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Ioannina, Greece. Graduation Month, Graduation Year. “Mapping Loop-Based  

Programs onto a Multithreaded Processor”. Thesis Supervisor:  Manis George. 

 

 

 This thesis offers some insight into the automatic parallelization of loops by 

introducing and describing a source-to-source parallelizing compiler developed from 

scratch called C2κTC/SL. Once basic notions and ideas on the field of automatic 

parallelization have been introduced, the SVP system is described in great detail. It is 

a novel proposal on multi-core architectures and is what C2κTC/SL targets as output. 

The SVP is a novel design for a multi-threaded processor that can be bundled together 

with an OS-on-chip as part of the chip's ISA (Instruction Set Architecture). Several of 

those SVP cores together form a microgrid. The programming paradigm followed by 

the microgrid is that of a family of threads. Each family executes independently and 

all the threads belonging in such a family run in parallel. A thread can create more ad-

hoc families so a whole hierarchy of families can exist at any given time. 

Synchronization is achieved by a series of synchronizing channels that can carry 

information from one thread in the family to its neighbors. The whole system can 

revert back to complete sequential execution once all resources are taken. Two 

programming languages were created for the high level programming / abstraction 

layer of the SVP: κTC and SL. Both are explained later in the text however they both 

are extensions of the basic C language. They extend the language with a series of 

directives for the creation and execution of families of threads. 

 The C2κTC/SL source-to-source compiler is described afterwards: its purpose 

is to take as input any legacy C code and transform it into a parallel SL program. 

Originally its output was the κTC language but with the advent of SL it changed to 

that, hence the name C to κTC / SL (C2κTC/SL). The compiler’s main target 

constructs are loops since a loop is where most of the execution time of an application 

takes place. Since SVP works with families of threads that resemble single-

dimentional loops, transforming any kind of loop into a meaningful construct for the 

SVP is an important step. For that reason, loops are divided into single-dimensional 

and multi-dimensional ones with each category requiring a different transformation 

method. 

 Single-dimentional loops are further categorized by the number of the so-

called loop carried dependencies that they have and are treated accordingly. Loops 

with no dependencies are just translated simply into parallel families. Loops with 

dependencies utilize the SVP’s synchronizing channels to transfer data from one 

thread to the next in a dataflow manner. This action alleviates the weight of each 

thread having to access the global memory for a particular piece of data since 
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whatever it needs is simply transferred over via the synchronizing / shared channel. 

Once each thread finishes computation it pushes all relevant data back to the shared 

channel for use by the next thread. The combination of parallel executing independent 

data-flows (data-chains) and the synchronizing channel to reduce accesses to the main 

global memory brings tremendous increases in speedup and efficiency. 

 Multi-dimensional loops are also subcategorized into two groups. The first 

group is the one that contains no dependencies. Again each loop of the loop nesting is 

simply transformed to a fully parallel family and it is up to the SVP to run the code 

effectively. The second and most interesting group contains the perfect loop nestings 

with a static dependency vector. Lamport’s hyperplane idea is applied in this case 

however there is a novelty: Instead of precomputing any loop transformation, it is up 

to the run-time environment to intuitively follow the dependency vector over the 

index space and discover the different hyperplanes per cycle. This novel idea gave 

birth to our first run-time algorithm: The fixed-size algorithm. It has the ability to 

apply the hyperplane idea, discovered while running the actual computation code, into 

the various tiles of a fixed size which divide the innermost dimension of the loop. The 

fixed size algorithm proved to work properly, however for optimal or even good 

results the size of the tile was needed to be known beforehand, effectively making the 

whole algorithm not particularly useful except as a stepping stone and also a great tool 

for comparisons. 

 This glaring weakness of the Fixed-Size algorithm was covered by its 

evolutionary “descendant”: the Self-Adaptive algorithm. Working on the same 

principles as the Fixed-Size one, it can, at run-time, determine the optimal tile size to 

use at any given computation cycle by reducing it or increasing it according to the 

current needs. 

 Experimental results indicate that not only the Self-Adaptive algorithm fares 

very well with near-optimal results when compared with the Fixed-Size one, it is also 

shown that for that particular type of parallelism (run-time execution of parallel 

families discovered on the spot) the results obtained are the best possible results that 

can be obtained. The algorithms were also compared with a standard compile-time 

method (the hyperplane method) and it was found that their speedup is relatively close 

to each other. This combined with the versatility offered by a run-time system (like 

dealing with irregular index spaces) makes the Self-Adaptive algorithm especially 

appealing. 
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ΕΚΣΕΝΗ ΠΕΡΙΛΗΨΗ ΣΑ ΕΛΛΗΝΙΚΑ 

ανύγθνο Γεκήηξηνο. Τπνςήθηνο Γηδάθησξ, Σκήκα Πιεξνθνξηθήο, ρνιή Θεηηθώλ 

Δπηζηεκώλ, Παλεπηζηήκην Ισαλλίλσλ. Μήλαο / Έηνο. «Απεηθόληζε Βξόρσλ ζε 

Πνιπλεκαηηθό Δπεμεξγαζηή». Δπηβιέπσλ: Μαλήο Γεώξγηνο. 

 

 

 Η παξνύζα δηαηξηβή πξνζθέξεη κία πεξηήγεζε ζηνλ θόζκν ηεο απηόκαηεο 

παξαιιεινπνίεζεο ησλ βξόρσλ παξνπζηάδνληαο θαη πεξηγξάθνληαο παξάιιεια έλα 

εξγαιείν απηόκαηνπ παξαιιειηζκνύ (πεγαίν ζε πεγαίν) πνπ δεκηνπξγήζεθε εθ ηνπ 

κεδελόο θαη νλνκάδεηαη C2κTC/SL. Αθνύ παξνπζηαζηνύλ βαζηθέο έλνηεο ζηνλ ρώξν 

ηνπ απηόκαηνπ παξαιιειηζκνύ, ην ζύζηεκα SVP πεξηγξάθεηαη: Μηα θαηλνηόκνο 

πξόηαζε ζηηο πνιύ-πύξελεο αξρηηεθηνληθέο θαη απνηειεί ζηόρν - έμνδν ηνπ 

C2κTC/SL. Σν SVP απνηειεί ην ζρέδην γηα έλαλ πνιύ-πύξελν επεμεξγαζηή θαη έρεη 

ηελ ηδηόηεηα λα εθηειεί έλα νιόθιεξν ιεηηνπξγηθό ζύζηεκα ην νπνίν κπνξεί λα 

θαηαιακβάλεη κέξνο ηνπ ISA (Instruction Set Architecture) ηνπ ππξήλα. Πνιινί από 

απηνύο ηνπο ππξήλεο κπνξνύλ λα ζπλδπαζηνύλ ζην ιεγόκελν κηθξνπιέγκα  

(microgrid). Ο πξνγξακκαηηζκόο ηνπ microgrid ζηεξίδεηαη ζε νηθνγέλεηεο από 

λήκαηα. Κάζε νηθνγέλεηα εθηειείηαη απηόλνκα θαη όια ηα λήκαηα πνπ αλήθνπλ ζε 

απηήλ ηελ νηθνγέλεηα κπνξνύλ λα εθηειεζηνύλ παξάιιεια. Δπίζεο, θάζε λήκα 

κπνξεί λα δεκηνπξγήζεη όζεο νηθνγέλεηεο ρξεηάδεηαη θαηά βνύιεζε. Με απηόλ ηνλ 

ηξόπν, κηα νιόθιεξε ηεξαξρία από λήκαηα κπνξεί λα εθηειείηαη αλά πάζα ζηηγκή ζην 

microgrid. Ο ζπγρξνληζκόο κεηαμύ ησλ λεκάησλ επηηπγράλεηαη από ηελ ύπαξμε κηαο 

ζεηξάο θαλαιηώλ πνπ κπνξνύλ λα κεηαθέξνπλ πιεξνθνξίεο από έλα λήκα ζε κηα 

νηθνγέλεηα ζηα γεηηνληθά ηνπ.  Δάλ νη πόξνη ηνπ ζπζηήκαηνο εμαληιεζνύλ, ηόηε ην 

ζύζηεκα είλαη ηθαλό λα επηζηξέςεη ζε θαηάζηαζε ζεηξηαθήο εθηέιεζεο. Γύν γιώζζεο 

πξνγξακκαηηζκνύ δεκηνπξγήζεθαλ γηα ηνλ πξνγξακκαηηζκό ηνπ microgrid ζε έλα 

πςειόηεξν επίπεδν: κTC θαη SL. Καη νη δύν πεξηγξάθνληαη ζην θείκελν, θαη ε 

βαζηθή ηνπο ιεηηνπξγία είλαη λα επεθηείλνπλ ηελ γιώζζα C κε ηέηνην ηξόπν ώζηε λα 

κπνξνύλ λα ειέγρνπλ ηελ δεκηνπξγία θαη ηελ εθηέιεζε ησλ νηθνγελεηώλ από λήκαηα. 

 ηελ ζπλέρεηα ν απηόκαηνο κεηαθξαζηήο C2κTC/SL παξνπζηάδεηαη θαη 

πεξηγξάθεηαη: Ο ζθνπόο ηνπ είλαη λα δέρεηαη σο είζνδν έλα νπνηνδήπνηε πξόγξακκα 

γξακκέλν ζε C θαη λα ην κεηακνξθώλεη ζε έλα παξάιιειν πξόγξακκα SL. Αξρηθά ε 

έμνδόο ηνπ ήηαλ ε γιώζζα κTC αιιά κε ηελ εκθάληζε ηεο SL ν κεηαθξαζηήο 

πξνζαξκόζηεθε αλάινγα, νπόηε θαη ην όλνκά ηνπ C2κTC/SL. Η βαζηθή δνκή γηα ηελ 

νπνία ελδηαθέξεηαη ν κεηαθξαζηήο είλαη νη βξόρνη κηαο θαη ην κεγαιύηεξν πνζνζηό 

ηνπ ρξόλνπ εθηέιεζεο ζε έλα πξόγξακκα είλαη νη βξόρνη. Δθ’ όζσλ ην SVP δνπιεύεη 

κε νηθνγέλεηεο από λήκαηα πνπ κνηάδνπλ κε κνλνδηάζηαηνπο βξόρνπο, ε κεηαηξνπή 

ελόο νπνηνδήπνηε βξόρνπ ζε νηθνγέλεηα λεκάησλ είλαη έλα ζεκαληηθό βήκα. Γηα ηνλ 

ιόγν απηό, νη βξόρνη ρσξίδνληαη ζε κνλνδηάζηαηνπο θαη πνιπδηάζηαηνπο κε θάζε 
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θαηεγνξία λα ρξεηάδεηαη θαη δηαθνξεηηθή αληηκεηώπηζε όζνλ αθνξά ηελ κεηαηξνπή 

ηνπ θώδηθα πνπ ρξεηάδεηαη. 

 Οη κνλνδηάζηαηνη βξόρνη ρσξίδνληαη πεξαηηέξσ ζε θαηεγνξίεο αλάινγα κε ηηο 

εμαξηήζεηο πνπ βξίζθνληαη ζηνλ βξόρν (loop carried dependencies). Βξόρνη ρσξίο 

εμαξηήζεηο απιά κεηαηξέπνληαη ζε πιήξσο παξάιιειεο νηθνγέλεηεο ελώ νη βξόρνη κε 

εμαξηήζεηο κεηαηξέπνληαη ζε νηθνγέλεηεο πνπ ρξεζηκνπνηνύλ ηα εηδηθά θαλάιηα 

ζπγρξνληζκνύ ηνπ SVP γηα λα κεηαθέξνπλ δεδνκέλα από ηνλ έλα λήκα ζην επόκελν 

κε ηελ κνξθή ηεο ξνήο δεδνκέλσλ (data flow). Απηνύ ηνπ είδνπο ε κεηαηξνπή 

επηηξέπεη ζηα λήκαηα λα έρνπλ ηα δεδνκέλα πνπ ρξεηάδνληαη ρσξίο λα ρξεηάδεηαη λα 

ηα αλαδεηήζνπλ ζηελ θεληξηθή θνηλή κλήκε, πξάγκα «αθξηβό» από άπνςε ρξόλνπ. 

Όηαλ θάζε λήκα ηειεηώζεη ηνλ ππνινγηζκό πνπ ηνπ αλαινγεί, όια ηα ζρεηηθά 

δεδνκέλα κεηαθέξνληαη ζην επόκελν λήκα κέζσ ηνπ εηδηθνύ θαλαιηνύ επηθνηλσλίαο 

ηνπ SVP. Ο ζπλδηαζκόο ηεο εθηέιεζεο παξάιιεισλ ξνώλ δεδνκέλσλ κε ηελ ρξήζε 

ησλ εηδηθώλ θαλαιηώλ επηθνηλσλίαο πξνζθέξεη κεγάιεο απμήζεηο ζηελ 

απνδνηηθόηεηα θαη ζηελ επηηάρπλζε ελόο πξνγξάκκαηνο. 

 Οη πνιπδηάζηαηνη βξόρνη επίζεο ρσξίδνληαη ζε ππνθαηεγνξίεο. Η πξώηε δελ 

πεξηέρεη εμαξηήζεηο θαη θάζε επίπεδν ζηνλ βξόρν κπνξεί λα κεηαηξαπεί ζε κηα 

πιήξσο παξάιιειε νηθνγέλεηα αλαζέηνληαο ζην πεξηβάιινλ εθηέιεζεο ηνπ SVP ηελ 

εμηζνξξόπεζε βάξνπο κεηαμύ ησλ ππξήλσλ ηνπ microgrid. Η δεύηεξε (θαη πην 

ελδηαθέξνπζα) θαηεγνξία πεξηιακβάλεη βξόρνπο πνπ πεξηέρνπλ ζηαηηθέο εμαξηήζεηο. 

Η πξνζέγγηζε ηνπ Lamport κε ηα ππεξεπίπεδα (hyperplanes) ρξεζηκνπνηείηαη ζε 

απηήλ ηελ πεξίπησζε αιιά κε κηα θαηλνηνκία: Αληί λα γίλνπλ νη απαξαίηεηνη 

(δύζθνινη ζε πνιιέο πεξηπηώζεηο) ππνινγηζκνί ζε ρξόλν κεηάθξαζεο, ην πεξηβάιινλ 

εθηέιεζεο αλαιακβάλεη λα εληνπίζεη όια ηα ζηνηρεία πνπ κπνξνύλ λα εθηειεζηνύλ 

παξάιιεια αλά θύθιν εθηέιεζεο αθνινπζώληαο δηαηζζεηηθά ηνλ πίλαθα εμαξηήζεσλ. 

Απηή ε ηδέα νδήγεζε ζηελ δεκηνπξγία ηνπ πξώηνπ καο αιγνξίζκνπ ρξόλνπ 

εθηέιεζεο: Σνλ αιγόξηζκν ζηαζεξνύ κεγέζνπο (Fixed Sized Algorithm). Δίρε ηελ 

δπλαηόηεηα λα εληνπίδεη ηα θξπκκέλα ππεξεπίπεδα ηελ ίδηα ώξα πνπ εθηεινύζε ηνλ 

ίδην ηνλ θώδηθα ηνπ πξνγξάκκαηνο. Ο ρώξνο αλαδήηεζεο ησλ δεηθηώλ ησλ βξόρσλ 

ρσξίδεηαη ζε κεγέζε ζηαζεξνύ κήθνπο θαηά ην πην εζσηεξηθό βξόρν. Ο 

παξαιιειηζκόο επηηπγράλεηαη κεηαμύ ησλ θνκκαηηώλ ζηαζεξνύ κήθνπο ελώ θάζε 

ηκήκα εζσηεξηθά εθηειείηαη ζεηξηαθά. Δλώ ν αιγόξηζκνο δνύιεςε ζσζηά, θαιέο 

επηηαρύλζεηο επηηπγράλνληαλ κόλν εάλ ην ζηαζεξό κήθνο ήηαλ θαηάιιεια επηιεγκέλν 

εθ ησλ πξνηέξσλ, θάηη πξαθηηθά αδύλαηνλ αθνύ θάζε πξόβιεκα έρεη ην δηθό ηνπ 

βέιηηζην κέγεζνο. Απηό ην πξόβιεκα κεηέηξεςε ηνλ αιγόξηζκν ζε έλα θαιό πξώην 

βήκα θαη ζε έλα εξγαιείν γηα ζπγθξίζεηο. 

 Απηή ε αδπλακία ηνπ αιγνξίζκνπ ζηαζεξνύ κεγέζνπο θαιύθζεθε κε ηνλ 

αιγόξηζκν πνπ ππήξμε ν εμειηθηηθόο απόγνλνο ηνπ αξρηθνύ. Σνλ αιγόξηζκν απηό-

κεηαβαιιόκελνπ κεγέζνπο (Self-Adaptive Algorithm). Υξεζηκνπνηώληαο ηηο ίδηεο 

αξρέο κε ηνλ αιγόξηζκνπ ζηαζεξνύ κεγέζνπο, κπνξνύζε ζε ρξόλν εθηέιεζεο λα 

κεηαβάιιεη ην κέγεζνο ηνλ ηκεκάησλ βάζεη θάπνησλ κεηξηθώλ από θύθιν ζε θύθιν. 

 Σα πεηξακαηηθά απνηειέζκαηα δείρλνπλ όηη ν αιγόξηζκνο κεηαβαιιόκελνπ 

κεγέζνπο επηηπγράλεη επηηαρύλζεηο ζρεδόλ ίζεο κε ηα βέιηηζηα απνηειέζκαηα γηα 

απηνύ ηνπ ηύπνπ ηνλ παξαιιειηζκό. Οη αιγόξηζκνη επίζεο ζπγθξίζεθαλ κε κηα 

ηππηθή κέζνδν ρξόλνπ κεηάθξαζεο θαη βξέζεθε όηη ζε θάπνηεο πεξηζηάζεηο ηα 

απνηειέζκαηα είλαη θνληά. Απηό καδί κε ηελ επειημία ηεο κεζόδνπ ηνπ ρξόλνπ 

εθηέιεζεο (π.ρ. αληηκεηώπηζε κε νξζνθαλνληθώλ βξόρσλ) θάλεη ηνλ απηό-

κεηαβαιιόκελν αιγόξηζκν εηδηθά ειθπζηηθό. 
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CHAPTER 1. INTRODUCTION 

 Concurrency in computation is by no means a new concept. It has existed 

since the 1960s and has steadily improved since then. The reason is simple, to speed-

up an application, one either needs a faster CPU, or more than one CPUs sharing the 

computational load. Thusly, concurrent research was an entirely different research 

branch that took place in tandem with traditional CPU research. However, only 

recently has the existence of multiple cores in systems become prevalent. The latest 

generations of PC CPUs carry 2 or 4 or even 6 cores inside them and the trend has 

moved to include smart phones (it is common to see smart phones with 2 or 4 cores), 

tablets and more. It is safe to assume that with the current technology on CPUs 

reaching its limitations that multi-cores will become ever more prevalent in the 

technological world. 

 Programming a parallel system though is much harder than programming a 

sequential one. A coder will either write an application from scratch utilizing some 

parallel library, or will use pre-existing modules that have been proven to work and 

orchestrate them together. Moreover, there is plenty of legacy code in existence that 

was created with only one core in mind. The challenges involved with writing good 

parallel code coupled with the existence of sequential code led to the development of 

automatic parallelizing tools. These tools are compilers that either compile from 

source code to a different parallel source code (source-to-source) or compile to 

parallel binary code directly. Creating such an automatic parallelizing compiler 

though is not without its own challenges and the purpose of this paper is to describe 

such a compiler. 

 Prior to the presentation of our compiler, some general information is firstly 

required: The second chapter offers a small glimpse on the tremendously huge 

research work that has been done on the automatic parallelization area mentioning not 

only techniques and algorithms but whole compiler projects that existed (and some 
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still do). The third chapter offers some insight on some of the loop transformation 

techniques that exist before moving on to the fourth chapter which introduces the SVP 

architecture. 

 The SVP architecture is a novel contribution which describes a new type of 

multi-core system. Each core can carry its own OS as an extension of the instruction 

set and can achieve high memory latency tolerance coupled with low energy needs 

(and thusly low heat emission and distribution). Many SVP cores form a microgrid 

which is capable of offering true parallel execution of code as well as automatic 

resource allocation and graceful degradation when it starts to run out of resources. Its 

novel contribution is the existence of synchronized data channels that can impose an 

order on the execution of threads as well as carry data between threads in a dataflow 

manner. The same chapter also describes the programming language which was 

created specifically for the SVP: The κTC/SL language, an extension of C with added 

constructs that describe concurrency. 

 The fifth chapter presents the C2κTC/SL source-to-source automatic 

parallelizing compiler. A tool capable of reading in a code written in the C language, 

analyzing it to discover any potential for parallelism and finally outputting a different 

program in the SL language which has the same functionality with the original one, 

with the difference that it is faster since it takes advantage of SVP’s mechanisms. 

Each type of loop is described alongside a way to transform it for the best possible 

results. 

 C2κTC/SL’s main contribution though is its approach on the multi-

dimensional loops with static dependency vectors. Borrowing heavily on the 

hyperplane (wavefront) idea, it utilizes a run-time algorithm which discovers the 

underlying hyperplanes. Instead of resorting to heuristic methods or expensive integer 

programming functionality to calculate the hyperplanes, it delegates that discovery to 

the run-time environment. The idea is simple: At any given time, when there is a 

known set of executing threads and a known dependency vector, by applying the 

vector to the set it is possible to find the set of the next computational cycle. It is an 

elegant and intuitive idea that of course became much more convoluted when it was 

actualized as part of the code. 

 Chapter six evaluates the outputs of C2κTC/SL. For each different loop type, 

an example is transformed into SL and then executed and compared with its original 
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form. More interestingly, the efficiency of the run-time algorithm is tested. A 

theoretical target is first calculated for three different examples and then it is proven 

that the run-time algorithm can reach it and even surpass it at some cases. It is also 

compared to some standard compile-time transformation method. The results are 

encouraging enough (as expected the run-time method can never compete against a 

method that lacks all of its overheads but it can get relatively close). 

 Finally, the last chapter (seventh) provides a discussion on everything 

mentioned in the previous chapters as well as a conclusion and general thoughts on 

current as well as future work. 
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CHAPTER 2. RELATED WORK 

2.1. Introduction on Parallel Systems and Threads   

2.2. Developer Tools which Enable Parallel Programming 

2.3. Dependencies and Parallelism Detection 

2.4. The Polyhedral Model and Related Methods 

2.5. General Parallelization and Run-Time Methods 

2.6. Overviews, Surveys, Tutorials and Books on Automatic Parallelization 

2.7. List of Parallelizing Compilers 

 

2.1. Introduction on Parallel Systems and Threads 

 Parallel systems appeared early on in the history of computation. Soon after, 

various types of systems had already existed and many more were on the way. In an 

attempt to classify the ever increasing types of parallel system, Flynn on his work on 

taxonomy [29] separated systems on whether they are Single Instruction or Multiple 

ones i.e. whether there is a single Control Unit (CU) (which can direct Processing 

Elements (PE)) or multiple ones and whether there is a single or Multiple Data 

Streams. The resulting classification can be seen on Table 2.1. 

Table 2.1 Flyn's classification of Parallel Systems. 

 Single Data stream Multiple Data streams 

Single Instruction SISD SIMD 

Multiple Instructions MISD MIMD 
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From that table we can see that Flynn discerned four distinct categories: 

 1. Single Instruction - Single Data (SISD). 

A single controller directs a single Processing element to operate on data from a 

single data stream. All conventional computers fall into this category. 

 2. Single Instruction - Multiple Data (SIMD). 

A single controller directs multiple Processing elements to operate on data from 

multiple data streams. The old Vector computers (a vector is a single dimensional 

array, so a vector computer could operate a single instruction on various parts of the 

array simultaneously) belong to this category as well as the modern GPUs. 

 3. Multiple Instructions - Single Data (MISD). 

This category makes little sense in general. It involves a series of processing elements 

performing calculations on a single data stream. In theory such a system can be used 

for fault tolerance where a series of computers must agree on a result before it can be 

accepted as correct. No computer of this category has ever been created. 

 4. Multiple Instructions - Multiple Data (MIMD). 

This is a rather diverse category of systems. It includes parallel systems with 

processing units and memory systems created especially with parallelism in mind, 

parallel systems built with off-the-shelf computers connected in some form of 

interconnection network and so on. 

 A 5
th

 category was later introduced, the Single Program – Multiple Data 

(SPMD). More a programming style than an actual architecture itself, it became the 

dominant paradigm for parallel programming. The main idea is that a number of 

independent processors execute the same program at different points simultaneously. 

This means that a single computer / processor begins executing the code and at 

particular points in the code, it might spawn a parallel execution of that code. The 

way this programming style is implemented differs depending on whether it is applied 

on a distributed memory system or a shared memory one.   

 A Distributed Memory System is a parallel system consisting of a series of 

independent computers called nodes. Communication and synchronization are 

achieved by message passing over any network such as TCP/IP or Ethernet. A Shared 

Memory System is a computer with a series of CPUs which have access to the same 
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memory space. In such a system, the SPMD is actually a series of directives that mark 

areas of the code as ones that should execute in parallel. Once control reaches these 

points, the rest of the CPUs begin executing the marked code in parallel. 

 The most commonly used parallel construct in a Shared Memory System is the 

Thread. A thread is essentially a part of a program (a procedure or a function) which 

can run independently from the main program. In the presence of more than one 

processors / cores, threads can run simultaneously with the main program. Their 

characteristic is that their creation and destruction are relatively light-weight 

processes (especially when compared with Fork which duplicates the entire 

application) and that large number of threads can exist at any given time with a very 

small footprint on the host Operating System's (OS) resources. However, they are 

anchored to the main application so if the program ceases to exist, so do all threads 

associated with it. Threads share the same address space between themselves and the 

main program so, basically, Multi-Threaded programming, and applications in 

general, can only work on Shared Memory Systems. 

2.2. Developer Tools which Enable Parallel Programming 

 In order to utilize parallelism, there exist various different tools and APIs 

which developers can utilize, depending on their applications and targeted 

architectures. A small (and by no means comprehensive) list of such tools follows: 

 PThreads 

 OpenMP 

 MPI 

 Nvidia's CUDA  

 Intel’s Cilk 

 First and foremost is the lib-pthread library. The API (Application 

Programmer Interface, a set of function / procedure calls that defines how a software 

component interacts with the rest) was composed by IEEE as part of the POSIX 

interface so that all POSIX-compatible OSes could offer the same functionality to 

applications and ease the transitioning of code from one platform to the next. The 

PThread interface offers the developer a multitude of tools with which to implement 

parallel applications (thread management like creating, destroying, detaching threads 
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and so on, mutex functions and condition variables). Figure 2.1 Demonstrates the 

creation of pthreads in the C language. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Using the Pthread Library to Create Threads. 

 OpenMP (Open Multi-Processing) ([67], [68]) is a higher level tool than 

threads (and PThreads) which allows multi-threaded programming in a cross-platform 

way enabling both task parallelism and data parallelism. It can be used with the 

C/C++ languages as well as FORTRAN and its main use is the transformation of 

loops into a series of threads that can produce the same result in a concurrent manner. 

 The programmer is responsible for marking the areas of the program that 

OpenMP will assign into threads using specific macros (in the case of the C/C++ 

languages, #pragma is used to mark code areas). The programmer is also responsible 

for identifying which variables are private, shared or induction ones and which 

variables are reduction variables in order for OpenMP to work properly and offer 

speed-ups to the original code. Once everything has been identified properly, 

#include <pthread.h> 
#include <stdio.h> 
#define NUM_THREADS     5 
 
void *TheadBody(void *id) 
{ 
   int id = (int)threadid; 
   
   printf("thread #%d executing\n", id); 
    
   return NULL; 
} 
 
int main (int argc, char *argv[]) 
{ 
   pthread_t threads[NUM_THREADS]; 
   int result; 
   int t; 
    
   for(t=0; t<NUM_THREADS; t++) 
   { 
      printf("creating thread %d\n", t); 
       
      result =  
  pthread_create(&threads[t], NULL, ThreadBody, (void *)t); 
       
      if (result) 
      { 
         printf("ERROR! return code=%d\n", result); 
         exit(1); 
      } 
   } 
 
   for (t=0;t <NUM_THREADS;i++) 
 pthread_join(threads[t], NULL); 
 
   return (0); 
} 
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OpenMP divides the whole index space of the loop into a number of threads (each 

with each own id) that perform computation in parallel. Once all threads finish 

computation they join with the original program and control moves on. 

 Thread scheduling may also be configured by the programmer as OpenMP 

offers a series of different schedules with the dynamic schedule being the most 

popular, since it allows threads that have finished their part of the computation to pick 

up some of the remaining work that awaits computation. This leads to better load 

balancing at the cost of more expensive setting up and tearing down. The benefit of 

OpenMP is that it offers a higher abstraction level to the programmer alleviating the 

need of handling each thread manually and focusing on the actual idea behind the 

program itself. Another advantage of it is that if the compiler is not an OpenMP 

compatible one, it will just ignore all relevant #pragma directives and just compile the 

program into a classic sequential form. Clearly, as OpenMP is a thread-enabled API, 

its use was originally restricted only to Shared Memory Systems however a 

combination of Message Passing and OpenMP could circumvent this restriction. 

Additionally, extensions on the OpenMP model have allowed its use on non-Shared 

Memory Systems as-is.  

 Figure 2.2. shows a typical example of an OpenMP-enabled source code. It 

applies an iterative method for the computation of the value of pi. It is worth noting 

that the variable “sum” was declared as a reduction one (a summation variable) which 

caused the system to adapt accordingly and add all the values in parallel. 

 For the sake of completeness, MPI, CUDA / OpenCL and Cilk are also 

mentioned, as they are important parallelization tools. MPI (Message Passing 

Interface) [69] is an API that allows the programmer to transform any network of 

computers into a parallel Distributed Memory System. With MPI a programmer can 

divide a problem in smaller ones, scatter the data over the network to each computer 

for computation and then gather back the results from for the final result. 

