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Abstract

Grigorios F. Tzortzis.

PhD, Computer Science & Engineering Department, University of Ioannina, Greece.

June, 2014.

Thesis Title: Clustering Using Similarity and Kernel Matrices.

Thesis Supervisor: Aristidis Likas.

This thesis studies the (unsupervised) clustering problem, which aims at partitioning

a dataset into groups, called clusters, such that instances falling in the same clus

ter are similar to each other and dissimilar to those of other clusters according to

some similarity/dissimilarity measure. Specifically, this thesis concerns the develop

ment, implementation and evaluation of clustering methodologies, mainly focusing on

three different axes: i) proximitybased clustering, where only the pairwise proximity

matrix (i.e. similarity or distance matrix) of the data is available during training and

not the instances themselves, ii) multiview learning, where for the same instances

multiple representations (views) are available, coming from different sources and/or

feature spaces and iii) multiple kernel learning, where a kernel that suits the data is

learned together with the cluster assignments. Usually, the kernel is parametrized as

a combination of some predefined kernels, called basis kernels, and we wish to infer

appropriate values for the combination parameters.

We begin, by presenting an approach that tackles the initialization problem of the

kmeans algorithm by altering its sum of the intracluster variances objective. Weights

are assigned to the clusters in proportion to their variance, which predispose the op

timization towards primarily minimizing those clusters, that in the current iteration,

exhibit large intracluster variance. In this way, the solution space is gradually re

stricted towards clusters with similar variances, allowing our method to systematically

produce higher quality partitionings than kmeans, while restarted from random initial

centers. Moreover, we adapt our approach to perform clustering in kernel space, by

altering the objective of the kernel kmeans algorithm. The kernel space extension re

quires only the kernel matrix and not the instances as input, i.e. it is a proximitybased

method.

Afterward, we consider the problem of unsupervised multiview learning. Our main

contribution in this field is the assignment of weights to the views, which are auto
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matically tuned to reflect the quality of the views and determine their contribution to

the clustering solution accordingly. The majority of multiview approaches treat all

available views as being equally important, which may lead to a considerable drop in

performance if degenerate views (e.g. noisy views) exist in the dataset. Analytically, we

present two different methodologies for the above problem. In the first case, views are

represented by convex mixture models and we develop an algorithm that associates a

weight with each view and another that does not employ view weights. In the second

case, each view is represented by a kernel matrix and a weighted combination of those

kernel matrices is learned. This formulation includes a parameter that controls the

sparsity of the weights, allowing its adaptation to the dataset.

Finally, we focus on multiple kernel learning, where most of the existing clustering

approaches of this type exploit the large margin principle of SVM and perform learning

by maximizing the margin. Instead, here, we propose an objective that utilizes the

ratio between the margin and the intracluster variance. Since the objective explicitly

takes into account both the separation (margin) and the compactness (intracluster

variance) of the clusters, higher quality solutions can be possibly attained compared

to approaches that rely solely on either of the two. Moreover, it has been shown that

the margin alone is an unsuitable measure of the goodness of the learned kernel, as it

can become arbitrary large by simply scaling the kernel. We prove that our ratiobased

objective is invariant to kernel scaling and, also, that its global optimum solution is

invariant to the type of norm constraint on the kernel parameters. Experiments verify

the properties of our objective and reveal the superior clustering performance of the

proposed multiple kernel formulation.
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Τίτλος ∆ιατριβής : Τεχνικές Οµαδοποίησης ∆εδοµένων Βασισµένες σε Πίνακες Οµοιότητας.

Επιβλέπων: Αριστείδης Λύκας.

Η παρούσα διατριβή µελετά το πρόβληµα της οµαδοποίησης (clustering), που έχει ως

στόχο τον διαχωρισµό ενός συνόλου δεδοµένων σε οµάδες (clusters), χωρίς τη χρήση

επίβλεψης, ώστε τα δεδοµένα που ανήκουν στη ίδια οµάδα να είναι όµοια µεταξύ τους

και ανόµοια µε αυτά των άλλων οµάδων, ϐάσει ενός µέτρου οµοιότητας/ανοµοιότητας.

Συγκεκριµένα, η διατριβή επικεντρώνεται στην παρουσίαση µεθόδων οµαδοποίησης που

αφορούν τρεις ϐασικούς ϑεµατικούς άξονες : α) την οµαδοποίηση δεδοµένων για τα οποία

έχουµε διαθέσιµο µόνο τον πίνακα εγγύτητας και όχι τα ίδια τα δεδοµένα (proximitybased

clustering), ϐ) την µάθηση µε πολλαπλές όψεις (multiview learning), όπου για τα ίδια

δεδοµένα έχουµε στη διάθεσή µας πολλαπλές αναπαραστάσεις (όψεις) που προέρχονται

από διαφορετικές πηγές ή/και διαφορετικούς χώρους χαρακτηριστικών και γ) την µάθηση

µε πολλαπλούς πυρήνες (multiple kernel learning), όπου ταυτόχρονα µε την οµαδοποίηση

ϑέλουµε να µάθουµε και τον κατάλληλο πυρήνα (kernel) για τα δεδοµένα. Συνήθως ο

πυρήνας παραµετροποιείται ως ένας συνδυασµός από δοθέντες πυρήνες (basis kernels)

και στοχεύουµε στην µάθηση κατάλληλων τιµών για τις παραµέτρους του συνδυασµού.

Αρχικά προτείνεται µια µέθοδος για την αντιµετώπιση του γνωστού προβλήµατος της

αρχικοποίησης (initialization problem), από το οποίο πάσχει ο αλγόριθµος kmeans.

Συγκεκριµένα, τροποποιούµε το κριτήριο (objective function) του kmeans έτσι ώστε

να δίδεται µεγαλύτερη έµφαση στην ελαχιστοποίηση των οµάδων που στην τρέχουσα

επανάληψη εµφανίζουν µεγάλη διακύµανση (intracluster variance). Κατ’ αυτόν τον

τρόπο ο χώρος λύσεων σταδιακά περιορίζεται σε οµάδες που εµφανίζουν παρεµφερή

διακύµανση, το οποίο επιτρέπει στη µέθοδό µας να εντοπίζει σε συστηµατική ϐάση λύσεις

καλύτερης ποιότητας σε σχέση µε τον kmeans, καθώς επανεκκινείται από τυχαία αρ-

χικά κέντρα. Επιπλέον, παρουσιάζεται η προσαρµογή της µεθόδου ώστε να µπορεί να

εφαρµοστεί για οµαδοποίηση µε πίνακα οµοιότητας (kernel matrix), τροποποιώντας το

κριτήριο του αλγορίθµου kernel kmeans.

