sl_getp(_shared);
result=shared+c;
A[i]=result;
sl_setp(_shared, result);

}
sl_enddef

sl_create(,,1,N,1,,,thread, sl_sharg(int, _shared, A[0]), sl_glarg(int *, _a, A),
sl_glparm(int, _c,));
sl_sync();

Figure 5.7. The Transformed Result of the Code in Figure 5.5.

All the family threads will initialize (decouple) their variables in parallel,
calculate the result variable in a critical section, store it in the respective global

memory place and then pass it over to their successor thread in the chain through the

59

shared variable. In order for this computation to work properly, the original value of
A[0] must be passed through to the first thread through the synchronizing channel and
that is the purpose of the initializing part in the sl_create statement. It is worth noting
here that the dependent family is always executed on a single core and allows multiple
threads to tolerate high memory access latencies. Additionally, although it would
make more sense for the compiler to emit the sl_setp directive as early as possible in
the code to allow for maximum parallelism, such a feature is not currently supported.

A more general example of the single dependence category is depicted in
Figure 5.8. (code) and the corresponding index space visualization is illustrated in
Figure 5.9.

for (i=x;i<N;i++)
A[i]=A[i-x]+c;

Figure 5.8. A Typical Code Example of a Uniform Dependency with Length x.

s
. o
.........

Figure 5.9. Index Space Visualization of a Single Dependence of Length x=2.

The way C2uTC/SL deals with such a situation is a bit more complex than the
previous case: A dependence of length X, creates a series of implied data chains.
Careful examination of Figure 5.9 shows that indices 2, 4, 6, 8, ... belong to one data-
chain while indices 3, 5, 7, ... belong to another. Moreover, those two data-chains are
completely independent from one another. Generally, a single dependence of length x,
implies x completely independent data-chains. The first contains the index set (X, 2X,
3X, ...) the second contains the set (x+1, 2x+1, 3x+1, ...) etc. with the final one

containing the set (2x-1, 3x-1, 4x-1, ...).

60

In essence, even though a dependence exists, there is still parallelism to be
exploited. All x data-chains can be executed in parallel which signifies a theoretical
(in an ideal universe) increase of efficiency by a factor of x compared to the
sequential model of execution. Taking into consideration the fact that each data chain
is implemented by a single family (with a single shared variable which carries the
value throughout the family), and that all x families need to run in parallel, which
makes these families themselves children of another family of concurrently running
threads, means that the hierarchy in the end is a bit more complex than the previous
one since it now involves one more level in the concurrency tree. Figure 5.10
demonstrates the transformed code for such a paradigm alongside the invocation of

the whole hierarchy that needs to be called in the parent thread.

sl_def(sequential, void, sl_shparm(int, _shared), sl_glparm(int *, _a), sl_glparm(int, ¢))
{

sl_index(i);

int *A=sl_getp(_a);

int c=sl_getp(_c);

int result;

int shared=sl_getp(_shared);

result=shared+c;

AJi]=result;

sl_setp(_shared, result);

}
sl_enddef
sl_def(parallel, void, sl_glparm(int *, _a), sl_glparm(int, _c))
{
sl_index(i);
int *A=sl_getp(_a);
int c=sl_getp(_c);
sl_create(,,i,N,X,,,sequential, sl_sharg(int, _shared, A[i]), sl_glparm(int *, _a, A),
sl_glparm(int, _c, ¢));
sl_sync();
}
sl_enddef

sl_create(,,x,2*x-1,1,,,parallel,sl_glarg(int *, _a, A), sl_glarg(int, _c, c));
sl_sync();

Figure 5.10. Transforming the Code of Figure 5.8. Notice the Increase in Hierarchy
Complexity.

61

5.2.3. Loops with Multiple Dependencies

As the last test case, loops with multiple dependencies are examined. A typical
one dimensional loop with a series of different dependences is depicted in Figure
5.11, while Figure 5.12 demonstrates the (rather complex) index space. More specific
cases might lack some of the dependences displayed, yet they are no different in their
transformation than the general case. Considering that there are a total of X
dependencies in the loop, we can see that in the end there will be x different shared
variables, each shifting one place per iteration, and all of them are used to calculate
the final result for every thread.

for (i=x; i<N;i++)
Afil=A[i-1] + A[i-2] + ... + A[i-X] +¢;

Figure 5.11. A Loop With x Different Dependencies.

‘________—__-._.____‘
- -
- -~

e - ~,
’ \
/7 Vi ! ~ \‘\\\‘ \

g 4 P _— ~~ N S
. 4 / - Sl W\
4 s - Sal MW
ri 7 # '~ W9

7 4 e N

ONONONO NN

Figure 5.12. Visualization of the Loop of Figure 5.11.

sl def{(thread, void, sl_shparm(int, sl), sl shparm(int, s2), ..., sl shparm(int, sx),
sl_glparm(int *, _a), sl_glparm(int, c))
{
sl_index(i); int result;
int *A=sl_getp(_a);
int c=sl_getp(_c);

int s1=sl_getp(_sl), s2=sl_getp(_s2), ..., sx=sl_getp(_SX);
result=s1+s2+s3+...+sx+c;

Ali]=result;

sl_setp(_sl, s2); sl_setp(_s2, s3); ...; sl_setp(_sx, result);

}
sl_enddef

62

sl_create(,,x,N,1,,,sl_sharg(int, _s1, A[0]), sl_sharg(int, _s2, A[1]), ...,
sl_sharg(int, _sx, A[x-1]), sl_glarg(int *, _a, A), sl_glarg(int, _c, c¢));
sl_sync();

Figure 5.13. Transformation and Invocation of a Loop with Multiple Dependencies.

It is worth noting here that at first glance nothing is gained. Both the original
and the transformed code run sequentially. However the transformed code passes all
the relevant data from thread to thread via the hardware synchronizing channel which
helps alleviate the burden of accessing the global memory for every element needed.

This helps increase speedup quite substantially.

5.2.4. Loops with Anti-Dependencies

As has been mentioned at a previous chapter, anti-dependencies are not true
dependencies. When such a case of false dependency emerges, C2uTC/SL ustilizes a
typical false dependence elimination technique: it copies the original array into a
temporary array and then performs the actual computation. Figure 5.14 demonstrates
code with an anti-dependence while Figure 5.15 shows the transformed code.

for (i=0; i<N-X; i++)
AJi] = A[i+x]+c;

Figure 5.14. A Typical Loop with an Anti-dependence.

sl_def(thread, void, sl_glparm(int *, _A), sl_glparm(int *, _Temp),
sl_glparm(int, _c), sl_glparm(int, _step))

sl_index(i);

int *A=sl_getp(_A);
int *Temp=sl_getp(_Temp);
int step=sl_getp(_step);

if (step==1) Temp[i]=A[i]; else A[i]=Temp[i+x]+c;

¥
sl_enddef

63

sl_create(,,x,N,1,, thread, sl_glarg(int *, _A, A), sl_glarg(int *, _Temp, Temp),
sl_glarg(int, _c, c), sl_glarg(int, _step, 1));
sl_sync();

sl_create(,,0,N-x,1,,,thread, sl_glarg(int *, _A, A), sl_glarg(int *, _Temp,
Temp), sl_glarg(int, _c, c), sl_glarg(int, _step, 2));
sl_sync();

Figure 5.15. Transformation and Invocation of the Anti-Dependence Loop.

This method completes the task with maximal parallelism albeit at the cost of

reserving extra memory for the temporary array.

5.3. Multi-Dimensional Loops

Multi-dimensional loops are again divided into two major categories. Loops
free from loop-carried dependencies and ones with dependencies. As we already
know, lack of dependencies completely removes the need for maintaining any
ordering in the execution of the code. So these kinds of loops are trivially transformed
into fully parallel families. Each level in the loop-nesting corresponds to a family that
executes completely in parallel. This creates a loop hierarchy similar to the one of the
matrix multiplication example but without the sequential innermost loop.

However, in the case where loop carried dependencies do exist, the status quo
changes. There is an ordering imposed in multiple dimensions now. C2uTC/SL can
transform perfectly nested loops with a dependence vector into parallel constructs by
utilizing the idea of Lamport’s hyperplane method. However, since finding the
optimal execution schedule for the hyperplances is not a trivial case, C2uTC/SL opted
for a novel solution: Instead of pre-calculating the entire transformation (in compile
time), most of the calculations are delegated to run-time. The hyperplanes are
intuitively discovered and scheduled by tracing the dependence vector while
executing the loop body. The whole algorithm is quite complex and so it will be
presented in two steps: (i) The fixed size algorithm, which is the original and the main

idea behind (ii) The self-adaptive algorithm which builds on (i) but completes it.

64

5.3.1. The Fixed-Size Algorithm

The main idea of the run-time algorithm is simple. If at any given moment, we
know which sets of indices (index tuples) can execute, then by applying the
dependence vector on that set, we can find out which tuples will execute at the next
step. Consider Figure 5.16 which displays an excerpt from a random state of program
execution. The grayed out index points indicate which indices execute at the current
time (execution cycle). By applying the dependence vector (the arrows) in the set of
indices currently executing, we can derive the set of indices that will execute in the
next cycle (the white ones).

This algorithm emulates a mechanism where each index tuple locks down on
itself (through the use of semaphores, one for each dependence) and each index tuple
that executes, sends an unlock signal to the ones that depend on it (according to the
vector). Since it is not possible to have a system with that many semaphores and in
order to emulate the mechanism we need an n-dimensional array (2-d in the
aforementioned example) which is initialized with 0 in all its cells. This array will
store the number of dependences each cell satisfies at any given time. Before that
array is created however, tiling needs to be applied to the index space since this
algorithm does not offer satisfactory results at the finest level of granularity (as will
be demonstrated in Chapter 6. Tiling is only applied on the innermost dimension as is

demonstrated by Figure 5.17.

A

Q’Q
O-Q
O-Q
ore
O

Figure 5.16. A Random State of the Index Space of a Nested Loop with two
Dimensions. Arrows Indicate Dependences (2 in this Example).

65

 — — — — — — — —

@ & @ & & 0 0 0 0 LIRCIRCIRC IR IRE JRE IRt JNK)
o — — — — — — —

® @ @ & & 0 0 0 0 LIRCIRCIRC IRC IRE JRE IRt IRt)
g g e ———

@ & & & & 0 0 0 0 LIRCIRCIRC IR IRE JRE IRt JNK)
~ ~

i - i -

Figure 5.17. A Two-Dimensional Index Space Before and After Tiling. Each Tile has
a Length of 3.

There are two reasons explaining the single dimensionality of the tiles: (i) A
single dimensional tile can be applied on the SVP logic and architecture as a single
family and thus be efficiently executed thanks to the relevant mechanisms. (ii) By
organizing indices of the innermost loop (of the loop nesting) together cache usage is
improved since these elements are usually mapped in neighboring memory addresses.
Once tiling has been applied with a length of N per tile, then the algorithm begins
execution (note that everything described is done during the actual execution and not
during compile time) and a n-dimensional array is created with each cell
corresponding to a tile. The cells of the array are then initialized with the number of
dependences the corresponding tile has satisfied at the start of the execution. All the
tiles that satisfy all their dependences store their index coordinates (in the form of

tuples) inside a set of tuples V;. At this point, a two-step computation takes place:

1. Create |V;|+1 threads and synchronize. |V, returns the number of tuples stored
inside V. All threads “Perform Computation”.
2. If |V,] = 0 then computation ends. Otherwise copy V, into Vi, clear V, and

goto 1.

“Perform Computation” comprises of the following steps (in the form of a pseudo-

code function):

66

Perform_Computation()

{
index i;
if (i<length((V1)+1)
{
create family of N threads with coordinates of the iy, tuple in Vy;
sync_family ;
return ;
}
else
{
for each tuple v in V;
for each dependence d in dependence vector D
{
index tuple t=v + d;
array[t]++;
if (array[t]==length(D))
add t to set Vy;
}
}
}

In short, at any given computation cycle, |Vi|+1 threads are created that run
concurrently. |V;] of them perform the actual original code’s computation. This is
actualized by creating a single family per V; tuple with size of N threads. The first
thread in the family has the coordinates of the particular tuple that spawned the family
while the rest of the threads follow on from that. Each of these families is executed in
a sequential manner which means that parallelism in this algorithm is exploited
between different families (hence the coarse level of granularity).

While those |V3| threads execute their computation, the last thread (called the
scheduler thread) is actually traversing |Vi| and adds each dependency from the
dependence vector to each tuple of V. The new tuples that are produced that way are
used as coordinates on the array which stores the number of currently satisfied
dependences. Each of these new cells’ values are increased by 1 per dependency and
if that value reaches the total number of dependences, then those coordinates are
added in set V,. This means that V, stores the coordinates of the index tuples that will
execute in the next computational cycle. If at the end of the computation cycle V; is
empty, then this means that the entire index space has been covered and the

computation ends.

67

For the sake of completeness a pseudo-code example is provided to help
clarify its inner workings and help provide better understanding of the self-adaptive
algorithm. Suppose the original code looks like the one in Figure 5.18. In this
example there are clearly two dependences at work: (1,0) and (0,1). This means that
the dependence vector D is the set D={(1,0), (0,1)}. C2uTC/SL will output the entire
algorithm as the transformed version of the loop and everything else will take place at

run time.

for(i=1;i<n;j++)
for(j=1;j<n;j++)
a[i]il = afi-1]0] + afilli-1];

Figure 5.18. The Original Code to be Transformed. The Corresponding Dependence
Vector D={ (1,0), (0,1) }.

The algorithm, firstly, creates (dynamically) a two-dimensional array of size n
x (n/ N) where N is the fixed size of the tiles that will be used and then initializes the
whole array. Initialization is pre-computed by the compiler and as such, it is tailored
to that particular problem. This happens in order to reduce the initialization overhead.
In the current problem with the particular dependence vector, the algorithm initializes
the entire array except the first row and column with the value 0, the entire first row
and column with the value of 1 and the corner at that intersection (index tuple (0,0))
with the value of 2. Since the total number of dependences is 2, that particular tuple is
added to V3. V3 is set to be empty at this point. Figure 5.19 demonstrates the array as
it is inialized. With this setup we know how many dependencies each tile has

satisfied, which tiles can execute and which ones should stay dormant.

N e
R o o ol of o
k| o o o of o
R o o o o o
k| o o o of o
k| o o ol of o

Figure 5.19. The Dependence Array as it is Initialized for a Nested Loop with a
Dependence Vector D={ (1,0), (0,1) }

68

C2uTC/SL analyses the dependence vector and outputs the necessary code
that will have each cell to be initialized with an appropriate value. Figure 5.20
demonstrates how these values are assigned to an array given a dependence vector of
{(a, 0), (0,b)} where a and b are greater than 0.

a

5

b { 1+1=2 1

Figure 5.20. How the Dependence Array is Initialized Based on the Dependence
Vector {(a,0),(0,b)}.

Cells near the edge of the array will always have at least one dependence
satisfied (the one that comes from outside the grid) and cells where those areas
intersect will contain the result of the summation of the each comprising area. In the
case of having a dependency with negative components then the upper row of the
array needs to be also initialized with appropriate values. Additionally, dependencies
non-parallel to the axes are split into multiple dependencies parallel to the axes. l.e. a
dependency of (1,1) becomes (1,0), (0,1).

The main loop of the algorithm is simple enough:

while (true)

{
Create (sizeof(V1) + 1) threads;
Synchronize threads();
if (sizeof(\VV2)==0) then break;
Copy(V2, V1);
Empty (V2);

Each thread runs the following code:

ThreadBody

69

{
Thread_index in;
if (in < sizeof(V1)) then
{
coordinates[] = V1.tuple[in];
i = coordinates[0];
J = coordinates[1];
create a sequential family of N threads with thread body
the main program procedure(i, j);
Synchronize threads();
}
else
{
for (a=0;a<sizeof(V1);a++)
{
coordinates[] = V1.tuple[a];
i=coordinates[0];
j=coordinates[1];
if (i+1<n)
{
Array[i+1][j]++;
if (Array[i+1][j]==2) addToSet(V2, i+1, j);
}
if j+1<n)
{
Array[i][j+1]++;
if (Array[i][j+1]==2) addToSet(V2, i, j+1);
¥
}
}
}

The addToSet procedure adds a new index tuple into V2. Each set is essentially a
dynamic array which can continually expand when the need for more data arises. The

main program procedure actually executes the original loop body:

main program procedure (i, j)
Thread_index in;

a[i][j+in] = a[i-1][j+in] + a[i][j+in-1];

70

Once the whole grid of coordinates is filled the V, set will eventually come up
empty and the computation will end. The dependence array at a random state looks
like Figure 5.21. In this example, the bottom left tiles indicate computations that have
already taken place. The light grey ones indicate the tiles being computed in the
current cycle. The scheduler thread follows each arrow (which signifies a
dependency) and increases the number in that cell by 1. The dark grey tiles will all
end up with 2 dependencies satisfied and thusly they will be added to the V, set for

calculation in the next cycle.

Figure 5.21. The Dependency Array at a Random State During Execution.

This run-time algorithm does away with trying to solve an NP-Complete
problem and instead aims to intuitively discover the underlying parallelism. No
hyperplanes are calculated, instead the dependence vector is applied on the index
space and sets of tuples that can execute concurrently are discovered and scheduled.
The end result is similar to any of the pre-computed methods which reduce the
problem to a linear algebra one, while offering no need for heuristics. An added
advantage of moving the solution to the run time is that irregular loops (i.e. triangular
ones) can be dealt with exactly the same way by mapping the exploration space into
the loop bounds. This versatility however does not come without a cost. There is an
overhead incurred both during initialization (even if that can happen in parallel for

maximal efficiency) and when the scheduler thread is running concurrently with the

71

rest of the computing threads so this run-time method will never be able to achieve
the speedups offered by other methods however it can get rather close.