 The clear advantage of MPI is that it provides an inexpensive way to perform 

complex computations quickly and easily without requiring any sort of shared 

memory between processors. Of course due to the fact that it relies on an 

interconnection network (such as Ethernet) as a data transfer medium, this means that 

it will get quite slowed down. In classic network cases (i.e. not ultra low latency ones) 
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the only way to offset the slow data transfer is to resort to coarse grain parallelism 

when working with MPI. Working on a purely distributed system where each CPU 

has access only on its own part of the data means that MPI is better suited for 

problems which can be divided cleanly and without any dependencies hidden in the 

loop. This makes MPI ideal for data parallel programs but inadequate to deal with 

task-based parallelism. Figure 2.3. shows a simple MPI program which calculates the 

value of pi over a network. 

 CUDA [70] is a relatively new (since 2007) tool for parallel computations. 

The main idea is that it opens the GPU of any system (which so far had been used 

only for graphics related calculations) to the programmer for general programming. 

GPUs support thousands of concurrent threads running simultaneously and by 

exploiting that any application can become an order of magnitude faster. The CUDA 

platform exists in various forms: from a series of libraries and compiler directives, to 

extensions of industry-standard languages like C/C++, FORTRAN and more. Due to 

the nature of a GPU (usually a SIMD machine), it is better suited for data parallel 

applications. 

 

 

 

 

 

Figure 2.2. Using OpenMP to Calculate the Value of pi in Parallel. Letters in Bold 

Indicate where the Computation Takes Place. 

 

 

 

 

#include <stdio.h> 
#include "omp.h" 
double f(double a) {return (4.0 / (1.0 + a*a));} 
int main ( int argc, char **argv ) { 
        int i,n=1000000; 
        double sum= 0.0, x, h, mypi; 
        int chunk; 
        h   = 1.0 / (double) n; 
        chunk=n/4; 
#pragma omp parallel private(i,x) shared(sum,n,h) 
{ 
        #pragma omp for schedule(runtime) reduction(+:sum) 
        for (i=1;i<=n;i++) { 
                x=h*((double)i-0.5); 
                sum=sum+f(x);} 
} 
        mypi = h * sum; 
        printf("pi=%f\n",mypi); 
        return (0); 
} 
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Figure 2.3. Using MPI to Calculate the Value of PI in Parallel. Letters in Bold 

Indicate MPI-specific Directives. 

 Finally, Cilk [71] is a general-purpose programming toolset containing the 

Cilk programming language and a runtime environment. It was originally developed 

in MIT and was later acquired by Intel. Its driving principle is that the programmer is 

responsible for exposing the parallelism in her code, identifying which parts can be 

fully parallelized. In turn, the runtime environment handles everything from 

delegating the work to any available processor/core to load balancing and scheduling. 

This attributes Cilk programs with the “compile once, run anywhere” capability. The 

language itself is a superset of C which supports the entire C language specification 

extended by a few keywords that offer the necessary functionality. Load balancing is 

achieved by a system of “work-stealing”: Each idle processor can attempt to “steal” a 

#include "mpi.h" 
#include <stdio.h> 
#include <math.h> 
double f(double a) { 
    return (4.0 / (1.0 + a*a)); 
} 
int main(int argc, char *argv[]) 
{ 
    int done = 0, n=0, myid, numprocs, i; 
    double PI25DT = 3.141592653589793238462643; 
    double mypi, pi, h, sum, x; 
    int  namelen; 
    char processor_name[MPI_MAX_PROCESSOR_NAME]; 
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
    MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
    MPI_Get_processor_name(processor_name,&namelen); 
    while (!done) 
    { 
        if (myid == 0) 
            if (n==0) n=100; else n=0; 
        MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
        if (n == 0) done = 1; 
        else 
        { 
            h   = 1.0 / (double) n; 
            sum = 0.0; 
            for (i = myid + 1; i <= n; i += numprocs) 
            { 
                x = h * ((double)i - 0.5); 
                sum += f(x); 
            } 
            mypi = h * sum; 
             MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 
                 0, MPI_COMM_WORLD); 
        } 
    } 
    MPI_Finalize(); 
    return 0; 
} 



11 

 

 

piece of workload in a queue of a non-idle processor through the scheduler. Since the 

package can be stolen from the end of the queue, it would be the last piece of load that 

its original owner would have to work on. 

2.3. Dependencies and Parallelism Detection 

 The tools mentioned so far are the ones most commonly used when it comes to 

making an application which exploits hardware parallelization. However they are too 

low-level in their abstraction level and require the developers themselves to know 

when and how to properly use them. Automatic Parallelization solves that problem 

but it requires a different set of actions. 

 The first step to automatic parallelization is the examination and analysis of 

the source code of the application in question. The analysis will decide whether the 

code can be executed in parallel or not. Most of the analyzer techniques and tools 

focus solely on loops (for reasons that will be later described) and whether or not they 

carry dependencies. 

 A dependency between two statements (S1 and S2) in a code exists when both 

statements access the same memory location. Four types of dependencies exist: (i) 

Flow Dependency: S2 is flow dependent on S1 when S1 writes to a memory location 

which is later read by S2. (ii) Anti Dependency: S2 is anti dependent on S1 when S1 

reads the value of a memory location which is later written by S2. (iii) Output 

Dependency: S2 is output dependent on  S1 when S1 writes a value to a memory 

location which is later re-written by S2. (iv) Input Dependency: S2 is input dependent 

on S1 when S1 reads the value of a memory location which is later re-read by S2. 

 From all these types, Anti, Output and Input are not real dependencies and can 

be removed with various techniques that will presented later on. Dependencies that 

exist inside a loop but between statements of different index instances are called Loop 

Carried Dependencies. Dependencies that exist inside the same loop iteration are 

called Loop Independent Dependencies because they do not affect the re-ordering of 

the loop iterations in any way. 

 The existence of a dependency effectively imposes an order in the execution 

scheme of the loop statements (and iterations accordingly). Since an ordering exists, it 

becomes harder or even impossible to parallelize a loop with dependencies. The 
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ordering of a loop carried dependency on a loop can be seen by unrolling the loop. All 

statements need to be executed in the precise order that the dependencies allow. 

 Because of the existence of such dependencies, parallelizing compilers apply a 

series of tests on the statements of the loop in order to deduce whether the loop can be 

fully parallelized or not. These tests usually rely on array subscript accesses and can 

be either certain that there are no dependencies and hence the compiler can proceed to 

fully parallelizing the loop or be uncertain and thusly most compilers would just leave 

the loop intact. Since an array index can be any expression, usually the simple 

expressions in the form of c1*i+c2 are examined where c1 and c2 are constants. More 

complex expressions usually classify a loop as non-parallelizable. A random loop may 

contain statements which access an array in the following style: 

Array[c1*i1+c2]=… 

…=Array[c3*i2+c4] 

 A dependency will exist if c1*i1+c2=c3*i2+c4 or c1*i1-c3*i2=c4-c2. As with 

any Diophantine equation, if the Greater Common Divisor (GCD) of (c1, c3) divides 

(c4-c2) then the equation has a solution and hence a dependency exists. Hence the 

GCD test can safely reply that there is no dependency when the GCD of the left-hand 

side of the equation does not divide the right-hand side of it for every equation in the 

loop. 

 However the usual case has it that the left-hand side GCD equals to 1 which 

will always divide the right-hand side and hence its reply will be that there might be a 

dependency. Hence other tests came to existence to cover for this weakness. The 

extreme value test calculates the minimum and maximum possible values of the left-

hand side of the dependency equation and compares it to the right-hand side. If the 

maximum value of the right-hand side is greater than the maximum of the left-hand 

side or if its minimum value is lesser than the minimum value of the left-hand side 

then there are no dependencies. A combination of the Extreme Value test and the 

GCD usually provide satisfactory results. 

 Another classic dependency analysis test is the Omega Test [56]. It uses the 

Diophantine equation to create an linear programming problem and then attempts to 

solve it quickly by applying Fourier-Motzkin Elimination. Even though at its worst 

case it completes in an exponential time, at most real life programs it finishes quickly 
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at a polynomial time.  Other tests include the Lambda test [30] (an increased-precision 

form of the Extreme Value test), the I test [43] (a combination of the GCD and 

Extreme Value tests but more precise than the application of the two tests 

individually) the Generalized GCD test, built on Gaussian Elimination (adapted for 

integers) and the Power Test [64] (first uses the Generalized GCD test then it uses 

constraints derived from the program to determine lower and upper bounds on the free 

variables of the parameterized solution. Fourier-Motzkin elimination is used to 

combine the constraints of the program for this purpose) 

 There exist more methods for the detection of inherent parallelism. In [12] the 

authors approach actual real life complex programs and propose symbolic analysis in 

order to make conclusions about the code. Symbolic analysis, in general, relies on 

scanning all the statements of the code and for each statement mentioned information 

is kept about the potential values of all the involved variables. These value ranges can 

then be used to make deductions about various aspects of the code including array 

accesses and parallelism. Using symbolic analysis, the Range Test [18] extends the 

Extreme Value Test to support symbolic and non-linear array subscript expressions. 

In a similar manner, the same kind of analysis is used on [35] in order to discover 

parallelism that can be exploited between procedure calls. 

 Most of the tests (and especially symbolic analysis) rely on statically defined 

variables and their interactions in the code. In [49] the authors innovate by checking 

for the existence of heap based variables and data structures. Examples include linked 

lists, binary trees, heaps and so on. A methodology is presented where the algorithm 

tries to detect the shape of the dynamic structure and depending on that, determine 

what kind of dependencies exist in that structure. 

 Finally, loops which carry loop carried dependencies are examined in [25]. A 

dependency can be seen as a distance between loop iterations. These distances 

between array accesses form a vector. All the vectors are grouped together in a set 

called distance or dependency vector. If the distances are of a constant size throughout 

the computation then some degree of parallelism is possible as we will discuss later. 

The authors of this paper not only detect the possibility of the existence of hidden 

parallelism but also define the granularity that must be used for better results. 
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2.4. The Polyhedral Model and Related Methods 

 As mentioned in the previous paragraph, early automatic parallelizing 

compilers would operate on a black or white state. If there were no dependencies 

detected inside a loop, then the loop would be fully parallelized in various forms 

depending on the architecture. However, the existence of any dependency would 

signal the compiler to leave the loop completely intact and move on.  

 Lamport with his work on the Polyhedral model [46], introduced a 

methodology according to which a perfectly nested loop with a static dependency 

vector could be transformed into an equivalent loop whose innermost dimension 

could be fully executed in parallel. In this manner, even though it would be 

impossible to gain full parallelism, some partial form of it would still be exposed and 

exploited. If the whole index space of the loop is visualized in N dimensions then it is 

bound by a polyhedron and through transformations it is possible to have a series of 

hyperplanes move through that polyhedron. Each index set that belongs to a certain 

hyperplane is independent from the rest of the index sets on the same hyperplane. 

Since the hyperplanes resemble a wave moving through the data, this method is also 

referenced as the wavefront model. More information on the wavefront transformation 

can be found in Chapter 3. 

 In [65] the writers propose a unified transformation model that is based on 

matrices. Matrix transformations are an intuitive method that can be applied to nested 

loops and offer a variety of results according to the current needs. A special form of 

such a matrix is the unimodular matrix (a matrix whose determinant is equal to 1 or -1 

composed of integers) and in that paper these matrices are the basis of the unified 

model proposed. Their technique can also be applied to general nested loops where 

the dependencies not only form a static dependency vector but also a more general 

direction vector (the distances are variable and only the directions are known). The 

use of unimodular matrices has also been proposed by [48]. In that paper an algorithm 

based on unimodular transformations is proposed which maximizes parallelism and 

minimizes communications while at the same time keeping a minimum degree of 

synchronizations in programs with arbitrary loop nests. 

 A general automatic source-to-source framework based on the polyhedral 

model that can optimize programs (even sequences of possibly imperfectly nested 
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loops) for parallelism and locality is introduced in [21]. This is achieved by the use of 

integer linear optimizations which aim to detect good tiling schemes that lead to better 

locality. Locality is important since it allows for better cache utilization and a great 

boost in efficiency overall. A similar methodology is described in [20], where an 

algorithm is described which can calculate hyperplanes of tiles in a sequence of 

arbitrarily nested loops which minimize communication and improve on data locality. 

 Finally, a framework that incorporates a series of methods and which is able to 

utilize a variety of functions including non-uniform and even non-unimodular 

transformations is proposed in [14]. In addition to the suggested framework, a series 

of improvements on existing algorithms are proposed. 

2.5. General Parallelization and Run-Time Methods 

 It goes without saying that not all automatic parallelizing compilers and 

techniques in general are based on the polyhedral model. In [60] a technique is used 

for automatic array privatization. Array privatization is the analogue of scalar data 

privatization presented in Chapter 3. If it is safe to do so, an entire array can be copied 

to a thread’s local memory for local accesses. Each concurrent thread has its own 

version of the array. Not only this technique can help increase efficiency but it also 

helps to remove false dependencies. Array privatization is an important part of any 

array access analysis and it enables the full parallelization of a loop and is especially 

useful for vector and super scalar machines. In the current paper, data flow analysis is 

used to identify privatizable arrays inside and between procedure calls. On the subject 

of vector machines, [1] introduces a method where dependency analysis is used in 

FORTRAN loops in order to transform them into parallel constructs which can be 

executed by vector machines for better data parallelism. 

 A compiler is proposed in [4] which not only applies a series of 

transformations on programs with the intent to minimize synchronization and data 

sharing but is also capable of re-arranging parts of an array and its layout in order to 

improve data locality and increase efficiency of the memory subsystem. An algorithm 

is also suggested in [5] which optimizes parallelism and data locality at the same time, 

but its novelty lies with the fact that the algorithm can target both shared memory 

systems and distributed memory ones. 
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 The majority of analyses on loops would not try to tackle loops which 

contained procedure calls. The need to deal with function/procedure calls from the 

inside of a piece of code in question gave birth to interprocedural analysis and 

transformations. Such an analysis tries to apply the side effects of the procedure on 

the resulting call in order to help expose parallelism to the code in question. The most 

common interprocedural transformation is procedural inlining which substitutes the 

procedures code into the place of the call. 

 In [33] the authors suggest a methodology, according to which, two different 

kinds of interprocedural transformations are applied to loops which contain procedure 

calls (something that the original hyperplane method cannot deal with, since it 

requires that any function / procedure call must not alter data in any way, in other 

words, contain no side effects) for parallel code generation. Perfectly nested loops are 

also the main research target of [15] but its purpose is to use linear transformations for 

the parallelization of loops with no uniform dependencies.  

 Finally in [6] interprocedural analysis is used to determine the shape of 

dynamic data structures based on the heap and its subsequent parallelization while 

instruction level parallelism is the focus of [61]. It is an idea that any parallelizing 

compiler can use in theory, since it can be applied to any statement, inside and outside 

of loops. The aforementioned paper examines the limits of instruction level 

parallelism as well as the amount of said parallelism that exists inside a typical 

program. 

 There is also an entirely different category of methodologies for automatic 

parallelization. It incorporates the run-time environment into the solution of the 

problem. It is a bold and novel way of approaching this problem since the run-time 

environment by definition contains a lot more information that can be used. The 

methods that belong to this category usually gather enough information and perform 

some computation during compile time but the rest is delegated to the actual 

execution of the application. 

 [13] proposes such a solution. According to the authors, an automatic 

parallelization method is proposed which is split in two parts. The first part takes 

place during compilation and it generates code which will enable dependency 

detection between tiles at run time. At run time, execution of the generated code takes 
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place alongside the second part of the method which is responsible for proper load 

balancing between cores in order to improve scalability. Similar to that method is 

[57], where two pieces of code are generated during compile time. During execution, 

the first piece of code can be executed fully in parallel as it follows the dependencies’ 

access patterns and the second schedules the execution of the threads. Array 

privatization and reduction are also applied in that method. Likewise in [59] there is 

an attempt to solve the problem by exploiting the run-time environment. Its main 

difference is that it is aimed at FORTRAN programs and that it proposes a different 

loop structure altogether: the “DoConsider”. DoConsider encapsulates a number of 

transformations that can expose hidden parallelism in a loop with dependencies. 

Predominant is the wavefront transformation yet other topological methods are also 

used. In compile time a dependene analysis framework is created which is executed at 

the start of the code. During run time, both analysis / transformation and load 

balancing take place. 

2.6. Overviews, Surveys, Tutorials and Books on Automatic Parallelization 

 Since automatic parallelization tools have been around for a very long time, 

there is a lot of experience and expertise gathered on the subject. A series of 

overviews and tutorials exist that describe various methods and aspects of automatic 

parallelization for any architecture or programming language and paradigm. 

 The authors of [50] mostly focus on FORTRAN and discuss many common 

and uncommon traits a parallelizing compiler must have in order to efficiently 

generate parallel code for vector and multiprocessor systems. Standard compiler 

techniques are also examined and related to / compared with their corresponding 

parallelizing ones. 

 A survey on automatic parallelization techniques which covers a broad range 

from dependency analysis to program / loop transformations is the main subject of 

[12]. It even goes into the parallelization of recursive functions and ends up with an 

experimental study on the efficiency of several parallelizing compilers. 

 In [7] the authors present a comprehensive study on all the important 

parallelization techniques for C and FORTRAN. Each transformation is covered in 

depth, its purpose is clearly explained and examples are given for its applications on 
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various types of parallel (or even sequential) architectures. Tests on legality of each 

transformation are also explained and applied. 

 Dependency analysis is the interest of [37], both on whether dependencies do 

exist and if they do, which is the resulting direction vector. Various concepts are 

considered based on the dependency vectors that might exist, while computation on 

parallel, vector and serial DO loops (FORTRAN) is covered. Several transformation 

examples where data dependency analysis is required are given such as vectorization, 

concurrentization, scalarization, loop interchanging and loop fusion.  

 The writers of [45] present an overview in the form of a tutorial on the 

restructuring of sequential programs so as for them to have increased efficiency in 

parallel machines. Work (either previous or at that time current) on the 

transformations and partitioning of loop structures and data is presented. These 

transformations aim to improve parallelism, data locality and load balance. Finally a 

unified parallelizing framework is suggested by the authors. 

 The authors’ aim in [39] is two-fold. At first, a comprehensive overview is 

given on parallelizing algorithms. Each algorithm is exhaustively analyzed, from the 

type of internal representation it uses to store the dependencies, to the code they 

generate and their optimizing criteria (for example if each algorithm aims for 

maximum parallelism, or minimal communication or even ease of code generation). 

The second part covers a discussion on a particular class of multi-dimensional 

schedule referred as shifted linear schedules and that algorithms based on that produce 

simpler code. 

 Finishing with the various surveys and overviews two more need to be 

mentioned. An early work on researching and documenting techniques on the 

parallelization of FORTRAN loops that contain dependencies is presented in [54]. 

Those techniques aim to transform loops in DOALL and DOACROSS forms while in 

[41] a rather comprehensive survey on a multitude of techniques that exist and used 

by parallelizing and vectorizing compilers is presented. In addition to all the 

aforementioned papers, there exist a series of books on automatic parallelization and 

associated compilers. [31], [9], [44], [63], [3], [10], [2], [26] and [66] is just a small 

sample of the work on this particular subject. 
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2.7. List of Parallelizing Compilers 

 This chapter will finish by listing a few well-known automatic parallelizing 

compilers. First in the list is the OSCAR compiler [34], [36]. OSCAR tries to exploit 

parallelism in multiple levels. It starts with parallelism existing between procedure 

calls, moves to loops, basic blocks and finally attempts to exploit the finest grain of 

parallelism possible by attempting to parallelize on a per-statement basis (instruction 

level parallelism). OSCAR consists of three parts. The first is the FORTRAN frontend 

which translates code to some internal representation (IR), then the middle part where 

all parallelizing transformations take place and finally there exist a series of backends, 

one for each target architecture. The range of various architectures is quite large as it 

encompasses SMP systems that use OpenMP, Clusters that support MPI and even the 

on-chip multiprocessor called OSCAR. 

 OSCAR decomposes a source program into three kinds of grain tasks namely 

MacroTasks(MTs) such as the Block of Pseudo Assignment statements (BPA), the 

Repetition Block (RB) and the Subroutine Block (SB). A BPA is defined as an 

ordinary basic block. However, a basic block is decomposed into several BPAs to 

extract larger parallelism when that basic block includes independent blocks. The 

compiler builds a Macro Flow Graph (MFG) which represents control flow among 

MTs. Next it analyzes the Earliest Executable Condition of each MacroTask to find 

maximum parallelism from a MFG. The Earliest Executable Condition for a MT 

represents a condition under which the MT can begin execution. 

 If a macro-task graph has only data dependencies and is deterministic, static 

scheduling is selected. In the static scheduling, an assignment of macro-tasks to 

threads is determined at compile time by the scheduler in the compiler. If a macro-

task graph has control dependencies, the dynamic scheduling is selected to handle 

runtime uncertainties like conditional branches. The scheduling routines for the 

dynamic scheduling are generated by the compiler and inserted into a parallelized 

program with macro-task code. OSCAR also supports mechanisms for the reduction 

of Cache Conflict Misses. 

 The PROMIS compiler [23], [58] is multilingual, retargeting, parallelizing 

compiler. Again it is based on an internal representation (called Unified Internal 

Representation - UIR) but instead of opting for modular front-ends and back-ends, 
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both are integrated into the system. The designers made this choice because, at the 

time, modular systems lacked the ability to store and propagate dependency 

information. PROMIS exploits multiple levels of parallelism ranging from task-based 

parallelism, to loop level, to instruction level based on the target architecture. It relies 

on symbolic analysis which is further refined and augmented by pointer analysis for 

better results. Many standard optimization techniques are applied in the middle stage 

such as array privatization. 

 The frontend and backend operate on the same internal representation which 

maintains all vital program structures and provides a robust interface to users. The IR 

structures are semantic entities rather than syntactic constructs. It is based on the 

Hierarchical Task Graph (HTG) which is a hierarchical control flow graph overlaid 

with hierarchical data and dependency graphs. In the HTG hierarchical nodes capture 

the hierarchy of program statements and hierarchical dependency edges represent the 

dependency structure between tasks at the corresponding level of hierarchy. Therefore 

parallelism can be exploited at each level of the HTG: between statements, blocks of 

statements, blocks of blocks of statements and so on. The entire IR framework 

consists of the following: Symbol Table, Expression Trees, Control Flow Edges, 

Control Dependency Edges, Data Dependency Edges, Hierarchical Task Graphs and 

Call Graphs. 

 PROMIS aims at generating high performance code for the mainstream 

imperative programming languages such as C, C++ and FORTRAN. The IR 

represents a subset of the union of the language features of C++, FORTRAN and 

Java. This subset includes assignments, function calls, multi-dimensional array 

accesses and pointers arithmetic. Stack-based Java bytecode is translated into register-

based statements and is applied with language independent analyses and 

optimizations. For example, exception detection code can be eliminated as deadcode 

if the compiler can prove the lack of exception. Such proof usually involves 

evaluation of symbolic expressions. If all catch blocks of a try block are eliminated 

the compiler may be able to convert the try block into a normal block. 

 The UIR propagates vital dependency information obtained in the frontend to 

the backend. Statements are represented as HTG nodes. During the construction of the 

HUIR (Higher UIR), expression trees are normalized to have a single side effect per 
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statement. Function calls and assignments to pointer dereferences are identified and 

isolated as separate statements. During IR lowering (from HUIR to LUIR – Lower 

UIR), complex expression trees are broken down to collections of simple expression 

trees, each of which is similar to quadruples. Data dependency information is 

maintained and propagated throughout the lowering process. 

 Symbolic analysis is performed via symbolic interpretation. Values (or ranges 

of values) for each variable are maintained by the interpreter in environments. These 

environments are propagated to each statement. Each statement is interpreted and its 

side effects are computed. These side effects are applied to the incoming environment 

of a statement resulting in new versions for the affected variables. Successive 

application of these side effects simulates the execution of the program. Pointer 

analysis is performed during interpretation. 

 Interprocedural analysis seamlessly integrates into the symbolic analysis 

framework. When a function call is encountered by the interpreter, its side effects are 

calculated and applied to the incoming environment, like any other expression. Once 

calculated, the side effects of a function call can be saved for subsequent 

interpretations. Several optimizations have been re-engineered within the symbolic 

analysis framework such as strength reduction, static performance analysis, induction 

variable elimination, symbolic dependency analysis and array privatization. Other 

techniques include constant propagation, dead code elimination and available 

expression analysis. The machine independent phase includes classical optimizations 

such as common sub expression elimination, copy propagation and strength reduction. 

 The Cetus Compiler Infrastructure [47], [8], [41], although not a full 

parallelizing compiler per se, is still a very helpful platform that can be easily molded 

into any kind of compiler the programmer wants. The Symbolic Manipulation 

provided includes the following techniques: 

 

 1 + 2*a + 4 – a => 5+a  (folding) 

 a*(b + c)  => a*b + a*c (distribution) 

 (a*2) / (8*c) => a / (4*c) (division) 

 (1-a)<(b+2)  => (1+a+b)>0 (normalization) 

 a && 0 && b => 0  (short-circuit evaluation) 
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 Cetus’ symbol table functionality provides information about identifiers and 

data types. Its implementation makes direct use of the information stored in 

declaration statements stored in the IR. There is no separate and redundant table 

storage. Cetus also provides data dependency analysis and tests: The framework 

identifies eligible loops. Eligibility currently defines the scope of dependency testing 

in Cetus. For example, it can handle perfectly nested loops and loops in the form for 

(i=lb;i<ub;i++) (canonical form loops). Loop information (such as loop bounds, loop 

step and enclosing loops) and array access-related information (such as array 

references, enclosing loops and parent statements) is collected in data structures and 

provided as input to the dependency test interface. The tests try to disprove 

dependency between a pair of array accesses and if unable to do so return a 

dependency vector representing the direction of dependency in each dimension of the 

iteration space spanned by the enclosing loop nest. Tests can be expanded to use 

standard tests like the GCD. The output of testing is a Dependency Graph (DG). 

 Cetus’ Basic Parallelizing Transformation Passes include privatization, 

reduction variable recognition and induction variable substitution. Cetus also includes 

an automatic OpenMP to CUDA GPU translator and optimization techniques. It 

includes systems for dynamically adaptive applications which target MPI-based 

distributed irregular applications as well. More features include: 

 Debugging aids: Cetus provides basic debugging support through the Java 

language which contains exceptions and assertions as built-in features. Cetus 

executes within a Java virtual machine so a full stack trace including source 

line numbers is available whenever an exception is caught or the compiler 

terminates abnormally. 

 Readability of the Transformed Code 

 Expression Simplifier 

 Parallel Parsing: Use of Java threads to parse and generate IR for several input 

files at once. 

 Detecting loop-carried dependencies in programs with dynamic data structures 
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 Pointer analysis has also received significant attention. It can be divided into 

two distinct sub problems: stack-directed analysis and heap-directed analysis. The 

heap is represented as a storage shape graph and the analysis tries to capture some 

shape properties of the heap data structures. This type of analysis is called shape 

analysis and can help in detecting data dependencies induced by heap-directed 

pointers on loops that access pointer-based dynamic data structures, particularly in the 

detection of the loop-carried dependencies that may arise between the statements in 

two iterations of the loop. Shape analysis maintains topological information of the 

connections among the different nodes (memory locations) in the data structure. This 

representation provides a more accurate description of the memory locations reached 

when a statement is executed. The novelty is that this approach symbolically 

interprets the statements of the loop being analyzed and allows annotation in the real 

memory locations reached by each statement with read/write information. 

 Before the analysis the programs have to be preprocessed in order to 

normalize the pointer statements. That is, each statement dealing with pointers must 

contain only simple access paths each of which has the form p->field where p is a 

pointer variable and field is a field name. The following six simple instructions are 

considered: 

 x = NULL 

 x = malloc 

 x =y 

 x-> field = NULL 

 x->field = y 

 x=y->field 

 

 Basically the analysis is based on approximating by graphs (named Reference 

Shape Graphs – RSGs) all possible memory configurations that can appear after the 

execution of a statement in the code. Memory configuration means a collection of 

dynamic structures. Two statements in a loop induce a loop carried dependency 

(LCD) if a memory location accessed by one statement in a given iteration is accessed 

by the other statement in a future iteration with one of the accesses being a write 

access. 
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 The POLARIS compiler [19], [55], [28] is a parallelizing compiler which uses 

FORTRAN codes as input and outputs FORTRAN code augmented with parallel 

directives. The main idea behind its design was the creation of a strong IR which 

would not allow any kind of error to exist and propagate to the output. Thusly the 

programmer is prevented from violating any rules and leaving the IR at an invalid or 

incorrect state. For that reason the IR contained not only static information but also 

data and data ownership information as well. Several transformation techniques are 

used such as inlining, induction variable elimination, symbolic dependency analysis, 

array privatization and even a framework exists for run-time analysis. 

 The SUIF (Stanford University Intermediate Format) Compiler system [32], 

[62] was originally designed to be a platform for research on high performance 

computing techniques on compilers. It is capable of producing code for multi-

processors by detecting a coarse enough granularity size, ideal to be used for 

parallelization. Moreover, SUIF is equipped with a series of standard compiler 

techniques such as data dependency analysis, scalar and array privatization, reduction 

and induction variable elimination. In addition it employs basic data dependency tests 

on arrays to test whether two accesses are referring to the same location. 

 Interprocedural analysis is not actualized by the use of inlining but instead by 

analyzing the side effects of a procedure and then applying them to every statement in 

the code which calls that procedure. When the context differs, then a clone of that 

procedure is inlined and analyzed for further use. There is also a memory optimization 

module which allocates data in memory in continuous positions for shared memory 

systems. This improves data locality and cache usage while reducing false sharing. 

 Pluto [20], [21] is a source-to-source, automatic parallelization framework that 

uses the polyhedral model. It can transform arbitrarily nested loops with affine 

dependencies (defined as affine expressions of the indices and their coefficients) in 

such a manner where optimizations on locality and parallelism take place 

simultaneously. The approach aims at finding good hyperplanes (tiled) by applying 

integer programming with a cost function the authors developed. It has been 

assembled by a series of pre-existing tools such as CLooG (polyhedral scanning and 

code generator tool), Piplib (integer programming solver) and Polylib (a library that 

operates on objects made of unions of polyhedral) which were assembled together 
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with the authors’ cost function in order to produce very efficient results. Code output 

can be either in OpenMP or CUDA. 