Στη συνέχεια, η διατριβή εστιάζεται στο πρόβληµα της οµαδοποίησης µε πολλαπλές

όψεις. Η ϐασική συνεισφορά στο αντικείµενο αυτό σχετίζεται µε την ανάθεση ϐαρών στις
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όψεις, τα οποία µαθαίνονται αυτόµατα και τα οποία αντικατοπτρίζουν την ποιότητα των

όψεων. Οι υπάρχουσες προσεγγίσεις ϑεωρούν όλες τις όψεις εξίσου σηµαντικές, κάτι που

µπορεί να οδηγήσει σε σηµαντική µείωση της απόδοσης εάν υπάρχουν εκφυλισµένες όψεις

(π.χ. όψεις µε ϑόρυβο) στο σύνολο δεδοµένων. Ειδικότερα, παρουσιάζονται για το ανωτέρω

πρόβληµα δύο διαφορετικές µεθοδολογίες. Στην πρώτη περίπτωση αναπαριστούµε τις

όψεις µέσω κυρτών µικτών µοντέλων (convex mixture models) λαµβάνοντας υπόψη τις

διαφορετικές στατιστικές ιδιότητές τους και παρουσιάζουµε έναν αλγόριθµο µε ϐάρη στις

όψεις και έναν χωρίς ϐάρη. Στην δεύτερη περίπτωση αναπαριστούµε την κάθε όψη µέσω

ενός πίνακα οµοιότητας (kernel matrix) και µαθαίνουµε ένα συνδυασµό µε ϐάρη από

τους πίνακες αυτούς. Το προτεινόµενο µοντέλο διαθέτει µία παράµετρο που ελέγχει την

αραιότητα των ϐαρών, επιτρέποντας την καλύτερη προσαρµογή του συνδυασµού στα δε-

δοµένα.

Η τελευταία ενότητα της διατριβής αφορά στην οµαδοποίηση µε πολλαπλούς πυρήνες,

όπου συνήθως το κριτήριο που ϐελτιστοποιείται είναι το εύρος (margin) της λύσης, όπως

είναι γνωστό από τον ταξινοµητή SVM (support vector machine). Στην προσέγγιση που

προτείνεται, ϐελτιστοποιείται ο λόγος µεταξύ του εύρους και της διακύµανσης (intra

cluster variance) των οµάδων, λαµβάνοντας έτσι υπόψη τόσο τον διαχωρισµό (separability)

τους όσο και το πόσο συµπαγείς (compactness) είναι οι οµάδες, το οποίο δύναται να

οδηγήσει σε καλύτερες λύσεις. ΄Εχει δειχθεί ότι το εύρος από µόνο του δεν επαρκεί ως

κριτήριο για την µάθηση του κατάλληλου πυρήνα, καθότι µπορεί να γίνει αυθαίρετα

µεγάλο µέσω µίας απλής κλιµάκωσης (scaling) του πυρήνα. Αντιθέτως, το κριτήριο που

προτείνουµε είναι αµετάβλητο (invariant) σε κλιµακώσεις του πυρήνα και, επιπλέον, το

ολικό του ϐέλτιστο είναι αµετάβλητο ως προς τον τύπο της νόρµας που εφαρµόζεται στους

περιορισµούς (constraints) των παραµέτρων του πυρήνα. Τα πειραµατικά αποτελέσµατα

επιβεβαιώνουν τις ιδιότητες του κριτηρίου µας, καθώς και τις αναµενόµενες ϐελτιωµένες

επιδόσεις οµαδοποίησης.
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Chapter 1

Introduction

1.1 Proximitybased Clustering

1.2 Multiview Learning

1.3 Multiple Kernel Learning

1.4 Thesis Contribution

1.5 Thesis Layout

As an ever increasing amount of information becomes available, users try to find ways of

organizing, interpreting and handling this information. Locating valuable or important

information can prove out to be an overwhelming task, due to the great volume of

accessible data. One key step in dealing with this vast amount of data is to classify

or group it into a set of categories or clusters. In this way, users are provided with

a condensed representation of the data, where similarities and differences, as well as

hidden structures and patterns in the data are exposed.

Machine learning concerns the development of methods that learn from examples

and automatically detect patterns in the data [12,99]. The two main areas of machine

learning are supervised and unsupervised learning, whose most representative prob

lems are classification and clustering, respectively. In the classification problem, the

underlying task is to assign to an instance x one of a finite set of discrete class labels,

i.e. assign x to a category. To accomplish this, a classifier is built that outputs the

class label of an instance using a parametric function. To determine the values of the

involved parameters, an inductive learning algorithm is employed, which optimizes an

empirical risk objective function over a finite labeled dataset X = {(xi, yi)}N
i=1, where xi

is an instance and yi is the corresponding class label. Overall, the aim of classification

is to construct the classifier, by utilizing the labeled data in X , and use it to predict the

labels of new unseen instances.
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For the clustering problem [123], in which this thesis focuses on, the dataset does

not contain any notion of labels and is of the form X = {xi}N
i=1, i.e. it consists only of the

instances. The goal of clustering is to partition X into a finite number of groups, called

clusters, which unveil the intrinsic structures present in the data. Exposing these

hidden structures provides meaningful insight into the data that can be of particular

interest. For this reason, clustering has found applications in a variety of fields, such

as pattern recognition, image segmentation, spatial database analysis, life and medical

sciences, economics and many more. Usually, a similarity or dissimilarity measure,

such as Euclidean distance, is used to describe the relations among the instances, and

clusters are obtained by employing a clustering algorithm which seeks to group the

data in a way that instances falling in the same cluster are similar to each other and

dissimilar to those of other clusters. The choice of proximity measure and clustering

algorithm has a huge impact on the resulting partitioning and different choices can lead

to different number of clusters, different cluster shapes etc. Note that clustering is a

subjective process in nature, as there is no groundtruth to guide on how the instances

should be grouped together, in contrast to classification where the class of each dataset

point xi is available. Even the number of clusters may not be known in advance. Thus,

it is not straightforward how to evaluate a clustering result and the evaluation heavily

depends on the application under consideration.