5.3.2. The Self-Adaptive Algorithm

The fixed-size algorithm described in 5.3.1 (so called due to the fact that the
tiles are of a fixed pre-determined size) proved to be efficient however a disadvantage
became soon apparent. The size of the tile was not, and could not be, known
beforehand at the beginning of the execution. This number is a crucial parameter for
the efficacy of the whole algorithm and picking the proper size proved to be a
challenge not easily solved in the existing form of the run-time system.

The problem stems from the fact that too small a size results in too many tiles
running in parallel, while too large a size means too few parallel tiles execute per
cycle. The former situation means that each V; set is too large and consequently the
scheduler must spend too much time traversing it while the rest of the computation
threads have finished their computation. This in turn means that the main loop will
idle for some time until the scheduler finishes. In the opposite situation, the scheduler
finishes rather quickly however there is not enough parallelism to offset the overheads
and so performance suffers.

It is reasonable to assume that the best solution lies somewhere in the middle:
Where both the scheduler and the computation threads finish at the same time. Since
that is practically impossible to achieve, a better solution would require all threads to
finish their task as close to each other as possible. Measurements have validated this
assumption, hence our best approach to a good tile size is the one that will create as
many parallel tiles as are needed so as not to overwhelm the scheduler thread. Since
this magic number is dependent on the problem, it becomes apparent that there is no
method of calculating it. This led to the creation of a new algorithm, based on the
fixed size one, however equipped with the ability to alter that tile size during
execution in order to fine tune execution and aim for the optimal result. The self-
adaptive algorithm is the next logical step to the fixed-size one. It incorporates all the
versatility of moving the solution to the run time while at the same time abolishes the

need for pre-existing knowledge of the tile size (or even resorting to some heuristics).

72

In order for the self-adaptive system to work, various changes and additions to the
main algorithm were needed.

Firstly, a methodology was required which could determine at any given
computation cycle whether the tile size needs to be increased or decreased: The
execution time of all tiles that run in parallel and the execution time of the scheduler
thread during each iteration are measured. Once each tile finishes, it stores its total
execution time (in master CPU cycles) in an array. At the iteration’s end, the slowest
tile is selected and its timings are compared with the scheduler’s ones. A distance
between those two numbers is calculated which models the value of one as a
percentage of the other. According to that distance then the following take place:

e |f the absolute value of the distance is less than or equal to 0.25 (25%) then the
two numbers are considered close to each other and no change is needed in the
tile size.

e Otherwise:

- If the scheduler finished before the tiles, then more tiles are needed to keep

the scheduler occupied and hence the tile size needs to be reduced by 1.
- If the scheduler finished after the tiles did, then fewer tiles are needed so

the tile size needs to be increased by 1.

The main idea of the self adaptive algorithm is that once a particular tuple of
indices finishes execution, then the following tuple in the lexicographic order will
execute as well. In order for this to happen, a dependency is needed with the form of
(0, 0...0, a). When such dependence exists then “a” is considered to be of value of 1
since the length is irrelevant: the next tuple will execute from the point the current one
ends. If there is no such dependency in the dependency vector then loop interchange
is applied with the aim of creating one.

The algorithm solves the problem in an idealized index space that starts at (0,
0... 0) and its volume extends in all dimensions ad infinitum. The tiles before their
execution transform those coordinates into proper index variables by adding the
offsets for each dimension. The solving part is only interested in sets of indices in the
form of (a, b, ¢, d... 0) since it is not possible to calculate which family in the

innermost dimension can start due to the fact that the task size changes all the time.

73

However, based on the premise that once a tile starts working in the (a, b, c, d... 0)
coordinates, we know that all of its subsequent successors will always be added in the
queue to be executed since the dependency (0, 0, 0, ..., 1) is always satisfied.

There is one final element that is needed for the self-adaptive algorithm to
work properly. A method is needed to keep track of the index space that has been
already covered by computation. This is necessary since with all the fluctuations of
the tile size, a tile might be created with a length that surpasses this limitation and
thusly be in danger of ruining the dependency order. To avoid such a situation, an
extra array is used which stores the lengths covered for each coordinate of the form (a,
b, c, ..., 0). This array is called the front since it tracks the computational front as it
expands over the index space from iteration cycle to iteration cycle. With everything
mentioned so far in mind, during each iteration cycle the following series of events
takes place:

1. The set of coordinates from the V; set is passed to the processing threads.
There they are converted into proper index coordinates (by adding the corresponding
offsets) and then the current front in the innermost dimension is assigned to be the
starting coordinate. The current tile size is added and the ending coordinate is
calculated. If it exceeds the loop bounds or the adjacent front (in the case where the
task size grew since the previous cycle) then it is clamped accordingly. A second
array which acts as a temporary front is updated when this computation finishes with
the new front value for the current coordinates.

2. A thread family creation takes place which runs sequentially and performs
computations on the set of the calculated indices. This family is timed and the amount
of cycles it took is stored in an array.

3. The scheduler thread computes the next set of indices but it is only
interested in families that will begin execution in the innermost dimension. Once the
total number of dependencies satisfied reaches the total number of dependencies, then
the particular tuple is added in the set of indices to be executed in the next cycle. The
scheduler also adds to the same set the lexicographical successors of the tuples that
are already running, as long as they don’t exceed the front or the loop bounds.

4. The new temporary front array values are copied in parallel to the current

front values.

74

5. The tile that took the longest time to complete is selected and its total time
is compared to the time that the scheduler thread needed to complete and their
distance is calculated. Once the distance is known,

(@) If the distance is lesser than or equal to 25% tile size remains the same.

(b) If the distance is greater than 25% and the scheduler finished first the tile
size is reduced by one since more tasks are needed.

(c) If the scheduler finished after the computations then the tile size is
increased by one.

This continues until the V2 set returns empty which signifies the
computation’s end. The whole algorithm in pseudo-code form follows:

The dependency array now changes and has its dimensionality reduced by one
(since there is no point tracking dependences in the innermost dimension). In the case
of the previous example with a two-dimensional loop and a dependence vector of
{(1,0),(0,1)} it looks like Figure 5.22.

2111171 }j1j]111(11

Figure 5.22. The Initialized Dependence Array for a Dependence Vector of
D={(1,0),(0,*)}

By following that dependence array, we can see that in this example the first
column with coordinates (0,0) gets “activated” first. Once it is activated, its
successors (all tiles with coordinates in the form of (0,x)) will be queued for execution
one by one. When the first tile finishes the second column (1,0) will activate and

begin executing and so on.

The main tile procedure is:

main program procedure (i, j)
Thread_index in;
j=j+in;

ali]ljl=ali-1]1[j]+alil[j-11;

The ThreadBody now becomes as follows:

75

ThreadBody
{
Thread_index in;
if (in <sizeof(V1)) then
{
coordinates[] = V1.tuple[in];
i = coordinates[O] + offset i ;
Depending on the status of Nold and Ncurrent
calculate the “newFront[]” “length” and “coordinate” variables

clockStart=getClock();
if (length > 0) then
{
create a sequential family of length threads with
thread body the main program procedure(i, j);
Synchronize Threads();

}
clocks[in]=getClock() — clockStart;

else

clockStart = getClock();
for (a = 0; a <sizeof(V1) ; at++)
{
coordinates[] = V1.tuple[a];
I = coordinates[0] + 1;
j = coordinates[1];
if (i>=offset_i AND i<n and j==0) then Array[i][j]++;
if (Array[i][j]==2) then addToSet(V2, i, j);
i = coordinates[0];
j = coordinates[1] + 1;
if (Front[i+offset_i] < n) then addToSet(V2, i, j);
}
Clocks[in]=getClock() — clockStart;

The main while loop also changes into the following (Ncurrent stores the current tile
size):

Nold = Ncurrent;

while (true)

{
Create sizeof(V1) + 1 threads
Synchronize threads();
if (sizeof(V2)==0) then break;

Copy NewFront[] to Front[] in parallel;

76

max=Clocks[0];
for (a=1; a<sizeof(V1); a++)
if (Clocks[a]>max) then max=Clocks][a];

percentage=(Clocks[sizeof(V1)] — max) / Clocks[sizeof(V1)];
Nold = Ncurrent;

if (Absolute(percentage) > 0.25) then
{

if (percentage < 0) then Ncurrent--;
else Ncurrent++;

}
Copy(V2, V1),
Empty (V2);

Figure 5.23 illustrates a random state of the dependency array. It is also worth
noting that the only time the dependence (1,0) is taken into consideration when it
points to a coordinate in the form of (a, 0) otherwise it is completely ignored since
each tile queues the one above it in the V; set. Light grey tiles indicate the ones that
are executing in the current iteration cycle while the arrows point to the ones that will
be queued for execution in the next cycle. In that particular state, we can see that five
on the “columns” have already been activated. Each activated column will keep rising
until the loop bounds are reached. At the same time, each tile running on a column
checks the front value of the column on its left in order not to move past it. Such an
action might result in some computation taking place before its data are ready and
produce false results. As the scheduler traverses all the running tiles, it eventually will
notice that the fifth column increases the value at its right by one and this signifies

that in the next cycle the sixth column can be activated as well.

77

Figure 5.23. A Random State of the Dependency Array with the Executing Tiles.

5.3.3. Anti-dependences

While, in single-dimensional loops, anti-dependences are simply treated by
utilizing a temporary array to copy the current one, when it comes to multi-
dimensional loops, C2uTC/SL uses a different transformation. Instead of creating a
copy array which might require large amounts of memory, it treats anti-dependences
as dependences. For example a dependence vector of D={(-1,0), (0,-1)} is a vector
that contains anti-dependences. In this case, C2uTC/SL without altering the code at
all, multiplies the vector with the number -1. The new vector becomes D’={(1,0),
(0,1)} which is a vector with dependences. When this happens it is a simple matter of
employing the Self-Adaptive algorithm to deal with the problem.

This method solves the anti-dependence problem without sacrificing more
memory and at the same time with some amount of parallelism exploited (although
not full parallelism as would be the original case). This solution incorporates
dependences and anti-dependences into one problem. An example loop which carries
both types of dependences is one with a dependence vector of D={(1,0), (0,1), (-1,0),
(0,-1)}. By switching the signs of the anti-dependences the new vector becomes
D’={(1,0), (0,1), (1,0), (0,1)} which after simplification (since the same dependences
appear more than once) ends up as D’={(1,0), (0,1)}. That way, the same Self-
Adaptive algorithm that would have to be employed in the first place takes care of the
anti-dependence problem as well in a parallel manner. More information on the Self-

Adaptive Algorithm can be found in [1] from the Author’s Publications.

78

5.4. From C to SL

Due to a series of software engineering related choices (affected by time
constraints), C2uTC/SL works on a subset of the C language. In particular, the
compiler only allows and attempts to parallelize the main function on an application’s
source file. Any other functions can be declared and implemented in other external
files. The final executable can be produced by compiling all of the files together.

Since C2uTC/SL does not try to perform any sort of inter-procedural analysis,
that is not a problem by itself. In addition, the existence of any jump statement (like
goto or continue / break) is not supported. Jumps disrupt the natural flow of the code
and can give the impression of a loop to the loop analysis component when jumping
back into the code. Similarly, break and continue can also cause flow control
problems hence they too are unsupported. Additionally, global variables are not
supported; all should be declared inside main. Appendix B illustrates the subset of the
C grammar (in BNF form) that is formally supported by C2uTC/SL. Unsupported
programs do go through but the output of the compiler cannot be predicted and is at
best random and chaotic and may even fail to compile.

Regardless of the source code being properly supported or not, the actual
transformation is a two-part process: (i) Phase one entails parsing and analyzing the
original source code and its loops. If everything goes well, an equivalent to the source
code is produced but in a different, intermediate representation (IR). The IR contains
the entire source code, broken down in basic blocks, with partially simplified
expressions and where flow of code is only directed with gotos. Phase One is
performed by an external compiler tool, called CoSy [76]. (ii) Phase Two is using the
output of phase one (IR, loop analysis) as input to produce the final result. The code
from the IR is reverse-transformed back into C-type code while knowledge of all the
loops (index variables, boundaries, step values, basic blocks included in the loop) is
used for loop analysis. That kind of analysis however first needs the loops to be
organized into single units and to be examined as such units. These units form the
basis of C2uTC/SL's functionality as they are the fundamental blocks that get
analyzed and transformed (depending on the analysis). These loop groups are called

Masterloops.

79

5.4.1. The Masterloops

A masterloop is nothing more than a perfect nesting of loops. It contains, in its
loop body, statements as well as more masterloops. All analyses and transformations
take place on a per masterloop basis and they are all independent from one another.
Figure 5.24 demonstrates a code snippet where everything belongs to one masterloop,
masterloop 1, which is comprised of loops i and j and contains a single statement as
its bodly.

for (i=0; i<n; i++)
for (j=0; j<n; j++)
Al]01=0;
Figure 5.24. A Perfect Loop Construct Which Comprises a Single Masterloop.

Figure 5.25 displays the classic matrix multiplication code that has been used
before. Loops i and j are perfectly nested and behave as a single structure while loop k
is independent from the previous ones and performs its own calculations. If loop k
was missing, then the original nesting would still make sense: For each iteration (i, j)
the variable sum would take the value of 0 and each element of C[i][j] would take the
value of sum. Following this logic, C2uTC/SL separates that code into two
masterloops: Masterloop 1 is created by loops i and j, and its loop body contains the
statement “sum=0", another masterloop and the statement “C[i][j]=sum”. Masterloop
2 is comprised only of loop k and its body is the same as the loop body of k. Each
masterloop is analyzed independently. In the end, once all transformations are done
and each piece of the final code comes into place the result will be a proper

transformed parallel matrix multiplication code.

for (i=0; i<n; i++)
for (j=0; j<n; j++)
{

sum=0;

for (k=0; k<n; k++)
sum=sum~+A[i][K]*B[K][j];

C[i][j]=sum;

Figure 5.25. A Typical Matrix Multiplication Code which Contains Two Masterloops.

80

5.4.2. Dependence Analysis in a Masterloop

Each Masterloop is analyzed for the existence of loop carried dependences.
This takes place as a two-fold process. Firstly scalar variables are examined. Those
who carry data from one loop iteration to the next signify dependence and hence those
variables will become shared ones in the transformed code. Detecting these kinds of
variables is relatively trivial and straightforward: Each variable inside the loop body is
examined. If during an iteration that variable is read before it is written then it has to
become a shared one, otherwise it is a temporary variable only viable for the current
iteration and thusly does not impose any particular ordering in the loop. Moreover, for
each variable under examination, the source code is further analyzed. If the current
variable is accessed (for reading) again at some later point in the code then this means
that this variable is carrying the result of some computation and should, again, be
marked as a shared one. The difference is slight and can only appear in certain
situations. Consider the code in Figure 5.26. It calculates the ny, Fibonacci number.

for (i = 2; i < n; i++)

{

d
a
b

non n
o
.« e

}

Figure 5.26. A Loop that Calculates the ny, Fibonacci Number (n > 2, a and b are
Initialized to 0 and 1 Respectively, ¢ Carries the End Result).

When transforming this code, the variable C is first written and then read. This
means that the compiler can detect it as a thread local one. Only by accessing c after
the end of the loop (e.g. by printing it) can the compiler see that its value is needed
and thusly mark it as shared so that it can be accessed after syncing.

The second part of the process deals with arrays and their subscripts.
C2uTC/SL looks for expressions in the form of array[index] =array[index * constant].
Through expressions like that it is able to deduce the various dependences that may
exist and so build the dependence vector. Any other form of expression when it comes
to array access is currently not recognized and the loop is marked as one not to be

transformed. If no shared scalar variable is found or no array access that will result in

81

a wavefront solution and if the current masterloop is not marked to be left
untransformed then it is assumed that it can be executed fully in parallel.

5.4.3. Transformation of a Masterloop

During code transformation, each statement is copied into the output until a
Masterloop is met. At that point, the transformed Masterloop takes the place of the
original in the code and this continues until the end of the program. Each masterloop
is transformed according to the results of the analysis that transpired in the previous
step:

(i) If no dependences are located and the loop is not marked to remain
untransformed then it is converted into a fully parallel construct. Each loop in the
masterloop, from the innermost to the outermost, is first implemented as a thread
function and then its corresponding invocation (through a pair of sl_create / sl_sync
calls) is added in the appropriate place in the code. There are some compiler options
that can dictate which of the outermost loops will be forced to run sequentially in the
case of a deep nesting. In such a case, by having all loops run in parallel, the SVP will
soon run out of resources and revert back into a sequential mode. In this situation it is
prudent to have the outermost loops run sequentially in order to exploit more
parallelism in the lower levels of the hierarchy.

(ii) If one (or more) shared variables have been detected then in a similar
manner to the previous method, each loop is implemented and invoked, only this time
the arguments of the sl_create method incorporate some shared variables, whose
values are read right after the sl_sync (through the use of sl_geta).

(iii) If a dependence vector was detected, then the loop is transformed
radically and the self-adaptive algorithm takes its place.

(iv) Finally if neither of the previous options applied to the particular
masterloop, then it is copied in its entirety into the output without any transformation.

Returning to the matrix multiplication example described in Figure 5.25,
C2uTC/SL makes the following deductions: The first Masterloop can be run
completely in parallel since the variable “sum” is initialized in its iteration and the
statement “C[i][j]=sum;” relies only on that variable which will have a place in the

thread local storage. The second Masterloop cannot be fully parallelized. “sum” is

82

first read and then written in each iteration, thusly it is marked as a shared variable.
Putting these deductions together results in the code illustrated by Figure 5.28.
Several things are worth noting about the code in that Figure:

1) In order for the SL macro definitions to work properly all variable types
must be simplified. That is, each variable can have a name and optionally a *' symbol
indicating a pointer to that type of variable. Multidimensional arrays cannot simply be
used on the macro definitions, hence types are defined (using C's typedef) which are
essentially some array of a basic type. Those new typedefs can then be easily pass
through the macro definitions. In that particular example, the arrays are considered of
size [10][x].