 Finally for the sake of completeness some lesser-known compilers will be 

briefly mentioned. Parafrase-2 [51], [52] is a parallelizing / vectorizing source-to-

source code restructurer. It incorporates a series of analyses such as dependency 

analysis, overhead analysis and automatic scheduling. The renewed Paraphrase 

project was a system of code/design patterns. Each pattern would express high-level 

parallelism and had the ability to be refactored / redeployed in various heterogeneous 

hardware pools (a pool can have many different processing elements at each 

architecture). More information (with a list of papers on that project) can be found in 

[72]. 

 The PARADIGM [11] compiler is a parallelizing compiler that targets 

multiprocessors that work with some form of message passing system (such as MPI). 

The compiler takes as input FORTRAN code and generates FORTRAN code 

augmented with message passing structures. PARADIGM employs a series of tools 

such data partitioning, communication costs estimation, exploitation of task and data 

parallelism and automatic support for multithreaded execution. 

 The ParaScope Programming Environment [24] is a parallel programming 

environment which incorporates the tools needed by researchers to create and debug 

parallel applications. It offers a parallel program editor, a compilation system and a 

parallel debugger. The editor assists the programmer by offering a series of analyses 

and interactive program transformations while the debugger uses run-time methods to 

detect and report timing-related errors. 

 Lastly, OMPi [27] is a lightweight, open source OpenMP compiler and 

runtime system for C, conforming to version 3.0 of the specifications. It takes C 

source code augmented with OpenMP #pragmas and produces transformed 

multithreaded C code, which can be compiled by the native compiler of the system. 

An optimized library has also been created which provides efficient runtime support. 

That library is linked against the program executable during compilation. 
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CHAPTER 3. LOOP TRANSFORMATIONS 

3.1. Data Dependencies and the Polyhedral Representation 

3.2. Loop Transformations 

3.1. Data Dependencies and the Polyhedral Representation 

 In this chapter some of the most common loop transformations and 

restructuring methods will be presented. Most of the information presented in the 

entire chapter can also be found in more detail in [45] and [41]. 

 Firstly a definition of dependency is needed. A dependency between two 

statements in the code exists when both statements access (by assigning a value or by 

referencing the value of) the same memory location (variable). According to that 

definition, four different types of dependencies can exist: 

 

1. Flow Dependency. A Statement S2 is flow dependent on Statement S1 when 

S1 assigns a value to a variable which is later referenced by S2. It is also 

called a “WRITE before READ” dependency and is characterized as true 

dependency. 

2. Anti Dependency. A Statement S2 is anti dependent on Statement S1 when S1 

references the value of a variable which is later assigned by S2. It is also 

called a “READ before WRITE” dependency. 

3.  Output Dependency. A Statement S2 is output dependent on Statement S1 

when S1 assigns a value to a variable which is later reassigned by S2. It is also 

called a “WRITE before WRITE” dependency. 

4. Input Dependency. A Statement S2 is input dependent on Statement S1 when 

S1 references the value of a variable which is later referenced by S2. It is also 

called a “READ before READ” dependency. 
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 It is obvious that from all the mentioned dependencies, Anti, Output and Input 

are not real dependencies and there are ways for them to be removed from code as 

will be later demonstrated. Generally, a (true) data dependency between two 

statements defines their execution order. Even after all the transformations and 

restructuring, those statements must still be executed in the original order as indicated 

by the dependency. 

 Dependencies that exist inside a loop but between statements of different 

index instances are called Loop Carried Dependencies. These kinds of dependencies 

can be made clear by completely unrolling the loop. Dependencies that exist inside 

the same loop iteration are called Loop Independent Dependencies because they do 

not affect the transformation of the loop in any way. 

 Let us consider a typical perfectly nested loop like the one presented in Figure 

3.1. We can see that for a nesting level of n there exist n indices (i1, i2, …, in), each 

one with its own lower (L1, L2, …, Ln) and upper bound (U1, U2, …, Un). These 

bounds can be a function of all the previous indices. So each for each ik in the index 

space, there exist these inequalities: 𝐿𝑘 𝑖1, 𝑖2, … , 𝑖𝑘−1 ≤  𝑖𝑘 ≤  𝑈𝑘  (𝑖1, 𝑖2, … , 𝑖𝑘−1), 

where 1 ≤ k ≤ n. The vector I which contains all those in I={i1, i2, …, in} is the 

iteration space. 

 

 

 

 

 

Figure 3.1. A Perfectly Nested Loop in C. Unit Stride of 1 is Assumed. 

 There is another way to represent the problem: If we consider two n x 1 

matrices, L and U that contain the lower and upper bounds respectively and the n x 1 

matrix I which contains the indices of the loop, then we can construct 2 more matrices 

SL and SU in such a manner that SL * I >= L and SU * I <= U. SL is a lower triangular 

matrix and SU is an upper triangular one. The second inequality can also be written as 

for (i1= L1 ; i1 <= U1 ; i1++) 

 for (i2= L2(i1) ; i2 <= U2(i1) ; i2++) 

                  . . .  

         for (in= Ln(i1, i2. …, in-1) ; in <= Un(i1, i2, …, in-1) ; in++) 

                  Statements (i1, i2, …, in); 
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-SU * I >= -U. A typical example of such matrices is the identity matrix. The entire set 

(SL, -SU, L, -U) is the polyhedral representation of the entire nested loop. 

 Considering a d-dimensional array A, two index instances i1 and i2 and two 

functions of i1 and i2, F and G respectively, then a loop carried dependency between 

i1 and i2 will exist if A[F(i1)] and A[G(i2)] reference the same memory position. This 

means F(i1)=G(i2). The dependency problem then turns into a linear programming 

problem where SL * i1 >= L, -SU * i1 >= -U, SL * i2>=L, -SU * i2 >=-U and F(i1) = 

G(i2). The solution will show whether a dependency exists or not. Unfortunately, in 

this general case, the problem has been proven to be NP-Complete (it is equivalent to 

finding solutions to a system of Diophantine equations), thus a precise answer might 

take a long time to be computed. That is the reason that many of the dependency tests, 

such as the Banerjee, the Omega and the Range test exist. They can provide fast 

results under simplified conditions or special situations. A dependency test’s reply can 

belong in one of these three outcomes: (i) A dependency exists, (ii) A dependency 

does not exist and (iii) Not sure. Tests that answer only (i) and (ii) are called exact 

tests otherwise they are called inexact tests. 

 Assuming a dependency between index instance i=(i1, i2, …, in) and j=(j1, j2, 

…, jn) exists, then the vector j - i = (j1 – i1, j2 – i2, …, jn – in) is the dependency 

distance vector. If the vector consists only of constants then it is called a static or 

uniform dependency vector. If the values are not constant then the vector which 

contains the signs of each subtraction sign (j – i) = (sign (j1 – i1), sign (j2 – i2), …, 

sign(jn – in)) is the direction dependency vector. For example, let us consider the loop 

in Figure 3.2.  

 

 

 

Figure 3.2. A Typical Example of a Perfectly Nested Loop in C with Two Loop 

Carried Dependencies. 

 In that example, first we compute the polyhedron representation. Since all 

bounds are fixed constants, we can see that SL = SU =  
1 0
0 1

 , I =  
 𝑖 
 𝑗 

 , L= 
0
0
  and  

for (i=0; i< 5; i++) 

 for (j=0; j< 5; j++) 

              A[ i ][ j ] = A[ i – 1 ][ j ] + A[ i ][ j – 1 ]; 
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U= 
4
4
  so –U= 

−4
−4

 . In the statement we can see that for any current iteration (i, j) the 

array A is referenced in two previous iterations, (i-1, j) and (i, j-1). This means that 

there exist two dependencies with vectors d1=((i)-(i-1),(j)-(j)) = (1,0) and d2=((i)-

(i),(j)-(j-1))=(0,1). The set of all dependencies is the dependency vector D= 
1 0
0 1

  

and the direction vector is the same since it carries the signs of the values of D.  

3.2. Loop Transformations 

3.2.1. First Pass Transformations 

 Before the actual transformations transpire and even before the dependency 

analysis of the code, parallelizing compilers usually perform a first pass of 

transformations. These transformations are mostly aimed at simplifying expressions in 

order to facilitate ease of analyzing array subscripts, loop bounds etc. Such 

transformations fall into the idiom recognition category (as they mostly search for 

certain expressions inside the code) and they include (but are not limited to): 

 Interprocedural Dependency Analysis. It is very probable that a 

computation might span across a multitude of different procedures inside the code of 

a program. This is the very essence of modular programming which allows for the 

creation of easy-to-read, well structured code. However due to the compiler’s inability 

to know the side-effects of each procedure call (i.e. what effects a call might have to 

any other variable of the program), most procedure calls are left untouched by the 

automatic optimization tool which essentially means that the programmer is penalized 

for using procedure calls inside a loop. Interprocedural dependency analysis is the 

type of analysis that crosses the boundaries of procedures and analyzes side effects or 

trying to incorporate a procedure call into the automatic loop transformation. As has 

been mentioned earlier, one way to simplify a procedure call is to inline the entire 

procedure on the place of the call and then analyze the code as usual. This however 

might not be optimal. 

 False Dependency Elimination. Out of the four different types of 

dependencies, it has already been demonstrated that only one type is the true form of 



30 

 

 

dependency. The rest are false dependencies and they only obfuscate code. In order to 

simplify the code and be rid of anti-dependencies a compiler can either use data 

privatization or data expansion. An example of data privatization is given in Figure 

3.3. In this example, assigning of any value to tmp seems like a critical section and 

that it can’t be parallelized. However, tmp is first written and then read. It is a Write 

before Read type of dependency. By assigning the attribute PRIVATE to tmp the 

transformation makes sure that each instance of tmp will exist inside each thread’s 

local storage and thusly the  whole loop can be parallelized. Figure 3.4. displays the 

use of data expansion. Each different instance of tmp is assigned in a new temporary 

array which can be accessed at a later step for the actual computation. The 

PARALLEL directive in these cases means that the loop should be fully parallelized. 

 

 

 

 

 

Figure 3.3. Using Data Privatization in Order to Simplify and Remove a False (Anti) 

Dependency. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Using Data Expansion in Order to Simplify and Remove a False (Anti) 

Dependency. 

for (i=0; i<n-1; i++) 

 for (j=0; j<n-1; j++) 

                A[i][j]=A[i+1][j] + A[i][j+1]; 

PARALLEL for (i=0; i<n-1; i++) 

 PARALLEL for (j=0; j<n-1; j++) 

               T[i][j]=A[i][j]; 

 

 

PARALLEL for (i=0; i<n-1; i++) 

 PARALLEL for (j=0; j<n-1; j++) 

               A[i][j]=T[i+1][j] + T[i][j+1]; 

 

 

PARALLEL for (i=0; i<n; i++) 

{ 

 PRIVATE tmp=…; 

 A[i]=tmp; 

} 

for (i=0; i<n; i++) 

{ 

 tmp=Code irrelevant to tmp; 

 A[i]=tmp; 

} 
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 Symbolic analysis. Symbolic analysis is a general term. Most of the times, 

compilers who perform such an analysis monitor each variable and track its value 

range from statement to statement. This way, it is possible to be able to know all the 

ranges of all variables (including ranges of array subscripts as well as the values of 

the arrays themselves) and thusly reach some conclusions regarding the code in 

question. Certain loops that seem un-parallelizable might end up containing some 

parallelism and that is because certain indices might not end up overlapping or 

referencing the same memory location in order to create dependencies. 

 Induction Variable Elimination. An induction variable is one that its value is 

updated in each loop iteration in such a manner that it can be replaced by a closed 

mathematical formula. Figure 3.5. gives an example of an induction variable and its 

elimination from the code. “sum” is identified as an induction variable and is replaced 

by its closed mathematical formula (2 in the power of i) which at first creates an anti-

dependency but one that is easily eliminated from the code in the final fully parallel 

loop. 

 

 

 

 

 

 

 

Figure 3.5. An Example of Induction Variable Elimination. 

 Loop Normalization. Most idiom recognition algorithms assume that any 

given loop index starts with the value of 0 and has a unit stride. If that is not the case 

for a loop then normalization transforms the loop in order to meet that requirement as 

is demonstrated in Figure 3.6. 

 

 

Figure 3.6. An Example of Loop Normalization. 

for (i=2; i<2 * n; i+=2) 
 A[i]=…; 

 

for (i=0; i<n; i++) 

 A[2*i+2]=…; 

 

 

 

sum=1; 

for (i=1; i<=n; i++) 

{ 

 sum=sum * 2; 

 A[i] = sum; 

} 

PARALLEL for (i=1; i<=n; i++) 

{ 

 sum= pow (2, i); 

 A[i] = sum; 

} 

PARALLEL for (i=1; i<=n; i++) 

 A[i]=pow (2, i); 
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 Global Forward Substitution. By substituting all constant variables with the 

expressions they evaluate to, an automatic parallelizer can help make dependency 

analysis easier. Figure 3.7. shows an example of substitution. 

 

 

 

Figure 3.7. An Example of Forward Substitution. 

 Loop Distribution. Loop Distribution is the technique where a single loop 

(probably nested, perfectly or not) is split into a series of different loops, each with 

the same iteration range as the original loop. Every one of the new loops carries a 

smaller part of the original loop’s body as its own. This technique can be useful in 

improving cache usage and in the case of a multi-processor system where each 

processor can handle a single loop if they are independent from each other. Extra care 

must be taken to preserve the order of execution of dependent statements. Figures 3.8. 

and 3.9. give two different examples of Loop Distribution. 

 

 

 

 

Figure 3.8. An Example of Loop Distribution Which can Help Improve Cache 

Performance. 

 

 

 

 

 

Figure 3.9. Another Example of Loop Distribution Where an Imperfectly Nested 

Loop is Split Into two Perfectly Nested Ones. 

ex=2*k+1; 

for (i=0; i<n; i++) 

 A[i]=i+ex; 

 

for (i=0; i<n; i++) 

 A[i]=i+2*k+1;  

for (i=0; i<n; i++) 

{ 

 A[i]=C[i]; 

 B[i]=D[i]; 

} 

 

for (i=0; i<n; i++) 

 A[i]=C[i]; 

 

for (i=0; i<n; i++) 

 B[i]=D[i]; 

 

for (i=0; i<n; i++) 

{ 

 A[i]=B[i]; 

 for (j=0; j<n; j++) 

              C[i][j]=D[i][j]; 

} 

for (i=0; i<n; i++) 

 A[i]=B[i]; 

 

for (i=0; i<n; i++) 

 for (j=0; j<n; j++) 

              C[i][j]=D[i][j]; 
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 Loop Fusion. Loop Fusion is exactly the opposite act of Loop Distribution. It 

can be useful in cases where the overhead of a loop is significant and as such, it can  

lead to reduced overhead and better run-time speed overall. Such a case is when the 

loop is in fact, some parallel construct which requires time to set up all the threads 

necessary in order to complete execution. Fusion is possible when the legality of the 

dependencies is preserved and when the index ranges match (although if they don’t, 

maybe some type of normalization might be possible to be applied to match the 

other). Figure 3.10 gives an example of Loop Fusion. In that example we can see that 

both loops can execute in parallel and so the new loop has a potentially smaller 

overhead than the initial two loops. 

 

 

 

 

 

 

 

Figure 3.10. An Example of Loop Fusion. Two Parallel Loops are Fused Together 

with the Aim to Reduce Overhead. 

 Reductions. A reduction variable is one that exists in the form of multiple 

copies in a series of threads’ local storages and the need exists to reduce them all into 

one final and single variable. Summing up an array is a usual example of such an 

action. Figure 3.11 shows an example of a reduction variable and how it can be 

transformed to exploit some parallelism. In this example, PE is the number of 

processing elements we can use to speed up the reduction and P is the ceiling of the 

result of the division of the total number of array elements n divided by PE. 

Essentially, P is the total number of partial sums we will calculate and then reduce. 

The first loop initializes the partial sums s[i] in parallel, then the second loop sums up 

the P different parts of n into each s[i] and the final loop calculates the final value of 

sum by adding up all the partial sums s[i]. If the granularity is coarse enough then the 

speedup of the parallelism is higher than any overheads that might exist. 

 

PARALLEL for (i=0; i<n; i++) 

 A[i]=B[i]; 

 

PARALLEL for (i=0; i<n; i++) 

 C[i]=D[i]; 

PARALLEL for (i=0; i<n; i++) 

{ 

 A[i]=B[i]; 

 C[i]=D[i]; 

} 
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Figure 3.11. An Example of Reduction. The Summation of A into the Scalar “sum” is 

Partially Parallelized. 

3.2.2. Unimodular Matrices 

 Choosing to represent the polyhedron and the dependencies of a loop via the 

use of matrices offers a significantly helpful tool when it comes to transformations: 

the Unimodular matrices. A Unimodular matrix is nothing more than an integer 

matrix whose determinant equals to 1 or -1. A loop transformation can be encoded 

inside such a matrix and then that matrix can be multiplied with the polyhedron and 

the dependency vector to produce a transformed loop. Unimodular matrices contain 

integer elements so that the transformed polytope will also contain integer values and 

its unimodularity guarantees a one-to-one mapping with a stride of one.  

 With the help of these matrices we can apply a series of transformations by 

multiplying their respective Unimodular matrices in the reverse order of the 

transformations’ application. This way, compound transformations are created. At this 

point it is important to note that not all transformations are legal. In order for a 

transformation to be accepted for use, the new dependence vector D’ must contain 

lexicographically positive dependences. In general, a tuple (a, b, c, …. ) is 

lexicographically positive when the first non-zero element in the tuple is a positive 

number. Lexicographic positivity is a strong condition for all transformations 

otherwise anti-dependences will be created. There are some cases when the existence 

of anti-dependences might not matter but if a cyclical dependency appears then it is 

impossible for the compiler to produce any meaningful code.  

 

sum=0; 

for (i=0; i<n; i++) 

 sum += A[i]; 

P= 
𝑛

𝑃𝐸
 ; 

PARALLEL for (i=0; i<P; i++) 

 s[i] = 0; 

 

PARALLEL for (i=0; i<P; i++) 

 For (j=i*P; j<(i+1)*P;j++) 

              s[i]=s[i]+A[i]; 

 

sum=0; 

For (i=0; i<P; i++) 

 sum+=s[i]; 
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3.2.3. Prime Loop Transformations 

 Once all idiom recognitions have transpired then an automatic compiler can 

proceed to perform the main or Prime loop transformations. In contrast to the first 

pass transformations, Primes do not seek to simplify some expression or find inter 

procedural dependences but, according to the current needs they usually aim to 

increase code efficiency (both in a parallel code but on occasion on a sequential one 

as well) and apply much more drastic alterations to a given loop. The most common 

of these transformations are listed below and elaborated upon: 

 Loop Tiling. Loop Tiling, Loop Blocking, or Strip-mining is a loop 

transformation technique aimed at increasing the efficiency of any sequential loop. 

The main idea is that any given loop can be transformed to an equal one but where the 

entire index space is partitioned in smaller tiles (of a fixed size each on every 

dimension) and then execution takes place on a per tile basis. Figures 3.12 and 3.13 

give an example of a loop before and after tiling with its accompanying graphic 

illustration. It is important to note here that there must be no dependency conflicts 

with the change in the execution schedule so the ordering imposed by dependences is 

still preserved in the tiled version of the original loop.  

 

 

 

 

 

 

 

 

 

 

Figure 3.12. A Perfectly Nested Loop with Nesting Level of 2 and its Graphical 

Representation in the Two-Dimensional Space. 

 

 

for (i=0; i<n; i++) 

 for (j=0; j<n; j++) 

      … 
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Figure 3.13. The Loop of Figure 3.12 and its Graphic Representation After a Tiling 

Transformation. A Stride of 3 was Used in Each Dimension. 

 The increase in efficiency is mostly accomplished by exploiting data locality 

in the CPU’s cache. Tiling can also be a first step in various other transformations 

where each tile serves as the basic parallelization unit (in other words, coarse grain 

granularity can be achieved by first tiling close indices together and execute them in 

some sequential manner while each tile can execute independently from the others 

either in different CPUs or in different threads). 

 Loop Interchange. As the name suggests, the technique of loop interchange 

exchanges the levels of two iteration variables in a nested loop. A dependence of (a, 

b) becomes (b, a) which means that extra care must be given in order to safeguard the 

legality of the whole transformation. If b in that case is a negative number, then by 

performing interchange, the dependence is no longer lexicographically positive and 

the legality is forfeit. The Unimodular matrix for this operation is demonstrated in 

Figure 3.14 while Figure 3.15 gives an example of a nested loop before and after loop 

interchange. Loop interchange can generally improve efficiency by exploiting locality 

of reference and cache usage. It can also enhance inner or outer loop parallelization or 

enable vectorization. However it may also adversely affect performance if not enough 

care is given by hindering cache usage altogether. Overall, the effectiveness of 

interchange relies heavily on the underlying cache model the system’s hardware 

architecture is using. It is important to state here that if the loop bounds of the original 

loop are not simple, then computing the new loop bounds is generally non-trivial. 

 

for (i=0; i<n; i+=3) 

     for (j=0; j<n; j+=3) 

          for (i’=i; i’<min(i+3, n); i’++) 

               for (j’=j; j’<min(j+3, n); j’++) 

                         …. 
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𝑖′
𝑗′
 =  

0 1
1 0

   
𝑖
𝑗
  

 
 

𝑖′ = 𝑗

𝑗′ = 𝑖
 

Figure 3.14. The Unimodular Transformation of Loop Interchange. 

 

 

 

Figure 3.14. A Nested Loop Before and After Loop Interchange. 

 Loop Permutation. Loop Permutation is a more general method of Loop 

interchange. For any perfectly nested loop of nesting level of n, then pairs of loops 

can swap their place in the nesting. Dependences obey that swapping as well. For 

example a dependence of dimensionality 3, (a, b, c) with a permutation of 

 
1 2 3
2 3 1

 , becomes (b, c, a). The necessary Unimodular matrix for this 

transformation is constructed by swapping the corresponding rows of the identity 

matrix I (of a suitable dimensionality), as is demonstrated by Figure 3.15. Figure 3.16 

displays the application of such a matrix on an index set. As this technique is a 

generalization of loop interchange then the automatic compiler needs to be aware of 

and avoid the same pitfalls as with loop interchange: A transformed dependency must 

never become lexicographically negative so again extra care is needed when applying 

this technique. The only way the compiler can be sure of any permutation’s legality is 

to perform an analysis on all dependences. If all distances are positive then any 

permutation is legal. 

 

 
 
 
 
 
1 0 0
0 1 0
0 0 1

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ 1 

 
 
 
 

 
 

 
 
 
 
 
0 1 0
1 0 0
0 0 0

⋯
0
0
1

⋮ ⋱ ⋮
0 0 1 ⋯ 0 

 
 
 
 

 

Figure 3.15. Creating a Permutation Unimodular Matrix by Swapping the Rows of the 

Original Identity Matrix. 

for (i=0; i<n; i++) 

 for (j=0; j<n; j++) 

                        A[i][j]=i+j; 
 

for (j=0; j<n; j++) 
 for (i=0; i<n; i++) 

                        A[i][j]=i+j; 
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𝑖′1
𝑖′2
𝑖′3
⋮

𝑖′𝑛  
 
 
 
 

=

 
 
 
 
 
0 1 0
1 0 0
0 0 0

⋯
0
0
1

⋮ ⋱ ⋮
0 0 1 ⋯ 0 

 
 
 
 

 

 
 
 
 
 
𝑖1

𝑖2

𝑖3

⋮
𝑖𝑛  

 
 
 
 

 
 

𝑖′1 = 𝑖2

𝑖2
′ = 𝑖1

𝑖3
′ = 𝑖𝑛
⋮

𝑖𝑛
′ = 𝑖3

 

Figure 3.16. Applying the Constructed Unimodular Matrix from Figure 3.15 to an 

Index Set. 

 Loop Reversal. Loop Reversal is a technique which reverses the bounds of a 

loop. For example, a simple loop with bounds L and U will be transformed to one 

with bounds –U and –L respectively. The corresponding dependence of that loop 

automatically switches sign. In a nested loop this effectively means that the loop 

which corresponds to the first positive distance in any dependence cannot be reversed 

otherwise the dependence will no longer be lexicographically positive. In a loop of 

nesting level 3, a dependence (a, b, c) becomes (a, -b, -c) after such a transformation 

is applied to levels 2 and 3. Loop reversal rarely possesses any inherent ability to 

increase code efficiency however it can help eliminate dependences and thusly pave 

the way for other optimizations. 

 Loop Skewing. Loop skewing is a technique where a dependency (a, b) is 

transformed into a form of (a, f*b + c) where f is the skew factor. The same skew 

factor is applied on the shape of the polytope representation and changes it into a new 

shape with a different representation (a skewed version of the original polytope). The 

fact that dependences retain their lexicographic positivity after such a transformation 

means that skewing is always safe to apply. In fact such a transformation is always 

possible to be discovered. Skewing is a very important transformation as it has the 

capability to expose parallelism in the innermost loop of a perfect nesting. Figure 3.17 

displays a code example which denies any kind of parallelism at first sight (or even 

interchange for that matter). 

 

 

 

Figure 3.17. A Code Example where Skewing can Expose Hidden Parallelism. 

for (i=1; i<n; i++) 

 for (j=1; j<n; j++) 

        A[i][j]=A[i-1][j]+A[i][j-1]; 
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 It is straightforward to calculate the dependences in that code snippet: (1,0) 

and (0,1). Figure 3.18 shows a graphical representation of the loop’s polytope and the 

corresponding dependences. 

 

 

 

 

 

 

 

 

 

Figure 3.18. The Graphical Representation of the Loop and the Loop Carried 

Dependences it contains. 

 There are many different Unimodular matrices that can describe various types 

of skewing, however a typical one is described in Figure 3.19. 

 

 
 
 
 
 
1 𝑓1 𝑓2

0 1 0
0 0 1

⋯
𝑓𝑛
0
0

⋮ ⋱ ⋮
0 0 0 ⋯ 1  

 
 
 
 

 

Figure 3.19. A Typical Skewing Unimodular Matrix. f1, f2,…, fn are the Skew Factors. 

 In our example the Unimodular matrix becomes  
1 1
0 1

  (skewing factor of 

one). If we apply this transformation to the index set, we get the new indices of the 

transformed loop:  
𝑖′
𝑗′
 =  

1 1
0 1

   
𝑖
𝑗
 =   

𝑖 + 𝑗
𝑗

 . The dependences are also transformed 

by the same matrix:  
1 1
0 1

   
1
0
 =  

1
0
  and  

1 1
0 1

  
0
1
 =  

1
1
 . The new dependence 

vector has been transformed to the set D’ = {(1,0), (1,1)}. Generally speaking, 
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calculating the loop bounds of a skewing operation is a non-trivial and difficult 

endeavor altogether, however in this example it is rather simple and straightforward. 

 We know that 𝑖′ = 𝑖 + 𝑗 (1) and that 𝑗′ = 𝑗 (2). We also know that 1 ≤ 𝑖 ≤

𝑛 − 1 (3) and that 1 ≤ 𝑗 ≤ 𝑛 − 1 (4). By adding (3) and (4) we get that 2 ≤ 𝑖 + 𝑗 ≤

2𝑛 − 2 
 

 2 ≤ 𝑖′ ≤ 2𝑛 − 2 (5). Now we use (1) and (2) and solve for i and j: 𝑗 = 𝑗′  

(6) and 𝑖 = 𝑖 ′ − 𝑗′  (7). By combining (3) and (7) we can see that 1 ≤ 𝑖′ − 𝑗′ ≤ 𝑛 − 1 

(8). This double inequality can be split into two separate ones: 1 ≤ 𝑖′ − 𝑗′  (9) and 

𝑖′ − 𝑗′ ≤ 𝑛 − 1 (10). Out of (9) we get that 𝑗′ ≤ 𝑖′ − 1 (11) and out of (10) we get 

that 𝑗′ ≥ 𝑖′ − 𝑛 + 1 (12). Since 𝑗′ = 𝑗 and by using (4) we learn that  𝑗′ ≥ 1 (13) and 

𝑗′ ≤ 𝑛 − 1 (14). From (12) and (13) we get that 𝑗′ ≥ 1 and 𝑗′ ≥ 𝑖′ − 𝑛 + 1. Since we 

need 𝑗′  to always have valid values, then 𝑗′ ≥ max(1, 𝑖′ − 𝑛 + 1) (15). By combining 

(11) and (14) we know that 𝑗′ ≤ 𝑖′ − 1 and that 𝑗′ ≤ 𝑛 − 1. Again according to the 

same principle, we reach the conclusion that 𝑗′ ≤ min(𝑖′ − 1, 𝑛 − 1) (16). Finally, by 

using (5), (15) and (16) we know the new loop bounds and can create the new 

transformed loop which is displayed in Figure 3.20. Figure 3.21 demonstrates the 

skewed result in the graphic representation of the polytope. 

 Observation of the skewed result makes the hidden parallelism obvious. For 

every different i’ of the loop, all the j’ belonging to that iteration of i’ are independent 

from one another and so they can execute in parallel. This technique can also be 

applied after tiling in order to offer a more coarse grain form of parallelism. In the 

case where tiling has already been applied, then each position in the iteration space 

corresponds to a single tile instead of a single iteration instance of the loop. Skewing 

is a very important tool in the arsenal of a parallelizing compiler as it offers varying 

levels of granularity of parallelism that lies hidden in the innermost loop, and as such 

it is the most important part of the wavefront method. 

 

 

 

 

 

Figure 3.20. The Skewed Result from the Original Loop of Figure 3.17 when the 

Matrix of Figure 3.19 was Applied on it. 

for (i’ = 2; i’ <= 2*n-2; i’++) 

 for (j’ = max(1,i’-n+1); j’ <= min(i’-1, n-1); j’++) 

 { 

            i=i’-j’; 

            j=j’; 

           A[i][j]=A[i-1][j]+A[i][j-1]; 

 } 
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Figure 3.21. The Polytope Representation of the Skewed Loop Presented in Figure 

3.20. The Inner Level Parallelism per Iteration of i’ is Obvious. 

 The Wavefront. The wavefront method is a compound transformation which 

encompasses loop skewing, loop reversal and loop interchange / permutation. The 

main purpose behind the wavefront model is to find a series of hyperplanes, each 

covering a subset of the original polytope, with the property that all indices on a 

certain hyperplane are independent between them and can thusly be run in parallel. By 

visualizing the wavefront method on the code of Figure 3.17 (and after application of 

the skewing transformation discussed before) we can see (in Figure 3.22) that 

essentially the wavefront method creates an imaginary wave which moves through the 

data. 