This thesis concerns the development, implementation and evaluation of (unsuper

vised) clustering methodologies for three important and very active machine learning

problems, namely proximitybased clustering [92, 113], multiview learning [98, 120]

and multiple kernel learning [49]. In the following, we describe these problems in detail,

along with a review of the related work. Afterward, we present the main contributions

and the layout of the thesis.

1.1 Proximitybased Clustering

Given a dataset X = {xi}N
i=1, a proximity matrix P ∈ ℜN×N , Pij = prox(xi,xj), is

defined as the matrix that contains the pairwise proximities (similarities or distances)

of all dataset points. If proximity corresponds to distance, then it is called a distance

matrix and is denoted by D ∈ ℜN×N , Dij = d(xi,xj), while if it corresponds to similarity

it is called a similarity matrix and is denoted by S ∈ ℜN×N , Sij = s(xi,xj). Several

clustering algorithms, such as kmeans, fuzzy cmeans, Gaussian mixture models and

many others [99], require as input the instances themselves which must be in the

form of vectors. However, there exist problems where only the proximity matrix of the

data is available, making the application of these methods impossible. This happens

basically for two reasons. Either the pairwise proximities are extracted beforehand and

only these are provided, or instances may not be vectors at all. Consider for example

graph partitioning [37], where instances correspond to graph vertices and edge weights

describe their proximity. In this case there are no vectors and only a proximity matrix
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Table 1.1: Examples of kernel functions.

Linear K(xi,xj) = x⊤
i xj

Polynomial K(xi,xj) =
(
x⊤

i xj + γ
)δ

RBF (or Gaussian) K(xi,xj) = exp
(
−‖xi − xj‖2/2σ2

)

Sigmoid K(xi,xj) = tanh
(
γ(x⊤

i xj) + θ
)

can be extracted. Hence, developing clustering algorithms that can directly work on the

proximity matrix is of great importance. Of course, if we are given vectorial data, i.e.

xi ∈ ℜd, proximitybased methods can still be applied, by first calculating the pairwise

proximities using an appropriate measure such as the Euclidean distance.

A special form of proximity (similarity) matrix utilized by several machine learning

algorithms is the kernel matrix K ∈ ℜN×N [92]. The dataset X is mapped from input

space to a higher dimensional reproducing kernel Hilbert space H, a.k.a. feature space,

via a nonlinear transformation φ : X → H and the kernel matrix contains the pairwise

inner products in the feature space, i.e. Kij = φ(xi)
⊤φ(xj), xi ∈ ℜd. Note that any

positive semidefinite matrix is a kernel matrix, since it can be interpreted as a Gram

matrix. Usually a kernel function K : X × X → ℜ [41] is applied to directly provide

the inner products in feature space without explicitly defining transformation φ, i.e.

Kij = K(xi,xj) = φ(xi)
⊤φ(xj). Some kernel function examples are given in Table 1.1.

The use of a kernel function is not a mere technicality, as for certain kernel functions the

corresponding transformation is intractable. By employing the kernel matrix, learning

is carried out in feature space instead of input space, which allows for nonlinearities in

the data to be uncovered and has been shown to boost performance in several cases.

Some examples of kernel methods are kernel PCA [90], SVM [19], RVM [101], kernel

kmeans [37,90] and kernel ridge regression [89].

In the rest of this section, we present some popular proximitybased clustering

approaches from the literature.

1.1.1 kmedoids

The kmedoids algorithm is closely related to the wellknown kmeans algorithm [76,

123]. Their main difference is that kmedoids represents a cluster with a medoid instead

of a centroid. While the centroid does not, in general, correspond to a dataset point,

the medoid, by its definition, must necessarily be a dataset point. One can think of

the medoid as the most ‘‘central’’ instance of the cluster with respect to some proximity

measure. The utilization of medoids instead of centroids allows kmedoids to derive a

partitioning using only the proximity matrix, without requiring data to be in vectorial

form.

Given a dataset X = {xi}N
i=1, kmedoids splits X into a predefined number M of
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clusters, {Ck}M
k=1, by optimizing the following clustering criterion:

E =
N∑

i=1

M∑

k=1

δikprox(xi,mk), (1.1)

where δik = 1 if xi ∈ Ck and δik = 0 otherwise, mk ∈ X is the cluster medoid and

prox(xi,mk) is the proximity between data point xi and medoid mk. If proximity rep

resents similarity, the above criterion is maximized, while if it represents distance it

is minimized. The optimization is done with an iterative procedure almost identical

to that of kmeans. The algorithm starts by (randomly) selecting M data points as

initial medoids and proceeds by alternating between assigning each data point to the

closest medoid (i.e. to the most similar, or the least distant medoid) and computing

the medoid of each cluster, until the medoids do not change. The closest medoid

can be found by a simple look up on the proximity matrix. The medoid of a clus

ter is an instance that belongs to that cluster and can be found through a discrete

search over the cluster instances. We select as medoid of the kth cluster the instance

xi∗, where xi∗ = argmin
xi∈Ck

∑
xj∈Ck

prox(xi,xj) if proximity corresponds to distance and

xi∗ = argmax
xi∈Ck

∑
xj∈Ck

prox(xi,xj) if proximity corresponds to similarity. This search

can be performed using only the proximity matrix entries.

The advantages of kmedoids over kmeans are that it requires only the proximity

matrix, that cluster representatives are more robust to outliers and that any similarity

(or distance) measure can be used in the objective function as long as it can be readily

evaluated and guarantees convergence. There are also a number of drawbacks, such

as the higher computational complexity, since kmedoids requires O(τ(N2 + MN))

operations (τ is the number of iterations). This complexity is a result of the discrete

search required to identify the medoids. Finally, note that the solution depends on the

initial medoids, hence local optima of the clustering criterion are attained.

1.1.2 Spectral Clustering

Spectral clustering [113] is a relatively new approach to clustering that produces a

partitioning of the dataset X = {xi}N
i=1 using the eigenvectors of a matrix derived from

the data. More specifically, a matrix containing the pairwise similarities, called affinity

matrix in this case, is used and the eigenvectors of this matrix, or a matrix derived

from the affinity matrix, are calculated. The eigenvectors are then processed to obtain

a clustering of the dataset. We shall denote the affinity matrix by A ∈ ℜN×N , where

Aij = s(xi,xj).