2) Each create / sync is encompassed in a block of code (denoted by the { and
} symbols). This is needed as some SVP macros declared during the creation /
syncing might interfere with variables of the actual code. By having the whole process
in its own block helps to easily avert confusing the compiler and producing error
messages, interrupting the process altogether.

3) There is no parallel calculation of the partial sums a[i][k]*b[K][j] in that
code. This happens due to the fact that C2uTC/SL pushes the reading of the shared
variable down in the code, just before the statement that needs it.

However in this case the statement is calculating the partial sum and updating
sum in one statement and C2uTC/SL currently lacks the capability to break the
statement in order to interject the sl_getp statement (such a mechanism is to be
implemented at a later stage). In order for this code to work as intended, loop k’s body
should be like the one displayed in Figure 5.27 which also illustrates how the

resulting code would change.

5.4.4. Code Generation

The final step in the code transformation is the actual code generation. Initially
all the typedefs are listed, followed by thread definitions for each masterloop that can
be transformed, in such an order that any thread definition always precedes that
thread's invocation. Each thread definition is designed to be self contained. All related
variables are passed as arguments and initialized at the beginning of the thread code
via the sl_getp() directive. The code body itself is the code of the masterloop. All

83

basic blocks are listed in the same order they appear in the original IR, so as not to
change the functionality of the code in question. Each basic block before code
emission is examined for ownership (masterloop basis). If it belongs in another
masterloop that means that instead of listing that code, invocation for that masterloop
is created instead in its place (assuming always that the masterloop can be
transformed). Invocations vary according to the type of transformation incurred on the
masterloop. After the sync, all shared variables related to that masterloop retrieve
their values (via the sl_geta() directive) and the code listing continues. When all the
masterloop's code has been emitted, all shared variables are written back to their
respective shared channels (sl_setp()) and the thread definition is finalised with the
sl_enddef keyword.

Once all threads have been defined, the main thread is defined. All variables
are declared inside of the definition as local and then code generation begins in
exactly the same manner as before. Basic blocks are listed in turn until one is found
that belongs to a transformable masterloop (masterloops who were deemed
untransformable do not exist in the masterloop list so they just get emitted verbatim).
In this case the necessary invocation is placed and the code continues with the next
available basic block that does not belong to any loop.

Thread invocation code can vary depending on the kind of transformation
applied to a masterloop and can range from simple invocations (a simple fully parallel
loop for example) to the most complicated ones (a nested loop with a dependence
vector where the Self-Adaptive algorithm is employed). There exists a templated code
for each transformation case that gets emitted every time with certain variables taking

code-specific values to ensure proper code execution.

for (k=0; k<n; k++) int tmp=a[i][K]*b[K][j];

{ |::> int sum=sl_getp(_sum);
int tmp=a[i][K]*b[K][j]; sum=sum-+tmp;
sum=sum-+tmp; sl_step(_sum, sum);

Figure 5.27. The Necessary Change in the Original Matrix Multiplication Code
Needed for the Partial sums to be Calculated in Parallel.

84

typedef int ale[10];
sl_def(masterloop_2_k, void, sl_glparm(ale *, _a), sl_glparm(ale *, _b), sl _shparm(int,
_sum), sl_glparm(int, _i), sl_glparm(int, _j))
{
sl_index(k);
int i=sl_getp(_1i);
int j=sl_getp(_j);
ale *a=sl_getp(_a);
ale *b=sl_getp(_b);

int sum=sl_getp(_sum);
sum=sum+a[i][k]*b[k][3];
sl _setp(_sum,sum);

}
sl_enddef

sl_def(masterloop_1_3j, void, sl_glparm(al® *, _a), sl _glparm(al® *, _b), sl _glparm(ale*, _c),
sl_glparm(int, _i))

sl _index(3j);

int i=sl_getp(_1i);

ale* a=sl_getp(_a);

ale* b=sl_getp(_b);

ale* c=sl_getp(_c);

int sum=0;

{
sl_create(,,0,n,1,,,masterloop_2_k, sl_glarg(ale*, _a, a), sl_glarg(ale*, _b,

b), sl_sharg(int, _sum, sum), sl_glarg(int, _i, i), sl_glarg(int, _j, j);

sl _sync();
sum=s1l_geta(_sum);

c[i][j]=sum;
¥
sl_enddef

sl_def(masterloop_1_i, void, sl_glparm(al@ *, _a), sl_glparm(ale *, _b), sl_glparm(ale *,
<))
{

sl_index(i);

ale* a=sl_getp(_a);

ale* b=sl_getp(_b);

ale* c=sl_getp(_c);

{
sl create(,,0,n,1,,,masterloop_1 j, sl glarg(ale *, _a, a), sl glarg(al® *, _b,
b), sl glarg(ale *, _c, c), sl glarg(int, _i, i));
sl sync();
¥

¥
sl_enddef
{
sl create(,,0,n,1,,,masterloop_1_i, sl glarg(ale *, _a, a), sl_glarg(ale *, _b, b),

sl _glarg(ale *, _c, c));
sl sync();
}

Figure 5.28. The parallel result of the code in Figure 5.25.

85

Special mention goes to while loops. They are treated as for loops, however
there is one difference. The invocation code is wrapped inside a while loop. This way
there is actual loop transformation but each create takes a predefined number of
threads as an argument. The guard condition of the while loop is emitted at the
beginning of the thread code so that once it stops being valid, the thread invokes
sl_break and code execution resumes back in the invocation part. In order for the
invoker to know that the while loop issued a break, a certain boolean variable exists
which is associated with that particular masterloop that is set to TRUE when the break
is called. This tells the invoker code to stop its own while loop via C's break and
continue execution after that. As an example let's consider the code of Figure 5.29.

int main(void)
int a[1e@],1i,f,c;
while(1)
{
f=0;
for (i=0;i<9;i++)
if (a[i]>a[i+1])
{
c=a[i];
a[i]=a[i+1];
a[i+1]=c;

f=1;
}

if (f==0) break;
¥

return (90);

}

Figure 5.29. Original code that performs bubble sort.

Figure 5.30 demonstrates the loop transformation. The innermost loop is
properly transformed into a sequentially executed loop (the shared variable f makes
sure of that) where each element of the array is checked with its subsequent and swap
places if necessary. The interest lies with the umloop_2 loop. Firstly it's made
sequential with the introduction of the shared variable _serialize since the analyzer
was unable to detect if it can be run in parallel or not. the if (TRUE) statement is the
transformation of the while(1) from the original code. If it was any other expression it
would have been copied as well. Every time a break statement is introduced in the

original code, an sl_break one is emitted in the result, with the addition that the array

86

_result[#interal_loop_number (2 in this example)] becomes 1 to signify that the loop

has finished execution.

sl _def(mloop_1_inner,void,sl_glparm(int4*,_a),sl_glparm(int4,_c),sl_shparm(int4,_f))
{

sl_index(i);

int4* a = sl getp(_a);

int4 c = sl getp(_c);

int4 f = sl_getp(_f);

if (a[i] > a[(i+1)]) goto bb9; else goto bble;
bb9:;

c =a[i] ;

a[i] = a[(i+1)] ;

a[i+1] = c ;

f=1;
bb1o:;
bb11:;

sl _setp(_f, f);

}
sl_enddef

sl_def(umloop_2,void,sl_glparm(int4,_f),sl_glparm(int4,_i),sl_glparm(int4*,_a),sl gl
parm(int4, c),sl_shparm(int,_serialize))
{

int4 f = sl _getp(_f);

int4 i=sl_getp(_i);

int4* a = sl _getp(_a);

int4 c = sl _getp(_c);

int serialize= sl_getp(_serialize);

if (TRUE) ; else {_result[2]=1;sl_break();};

f=0;
i=09;
{

sl_create(,,9,9,1,,,mloop_1_inner,sl_glarg(int4*,_a,a),sl_glarg(int4
,_C,C),sl_sharg(int4,_f,f));

sl_sync();
f = sl_geta(_f);
}
if (f == @) {_result[2]=1;sl_break();} else goto bbil4 ;
bbl4:;
bb15:;
sl_setp(_serialize, serialize+l);
sl_enddef
while(1)
{

{

sl_create(,,0,_MAX_THREADS,1,,,umloop_2,sl_glarg(int4,_f,f),sl_glarg(int4,_i,i),sl_g
larg(int4*,_a,a),sl_glarg(int4,_c,c),sl_sharg(int,_serialize,0));
sl_sync();
}

if (_result[2]==1) break;

Figure 5.30. The entire transformation (including invokation at the bottom) of the

bubble sort while-loop of Figure 5.29.

87

Finally in the invocation, we can see that a while(1) is emitted that runs the
loop sequentially for MAX_THREADS number of iterations and then the _result[2] is
checked. If it has the value of 1 then the loop is considered to have finished and contol

breaks out of the while.

88

CHAPTER 6. EVALUATION OF THE C2uTC/SL
COMPILER

Introduction
Single-Dimensional Loops
Multi-Dimensional Loops

Livermore Loops

6.1. Introduction

Evaluating C2uTC/SL is a more complex process than just simply running and
timing the transformed programs. Since its output is the SL language, the only way to
execute the parallel applications is to utilize the SVP pipeline. This effectively means
running the simulator system bundled with the SL compiler. However, moving into a
simulated environment means that a simple timing methodology would not provide
any meaningful results.

Selecting the metric we’d use for the evaluation meat turning to the simulator
itself. Once the program runs, its internal Master CPU cycles counter starts counting
from 0. Then the simulator sets up a series the whole execution environment and once
everything is complete then the SL application starts executing. The Master CPU
cycles counts the number of parallel cycles all cores executed. It can be used to
determine the number of cycles (throughout all the cores) that were needed for any
program to execute. A faster running application needs fewer cycles. “CPU cycles” is
a constant metric unaffected by the host’s CPU clock or anything else and is directly
proportionate to the overall speed of an application. It also allows for percentile

comparisons to take place between different applications.

89

For any program to be measured and compared, this would effectively mean
that the program would have to be compiled and executed inside the SVP simulator
environment even if that meant rewriting portions of the original code into SL form.
All measurements presented in this chapter were obtained by simulating an
environment of 8 cores (unless stated otherwise) and all results, as stated above, are in
CPU cycles and the measurements were taken from the actual computation part of
each program ignoring system and program and system initializations. SL offers two
macros that can be inserted between two places in a code. The output of the simulator
then can display the number of master cpu cycles that were spent inside that piece of
code. We marked only the part of code that performs the actual computation. Using

the master cpu cycles we could measure speedups gained with this formula:

Sequential Cycles
SL Cycles

Essentially, an SL code that completes in half the time of the original

Speedup =

sequential version will have a Speedup of 2 while codes that are slower than the
original version will have speedups less than 1. In a manner similar to Chapter 5,
evaluation is split into two general categories: Single-Dimensional loops and Multi-
Dimensional loops. A well-known benchmark suite was also used to test the

C2uTC/SL’s general parallelizing abilities, the Livermore Loops.

6.2. Single-Dimensional Loops

The first and simplest example measured was that of a single dimensional for
loop with no loop carried dependencies. The loop body consisted only of the
statement “A[i]=i+1;”. Table 6.1 demonstrates the results of measuring the two codes
(sequential and parallel) and the speedup achieved, while Figure 6.1 illustrates these
results graphically. It is clear that the transformed parallel code is much faster than a

pure untransformed loop (as was anticipated).

90

Table 6.1. The Results of the Execution Times (in Cycles) of a Simple Sequential and
Parallel Application.

Problem Size (N) | Sequential For | Fully Parallel SL | Speedup
100 9120 3616 2,522
200 16808 4348 3,866
300 23408 5068 4,619
400 31160 6380 4,884
500 37888 6812 5,562
600 44972 7304 6,157
700 52204 8288 6,299
800 59400 9184 6,468
900 66656 9692 6,877
1000 73852 11060 6,677

—o—Sequential For —#—=Fully Parallel SL
80000
60000
40000

/

Master CPU Cycles

o 4..—-.—.—'-—._._'_.
0 .

100 200 300 400 500 600 700 800 900 1000

Figure 6.1. Comparing the Data of Sequential and Parallel Code in Graph Form.

Problem Size

A small variation was also implemented (manually): The SL parallel code was

changed into a fully sequential one (This was achieved by adding a shared channel

that transferred dummy data between threads and kept the sequential ordering. The

entire thread body was turned into a critical section). The aim of that change was to

test the SVP model and how it fares when a fully sequential loop running without

using any of the amenities provided by the system against a classic for-loop. Table 6.2

displays the results while Figure 6.2 visualizes the data.

91

Table 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads
Running the Same Code.

Problem Size | For Loop | Sequential SL | Speedup
100 9120 9016 1,012
200 16808 16012 1,050
300 23408 22048 1,062
400 31160 29000 1,074
500 37888 35016 1,082
600 44972 41512 1,083
700 52204 47844 1,091
800 59400 54644 1,087
900 66656 60912 1,094

1000 73852 67744 1,090

—o—For Loop -#—Sequential SL

80000
70000 —2
60000
50000
40000
30000
20000 -
10000 -

Master CPU Cycles

100 200 300 400 500 600 700 800 900 1000

Problem Size

Figure 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads.

There is an increase in speedup stems from two factors: (i) hardware
controlled iterations: there is no actual software increment of the index variable or test
to see if it exceeds its bounds and (ii) minimal synchronization overhead. This
example makes it clear that even if a loop cannot be transformed in any meaningful
way, (either by taking advantage the shared memory system or by exposing some
hidden parallelism) re-writing it into SL form will offer a small increase in the overall

speed of the program.

92

The next category of problems contains loops with a single dependency.
Dependency of length 1 is examined firstly (Figure 6.3). The comparison data is
displayed on Table 6.3 and its visualization is given on Figure 6.4. Even if the
simulator setup contains 8 cores, such an example will be constrained in one core both
in its original version and its transformed one and so the expected speedup should not
be around 8.

There is only one data chain hence there can be no parallelism in its execution.
However there can be instruction level parallelism by exploiting SVP’s high memory
latency tolerance: Memory related operations can be overlapped with other
instructions and thusly speedups higher than 1 can appear. In addition to memory
tolerance, by utilizing the synchronizing channel as a data carrier, each thread can do
away with looking up the global memory for information, an action that also increases

efficiency by a remarkable degree.

for (i=1; i<n; i++)
a[i]=a[i-1]+1;

Figure 6.3. Loop with a Single Dependency of Length 1.

Table 6.3. Comparison Between the Sequential for and the Transformed SL Code.

Problem Size (N) | Sequential For | SL code Speedup
100 10920 8552 1,277
200 20360 14932 1,364
300 28380 19356 1,466
400 37760 25292 1,493
500 45800 29668 1,544
600 54540 34912 1,562
700 63196 39644 1,594
800 72016 45096 1,597
900 80588 49952 1,613
1000 89548 55252 1,621

93

=o—Sequential For =#=SL code
100000

90000

80000 /
70000

60000 //

50000

40000 e

30000
20000
10000 -

0

Master CPU Cycles

100 200 300 400 500 600 700 800 900 1000

Problem Size

Figure 6.4. Comparing Sequential and SL Codes With a Dependency of Length=1.

The problem of a single dependency of length 2 was subsequently
transformed, executed and evaluated. This time the existence of 2 independent data
chains means that 2 cores would be utilized. Figure 6.5 illustrates the original code,

Table 6.4 contains the results of the executions and Figure 6.6 visualizes that data.

for (i=2; i<n; i++)
a[i]=a[i-2]+1;

Figure 6.5. A Loop with a Dependency of Length 2.

Table 6.4. Results of the Transformed Loop with a Dependency of Length 2.

Problem Size | Original Loop | SL code | Speedup
100 10836 7604 1,425
200 20116 11372 1,769
300 28140 16092 1,749
400 37432 20792 1,800
500 45476 25200 1,805
600 54048 29552 1,829
700 62616 32948 1,900
800 71364 37740 1,891
900 80004 41572 1,924
1000 88808 45960 1,932

100000

=—0Original Loop =#=SL code

90000

80000
70000

60000

50000

40000

Master CPU Cycles

30000
20000 -
10000 -

0

Problem Size

100 200 300 400 500 600 700 800 900 1000

94

Figure 6.6. Comparing Sequential and SL Codes with a Dependency of Length=2.

In a similar manner, the problem of a single dependency but of length 5 was

transformed and evaluated (5 cores utilized). Figure 6.7. illustrates the original source

code while Table 6.5 and Figure 6.8 display the resulting data.

Figure 6.7. A Loop With a Single Dependency of Length 5.

Table 6.5. Results of the Transformed Loop with a Dependency of Length 5.

for (i=5; i<n; i++)

a[i]=a[i-5]+1;

Problem Size | Original Loop | SL code | Speedup
100 9960 7252 1,373
200 18748 10540 1,779
300 26228 14472 1,812
400 35116 17632 1,992
500 42724 21444 1,992
600 50800 25264 2,011
700 59016 28384 2,079
800 67244 32400 2,075
900 75484 35780 2,110
1000 83680 39312 2,129

95

=—O0riginal Loop =#=SL code

90000 PN
80000

70000 /
60000
50000

40000

30000 A
e

20000

10000 -

Master CPU Cycles

100 200 300 400 500 600 700 800 900 1000

Problem Size

Figure 6.8. Comparing Sequential and SL Codes with a Dependency of Length=5.

For a problem size of N=1000, a dependency of length 2 (which produces 2
parallel data-chains running) offers a speedup of about 1,9 while a dependency of
length 5 (which creates 5 parallel data chains) offers a speedup of about 2,13. This
means that the increase in efficiency is not proportional to the increase of the number
of parallel chains in existence. This result deviates from the expected speedup of 2 for
a dependency of length 2 and 5 from one of length 5. This deviation can be attributed
to the overhead introduced by SVP’s housekeeping: 5 parallel chains require more
time spent context switching and a lot more resources since each chain also creates
one synchronizing channel. If the SVP runs out of resources then it gracefully reverts
back into a sequential execution mode in order to serve the rest of the requests.
Adding to the overall overhead is the fact that more families equal to more
communication between parent and descendant threads.