 

 

 

 

 

 

 

Figure 3.22. From Left to Right the Wavefront (Black Dashed Rectangle) Moves 

Through the Computation data. Grayed Points Indicate Already Processed Index 

Instances. 
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 All index points on the front are the ones that can be executed in parallel in 

that iteration. This is the reason that this general methodology is called a wavefront 

and essentially, it is the hyperplane method originally proposed by Lamport where 

each hyperplane is driving the front by being executed sequentially and each front 

being executed in parallel. Calculating a proper compound unimodular matrix in order 

to have an efficient wavefront is a difficult task and there is no single direct algorithm 

for it. Most automatic parallelizing compilers resort to heuristic methods in order to 

pick the best transformation out of all the possible wavefronts that exist for any given 

problem. Finally, it is worth mentioning that the wavefront method (as well as the 

skewing one) require a uniform dependence vector in order to work properly. 
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CHAPTER 4. SVP 

4.1. Introduction and Prerequisites 

4.2. The SVP Processor and Model 

4.3. The SL Programming Language 

4.4. The Toolchain 

 

4.1. Introduction and Prerequisites 

 With Moore’s law (an empirical observation made by Gordon E. Moore which 

states that the number of transistors in integrated circuits doubles every 18 months) 

still in effect, it is becoming increasingly clear that the only way to push forward with 

improving efficiency and speed in systems is via multi-core architectures. multi-core 

processors (multiple cores on chip) have the ability to utilize the ever increasing on-

chip resources while simultaneously handling the increase of complexity of the 

circuitry. 

 However, there are some issues that need handling. A multiprocessor must 

define a model of parallelism that is similar to the sequential model that users have 

been accustomed to. In addition, binary compatibility across a range of different 

generations of processor implementations is very desirable. In the spirit of the 

sequential model, the Multiprocessor system should also be deterministic (which 

means that given a certain input it will always produce the same output) and ideally it 

can provide deadlock avoidance mechanisms. When it comes to the aspect of 

parallelism, a Multiprocessor needs to be able to capture and exploit maximal 

concurrency while at the same time gracefully degrade when it runs low on resources. 

As such, automatic resource allocation is an important prerequisite since hand-

mapping applications onto available resources is not feasible (neither sensible).  
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4.2. The SVP Processor and Model 

 The SVP (Self-Adaptive Virtual Processor) model is a system designed and 

implemented to cover for all the afore-mentioned prerequisites. By design, it is a 

general concurrent processor model which bases its abstract execution model on a 

hierarchy of "microthreads". A microthread is an entity very similar to a regular 

thread (i.e. it is a sequence of sequentially executed statements that can run in parallel 

with other threads or the main application that spawned them) but with the added 

property of blocking its execution when there are no data available to them for 

calculations [16]. This essentially places the SVP into a more generalized SPMD 

category since its API exports directives for synchronization. SVP is designed to be 

deterministic and approaches parallelism in a highly dynamic manner through its 

ability to be self-adaptive. It is also meant to target the entire range of applications 

instead of just a few specific ones. The self-adaptiveness of the model is realized by 

three distinct properties: (i) It can capture the concurrency of an application in its 

entirety, (ii) It captures and enforces locality of communications between threads and 

(iii) keeps everything as dynamic as possible [38]. 

 A novel property of the SVP is that it can be implemented in its entirety 

(including the run-time environment) in a processor’s Instruction Set Architecture 

(ISA) and thus it can be considered as an Operating System (OS) on chip [22]. An 

ISA implementation offers the advantage of backwards compatibility with any pre 

existing sequential code (which is not affected at all) and also provides the ability for 

any SVP program to revert back to a sequential form of execution if such a need 

arises. A series of such cores (SVP cores) forms a Microgrid. A Microgrid offers 

binary compatibility over any cluster of such processors, is inherently scalable when it 

comes to both area utilization and performance and can support a great degree of 

parallelism through the use of a large number of Microthreads and high memory 

tolerance. The OS deals with managing any dynamically created content through 

delegation. Delegation refers to the process where a computation can be mapped to 

any part of the microgrid remotely during run time. 

 The abstract execution model of the SVP is quite general. Applications (and 

by extension, developers) need not concern themselves with any kind of mapping of 

threads or their scheduling, as the run-time system dynamically allocates resources to 
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threads as needed and the scheduling is achieved through synchronizing 

communication: There exist two types of synchronizing channels, the shared ones and 

the global ones. The existence of these channels inside the code decides whether 

threads will run sequentially or in parallel. Proper use of these channels (i.e. the 

channels are read from and written to when they are supposed to) guarantees a 

deadlock-free execution of the application.  

 Moreover, the execution model presents a recursive / hierarchical structure of 

parallelism. Microthreads do not exist autonomously but they are always part of a 

family. This makes the family the basic unit of work in the SVP model. Families can 

be of any arbitrary size (even infinite) and individual threads inside those families are 

created only when there are available resources. When there is a lack of resources, the 

model falls back to a sequential mode where the family executes entirely in its parent 

thread’s context. 

 A thread has the ability to create another family and thusly a hierarchy of 

families is formed. The synchronizing channels exist solely inside a family between 

its threads. A smaller form of communication exists between a parent thread and its 

subservient family. The created family can receive data (in the beginning) and return 

data (after termination) to its creator but this is the only form of communication 

allowed between threads in the entire concurrency tree, at a user’s level of perspective 

at least. Any other form would be at the very least inefficient and normally avoided. 

 The global synchronizing channel is immediately accessible by all the threads 

of a family (each thread can decouple data from any global channel) and offers a set 

of read-only data from the creator of the family. The shared channel works differently 

by adopting a data-flow behavior: Each thread of the family can read (decouple into 

shared variables) from that channel once and write back a value to it (couple) also 

once. If a thread finds no data inside the channel at the moment it tries to read it, then 

it blocks its execution until data is available. 

 Threads identify themselves inside the family by the use of an index and once 

a thread has written a value to the shared channel, then that value will be instantly 

accessible by the thread with the next index value. The original value in the chain is 

designated by the creator / parent thread, while its final value is accessible by the 

creator thread. Whenever a sequential form of execution is needed between the 
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threads of a single family, then a shared channel can also be applied to enforce an 

order of execution. In this case the value of the data moving from thread to thread is 

completely irrelevant as long as there is some data moving. Figure 4.1 demonstrates a 

typical SVP family of microthreads during its execution: Each time a thread writes a 

value on a shared channel, the next thread (which blocked on reading that channel) 

can resume computation. Local computations can take place in parallel outside of the 

reading / writing of the shared variable. The global channel is visibly available to all 

the family threads. 

 

 

 Figure 4.1. An SVP Family of Microthreads. The Global Channel is Available to all 

Threads While the Shared one Creates a Data-chain from One Thread to the Next. 

 In addition to those two types of channels, a global asynchronous memory (in 

the form of a flat address space) exists which is accessible by all threads. At any given 

time, each thread “sees” a view of a particular memory section which will remain 

consistent so long as no other thread writes to that particular place. Once the family 

finishes its execution, then all such “views” are shared and a final view of the entire 

subsection involved in the execution is considered to be at a stable, synchronized 

state. Specifically, the consistency model does not guarantee that a thread will see any 

changes performed by an unrelated thread at any given time [40], [17], [39]. Figure 
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4.2. demonstrates an SVP hierarchy with the bulk asynchronous memory available to 

all threads. 

 The global asynchronous memory coupled with the synchronizing channels 

(which offer parent-child and intra-family communication) are sufficient to capture all 

kinds of dependencies inside a program, since the synchronizing channel can impose 

the same ordering as a loop carried dependency and the rest dependency types aren’t 

real dependencies. It is obvious though that the only way for flow dependences to be 

expressed in the SVP model in any sensible manner is through the use of dataflow 

semantics and the various communication channels. This means that legacy code 

cannot be executed as-is in a parallel manner. Certain types of transformations are 

required in order for dependencies (most importantly loop-carried ones) to be mapped 

into threads and families. In summary, loops (parallel or sequential ones) and function 

calls must be implemented as families where the blocking nature of the threads will 

offer the proper ordering of execution. 

 

Figure 4.2. An SVP Hierarchy with the Accompanying Asynchronous Memory. 
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 A typical example where the multiple types of communications channels are 

of use is the matrix multiplication. The code fragment that performs multiplication 

between two two-dimensional matrices A and B is displayed on Figure 4.3. The result 

is stored in a similar matrix C. For simplicity reasons we assume the matrix 

dimensions are n x n. It is clear from that code sample that the two outermost loops (i 

and j) that compute the elements of C are independent from the rest. The only loop 

carried dependency appears inside the innermost loop (k) where sum is updated once 

per loop iteration. In the SVP model this would translate to three families: i, j and k. 

The threads in family i are all independent between them (hence there is no need for a 

shared channel) and each thread invokes family j, where again its threads can be 

executed in a concurrent manner. 

 

 

 

Figure 4.3. A Typical Code Fragment which Calculates the Product of two n x n 

Matrices. 

 Each of these threads (in the j families) initializes a thread-local variable sum 

with the value 0, and then invokes (spawns or creates) family k. This is where most of 

the computation takes place and indeed we can see that at first glance it is not possible 

to increase efficiency more. However, each of the threads in the k family first 

computes the product A[i][k]*B[k][j] and then updates the variable sum (which 

carries the total sum and hence is represented as a shared channel). Since each of 

those products is independent from the other threads, then it is prudent to have all the 

threads of the family k compute that product concurrently before beginning to update 

the total sum. In summary, each “k” thread performs the following steps: (i) calculate 

the result of the product A[i][k]*B[k][j] in parallel and store it in a temporary 

variable, (ii) perform a read on the shared channel “sum” (and block if it’s not 

available), (iii) Add the temporary variable to the sum variable, (iv) write the value of 

the sum variable back to the “sum” shared channel, (v) terminate. 

for (i=0; i<n; i++) 

 for (j=0; j<n; j++) { 

           sum=0; 

           for (k=0; k<n; k++) 

                     sum += A[i][k] * B[k][j]; 

           C[i][j]=sum; 

 } 
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 The hierarchy that such a computation creates is demonstrated in Figure 4.4: A 

tree of execution with three levels is created. Since the threads in level 1 (Family i) 

execute concurrently, this means that the n x n threads of level 2 (Family j) will 

execute concurrently and thusly each of the n x n elements of matrix C will compute 

independently from the rest. The k families display the dataflow created by the sum 

variable travelling through the shared channel. It is initialized at each parent locally, it 

traverses through all the threads one by one and then returns back to the originator. 

 

 

Figure 4.4. The Execution Hierarchy Created for the Concurrent Matrix 

Multiplication. Single-pointed Arrows Indicate Dataflow Direction. 

4.3. The SL Programming Language  

 It was made abundantly clear that a programming language which could 

support the API exported by the SVP was needed. Initially a series of extensions were 

designed and added to the C language (a well-known language used world-wide) and 
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the κTC [37] language (micro-threaded C) was born. As development proceeded, 

certain problems emerged that led to the creation of the SL language. While κTC was 

implemented by modifying the gcc compiler, SL used a series of macros to help pass 

the code through the original unaltered gcc compiler and used post processing to 

provide the necessary functionality and optimization. It provides mechanisms for the 

bulk creation and synchronization of threads, the passing of variables and values 

through the global and shared channels and more. Some key macros and their 

explanation follows: 

 sl_def(){code} sl_enddef. sl_def defines a thread with a programmer defined 

name and a defined return (usually void). A series of arguments is listed in the 

parentheses. Arguments are passed by value. sl_enddef denotes the end of the 

thread definition. Similar to the classic join for threads, sl_sync() will halt 

execution of the parent thread that created a family and wait till that family 

terminates to continue execution. 

 sl_create(). It creates a family of threads whose index’ starting value, ending 

value and step will be defined inside the argument list of sl_create. 

 sl_sync(). The sl_sync macro causes the invoking thread to pause and wait 

until the created family has finished computation and returned control to the 

parent. 

  sl_index(variable_name). A macro that can be called inside a thread function 

code. It stores the index of the current thread to the variable designated by 

variable_name. 

 A more detailed description of the SL language can be found in the Appendix at the 

end of the thesis. 

 

 

 

 

 

 

 

  

sl_def(fib, void, sl_shparm(int, _a), sl_shparm(int, _b), sl_shparm(int, _c)) 
{ 
 int a=sl_getp(_a); 
 int b=sl_getp(_b); 
 int c=sl_getp(_c); 
 
 c=a+b; 
 a=b; 
 b=c; 
 
 sl_setp(_a, a); 
 sl_setp(_b, b); 
 sl_setp(_c, c); 
} 
sl_enddef 
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Figure 4.5. Calculating the nth Term of the Fibonacci Sequence. After the Thread’s 

Termination, Reading the Shared Channel c Provides the Final Result. 

By combining SL directives and standard C code, it is easy to create SVP applications 

that exploit concurrency. For example, consider the code that computes the nth number 

of a Fibonacci sequence. For simplicity we assume than n is greater or equal to 2. 

Using SL over SVP this code would look like the one in Figure 4.5 which 

demonstrates the thread definition and invocation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sl_def(t_main, void) 
{ 
 int a=0; 
 int b=1; 
 int n=5; 
 int c; 

 
 sl_create(,,2,n+1,1,,,sl_sharg(int, _a, a), sl_sharg(int, _b, b), 
           sl_sharg(int, _c, c)); 
 sl_sync(); 
 c=sl_geta(_c); 
 
 printf(“%d\n”,c); 
} 
sl_enddef 

#include<stdio.h> 
 
typedef int[10] type1; 
typedef type1[10] type2; 
 
sl_def(family_k, void, sl_glparm(type2, _a), sl_glparm(type2, _b), sl_shparm(int, _sum), 
 sl_glparm(int, _i), sl_glparm(int, _j)) 
{ 
 sl_index(k); 
 type2 a=sl_getp(_a); int ype2 b=sl_getp(_b); 
 int   i=sl_getp(_i); int   j=sl_getp(_j); 
 int tmp=a[i][k]*b[k][j]; int sum=sl_getp(_sum); 
 sum+=tmp; 
 sl_setp(_sum, sum); 
} 
sl_enddef 

 
sl_def(family_j, void, sl_glparm(type2,_a), sl_glparm(type2,_b), sl_glparm(int, _i), 
 sl_glparm(type2, _c)) 
{ 
 sl_index(j); 
 
 type2 a=sl_getp(_a); 
 type2 b=sl_getp(_b); 
 type2 c=sl_getp(_c); 
 int i=sl_getp(_i); 
 
 int sum=0; 
 sl_create(,,0,10,1,,,family_k, sl_glarg(type2, _a, a), sl_glarg(type2, _b, b), 
      sl_sharg(int, _sum, sum), sl_glarg(int, _i, i), sl_glarg(int, _j, j)); 
 sl_sync(); 
 sum=sl_geta(_sum); 
 c[i][j]=sum; 
} 
sl_enddef 
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Figure 4.5. An Application which Concurrently Multiplies two Matrices a, b (10x10 

size) and Stores the Result in the c Matrix. 

Another more complex example is the matrix multiplication one, already described in 

Figures 4.3 and 4.4. The SL / SVP implementation is illustrated in Figure 4.6. 

4.4. The Toolchain 

 The SVP’s toolchain is simple and efficient. The main component is the SL 

compiler which takes as input a program written in the SL language and produces a 

binary output ready to be executed by an SVP-compatible multicomputer system. For 

the convenience of the developer, the compiler may output a binary file that is 

essentially sequential. This option exists so that the programmer can check whether 

the code works properly in a sequential manner before proceeding into the actual 

parallel form. In the case of a fully parallel code, a simulator system is also provided. 

That system is an environment capable of simulating any type and size of microgrid 

with the OS-on-chip attached. The simulator can be used both to debug code and to 

evaluate it. Once the simulation completes, the programmer receives a number of 

helpful metrics about the application such as total master CPU cycles and so on. 

Schematically the Toolchain can be visualized by Figure 4.6. 

 Since the SL language is an intermediate level between high level and 

machine level, it is not expected by a user to code in SL (although that is perfectly 

sl_def(family_i, void, sl_glparm(type2, _a), sl_glparm(type2, _b), sl_glparm(type2, _c)) 
{ 
 Sl_index(i); 
 type2 a=sl_getp(_a); 
 type2 b=sl_getp(_b); 
 type2 c=sl_getp(_c); 
 
 sl_create(,,0,10,1,,,family_j, sl_glarg(type2, _a, a), sl_glarg(type2, _b, b),  
     sl_glarg(int, _i, i), sl_glarg(type2, _c, c)); 
 sl_sync(); 
} 
sl_enddef 
sl_def(t_main, void) 
{ 
 Type2 a, b, c; 
 sl_create(,,0,10,1,,,family_i, sl_glarg(type2, _a, a), sl_glarg(type2, _b, b), 
      sl_glarg(type2, _c, c)); 
 sl_sync(); 
} 
sl_enddef 



53 

 

 

acceptable and normal). Instead the Toolchain is augmented with two more tools: An 

automatic compiler which transforms sequential C code to SL (The C2κTC/SL 

presented in this thesis) as well as an automatic compiler which transforms SaC 

(Single Assignment C) [73] to SL. These two compilers allow legacy code in C and 

data parallel code in SaC to be automatically parallelized. The main idea behind the 

toolchain is that ideas can be expressed in a high level language such as SaC or a 

(rather) structured C code and then see them run in a many-core environment. 

“Communication” in the toolchain takes part completely via the use of files. Each 

program takes an input and generates an output which in turn is used as the input of 

the next program. The augmented Toolchain is depicted in Figure 4.7. More 

information on the SVP model can be found in [74] and [75]. 

 

 

Figure 4.6. The Typical SL/SVP Toolchain. 
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Figure 4.7. The Augmented SVP Toolchain. 
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CHAPTER 5. THE C2μTC/SL COMPILER 

 

5.1. Introduction 

5.2. One-Dimensional Loops 

5.3. Multi-Dimensional Loops 

5.4. From C to SL 

5.1. Introduction 

 As it was stated in the previous chapter, SVP requires a different way of 

thinking when describing parallelism to the system through the use of SL. This also 

means that mapping loops created in a traditional sequential language (like C) onto 

SL automatically requires a new compiler. For that reason, C2κTC/SL was created. It 

is a source-to-source compiler which takes as input sequential C code and attempts to 

discover and expose as much of the hidden parallelism inside the code and then 

rewrite it into SL. 

 C2κTC/SL focuses on loop structures. The reasoning behind this design 

choice is threefold: (i) loops have the potential for high degrees of parallelism (ii) 

most of the execution time of a program is spent inside loops and (iii) the SVP model 

offers special mechanisms that help accelerate single-dimensional loops. Hence, 

C2κTC/SL’s goal is the transformation of loops into families. In the case where no 

dependences exist inside the original loop, then everything is mapped onto completely 

parallel threads inside a family otherwise the synchronizing channels are used to 

impose proper statement order. 

 Due to the fact that an SVP family is by definition a single-dimensional entity, 

translating multi-dimensional loops with loop carried dependences to families is a 

non-trivial task. That is why C2κTC/SL differentiates between loops of a single 

dimension and loops of multiple dimensions and acts accordingly in each case. 
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5.2. Single-Dimensional Loops 

 Single-dimensional loops can be mapped directly on SVP families and are 

categorized based on whether they contain loop carried dependencies (which indicates 

that a loop can be fully executed in parallel) or not  and on what kind of ordering  the 

loop carried dependencies impose on the execution (which even though it denies full 

parallelism, some might still be possible to expose). There are several categories that 

emerge based on this distinction and a list of them (alongside their transformation to 

SL) follows: 

5.2.1. Loops without Dependencies 

 This is the simplest category of loops. A typical example looks like the one in 

Figure 5.1. (c is considered a constant or an expression which does not access A in 

any way). Figure 5.2 illustrates a slightly different loop that belongs to the same 

category: Even though there is a reference to A on the left-hand side of the 

assignment, there is no loop carried dependency, since each iteration of i only 

references itself and no other. 

 

 

 

Figure 5.1. Typical Loop Without Dependencies. 

 

 

Figure 5.2. Another Example of a Loop Without Dependencies. 

 The way to transform these loops is quite simple and straightforward. A 

family of threads is created with the same bounds and stepping as the original loop 

and without any synchronization channel since each thread inside that family can 

execute in parallel. The code that each thread executes is the same code as the loop 

body, augmented with statements that deal with the decoupling of values from the 

for ( i=0; i< N; i++) 

 A[i] = c; 

 

for ( i=0; i<N; i++) 

 A[i] = A[i] + c; 
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various global channels into local variables. The transformed code is depicted in 

Figure 5.3. Invocation of that family from the parent thread is illustrated in Figure 5.4.  

 

 

 

 

 

 

Figure 5.3. The End Result of the Transformation of the Loop in Figure 5.2. 

 

 

Figure 5.4. Invoking the Family of Threads of Figure 5.3 from the Parent Thread. 

5.2.2. Loops with a Single Dependence 

 A more complicated situation arises when a loop carries a single dependence 

of an arbitrary length of x, where x ≥ 1. In the extreme case where x=1 (a unary 

dependency), the original (pre-transformation) code looks like the one in Figure 5.5. 

The index space with the appropriate dependences is visualized in Figure 5.6. 

 

 

 

Figure 5.5. A Typical Example of Unary Dependency. 

 

Figure 5.6. Visualization of the Index Space that Figure 5.5 Produces. The Dashed 

Arrow Indicates the Direction and Length of the Loop Carried Dependence. 

sl_create( thread, void, sl_glparm(int, _c), sl_glparm(int *, _a) ) 

{ 

 sl_index( i ); 

 int *A=sl_getp(_a); 

 int c=sl_getp(_c); 

 

 A[i] = A[i] + c; 

} 

sl_enddef 

 

sl_create(,,0,N,1,,,thread, sl_glarg(int, _c, c), sl_glarg(int *, _a, A) ); 

sl_sync(); 

 

for (i=1;i<N;i++) 

 A[i]=A[i-1]+c; 

 



58 

 

 

 It is clear that the synchronizing channel mechanism must be used to ensure 

proper statement order inside the family of threads that will replace this loop. 

However, since each iteration is expecting the result of the previous one, it is a perfect 

opportunity to utilize the synchronizing memory’s ability to transfer data between 

threads. By passing the result of the computation of each thread to its successor 

through a shared variable, then each thread will not need to read the value from the 

global memory (A[i-1] per i) before it will perform its own calculation. This 

mechanism offers a high increase in efficiency by utilizing SVP’s channels (that can 

be implemented in hardware) in a smart manner. Figure 5.7 displays the transformed 

result alongside its invocation code from the parent thread. Statements in bold 

indicate the beginning and end of the critical section inside the thread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. The Transformed Result of the Code in Figure 5.5.  

 All the family threads will initialize (decouple) their variables in parallel, 

calculate the result variable in a critical section, store it in the respective global 

memory place and then pass it over to their successor thread in the chain through the 

sl_def(thread, void, sl_shparm(int,_shared), sl_glparm(int *,_a), sl_glparm(int, _c) ) 

{ 

 sl_index(i); 

 int c = sl_getp(_c); 

 int *A = sl_getp(_a); 

 

 int result; 

 

 int shared=sl_getp(_shared); 

  

 result=shared+c; 

 

 A[i]=result; 

 

 sl_setp(_shared, result); 

} 

sl_enddef 

 

sl_create(,,1,N,1,,,thread, sl_sharg(int, _shared, A[0]), sl_glarg(int *, _a, A), 

 sl_glparm( int, _c, c) ); 

sl_sync(); 
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shared variable.  In order for this computation to work properly, the original value of 

A[0] must be passed through to the first thread through the synchronizing channel and 

that is the purpose of the initializing part in the sl_create statement. It is worth noting 

here that the dependent family is always executed on a single core and allows multiple 

threads to tolerate high memory access latencies. Additionally, although it would 

make more sense for the compiler to emit the sl_setp directive as early as possible in 

the code to allow for maximum parallelism, such a feature is not currently supported. 

 A more general example of the single dependence category is depicted in 

Figure 5.8. (code) and the corresponding index space visualization is illustrated in 

Figure 5.9. 

 

 

Figure 5.8. A Typical Code Example of a Uniform Dependency with Length x. 

 

Figure 5.9. Index Space Visualization of a Single Dependence of Length x=2. 

 The way C2κTC/SL deals with such a situation is a bit more complex than the 

previous case: A dependence of length x, creates a series of implied data chains. 

Careful examination of Figure 5.9 shows that indices 2, 4, 6, 8, … belong to one data-

chain while indices 3, 5, 7, … belong to another. Moreover, those two data-chains are 

completely independent from one another. Generally, a single dependence of length x, 

implies x completely independent data-chains. The first contains the index set (x, 2x, 

3x, …) the second contains the set (x+1, 2x+1, 3x+1, …) etc. with the final one 

containing the set (2x-1, 3x-1, 4x-1, …). 

for (i=x;i<N;i++) 

 A[i]=A[i-x]+c; 
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 In essence, even though a dependence exists, there is still parallelism to be 

exploited. All x data-chains can be executed in parallel which signifies a theoretical 

(in an ideal universe) increase of efficiency by a factor of x compared to the 

sequential model of execution. Taking into consideration the fact that each data chain 

is implemented by a single family (with a single shared variable which carries the 

value throughout the family), and that all x families need to run in parallel, which 

makes these families themselves children of another family of concurrently running 

threads, means that the hierarchy in the end is a bit more complex than the previous 

one since it now involves one more level in the concurrency tree. Figure 5.10 

demonstrates the transformed code for such a paradigm alongside the invocation of 

the whole hierarchy that needs to be called in the parent thread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Transforming the Code of Figure 5.8. Notice the Increase in Hierarchy 

Complexity. 

sl_def(sequential, void, sl_shparm(int, _shared), sl_glparm(int *, _a), sl_glparm(int, _c) ) 

{ 

 sl_index(i); 

 int *A=sl_getp(_a); 

 int c=sl_getp(_c); 

 int result; 

 int shared=sl_getp(_shared); 

 result=shared+c; 

 A[i]=result; 

 sl_setp(_shared, result); 

} 

sl_enddef 

 

sl_def(parallel, void, sl_glparm(int *, _a), sl_glparm(int, _c) ) 

{ 

 sl_index(i); 

 int *A=sl_getp(_a); 

 int c=sl_getp(_c); 

 sl_create(,,i,N,x,,,sequential, sl_sharg(int, _shared, A[i]), sl_glparm(int *, _a, A), 

           sl_glparm(int, _c, c) ); 

 sl_sync(); 

} 

sl_enddef 

 

sl_create(,,x,2*x-1,1,,,parallel,sl_glarg(int *, _a, A), sl_glarg(int, _c, c) ); 

sl_sync(); 
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5.2.3. Loops with Multiple Dependencies 

 As the last test case, loops with multiple dependencies are examined. A typical 

one dimensional loop with a series of different dependences is depicted in Figure 

5.11, while Figure 5.12 demonstrates the (rather complex) index space. More specific 

cases might lack some of the dependences displayed, yet they are no different in their 

transformation than the general case. Considering that there are a total of x 

dependencies in the loop, we can see that in the end there will be x different shared 

variables, each shifting one place per iteration, and all of them are used to calculate 

the final result for every thread. 

 

 

Figure 5.11. A Loop With x Different Dependencies. 

 

Figure 5.12. Visualization of the Loop of Figure 5.11. 

 

 

 

 

 

 

 

 

for (i=x; i<N;i++) 

 A[i]=A[i-1] + A[i-2] + … + A[i-x] + c; 

 

sl_def(thread, void, sl_shparm(int, _s1), sl_shparm(int, _s2), …, sl_shparm(int, _sx), 

 sl_glparm(int *, _a), sl_glparm(int, _c) ) 

{ 

 sl_index(i); int result; 

 int *A=sl_getp(_a); 

 int c=sl_getp(_c); 

  

 int s1=sl_getp(_s1), s2=sl_getp(_s2), …, sx=sl_getp(_sx); 

 result=s1+s2+s3+…+sx+c; 

 A[i]=result; 

 

 sl_setp(_s1, s2); sl_setp(_s2, s3); …; sl_setp(_sx, result); 

} 

sl_enddef 
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Figure 5.13. Transformation and Invocation of a Loop with Multiple Dependencies. 

 It is worth noting here that at first glance nothing is gained. Both the original 

and the transformed code run sequentially. However the transformed code passes all 

the relevant data from thread to thread via the hardware synchronizing channel which 

helps alleviate the burden of accessing the global memory for every element needed. 

This helps increase speedup quite substantially. 

5.2.4. Loops with Anti-Dependencies 

 As has been mentioned at a previous chapter, anti-dependencies are not true 

dependencies. When such a case of false dependency emerges, C2κTC/SL ustilizes a 

typical false dependence elimination technique: it copies the original array into a 

temporary array and then performs the actual computation. Figure 5.14 demonstrates 

code with an anti-dependence while Figure 5.15 shows the transformed code. 

 

 

Figure 5.14. A Typical Loop with an Anti-dependence. 

 

 

 

 

 

 

 

 

 

 

for ( i=0; i<N-x; i++) 

 A[i] = A[i+x]+c; 

 

sl_def(thread, void, sl_glparm(int *, _A), sl_glparm(int *, _Temp), 

 sl_glparm(int, _c), sl_glparm(int, _step)) 

{ 

 sl_index(i); 

 

 int *A=sl_getp(_A); 

  int *Temp=sl_getp(_Temp); 

 int step=sl_getp(_step); 

 

 if (step==1) Temp[i]=A[i]; else A[i]=Temp[i+x]+c; 

} 

sl_enddef 

 

sl_create(,,x,N,1,,,sl_sharg(int, _s1, A[0]), sl_sharg(int, _s2, A[1]), …, 

 sl_sharg(int, _sx, A[x-1]), sl_glarg(int *, _a, A), sl_glarg(int, _c, c) ); 

sl_sync(); 
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Figure 5.15. Transformation and Invocation of the Anti-Dependence Loop. 