A number of variants of the spectral approach appear in the literature which ba

sically differ on the matrix used to calculate the eigenvectors and the way the eigen

vectors are subsequently processed to obtain the final partitioning. Some of them are

summarized in [113, 118]. Here we present the typical algorithm proposed by Ng et

al. [82], which is described in Algorithm 1.1. This algorithm does not require as input
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(a) (b)

Figure 1.1: Spectral clustering on the two rings dataset from [82]: (a) The rings cannot

be separated by kmeans in the original space; (b) The two rings can be separated with

kmeans after being mapped in ℜ2 with the use of eigenvectors.

Algorithm 1.1 Spectral clustering with the Ng et al. [82] algorithm.

Input: Affinity matrix A, Number of clusters M

Output: Final clusters {Ck}M
k=1

1: Define the diagonal matrix D where Dii =
∑N

j=1 Aij

2: Construct the matrix L = D−1/2AD−1/2

3: Calculate e1, . . . , eM , the M top eigenvectors of L, and form the matrix E = [e1, . . . , eM ] ∈
ℜN×M

4: Normalize each of E’s rows to unit length and construct matrix Y , Yij = Eij

/(∑M
l=1 E2

il

)1/2

5: Treat each row of Y as a point in ℜM and cluster them into M clusters using kmeans

6: Assign instance xi to cluster Ck only if the ith row of matrix Y was assigned to the kth

cluster

the dataset in vectorial form, however if the dataset is available, Ng et al. proposed

computing the affinity matrix as Aij = exp(−‖xi − xj‖2/2σ2) for i 6= j and Aii = 0.

The parameter σ controls how rapidly the affinity falls off with the distance. One may

wonder, since in step 5 we apply kmeans on the eigenvectors, why not apply kmeans

directly on the data. The answer is that mapping the points in ℜM (M is the number

of clusters) using eigenvectors can lead to tight clusters that can be uncovered by k

means more easily. An example is shown in Figure 1.1, where the two rings cannot be

identified directly by kmeans, since they are not linearly separable, but when they are

mapped to ℜ2, through the eigenvectors, ring identification is possible.

To understand how this algorithm works, consider the ‘‘ideal’’ case in which data

points belonging to different clusters are infinitely far apart, hence their affinity is zero.

This results in an affinity matrix that is block diagonal and thus matrix L (step 2) is also

block diagonal. The eigenvectors and eigenvalues of a block diagonal matrix are the

union of the eigenvalues and eigenvectors of its blocks (the latter padded appropriately

with zeros). If the affinity matrix is also symmetric and Aij > 0 for i 6= j in each block, it
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follows that each block of matrix L has an eigenvalue equal to 1 and the next eigenvalue

is strictly less than 1. Thus, taking as many top eigenvectors1 as the number of blocks

in matrix L (step 3) results in taking the top eigenvector of each block of L, padded

appropriately with zeros. Then matrix E is of the form:

E =




e
(1)
1

~0 · · · ~0 ~0
~0 e

(2)
1 · · · ~0 ~0

...
...

. . .
...

...

~0 ~0 · · · e
(M−1)
1

~0
~0 ~0 · · · ~0 e

(M)
1



∈ ℜN×M

where e
(k)
1 is the top eigenvector of the kth block. Clustering the rows of this matrix

(or the rownormalized matrix Y (step 4)) is straightforward as rows with nonzero value

in the first dimension belong to the first cluster, rows with nonzero value in the second

dimension belong to the second cluster etc. Note that this clustering corresponds to

the true clustering of the instances. This ‘‘ideal’’ scenario provides the intuition behind

all spectral clustering methods. Obviously, in real problems the affinity between points

in different clusters will not be zero and the top eigenvectors will not define so clearly a

partition, but with some processing we expect to approach the true clusters.

The main advantage of spectral methods is that they do not depend on initializations.

Only the step that derives the clusters from the eigenvectors may require initialization

(e.g. kmeans in step 5 of Algorithm 1.1), but this is not expected to change the final

solution considerably if the eigenvectors strongly indicate a partitioning of the dataset.

Also there is no limitation on the form of the affinity matrix which can contain even

nonmetric similarities. Usually though, the affinity matrix is kept symmetric to avoid

complex eigenvalues and its entries are positive numbers. Spectral methods have

been employed to numerous problems with satisfactory results. They are particularly

popular for graph partitioning as many graph cut criteria, such as normalized cut

and ratio association, can be optimized by taking the eigenvectors of a matrix derived

from the graph affinity matrix [37, 113, 118]. Spectral methods compute a globally

optimum solution of a relaxation of the graph problem. The main disadvantage is the

high computational complexity caused by the need to compute the eigenvalues and

eigenvectors of an N ×N matrix. Eigenvalue decomposition costs O(N3), which is very

high for large datasets. Special numerical methods can be used to approximate the M

top eigenvectors without computing all eigenvectors, thus reducing the above cost.

1.1.3 Kernel kmeans

Kernel kmeans [37,90] is a generalization of the standard kmeans algorithm where

the dataset X = {xi}N
i=1, xi ∈ ℜd is mapped from input space to a higher dimensional

reproducing kernel Hilbert space (or feature space) H via a nonlinear transformation

1The top eigenvectors are the ones corresponding to the largest eigenvalues.
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Algorithm 1.2 Kernel kmeans.

Input: Kernel matrix K, Number of clusters M , Initial clusters {Ck}M
k=1

Output: Final clusters {Ck}M
k=1, Intracluster variance EH

1: for all points xi, i = 1 to N do

2: for all clusters Ck, k = 1 to M do

3: Compute ‖φ(xi) − mk‖2 using (1.3)

4: end for

5: Find c∗(xi) = argmin
k

(
‖φ(xi) − mk‖2

)

6: end for

7: for all clusters Ck, k = 1 to M do

8: Update cluster Ck = {xi|c∗(xi) = k}
9: end for

10: if converged then

11: return final clusters {Ck}M
k=1 and EH calculated using (1.2)

12: else

13: Go to step 1

14: end if

φ : X → H. Actually, kernel kmeans is equivalent to performing kmeans in feature

space. This results in linear separators in feature space which correspond to nonlin

ear separators in input space. Thus kernel kmeans avoids the limitation of linearly

separable clusters that kmeans suffers from.