Loops with multiple dependences were examined next. The general form is the
one illustrated in Figure 6.9. We tested loops with 2, 3, 4, and 5 multiple dependences
and the results are shown in Tables 6.6 to 6.9 respectively and visualized in Figures
6.10 to 6.13. It is becoming apparent that the more shared variables (channels) are

involved in the process, the slower the execution becomes.

96

Finally, the anti-dependency example (Figure 6.14) is evaluated. Table 6.10
illustrates the results and Figure 6.15 the visualization of that data. Even though the
transformed code entails a two-step process, the fact that everything takes place in
parallel in an 8 core environment, with the help of cache utilization when it comes to
the second step of copying back, provides a very good speedup of about 4.45. The
only drawback is the allocation of extra space for a temporary array.

for (i=2, 3, 4, 5; i<n; i++)
a[i]=a[i-1]+a[i-2](+a[i-3](+a[i-4](+a[i-5])));

Figure 6.9. A General Form of a Loop with Multiple Dependences (2 to 5).

Table 6.6. Comparing Sequential and SL Codes with 2 Dependences.

Problem Size | Original Loop | SL code | Speedup
100 11600 8912 1,302
200 21896 15660 1,398
300 30700 21100 1,455
400 40848 27980 1,460
500 49748 33452 1,487
600 59328 39760 1,492
700 68676 45560 1,507
800 78356 51884 1,510
900 87696 57760 1,518
1000 97512 64172 1,520

=—O0riginal Loop =#=SL code
100000
80000 /
60000
40000

20000 -
0

Master CPU Cycles

100 200 300 400 500 600 700 800 900 1000

Problem Size

Figure 6.10. Comparing Sequential and SL Codes with 2 Dependences.

Table 6.7. Comparing Sequential and SL Codes with 3 Dependences

Problem Size | Original Loop | SL code | Speedup
100 12036 9524 1,264
200 22744 15552 1,462
300 32088 22436 1,430
400 42632 28928 1,474
500 52068 35932 1,449
600 61996 43040 1,440
700 71896 49176 1,462
800 81960 56180 1,459
900 91848 62676 1,465
1000 102076 69124 1,477

Table 6.8. Comparing Sequential and SL Codes with 4 Dependences.

Problem Size | Original Code | SL code | Speedup
100 11936 9224 1,294
200 23140 16468 1,405
300 32408 24152 1,342
400 43508 31112 1,398
500 52904 38648 1,369
600 63232 45292 1,396
700 73516 52832 1,392
800 83676 59704 1,402
900 93824 67124 1,398
1000 104472 74844 1,396

Table 6.9. Comparing Sequential and SL Codes with 5 Dependences.

Problem Size | Original Code | SL code | Speedup
100 13172 14680 0,897
200 23612 23824 0,991
300 34992 33936 1,031
400 45816 43276 1,059
500 57056 53296 1,071
600 68884 63612 1,083
700 79284 72556 1,093
800 90960 83052 1,095
900 101500 92020 1,103
1000 112732 102152 1,104

97

98

., 120000
< 100000
S 80000
£ 60000
; 40000
% 20000
s 0

=—CQOriginal Loop
—#-SL code

P P A DA DSOS
TS TS S

Problem Size

Figure 6.11. Comparing Sequential and SL Codes with 3 Dependences.

120000
100000
80000
60000
40000
20000
0

Master CPU Cycles

/
| =o—Qriginal Code
~#-SL code
S O 0 0 QN O QO O
AN SN NN \QQ

Problem Size

Figure 6.12. Comparing Sequential and SL Codes with 4 Dependences.

120000
100000
80000
60000
40000
20000
0

Master CPU Cycles

+—Qriginal Code
= SL code

100 200 300 400 500 600 700 800 900 1000

Problem Size

Figure 6.13. Comparing Sequential and SL Codes with 5 Dependences.

for (i=0;i<n-1;i++)
a[i]=a[i+1];

Figure 6.14. A Typical Anti-Dependence Example.

99

Table 6.10. Comparing Sequential and SL Codes with an Anti-Dependence.

Problem Size | Original Loop | SL code | Speedup
100 11636 6420 1,812
200 21860 8036 2,720
300 30596 8992 3,403
400 40680 10756 3,782
500 49516 12336 4,014
600 59028 14592 4,045
700 68384 15572 4,391
800 77928 17192 4,533
900 87276 19348 4,511
1000 97020 21812 4,448

=o—0QOriginal Loop =#—SL code

100000

50000

0 m
100 200 300 400 500 600 700 800 900 1000

Maste CPU Cycles

Problem Size

Figure 6.15. Comparing Sequential and SL Codes with an Anti-dependence.

6.3. Multi-Dimensional Loops

Evaluating Multi-Dimensional Loops (i.e. loop nestings) is a process which is
further sub-categorized into two general cases: (i) Loops with no dependences and (ii)
Loops with a dependence vector. These two sub-categories are treated completely
differently by C2uTC/SL. The former is automatically translated as-is into a nesting
of fully parallel families and relies on SVP to provide most of the efficiency-
improving mechanisms. The latter is transformed into a self-adaptive algorithm trying
to apply the dependence vector on the index space in order to discover the underlying

hyperplane.

100

6.3.1. No Dependences

In this sub-category, three real life applications were evaluated: (i) Conway’s
Game of Life, (ii) 2-Dimensional Matrix Multiplication and (iii) computation of the
Mandelbrot Fractal. The overall evaluation of the data gained from these three
examples will be presented at the end of this sub-chapter.

A single pass of Conway’s Game of Life [77] was implemented, transformed
and evaluated. Tables 6.11 and 6.12 present the results of this simulation in CPU
cycles while tables 6.13 and 6.14 do so in terms of speedup achieved. In both
situations the size of the board is given as the length of one of its sizes (for every N,
the board is a NxN array). Figures 6.16 and 6.17 visualize the data.

Table 6.11. The Results of the Game of Life in Absolute CPU Cycles.

Board Original SL code | SL code SL code
Size Code (1 core) | (2cores) (4 cores)
10 166488 93564 50152 32308
20 660108 366084 182004 94924
30 1467900 825020 426492 245984
40 2639280 1538716 | 744372 392088
50 4076948 2431700 | 1185480 726584
60 5872288 3465252 | 1668440 836252
70 7993908 4733720 | 2354340 1362200
80 10566976 | 6268056 | 3083648 1552796
90 12669380 | 7625316 | 3823188 2079436
100 16319956 | 9496204 | 4711040 2377932

Table 6.12. Continuation of the Results in Table 6.11.

Board Original SL code | SL code SL code SL code
Size Code (8 cores) | (16 cores) | (32 cores) | (64 cores)
10 166488 24820 17272 18636 21264
20 660108 61544 45460 30660 33200
30 1467900 152880 108776 89936 91524
40 2639280 300084 184092 163256 116716
50 4076948 498760 278788 192824 142540
60 5872288 581140 312780 222092 166564
70 7993908 797616 504940 339972 259640
80 10566976 990736 573208 400620 289568
90 12669380 1235200 | 686572 428492 319044
100 16319956 1472436 | 837760 564340 350828

101

Table 6.13. Speedups for the Game of Life Derived from Table 6.11.

Board Speedup | Speedup | Speedup
Size (1 core) | (2cores) | (4cores)
10 1,779 3,320 5,153
20 1,803 3,627 6,954
30 1,779 3,442 5,967
40 1,715 3,546 6,731
50 1,677 3,439 5,611
60 1,695 3,520 7,022
70 1,689 3,395 5,868
80 1,686 3,427 6,805
90 1,661 3,314 6,093

100 1,719 3,464 6,863

Table 6.14. Speedups Derived from Table 6.12.

Board Speedup | Speedup Speedup Speedup
Size (8 cores) | (16 cores) | (32 cores) | (64 cores)
10 6,708 9,639 8,934 7,830
20 10,726 14,521 21,530 19,883
30 9,602 13,495 16,322 16,038
40 8,795 14,337 16,167 22,613
50 8,174 14,624 21,143 28,602
60 10,105 18,774 26,441 35,255
70 10,022 15,831 23,513 30,788
80 10,666 18,435 26,377 36,492
90 10,257 18,453 29,567 39,710
100 11,084 19,480 28,919 46,518
18000000
16000000 /»
¢ 14000000 / =o—0Original Code
& 12000000 ~=-SL code (1 core)
2 10000000 =#—SL code (2 cores)
§ 8000000 =>=SL code (4 cores)
g 6000000 —=#=SL code (8 cores)
= 4000000 =®—SL code (16
2000000 - code (16 cores)
g Lt SL code (32 cores)
10 20 30 40 50 60 70 80 90 100 SL code (64 cores)

Problem Size (N x N)

Figure 6.16. Comparing the Sequential and SL Codes for the Game of Life (Cycles).

102

Speedup Achieved

50.000
45.000

40.000

35.000
30.000

25.000

20.000

15.000 -
10.000 -
5.000 -

—1 core
=—? cores
=4 cores

0.000

10

20

30 40

50 60

70 80

Problem Size (N x N)

8 cores

=¥=16 cores
=0-32 cores
64 cores

Figure 6.17. Comparing the Sequential and SL Codes for the Game of Life (Speedup).

There are plenty of algorithms which compute a variety of fractals. The

6.19 illustrate the corresponding visualization of the data.

Mandelbrot set is one of the most well known. For each pixel inside an area, its color
is computed based on whether a repeating complex number remains bounded or not.
A small variation of the one displayed in [78] was implemented, transformed and
evaluated. Tables 6.15 and 6.16 present the results in absolute CPU cycles while

Tables 6.17 and 6.18 present the relative speedups as a percentage. Figures 6.18 and

Table 6.15. The Resulting Data of the Mandelbrot Calculation (1 to 4 cores).

Problem | Original SL code SL code SL code
Size Code (1 core) (2 cores) (4 cores)
10 16821836 6767880 3295252 3089844
20 67276200 | 26932780 | 12882604 | 7223820
30 151365640 | 69262156 | 34191264 | 22343312
40 269089788 | 131208400 | 65962844 | 37225076
50 420448960 | 210622756 | 105590812 | 64502364
60 605442832 | 303288432 | 159472340 | 75819036
70 824071716 | 412803456 | 213093056 | 119519364
80 1076336380 | 539117484 | 279323540 | 139472836
90 1362235208 | 682315352 | 351445964 | 218051464
100 1681769536 | 842362200 | 423456808 | 235388732

Table 6.16. The Resulting Data of the Mandelbrot Calculation (8 to 64 cores).

103

Problem | Original SL code SL code SL code SL code
Size Code (8 cores) (16 cores) | (32cores) | (64 cores)
10 16821836 2408284 | 2087464 | 2028192 2029608
20 67276200 4415792 | 2973392 | 1811400 1812764
30 151365640 | 14963196 | 11754664 | 10099072 | 10100592
40 269089788 | 22437260 | 19189784 | 19280972 | 13016172
50 420448960 | 39762104 | 21276524 | 21051632 | 19188528
60 605442832 | 47393724 | 27150204 | 24645572 | 23621364
70 824071716 | 69015716 | 37675340 | 24850712 | 22800804
80 1076336380 | 80823444 | 41800372 | 29247892 | 29238572
90 1362235208 | 108647180 | 54736592 | 28935624 | 37195796
100 1681769536 | 127280356 | 69986580 | 40990652 | 34929436

Table 6.17. Corresponding Speedups of the Mandelbrot calculation.

Problem | Speedup | Speedup | Speedup
Size (1 core) | (2cores) | (4cores)
10 2,486 5,105 5,444
20 2,498 5,222 9,313
30 2,185 4,427 6,775
40 2,051 4,079 7,229
50 1,996 3,982 6,518
60 1,996 3,797 7,985
70 1,996 3,867 6,895
80 1,996 3,853 7,717
90 1,996 3,876 6,247
100 1,996 3,972 7,145

Table 6.18. Corresponding Speedups of the Mandelbrot Calculation (cont.).

Problem | Speedup Speedup Speedup Speedup

Size (8 cores) (16 cores) (32 cores) (64 cores)
10 6,985 8,059 8,294 8,288
20 15,235 22,626 37,140 37,112
30 10,116 12,877 14,988 14,986
40 11,993 14,023 13,956 20,673
50 10,574 19,761 19,972 21,911
60 12,775 22,300 24,566 25,631
70 11,940 21,873 33,161 36,142
80 13,317 25,749 36,800 36,812
90 12,538 24,887 47,078 36,623
100 13,213 24,030 41,028 48,148

104

1.8E+09
1.6E+09)4
w 1.4E+09 / —&—QOriginal Code
k)
s 1.2E+09 / =#—SL code (1 core)
2 1E+09 - ~#—SL code (2 cores)
o
3 80000000 / =>==SL code (4 cores)
2 60000000
s =#=SL code (8 cores)
40000000)
20000000 - ~@-SL code (16 cores)
0 - ~=+=SL code (32 cores)
10 20 30 40 50 60 70 80 90 100 —SL code (64 cores)
Problem Size

Figure 6.18. The Resulting Data of the Mandelbrot Calculation (CPU cycles).

=&—1 core =ll—2cores =4 cores ==>¢=8cores
== 16 cores =@ 32 cores =+ 64 cores

50.000
45.000
40.000
35.000
30.000
25.000
20.000
15.000
10.000

5.000

0.000

Speedup Achieved

10 20 30 40 50 60 70 80 90 100

Problem Size (N x N)

Figure 6.19.The Corresponding Speedups of the Mandelbrot Calculation.

Finally, matrix multiplication was implemented and evaluated. Tables 6.19
and 6.20 illustrate the results in CPU cycles while Tables 6.21 and 6.22 feature the
speedups gained. Figures 6.20 and 6.21 visualize the results.

105

Table 6.19. CPU Cycles for the Sequential and Parallel Executions of Matrix

Multiplication.

Problem | Original | SLcode | SLcode | SL code
Size Code (1 core) | (2cores) | (4cores)
10 93960 63756 31784 30380
20 701324 329852 182024 98508
30 2393432 | 1413860 | 948320 616752
40 6084044 | 2871192 | 1918756 | 1520672
50 11734632 | 4779272 | 4293760 | 2936856
60 22983224 | 8535988 | 6758848 | 4722192
70 35755880 | 12419688 | 9468416 | 6822220
80 56068460 | 19500748 | 12543716 | 9817144
90 80046760 | 27364724 | 16010600 | 14203676
100 111533084 | 35371188 | 17714700 | 16862152

Table 6.20. Continuation of the Results from Table 6.19.

Problem | Original | SL code | SL code SL code SL code
Size Code (8 cores) | (16 cores) | (32 cores) | (64 cores)
10 93960 27096 24800 25392 26668
20 701324 60148 46604 35036 36152
30 2393432 382776 267008 164556 166160
40 6084044 | 1472944 | 745260 909824 763284
50 11734632 | 1654540 | 1682060 | 1535856 | 1286524
60 22983224 | 3135788 | 2452056 | 2620348 | 2181996
70 35755880 | 5108300 | 2850672 | 2997772 | 3358756
80 56068460 | 5781756 | 3957952 | 3732792 | 3488408
90 80046760 | 9946904 | 5046460 | 5418156 | 4042052
100 111533084 | 11741328 | 6581304 | 5167396 | 5848620

Table 6.21. Corresponding Speedups Gained from Parallel Matrix Multiplication.

Problem Size | Speedup (1 core) | Speedup (2 cores) | Speedup (4 cores)
10 1,474 2,956 3,093
20 2,126 3,853 7,119
30 1,693 2,524 3,881
40 2,119 3,171 4,001
50 2,455 2,733 3,996
60 2,693 3,400 4,867
70 2,879 3,776 5,241
80 2,875 4,470 5,711
90 2,925 5,000 5,636
100 3,153 6,296 6,614

106

Table 6.22. Corresponding Speedups from Matrix Multiplication (cont.).

Problem | Speedup | Speedup Speedup Speedup

Size (8 cores) | (16 cores) | (32 cores) | (64 cores)
10 3,468 3,789 3,700 3,523
20 11,660 15,049 20,017 19,399
30 6,253 8,964 14,545 14,404
40 4,131 8,164 6,687 7,971
50 7,092 6,976 7,640 9,121
60 7,329 9,373 8,771 10,533
70 7,000 12,543 11,927 10,646
80 9,697 14,166 15,021 16,073
90 8,047 15,862 14,774 19,803
100 9,499 16,947 21,584 19,070

=&—CQriginal Code =@-SL code (1 core) =A=SL code (2 cores)
=>=SL code (4 cores) =#=SL code (8 cores) =®=SL code (16 cores)
SL code (32 cores) SL code (64 cores)
12000000

10000000 /

80000000

60000000

40000000

Master CPU Cycles

20000000

O - I~ W
10 20 30 40 50 60 70 80 90 100
Problem Size (N x N)

Figure 6.20. Comparing Sequential and Parallel Matrix Multiplications (Cycles).

107

Speedup Achieved

20.000

15.000 -

10.000 -

5.000 -

0.000

=0=1 core
==2 cores
=4 cores
=>&=8 cores
=#=16 cores
=0—32 cores

10 20 30 40 50 60 70 80 90 100
Problem Size (N x N)

64 cores

Figure 6.21. Comparing Parallel Matrix Multiplications (Speedups).

Finally we tested the Game of Life for various larger problem sizes but tiled
with various tile sizes (1,2,4,8,16,32,64 and 128). The idea behind this was to test

SVP’s throughput while being oversaturated and how applying the tiling method

helps alleviate it. Table 6.23 presents the results. Increasing the tile size certainly

reduces the overall cycles needed however this effect works until a point. After that

size the overall parallelism exposed becomes smaller due to the very large tile sizes.