This method completes the task with maximal parallelism albeit at the cost of 

reserving extra memory for the temporary array. 

5.3. Multi-Dimensional Loops 

  

 Multi-dimensional loops are again divided into two major categories. Loops 

free from loop-carried dependencies and ones with dependencies. As we already 

know, lack of dependencies completely removes the need for maintaining any 

ordering in the execution of the code. So these kinds of loops are trivially transformed 

into fully parallel families. Each level in the loop-nesting corresponds to a family that 

executes completely in parallel. This creates a loop hierarchy similar to the one of the 

matrix multiplication example but without the sequential innermost loop. 

 However, in the case where loop carried dependencies do exist, the status quo 

changes. There is an ordering imposed in multiple dimensions now. C2κTC/SL can 

transform perfectly nested loops with a dependence vector into parallel constructs by 

utilizing the idea of Lamport’s hyperplane method. However, since finding the 

optimal execution schedule for the hyperplances is not a trivial case, C2κTC/SL opted 

for a novel solution: Instead of pre-calculating the entire transformation (in compile 

time), most of the calculations are delegated to run-time. The hyperplanes are 

intuitively discovered and scheduled by tracing the dependence vector while 

executing the loop body. The whole algorithm is quite complex and so it will be 

presented in two steps: (i) The fixed size algorithm, which is the original and the main 

idea behind (ii) The self-adaptive algorithm which builds on (i) but completes it. 

sl_create(,,x,N,1,,,thread, sl_glarg(int *, _A, A), sl_glarg(int *, _Temp, Temp), 

 sl_glarg(int, _c, c), sl_glarg(int, _step, 1)); 

sl_sync(); 

 

sl_create(,,0,N-x,1,,,thread, sl_glarg(int *, _A, A), sl_glarg(int *, _Temp, 

 Temp), sl_glarg(int, _c, c), sl_glarg(int, _step, 2)); 

sl_sync(); 
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5.3.1. The Fixed-Size Algorithm 

 The main idea of the run-time algorithm is simple. If at any given moment, we 

know which sets of indices (index tuples) can execute, then by applying the 

dependence vector on that set, we can find out which tuples will execute at the next 

step. Consider Figure 5.16 which displays an excerpt from a random state of program 

execution. The grayed out index points indicate which indices execute at the current 

time (execution cycle). By applying the dependence vector (the arrows) in the set of 

indices currently executing, we can derive the set of indices that will execute in the 

next cycle (the white ones). 

 This algorithm emulates a mechanism where each index tuple locks down on 

itself (through the use of semaphores, one for each dependence) and each index tuple 

that executes, sends an unlock signal to the ones that depend on it (according to the 

vector). Since it is not possible to have a system with that many semaphores and in 

order to emulate the mechanism we need an n-dimensional array (2-d in the 

aforementioned example) which is initialized with 0 in all its cells. This array will 

store the number of dependences each cell satisfies at any given time. Before that 

array is created however, tiling needs to be applied to the index space since this 

algorithm does not offer satisfactory results at the finest level of granularity (as will 

be demonstrated in Chapter 6. Tiling is only applied on the innermost dimension as is 

demonstrated by Figure 5.17.  

 

 

Figure 5.16. A Random State of the Index Space of a Nested Loop with two 

Dimensions. Arrows Indicate Dependences (2 in this Example). 
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Figure 5.17. A Two-Dimensional Index Space Before and After Tiling. Each Tile has 

a Length of 3. 

 There are two reasons explaining the single dimensionality of the tiles: (i) A 

single dimensional tile can be applied on the SVP logic and architecture as a single 

family and thus be efficiently executed thanks to the relevant mechanisms. (ii) By 

organizing indices of the innermost loop (of the loop nesting) together cache usage is 

improved since these elements are usually mapped in neighboring memory addresses. 

Once tiling has been applied with a length of N per tile, then the algorithm begins 

execution (note that everything described is done during the actual execution and not 

during compile time) and a n-dimensional array is created with each cell 

corresponding to a tile. The cells of the array are then initialized with the number of 

dependences the corresponding tile has satisfied at the start of the execution. All the 

tiles that satisfy all their dependences store their index coordinates (in the form of 

tuples) inside a set of tuples V1. At this point, a two-step computation takes place: 

 

1. Create |V1|+1 threads and synchronize. |V1| returns the number of tuples stored 

inside V1. All threads “Perform Computation”. 

2. If |V2| = 0 then computation ends. Otherwise copy V2 into V1, clear V2 and 

goto 1. 

 

“Perform Computation” comprises of the following steps (in the form of a pseudo-

code function): 
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Perform_Computation() 

{ 

 index i;  

 if (i<length((V1)+1) 

 {  

           create family of N threads with coordinates of the ith tuple in V1; 

           sync_family ; 

           return ; 

 } 

 else 

 { 

           for each tuple v in V1 

                     for each dependence d in dependence vector D 

                     { 

                               index tuple t= v + d; 

                               array[t]++; 

                               if (array[t]==length(D)) 

                                         add t to set V2; 

                      } 

 } 

} 

 In short, at any given computation cycle, |V1|+1 threads are created that run 

concurrently. |V1| of them perform the actual original code’s computation. This is 

actualized by creating a single family per V1 tuple with size of N threads. The first 

thread in the family has the coordinates of the particular tuple that spawned the family 

while the rest of the threads follow on from that. Each of these families is executed in 

a sequential manner which means that parallelism in this algorithm is exploited 

between different families (hence the coarse level of granularity).  

 While those |V1| threads execute their computation, the last thread (called the 

scheduler thread) is actually traversing |V1| and adds each dependency from the 

dependence vector to each tuple of V1. The new tuples that are produced that way are 

used as coordinates on the array which stores the number of currently satisfied 

dependences. Each of these new cells’ values are increased by 1 per dependency and 

if that value reaches the total number of dependences, then those coordinates are 

added in set V2. This means that V2 stores the coordinates of the index tuples that will 

execute in the next computational cycle. If at the end of the computation cycle V2 is 

empty, then this means that the entire index space has been covered and the 

computation ends. 



67 

 

 

 For the sake of completeness a pseudo-code example is provided to help 

clarify its inner workings and help provide better understanding of the self-adaptive 

algorithm. Suppose the original code looks like the one in Figure 5.18. In this 

example there are clearly two dependences at work: (1,0) and (0,1). This means that 

the dependence vector D is the set D={(1,0), (0,1)}. C2κTC/SL will output the entire 

algorithm as the transformed version of the loop and everything else will take place at 

run time. 

 

 

Figure 5.18. The Original Code to be Transformed. The Corresponding Dependence 

Vector D={ (1,0), (0,1) }. 

 The algorithm, firstly, creates (dynamically) a two-dimensional array of size n 

x (n / N) where N is the fixed size of the tiles that will be used and then initializes the 

whole array. Initialization is pre-computed by the compiler and as such, it is tailored 

to that particular problem. This happens in order to reduce the initialization overhead. 

In the current problem with the particular dependence vector, the algorithm initializes 

the entire array except the first row and column with the value 0, the entire first row 

and column with the value of 1 and the corner at that intersection (index tuple (0,0)) 

with the value of 2. Since the total number of dependences is 2, that particular tuple is 

added to V1. V2 is set to be empty at this point. Figure 5.19 demonstrates the array as 

it is inialized. With this setup we know how many dependencies each tile has 

satisfied, which tiles can execute and which ones should stay dormant.  

 

1 0 0 0 0 0 

1 0 0 0 0 0 

1 0 0 0 0 0 

1 0 0 0 0 0 

1 0 0 0 0 0 

2 1 1 1 1 1 

Figure 5.19. The Dependence Array as it is Initialized for a Nested Loop with a 

Dependence Vector D={ (1,0), (0,1) } 

for (i =1; i < n ; j ++) 

 for ( j = 1; j < n; j++) 

           a[i][j] = a[i-1][j] + a[i][j-1]; 
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 C2κTC/SL analyses the dependence vector and outputs the necessary code 

that will have each cell to be initialized with an appropriate value. Figure 5.20 

demonstrates how these values are assigned to an array given a dependence vector of 

{(a, 0), (0,b)} where a and b are greater than 0. 

 

Figure 5.20. How the Dependence Array is Initialized Based on the Dependence 

Vector {(a,0),(0,b)}. 

 Cells near the edge of the array will always have at least one dependence 

satisfied (the one that comes from outside the grid) and cells where those areas 

intersect will contain the result of the summation of the each comprising area. In the 

case of having a dependency with negative components then the upper row of the 

array needs to be also initialized with appropriate values. Additionally, dependencies 

non-parallel to the axes are split into multiple dependencies parallel to the axes. I.e. a 

dependency of (1,1) becomes (1,0) , (0,1). 

 

The main loop of the algorithm is simple enough: 

 

while (true) 

{ 

 Create (sizeof(V1) + 1) threads; 

 Synchronize threads(); 

 if (sizeof(V2)==0) then break; 

 Copy(V2, V1); 

 Empty (V2); 

} 

 

Each thread runs the following code: 

 

ThreadBody 
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{ 

 Thread_index in; 

  

 if (in < sizeof(V1)) then 

 { 

           coordinates[] = V1.tuple[in]; 

           i = coordinates[0]; 

           j = coordinates[1];  

  

           create a sequential family of N threads with thread body 

                      the main program procedure( i, j); 

           Synchronize threads(); 

 } 

 else 

 { 

           for ( a = 0 ; a < sizeof(V1) ; a ++) 

           { 

                      coordinates[] = V1.tuple[a]; 

                       i=coordinates[0]; 

                      j=coordinates[1]; 

                      if (i+1 < n) 

                     { 

                                Array[i+1][j]++; 

                                if (Array[i+1][j]==2) addToSet(V2, i+1, j); 

                     } 

                     if (j+1 < n) 

                    { 

                                Array[i][j+1]++; 

                                if (Array[i][j+1]==2) addToSet(V2, i, j+1); 

                    } 

           } 

 } 

} 
 

The addToSet procedure adds a new index tuple into V2. Each set is essentially a 

dynamic array which can continually expand when the need for more data arises. The 

main program procedure actually executes the original loop body: 

 

main program procedure (i, j) 

{ 

 Thread_index in; 

 

 a[i][j+in] = a[i-1][j+in] + a[i][j+in-1]; 

} 
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 Once the whole grid of coordinates is filled the V2 set will eventually come up 

empty and the computation will end. The dependence array at a random state looks 

like Figure 5.21. In this example, the bottom left tiles indicate computations that have 

already taken place. The light grey ones indicate the tiles being computed in the 

current cycle. The scheduler thread follows each arrow (which signifies a 

dependency) and increases the number in that cell by 1. The dark grey tiles will all 

end up with 2 dependencies satisfied and thusly they will be added to the V2 set for 

calculation in the next cycle. 

 

 

Figure 5.21. The Dependency Array at a Random State During Execution. 

 This run-time algorithm does away with trying to solve an NP-Complete 

problem and instead aims to intuitively discover the underlying parallelism. No 

hyperplanes are calculated, instead the dependence vector is applied on the index 

space and sets of tuples that can execute concurrently are discovered and scheduled. 

The end result is similar to any of the pre-computed methods which reduce the 

problem to a linear algebra one, while offering no need for heuristics. An added 

advantage of moving the solution to the run time is that irregular loops (i.e. triangular 

ones) can be dealt with exactly the same way by mapping the exploration space into 

the loop bounds. This versatility however does not come without a cost. There is an 

overhead incurred both during initialization (even if that can happen in parallel for 

maximal efficiency) and when the scheduler thread is running concurrently with the 
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rest of the computing threads so this run-time method will never be able to achieve 

the speedups offered by other methods however it can get rather close. 

5.3.2. The Self-Adaptive Algorithm 

 The fixed-size algorithm described in 5.3.1 (so called due to the fact that the 

tiles are of a fixed pre-determined size) proved to be efficient however a disadvantage 

became soon apparent. The size of the tile was not, and could not be, known 

beforehand at the beginning of the execution. This number is a crucial parameter for 

the efficacy of the whole algorithm and picking the proper size proved to be a 

challenge not easily solved in the existing form of the run-time system. 

  The problem stems from the fact that too small a size results in too many tiles 

running in parallel, while too large a size means too few parallel tiles execute per 

cycle. The former situation means that each V1 set is too large and consequently the 

scheduler must spend too much time traversing it while the rest of the computation 

threads have finished their computation. This in turn means that the main loop will 

idle for some time until the scheduler finishes. In the opposite situation, the scheduler 

finishes rather quickly however there is not enough parallelism to offset the overheads 

and so performance suffers. 

 It is reasonable to assume that the best solution lies somewhere in the middle: 

Where both the scheduler and the computation threads finish at the same time. Since 

that is practically impossible to achieve, a better solution would require all threads to 

finish their task as close to each other as possible. Measurements have validated this 

assumption, hence our best approach to a good tile size is the one that will create as 

many parallel tiles as are needed so as not to overwhelm the scheduler thread. Since 

this magic number is dependent on the problem, it becomes apparent that there is no 

method of calculating it. This led to the creation of a new algorithm, based on the 

fixed size one, however equipped with the ability to alter that tile size during 

execution in order to fine tune execution and aim for the optimal result. The self-

adaptive algorithm is the next logical step to the fixed-size one. It incorporates all the 

versatility of moving the solution to the run time while at the same time abolishes the 

need for pre-existing knowledge of the tile size (or even resorting to some heuristics). 
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In order for the self-adaptive system to work, various changes and additions to the 

main algorithm were needed. 

  Firstly, a methodology was required which could determine at any given 

computation cycle whether the tile size needs to be increased or decreased: The 

execution time of all tiles that run in parallel and the execution time of the scheduler 

thread during each iteration are measured. Once each tile finishes, it stores its total 

execution time (in master CPU cycles) in an array. At the iteration’s end, the slowest 

tile is selected and its timings are compared with the scheduler’s ones. A distance 

between those two numbers is calculated which models the value of one as a 

percentage of the other. According to that distance then the following take place: 

 If the absolute value of the distance is less than or equal to 0.25 (25%) then the 

two numbers are considered close to each other and no change is needed in the 

tile size. 

 Otherwise: 

- If the scheduler finished before the tiles, then more tiles are needed to keep 

the scheduler occupied and hence the tile size needs to be reduced by 1. 

- If the scheduler finished after the tiles did, then fewer tiles are needed so 

the tile size needs to be increased by 1. 

 

 The main idea of the self adaptive algorithm is that once a particular tuple of 

indices finishes execution, then the following tuple in the lexicographic order will 

execute as well. In order for this to happen, a dependency is needed with the form of 

(0, 0. . . 0, a). When such dependence exists then “a” is considered to be of value of 1 

since the length is irrelevant: the next tuple will execute from the point the current one 

ends. If there is no such dependency in the dependency vector then loop interchange 

is applied with the aim of creating one. 

 The algorithm solves the problem in an idealized index space that starts at (0, 

0… 0) and its volume extends in all dimensions ad infinitum. The tiles before their 

execution transform those coordinates into proper index variables by adding the 

offsets for each dimension. The solving part is only interested in sets of indices in the 

form of (a, b, c, d… 0) since it is not possible to calculate which family in the 

innermost dimension can start due to the fact that the task size changes all the time. 
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However, based on the premise that once a tile starts working in the (a, b, c, d… 0) 

coordinates, we know that all of its subsequent successors will always be added in the 

queue to be executed since the dependency (0, 0, 0, …, 1) is always satisfied.  

 There is one final element that is needed for the self-adaptive algorithm to 

work properly. A method is needed to keep track of the index space that has been 

already covered by computation. This is necessary since with all the fluctuations of 

the tile size, a tile might be created with a length that surpasses this limitation and 

thusly be in danger of ruining the dependency order. To avoid such a situation, an 

extra array is used which stores the lengths covered for each coordinate of the form (a, 

b, c, …, 0). This array is called the front since it tracks the computational front as it 

expands over the index space from iteration cycle to iteration cycle. With everything 

mentioned so far in mind, during each iteration cycle the following series of events 

takes place: 

 1. The set of coordinates from the V1 set is passed to the processing threads. 

There they are converted into proper index coordinates (by adding the corresponding 

offsets) and then the current front in the innermost dimension is assigned to be the 

starting coordinate. The current tile size is added and the ending coordinate is 

calculated. If it exceeds the loop bounds or the adjacent front (in the case where the 

task size grew since the previous cycle) then it is clamped accordingly. A second 

array which acts as a temporary front is updated when this computation finishes with 

the new front value for the current coordinates. 

 2. A thread family creation takes place which runs sequentially and performs 

computations on the set of the calculated indices. This family is timed and the amount 

of cycles it took is stored in an array. 

 3. The scheduler thread computes the next set of indices but it is only 

interested in families that will begin execution in the innermost dimension. Once the 

total number of dependencies satisfied reaches the total number of dependencies, then 

the particular tuple is added in the set of indices to be executed in the next cycle. The 

scheduler also adds to the same set the lexicographical successors of the tuples that 

are already running, as long as they don’t exceed the front or the loop bounds. 

 4. The new temporary front array values are copied in parallel to the current 

front values. 
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 5. The tile that took the longest time to complete is selected and its total time 

is compared to the time that the scheduler thread needed to complete and their 

distance is calculated. Once the distance is known,  

 (a) If the distance is lesser than or equal to 25% tile size remains the same. 

 (b) If the distance is greater than 25% and the scheduler finished first the tile 

size is reduced by one since more tasks are needed. 

 (c) If the scheduler finished after the computations then the tile size is 

increased by one. 

 This continues until the V2 set returns empty which signifies the 

computation’s end. The whole algorithm in pseudo-code form follows: 

 The dependency array now changes and has its dimensionality reduced by one 

(since there is no point tracking dependences in the innermost dimension). In the case 

of the previous example with a two-dimensional loop and a dependence vector of 

{(1,0),(0,1)} it looks like Figure 5.22. 

 

2 1 1 1 1 1 1 1 1 1 

Figure 5.22. The Initialized Dependence Array for a Dependence Vector of 

D={(1,0),(0,*)} 

 By following that dependence array, we can see that in this example the first 

column with coordinates (0,0) gets “activated” first. Once it is activated, its 

successors (all tiles with coordinates in the form of (0,x)) will be queued for execution 

one by one. When the first tile finishes the second column (1,0) will activate and 

begin executing and so on. 

 

The main tile procedure is: 

main program procedure (i, j) 

{ 

 Thread_index in; 

 j = j + in; 

 a[ i ][ j ] = a[ i – 1 ][ j ] + a[ i ][ j – 1 ]; 

} 

 

The ThreadBody now becomes as follows:  
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ThreadBody 

{ 

 Thread_index in; 

 if ( in < sizeof(V1)) then 

 { 

           coordinates[ ] = V1.tuple[ in ]; 

           i = coordinates[ 0 ] + offset_i ; 

           Depending on the status of Nold and Ncurrent 

           calculate the “newFront[]” “length” and “coordinate” variables 

 

           clockStart=getClock(); 

           if (length > 0) then 

           { 

                     create a sequential family of length threads with 

                               thread body the main program procedure( i, j); 

                     Synchronize Threads(); 

           } 

           clocks[in]=getClock() – clockStart; 

 } 

 else 

 { 

           clockStart = getClock(); 

           for (a = 0; a < sizeof(V1) ; a++) 

           { 

                     coordinates[] = V1.tuple[a]; 

                     i = coordinates[0] + 1; 

                     j = coordinates[1]; 

                     if (i>=offset_i AND i<n and j==0) then Array[i][j]++; 

                     if (Array[i][j]==2) then addToSet(V2, i, j); 

                     i = coordinates[0]; 

                     j = coordinates[1] + 1; 

                     if (Front[i+offset_i] < n) then addToSet(V2, i, j); 

           } 

           Clocks[in]=getClock() – clockStart; 

 } 

} 

 

The main while loop also changes into the following (Ncurrent stores the current tile 

size): 

Nold = Ncurrent; 

while (true) 

{ 

 Create sizeof(V1) + 1 threads 

 Synchronize threads(); 

 if (sizeof(V2)==0) then break; 

 

 Copy NewFront[] to Front[] in parallel; 
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 max=Clocks[0]; 

 for (a=1; a<sizeof(V1); a++) 

           if (Clocks[a]>max) then max=Clocks[a]; 

 

 percentage=(Clocks[sizeof(V1)] – max) / Clocks[sizeof(V1)]; 

 

 Nold = Ncurrent; 

 

 if (Absolute(percentage) > 0.25) then 

 { 

           if (percentage < 0) then Ncurrent--; 

           else Ncurrent++; 

 } 

 Copy(V2, V1); 

 Empty (V2); 

} 

 

 Figure 5.23 illustrates a random state of the dependency array. It is also worth 

noting that the only time the dependence (1,0) is taken into consideration when it 

points to a coordinate in the form of (a, 0) otherwise it is completely ignored since 

each tile queues the one above it in the V2 set. Light grey tiles indicate the ones that 

are executing in the current iteration cycle while the arrows point to the ones that will 

be queued for execution in the next cycle. In that particular state, we can see that five 

on the “columns” have already been activated. Each activated column will keep rising 

until the loop bounds are reached. At the same time, each tile running on a column 

checks the front value of the column on its left in order not to move past it. Such an 

action might result in some computation taking place before its data are ready and 

produce false results. As the scheduler traverses all the running tiles, it eventually will 

notice that the fifth column increases the value at its right by one and this signifies 

that in the next cycle the sixth column can be activated as well.  
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Figure 5.23. A Random State of the Dependency Array with the Executing Tiles. 

5.3.3. Anti-dependences 

 While, in single-dimensional loops, anti-dependences are simply treated by 

utilizing a temporary array to copy the current one, when it comes to multi-

dimensional loops, C2κTC/SL uses a different transformation. Instead of creating a 

copy array which might require large amounts of memory, it treats anti-dependences 

as dependences. For example a dependence vector of D={(-1,0), (0,-1)} is a vector 

that contains anti-dependences. In this case, C2κTC/SL without altering the code at 

all, multiplies the vector with the number -1. The new vector becomes D’={(1,0), 

(0,1)} which is a vector with dependences. When this happens it is a simple matter of 

employing the Self-Adaptive algorithm to deal with the problem. 

 This method solves the anti-dependence problem without sacrificing more 

memory and at the same time with some amount of parallelism exploited (although 

not full parallelism as would be the original case). This solution incorporates 

dependences and anti-dependences into one problem. An example loop which carries 

both types of dependences is one with a dependence vector of D={(1,0), (0,1), (-1,0), 

(0,-1)}. By switching the signs of the anti-dependences the new vector becomes 

D’={(1,0), (0,1), (1,0), (0,1)} which after simplification (since the same dependences 

appear more than once) ends up as D’={(1,0), (0,1)}. That way, the same Self-

Adaptive algorithm that would have to be employed in the first place takes care of the 

anti-dependence problem as well in a parallel manner. More information on the Self-

Adaptive Algorithm can be found in [1] from the Author’s Publications. 
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5.4. From C to SL 

 Due to a series of software engineering related choices (affected by time 

constraints), C2κTC/SL works on a subset of the C language. In particular, the 

compiler only allows and attempts to parallelize the main function on an application's 

source file. Any other functions can be declared and implemented in other external 

files. The final executable can be produced by compiling all of the files together. 

 Since C2κTC/SL does not try to perform any sort of inter-procedural analysis, 

that is not a problem by itself. In addition, the existence of any jump statement (like 

goto or continue / break) is not supported. Jumps disrupt the natural flow of the code 

and can give the impression of a loop to the loop analysis component when jumping 

back into the code. Similarly, break and continue can also cause flow control 

problems hence they too are unsupported. Additionally, global variables are not 

supported; all should be declared inside main. Appendix B illustrates the subset of the 

C grammar (in BNF form) that is formally supported by C2κTC/SL. Unsupported 

programs do go through but the output of the compiler cannot be predicted and is at 

best random and chaotic and may even fail to compile.  

 Regardless of the source code being properly supported or not, the actual 

transformation is a two-part process: (i) Phase one entails parsing and analyzing the 

original source code and its loops. If everything goes well, an equivalent to the source 

code is produced but in a different, intermediate representation (IR). The IR contains 

the entire source code, broken down in basic blocks, with partially simplified 

expressions and where flow of code is only directed with gotos. Phase One is 

performed by an external compiler tool, called CoSy [76]. (ii) Phase Two is using the 

output of phase one (IR, loop analysis) as input to produce the final result. The code 

from the IR is reverse-transformed back into C-type code while knowledge of all the 

loops (index variables, boundaries, step values, basic blocks included in the loop) is 

used for loop analysis. That kind of analysis however first needs the loops to be 

organized into single units and to be examined as such units. These units form the 

basis of C2κTC/SL's functionality as they are the fundamental blocks that get 

analyzed and transformed (depending on the analysis). These loop groups are called 

Masterloops. 
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5.4.1. The Masterloops 

 A masterloop is nothing more than a perfect nesting of loops. It contains, in its 

loop body, statements as well as more masterloops. All analyses and transformations 

take place on a per masterloop basis and they are all independent from one another. 

Figure 5.24 demonstrates a code snippet where everything belongs to one masterloop, 

masterloop 1, which is comprised of loops i and j and contains a single statement as 

its body.  

  

 

Figure 5.24. A Perfect Loop Construct Which Comprises a Single Masterloop. 

 Figure 5.25 displays the classic matrix multiplication code that has been used 

before. Loops i and j are perfectly nested and behave as a single structure while loop k 

is independent from the previous ones and performs its own calculations. If loop k 

was missing, then the original nesting would still make sense: For each iteration (i, j) 

the variable sum would take the value of 0 and each element of C[i][j] would take the 

value of sum. Following this logic, C2κTC/SL separates that code into two 

masterloops: Masterloop 1 is created by loops i and j, and its loop body contains the 

statement “sum=0”, another masterloop and the statement “C[i][j]=sum”. Masterloop 

2 is comprised only of loop k and its body is the same as the loop body of k. Each 

masterloop is analyzed independently. In the end, once all transformations are done 

and each piece of the final code comes into place the result will be a proper 

transformed parallel matrix multiplication code. 

 

 

 

  

 

 

 

Figure 5.25. A Typical Matrix Multiplication Code which Contains Two Masterloops. 

for (i=0; i<n; i++) 

 for (j=0; j<n; j++) 

           A[i][j]=0; 

for (i=0; i<n; i++) 

 for (j=0; j<n; j++) 

 { 

           sum=0; 

           for (k=0; k<n; k++) 

                     sum=sum+A[i][k]*B[k][j]; 

           C[i][j]=sum; 

 } 
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5.4.2. Dependence Analysis in a Masterloop 

 Each Masterloop is analyzed for the existence of loop carried dependences. 

This takes place as a two-fold process. Firstly scalar variables are examined. Those 

who carry data from one loop iteration to the next signify dependence and hence those 

variables will become shared ones in the transformed code. Detecting these kinds of 

variables is relatively trivial and straightforward: Each variable inside the loop body is 

examined. If during an iteration that variable is read before it is written then it has to 

become a shared one, otherwise it is a temporary variable only viable for the current 

iteration and thusly does not impose any particular ordering in the loop. Moreover, for 

each variable under examination, the source code is further analyzed. If the current 

variable is accessed (for reading) again at some later point in the code then this means 

that this variable is carrying the result of some computation and should, again, be 

marked as a shared one. The difference is slight and can only appear in certain 

situations. Consider the code in Figure 5.26. It calculates the nth Fibonacci number. 

 

 

 

 

Figure 5.26. A Loop that Calculates the nth Fibonacci Number (n > 2, a and b are 

Initialized to 0 and 1 Respectively, c Carries the End Result). 

 When transforming this code, the variable C is first written and then read. This 

means that the compiler can detect it as a thread local one. Only by accessing c after 

the end of the loop (e.g. by printing it) can the compiler see that its value is needed 

and thusly mark it as shared so that it can be accessed after syncing. 

 The second part of the process deals with arrays and their subscripts. 

C2κTC/SL looks for expressions in the form of array[index] =array[index ± constant]. 

Through expressions like that it is able to deduce the various dependences that may 

exist and so build the dependence vector. Any other form of expression when it comes 

to array access is currently not recognized and the loop is marked as one not to be 

transformed. If no shared scalar variable is found or no array access that will result in 

for (i = 2; i < n; i++) 
{ 
 c = a + b; 
 a = b; 
 b = c; 
} 
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a wavefront solution and if the current masterloop is not marked to be left 

untransformed then it is assumed that it can be executed fully in parallel. 

5.4.3. Transformation of a Masterloop 

 During code transformation, each statement is copied into the output until a 

Masterloop is met. At that point, the transformed Masterloop takes the place of the 

original in the code and this continues until the end of the program. Each masterloop 

is transformed according to the results of the analysis that transpired in the previous 

step: 

 (i) If no dependences are located and the loop is not marked to remain 

untransformed then it is converted into a fully parallel construct. Each loop in the 

masterloop, from the innermost to the outermost, is first implemented as a thread 

function and then its corresponding invocation (through a pair of sl_create / sl_sync 

calls) is added in the appropriate place in the code. There are some compiler options 

that can dictate which of the outermost loops will be forced to run sequentially in the 

case of a deep nesting. In such a case, by having all loops run in parallel, the SVP will 

soon run out of resources and revert back into a sequential mode. In this situation it is 

prudent to have the outermost loops run sequentially in order to exploit more 

parallelism in the lower levels of the hierarchy. 

 (ii) If one (or more) shared variables have been detected then in a similar 

manner to the previous method, each loop is implemented and invoked, only this time 

the arguments of the sl_create method incorporate some shared variables, whose 

values are read right after the sl_sync (through the use of sl_geta). 

 (iii) If a dependence vector was detected, then the loop is transformed 

radically and the self-adaptive algorithm takes its place. 

 (iv) Finally if neither of the previous options applied to the particular 

masterloop, then it is copied in its entirety into the output without any transformation. 