To partition dataset X into M disjoint clusters, {Ck}M
k=1, the intracluster variance

in feature space (1.2) is minimized over clusters {Ck}M
k=1, where mk is the kth cluster

center and δik is an indicator variable with δik = 1 if xi ∈ Ck and δik = 0 otherwise.

EH =
N∑

i=1

M∑

k=1

δik‖φ(xi) − mk‖2, mk =

∑N
i=1 δikφ(xi)∑N

i=1 δik

(1.2)

A kernel function K : X × X → ℜ [41] (see Table 1.1 for examples) is applied to get

the inner products in feature space without explicitly defining transformation φ, giving

rise to the kernel matrix K ∈ ℜN×N , Kij = K(xi,xj) = φ(xi)
⊤φ(xj). Note that for

certain kernel functions the corresponding transformation is intractable. The squared

Euclidean distances in (1.2) can now be computed using solely the kernel matrix entries

(centers mk cannot be analytically calculated):

‖φ(xi) − mk‖2 = Kii −
2
∑N

j=1 δjkKij
∑N

j=1 δjk

+

∑N
j=1

∑N
l=1 δjkδlkKjl

∑N
j=1

∑N
l=1 δjkδlk

. (1.3)

By iteratively updating the partitioning through assignments of the instances to their

closest center in feature space (Algorithm 1.2), kernel kmeans monotonically converges

to a local minimum of the objective if the kernel matrix is positive semidefinite, i.e. is

a valid kernel matrix. If the kernel matrix is not positive semidefinite the algorithm

may still converge, but this is not guaranteed. The returned solution heavily depends
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on the initial cluster assignments, thus multiple restarts are often employed to avoid

poor minima. As for the computational complexity, in [37] it is shown that kernel

kmeans requires O(N2τ) scalar operations, where τ is the number of iterations until

convergence is achieved. If we also have to calculate the kernel matrix, an extra O(N2d)

scalar operations are necessary.

It must be noted that by associating a weight with each instance, the weighted

kernel kmeans algorithm is obtained [37]. Its objective can become equivalent to that

of many graph cut criteria, such as ratio association, normalized cut etc, if the weights

and the kernel matrix are appropriately set [37]. Hence, it can substitute the commonly

used spectral methods for graph partitioning.

1.1.4 Global Kernel kmeans

In a previous work of ours, we proposed the global kernel kmeans algorithm [103,105]

to circumvent the initialization problem of kernel kmeans. Our method builds on

the ideas of global kmeans [74] and kernel kmeans (Section 1.1.3). It maps the

dataset points from input space to a higher dimensional feature space with the help of

a kernel matrix K ∈ ℜN×N and optimizes the intracluster variance in feature space

(1.2), as kernel kmeans does. In this way nonlinearly separable clusters are located

in input space. Also, global kernel kmeans finds near optimal solutions to the M

clustering problem, by incrementally and deterministically adding a new cluster at each

stage (similarly to global kmeans) and by applying kernel kmeans as a local search

procedure, instead of initializing all M clusters at the beginning of the execution. Thus,

the problems of cluster initialization and convergence to poor local minima are avoided.

Suppose we are given a dataset X = {xi}N
i=1, xi ∈ ℜd and we want to solve the

Mclustering problem by splitting this dataset into M disjoint clusters {Ck}M
k=1, while

optimizing the intracluster variance in feature space (1.2). Global kernel kmeans

proceeds as follows. We start by considering the 1clustering problem. The optimal

solution to this problem is trivial as all data points are assigned to the same cluster.

We continue with the 2clustering problem where kernel kmeans is executed N times.

During the ith execution the initialization is done by considering two clusters one of

which contains only xi and the other is X −{xi}. Among the N solutions, the one with

the lowest intracluster variance is kept as the solution with two clusters. In general,

for the kclustering problem let
{
C∗

1 , . . . , C∗
k−1

}
denote the solution with k − 1 clusters

and assume that xi ∈ C∗
r . We perform N executions of the kernel kmeans algorithm,

with
{
C∗

1 , . . . , C∗
r−1, Cr = C∗

r − {xi}, C∗
r+1, . . . , C∗

k−1, Ck = {xi}
}

as initial clusters for the i

th run, and keep the one resulting in the lowest intracluster variance. The above

procedure is repeated until k = M . The global kernel kmeans pseudocode is given in

Algorithm 1.3.

The rationale behind this method is based on the assumption that a near optimal

solution with k clusters can be obtained by starting from an initial state with k − 1

near optimal clusters (solution of the (k − 1)clustering problem) and the kth cluster

8



Algorithm 1.3 Global kernel kmeans.

Input: Kernel matrix K, Number of clusters M

Output: Final clusters {Ck}M
k=1

// There is no need to solve for one cluster, as the optimal solution is trivial. Let C∗
1 = X .

1: for all kclustering problems, k = 2 to M do

2: for all points xi, i = 1 to N do // Suppose xi ∈ C∗
r .

3: Run kernel kmeans with:

input
(
K,k,

{
C∗

1 , . . . , C∗
r−1, Cr = C∗

r − {xi}, C∗
r+1, . . . , C∗

k−1, Ck = {xi}
})

output
({

Ci
1, . . . , Ci

k

}
, E ik

H

)

4: end for

// Solution with k clusters.

5: Find i∗ = argmin
i

E ik
H and set {C∗

1 , . . . , C∗
k} to the partitioning corresponding to E i∗k

H

6: end for

7: return {C1 = C∗
1 , . . . , CM = C∗

M}

appropriately initialized. As we consider only a single data point belonging to the kth

cluster when it is initialized, this is equivalent to initializing, during the ith run, the

kth cluster center at point φ(xi) in feature space. Limiting the set of possible initial

positions for the kth center to those of the dataset points in feature space seems a

reasonable choice. Since the optimal solution to the 1clustering problem is known, the

above idea can be iteratively applied to get M clusters. Note that during the execution

of the algorithm, solutions for every kclustering problem, k < M , are also obtained

without additional cost. This is a rather desirable property in case we want to decide

on the number of clusters present in the dataset.

Due to its close relation to global kmeans and kernel kmeans, global kernel k

means inherits their computational cost. Given the kernel matrix, the complexity of

kernel kmeans is O(N2τ) scalar operations, where τ is the number of iterations until

convergence is achieved. In the global kernel kmeans algorithm, in order to solve

the Mclustering problem we must run kernel kmeans MN times. This leads to a

complexity of O(N3Mτ). To reduce the high computational burden, two speeding up

schemes were developed in [103,105].