Table 6.23. MasterCPU Cycles for the Game of Life for Various Problem and
Tile Sizes.

Problem Size

1000

2000

3000

4000

5000

183105732

728808580

1624787896

2924394636

4721679540

138375388

545503468

1205679672

2198231048

3674882208

129602680

522952608

1144788964

2078213420

3492057336

Tile

(BN (-

136373840

507765180

1102716796

2006374452

3275702220

Size
16

159121700

560260192

1143944816

2069512704

3267163724

32

149057836

639955024

1275310076

2224032312

3426920124

64

116219276

594489528

1504648036

2544091388

3905988888

108

There are several conclusions that can be reached by the data obtained from the three
aforementioned applications:

(i) Even one SVP core can increase efficiency substantially in a fully parallel
program. This indicates the SVP’s ability to speed up a loop even in a sequential
environment (One core does not offer actual parallel execution). This ability is the
result of a combination of SVP’s characteristics: (a) High memory latency tolerance:
memory access instructions are overlapped with the rest of the operation in order to
eliminate idle time and (b) hardware control of thread iterations. There is no need for
the software to check and branch depending on the index value per iteration.

(i) The greater the number of cores in a system, the better the results.
However the system becomes oversaturated when there is an excessively high number
of cores in existence since much time is lost in communication overheads in the
memory network, especially when it comes to memory store instructions just prior to
synchronization. There are no other operations to overlap with these memory
instructions and so there is no latency tolerance to take advantage of. This effect can
be alleviated by tiling the index space and exposing parallelism on an inter-tile basis.

(iii) The overall speedup increases with the problem size for any number of
cores in the system. Since the family creation overheads remain the same, increasing
the problem size results in those overheads offering less and less percentage in the
whole execution time. Reducing the overhead of family management in addition to
having more threads and hence greater memory latencies tolerance leads to improved
efficiency altogether.

6.3.2. The Run-Time Algorithm

Perfectly nested loops with a dependence vector belong in this category. In
order to evaluate the efficiency of the Self-Adaptive algorithm employed by
C2uTC/SL, just the speed-up gained was not enough. There remained two questions:
(i) how close to the optimal result the Self-Adaptive method can get and (ii) How
does it fare compared to a compile-time method. The optimal goal is the highest
speedup that can be achieved by a tile-based run-time method utilizing a scheduler
thread. To answer these questions, the optimal result of the fixed-size algorithm was

calculated. The reasoning behind this choice is two-fold:

109

(i) Generally it is trivial, albeit time consuming, to find the optimal result. The
algorithm is executed multiple times with varying tile sizes and the best result is
considered optimal. There are many local optima in such a case and that’s why it’s not
enough to just stop once the first peak is reached. Figure 6.22. demonstrates the
speedups gained by the fixed-size algorithm for a two-dimensional loop of size 4000
x 4000 with a dependence vector of D={(1,0), (0,1)}. This figure illustrates that even
though the speedups follow the trend line in the middle, they alternate above and
below that line constantly in a rather jaggy manner.

(if) The fixed-size algorithm bears a great resemblance to the Self-Adaptive
one, while being a bit simpler both conceptually and programmatically. Thusly it
serves as a target for the results that the Self-Adaptive algorithm can offer.

Due to these two reasons, the target goal for the Self-Adaptive algorithm is
roughly the optimal result of the Fixed-Size algorithm, gained by repeated execution
of different tile sizes. That optimal result per problem size is subsequently compared
to a compile time algorithm. The method used is the skewed loop described in Figures
3.20 and 3.21.

Speedup Per Tile Size for Problem Size of
N=4000

2L AT
IV IU‘W\E
1.2 %

1
0.5
0_
O ONOVTOONONDTOONONTOONDST O ONODS O ©
ITITOLOOONRNOWMDNOD OO AANMOITIHOONNNODNDGDDO®
A A A A A A A A A A A A A A
Family (Tile) Size

Figure 6.22. Speedups gained for the problem of D={(1,0),(0,1)} with a grid size of
4000x4000 and various tile sizes. The dashed line indicates the inferred trend.

110

The innermost loop in such a case can be fully parallelized. In order for the
comparison to be proper, the hyperplane method (compile-time) was implemented
manually in SL and was simulated over SVP. Comparison results are displayed in
Table 6.24 and visualized in Figure 6.23. Table 6.25 presents the different speedups
gained by the two different methods. Finally, Table 6.26 demonstrates the optimal tile
size picked per problem.

It is worth noting that even though the Hyperplane method was implemented
in the finest of granularities possible (1 thread per iteration), it offers a speedup of
5,392 which is much higher than the 1,737 gained by the fixed size algorithm. This
difference, however, is alleviated as the problem size increases. Table 6.27 shows the
results obtained from executing the algorithms with a problem size of 4000x4000
(N=4000). At this size, the fine-grain hyperplane method becomes oversaturated and
its speedup is worse than the fixed-size method. Of course, as has already been
demonstrated the compile-time method can be improved by applying tiling on it.
However what kind of tile size to be used is unknown. Table 6.28 demonstrates the
speedup gained from the tiled version of the compile-time version of the hyperplane
for various tile sizes.

It is clear that the compile-time method outperforms the self-adaptive run-time
algorithm by various degrees depending on the tile size. However choosing a proper
tile size is an impossible task since, as in the run-time method, too small or too large a
size has an adverse effect on the efficiency. In addition, the self-adaptive method
offers a series of other advantages: (i) the run time algorithm does away with the need
to solve any NP-Complete problem, (ii) it can work with index spaces of irregular
shapes (e.g. triangular spaces) and (iii) the size of the tile is not necessary to be
decided before execution, usually by estimations (or by extensive repetitions in the
fixed-size algorithm’s case). Finally there is no standard way to calculate a proper
compile-time transformation due to the complexity of the NP-Complete problem. This
compile-time method presented here is an idealized method just for comparisons and

interpretations.

111

== Original Code SL code =—e=Manual Hyperplane Code
14000000
3
(34
>
O 90000000
)
a.
o
§ 40000000
g e - 2 / b
=
-1000000

100 200 300 400 500 600 700 800 900 1000 1100

Problem Size

Figure 6.23. Comparing cycles between original, SL and manual hyperplane codes.

Table 6.24. Comparing execution times between sequential, transformed and

manually written parallel code.

Problem Size | Original Code | SL code Manual Code
100 731040 1314584 344800
200 2927336 4642112 1044456
300 9062496 10801192 2131344
400 13201516 17474616 3664328
500 27320340 25940796 5632024
600 40170528 32808312 6752076
700 55277512 43149216 10869036
800 73727150 51961456 14040020
900 92176788 60744780 17445424
1000 114073668 70149652 21268804
1100 138258288 79585768 25639544

Table 6.25. Speedups Gained from the two methods for various problem sizes.

Problem Speedup Speedup
Size SL Hyperplane
100 0,556 2,120
200 0,631 2,803
300 0,839 4,252
400 0,755 3,603
500 1,053 4,851
600 1,224 5,949
700 1,281 5,086
800 1,419 5,251
900 1,517 5,284
1000 1,626 5,363
1100 1,737 5,392

112

Table 6.26. The Optimal Tile Size for Various Problem Sizes.

Problem Size Optimal Tile Size
100 5
200 5
300 6
400 7
500 30
600 30
700 31
800 39
900 41
1000 42
1100 43

Table 6.27. Speedups for Problem Size of (2, 3, 4)000x (2, 3, 4)000 for the Loop With
Dependence Vector D={(1,0), (0,1)}

Problem | Speedup Speedup
Size SL Hyperplane
2000 2,654 5,107
3000 2,745 3,887
4000 3,739 3,187

Table 6.28. CPU Cycles and Speedup Gained for Various Tile Sizes for the Compile-
time Hyperplane Method (Problem size: 4000 x 4000).

T_ile Master Speed

Size | CPU Cycles peedup

1 592101356 | 3,111

2 287120992 | 6,416

4 277922988 | 6,628

8 265680920 | 6,934

16 276058308 | 6,673

32 173013796 | 10,64

64 139595836 | 13,19

128 142822016 | 12,89

The Self-Adaptive method is next compared with the Fixed-size one in three
problems with different dependence vectors: (i) D={(1,0), (0,1)}, (ii) D={(0,1), (1,1),
(1,0), (1,-1)} and (iii) D={(2,0), (0,2)}. Each of these problems has a different

113

characteristic. The first is a typical example, the second is augmented with two more
dependences and finally the third offers more parallelism by letting two different
columns execute simultaneously at any time.

As far as the first problem is concerned, Table 6.29 illustrates the results of the
two methods in CPU cycles, while Table 6.30 illustrates the speedups offered by each
algorithm. Figures 6.24 and 6.25 provide a graphic representation of the data. It is
clear that the Self-Adaptive algorithm not only reached the Fixed-Size algorithm’s
efficiency levels, in some cases it slightly surpassed it. It fares a lot worse in smaller
problem sizes due to two different situations: (i) as previously discussed, larger
problem sizes reduce the percentage of the overall overheads in the total execution
time. Consequently, small problems don’t amortize the overheads enough and (ii)
there simply is not enough time for the algorithm to reach a conclusion about the
proper tile size and that results in the lower levels of efficiency illustrated in Table
6.30 and Figure 6.25. However, with enough time (in greater problem sizes), the
algorithm not only results in finding an optimal size, it also makes up for its slow
start.

The second problem (loop) has a dependence vector of D={(0,1), (1,1), (1,0),
(1,-1)}. Figure 6.26 demonstrates the actual loop while Figure 6.27 visualizes the full
dependence vector in an index space. Table 6.31 demonstrates the results in CPU

cycles and Table 6.32 presents the speedups offered by the two run-time algorithms.

Table 6.29. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the

{(1,0),(0,1)} Problem.

Problem Original Fixed Size Self Adaptive
Size Code code Code
100 731040 1314584 1843368
200 2927336 4642112 6938972
300 9062496 10801192 13052524
400 13201516 17474616 19550652
500 27320340 25940796 24905396
600 40170528 32808312 34408864
700 55277512 43149216 40316528
800 73727150 51961456 49048212
900 92176788 60744780 55648768
1000 114073668 70149652 66257132

114

Table 6.30. Comparing the Speedups of the two Methods for the {(1,0),(0,1)}
Problem.

Problem | Fixed Size | Self Adaptive
Size Speedup Speedup
100 0,556 0,397
200 0,631 0,422
300 0,839 0,694
400 0,755 0,675
500 1,053 1,097
600 1,224 1,167
700 1,281 1,371
800 1,419 1,503
900 1,517 1,656
1000 1,626 1,722
=o—CQOriginal Code = —#—Fixed Size code Self Adaptive Code
14000000
12000000
£ 10000000
@)
- 80000000
S
= 60000000
S 40000000
20000000 - 2
0 -_r_'/

100 200 300 400 500 600 700 800 900 1000 1100

Problem Size

Figure 6.24. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the
D={(1,0),(0,1)} Problem.

115

—o—Fixed Size Algorithm —#—Self-Adaptive Algorithm

2,000
1.800
1.600 —
1.400
1.200
1.000
0.800
0.600 7—/
0.400 4-——/

0.200
0.000

Speedup Achieved

100 200 300 400 500 600 700 800 900 1000
Problem Size (N x N)

Figure 6.25. Comparing the Speedups of the two Run-time Methods for the
D={(1,0),(0,1)} Problem.

for (i=1;i<n-1;i++)
for (j=1;j<n-1;j++)
AlGOI=ANTG-1+AL-[-1]+AL-1] [I+AL-1] [+1];

Figure 6.26. The Second Loop Nesting Under Evaluation. The Dependence Vector is
D:{(O,l), (1’1)1 (1!0)1 (11'1)}

Figure 6.27. Visualization of the Dependence vector in the 2-D index space.

116

Table 6.31. Comparing the Resulting Data of the Two Run-time Algorithms for the
D:{(Ovl)’ (1’1)1 (1’0)’ (1’-1)} PrObIem

Problem | Original | Fixed Size | Self Adaptive
Size Code Algorithm Algorithm
100 1069512 1955432 2628388
200 4339096 6490840 9814264
300 10227620 | 14517088 22626908
400 19030496 | 23745432 37218680
500 30405836 | 38530916 46855584
600 44332336 | 54702360 69131064
700 60793824 | 72207180 100495712
800 80959556 | 87373276 102670936
900 101352808 | 110178980 131357372
1000 | 125461936 | 137689188 148974992
1100 | 152135436 | 160506780 177237064
1200 | 181264208 | 177854256 198504028
1300 | 213046836 | 189210796 183085240
1400 | 247357888 | 218266376 231859332
1500 | 284153852 | 249275952 238125204
1600 | 328077396 | 263238604 304201800
1700 | 365474704 | 319817604 316397112
1800 | 409992824 | 336841140 328592424

Table 6.32. Comparing the Speedups of the Two Run-time Algorithms for the Loop
with D={(0,1), (1,1), (1,0), (1,-1)}

Problem | Fixed Size | Self Adaptive | Problem | Fixed Size | Self Adaptive
Size Speedup Speedup Size Speedup Speedup
100 0,547 0,407 1000 0,911 0,842
200 0,668 0,442 1100 0,948 0,858
300 0,705 0,452 1200 1,019 0,913
400 0,801 0,511 1300 1,126 1,164
500 0,789 0,649 1400 1,133 1,067
600 0,810 0,641 1500 1,140 1,193
700 0,842 0,605 1600 1,246 1,078
800 0,927 0,789 1700 1,143 1,155
900 0,920 0,772 1800 1,217 1,248

Figures 6.28 and 6.29 visualize the comparisons. The fact that there is less
parallelism to exploit is indicated by the inability of both algorithms’ to offer any
significant speedup until the problem size of between N=1200 and N=1300. This size
is much larger than the problem of D={(1,0), (0,1)}. Once again though, the self-

117

adaptive variant quickly catches up and follows the fixed-size one after a while.
Again, this proves the effectiveness of the adaptive algorithm.

=—Q0riginal Code =#-—Fixed Size Algorithm - Self Adaptive Algorithm
40000000
35000000 /
g 30000000
S 25000000
>
& 20000000
% 15000000
Z 10000000
50000000
0 _
O O O O O O O O O O O O O oo o o o o
O O O O O O O O O O O O O o o o o o
A N M <t IO O I~ 00 O A N M T IO O© M~ 00
— A A A A A A A
Problem Size

Figure 6.28. Comparing the CPU Cycles of the two Run-time Algorithms for the
Loop Wlth D:{(Oil)i (111)! (110)! (1!-1)}

=o—Fixed Size Algorithm —=Self Adaptive Algorithm

1.400
3 1.000
S 0800 -
go.aoo—
8 0.400 -
“0.200
0.000

O O O O O O O O O O O O oo oo o o o o

O O O O O O O O O O O O O o o o o o

— AN M <t IO O© I~ 0 OO O 4 AN OO < 1O © I~

I = A Hd A A A A

Problem Size (N x N)

Figure 6.29. Comparing the Speedups of the two Run-time Algorithms for the Loop
with D={(0,1), (1,1), (1,0), (1,-1)}

118

The final problem is the loop nesting with a dependence vector of D={(2,0),
(0,2)}. The dependency of (0,2) is actually internally treated as (0,1) by both
algorithms as has been already mentioned. The (2,0) dependency however allows two
simultaneous columns to execute at any given time, effectively doubling the amount
of parallelism that can be exploited. Table 6.33 displays the results in CPU cycles and
Table 6.34 displays the speedups achieved for each problem size. Figures 6.30 and
6.31 help visualize the data.

Table 6.33. CPU Cycles for the {(2,0), (0,2)} Problem.

Problem | Original | Fixed Size | Self Adaptive
Size Code Algorithm | Algorithm
100 774108 516520 1698932
200 3771708 1735864 4127672
300 9148748 6529064 7743552
400 16099372 | 11497204 11801488
500 25195468 | 17515188 15020296
600 36275752 | 24898940 19725720
700 49041688 | 32041456 25317360
800 64890712 | 40364832 29403340
900 85394952 | 49834420 36329496
1000 | 111067292 | 58711484 40422532

Table 6.34. Speedups Achieved by the two Algorithms.

Problem Size | Fixed Size Speedup Speedup Self Adaptive
100 1,499 0,456
200 2,173 0,914
300 1,401 1,181
400 1,400 1,364
500 1,438 1,677
600 1,457 1,839
700 1,531 1,937
800 1,608 2,207
900 1,714 2,351
1000 1,892 2,748

119

—o—QOriginal Code —#—Fixed Size Algorithm Self Adaptive Algorithm
12000000
£ 10000000 //
g 80000000 /
& 60000000
& 40000000
£ 20000000
0 | ==t
100 200 300 400 500 600 700 800 900 1000
Problem Size

Figure 6.30. CPU Cycles for the {(2,0), (0,2)} Problem.

—o—Fixed Size Algorithm —#—Self-Adaptive Algorithm

3.000
2 2500 =
3 ~ e
£ 2.000 _/
< 1,500 -
>
& 0500 -
0.000

100 200 300 400 500 600 700 800 900 1000
Problem Size (N x N)

Figure 6.31. Comparing the Speedups Achieved by the two Algorithms for the
D={(2,0), (0,2)} Problem.

In this case the Self-Adaptive algorithm fared much better and closer to the
ideal target of a doubling the speedup of the D={(1,0), (0,1)} problem than the fixed
size method. This can be explained by the fact that the real optimal tile size for the
fixed size algorithm was outside the range of the numbers that were tried (2 to 40) and

thusly was lost.