 Returning to the matrix multiplication example described in Figure 5.25, 

C2κTC/SL makes the following deductions: The first Masterloop can be run 

completely in parallel since the variable “sum” is initialized in its iteration and the 

statement “C[i][j]=sum;” relies only on that variable which will have a place in the 

thread local storage. The second Masterloop cannot be fully parallelized. “sum” is 
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first read and then written in each iteration, thusly it is marked as a shared variable. 

Putting these deductions together results in the code illustrated by Figure 5.28. 

Several things are worth noting about the code in that Figure

 1) In order for the SL macro definitions to work properly all variable types 

must be simplified. That is, each variable can have a name and optionally a '*' symbol 

indicating a pointer to that type of variable. Multidimensional arrays cannot simply be 

used on the macro definitions, hence types are defined (using C's typedef) which are 

essentially some array of a basic type. Those new typedefs can then be easily pass 

through the macro definitions. In that particular example, the arrays are considered of 

size [10][x]. 

 2) Each create / sync is encompassed in a block of code (denoted by the { and 

} symbols). This is needed as some SVP macros declared during the creation / 

syncing might interfere with variables of the actual code. By having the whole process 

in its own block helps to easily avert confusing the compiler and producing error 

messages, interrupting the process altogether. 

 3) There is no parallel calculation of the partial sums a[i][k]*b[k][j] in that 

code. This happens due to the fact that C2κTC/SL pushes the reading of the shared 

variable down in the code, just before the statement that needs it.  

 However in this case the statement is calculating the partial sum and updating 

sum in one statement and C2κTC/SL currently lacks the capability to break the 

statement in order to interject the sl_getp statement (such a mechanism is to be 

implemented at a later stage). In order for this code to work as intended, loop k’s body 

should be like the one displayed in Figure 5.27 which also illustrates how the 

resulting code would change. 

5.4.4. Code Generation 

 The final step in the code transformation is the actual code generation. Initially 

all the typedefs are listed, followed by thread definitions for each masterloop that can 

be transformed, in such an order that any thread definition always precedes that 

thread's invocation. Each thread definition is designed to be self contained. All related 

variables are passed as arguments and initialized at the beginning of the thread code 

via the sl_getp() directive. The code body itself is the code of the masterloop. All 
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basic blocks are listed in the same order they appear in the original IR, so as not to 

change the functionality of the code in question. Each basic block before code 

emission is examined for ownership (masterloop basis). If it belongs in another 

masterloop that means that instead of listing that code, invocation for that masterloop 

is created instead in its place (assuming always that the masterloop can be 

transformed). Invocations vary according to the type of transformation incurred on the 

masterloop. After the sync, all shared variables related to that masterloop retrieve 

their values (via the sl_geta() directive) and the code listing continues. When all the 

masterloop's code has been emitted, all shared variables are written back to their 

respective shared channels (sl_setp() ) and the thread definition is finalised with the 

sl_enddef keyword. 

 Once all threads have been defined, the main thread is defined. All variables 

are declared inside of the definition as local and then code generation begins in 

exactly the same manner as before. Basic blocks are listed in turn until one is found 

that belongs to a transformable masterloop (masterloops who were deemed 

untransformable do not exist in the masterloop list so they just get emitted verbatim). 

In this case the necessary invocation is placed and the code continues with the next 

available basic block that does not belong to any loop. 

 Thread invocation code can vary depending on the kind of transformation 

applied to a masterloop and can range from simple invocations (a simple fully parallel 

loop for example) to the most complicated ones (a nested loop with a dependence 

vector where the Self-Adaptive algorithm is employed). There exists a templated code 

for each transformation case that gets emitted every time with certain variables taking 

code-specific values to ensure proper code execution. 

 

 A 

 

 

 

Figure 5.27. The Necessary Change in the Original Matrix Multiplication Code 

Needed for the Partial sums to be Calculated in Parallel. 

… 

for (k=0; k<n; k++) 

{ 

 int tmp=a[i][k]*b[k][j]; 

 sum=sum+tmp; 

} 

… 

… 

int tmp=a[i][k]*b[k][j]; 

int sum=sl_getp(_sum); 

sum=sum+tmp; 

sl_step(_sum, sum); 
… 
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Figure 5.28. The parallel result of the code in Figure 5.25. 

typedef int a10[10]; 
sl_def(masterloop_2_k, void, sl_glparm(a10 *, _a), sl_glparm(a10 *, _b), sl_shparm(int, 
_sum), sl_glparm(int, _i), sl_glparm(int, _j)) 
{ 
 sl_index(k); 
 int i=sl_getp(_i); 
 int j=sl_getp(_j); 
 a10 *a=sl_getp(_a); 
 a10 *b=sl_getp(_b); 
 
 int sum=sl_getp(_sum); 
 sum=sum+a[i][k]*b[k][j]; 
 sl_setp(_sum,sum); 
} 
sl_enddef 
 
sl_def(masterloop_1_j, void, sl_glparm(a10 *, _a), sl_glparm(a10 *, _b), sl_glparm(a10*, _c), 
sl_glparm(int, _i)) 
{ 
 sl_index(j); 
 int i=sl_getp(_i); 
 a10* a=sl_getp(_a); 
 a10* b=sl_getp(_b); 
 a10* c=sl_getp(_c); 
 int sum=0; 
 { 
      sl_create(,,0,n,1,,,masterloop_2_k, sl_glarg(a10*, _a, a), sl_glarg(a10*, _b, 
b), sl_sharg(int, _sum, sum), sl_glarg(int, _i, i), sl_glarg(int, _j, j); 
      sl_sync(); 
      sum=sl_geta(_sum); 
 } 
 c[i][j]=sum; 
} 
sl_enddef 
 
sl_def(masterloop_1_i, void, sl_glparm(a10 *, _a), sl_glparm(a10 *, _b), sl_glparm(a10 *, 
_c)) 
{ 
 sl_index(i); 
 a10* a=sl_getp(_a); 
 a10* b=sl_getp(_b); 
 a10* c=sl_getp(_c); 
 
 { 
      sl_create(,,0,n,1,,,masterloop_1_j, sl_glarg(a10 *, _a, a), sl_glarg(a10 *, _b, 
b), sl_glarg(a10 *, _c, c), sl_glarg(int, _i, i)); 
      sl_sync(); 
 } 
} 
sl_enddef 
 
{ 
 sl_create(,,0,n,1,,,masterloop_1_i, sl_glarg(a10 *, _a, a), sl_glarg(a10 *, _b, b), 
sl_glarg(a10 *, _c, c)); 
 sl_sync(); 
} 
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 Special mention goes to while loops. They are treated as for loops, however 

there is one difference. The invocation code is wrapped inside a while loop. This way 

there is actual loop transformation but each create takes a predefined number of 

threads as an argument. The guard condition of the while loop is emitted at the 

beginning of the thread code so that once it stops being valid, the thread invokes 

sl_break and code execution resumes back in the invocation part. In order for the 

invoker to know that the while loop issued a break, a certain boolean variable exists 

which is associated with that particular masterloop that is set to TRUE when the break 

is called. This tells the invoker code to stop its own while loop via C's break and 

continue execution after that. As an example let's consider the code of Figure 5.29. 

   

 

 

 

 

 

 

 

 

 

Figure 5.29. Original code that performs bubble sort. 

 Figure 5.30 demonstrates the loop transformation. The innermost loop is 

properly transformed into a sequentially executed loop (the shared variable f makes 

sure of that) where each element of the array is checked with its subsequent and swap 

places if necessary. The interest lies with the umloop_2 loop. Firstly it's made 

sequential with the introduction of the shared variable _serialize since the analyzer 

was unable to detect if it can be run in parallel or not. the if (TRUE) statement is the 

transformation of the while(1) from the original code. If it was any other expression it 

would have been copied as well. Every time a break statement is introduced in the 

original code, an sl_break one is emitted in the result, with the addition that the array 

int main(void) 
{ 
        int a[10],i,f,c; 
 
        while(1) 
        { 
                f=0; 
                for (i=0;i<9;i++) 
                        if (a[i]>a[i+1]) 
                        { 
                                c=a[i]; 
                                a[i]=a[i+1]; 
                                a[i+1]=c; 
                                f=1; 
                        } 
 
                if (f==0) break; 
        } 
 
        return (0); 
} 
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_result[#interal_loop_number (2 in this example)] becomes 1 to signify that the loop 

has finished execution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30. The entire transformation (including invokation at the bottom) of the 

bubble sort while-loop of Figure 5.29. 

sl_def(mloop_1_inner,void,sl_glparm(int4*,_a),sl_glparm(int4,_c),sl_shparm(int4,_f)) 
{ 
        sl_index(i); 
        int4*    a = sl_getp( _a ); 
        int4    c = sl_getp( _c ); 
        int4    f = sl_getp( _f ); 
 
 if  (a[i] > a[(i+1)]) goto bb9; else goto bb10; 
bb9:; 
        c = a[i] ; 
        a[i] = a[(i+1)] ; 
        a[i+1] = c ; 
        f = 1 ; 
bb10:; 
bb11:; 
        sl_setp(_f, f); 
} 
sl_enddef 
 
sl_def(umloop_2,void,sl_glparm(int4,_f),sl_glparm(int4,_i),sl_glparm(int4*,_a),sl_gl
parm(int4,_c),sl_shparm(int,_serialize)) 
{ 
        int4    f = sl_getp( _f ); 
        int4    i = sl_getp( _i ); 
        int4*    a = sl_getp( _a ); 
        int4    c = sl_getp( _c ); 
        int serialize= sl_getp(_serialize); 
         
 if  (  TRUE  ) ; else {_result[2]=1;sl_break();}; 
  
        f = 0 ; 
        i = 0 ; 
 
        { 
                sl_create(,,0,9,1,,,mloop_1_inner,sl_glarg(int4*,_a,a),sl_glarg(int4 
,_c,c),sl_sharg(int4,_f,f)); 
                sl_sync(); 
 
                f = sl_geta(_f); 
        } 
 
        if (f == 0)  {_result[2]=1;sl_break();} else goto bb14 ; 
 
bb14:; 
bb15:; 
        sl_setp(_serialize, serialize+1); 
} 
sl_enddef 
 
while(1) 
{ 
        { 
         
sl_create(,,0,_MAX_THREADS,1,,,umloop_2,sl_glarg(int4,_f,f),sl_glarg(int4,_i,i),sl_g
larg(int4*,_a,a),sl_glarg(int4,_c,c),sl_sharg(int,_serialize,0)); 
                sl_sync(); 
        } 
 
        if (_result[2]==1) break; 
} 
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  Finally in the invocation, we can see that a while(1) is emitted that runs the 

loop sequentially for MAX_THREADS number of iterations and then the _result[2] is 

checked. If it has the value of 1 then the loop is considered to have finished and contol 

breaks out of the while. 
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CHAPTER 6. EVALUATION OF THE C2μTC/SL 

COMPILER 

Introduction 

Single-Dimensional Loops 

Multi-Dimensional Loops 

Livermore Loops 

6.1. Introduction 

 Evaluating C2κTC/SL is a more complex process than just simply running and 

timing the transformed programs. Since its output is the SL language, the only way to 

execute the parallel applications is to utilize the SVP pipeline. This effectively means 

running the simulator system bundled with the SL compiler. However, moving into a 

simulated environment means that a simple timing methodology would not provide 

any meaningful results. 

 Selecting the metric we’d use for the evaluation meat turning to the simulator 

itself. Once the program runs, its internal Master CPU cycles counter starts counting 

from 0. Then the simulator sets up a series the whole execution environment and once 

everything is complete then the SL application starts executing. The Master CPU 

cycles counts the number of parallel cycles all cores executed. It can be used to 

determine the number of cycles (throughout all the cores) that were needed for any 

program to execute. A faster running application needs fewer cycles. “CPU cycles” is 

a constant metric unaffected by the host’s CPU clock or anything else and is directly 

proportionate to the overall speed of an application. It also allows for percentile 

comparisons to take place between different applications. 
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 For any program to be measured and compared, this would effectively mean 

that the program would have to be compiled and executed inside the SVP simulator 

environment even if that meant rewriting portions of the original code into SL form. 

All measurements presented in this chapter were obtained by simulating an 

environment of 8 cores (unless stated otherwise) and all results, as stated above, are in 

CPU cycles and the measurements were taken from the actual computation part of 

each program ignoring system and program and system initializations. SL offers two 

macros that can be inserted between two places in a code. The output of the simulator 

then can display the number of master cpu cycles that were spent inside that piece of 

code. We marked only the part of code that performs the actual computation. Using 

the master cpu cycles we could measure speedups gained with this formula: 

 

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝐶𝑦𝑐𝑙𝑒𝑠

𝑆𝐿 𝐶𝑦𝑐𝑙𝑒𝑠
 

 Essentially, an SL code that completes in half the time of the original 

sequential version will have a Speedup of 2 while codes that are slower than the 

original version will have speedups less than 1. In a manner similar to Chapter 5, 

evaluation is split into two general categories: Single-Dimensional loops and Multi-

Dimensional loops. A well-known benchmark suite was also used to test the 

C2κTC/SL’s general parallelizing abilities, the Livermore Loops. 

6.2. Single-Dimensional Loops 

 The first and simplest example measured was that of a single dimensional for 

loop with no loop carried dependencies. The loop body consisted only of the 

statement “A[i]=i+1;”. Table 6.1 demonstrates the results of measuring the two codes 

(sequential and parallel) and the speedup achieved, while Figure 6.1 illustrates these 

results graphically. It is clear that the transformed parallel code is much faster than a 

pure untransformed loop (as was anticipated). 
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Table 6.1. The Results of the Execution Times (in Cycles) of a Simple Sequential and 

Parallel Application. 

Problem Size (N) Sequential For Fully Parallel SL Speedup 

100 9120 3616 2,522 

200 16808 4348 3,866 

300 23408 5068 4,619 

400 31160 6380 4,884 

500 37888 6812 5,562 

600 44972 7304 6,157 

700 52204 8288 6,299 

800 59400 9184 6,468 

900 66656 9692 6,877 

1000 73852 11060 6,677 

 

 

Figure 6.1. Comparing the Data of Sequential and Parallel Code in Graph Form. 

 A small variation was also implemented (manually): The SL parallel code was 

changed into a fully sequential one (This was achieved by adding a shared channel 

that transferred dummy data between threads and kept the sequential ordering. The 

entire thread body was turned into a critical section). The aim of that change was to 

test the SVP model and how it fares when a fully sequential loop running without 

using any of the amenities provided by the system against a classic for-loop. Table 6.2 

displays the results while Figure 6.2 visualizes the data. 
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Table 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads 

Running the Same Code. 

Problem Size For Loop Sequential SL Speedup 

100 9120 9016 1,012 

200 16808 16012 1,050 

300 23408 22048 1,062 

400 31160 29000 1,074 

500 37888 35016 1,082 

600 44972 41512 1,083 

700 52204 47844 1,091 

800 59400 54644 1,087 

900 66656 60912 1,094 

1000 73852 67744 1,090 

 

 

Figure 6.2. Comparing a Sequential For-loop with a Sequential Family of Threads. 

 There is an increase in speedup stems from two factors: (i) hardware 

controlled iterations: there is no actual software increment of the index variable or test 

to see if it exceeds its bounds and (ii) minimal synchronization overhead. This 

example makes it clear that even if a loop cannot be transformed in any meaningful 

way, (either by taking advantage the shared memory system or by exposing some 

hidden parallelism) re-writing it into SL form will offer a small increase in the overall 

speed of the program.  
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 The next category of problems contains loops with a single dependency. 

Dependency of length 1 is examined firstly (Figure 6.3). The comparison data is 

displayed on Table 6.3 and its visualization is given on Figure 6.4. Even if the 

simulator setup contains 8 cores, such an example will be constrained in one core both 

in its original version and its transformed one and so the expected speedup should not 

be around 8. 

 There is only one data chain hence there can be no parallelism in its execution. 

However there can be instruction level parallelism by exploiting SVP’s high memory 

latency tolerance: Memory related operations can be overlapped with other 

instructions and thusly speedups higher than 1 can appear. In addition to memory 

tolerance, by utilizing the synchronizing channel as a data carrier, each thread can do 

away with looking up the global memory for information, an action that also increases 

efficiency by a remarkable degree. 

 

 

 

Figure 6.3. Loop with a Single Dependency of Length 1. 

Table 6.3. Comparison Between the Sequential for and the Transformed SL Code. 

Problem Size (N) Sequential For SL code Speedup 

100 10920 8552 1,277 

200 20360 14932 1,364 

300 28380 19356 1,466 

400 37760 25292 1,493 

500 45800 29668 1,544 

600 54540 34912 1,562 

700 63196 39644 1,594 

800 72016 45096 1,597 

900 80588 49952 1,613 

1000 89548 55252 1,621 

 

for (i=1; i<n; i++) 

 a[i]=a[i-1]+1; 
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Figure 6.4. Comparing Sequential and SL Codes With a Dependency of Length=1. 

 The problem of a single dependency of length 2 was subsequently 

transformed, executed and evaluated. This time the existence of 2 independent data 

chains means that 2 cores would be utilized. Figure 6.5 illustrates the original code, 

Table 6.4 contains the results of the executions and Figure 6.6 visualizes that data. 

 

 

Figure 6.5. A Loop with a Dependency of Length 2. 

Table 6.4. Results of the Transformed Loop with a Dependency of Length 2. 

Problem Size Original Loop SL code Speedup 

100 10836 7604 1,425 

200 20116 11372 1,769 

300 28140 16092 1,749 

400 37432 20792 1,800 

500 45476 25200 1,805 

600 54048 29552 1,829 

700 62616 32948 1,900 

800 71364 37740 1,891 

900 80004 41572 1,924 

1000 88808 45960 1,932 
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for (i=2; i<n; i++) 

 a[i]=a[i-2]+1; 
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Figure 6.6. Comparing Sequential and SL Codes with a Dependency of Length=2. 

 In a similar manner, the problem of a single dependency but of length 5 was 

transformed and evaluated (5 cores utilized). Figure 6.7. illustrates the original source 

code while Table 6.5 and Figure 6.8 display the resulting data. 

 

 

Figure 6.7. A Loop With a Single Dependency of Length 5. 

Table 6.5. Results of the Transformed Loop with a Dependency of Length 5. 

Problem Size Original Loop SL code Speedup 

100 9960 7252 1,373 

200 18748 10540 1,779 

300 26228 14472 1,812 

400 35116 17632 1,992 

500 42724 21444 1,992 

600 50800 25264 2,011 

700 59016 28384 2,079 

800 67244 32400 2,075 

900 75484 35780 2,110 

1000 83680 39312 2,129 
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for (i=5; i<n; i++) 

 a[i]=a[i-5]+1; 
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Figure 6.8. Comparing Sequential and SL Codes with a Dependency of Length=5. 

 For a problem size of N=1000, a dependency of length 2 (which produces 2 

parallel data-chains running) offers a speedup of about 1,9 while a dependency of 

length 5 (which creates 5 parallel data chains) offers a speedup of about 2,13. This 

means that the increase in efficiency is not proportional to the increase of the number 

of parallel chains in existence. This result deviates from the expected speedup of 2 for 

a dependency of length 2 and 5 from one of length 5. This deviation can be attributed 

to  the overhead introduced by SVP’s housekeeping: 5 parallel chains require more 

time spent context switching and a lot more resources since each chain also creates 

one synchronizing channel. If the SVP runs out of resources then it gracefully reverts 

back into a sequential execution mode in order to serve the rest of the requests. 

Adding to the overall overhead is the fact that more families  equal to more 

communication between parent and descendant threads. 

 Loops with multiple dependences were examined next. The general form is the 

one illustrated in Figure 6.9. We tested loops with 2, 3, 4, and 5 multiple dependences 

and the results are shown in Tables 6.6 to 6.9 respectively and visualized in Figures 

6.10 to 6.13. It is becoming apparent that the more shared variables (channels) are 

involved in the process, the slower the execution becomes. 
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 Finally, the anti-dependency example (Figure 6.14) is evaluated. Table 6.10 

illustrates the results and Figure 6.15 the visualization of that data. Even though the 

transformed code entails a two-step process, the fact that everything takes place in 

parallel in an 8 core environment, with the help of cache utilization when it comes to 

the second step of copying back, provides a very good speedup of about 4.45. The 

only drawback is the allocation of extra space for a temporary array. 

 

 

 

Figure 6.9. A General Form of a Loop with Multiple Dependences (2 to 5). 

Table 6.6. Comparing Sequential and SL Codes with 2 Dependences. 

Problem Size Original Loop SL code Speedup 

100 11600 8912 1,302 

200 21896 15660 1,398 

300 30700 21100 1,455 

400 40848 27980 1,460 

500 49748 33452 1,487 

600 59328 39760 1,492 

700 68676 45560 1,507 

800 78356 51884 1,510 

900 87696 57760 1,518 

1000 97512 64172 1,520 

 

 

Figure 6.10. Comparing Sequential and SL Codes with 2 Dependences. 
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for (i=2, 3, 4, 5; i<n; i++) 

 a[i]=a[i-1]+a[i-2](+a[i-3](+a[i-4](+a[i-5]))); 
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Table 6.7. Comparing Sequential and SL Codes with 3 Dependences 

Problem Size Original Loop SL code Speedup 

100 12036 9524 1,264 

200 22744 15552 1,462 

300 32088 22436 1,430 

400 42632 28928 1,474 

500 52068 35932 1,449 

600 61996 43040 1,440 

700 71896 49176 1,462 

800 81960 56180 1,459 

900 91848 62676 1,465 

1000 102076 69124 1,477 

Table 6.8. Comparing Sequential and SL Codes with 4 Dependences. 

Problem Size Original Code SL code Speedup 

100 11936 9224 1,294 

200 23140 16468 1,405 

300 32408 24152 1,342 

400 43508 31112 1,398 

500 52904 38648 1,369 

600 63232 45292 1,396 

700 73516 52832 1,392 

800 83676 59704 1,402 

900 93824 67124 1,398 

1000 104472 74844 1,396 

Table 6.9. Comparing Sequential and SL Codes with 5 Dependences. 

Problem Size Original Code SL code Speedup 

100 13172 14680 0,897 

200 23612 23824 0,991 

300 34992 33936 1,031 

400 45816 43276 1,059 

500 57056 53296 1,071 

600 68884 63612 1,083 

700 79284 72556 1,093 

800 90960 83052 1,095 

900 101500 92020 1,103 

1000 112732 102152 1,104 
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Figure 6.11. Comparing Sequential and SL Codes with 3 Dependences. 

 

Figure 6.12. Comparing Sequential and SL Codes with 4 Dependences. 

 

Figure 6.13. Comparing Sequential and SL Codes with 5 Dependences. 

  

Figure 6.14. A Typical Anti-Dependence Example. 
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for (i=0;i<n-1;i++) 

a[i]=a[i+1]; 
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Table 6.10. Comparing Sequential and SL Codes with an Anti-Dependence. 

Problem Size Original Loop SL code Speedup 

100 11636 6420 1,812 

200 21860 8036 2,720 

300 30596 8992 3,403 

400 40680 10756 3,782 

500 49516 12336 4,014 

600 59028 14592 4,045 

700 68384 15572 4,391 

800 77928 17192 4,533 

900 87276 19348 4,511 

1000 97020 21812 4,448 

 

 

Figure 6.15. Comparing Sequential and SL Codes with an Anti-dependence. 

6.3. Multi-Dimensional Loops 

 Evaluating Multi-Dimensional Loops (i.e. loop nestings) is a process which is 

further sub-categorized into two general cases: (i) Loops with no dependences and (ii) 

Loops with a dependence vector. These two sub-categories are treated completely 

differently by C2κTC/SL. The former is automatically translated as-is into a nesting 

of fully parallel families and relies on SVP to provide most of the efficiency-

improving mechanisms. The latter is transformed into a self-adaptive algorithm trying 

to apply the dependence vector on the index space in order to discover the underlying 

hyperplane. 
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6.3.1. No Dependences 

 In this sub-category, three real life applications were evaluated: (i) Conway’s 

Game of Life, (ii) 2-Dimensional Matrix Multiplication and (iii) computation of the 

Mandelbrot Fractal. The overall evaluation of the data gained from these three 

examples will be presented at the end of this sub-chapter. 

 A single pass of Conway’s Game of Life [77] was implemented, transformed 

and evaluated. Tables 6.11 and 6.12 present the results of this simulation in CPU 

cycles while tables 6.13 and 6.14 do so in terms of speedup achieved. In both 

situations the size of the board is given as the length of one of its sizes (for every N, 

the board is a NxN array). Figures 6.16 and 6.17 visualize the data. 

Table 6.11. The Results of the Game of Life in Absolute CPU Cycles. 

Board 

Size 

Original 

Code 

SL code 

(1 core) 

SL code 

(2 cores) 

SL code 

(4 cores) 

10 166488 93564 50152 32308 

20 660108 366084 182004 94924 

30 1467900 825020 426492 245984 

40 2639280 1538716 744372 392088 

50 4076948 2431700 1185480 726584 

60 5872288 3465252 1668440 836252 

70 7993908 4733720 2354340 1362200 

80 10566976 6268056 3083648 1552796 

90 12669380 7625316 3823188 2079436 

100 16319956 9496204 4711040 2377932 

Table 6.12. Continuation of the Results in Table 6.11. 

Board 

Size 

Original 

Code 

SL code 

(8 cores) 

SL code 

(16 cores) 

SL code 

(32 cores) 

SL code 

(64 cores) 

10 166488 24820 17272 18636 21264 

20 660108 61544 45460 30660 33200 

30 1467900 152880 108776 89936 91524 

40 2639280 300084 184092 163256 116716 

50 4076948 498760 278788 192824 142540 

60 5872288 581140 312780 222092 166564 

70 7993908 797616 504940 339972 259640 

80 10566976 990736 573208 400620 289568 

90 12669380 1235200 686572 428492 319044 

100 16319956 1472436 837760 564340 350828 
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Table 6.13. Speedups for the Game of Life Derived from Table 6.11. 

Board 

Size 

Speedup 

(1 core) 

Speedup 

(2 cores) 

Speedup 

(4 cores) 

10 1,779 3,320 5,153 

20 1,803 3,627 6,954 

30 1,779 3,442 5,967 

40 1,715 3,546 6,731 

50 1,677 3,439 5,611 

60 1,695 3,520 7,022 

70 1,689 3,395 5,868 

80 1,686 3,427 6,805 

90 1,661 3,314 6,093 

100 1,719 3,464 6,863 

Table 6.14. Speedups Derived from Table 6.12. 

Board 

Size 

Speedup 

(8 cores) 

Speedup 

(16 cores) 

Speedup 

(32 cores) 

Speedup 

(64 cores) 

10 6,708 9,639 8,934 7,830 

20 10,726 14,521 21,530 19,883 

30 9,602 13,495 16,322 16,038 

40 8,795 14,337 16,167 22,613 

50 8,174 14,624 21,143 28,602 

60 10,105 18,774 26,441 35,255 

70 10,022 15,831 23,513 30,788 

80 10,666 18,435 26,377 36,492 

90 10,257 18,453 29,567 39,710 

100 11,084 19,480 28,919 46,518 

 

 

Figure 6.16. Comparing the Sequential and SL Codes for the Game of Life (Cycles). 
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Figure 6.17. Comparing the Sequential and SL Codes for the Game of Life (Speedup). 

 There are plenty of algorithms which compute a variety of fractals. The 

Mandelbrot set is one of the most well known. For each pixel inside an area, its color 

is computed based on whether a repeating complex number remains bounded or not.  

A small variation of the one displayed in [78] was implemented, transformed and 

evaluated. Tables 6.15 and 6.16 present the results in absolute CPU cycles while 

Tables 6.17 and 6.18 present the relative speedups as a percentage. Figures 6.18 and 

6.19 illustrate the corresponding visualization of the data. 

Table 6.15. The Resulting Data of the Mandelbrot Calculation (1 to 4 cores). 

Problem 

Size 

Original 

Code 

SL code 

(1 core) 

SL code 

(2 cores) 

SL code 

(4 cores) 

10 16821836 6767880 3295252 3089844 

20 67276200 26932780 12882604 7223820 

30 151365640 69262156 34191264 22343312 

40 269089788 131208400 65962844 37225076 

50 420448960 210622756 105590812 64502364 

60 605442832 303288432 159472340 75819036 

70 824071716 412803456 213093056 119519364 

80 1076336380 539117484 279323540 139472836 

90 1362235208 682315352 351445964 218051464 

100 1681769536 842362200 423456808 235388732 
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Table 6.16. The Resulting Data of the Mandelbrot Calculation (8 to 64 cores). 

Problem 

Size 

Original 

Code 
SL code 

(8 cores) 

SL code 

(16 cores) 

SL code 

(32 cores) 

SL code 

(64 cores) 

10 16821836 2408284 2087464 2028192 2029608 

20 67276200 4415792 2973392 1811400 1812764 

30 151365640 14963196 11754664 10099072 10100592 

40 269089788 22437260 19189784 19280972 13016172 

50 420448960 39762104 21276524 21051632 19188528 

60 605442832 47393724 27150204 24645572 23621364 

70 824071716 69015716 37675340 24850712 22800804 

80 1076336380 80823444 41800372 29247892 29238572 

90 1362235208 108647180 54736592 28935624 37195796 

100 1681769536 127280356 69986580 40990652 34929436 

 

Table 6.17. Corresponding Speedups of the Mandelbrot calculation. 

Problem 

Size 

Speedup 

(1 core) 

Speedup 

(2 cores) 

Speedup 

(4 cores) 

10 2,486 5,105 5,444 

20 2,498 5,222 9,313 

30 2,185 4,427 6,775 

40 2,051 4,079 7,229 

50 1,996 3,982 6,518 

60 1,996 3,797 7,985 

70 1,996 3,867 6,895 

80 1,996 3,853 7,717 

90 1,996 3,876 6,247 

100 1,996 3,972 7,145 

Table 6.18. Corresponding Speedups of the Mandelbrot Calculation (cont.). 