Finally, a weighted version of the global kernel kmeans framework was introduced

in [105] and applied to graph partitioning, analogously to the weighted variant of kernel

kmeans [37].

1.1.5 Convex Mixture Models

Exemplarbased mixture models [71], also called convex mixture models (CMMs), are

simplified mixture models [12] which result in probabilistic (soft) assignments of data

points to clusters and in the extraction of representative exemplars2 from the dataset.

When training these models, which is done by maximizing the loglikelihood, all in

2An exemplar is a dataset point that acts as a cluster representative, similar to a medoid.
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stances compete to become cluster representatives (i.e. exemplars), since the number

of the CMM components is equal to the number of data points and each component dis

tribution is centered at a distinct dataset point. In the end, the instances corresponding

to the components that have received during training the highest priors are selected as

exemplars.

Given a dataset X = {xi}N
i=1, xi ∈ ℜd, the CMM distribution is:

Q(x) =
N∑

j=1

qjfj(x), x ∈ ℜd, (1.4)

where qj ≥ 0 denotes the prior probability of the jth component, satisfying the con

straint
∑N

j=1 qj = 1, and fj(x) is an exponential family distribution, with its expectation

parameter equal to the jth data point xj. Note that the same exponential family is

used for all components. Taking into account the bĳection between regular exponential

families and Bregman divergences [9], we can write:

fj(x) = Cϕ(x) exp(−βdϕ(x,xj)), (1.5)

with dϕ denoting the Bregman divergence corresponding to the components’ distribu

tions, Cϕ(x) being independent of xj and β being a constant controlling the sharpness

of the components [71].

A clustering is produced by maximizing the dataset loglikelihood (1.6) over the prior

probabilities qj, s.t. qj ≥ 0,
∑N

j=1 qj = 1. Note that the priors of the components are the

only adjustable parameters of a CMM.

L
(
X ; {qj}N

j=1

)
=

1

N

N∑

i=1

log

(
N∑

j=1

qjfj(xi)

)
=

1

N

N∑

i=1

log

(
N∑

j=1

qje
−βdϕ(xi,xj)

)
+ const.

(1.6)

This optimization problem is convex and can be solved with an iterative algorithm,

whose updates for the components’ prior probabilities are given by:

q
(t+1)
j = q

(t)
j

∑

x∈X

P̂ (x)fj(x)
∑N

j′=1 q
(t)
j′ fj′(x)

, (1.7)

where P̂ (x) = 1/N , x ∈ X is the empirical dataset distribution. The above iterative

approach is guaranteed to converge to the global optimum as long as q
(0)
j > 0, ∀j [31].

Importantly, the prior probability qj associated with instance xj is a measure of how

likely this instance is to become an exemplar.

The ability of always being able to locate the global optimum makes this model

attractive as it avoids the initialization and local optima problems of standard mixture

models, which demand multiple executions of the EM algorithm [12,35,99]. Another

important feature is that only the pairwise data distances dϕ(xi,xj) take part in the

calculation of the priors as Cϕ(xi) cancels out, thus the values of the instances are
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not required if we are given the distances. Note that updating the priors costs O(N2τ)

scalar operations, where τ is the number of iterations until convergence.

Splitting the dataset into M disjoint clusters is done by requiring the instances

with the M highest qj values to serve as exemplars and then assigning the remaining

instances to the exemplar with the highest posterior probability.

Finally, when clustering with a CMM we must select an appropriate value for the

constant β (0 < β < ∞). It is possible to identify a reasonable range of β values by

determining a reference value β0. Lashkari and Golland [71] proposed the following

empirical rule for β0:

β0 = N2 log N/

N∑

i,j=1

dϕ(xi,xj). (1.8)

1.2 Multiview Learning

In various scientific areas, such as bioinformatics, computer vision, text categorization,

social computing, person identification etc., data is available from different sources

and/or feature spaces3. For example, a person can be identified by face, fingerprint

and iris characteristics, while an image can be described using both color and texture

descriptors. Another example is web pages, which can be represented using the text

of the web page and the hyperlink graph among the web pages. Also, to represent

scientific articles, the abstract text and the title, as well as the coauthor and citation

graphs could be utilized.

The above examples outline situations where for the same instance in the dataset

multiple representations, called views, are available. The frequent occurrence of multi

view data in practice has raised interest in the socalled multiview learning [98,120],

which concerns the development of machine learning algorithms that simultaneously

exploit all views. Conventional machine learning approaches (e.g. SVM, kmeans, mix

ture models, spectral methods etc.) can only handle data with a single view. A straight

forward extension to the multiview setting is possible by concatenating the views (if

they are given in vectorial form) into a single vector. However, this strategy has proven

to be significantly less effective compared to methods developed explicitly for multiview

datasets, that consider the distinct context and statistical properties of each view [120].

Research on multiview learning was greatly inspired by the seminal work of Blum

and Mitchell [14] under the semisupervised setting [91]. As such, on the following, we

shall briefly review semisupervised multiview methods, before discussing the litera

ture on multiview clustering that this thesis focuses on. We shall begin, however, by

first presenting the two basic principles that motivate the integration of multiple views

in the learning process.

3The term feature space is used here to refer to a set of attributes (characteristics) of the data and

should not be confused with the one referring to the kernel Hilbert space (Section 1.1). On the following,

this distinction is clarified whenever it is not obvious from the context.
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1.2.1 Multiview Learning Principles

The success of multiview algorithms is based on the complementarity and consensus

principles [120]. The first can be seen as the intuitive justification for multiview

learning, while the second provides the theoretical justification.

Complementarity states that the different views may contain complementary infor

mation, i.e. information not found in the other views. By combining the information

available in all views, the intrinsic structures in the data will be better revealed, leading

to improved performance compared to using a single view.