120

6.4. The Livermore Loops

As a final evaluation test a suite of programs was needed where each test is
more complex than just simple perfectly nested loops. For that reason, the Livermore
loops [79] were chosen. It is a set of 24 kernels, each performing a particular task.
The suite was originally created to test parallelizing / vectorizing compilers so it was
selected to benchmark C2uTC/SL. It should be noted that, by definition, not all of the
kernels can be parallelized in the first place. A list of the kernels follows detailing
how C2uTC/SL fared against each of them. For each kernel there is an indication
whether C2uTC/SL did a proper transformation that increases efficiency/exposes
parallelism (PASS) while if it decided to err on the safe side and just transformed the
kernel into a sequentially executing family of threads(which can slightly increase
efficiency as well) (SAFE). There is a third result in some of the kernels called FAIL.
This happens when the code contains C constructs not included in the C subset that
C2uTC/SL supports (like goto). Instead of the compiler stopping at detection of those
constructs and not producing any output, instead it just proceeds to create some output

that is completely wrong and will not even compile properly.

» Hydrodynamics fragment: The loop is rather simple and can be fully
executed in parallel. C2uTC/SL automatically parallelized it correctly (PASS).

* Incomplete Cholesky conjugate gradient: The code is rather convoluted
and C2uTC/SL cannot distinguish any hidden parallelism to exploit (no proper
meaning can be extracted from some variables and an existing dependence is not
static). However, the whole loop is transformed into an infinite family of threads
which contains another family of threads with shared variables. As has been
demonstrated before this can increase efficiency by a small percentage (SAFE).

* Inner product: This is a similar code to the innermost loop of matrix
multiplication. If the partial sums are first calculated in a temporary variable by hand
and then added to the accumulator variable, efficiency can be greatly sped up by
taking advantage of all the threads calculating their sum in parallel before locking
down on the shared channel (PASS).

» Banded linear systems solution: C2uTC/SL cannot detect any meaningful

parallelism (there is a relationship which cannot be statically identified as a

121

dependence or an antidependence) in that code so it transforms both loops to families
of threads with shared variables (one of the loops is accumulating a value to a
variable) to increase efficiency slightly (SAFE).

* Tridiagonal linear systems solution: This is a normal single-dimensional
loop with a unary dependency of length 1. C2uTC/SL acts appropriately (PASS).

* General linear recurrence equations: Once again C2uTC/SL is unable to
perform a meaningful transformation (the existence of non-static dependences
prevents such an action) so it resorts to transform each loop into a family in order to
gain some efficiency (SAFE).

» Equation of state fragment: Although it seems like a complicated loop, it is
in fact rather simple and it can be computed fully in parallel. C2uTC/SL provides the
correct transformation (PASS).

* Alternating direction implicit integration: This loop is too complicated for
the compiler to “understand” so it fails (FAIL).

* Integrate predictors: A fully parallel loop where each iteration writes some
value at the first column of the appropriate row. There are no dependences and
C2uTC/SL performs the proper parallel transformation (PASS).

* Difference predictors: Another fully parallel loop which is properly
transformed by C2uTC/SL (PASS).

* First sum: A single dimensional loop with a unary dependency of length 1.
A synchronizing channel is utilized to provide sequential execution and better
efficiency (PASS).

* First difference: An obviously fully parallel loop which is transformed in an
appropriate manner by C2uTC/SL (PASS).

 2-D particle in a cell: An overly complex loop where C2uTC/SL fails to
detect any parallelism. The whole loop is transformed into a sequentially executed
family of threads (SAFE).

* 1-D particle in a cell: This loop is comprised of 3 smaller loops. The first of
them is fully parallel and is understood as such by C2uTC/SL. The remaining loops
for various reasons are transformed into sequentially executing families of threads
(PASS/SAFE/SAFE).

122

* Casual Fortran: This loop is considered too complicated by C2uTC/SL. It
is transformed into a sequentially executing family of threads (SAFE).

* Monte Carlo search: The loop is so complicated (with the use of “goto”
aggravating the complexity) that C2uTC/SL fails to produce any meaningful code
(FAIL).

* Implicit conditional computation: Again another loop too complex for
C2uTC/SL to produce correct code (“goto” is again present) (FAIL).

* 2-D explicit hydrodynamics fragment: A loop comprised of 3 others but all
of them are fully parallel which C2uTC/SL understands as such and acts accordingly
(PASS).

* General linear recurrence equations: This loop is comprised of 2 smaller
loops. Each of those two loops carries a shared variable in the code. C2uTC/SL
understands this and produces two sequentially executing families with a
synchronizing channel for the shared variable (PASS).

* Discrete ordinates transport: C2uTC/SL is unable to detect any parallelism
(cross dependences are not handled) or variables to use as shared so it takes the safe
approach and transforms the entire loop into a sequentially executing family (SAFE).

* Matrix-matrix product: A fully parallel loop nesting which C2uTC/SL
correctly identifies and transforms (PASS).

* Planckian distribution: Another fully parallel loop which C2uTC/SL
understands properly and produces a correct transformed output (PASS).

* 2-D implicit hydrodynamics fragment: This loop contains both two-
dimensional anti-dependences and dependences. By reversing the direction of the
anti-dependences (and essentially turn them into dependences), the loop is
transformed into a two-dimensional nesting with a dependence vector. C2uTC/SL
invokes the Self-Adaptive algorithm for this loop and produces a correct
transformation (PASS).

* Location of a first array minimum: This is a simple loop which cannot be
parallelized. C2uTC/SL correctly identifies that the current minimum index variable
used in its iteration is a shared variable and transforms the loop accordingly (PASS).

123

Table 6.35. A Summary of the Results of the Livermore Loops Transformations by

C2uTC/SL.
Kernel
No. Kernel Name Result
1 Hydrodynamics fragment PASS
2 Incomplete Cholesky conjugate gradient SAFE
3 Inner product PASS
4 Banded linear systems solution SAFE
5 Tridiagonal linear systems solution PASS
6 General linear recurrence equations SAFE
7 Equation of state fragment PASS
8 Alternating direction implicit integration FAIL
9 Integrate predictors PASS
10 Difference predictors PASS
11 First sum PASS
12 First difference PASS
13 2-D particle in a cell SAFE
14 1-D particle in a cell PASS/SAFE/SAFE
15 Casual Fortran SAFE
16 Monte Carlo search FAIL
17 Implicit conditional computation FAIL
18 2-D explicit hydrodynamics fragment PASS
19 General linear recurrence equations PASS
20 Discrete ordinates transport SAFE
21 Matrix-matrix product PASS
22 Planckian distribution PASS
23 2-D implicit hydrodynamics fragment PASS
24 Location of a first array minimum. PASS

Table 6.35 summarizes the results for all the Livermore loops. Qualitatively,

more than half of the loops are transformed properly and most of the rest are

transformed into some sort of family which produces correct results. Due to this,

C2uTC/SL should be considered relatively successful in its task. However it is

obvious that it needs a better symbolic analyzer in order to properly “understand”

more complex codes (i.e. codes where index accesses take place via pointer

dereferencing, codes where index accesses contain regular expressions etc.)

124

CHAPTER 7. FINAL THOUGHTS

This paper presented the most basic elements and ideas regarding the
automatic parallelization of legacy sequential code. In addition, it described the
research on what —at the time of writing- was considered novel: Using the SVP model
to parallelize loops in ways that mainstream compilers could not. This research led to
the creation of C2uTC/SL compiler. Heavily in beta, C2uTC/SL served more as a
vessel to perform research than a commodity (or even commercial) compiler system
that would be available to the public. The beta aspect reflects upon almost all aspects
of the compiler in the form of a series of limitations:

(i) C2uTC/SL only compiles programs with a main() function and no other
functions in the same program. That means that the all functions must be
declared as external and linked against the transformed code during
compilation phase. In addition all external functions must have a return value
(they cannot be declared as void).

(ii) Due to some issues with the syntax analyzer, only statically declared arrays are
supported, hence no dynamic arrays with malloc or any other type of pointer
arithmetics are supported.

(iii) Input to the application is problematic due to some external reasons. There is
no direct way to get input save for batches of data saved in a file in FIBRE
format.

(iv) There is no way to “mark” which loops are going to be parallelized and which
should be left alone. C2uTC/SL blindly analyses and transforms all of them.
The only way to make a loop run sequentially is to utilize a variable which
increases by one. Such an act forces the compiler to sequentialize the loop

with that variable marked as shared.

125

For those reasons, it is not possible for any real life application to be compiled
as-is. It will have to be re-written in order to comply with the above restrictions: Any
function calls that perform actual computation which needs to be parallelized should
be inlined in the main function. The rest of the functions need to be declared as
external in that source file and implemented in a different file. They can be linked
against the transformed file once C2uTC/SL is done with it. Since there is no way to
mark loops for parallelization, loops that only perform printouts (for example loops
that print the contents of a matrix) should not exist within the same main file or at the
very least they should be forced to be transformed in a sequential form (through the
use of shared variables). It is best for that kind of code to be factorized into an
external function call. Finally, input data should be declared statically inside the code
itself for any example or be batch-loaded through some helper FIBRE functions.

Despite of that though, most of the research goals that were set were achieved:
Single dimensional loops, carrying dependences or not, can be transformed in a
manner which improves their efficiency by a large degree even if there is no
parallelism to exploit (thanks to the synchronising channels). Simple multi-
dimensional loops (without dependences) can also be transformed into fully parallel
SVP constructs (families) that produce the same result while providing great speedups
(46 in the case of 64 cores for example). Finally, perfectly nested loops with a static
dependence vector can be parallelized in a wavefront-like style. Instead of focusing
on compile-time methods which try to calculate the perfect hyperplane to utilize and
then only estimate or even guess at the tile size to use (since it has been proven that a
fully fine grain method will oversaturate at large problem sizes so tiling is a
necessity), a different approach was chosen: Utilising the information of the run-time
environment to the benefit of the compiler.

This novel solution was met with many difficulties, mostly because of the
rather small bibliography on parallelizing in run-time, but in the end the Fixed-Size
Algorithm was born which eventually evolved to the Self-Adaptive system: An
algorithm that follows the dependence vector in order to choose which indices will
execute at a given cycle (similar to the hyperplane, only instead of a hyperplane there

are execution cycles). Not only does that algorithm intuitively find the best

126

hyperplane to use, it also finds the best tile size to utilise in order to achieve
performance as close to maximum as possible.

There are several aspects though that find C2uTC/SL lacking and will need
addressing in some future work. Those aspects can be categorized into two sets,
software engineering and research.

When it comes to software engineering aspects, all of the limitations that were
listed in the first paragraph must be fixed. There is nothing inherently difficult
however a rather large timespan and a great deal of work must be invested in that
aspect. Other areas also need improvement. The symbolic interpreter, albeit having
served its purpose perfectly, is at an infant stage and the process of dependence
detection relies on very simple expression identification (only the form of “A[i] = A[i
— constant]” is understood). A proper symbolic analyzer needs to be implemented
which will be able to comprehend complex expressions as well as dependences that
extend into multiple statements. Moreover, the compiler itself is entwined with SL
and the SVP in general. However, certain ideas and transformations it employs can be
applied in more general systems. A different branch of its development should focus
on producing output for libraries and systems widely in use: pthreads in a lower level
or OpenMP for a higher level of abstraction. This would allow not only C2uTC/SL’s
usage to become more widespread (which can lead to more people picking it up and
upgrading it) but also for some comparison with other commodity compilers in
existence today.

Research-wise, even though the Self Adaptive Algorithm has proven to work
for the typical nested loop with a static dependence vector, there is still plenty of room
for improvement. Firstly, it is rather slow in its convergence rate. Since at each cycle
the tile size in use is altered by the value of one, it takes several cycles for it to reach
an optimal state. A smarter system needs to be implemented that will be increasing or
decreasing the tile size based on its distance from the target or at the very least in a
faster way than the current system. Secondly, the scheduler thread can in theory be
improved. The way it traverses the coordinates with the dependence vector, can be
executed in parallel and hence help the scheduler end faster. This will result in higher
amounts of parallelism in general and hence greater speedups. Lastly, some way to

deal with non-static dependences should be researched. If a dependence can be

127

described as an affine combination of a series of known variables (i.e. the indices)
then, in theory, it should be possible to extend the algorithm to transform these kinds
of cases as well.

In conclusion, C2uTC/SL is an automatic parallelizing compiler which is
capable of transforming C code into parallel SL code that can be executed by an SVP
system. It provides a combination of compile time techniques (in cases of no
dependence existing or in single-dimensional loops) with a run-time technique that
was researched and developed especially for this compiler. Experimental results
indicate that the run-time method can offer significant improvements in execution
times and is definitely on the right path. Even though it can not compete with
traditional compile-time methods in pure speedup gain, its versatility (i.e. handling
irregular index spaces, calculating the optimal tile size, etc.) more than makes up for
that. More work is needed in various areas: The compiler should be able to deal with
more than one functions in a program, pointer arithmetics should be implemented in
order to deal with dynamically allocated arrays, 1/0O needs to be improved and the
symbolic analyser should also be expanded with the ability to “understand” more
diverse types of expressions inside array subscripts. Finally, the main Self-Adaptive
algorithm itself can also benefit from a few improvements. Convergence rate needs to
be improved, the scheduler thread can benefit from some inherent parallelism and

finally non static dependences need to be researched.

128

REFERENCES

[1] R. Allen and K. Kennedy. “Automatic Translation of FORTRAN programs to
Vector Form”, ACM Transactions on Programming Languages and Systems, pp:491-
542, 1987.

[2] R. Allen and K. Kennedy. “Optimizing Compilers for Modern Architectures”,
Morgan Kaufmann Publishers, 2001.

[3] G. Almasi and A. Gottlieb. “Highly Parallel Computing”, The Benjamin /
Cummings Publishing Company, Inc., 1994.

[4] J. M. Anderson, S. P. Amarasinghe and M. S. Lam. “Data and Computation
Transformations for Multiprocessors”, Proc. of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Processing, Jul. 1995.

[5] J. M. Anderson and M.S. Lam. “Global Optimizations for Parallelism and Locality
on Scalable Parallel Machines”, In Proc. Of SIGPlan '93 Conf. Programming
Language Design and Implementation, ACM Press, New York, pp. 112-125, 1993.

[6] R. Asenjo, R. Castillo, F. Corbera, A. Navarro, A. Tineo and E. L. Zapata.
“Parallelizing Irregular C Codes Assisted by Interprocedural Shape Analysis”, in
22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS'08),
2008.

[7] D. Bacon, S. Graham, O. Sharp. “Compiler Transformations for High-
Performance Computing”, Computing Surveys, v:26, pp:345 - 420, 1994,

[8] H. Bae, L. Bachega, C. Dave, S-I. Lee, S. Lee, S-J. Min, R. Eigenmann and S.
Midkiff. “Cetus: A Source-to-Source Compiler Infrastructure for Multicores”, In
Proc. Of the 14th Intl. Workshop on Compilers for Parallel Computing, 2009.

[9] U. Banerjee. “Dependence Analysis for Supercomputing”, Kluwer. Boston, MA,
1988.

[10] U. Banerjee. “Loop Transformations for Restructuring Compilers”, Kluwer
Academic, 1993.

129

[11] P. Banerjee, J. A. Chandy, M. Gupta, J. G. Holm, A. Lain, D. J. Palermo, S.
Ramaswamy and E. Su. “The Paradigm Compiler for Distributed Memory
Multicomputers”, IEEE Computer, Oct. 1995, v. 28, pp. 37-47, 1994.

[12] U. Banerjee, R. Eigenmann, A. Nicolau and D. Padua. “Automatic Program
Parallelization”, Proceedings of the IEEE, 81(2)pages 211-243, February 1993.

[13] M. Baskaran, N. Vydyanathan, U. Bondhugula, J. Ramanujam, A. Rountev and
P. Sadayappan. “Compiler-Assisted Dynamic Scheduling for Effective Parallelization
of Loop Nests on Multicore Processors”, in Proc. Of PoPP, pp:219-228, 20009.

[14] C. Bastoul. “Code Generation in the Polyhedral Model is Easier than You
Think”, In Proc. Of the 13th International Conference on Parallel Architectures and
Compilation Techniques, IEEE Computer society, Washington DC, USA, pp: 7 - 16,
2004.

[15] V. Beletskyy and M. Poliwoda. “Parallelizing Perfectly Nested Loops with Non-
Uniform Dependencies”, In Proc. Of the Advanced Computer Systems, pp:83-98,
2002.

[16] T. Bernard, K. Bousias, L. Guang, C. R. Jesshope, M. Lankamp, M. W. van Tol
and L. Zhang. “A General Model of Concurrency and its Implementation as Many-
core Dynamic RISC Processors”, In Proc. of Intl.Conf. on Embedded Computer
Systems: Architecture, Modeling and Simulation, SAMOS-2008, ISBN: 978-1-4244-
1985-2, pp. 1-9, Samos, Greece, 2008.

[17] T. A. M. Bernard, C. Jesshope, and M. Lankamp. “Evaluation of a Hardware
Implementation of the SVP Concurrency model”. ISCA 2010.

[18] W. Blume and R. Eigenmann. “The Range Test: A Dependence Test for
Symbolic, Non-linear Expressions”, Technical Report 1345, Univ. of Illinois at
Urbana-Champaign, Centr. for Supercomputing Res & Dev., April 1994.

[19] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P.
Petersen, W. Pottenger, L. Rauchwerger, P. Tu and S. Weatherford. “Effective
Automatic Parallelization with Polaris”, International Journal of Parallel
Programming, May 1995.

[20] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev
and P. Sadayappan. “Automatic Transformations for Communication-Minimized
Parallelization and Locality Optimization in the Polyhedral Model”, In Proc. Of the
the International Conference on Compiler Construction, 2008.

[21] U. Bondhugula, A. Hartono, J. Ramanujan and P. Sadayappan. “A Practical
Automatic Polyhedral Parallelizer and Locality Optimizer”, ACM SIGPLAN
Programming Languages Design and Implementation (PLDI), Tucson, Arizona, June
2008.

130

[22] K. Bousias, L. Guang, C.R. Jesshope and M. Lankamp. “Implementation and
Evaluation of a Microthread Architecture”, Journal of Systems Architecture, Volume
55, Issue 3, pp 149-161, March 2009.