Problem 

Size 

Speedup 

(8 cores) 

Speedup 

(16 cores) 

Speedup 

(32 cores) 

Speedup 

(64 cores) 

10 6,985 8,059 8,294 8,288 

20 15,235 22,626 37,140 37,112 

30 10,116 12,877 14,988 14,986 

40 11,993 14,023 13,956 20,673 

50 10,574 19,761 19,972 21,911 

60 12,775 22,300 24,566 25,631 

70 11,940 21,873 33,161 36,142 

80 13,317 25,749 36,800 36,812 

90 12,538 24,887 47,078 36,623 

100 13,213 24,030 41,028 48,148 
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Figure 6.18. The Resulting Data of the Mandelbrot Calculation (CPU cycles). 

 

Figure 6.19.The Corresponding Speedups of the Mandelbrot Calculation. 

 Finally, matrix multiplication was implemented and evaluated. Tables 6.19 

and 6.20 illustrate the results in CPU cycles while Tables 6.21 and 6.22 feature the 

speedups gained. Figures 6.20 and 6.21 visualize the results. 
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Table 6.19. CPU Cycles for the Sequential and Parallel Executions of Matrix 

Multiplication. 

Problem 

Size 

Original 

Code 

SL code 

(1 core) 

SL code 

(2 cores) 

SL code 

(4 cores) 

10 93960 63756 31784 30380 

20 701324 329852 182024 98508 

30 2393432 1413860 948320 616752 

40 6084044 2871192 1918756 1520672 

50 11734632 4779272 4293760 2936856 

60 22983224 8535988 6758848 4722192 

70 35755880 12419688 9468416 6822220 

80 56068460 19500748 12543716 9817144 

90 80046760 27364724 16010600 14203676 

100 111533084 35371188 17714700 16862152 

Table 6.20. Continuation of the Results from Table 6.19. 

Problem 

Size 

Original 

Code 

SL code 

(8 cores) 

SL code 

(16 cores) 

SL code 

(32 cores) 

SL code 

(64 cores) 

10 93960 27096 24800 25392 26668 

20 701324 60148 46604 35036 36152 

30 2393432 382776 267008 164556 166160 

40 6084044 1472944 745260 909824 763284 

50 11734632 1654540 1682060 1535856 1286524 

60 22983224 3135788 2452056 2620348 2181996 

70 35755880 5108300 2850672 2997772 3358756 

80 56068460 5781756 3957952 3732792 3488408 

90 80046760 9946904 5046460 5418156 4042052 

100 111533084 11741328 6581304 5167396 5848620 

Table 6.21. Corresponding Speedups Gained from Parallel Matrix Multiplication. 

Problem Size Speedup (1 core) Speedup (2 cores) Speedup (4 cores) 

10 1,474 2,956 3,093 

20 2,126 3,853 7,119 

30 1,693 2,524 3,881 

40 2,119 3,171 4,001 

50 2,455 2,733 3,996 

60 2,693 3,400 4,867 

70 2,879 3,776 5,241 

80 2,875 4,470 5,711 

90 2,925 5,000 5,636 

100 3,153 6,296 6,614 
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Table 6.22. Corresponding Speedups from Matrix Multiplication (cont.). 

Problem 

Size 

Speedup 

(8 cores) 

Speedup 

(16 cores) 

Speedup 

(32 cores) 

Speedup 

(64 cores) 

10 3,468 3,789 3,700 3,523 

20 11,660 15,049 20,017 19,399 

30 6,253 8,964 14,545 14,404 

40 4,131 8,164 6,687 7,971 

50 7,092 6,976 7,640 9,121 

60 7,329 9,373 8,771 10,533 

70 7,000 12,543 11,927 10,646 

80 9,697 14,166 15,021 16,073 

90 8,047 15,862 14,774 19,803 

100 9,499 16,947 21,584 19,070 

 

 

Figure 6.20. Comparing Sequential and Parallel Matrix Multiplications (Cycles). 
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Figure 6.21. Comparing Parallel Matrix Multiplications (Speedups). 

 Finally we tested the Game of Life for various larger problem sizes but tiled 

with various tile sizes (1,2,4,8,16,32,64 and 128). The idea behind this was to test 

SVP’s throughput while being oversaturated and how applying the tiling method 

helps alleviate it. Table 6.23 presents the results. Increasing the tile size certainly 

reduces the overall cycles needed however this effect works until a point. After that 

size the overall parallelism exposed becomes smaller due to the very large tile sizes. 

 Table 6.23. MasterCPU Cycles for the Game of Life for Various Problem and 

Tile Sizes. 

  

Problem Size 

1000 2000 3000 4000 5000 

Tile 

Size 

1 183105732 728808580 1624787896 2924394636 4721679540 

2 138375388 545503468 1205679672 2198231048 3674882208 

4 129602680 522952608 1144788964 2078213420 3492057336 

8 136373840 507765180 1102716796 2006374452 3275702220 

16 159121700 560260192 1143944816 2069512704 3267163724 

32 149057836 639955024 1275310076 2224032312 3426920124 

64 116219276 594489528 1504648036 2544091388 3905988888 
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There are several conclusions that can be reached by the data obtained from the three 

aforementioned applications: 

 (i) Even one SVP core can increase efficiency substantially in a fully parallel 

program. This indicates the SVP’s ability to speed up a loop even in a sequential 

environment (One core does not offer actual parallel execution). This ability is the 

result of a combination of SVP’s characteristics: (a) High memory latency tolerance: 

memory access instructions are overlapped with the rest of the operation in order to 

eliminate idle time and (b) hardware control of thread iterations. There is no need for 

the software to check and branch depending on the index value per iteration. 

 (ii) The greater the number of cores in a system, the better the results. 

However the system becomes oversaturated when there is an excessively high number 

of cores in existence since much time is lost in communication overheads in the 

memory network, especially when it comes to memory store instructions just prior to 

synchronization. There are no other operations to overlap with these memory 

instructions and so there is no latency tolerance to take advantage of. This effect can 

be alleviated by tiling the index space and exposing parallelism on an inter-tile basis. 

 (iii) The overall speedup increases with the problem size for any number of 

cores in the system. Since the family creation overheads remain the same, increasing 

the problem size results in those overheads offering less and less percentage in the 

whole execution time. Reducing the overhead of family management in addition to 

having more threads and hence greater memory latencies tolerance leads to improved 

efficiency altogether. 

6.3.2. The Run-Time Algorithm 

 Perfectly nested loops with a dependence vector belong in this category. In 

order to evaluate the efficiency of the Self-Adaptive algorithm employed by 

C2κTC/SL, just the speed-up gained was not enough. There remained two questions: 

(i) how close to the optimal result the Self-Adaptive method can get and (ii) How 

does it fare compared to a compile-time method. The optimal goal is the highest 

speedup that can be achieved by a tile-based run-time method utilizing a scheduler 

thread. To answer these questions, the optimal result of the fixed-size algorithm was 

calculated. The reasoning behind this choice is two-fold: 
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 (i) Generally it is trivial, albeit time consuming, to find the optimal result. The 

algorithm is executed multiple times with varying tile sizes and the best result is 

considered optimal. There are many local optima in such a case and that’s why it’s not 

enough to just stop once the first peak is reached. Figure 6.22. demonstrates the 

speedups gained by the fixed-size algorithm for a two-dimensional loop of size 4000 

x 4000 with a dependence vector of D={(1,0), (0,1)}. This figure illustrates that even 

though the speedups follow the trend line in the middle, they alternate above and 

below that line constantly in a rather jaggy manner. 

 (ii) The fixed-size algorithm bears a great resemblance to the Self-Adaptive 

one, while being a bit simpler both conceptually and programmatically. Thusly it 

serves as a target for the results that the Self-Adaptive algorithm can offer. 

 Due to these two reasons, the target goal for the Self-Adaptive algorithm is 

roughly the optimal result of the Fixed-Size algorithm, gained by repeated execution 

of different tile sizes. That optimal result per problem size is subsequently compared 

to a compile time algorithm. The method used is the skewed loop described in Figures 

3.20 and 3.21.  

 

 

Figure 6.22. Speedups gained for the problem of D={(1,0),(0,1)} with a grid size of 

4000x4000 and various tile sizes. The dashed line indicates the inferred trend. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4
0

4
6

5
2

5
8

6
4

7
0

7
6

8
2

8
8

9
4

1
0

0

1
0

6

1
1

2

1
1

8

1
2

4

1
3

0

1
3

6

1
4

2

1
4
8

1
5

4

1
6

0

1
6

6

1
7

2

1
7

8

1
8

4

1
9

0

1
9

6

Family (Tile) Size

Speedup Per Tile Size for Problem Size of 

N=4000



110 

 

 

 The innermost loop in such a case can be fully parallelized. In order for the 

comparison to be proper, the hyperplane method (compile-time) was implemented 

manually in SL and was simulated over SVP. Comparison results are displayed in 

Table 6.24 and visualized in Figure 6.23. Table 6.25 presents the different speedups 

gained by the two different methods. Finally, Table 6.26 demonstrates the optimal tile 

size picked per problem. 

 It is worth noting that even though the Hyperplane method was implemented 

in the finest of granularities possible (1 thread per iteration), it offers a speedup of 

5,392 which is much higher than the 1,737 gained by the fixed size algorithm. This 

difference, however, is alleviated as the problem size increases. Table 6.27 shows the 

results obtained from executing the algorithms with a problem size of 4000x4000 

(N=4000). At this size, the fine-grain hyperplane method becomes oversaturated and 

its speedup is worse than the fixed-size method. Of course, as has already been 

demonstrated the compile-time method can be improved by applying tiling on it. 

However what kind of tile size to be used is unknown. Table 6.28 demonstrates the 

speedup gained from the tiled version of the compile-time version of the hyperplane 

for various tile sizes. 

 It is clear that the compile-time method outperforms the self-adaptive run-time 

algorithm by various degrees depending on the tile size. However choosing a proper 

tile size is an impossible task since, as in the run-time method, too small or too large a 

size has an adverse effect on the efficiency. In addition, the self-adaptive method 

offers a series of other advantages: (i) the run time algorithm does away with the need 

to solve any NP-Complete problem, (ii) it can work with index spaces of irregular 

shapes (e.g. triangular spaces) and (iii) the size of the tile is not necessary to be 

decided before execution, usually by estimations (or by extensive repetitions in the 

fixed-size algorithm’s case). Finally there is no standard way to calculate a proper 

compile-time transformation due to the complexity of the NP-Complete problem. This 

compile-time method presented here is an idealized method just for comparisons and 

interpretations. 
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Figure 6.23. Comparing cycles between original, SL and manual hyperplane codes. 

Table 6.24. Comparing execution times between sequential, transformed and 

manually written parallel code. 

Problem Size Original Code SL code Manual Code 

100 731040 1314584 344800 

200 2927336 4642112 1044456 

300 9062496 10801192 2131344 

400 13201516 17474616 3664328 

500 27320340 25940796 5632024 

600 40170528 32808312 6752076 

700 55277512 43149216 10869036 

800 73727150 51961456 14040020 

900 92176788 60744780 17445424 

1000 114073668 70149652 21268804 

1100 138258288 79585768 25639544 

Table 6.25. Speedups Gained from the two methods for various problem sizes. 

Problem 

Size 

Speedup 

SL 

Speedup 

Hyperplane 

100 0,556 2,120 

200 0,631 2,803 

300 0,839 4,252 

400 0,755 3,603 

500 1,053 4,851 

600 1,224 5,949 

700 1,281 5,086 

800 1,419 5,251 

900 1,517 5,284 

1000 1,626 5,363 

1100 1,737 5,392 
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Table 6.26. The Optimal Tile Size for Various Problem Sizes. 

Problem Size Optimal Tile Size 

100 5 

200 5 

300 6 

400 7 

500 30 

600 30 

700 31 

800 39 

900 41 

1000 42 

1100 43 

 

Table 6.27. Speedups for Problem Size of (2, 3, 4)000x (2, 3, 4)000 for the Loop With 

Dependence Vector D={(1,0), (0,1)} 

Problem 

Size 

Speedup 

SL 

Speedup 

Hyperplane 

2000 2,654 5,107 

3000 2,745 3,887 

4000 3,739 3,187 

Table 6.28. CPU Cycles and Speedup Gained for Various Tile Sizes for the Compile-

time Hyperplane Method (Problem size: 4000 x 4000). 

Tile 

Size 

Master 

CPU Cycles 
Speedup 

1 592101356 3,111 

2 287120992 6,416 

4 277922988 6,628 

8 265680920 6,934 

16 276058308 6,673 

32 173013796 10,64 

64 139595836 13,19 

128 142822016 12,89 

 

 

 The Self-Adaptive method is next compared with the Fixed-size one in three 

problems with different dependence vectors: (i) D={(1,0), (0,1)}, (ii) D={(0,1), (1,1), 

(1,0), (1,-1)} and (iii) D={(2,0), (0,2)}. Each of these problems has a different 
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characteristic. The first is a typical example, the second is augmented with two more 

dependences and finally the third offers more parallelism by letting two different 

columns execute simultaneously at any time. 

  As far as the first problem is concerned, Table 6.29 illustrates the results of the 

two methods in CPU cycles, while Table 6.30 illustrates the speedups offered by each 

algorithm. Figures 6.24 and 6.25 provide a graphic representation of the data. It is 

clear that the Self-Adaptive algorithm not only reached the Fixed-Size algorithm’s 

efficiency levels, in some cases it slightly surpassed it. It fares a lot worse in smaller 

problem sizes due to two different situations: (i) as previously discussed, larger 

problem sizes reduce the percentage of the overall overheads in the total execution 

time. Consequently, small problems don’t amortize the overheads enough and (ii) 

there simply is not enough time for the algorithm to reach a conclusion about the 

proper tile size and that results in the lower levels of efficiency illustrated in Table 

6.30 and Figure 6.25. However, with enough time (in greater problem sizes), the 

algorithm not only results in finding an optimal size, it also makes up for its slow 

start. 

 The second problem (loop) has a dependence vector of D={(0,1), (1,1), (1,0), 

(1,-1)}. Figure 6.26 demonstrates the actual loop while Figure 6.27 visualizes the full 

dependence vector in an index space. Table 6.31 demonstrates the results in CPU 

cycles and Table 6.32 presents the speedups offered by the two run-time algorithms. 

Table 6.29. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the 

{(1,0),(0,1)} Problem. 

Problem 

Size 

Original 

Code 

Fixed Size 

code 

Self Adaptive 

Code 

100 731040 1314584 1843368 

200 2927336 4642112 6938972 

300 9062496 10801192 13052524 

400 13201516 17474616 19550652 

500 27320340 25940796 24905396 

600 40170528 32808312 34408864 

700 55277512 43149216 40316528 

800 73727150 51961456 49048212 

900 92176788 60744780 55648768 

1000 114073668 70149652 66257132 
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Table 6.30. Comparing the Speedups of the two Methods for the {(1,0),(0,1)} 

Problem. 

Problem 

Size 

Fixed Size 

Speedup 

Self Adaptive 

Speedup 

100 0,556 0,397 

200 0,631 0,422 

300 0,839 0,694 

400 0,755 0,675 

500 1,053 1,097 

600 1,224 1,167 

700 1,281 1,371 

800 1,419 1,503 

900 1,517 1,656 

1000 1,626 1,722 

 

 

Figure 6.24. Comparing the Fixed-Size algorithm with the Self-Adaptive one for the 

D={(1,0),(0,1)} Problem. 
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Figure 6.25. Comparing the Speedups of the two Run-time Methods for the 

D={(1,0),(0,1)} Problem. 

  

 

 

Figure 6.26. The Second Loop Nesting Under Evaluation. The Dependence Vector is 

D={(0,1), (1,1), (1,0), (1,-1)} 

 

Figure 6.27. Visualization of the Dependence vector in the 2-D index space. 
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for (i=1;i<n-1;i++) 

 for (j=1;j<n-1;j++) 

           A[i][j]=A[i][j-1]+A[i-1][j-1]+A[i-1][j]+A[i-1][j+1]; 
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Table 6.31. Comparing the Resulting Data of the Two Run-time Algorithms for the 

D={(0,1), (1,1), (1,0), (1,-1)} Problem. 

Problem 

Size 

Original 

Code 

Fixed Size 

Algorithm 

Self Adaptive 

Algorithm 

100 1069512 1955432 2628388 

200 4339096 6490840 9814264 

300 10227620 14517088 22626908 

400 19030496 23745432 37218680 

500 30405836 38530916 46855584 

600 44332336 54702360 69131064 

700 60793824 72207180 100495712 

800 80959556 87373276 102670936 

900 101352808 110178980 131357372 

1000 125461936 137689188 148974992 

1100 152135436 160506780 177237064 

1200 181264208 177854256 198504028 

1300 213046836 189210796 183085240 

1400 247357888 218266376 231859332 

1500 284153852 249275952 238125204 

1600 328077396 263238604 304201800 

1700 365474704 319817604 316397112 

1800 409992824 336841140 328592424 

Table 6.32. Comparing the Speedups of the Two Run-time Algorithms for the Loop 

with D={(0,1), (1,1), (1,0), (1,-1)} 

Problem 

Size 

Fixed Size 

Speedup 

Self Adaptive 

Speedup 

Problem 

Size 

Fixed Size 

Speedup 

Self Adaptive 

Speedup 

100 0,547 0,407 1000 0,911 0,842 

200 0,668 0,442 1100 0,948 0,858 

300 0,705 0,452 1200 1,019 0,913 

400 0,801 0,511 1300 1,126 1,164 

500 0,789 0,649 1400 1,133 1,067 

600 0,810 0,641 1500 1,140 1,193 

700 0,842 0,605 1600 1,246 1,078 

800 0,927 0,789 1700 1,143 1,155 

900 0,920 0,772 1800 1,217 1,248 

 

 Figures 6.28 and 6.29 visualize the comparisons. The fact that there is less 

parallelism to exploit is indicated by the inability of both algorithms’ to offer any 

significant speedup until the problem size of between N=1200 and N=1300. This size 

is much larger than the problem of D={(1,0), (0,1)}. Once again though, the self-
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adaptive variant quickly catches up and follows the fixed-size one after a while. 

Again, this proves the effectiveness of the adaptive algorithm. 

 

 

Figure 6.28. Comparing the CPU Cycles of the two Run-time Algorithms for the 

Loop with D={(0,1), (1,1), (1,0), (1,-1)} 

 

Figure 6.29. Comparing the Speedups of the two Run-time Algorithms for the Loop 

with D={(0,1), (1,1), (1,0), (1,-1)} 
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 The final problem is the loop nesting with a dependence vector of D={(2,0), 

(0,2)}. The dependency of (0,2) is actually internally treated as (0,1) by both 

algorithms as has been already mentioned. The (2,0) dependency however allows two 

simultaneous columns to execute at any given time, effectively doubling the amount 

of parallelism that can be exploited. Table 6.33 displays the results in CPU cycles and 

Table 6.34 displays the speedups achieved for each problem size. Figures 6.30 and 

6.31 help visualize the data. 

Table 6.33. CPU Cycles for the {(2,0), (0,2)} Problem. 

Problem 

Size 

Original 

Code 

Fixed Size 

Algorithm 

Self Adaptive 

Algorithm 

100 774108 516520 1698932 

200 3771708 1735864 4127672 

300 9148748 6529064 7743552 

400 16099372 11497204 11801488 

500 25195468 17515188 15020296 

600 36275752 24898940 19725720 

700 49041688 32041456 25317360 

800 64890712 40364832 29403340 

900 85394952 49834420 36329496 

1000 111067292 58711484 40422532 

Table 6.34. Speedups Achieved by the two Algorithms. 

Problem Size Fixed Size Speedup Speedup Self Adaptive 

100 1,499 0,456 

200 2,173 0,914 

300 1,401 1,181 

400 1,400 1,364 

500 1,438 1,677 

600 1,457 1,839 

700 1,531 1,937 

800 1,608 2,207 

900 1,714 2,351 

1000 1,892 2,748 

 



119 

 

 

 

Figure 6.30. CPU Cycles for the {(2,0), (0,2)} Problem. 

 

Figure 6.31. Comparing the Speedups Achieved by the two Algorithms for the 

D={(2,0), (0,2)} Problem. 

 In this case the Self-Adaptive algorithm fared much better and closer to the 

ideal target of a doubling the speedup of the D={(1,0), (0,1)} problem than the fixed 

size method. This can be explained by the fact that the real optimal tile size for the 

fixed size algorithm was outside the range of the numbers that were tried (2 to 40) and 

thusly was lost.  
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6.4. The Livermore Loops 

 As a final evaluation test a suite of programs was needed where each test is 

more complex than just simple perfectly nested loops. For that reason, the Livermore 

loops [79] were chosen. It is a set of 24 kernels, each performing a particular task. 

The suite was originally created to test parallelizing / vectorizing compilers so it was 

selected to benchmark C2κTC/SL. It should be noted that, by definition,  not all of the 

kernels can be parallelized in the first place. A list of the kernels follows detailing 

how C2κTC/SL fared against each of them. For each kernel there is an indication 

whether C2κTC/SL did a proper transformation that increases efficiency/exposes 

parallelism (PASS) while if it decided to err on the safe side and just transformed the 

kernel into a sequentially executing family of threads(which can slightly increase 

efficiency as well) (SAFE). There is a third result in some of the kernels called FAIL. 

This happens when the code contains C constructs not included in the C subset that 

C2κTC/SL supports (like goto). Instead of the compiler stopping at detection of those 

constructs and not producing any output, instead it just proceeds to create some output 

that is completely wrong and will not even compile properly. 

 

 • Hydrodynamics fragment: The loop is rather simple and can be fully 

executed in parallel. C2κTC/SL automatically parallelized it correctly (PASS). 

 • Incomplete Cholesky conjugate gradient: The code is rather convoluted 

and C2κTC/SL cannot distinguish any hidden parallelism to exploit (no proper 

meaning can be extracted from some variables and an existing dependence is not 

static). However, the whole loop is transformed into an infinite family of threads 

which contains another family of threads with shared variables. As has been 

demonstrated before this can increase efficiency by a small percentage (SAFE). 

 • Inner product: This is a similar code to the innermost loop of matrix 

multiplication. If the partial sums are first calculated in a temporary variable by hand 

and then added to the accumulator variable, efficiency can be greatly sped up by 

taking advantage of all the threads calculating their sum in parallel before locking 

down on the shared channel (PASS). 

 • Banded linear systems solution: C2κTC/SL cannot detect any meaningful 

parallelism (there is a relationship which cannot be statically identified as a 
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dependence or an antidependence) in that code so it transforms both loops to families 

of threads with shared variables (one of the loops is accumulating a value to a 

variable) to increase efficiency slightly (SAFE). 

 • Tridiagonal linear systems solution: This is a normal single-dimensional 

loop with a unary dependency of length 1. C2κTC/SL acts appropriately (PASS). 

 • General linear recurrence equations: Once again C2κTC/SL is unable to 

perform a meaningful transformation (the existence of non-static dependences 

prevents such an action) so it resorts to transform each loop into a family in order to 

gain some efficiency (SAFE). 

 • Equation of state fragment: Although it seems like a complicated loop, it is 

in fact rather simple and it can be computed fully in parallel. C2κTC/SL provides the 

correct transformation (PASS). 

 • Alternating direction implicit integration: This loop is too complicated for 

the compiler to “understand” so it fails (FAIL). 

 • Integrate predictors: A fully parallel loop where each iteration writes some 

value at the first column of the appropriate row. There are no dependences and 

C2κTC/SL performs the proper parallel transformation (PASS). 

 • Difference predictors: Another fully parallel loop which is properly 

transformed by C2κTC/SL (PASS). 

 • First sum: A single dimensional loop with a unary dependency of length 1. 

A synchronizing channel is utilized to provide sequential execution and better 

efficiency (PASS). 

 • First difference: An obviously fully parallel loop which is transformed in an 

appropriate manner by C2κTC/SL (PASS). 

 • 2-D particle in a cell: An overly complex loop where C2κTC/SL fails to 

detect any parallelism. The whole loop is transformed into a sequentially executed 

family of threads (SAFE). 

 • 1-D particle in a cell: This loop is comprised of 3 smaller loops. The first of 

them is fully parallel and is understood as such by C2κTC/SL. The remaining loops 

for various reasons are transformed into sequentially executing families of threads 

(PASS/SAFE/SAFE). 
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 • Casual Fortran: This loop is considered too complicated by C2κTC/SL. It 

is transformed into a sequentially executing family of threads (SAFE). 

 • Monte Carlo search: The loop is so complicated (with the use of “goto” 

aggravating the complexity) that C2κTC/SL fails to produce any meaningful code 

(FAIL). 

 • Implicit conditional computation: Again another loop too complex for 

C2κTC/SL to produce correct code (“goto” is again present) (FAIL). 

 • 2-D explicit hydrodynamics fragment: A loop comprised of 3 others but all 

of them are fully parallel which C2κTC/SL understands as such and acts accordingly 

(PASS). 

 • General linear recurrence equations: This loop is comprised of 2 smaller 

loops. Each of those two loops carries a shared variable in the code. C2κTC/SL 

understands this and produces two sequentially executing families with a 

synchronizing channel for the shared variable (PASS). 

 • Discrete ordinates transport: C2κTC/SL is unable to detect any parallelism 

(cross dependences are not handled) or variables to use as shared so it takes the safe 

approach and transforms the entire loop into a sequentially executing family (SAFE). 

 • Matrix-matrix product: A fully parallel loop nesting which C2κTC/SL 

correctly identifies and transforms (PASS). 

 • Planckian distribution: Another fully parallel loop which C2κTC/SL 

understands properly and produces a correct transformed output (PASS). 

 • 2-D implicit hydrodynamics fragment: This loop contains both two-

dimensional anti-dependences and dependences. By reversing the direction of the 

anti-dependences (and essentially turn them into dependences), the loop is 

transformed into a two-dimensional nesting with a dependence vector. C2κTC/SL 

invokes the Self-Adaptive algorithm for this loop and produces a correct 

transformation (PASS). 

 • Location of a first array minimum: This is a simple loop which cannot be 

parallelized. C2κTC/SL correctly identifies that the current minimum index variable 

used in its iteration is a shared variable and transforms the loop accordingly (PASS). 
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Table 6.35. A Summary of the Results of the Livermore Loops Transformations by 

C2κTC/SL. 

Kernel 

No. Kernel Name Result 

1 Hydrodynamics fragment PASS 

2 Incomplete Cholesky conjugate gradient SAFE 

3 Inner product PASS 

4 Banded linear systems solution SAFE 

5 Tridiagonal linear systems solution PASS 

6 General linear recurrence equations SAFE 

7 Equation of state fragment PASS 

8 Alternating direction implicit integration FAIL 

9 Integrate predictors PASS 

10 Difference predictors PASS 

11 First sum PASS 

12 First difference PASS 

13 2-D particle in a cell SAFE 

14 1-D particle in a cell PASS/SAFE/SAFE 

15 Casual Fortran SAFE 

16 Monte Carlo search FAIL 

17 Implicit conditional computation FAIL 

18 2-D explicit hydrodynamics fragment PASS 

19 General linear recurrence equations PASS 

20 Discrete ordinates transport SAFE 

21 Matrix-matrix product PASS 

22 Planckian distribution PASS 

23 2-D implicit hydrodynamics fragment PASS 

24 Location of a first array minimum. PASS 

 

 Table 6.35 summarizes the results for all the Livermore loops. Qualitatively, 

more than half of the loops are transformed properly and most of the rest are 

transformed into some sort of family which produces correct results. Due to this, 

C2κTC/SL should be considered relatively successful in its task. However it is 

obvious that it needs a better symbolic analyzer in order to properly “understand” 

more complex codes (i.e. codes where index accesses take place via pointer 

dereferencing, codes where index accesses contain regular expressions etc.) 
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CHAPTER 7. FINAL THOUGHTS 

 This paper presented the most basic elements and ideas regarding the 

automatic parallelization of legacy sequential code. In addition, it described the 

research on what –at the time of writing- was considered novel: Using the SVP model 

to parallelize loops in ways that mainstream compilers could not. This research led to 

the creation of C2κTC/SL compiler. Heavily in beta, C2κTC/SL served more as a 

vessel to perform research than a commodity (or even commercial) compiler system 

that would be available to the public. The beta aspect reflects upon almost all aspects 

of the compiler in the form of a series of limitations: 

(i) C2κTC/SL only compiles programs with a main() function and no other 

functions in the same program. That means that the all functions must be 

declared as external and linked against the transformed code during 

compilation phase. In addition all external functions must have a return value 

(they cannot be declared as void). 

(ii) Due to some issues with the syntax analyzer, only statically declared arrays are 

supported, hence no dynamic arrays with malloc or any other type of pointer 

arithmetics are supported. 

(iii)  Input to the application is problematic due to some external reasons. There is 

no direct way to get input save for batches of data saved in a file in FIBRE 

format. 

(iv) There is no way to “mark” which loops are going to be parallelized and which 

should be left alone. C2κTC/SL blindly analyses and transforms all of them. 

The only way to make a loop run sequentially is to utilize a variable which 

increases by one. Such an act forces the compiler to sequentialize the loop 

with that variable marked as shared.  
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 For those reasons, it is not possible for any real life application to be compiled 

as-is. It will have to be re-written in order to comply with the above restrictions: Any 

function calls that perform actual computation which needs to be parallelized should 

be inlined in the main function. The rest of the functions need to be declared as 

external in that source file and implemented in a different file. They can be linked 

against the transformed file once C2κTC/SL is done with it. Since there is no way to 

mark loops for parallelization, loops that only perform printouts (for example loops 

that print the contents of a matrix) should not exist within the same main file or at the 

very least they should be forced to be transformed in a sequential form (through the 

use of shared variables). It is best for that kind of code to be factorized into an 

external function call. Finally, input data should be declared statically inside the code 

itself for any example or be batch-loaded through some helper FIBRE functions. 

 Despite of that though, most of the research goals that were set were achieved: 

Single dimensional loops, carrying dependences or not, can be transformed in a 

manner which improves their efficiency by a large degree even if there is no 

parallelism to exploit (thanks to the synchronising channels). Simple multi-

dimensional loops (without dependences) can also be transformed into fully parallel 

SVP constructs (families) that produce the same result while providing great speedups 

(46 in the case of 64 cores for example). Finally, perfectly nested loops with a static 

dependence vector can be parallelized in a wavefront-like style. Instead of focusing 

on compile-time methods which try to calculate the perfect hyperplane to utilize and 

then only estimate or even guess at the tile size to use (since it has been proven that a 

fully fine grain method will oversaturate at large problem sizes so tiling is a 

necessity), a different approach was chosen: Utilising the information of the run-time 

environment to the benefit of the compiler. 