Consensus states that the disagreement between two independent hypotheses on

two distinct views is an upper bound on the error rate of either hypothesis. In detail,

suppose the data is drawn from some distribution over triples
(
x(1),x(2), y

)
, where x(1),

x(2) are the representations of an instance in the first and second view, respectively,

and y is the label. Moreover, assume that views are conditionally independent given

the label, i.e. P (x(1),x(2)|y) = P (x(1)|y)P (x(2)|y). Let h(v) denote a hypothesis trained

on the vth view which predicts the label of an instance. Dasgupta et al. [33] proved

that the probability of the two hypotheses disagreeing on the predicted labels on a set of

unlabeled data bounds the probability of either hypothesis predicting the wrong label:

P (h(1)(x(1)) 6= h(2)(x(2))) ≥ max
v

P (h(v)(x(v)) 6= y). (1.9)

The above inequality clearly illustrates that employing multiple views and maximizing

the agreement of predictions across the views can enhance accuracy. Note that the

conditional independence is often too strong to be satisfied in real applications. Abney

[2] showed that a weak dependence can also lead to successful results.

1.2.2 Semisupervised Learning with Multiple Views

Multiview learning in the semisupervised domain has been introduced by Yarowsky

[125] and Blum and Mitchell [14]. In [125], a twoview word sense disambiguation

algorithm was described, which uses two classifiers that bootstrap each other. Blum

and Mitchell [14] proposed the cotraining algorithm to train a classifier from two rep

resentations and showed that the Yarowsky method falls under their framework. Co

training, together with the coEM approach of Nigam and Ghani [84] which extends

EM [12, 35, 99] to twoview semisupervised problems, have laid the foundations of

multiview learning and inspired subsequent research in this area. We next analyze

them in more detail.

Cotraining

In semisupervised problems we have access to both labeled and unlabeled data [91].

The basic idea of cotraining [14] is to train two learners (classifiers) on distinct views

of the labeled data and iteratively allow each learner to label the unlabeled instances

that predicts with the highest confidence. This way, the newly labeled instances by one
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learner may help the other to improve its model. The success of cotraining is based on

three assumptions: i) Sufficiency: Each of the two views is sufficient for classification

on its own, ii) Compatibility: the target functions over each view predict the same label

for most examples, i.e. we assume that an instance has the same label in both views

with high probability, and iii) Conditional independence: the views are conditionally

independent given the label (Section 1.2.1).

Analytically, let Xl = {(xi, yi)}Nl

i=1 be the labeled and Xu = {xi}Nu

i=1 the unlabeled

dataset. Furthermore, assume each instance is decomposed into two views, xi ={
x

(1)
i ,x

(2)
i

}
, where x

(v)
i is the vth view representation for instance xi. Cotraining

starts by training two classifiers, h(1) and h(2), on the first and second view, respectively,

using Xl. Subsequently, each classifier labels the data in Xu and moves a number of

them from each class to the labeled set. The chosen instances are those whose labels

are predicted with the highest confidence by the underlying classifier for each class and

their number is set proportional to the empirical distribution of classes in Xl. Then,

each classifier is rebuilt from the augmented labeled set, using the corresponding view,

and the process is repeated for a predefined number of iterations, or until Xu is left

empty.

The rationale behind using the labels predicted by the classifier operating on the

first view to train the classifier operating on the second view, and vice versa, is to

exchange complementary view information between the learners and gradually drive

h(1) and h(2) to agree on the labels. Some important observations about cotraining

could be made. First, it is limited to two views only. Second, it can be seen as a

generic framework for twoview learning, where any classifier can be employed as long

as it outputs some measure of confidence for its predictions. In the original cotraining

paper [14] the naive Bayes classifier was applied. Third, it is unclear how to label

an unseen test example, since we end up with two distinct classifiers. Possibly we

could base the decision on either of the two or, somehow, combine their predictions.

Fourth, it does not define some specific multiview objective, thus it is unclear which

criterion it tries to optimize. This also makes impossible to guarantee the convergence

of the algorithm. The cotraining method was modified in [26,93], so that an objective

function that measures the degree of agreement between the two views is optimized,

something known as coregularization.

Overall, and despite the previous limitations, several variants of the cotraining

idea have been developed, not only for classification [14, 26, 36, 61, 93], but also for

regression [16,132] and clustering [10,65,66] problems.

CoEM

CoEM [84] is an EM/cotraining hybrid, where EM in the semisupervised domain

[85] is adapted to handle data with two views through an iterative procedure closely

resembling that of cotraining. Once again assume that both a labeled dataset Xl and

an unlabeled dataset Xu are available, whose instances consist of two views. CoEM
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considers two classifiers, h(1) and h(2), and associates them with the first and second

view, respectively. Execution begins by training h(1) on Xl. Then, h(1) probabilistically

labels all the instances in Xu by estimating class posterior probabilities P (y|x(1)
i ), i =

1, . . . , Nu (Estep in view 1). The labeled data Xl together with the probabilistically

labeled (by h(1)) data of Xu are fed to h(2) which is trained on the second view (Mstep in

view 2). After that, h(2) relabels Xu by estimating probabilities P (y|x(2)
i ), i = 1, . . . , Nu

(Estep in view 2), which in turn are used in conjunction with the labeled instances of

Xl to retrain h(1) (Mstep in view 1). These steps are repeated for a predefined number of

iterations, hence information is exchanged between the views by using the probabilistic

labels computed in one view to update the model of the classifier operating on the other

view.

The four observations and rationale regarding cotraining (mentioned in the previous

subsection), also apply to the coEM case. However, there exist some key differences

between the two. Unlike cotraining, the coEM approach does not commit to the

(most confident) labels generated by the classifiers, but reestimates the class posterior

probabilities of the entire unlabeled dataset after each iteration. Also, classifiers in co

EM must be able to process probabilistic labels and output class probabilities. This is

a much stronger prerequisite than simply requiring classifiers to output the confidence

of their predictions. Therefore, coEM has been mainly studied with naive Bayes as the

underlying classifier [47, 80, 84]. A coEM version of SVM has been proposed in [17].

Note that coEM has been found to perform better than cotraining in many cases

[80,84] and has been extended to clustering problems as well [10,11].

1.2.3 Clustering with Multiple Views

Most of the existing work in multiview clustering extends wellknown clustering algo

rithms to the multiview setting by exploiting the ‘‘minimizing disagreement’’ idea (con

sensus principle) and the complementarity of the views (Section 1.2.1). The clustering

process is guided by the assumption that the true clustering assigns corresponding

points in each view to the same cluster, a form of compatibility assumption similar to

that in cotraining. We next take a closer look to some of the most representative multi

view clustering studies and denote by X = {xi}N
i=1 the dataset whose instances consist

of V views, xi =
{
x

(v)
i

}V

v=1
, where x

(v)
i is the vth view representation for instance xi.