[23] C. Brownhill, A. Nicolau, S. Novack and C. Polychronopoulos. “Achieving
Multi-Level Parallelization”, High Performance Computing, Lecture Notes in
Computer Science Volume 1336, pp 183-194, 1997.

[24] K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M.
Mellor-Crummey, L. Torczon and S. K. Warren. “The ParaScope Parallel
Programming Environment”, In Proc. of IEEE, pp. 244-263, Feb. 1993.

[25] A. Darte and F. Vivien. “Optimal Fine and Medium Grain Parallelism Detection
in Polyhedral Reduced Dependence Graphs”, International Journal of Parallel
Programming, v:25, pp:447-496, 1997.

[26] A. Darte, Y. Robert and F. Vivien. “Scheduling and Automatic Parallelization”,
Birkhéuser Boston, 2000.

[27] V.V. Dimakopoulos, E. Leontiadis and G. Tzoumas. "A portable C compiler for
OpenMP V.2.0", in Proc. EWOMP 2003, 5th European Workshop on OpenMP,
Aachen, Germany, Sept. 2003, pp. 5--11.

[28] K. A. Faigin, J. P. Hoeflinger, D. A. Padua, P. M. Petersen and S. A.
Weatherford. “The Polaris Internal Representation”, Technical report, Univ. of
[llionois at Urbana-Champaign, Cntr. for Supercomputing Res. and Dev. CSRD
Report No. 1317, UILU-ENG-93-8038, October 1993.

[29] M. Flynn. "Some Computer Organizations and Their Effectiveness”. IEEE Trans.
Comput. C-21: 948. 1972.

[30] D. C. Grunwald. “Data Dependence Analysis for Supercompilers: the lambda
Test Revisited”, Technical report, Boulder University of Colorado Dept. of Computer
Science.

[31] M. R. Haghighat and C. D. Polychronopoulos. “Dependence Analysis”, Kluwer
Academic Publishers, 1995.

[32] M. W. Hall, J-A. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S-W. Liao, E.
Bugnion and M. S. Lam. “Maximizing Multiprocessor Performance with the SUIF
Compiler”, Digital Technical Journal, (10)1:71-80, 1998.

[33] M. W. Hall, K. Kennedy and K. S. McKinley. “Interprocedural Transformations
for Parallel Code Generation”, Supercomputing '91, pages 423-434, 1991.

[34] A. Hayashi, Y. Wada, H. Shikano, T. Kamiayama, T. Watanabe, T. Sekiguchi
and M. Mase. “OSCAR Parallelizing Compiler Cooperative Heterogeneous Multi-

131

Core Architecture”, The Eighteenth International Conference on Parallel
Architectures and Compilation Techniques (PACT2009), 2009.

[35] J. Hoeflinger and Y. Paek. “Unified Interprocedural Parallelism Detection”,
International Journal of Parallel Processing, 2000.

[36] K. Ishizaka, T. Miyamoto, J. Shirako, M. Obata, K. Kimura and H. Kasahara.
“Performance of OSCAR Multigrain Parallelizing Compiler on SMP Servers”, In
Proc. of 17th International Workshop on Languages and Compilers for Parallel
Computing, 2004.

[37] C. R. Jesshope. “uTC — An Intermediate Language for Programming Chip
Multiprocessors”, In Proc. of Advances in Computer Systems Architecture, 11th
Asia-Pacific Conference, ACSAC 2006, Shanghai, China, September 6-8, pp. 147 —
160, 2006.

[38] C. R. Jesshope. “SVP and uTC - A Dynamic Model of Concurrency and its
Implementation as a Compiler Target”, Technical Teport, University of Amsterdam,
2007.

[39] C. Jesshope, M. Hicks, M. Lankamp, R. Poss and L. Zhang. “Making Multi-cores
Mainstream — From Security to Scalability”, In Parallel Computing: From Multicores
and GPU's to Petascale, Vol. 19, pp. 16-31, 2010.

[40] C. R. Jesshope, J-M Philippe and M. van Tol. “An Architecture and Protocol for
the Management of Resources in Ubiquitous and Heterogeneous Systems Based on
the SVP Model of Concurrency”, In Proc. of Intl. Workshops on Embedded Computer
Systems: Architecture, Modeling and Simulation, SAMOS-2008, LNCS 5114, pp.
218-228, Samos, Greece, 2008.

[41] T. A. Johnson, S-I. Lee, L. Fei, A. Basumallik, G. Upadhyaya, R. Eignmann and
S. P. Midkiff. “Experiences in Using Cetus for Source-to-Source Transformations”, In
Proc. Of the 17th Intl. Workshop on Languages and Compilers for Parallel
Computing, 2004.

[42] B. W. Kernighan and D. M. Ritchie. "The C programming language, 2nd edition,
Section A13", Prentice Hall, 1988.

[43] X. Kong, D. Klappholz and K. Psarris. “The I Test: An Improved Dependence
Test for Automated Parallelization and Vectorization”. IEEE Transactions on Parallel
and Distributed Systems 2 (1991), 342-349.

[44] D. J. Kuck. “High Performance Computing, Challenges for Future Systems”,
Oxford University Press, New York, 1996.

[45] D. Kulkarni and M. Stumm. “Loop and Data Transformations: A Tutorial”,
University of Toronto, 1993.

132

[46] L. Lamport. “The Parallel Execution of DO loops”, Commun. ACM, v:17, pp:83-
93, 1974.

[47] S-1. Lee, T. A. Johnson and R. Eigenmann. “Cetus - An Extensible Compiler
Infrastructure for Source-to-Source Transformation”, In Proc. Of the 16th Intl.
Workshop on Languages and Compilers for Parallel Computing, v:2958, pp:539-553,
2003.

[48] A. W. Lim, G. I. Cheong and M. S. Lam. “An Affine Partitioning Algorithm to
Maximize Parallelism and Minimize Communication”, Proc.of the 13th ACM
SIGARCH International Conference on Supercomputing, Jun.1999.

[49] A. G. Navarro, F. Corbera, A. Tineo, R. Asenjo and E. L. Zapata. “Detecting
Loop-Carried Dependences in Programs with Dynamic Data Structures”, Parallel
Distrib. Comput. v:67, pp: 47-62, 2007.

[50] D. A. Padua and M. J. Wolfe. “Advanced Compiler Optimizations for
Supercomputers”, Commun. ACM, v:29, pp:1184 — 1201.

[51] C. D. Polychronopoulos, M. Girkar, M. R. Haghighat, C. L. Lee, B. Leung and
D. Schouten. ‘“Parafrase-2: An Environment for Parallelizing, Partitioning,
Synchronizing, and Scheduling programs on Multi-processors”, International Journal
of High Speed Computing, 1(1): 45-72, 1989.

[52] C. D. Polychronopoulos, M. B. Gikar, M. R. Haghighat, C. L. Lee, B. P. Leung
and D. A. Schouten. “The Structure of Parafrase-2: An Advanced Parallelizing

Compiler for C and Fortran”, In Languages and Compilers for Parallel Computing.
MIT Press, 1990.

[53] R. Poss. "On the realizability of hardware microthreading. Revisiting the general-
purpose processor interface: consequences and challenges”, Technical Report,
University of Amsterdam, 2012. ISBN 978-94-6108-320-3.

[54] B. Pottenger. “Parallelism in Loops Containing Recurrences”, Technical report,
Univ. of Illinois at Urbana-Champaign, June 1996.

[55] B. Pottenger and R. Eigenmann. “Idiom Recognition in the Polaris Parallelizing
Compiler”, International Conference on Supercomputing, 1995.

[56] W. Pugh. “The Omega Test: A Fast and Practical Integer Programming
Algorithm for Dependence Analysis”, In Proc. of Super Computing *91, 1991.

[57] L. Rauchwerger, N. M. Amato and D. A. Padua. “Run-Time Methods for
Parallelizing Partially Parallel Loops”, Proceedings of the 9th ACM International
Conference on Super computing, Barcelona, Spain, pages 137-146, Jul.1995.

133

[58] H. Saito, N. Stavrakos, S. Carroll, C. Polychronopoulos and A. Nicolau. “The
Design of the PROMIS Compiler”, Compiler Construction, Lecture Notes in
Computer Science Volume 1575, pp 214-228, 1999.

[59] J. Saltz, R. Mirxhandaney and K. Crowley. “Run-time Parallelization and
Scheduling of Loops”, IEEE Trans. Comput., 40(5), May 1991.

[60] P. Tu and D. Padua. “Automatic Array Privatization”, Proc. 6th Annual
Workshop on Languages and Compilers for Parallel Computing, 1993.

[61] D. W. Wall. “Limits of Instruction-level Parallelism”, In Proc. Of the 4th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-1V), Apr. 1991.

[62] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S.
W. K. Tjiang, S-W. Liao, C-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy.
“SUIF: An Infrastructure for Research on Parallelizing and Optimizing Compilers”,

ACM SIGPLAN Notices, v: 29, pp: 31-37, 1994.

[63] M. Wolfe. “High Performance Compilers for Parallel Computing”, Addison-
Wesley Publishing Company, 1995.

[64] M. Wolfe and C.-W. Tseng. “The Power Test for Data Dependence”, IEEE
Transactions on Parallel and Distributed Systems, v:3, issue 5.

[65] M. E. Wolf and M.S. Lam. “A Loop Transformation Theory and an Algorithm to
Maximize Parallelism”, IEEE Transactions on Parallel Distributed Systems v:2

pp:452 - 471, 1991.

[66] H. Zima. “Supercompilers for Parallel and Vector Computers”, Addison-Wesley,
1991.

[67] [Online] http://openmp.org/wp/

[68] [Online] http://openmp.org/wp/openmp-specifications/

[69] [Online], http://www.mpi-forum.org/

[70] [Online], https://developer.nvidia.com/category/zone/cuda-zone
[71] [Online], https://www.cilkplus.org/

[72] [Online], http://www.paraphrase-ict.eu/

[73] [Online], http://www.sac-home.org/

[74] [Online], http://www.apple-core.info

134

[75] [Online], http://svp-home.org

[76] [Online], http://www.ace.nl/compiler/cosy.html

[77] [Online], http://en.wikipedia.org/wiki/Conway's_Game_of Life
[78] [Online], http://en.wikipedia.org/wiki/Mandelbrot_set

[79] [95] [Online], http://en.wikipedia.org/wiki/Livermore_loops

135

APPENDIX A. THE SL LANGUAGE

The information contained in this Appendix comes mostly from [53]. As has
been mentioned already, the SL language is essentially the C language expanded with
a series of macro definitions that help encapsulate all the parallel constructs
functionality. Due to this property, the grammar utilized by C2uTC/SL is the one
listed below (The original C language specification is listed in [42]) :

<translation-unit> ::= <external-declaration>*

<external-declaration> ::= <function-definition>

<thread-function-declaration>

<thread-function-definition>

<declaration>

<thread-function-definition> ::= sl_def (<identifier> {, <attributes>? {, <thread-parametre-

list>}?}?) <compound-statement> <sl-enddef>

<thread-function-declaration> ::= sl_decl (<identifier> , <thread-specifiers>? {, <thread-

parametre-list>}?) ;

<thread-parametre-list> ::= <thread-parametre-declaration>

| <thread-parametre-declaration> , <thread-parametre-list>

<function-definition> ::= {<declaration-specifier>}* <declarator> {<declaration>}* <compound-
statement>
<declaration-specifier> ::= <storage-class-specifier>

| <type-specifier>

| <type-qualifier>

<storage-class-specifier> ::= auto
| register
| static

| typedef

136

<type-specifier> ::= void
| char

| short

| int

| long

| float

| double

| signed

| unsigned

| <struct-or-union-specifier>

| <enum-specifier>

|

<typedef-name>

<struct-or-union-specifier> ::= <struct-or-union> <identifier> { {<struct-declaration>}+ }
| <struct-or-union> { {<struct-declaration>}+ }

| <struct-or-union> <identifier>

<struct-or-union> ::= struct

| union
<struct-declaration> ::= {<specifier-qualifier>}* <struct-declarator-list>
<specifier-qualifier> ::= <type-specifier>

| <type-qualifier>

<struct-declarator-list> ::= <struct-declarator>

| <struct-declarator-list> , <struct-declarator>
<struct-declarator> ::= <declarator>
| <declarator> : <constant-expression>
| : <constant-expression>
<declarator> ::= {<pointer>}? <direct-declarator>

<pointer> ::= * {<type-qualifier>}* {<pointer>}?

<type-qualifier> ::= const

| volatile

<direct-declarator> ::= <identifier>

(<declarator>)

|
| <direct-declarator> [{<constant-expression>}?]
| <direct-declarator> (<parameter-type-list>)

|

<direct-declarator> ({<identifier>}*)
<constant-expression> ::= <conditional-expression>

<conditional-expression> ::= <logical-or-expression>

137

| <logical-or-expression> ? <expression> : <conditional-expression>

<logical-or-expression> ::= <logical-and-expression>
| <logical-or-expression || <logical-and-expression>
<logical-and-expression> ::= <inclusive-or-expression>

| <logical-and-expression && <inclusive-or-expression>

<inclusive-or-expression> ::= <exclusive-or-expression>

| <inclusive-or-expression> | <exclusive-or-expression>

<exclusive-or-expression> ::= <and-expression>

<exclusive-or-expression> ”~ <and-expression>

<and-expression> ::= <equality-expression>

| <and-expression> & <equality-expression>

<equality-expression> ::= <relational-expression>
| <equality-expression> == <relational-expression>
| <equality-expression> != <relational-expression>
<relational-expression> ::= <shift-expression>

| <relational-expression> < <shift-expression>
| <relational-expression> > <shift-expression>
| <relational-expression> <= <shift-expression>

| <relational-expression> >= <shift-expression>

<shift-expression> ::= <additive-expression>
| <shift-expression> << <additive-expression>

| <shift-expression> >> <additive-expression>

<additive-expression> ::= <multiplicative-expression>
| <additive-expression> + <multiplicative-expression>

| <additive-expression> - <multiplicative-expression>

<multiplicative-expression> ::= <cast-expression>
| <multiplicative-expression> * <cast-expression>
| <multiplicative-expression> / <cast-expression>

| <multiplicative-expression> % <cast-expression>

<cast-expression> ::= <unary-expression>

| (<type-name>) <cast-expression>

<unary-expression> ::= <postfix-expression>
| ++ <unary-expression>
| -- <unary-expression>
| <unary-operator> <cast-expression>

| sizeof <unary-expression>

138

| sizeof <type-name>

<postfix-expression> ::= <primary-expression>
| <postfix-expression> [<expression>]
| <postfix-expression> ({<assignment-expression>}*)
| <postfix-expression> . <identifier>
| <postfix-expression> -> <identifier>
| <postfix-expression> ++

| <postfix-expression> --

<primary-expression> ::= <identifier>
| <constant>
| <string>
| (<expression>)
| sl _geta (identifier)
| sl_getp (identifier)

<constant> ::= <integer-constant>
| <character-constant>
| <floating-constant>

| <enumeration-constant>

<expression> ::= <assignment-expression>

| <expression> , <assignment-expression>

<assignment-expression> ::= <conditional-expression>

| <unary-expression> <assignment-operator> <assignment-expression>

<assignment-operator> ::= =

<unary-operator> ::= &

<type-name> ::= {<specifier-qualifier>}+ {<abstract-declarator>}?

139

<parameter-type-1list> ::= <parameter-list>

| <parameter-list> ,

<parameter-list> ::= <parameter-declaration>

| <parameter-list> , <parameter-declaration>

<parameter-declaration> ::= {<declaration-specifier>}+ <declarator>
| {<declaration-specifier>}+ <abstract-declarator>

| {<declaration-specifiers>}+

<abstract-declarator> ::= <pointer>
| <pointer> <direct-abstract-declarator>

| <direct-abstract-declarator>

<direct-abstract-declarator> ::= (<abstract-declarator>)
| {<direct-abstract-declarator>}? [{<constant-expression>}?]

| {<direct-abstract-declarator>}? ({<parameter-type-list>|?)
<enum-specifier> ::= enum <identifier> { <enumerator-list> }
| enum { <enumerator-list> }

| enum <identifier>

<enumerator-1list> ::= <enumerator>

| <enumerator-list> , <enumerator>

<enumerator> ::= <identifier>

| <identifier> = <constant-expression>
<typedef-name> ::= <identifier>
<declaration> ::= {<declaration-specifier>}+ {<init-declarator>}*
| <thread-index-declaration>
| <thread-function-pointer-declaration>

| <thread-function-pointer-typedef>

<thread-function-pointer-typedef> ::= sl_typedef_fptr (<identifier> { , <thread-specifiers>?

{ , <thread-parametre-list>}?}?) ;

<thread-function-pointer-declaration> ::= sl_decl_fptr (<identifier> , <thread-specifiers>? {

, thread-parametre-list}?) ;

<thread-index-declaration> ::= sl_index (identifier) ;

<thread-specifiers> ::= <thread-specifier-item>

| (thread-specifier-list)

<thread-specifier-list> ::= <thread-specifier-item>

| <thread-specifier-list> , <thread-specifier-item>

<thread-specifier-item> ::= <thread-specifier>

<thread-specifier> ::

<thread-atribute> ::

<init-declarator>

| <thread-attribute>

sl__static

undefined

<declarator>

<declarator>

= <initializer>

<thread-parametre-list> ::= <thread-parametre-declaration>

| <thread-parametre-list> , <thread-parametre-declaration>

<thread-parametre-declaration> ::=

sl _glparm (<declaration-specifiers> , <identifier>)
sl_glfparm (<declaration-specifiers> , <identifier>)
sl_shparm (<declaration-specifiers> , <identifier>)

sl_shfparm (<declaration-specifiers> , <identifier>)

<initializer> ::= <assignment-expression>

| { <initializer-list> }

| { <initializer-list> , }

<initializer-list> ::

<compound-statement>

<statement> ::= <labeled-statement>

<initializer>

| { <create-

| <initializer-list> , <initializer>

::= { {<declaration>}* {<statement>}* }

construct> }

<expression-statement>

<compound-statement>

<selection-statement>

<thread-argument-assignment>

|
|
|
| <iteration-statement>
|
|

<thread-parametre-assignment>

<thread-argument-assignment> ::= sl_seta (<identifier> , <assignment-expression>) ;

<thread-parametre-assignment> ::=

<create-construct>

sl _setp (<identifier> , (assignment-expression>) ;

140

sl _create (, <create-parametres> , <create-specifiers>? , <assignment-

expression> {, <thread-argument-list>}?) ; <create-block-item-list>? sl_sync () ;

<create-parametres> ::

<assignment-expression>? , <range-parametres>

<range-parametres> ::= <assignment-expression>? , <assignment-expression>? ,

expression>? , <assignment-expression>?