 This novel solution was met with many difficulties, mostly because of the 

rather small bibliography on parallelizing in run-time, but in the end the Fixed-Size 

Algorithm was born which eventually evolved to the Self-Adaptive system: An 

algorithm that follows the dependence vector in order to choose which indices will 

execute at a given cycle (similar to the hyperplane, only instead of a hyperplane there 

are execution cycles). Not only does that algorithm intuitively find the best 
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hyperplane to use, it also finds the best tile size to utilise in order to achieve 

performance as close to maximum as possible. 

 There are several aspects though that find C2κTC/SL lacking and will need 

addressing in some future work. Those aspects can be categorized into two sets, 

software engineering and research. 

 When it comes to software engineering aspects, all of the limitations that were 

listed in the first paragraph must be fixed. There is nothing inherently difficult 

however a rather large timespan and a great deal of work must be invested in that 

aspect. Other areas also need improvement. The symbolic interpreter, albeit having 

served its purpose perfectly, is at an infant stage and the process of dependence 

detection relies on very simple expression identification (only the form of “A[i] = A[i 

– constant]” is understood). A proper symbolic analyzer needs to be implemented 

which will be able to comprehend complex expressions as well as dependences that 

extend into multiple statements. Moreover, the compiler itself is entwined with SL 

and the SVP in general. However, certain ideas and transformations it employs can be 

applied in more general systems. A different branch of its development should focus 

on producing output for libraries and systems widely in use: pthreads in a lower level 

or OpenMP for a higher level of abstraction. This would allow not only C2κTC/SL’s 

usage to become more widespread (which can lead to more people picking it up and 

upgrading it) but also for some comparison with other commodity compilers in 

existence today. 

 Research-wise,  even though the Self Adaptive Algorithm has proven to work 

for the typical nested loop with a static dependence vector, there is still plenty of room 

for improvement. Firstly, it is rather slow in its convergence rate. Since at each cycle 

the tile size in use is altered by the value of one, it takes several cycles for it to reach 

an optimal state. A smarter system needs to be implemented that will be increasing or 

decreasing the tile size based on its distance from the target or at the very least in a 

faster way than the current system. Secondly, the scheduler thread can in theory be 

improved. The way it traverses the coordinates with the dependence vector, can be 

executed in parallel and hence help the scheduler end faster. This will result in higher 

amounts of parallelism in general and hence greater speedups. Lastly, some way to 

deal with non-static dependences should be researched. If a dependence can be 
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described as an affine combination of a series of known variables (i.e. the indices) 

then, in theory, it should be possible to extend the algorithm  to transform these kinds 

of cases as well.  

 In conclusion, C2κTC/SL is an automatic parallelizing compiler which is 

capable of transforming C code into parallel SL code that can be executed by an SVP 

system. It provides a combination of compile time techniques (in cases of no 

dependence existing or in single-dimensional loops) with a run-time technique that 

was researched and developed especially for this compiler. Experimental results 

indicate that the run-time method can offer significant improvements in execution 

times and is definitely on the right path. Even though it can not compete with 

traditional compile-time methods in pure speedup gain, its versatility (i.e. handling 

irregular index spaces, calculating the optimal tile size, etc. ) more than makes up for 

that. More work is needed in various areas: The compiler should be able to deal with 

more than one functions in a program, pointer arithmetics should be implemented in 

order to deal with dynamically allocated arrays, I/O needs to be improved and the 

symbolic analyser should also be expanded with the ability to “understand” more 

diverse types of expressions inside array subscripts. Finally, the main Self-Adaptive 

algorithm itself can also benefit from a few improvements. Convergence rate needs to 

be improved, the scheduler thread can benefit from some inherent parallelism and 

finally non static dependences need to be researched. 
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APPENDIX A. THE SL LANGUAGE 

 

 The information contained in this Appendix comes mostly from [53]. As has 

been mentioned already, the SL language is essentially the C language expanded with 

a series of macro definitions that help encapsulate all the parallel constructs 

functionality. Due to this property, the grammar utilized by C2κTC/SL is the one 

listed below (The original C language specification is listed in [42]) :  

 

<translation-unit> ::= <external-declaration>* 

 

<external-declaration> ::= <function-definition> 

                  | <thread-function-declaration> 

                  | <thread-function-definition> 

                  | <declaration> 

 

<thread-function-definition> ::= sl_def ( <identifier> {, <attributes>? {, <thread-parametre-

list>}?}? ) <compound-statement> <sl-enddef> 

 

<thread-function-declaration> ::= sl_decl ( <identifier> , <thread-specifiers>? {, <thread-

parametre-list>}? ) ; 

 

<thread-parametre-list> ::= <thread-parametre-declaration> 

                   | <thread-parametre-declaration> , <thread-parametre-list> 

 

<function-definition> ::= {<declaration-specifier>}* <declarator> {<declaration>}* <compound-

statement> 

 

<declaration-specifier> ::= <storage-class-specifier> 

                          | <type-specifier> 

                          | <type-qualifier> 

 

<storage-class-specifier> ::= auto 

                            | register 

                            | static 

                            | typedef 
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<type-specifier> ::= void 

                   | char 

                   | short 

                   | int 

                   | long 

                   | float 

                   | double 

                   | signed 

                   | unsigned 

                   | <struct-or-union-specifier> 

                   | <enum-specifier> 

                   | <typedef-name> 

 

<struct-or-union-specifier> ::= <struct-or-union> <identifier> { {<struct-declaration>}+ } 

                              | <struct-or-union> { {<struct-declaration>}+ } 

                              | <struct-or-union> <identifier> 

 

<struct-or-union> ::= struct 

                    | union 

 

<struct-declaration> ::= {<specifier-qualifier>}* <struct-declarator-list> 

 

<specifier-qualifier> ::= <type-specifier> 

                        | <type-qualifier> 

 

<struct-declarator-list> ::= <struct-declarator> 

                           | <struct-declarator-list> , <struct-declarator> 

 

<struct-declarator> ::= <declarator> 

                      | <declarator> : <constant-expression> 

                      | : <constant-expression> 

 

<declarator> ::= {<pointer>}? <direct-declarator> 

 

<pointer> ::= * {<type-qualifier>}* {<pointer>}? 

 

<type-qualifier> ::= const 

                   | volatile 

 

<direct-declarator> ::= <identifier> 

                      | ( <declarator> ) 

                      | <direct-declarator> [ {<constant-expression>}? ] 

                      | <direct-declarator> ( <parameter-type-list> ) 

                      | <direct-declarator> ( {<identifier>}* ) 

 

<constant-expression> ::= <conditional-expression> 

 

<conditional-expression> ::= <logical-or-expression> 
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                           | <logical-or-expression> ? <expression> : <conditional-expression> 

 

<logical-or-expression> ::= <logical-and-expression> 

                          | <logical-or-expression || <logical-and-expression> 

 

<logical-and-expression> ::= <inclusive-or-expression> 

                           | <logical-and-expression && <inclusive-or-expression> 

 

<inclusive-or-expression> ::= <exclusive-or-expression> 

                            | <inclusive-or-expression> | <exclusive-or-expression> 

 

<exclusive-or-expression> ::= <and-expression> 

                            | <exclusive-or-expression> ^ <and-expression> 

 

<and-expression> ::= <equality-expression> 

                   | <and-expression> & <equality-expression> 

 

<equality-expression> ::= <relational-expression> 

                        | <equality-expression> == <relational-expression> 

                        | <equality-expression> != <relational-expression> 

 

<relational-expression> ::= <shift-expression> 

                          | <relational-expression> < <shift-expression> 

                          | <relational-expression> > <shift-expression> 

                          | <relational-expression> <= <shift-expression> 

                          | <relational-expression> >= <shift-expression> 

 

<shift-expression> ::= <additive-expression> 

                     | <shift-expression> << <additive-expression> 

                     | <shift-expression> >> <additive-expression> 

 

<additive-expression> ::= <multiplicative-expression> 

                        | <additive-expression> + <multiplicative-expression> 

                        | <additive-expression> - <multiplicative-expression> 

 

<multiplicative-expression> ::= <cast-expression> 

                              | <multiplicative-expression> * <cast-expression> 

                              | <multiplicative-expression> / <cast-expression> 

                              | <multiplicative-expression> % <cast-expression> 

 

<cast-expression> ::= <unary-expression> 

                    | ( <type-name> ) <cast-expression> 

 

<unary-expression> ::= <postfix-expression> 

                     | ++ <unary-expression> 

                     | -- <unary-expression> 

                     | <unary-operator> <cast-expression> 

                     | sizeof <unary-expression> 
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                     | sizeof <type-name> 

 

<postfix-expression> ::= <primary-expression> 

                       | <postfix-expression> [ <expression> ] 

                       | <postfix-expression> ( {<assignment-expression>}* ) 

                       | <postfix-expression> . <identifier> 

                       | <postfix-expression> -> <identifier> 

                       | <postfix-expression> ++ 

                       | <postfix-expression> -- 

 

<primary-expression> ::= <identifier> 

                       | <constant> 

                       | <string> 

                       | ( <expression> ) 

                       | sl_geta ( identifier ) 

                       | sl_getp ( identifier ) 

 

<constant> ::= <integer-constant> 

             | <character-constant> 

             | <floating-constant> 

             | <enumeration-constant> 

 

<expression> ::= <assignment-expression> 

               | <expression> , <assignment-expression> 

 

<assignment-expression> ::= <conditional-expression> 

                          | <unary-expression> <assignment-operator> <assignment-expression> 

 

<assignment-operator> ::= = 

                        | *= 

                        | /= 

                        | %= 

                        | += 

                        | -= 

                        | <<= 

                        | >>= 

                        | &= 

                        | ^= 

                        | |= 

 

<unary-operator> ::= & 

                   | * 

                   | + 

                   | - 

                   | ~ 

                   | ! 

 

<type-name> ::= {<specifier-qualifier>}+ {<abstract-declarator>}? 
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<parameter-type-list> ::= <parameter-list> 

                        | <parameter-list> , ... 

 

<parameter-list> ::= <parameter-declaration> 

                   | <parameter-list> , <parameter-declaration> 

 

<parameter-declaration> ::= {<declaration-specifier>}+ <declarator> 

                          | {<declaration-specifier>}+ <abstract-declarator> 

                          | {<declaration-specifier>}+ 

 

<abstract-declarator> ::= <pointer> 

                        | <pointer> <direct-abstract-declarator> 

                        | <direct-abstract-declarator> 

 

<direct-abstract-declarator> ::=  ( <abstract-declarator> ) 

                               | {<direct-abstract-declarator>}? [ {<constant-expression>}? ] 

                               | {<direct-abstract-declarator>}? ( {<parameter-type-list>|? ) 

 

<enum-specifier> ::= enum <identifier> { <enumerator-list> } 

                   | enum { <enumerator-list> } 

                   | enum <identifier> 

 

<enumerator-list> ::= <enumerator> 

                    | <enumerator-list> , <enumerator> 

 

<enumerator> ::= <identifier> 

               | <identifier> = <constant-expression> 

 

<typedef-name> ::= <identifier> 

 

<declaration> ::=  {<declaration-specifier>}+ {<init-declarator>}* 

         |  <thread-index-declaration> 

         |  <thread-function-pointer-declaration> 

         |  <thread-function-pointer-typedef> 

 

<thread-function-pointer-typedef> ::= sl_typedef_fptr ( <identifier> { , <thread-specifiers>? 

{ , <thread-parametre-list>}?}? ) ; 

 

<thread-function-pointer-declaration> ::= sl_decl_fptr ( <identifier> , <thread-specifiers>? { 

, thread-parametre-list}? ) ; 

 

<thread-index-declaration> ::= sl_index ( identifier ) ; 

 

<thread-specifiers> ::= <thread-specifier-item> 

               | ( thread-specifier-list ) 

 

<thread-specifier-list> ::= <thread-specifier-item> 
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                   | <thread-specifier-list> , <thread-specifier-item> 

 

<thread-specifier-item> ::= <thread-specifier> 

                   | <thread-attribute> 

 

<thread-specifier> ::= sl__static 

 

<thread-atribute> ::= undefined 

 

<init-declarator> ::= <declarator> 

                    | <declarator> = <initializer> 

 

<thread-parametre-list> ::= <thread-parametre-declaration> 

                   | <thread-parametre-list> , <thread-parametre-declaration> 

 

<thread-parametre-declaration> ::= sl_glparm ( <declaration-specifiers> , <identifier> ) 

                          | sl_glfparm ( <declaration-specifiers> , <identifier> ) 

                          | sl_shparm ( <declaration-specifiers> , <identifier> ) 

                          | sl_shfparm ( <declaration-specifiers> , <identifier> ) 

 

 

 

<initializer> ::= <assignment-expression> 

                | { <initializer-list> } 

                | { <initializer-list> , } 

 

<initializer-list> ::= <initializer> 

                     | <initializer-list> , <initializer> 

 

<compound-statement> ::= { {<declaration>}* {<statement>}* } 

                | { <create-construct> } 

 

<statement> ::= <labeled-statement> 

              | <expression-statement> 

              | <compound-statement> 

              | <selection-statement> 

              | <iteration-statement> 

              | <thread-argument-assignment> 

              | <thread-parametre-assignment> 

 

<thread-argument-assignment> ::= sl_seta ( <identifier> , <assignment-expression> ) ; 

 

<thread-parametre-assignment> ::= sl_setp ( <identifier> , (assignment-expression> ) ; 

 

<create-construct> ::= sl_create ( , <create-parametres> , <create-specifiers>? , <assignment-

expression> {, <thread-argument-list>}? ) ; <create-block-item-list>? sl_sync ( ) ;  

 

<create-parametres> ::= <assignment-expression>? , <range-parametres> 
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<range-parametres> ::= <assignment-expression>? , <assignment-expression>? , <assignment-

expression>? , <assignment-expression>? 

 

<create-specifiers> ::= <create-specifier> 

               | ( <create-specifier-list> ) 

 

<create-specifier-list> ::= <create-specifier> 

                   | <create-specifier-list> , <create-specifier> 

 

<create-specifier> ::= <thread-attribute> 

 

<thread-argument-list> ::= <thread-argument-definition> 

                  | <thread-argument-list> , <thread-argument-definition> 

 

<thread-argument-definition> ::= sl_glarg ( <declaration-specifiers> , <identifier>? {, 

<assignment-expression>}? ) 

                         | sl_glfarg ( <declaration-specifiers> , <identifier>? {, 

<assignment-expression>}? ) 

                         | sl_sharg ( <declaration-specifiers> , <identifier>? {, 

<assignment-expression>}? ) 

                         | sl_shfarg ( <declaration-specifiers> , <identifier>? {, 

<assignment-expression>}? ) 

 

<create-block-item-list> ::= <create-block-item> 

                    | <create-block-item-list> , <create-block-item> 

 

<create-block-item> ::= statement 

               | <create-construct> 

 

<labeled-statement> ::= <identifier> : <statement> 

                      | case <constant-expression> : <statement> 

                      | default : <statement> 

 

<expression-statement> ::= {<expression>}? ; 

 

<selection-statement> ::= if ( <expression> ) <statement> 

                        | if ( <expression> ) <statement> else <statement> 

                        | switch ( <expression> ) <statement> 

 

<iteration-statement> ::= while ( <expression> ) <statement> 

                        | do <statement> while ( <expression> ) ; 

                        | for ( {<expression>}? ; {<expression>}? ; {<expression>}? ) 

<statement> 

 

<identifier> ::= <letter>* { <letter> | <digit> }* 

 

<letter> ::= a | b | ... | z | A | B | ... | Z | _ 
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<digit> ::= 0 | 1 | ... | 9 

 

 It is clear that this grammar is a superset of the C language, so any C legacy 

program can be compiled and executed under SVP with no change. However, taking 

advantage of the parallelism offered by the hardware requires the code to declare 

threads and invoke them from some other thread (main can also be considered a 

thread). Alongside the syntax of SL, a list of constraints and semantics follows: 

Constraints: 

- The identifier used in sl_geta() must be a visible thread argument name. 

- The identifier used in sl_getp() must be a thread parameter name in the 

enclosing thread. 

- The sl_geta function cannot be used in any thread function body. 

- The sl_geta function can only appear inside its corresponding create 

context. 

- The sl_setp function cannot appear outside of a thread function body. 

- A thread index declaration can only appear in a thread function body. 

- Argument names cannot be used in any other create construct in the same 

scope. 

- A goto from outside a create construct cannot jump inside one and vice 

versa. 

- Thread functions cannot have a return statement. 

- The identifier inside a thread function definition must be in the same name 

space as C names. 

Semantics: 

- Each use of sl_getp generates a side effect. 

- If execution reaches an expression using sl_getp after it has passed a 

sl_setp statement using the same thread parameter identifier, the behavior 

of the program becomes undefined. 

- A thread function declaration declares a thread function with the specified 

name and prototype, with external linkage unless the attribute “sl__static” 

is specified. 
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- The thread specifier sl__static plays the same role as C’s storage qualifier 

static on external declarations. 

- A thread parameter definition specifies channel endpoints for the thread 

program. The directives sl_glparm and sl_glfparm specify global channel 

endpoints while the directives sl_shparm / sl_shfparm denote a shared 

channel. 

- sl_shparm / sl_glparm denote (directly or indirectly vie typedefs) integers. 

sl_shfparm / sl_glfparm denote in the same way floats / doubles. 

- Each execution is associated with a unique logical thread index, which can 

be observed via a sl_index declaration in the designated thread program. 

- If execution reaches a thread argument or parameter assignment statement 

after it has passed another such statement designating the same channel 

endpoint, the behavior of the program becomes undefined. 

 

A list of the most important directives of SL alongside a description for each follows: 

 sl_def(thread_name, return_type, …) {code} sl_enddef. sl_def defines a 

thread named thread_name and a return type of return_type (usually void). In the (…) 

part a series of arguments is listed. Arguments are passed by value exactly like the C 

language. Once the thread body’s functionality is defined (i.e. the instruction 

sequence is complete) between the brackets { }, sl_enddef designates to the compiler 

the end of a thread definition. 

 sl_shparm / sl_shfparm (parameter_type, parameter_name). Inside 

sl_def()'s parameter list, each shared channel parameter is formally defined with this 

directive. Parameter_type indicates the type of the data (int, char *, etc) while 

parameter_name indicates the name of the particular shared channel. In the case of a 

floating point value, the directive sl_shfparm needs to be used instead. 

 sl_glparm / sl_glfparm (parameter_type, parameter, parameter_name). 

Similar to the previous directive, this one defines a global channel parameter inside 

the sl_def's parameter list. Again, in the case of a floating point type of variable, the 

sl_glfparm directive needs to be used in place. 

 sl_index(variable_name). Stores the index of the current thread to the 

variable designated by variable_name. 
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 sl_getp(channel_name). Decouples the value from a channel named 

channel_name and returns it for use or storage inside a thread local variable. The 

channel can be either a global or a shared one and in the case of a shared channel, if 

the channel is empty, sl_getp will block the execution of the entire thread. It shouldn't 

be called more than once per channel so it is wise to store all such decouplings into 

local variables. 

 sl_setp(shared_channel_name, shared_value). Writes the value of 

shared_value back into a shared channel named shared_channel_name. It is 

meaningful only for shared channels and thusly it should be used only then and only 

once. If a thread does not write back to the shared channel a deadlock might occur. 

 sl_break(). Similar to C’s break, which breaks execution of a loop and 

continues the execution past the point of the loop’s end, sl_break() terminates the 

execution of the entire family of threads. Control of the program moves past the 

family’s synchronization point. 

 sl_create. Perhaps the most important directive of SL. Its usual invocation is 

sl_create(,,from,to,step,,,thread_body,…). It creates a family of threads whose index 

will have a starting value of "from", will go up to the value of "to" and have a step of 

"step". This means that (to-from)/step threads will exist inside this family. The … is 

the argument list that assigns values to the global and the shared channels. 

 sl_sharg / sl_shfarg(value_type, shared_channel_name, initial_value). Part 

of the formal parameter list of sl_create, it creates a shared channel named 

shared_channel_name which carries a value of type value_type. Additionally, it can 

be initialized with the value of initial_value. In the case of a floating type value, 

sl_shfarg should be used instead. The sharg / shfarg directives set the two endpoints 

of the shared channel that will be applied to all threads in the family. The initial value 

is automatically set and the final value can be read after the synchronization point. 

 sl_glarg / sl_glfarg(value_type, global_channel_name, initial_value). 

Another part of the formal parameter list of sl_create, this set of directives creates and 

initializes a global channel that permeates all threads in the family. The name of the 

channel will be global_channel_name, its type will be of value_type and it will be 

initialized with the value of initial_value. Again if the value is of floating point type 

then the counterpart sl_glfparm needs to be used. 
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 sl_sync(). Similar to the classic join for threads, sl_sync() will halt execution 

of the parent thread that created a family and wait till that family terminates to 

continue execution. 

 sl_geta(shared_channel_name). Once a family has terminated, the parent 

thread can read the final value of a shared channel via sl_geta. It takes as argument 

the name of the shared channel, decouples and returns its value for storage in a 

variable or direct use. 

 

 It should be stated here that all parameter types passed between threads are 

basic types or pointers to / arrays of them (type-defined). Any other user defined type 

(like compound types (i.e. structs / unions)) is not currently supported by SL. A 

simple example code similar to the classic "Hello world" program is depicted below: 

 

sl_def (void, print) 
{ 
 sl_index(i); 
 printf("Hello from thread %d\n",i); 
} 
sl_enddef 

 

This thread declaration defines a thread that prints "Hello from thread " and its 

accompanying index (its position inside the family chain). Creating a family of those 

threads is also straightforward: 

 

sl_create(,,0,N,1,,,print); 

sl_sync(); 

 

 This code creates a family of N threads that will all execute in parallel. The 

indices inside the family will range from 0 to N-1 and increment by 1. A full list of 

constraints and semantics of SL can be found in Appendix I of [53]. 
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APPENDIX B. SUPPORTED C SUBSET 

 In a similar manner to Appendix A the supported subset of the C grammar (in 

BNF form) is listed below: 

<translation-unit> ::= <external-declaration> 

 

<external-declaration> ::= <function-definition> 

 

<function-definition> ::=  <main-type> main {<declaration>}* <compound-statement> 

 

<main-type> ::= int 

       | void 

 

<declaration-specifier> ::= <storage-class-specifier> 

                          | <type-specifier> 

                          | <type-qualifier> 

 

<storage-class-specifier> ::= auto 

                            | register 

                            | static 

                            | typedef 

 

<type-specifier> ::= void 

                   | char 

                   | short 

                   | int 

                   | long 

                   | float 

                   | double 

                   | signed 

                   | unsigned 

                   | <struct-or-union-specifier> 

                   | <enum-specifier> 

                   | <typedef-name> 

 

<struct-or-union-specifier> ::= <struct-or-union> <identifier> { {<struct-declaration>}+ } 

                              | <struct-or-union> { {<struct-declaration>}+ } 

                              | <struct-or-union> <identifier> 

 



147 

 

 

<struct-or-union> ::= struct 

                    | union 

 

<struct-declaration> ::= {<specifier-qualifier>}* <struct-declarator-list> 

 

<specifier-qualifier> ::= <type-specifier> 

                        | <type-qualifier> 

 

<struct-declarator-list> ::= <struct-declarator> 

                           | <struct-declarator-list> , <struct-declarator> 

 

<struct-declarator> ::= <declarator> 

                      | <declarator> : <constant-expression> 

                      | : <constant-expression> 

 

<declarator> ::= {<pointer>}? <direct-declarator> 

 

<pointer> ::= * {<type-qualifier>}* {<pointer>}? 

 

<type-qualifier> ::= const 

                   | volatile 

 

<direct-declarator> ::= <identifier> 

                      | ( <declarator> ) 

                      | <direct-declarator> [ {<constant-expression>}? ] 

                      | <direct-declarator> ( <parameter-type-list> ) 

                      | <direct-declarator> ( {<identifier>}* ) 

 

<constant-expression> ::= <conditional-expression> 

 

<conditional-expression> ::= <logical-or-expression> 

                           | <logical-or-expression> ? <expression> : <conditional-expression> 

 

<logical-or-expression> ::= <logical-and-expression> 

                          | <logical-or-expression || <logical-and-expression> 

 

<logical-and-expression> ::= <inclusive-or-expression> 

                           | <logical-and-expression && <inclusive-or-expression> 

 

<inclusive-or-expression> ::= <exclusive-or-expression> 

                            | <inclusive-or-expression> | <exclusive-or-expression> 

 

<exclusive-or-expression> ::= <and-expression> 

                            | <exclusive-or-expression> ^ <and-expression> 

 

<and-expression> ::= <equality-expression> 

                   | <and-expression> & <equality-expression> 
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<equality-expression> ::= <relational-expression> 

                        | <equality-expression> == <relational-expression> 

                        | <equality-expression> != <relational-expression> 

 

<relational-expression> ::= <shift-expression> 

                          | <relational-expression> < <shift-expression> 

                          | <relational-expression> > <shift-expression> 

                          | <relational-expression> <= <shift-expression> 

                          | <relational-expression> >= <shift-expression> 

 

<shift-expression> ::= <additive-expression> 

                     | <shift-expression> << <additive-expression> 

                     | <shift-expression> >> <additive-expression> 

 

<additive-expression> ::= <multiplicative-expression> 

                        | <additive-expression> + <multiplicative-expression> 

                        | <additive-expression> - <multiplicative-expression> 

 

<multiplicative-expression> ::= <cast-expression> 

                              | <multiplicative-expression> * <cast-expression> 

                              | <multiplicative-expression> / <cast-expression> 

                              | <multiplicative-expression> % <cast-expression> 

 

<cast-expression> ::= <unary-expression> 

                    | ( <type-name> ) <cast-expression> 

 

<unary-expression> ::= <postfix-expression> 

                     | ++ <unary-expression> 

                     | -- <unary-expression> 

                     | <unary-operator> <cast-expression> 

                     | sizeof <unary-expression> 

                     | sizeof <type-name> 

 

<postfix-expression> ::= <primary-expression> 

                       | <postfix-expression> [ <expression> ] 

                       | <postfix-expression> ( {<assignment-expression>}* ) 

                       | <postfix-expression> . <identifier> 

                       | <postfix-expression> -> <identifier> 

                       | <postfix-expression> ++ 

                       | <postfix-expression> -- 

 

<primary-expression> ::= <identifier> 

                       | <constant> 

                       | <string> 

                       | ( <expression> ) 

 

<constant> ::= <integer-constant> 

             | <character-constant> 
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             | <floating-constant> 

             | <enumeration-constant> 

 

<expression> ::= <assignment-expression> 

               | <expression> , <assignment-expression> 

 

<assignment-expression> ::= <conditional-expression> 

                          | <unary-expression> <assignment-operator> <assignment-expression> 

 

<assignment-operator> ::= = 

                        | *= 

                        | /= 

                        | %= 

                        | += 

                        | -= 

                        | <<= 

                        | >>= 

                        | &= 

                        | ^= 

                        | |= 

 

<unary-operator> ::= & 

                   | * 

                   | + 

                   | - 

                   | ~ 

                   | ! 

 

<type-name> ::= {<specifier-qualifier>}+ {<abstract-declarator>}? 

 

<parameter-type-list> ::= <parameter-list> 

                        | <parameter-list> , ... 

 

<parameter-list> ::= <parameter-declaration> 

                   | <parameter-list> , <parameter-declaration> 

 

<parameter-declaration> ::= {<declaration-specifier>}+ <declarator> 

                          | {<declaration-specifier>}+ <abstract-declarator> 

                          | {<declaration-specifier>}+ 

 

<abstract-declarator> ::= <pointer> 

                        | <pointer> <direct-abstract-declarator> 

                        | <direct-abstract-declarator> 

 

<direct-abstract-declarator> ::=  ( <abstract-declarator> ) 

                               | {<direct-abstract-declarator>}? [ {<constant-expression>}? ] 

                               | {<direct-abstract-declarator>}? ( {<parameter-type-list>|? ) 
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<enum-specifier> ::= enum <identifier> { <enumerator-list> } 

                   | enum { <enumerator-list> } 

                   | enum <identifier> 

 

<enumerator-list> ::= <enumerator> 

                    | <enumerator-list> , <enumerator> 

 

<enumerator> ::= <identifier> 

               | <identifier> = <constant-expression> 

 

<typedef-name> ::= <identifier> 

 

<declaration> ::=  {<declaration-specifier>}+ {<init-declarator>}* 

 

<init-declarator> ::= <declarator> 

                    | <declarator> = <initializer> 

 

<initializer> ::= <assignment-expression> 

                | { <initializer-list> } 

                | { <initializer-list> , } 

 

<initializer-list> ::= <initializer> 

                     | <initializer-list> , <initializer> 

 

<compound-statement> ::= { {<declaration>}* {<statement>}* } 

 

<statement> ::= <labeled-statement> 

              | <expression-statement> 

              | <compound-statement> 

              | <selection-statement> 

              | <iteration-statement> 

 

<labeled-statement> ::= <identifier> : <statement> 

                      | case <constant-expression> : <statement> 

                      | default : <statement> 

 

<expression-statement> ::= {<expression>}? ; 

 

<selection-statement> ::= if ( <expression> ) <statement> 

                        | if ( <expression> ) <statement> else <statement> 

                        | switch ( <expression> ) <statement> 

 

<iteration-statement> ::= while ( <expression> ) <statement> 

                        | do <statement> while ( <expression> ) ; 

                        | for ( {<expression>}? ; {<expression>}? ; {<expression>}? ) 

<statement> 

 

<identifier> ::= <letter>* { <letter> | <digit> }* 
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<letter> ::= a | b | ... | z | A | B | ... | Z | _ 

 

<digit> ::= 0 | 1 | ... | 9 

 

 Essentially, the whole translation module becomes only a single function 

(called main) while there are no declarations outside that main function. In addition, 

jump statements of any form are not supported since they break normal code flow. 

Everything else retains exactly the same grammar and semantics of the original 

language.  
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