<create-specifiers> ::= <create-specifier>

| (<create-specifier-list>)

<create-specifier-list> ::= <create-specifier>

| <create-specifier-list> , <create-specifier>

<create-specifier> ::= <thread-attribute>

<thread-argument-list> ::= <thread-argument-definition>

| <thread-argument-list> , <thread-argument-definition>

<thread-argument-definition>

<assignment-expression>}?)

141

<assignment-

sl_glarg (<declaration-specifiers> , <identifier>? {,

| sl_glfarg (<declaration-specifiers> , <identifier>? {,

<assignment-expression>}?)

| sl_sharg (<declaration-specifiers> , <identifier>? {,

<assignment-expression>}?)

| sl_shfarg (<declaration-specifiers> , <identifier>? {,

<assignment-expression>}?)

<create-block-item-1list> ::= <create-block-item>

| <create-block-item-list> , <create-block-item>

<create-block-item> ::= statement

<create-construct>

<labeled-statement> ::= <identifier> : <statement>
| case <constant-expression> : <statement>
| default : <statement>

<expression-statement> ::= {<expression>}? ;

<selection-statement> ::= if (<expression>) <statement>

| if (<expression>) <statement> else <statement>

| switch (<expression>) <statement>

<iteration-statement> ::= while (<expression>) <statement>

| do <statement> while (<expression>) ;

| for ({<expression>}? ; {<expression>}? ; {<expression>}?)

<statement>

<identifier> ::= <letter>* { <letter> | <digit> }*

<letter> ::=a | b | ... |z |A]|B]| ... |2Z]

<digit> :

142

=0 | 1] ...1]9

It is clear that this grammar is a superset of the C language, so any C legacy

program can be compiled and executed under SVP with no change. However, taking

advantage of the parallelism offered by the hardware requires the code to declare

threads and invoke them from some other thread (main can also be considered a

thread). Alongside the syntax of SL, a list of constraints and semantics follows:

Constraints:

The identifier used in sl_geta() must be a visible thread argument name.
The identifier used in sl_getp() must be a thread parameter name in the
enclosing thread.

The sl_geta function cannot be used in any thread function body.

The sl_geta function can only appear inside its corresponding create
context.

The sl_setp function cannot appear outside of a thread function body.

A thread index declaration can only appear in a thread function body.
Argument names cannot be used in any other create construct in the same
scope.

A goto from outside a create construct cannot jump inside one and vice
versa.

Thread functions cannot have a return statement.

The identifier inside a thread function definition must be in the same name
space as C names.

Semantics:

Each use of sl_getp generates a side effect.

If execution reaches an expression using sl_getp after it has passed a
sl setp statement using the same thread parameter identifier, the behavior
of the program becomes undefined.

A thread function declaration declares a thread function with the specified
name and prototype, with external linkage unless the attribute “sl__static”

is specified.

143

- The thread specifier sl _static plays the same role as C’s storage qualifier
static on external declarations.

- A thread parameter definition specifies channel endpoints for the thread
program. The directives sl_glparm and sl_glfparm specify global channel
endpoints while the directives sl_shparm / sl_shfparm denote a shared
channel.

- sl_shparm / sl_glparm denote (directly or indirectly vie typedefs) integers.
sl_shfparm / sl_glfparm denote in the same way floats / doubles.

- Each execution is associated with a unique logical thread index, which can
be observed via a sl_index declaration in the designated thread program.

- If execution reaches a thread argument or parameter assignment statement
after it has passed another such statement designating the same channel

endpoint, the behavior of the program becomes undefined.

A list of the most important directives of SL alongside a description for each follows:

sl_def(thread_name, return_type, ...) {code} sl_enddef. sl_def defines a
thread named thread name and a return type of return_type (usually void). In the (...)
part a series of arguments is listed. Arguments are passed by value exactly like the C
language. Once the thread body’s functionality is defined (i.e. the instruction
sequence is complete) between the brackets { }, sl_enddef designates to the compiler
the end of a thread definition.

sl_shparm / sl _shfparm (parameter_type, parameter_name). Inside
sl_def()'s parameter list, each shared channel parameter is formally defined with this
directive. Parameter_type indicates the type of the data (int, char *, etc) while
parameter_name indicates the name of the particular shared channel. In the case of a
floating point value, the directive sl_shfparm needs to be used instead.

sl_glparm / sl_glfparm (parameter_type, parameter, parameter_name).
Similar to the previous directive, this one defines a global channel parameter inside
the sl_def's parameter list. Again, in the case of a floating point type of variable, the
sl_glfparm directive needs to be used in place.

sl_index(variable_name). Stores the index of the current thread to the

variable designated by variable_name.

144

sl_getp(channel_name). Decouples the value from a channel named
channel_name and returns it for use or storage inside a thread local variable. The
channel can be either a global or a shared one and in the case of a shared channel, if
the channel is empty, sl_getp will block the execution of the entire thread. It shouldn't
be called more than once per channel so it is wise to store all such decouplings into
local variables.

sl_setp(shared_channel_name, shared value). Writes the value of
shared_value back into a shared channel named shared channel _name. It is
meaningful only for shared channels and thusly it should be used only then and only
once. If a thread does not write back to the shared channel a deadlock might occur.

sl_break(). Similar to C’s break, which breaks execution of a loop and
continues the execution past the point of the loop’s end, sl break() terminates the
execution of the entire family of threads. Control of the program moves past the
family’s synchronization point.

sl_create. Perhaps the most important directive of SL. Its usual invocation is
sl_create(,,from,to,step,,,thread_body,...). It creates a family of threads whose index
will have a starting value of "from", will go up to the value of "to" and have a step of
"step”. This means that (to-from)/step threads will exist inside this family. The ... is
the argument list that assigns values to the global and the shared channels.

sl_sharg / sl_shfarg(value_type, shared_channel_name, initial_value). Part
of the formal parameter list of sl _create, it creates a shared channel named
shared_channel_name which carries a value of type value_type. Additionally, it can
be initialized with the value of initial_value. In the case of a floating type value,
sl_shfarg should be used instead. The sharg / shfarg directives set the two endpoints
of the shared channel that will be applied to all threads in the family. The initial value
is automatically set and the final value can be read after the synchronization point.

sl_glarg / sl _glfarg(value_type, global channel_name, initial_value).
Another part of the formal parameter list of sl_create, this set of directives creates and
initializes a global channel that permeates all threads in the family. The name of the
channel will be global_channel_name, its type will be of value_type and it will be
initialized with the value of initial_value. Again if the value is of floating point type

then the counterpart sl_glfparm needs to be used.

145

sl_sync(). Similar to the classic join for threads, sl_sync() will halt execution
of the parent thread that created a family and wait till that family terminates to
continue execution.

sl_geta(shared_channel_name). Once a family has terminated, the parent
thread can read the final value of a shared channel via sl_geta. It takes as argument
the name of the shared channel, decouples and returns its value for storage in a

variable or direct use.

It should be stated here that all parameter types passed between threads are
basic types or pointers to / arrays of them (type-defined). Any other user defined type
(like compound types (i.e. structs / unions)) is not currently supported by SL. A

simple example code similar to the classic "Hello world" program is depicted below:

sl _def (void, print)
{
sl_index(i);
printf("Hello from thread %d\n",i);

¥
sl_enddef

This thread declaration defines a thread that prints "Hello from thread " and its
accompanying index (its position inside the family chain). Creating a family of those

threads is also straightforward:

sl_create(,,0,N,1,,,print);

sl sync();

This code creates a family of N threads that will all execute in parallel. The
indices inside the family will range from 0 to N-1 and increment by 1. A full list of

constraints and semantics of SL can be found in Appendix | of [53].

APPENDIX B. SUPPORTED C SUBSET

146

In a similar manner to Appendix A the supported subset of the C grammar (in
BNF form) is listed below:

<translation-unit> :

:= <external-declaration>

<external-declaration> ::= <function-definition>

<function-definition> :

<main-type> ::= int
| void
<declaration-specifier> ::= <storage-class-specifier>
| <type-specifier>
| <type-qualifier>
<storage-class-specifier> ::= auto
| register
| static
| typedef
<type-specifier> ::= void
| char
| short
| int
| long
| float
| double
| signed
| unsigned
|
|
|

<struct-or-union-specifier> ::= <struct-or-union> <identifier> { {<struct-declaration>}+ }

<struct-or-union-specifier>
<enum-specifier>

<typedef-name>

| <struct-or-union> { {<struct-declaration>}+ }

| <struct-or-union> <identifier>

1= <main-type> main {<declaration>}* <compound-statement>

<struct-or-union>

<struct-declaration

<specifier-qualifie

<struct-declarator-

<struct-declarator>

<declarator> ::= {<

<pointer> ::= * {<t

<type-qualifier>

<direct-declarator>

<constant-expressio

<conditional-expres

<logical-or-express

<logical-and-expres

<inclusive-or-expre

<exclusive-or-expre

<and-expression>

:= struct

| union
> ::= {<specifier-qualifier>}* <struct-declarator-list>
r> ::= <type-specifier>

| <type-qualifier>

list> ::= <struct-declarator>

| <struct-declarator-list> , <struct-declarator>

::= <declarator>
| <declarator> : <constant-expression>
| : <constant-expression>

pointer>}? <direct-declarator>

ype-qualifier>}* {<pointer>}?

::= const

| volatile

1= <identifier>

| (<declarator>)

| <direct-declarator> [{<constant-expression>}?]

| <direct-declarator> (<parameter-type-list>)

| <direct-declarator> ({<identifier>}*)

n> ::= <conditional-expression>

sion> ::= <logical-or-expression>

| <logical-or-expression> ? <expression>

ion> ::= <logical-and-expression>
| <logical-or-expression || <logical-and-expression>
sion> ::= <inclusive-or-expression>

| <logical-and-expression && <inclusive-or-expression>

ssion> ::= <exclusive-or-expression>

| <inclusive-or-expression> | <exclusive-or-expression>

ssion> ::= <and-expression>

::= <equality-expression>

| <and-expression> & <equality-expression>

<exclusive-or-expression> ~ <and-expression>

147

<conditional-expression>

148

<equality-expression> ::= <relational-expression>
| <equality-expression> == <relational-expression>
| <equality-expression> != <relational-expression>
<relational-expression> ::= <shift-expression>

| <relational-expression> < <shift-expression>
| <relational-expression> > <shift-expression>
| <relational-expression> <= <shift-expression>

| <relational-expression> >= <shift-expression>

<shift-expression> ::= <additive-expression>
| <shift-expression> << <additive-expression>

| <shift-expression> >> <additive-expression>

<additive-expression> ::= <multiplicative-expression>
| <additive-expression> + <multiplicative-expression>

| <additive-expression> - <multiplicative-expression>

<multiplicative-expression> ::= <cast-expression>
| <multiplicative-expression> * <cast-expression>
| <multiplicative-expression> / <cast-expression>

| <multiplicative-expression> % <cast-expression>

<cast-expression> ::= <unary-expression>

| (<type-name>) <cast-expression>

<unary-expression> ::= <postfix-expression>

++ <unary-expression>
-- <unary-expression>
<unary-operator> <cast-expression>

sizeof <unary-expression>

sizeof <type-name>

<postfix-expression> ::= <primary-expression>
<postfix-expression> [<expression>]

<postfix-expression> ({<assignment-expression>}*)

| <postfix-expression> . <identifier>
| <postfix-expression> -> <identifier>
| <postfix-expression> ++

<postfix-expression> --

<primary-expression> ::= <identifier>
| <constant>
| <string>

| (<expression>)

<constant> ::= <integer-constant>

| <character-constant>

149

| <floating-constant>

| <enumeration-constant>

<expression> ::= <assignment-expression>
| <expression> , <assighment-expression>
<assignment-expression> ::= <conditional-expression>

| <unary-expression> <assignment-operator> <assignment-expression>

<assignment-operator> ::= =

<unary-operator>

<type-name> ::= {<specifier-qualifier>}+ {<abstract-declarator>}?

<parameter-type-list> ::= <parameter-list>

<parameter-list>

| <parameter-list> ,

::= <parameter-declaration>

| <parameter-list> , <parameter-declaration>

<parameter-declaration> ::= {<declaration-specifier>}+ <declarator>

| {<declaration-specifier>}+ <abstract-declarator>

| {<declaration-specifiers>}+

<abstract-declarator> ::= <pointer>

| <pointer> <direct-abstract-declarator>

| <direct-abstract-declarator>

<direct-abstract-declarator> ::= (<abstract-declarator>)

| {<direct-abstract-declarator>}? [{<constant-expression>}?]

| {<direct-abstract-declarator>}? ({<parameter-type-list>|?)

150

<enum-specifier> ::= enum <identifier> { <enumerator-list> }
| enum { <enumerator-list> }

| enum <identifier>

<enumerator-list> ::= <enumerator>

| <enumerator-list> , <enumerator>

<enumerator> ::= <identifier>

| <identifier> = <constant-expression>

<typedef-name> ::= <identifier>
<declaration> ::= {<declaration-specifier>}+ {<init-declarator>}*
<init-declarator> ::= <declarator>

| <declarator> = <initializer>

<initializer> ::= <assignment-expression>
| { <initializer-list> }

| { <initializer-1list> , }

<initializer-list> ::= <initializer>

| <initializer-list> , <initializer>

<compound-statement> ::= { {<declaration>}* {<statement>}* }

<statement> ::= <labeled-statement>
| <expression-statement>
<compound-statement>

<selection-statement>

<iteration-statement>

<labeled-statement> ::= <identifier> : <statement>
| case <constant-expression> : <statement>

| default : <statement>

<expression-statement> ::= {<expression>}? ;

<selection-statement> ::= if (<expression>) <statement>
| if (<expression>) <statement> else <statement>

| switch (<expression>) <statement>

<iteration-statement> ::= while (<expression>) <statement>
| do <statement> while (<expression>) ;
| for ({<expression>}? ; {<expression>}? ; {<expression>}?)

<statement>

<identifier> ::= <letter>* { <letter> | <digit> }*

151

<letter> ::=a | b | ... |z |A|B]| ... | 2| _

<digit> ::=@ | 1| ... | 9

Essentially, the whole translation module becomes only a single function
(called main) while there are no declarations outside that main function. In addition,
jump statements of any form are not supported since they break normal code flow.
Everything else retains exactly the same grammar and semantics of the original

language.

152

AUTHOR’S PUBLICATIONS

[1] D. Saougkos, G. Manis, "Self Adaptive Run Time Scheduling for the Automatic
Parallelization of Loops with the C2uTC/SL Compiler", Parallel Computing 39
(2013), pp. 603-614.

[2] D. Saougkos, G. Manis, “A Parallelizing Compiler for the Microgrid: Exploiting
Concurrency from Software Continuity”, In: The AppleCore Project Workshop
organized during High Performance and Embedded Architecture and Compilation
(HIPEAC) 2012, Paris.

[3] D. Saougkos, G. Manis, “Run Time Scheduling with the C2uTC Parallelizing
Compiler”, In: 2nd Workshop on Parallel Programming and Run - Time Management
Techniques for Many — Core Architectures, organized during 24th Conference on
Computing Systems (ARCS 2011), 2011, pp. 151-157.

[4] D.Saougkos, A. Mastoras, G. Manis, “Fine Grained Parallelism in Recursive
Function Calls”, In: Workshop on Languaged-Based Parallel Programming Models
organized during PPAM (Parallel Processing and Applied Mathematics) Conference,
Torun, Poland, September 2011.

[5] D. Saougkos, D.Evgenidou, and G.Manis. “Specifying Loop Transformations for
C2uTC source — to —source compiler”, in 14th Workshop on Compilers for Parallel
Computing (CPC ’09), 2009.

[6] D. Saougkos, G. Manis, K. Blekas, A. V. Zarras, "Revisiting Java Bytecode
Compression for Embedded and Mobile Computing Environments”, IEEE
Transactions on Software Engineering, vol. 33, no. 7, pp. 478-495, Jul., 2007.

153

SHORT CURRICULUM VITAE

Dimitris Saougkos was born, raised and spent his formative years in loannina.
At the age of 17 he was accepted into the Computer Science Department of the
University of loannina with honors (Highest entry grade). Programming was always
an interest for him and, as such, the choice of major was easy. During his studies he
also received awards for being the first student in the first, second and third year of
studies. After graduation he was accepted with honors (highest entry grade) in the
Post Graduate department of the same Computer Science Department which he
finished after two years specialized in Software. Once he completed his mandatory
military duty, and after having discussed about the possibility of a PhD with assistant
professor George Manis, he was accepted as a PhD candidate in 2008 and also
worked as a researcher for the E.U. — funded project APPLECORE where he
developed a source-to-source compiler. He has also worked as IT support for the
DASTA office of the University of loannina. Currently (2014 - 2015) he is working
as a Software Design Engineer at the UK-based company Imagination Technologies.
His research interests include automatic (and general) parallelization, compilers and
system programming.