Multiview EM and Multiview kmeans

Bickel and Scheffer [10] developed a twoview EM and a twoview kmeans algorithm

under the assumption that the two views are conditionally independent. Their EM

variant is actually a straightforward application of the coEM algorithm to unsupervised

learning, where mixture models take the place of classifiers and no labeled data is

available. Thus, the posterior probabilities of the hidden variables (cluster labels) in

one view are used to estimate the parameters of the mixture model in the other view.
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As an instantiation of the method they consider mixtures of multinomial distributions

for document clustering. In the end, an instance is assigned to the cluster with the

highest average posterior over the two views.

The iterative procedure of coEM is also followed for the twoview kmeans approach.

The views, however, exchange partitions instead of posterior probabilities. In more

detail, in the Estep of each view an instance is assigned to its closest center in that view,

while in the Mstep the centers are updated according to the assignments produced by

the other view. The sequence of the expectation and maximization steps is the same

as in coEM, starting from some initial (random) centers for the first view. As the

returned partitions in the two views are not necessarily identical, the final cluster for

each instance is decided to be the one whose centers exhibit the lowest average distance

from the instance over the two views.

The previous two methods closely mimic coEM, thus inheriting many of its draw

backs, such as the twoview restriction, the inexistence of an objective function and

the inability to guarantee convergence. A generalized coEM scheme for mixture model

estimation with arbitrarily many views has been proposed [11], to alleviate these de

ficiencies. It maximizes the sum of the loglikelihoods of the views, regularized by a

consensus term ∆ measuring the disagreement of the views on the posterior probabil

ities. Given a dataset X with V views, the optimized objective is:

V∑

v=1

L(X ; θ(v)) − η∆, ∆ =
1

V − 1

∑

v 6=u

N∑

i=1

M∑

j=1

P (j|x(v)
i , θ

(v)
t ) log

P (j|x(v)
i , θ(v))

P (j|x(u)
i , θ(u))

, (1.10)

where L(X ; θ(v)) is the loglikelihood of the vth view, θ(v) are the parameters of the

vth mixture model, η is the regularization constant and M is the number of mixture

components (clusters). The maximization is done by iterating over the views and exe

cuting an appropriate Estep and an appropriate Mstep in each view. It is shown to

converge, if η is annealed toward zero as iterations progress. Note that the twoview

EM [10] can be derived as a special case of (1.10) for V = 2 and η = 1. Analogously

to [11], a regularized objective that incorporates view disagreement for multiview fuzzy

cmeans clustering is considered in [25].

Multiview Spectral Clustering

Spectral clustering (Section 1.1.2), due to its empirical success and close connection to

graph partitioning [37,113], has also attracted considerable attention in the multiview

setting. Kumar and Daumé III [65] integrated the ideas of cotraining to spectral clus

tering and presented an iterative method where, first, spectral clustering is executed

on the individual views and, then, the top (largest) eigenvectors from each view are

used to alter the affinity matrices of the remaining views. Hence, views ‘‘communicate’’

by exchanging eigenvectors. Given the affinity matrices A(v) ∈ ℜN×N of the views,

A
(v)
ij = s(x

(v)
i ,x

(v)
j ), the top M eigenvectors (M is the number of clusters) of the matrix

L(v) = (D(v))−1/2A(v)(D(v))−1/2 are calculated and stored in matrix E(v) ∈ ℜN×M . D(v)

15



is a diagonal matrix with D
(v)
ii =

∑N
j=1 A

(v)
ij . Subsequently, the affinity matrices are

modified according to A(v) = sym
((∑

u 6=v E(u)E(u)⊤
)

A(v)
)

4 and the whole process is

repeated using the new affinities. The intuition behind this approach is to project the

affinity matrix of each view onto the union of subspaces spanned by the top eigenvec

tors of the other views. Since these eigenvectors carry discriminative information about

the clusters, the projection will help in revealing the underlying structures in the data

by utilizing information from all views. Note that the employed spectral technique is

that of Ng et al. [82] (see Section 1.1.2 for details). The final partitioning is obtained

by discretizing the eigenvectors of the most informative view, following the same steps

as in [82]. Similar to cotraining, the above algorithm does not optimize a specific

clustering criterion and its convergence cannot be ensured.

A multiview spectral objective was developed in [66]. The problem is formulated as

a regularized trace maximization (over U (v) ∈ ℜN×M ):

max
U (v)

V∑

v=1

tr
(
U (v)⊤L(v)U (v)

)
+ λ

∑

v,u
v 6=u

tr
(
U (v)U (v)⊤U (u)U (u)⊤

)
, s.t. U (v)⊤U (v) = I, (1.11)

where L(v) is defined as above and λ is a regularization constant. The tr
(
U (v)⊤L(v)U (v)

)

term appearing in (1.11) is actually the objective optimized by the Ng et al. [82] algorithm

when executed on the affinity matrix of the vth view. This objective is also closely

related to the normalized cut graph criterion [37]. Hence, the first term in (1.11)

sums the spectral objectives of the individual views, while the second can be regarded

as a consensus term which enforces agreement among the views. The optimization

is performed by alternating over the views and updating U (v) for given U (u), u 6= v,

until convergence is achieved. U (v) consists of the top eigenvectors of matrix L(v) +

λ
∑

u
u 6=v

U (u)U (u)⊤ .

An approach that generalizes the single view normalized cut objective to the multi

view case and can handle both directed and undirected graphs was introduced by Zhou

and Burges [131]. Their idea can be explained as a vertexwise mixture of Markov

chains associated with different graphs and is applicable to problems with arbitrary

number of views. Finally, de Sa [34] proposed a twoview spectral clustering algorithm

that creates a bipartite graph of the views, i.e. a graph where only connections be

tween points (vertices) on different views exist, and the affinity matrix of this graph is

processed with the method of Ng et al. [82] to recover the clusters.

CCAbased Multiview Clustering

Canonical correlation analysis (CCA) [51,53] can be seen as the problem of finding pro

jection directions for two (or more) sets of variables, such that the correlation between

the projections of the variables is maximized. Each set of variables can be interpreted

4sym(A) = (A + A⊤)/2 is applied in order to get a symmetric matrix.
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as a different view of the data, hence CCA naturally lends itself to multiview learning.

Let X(v) ∈ ℜN×d(v)
be the data matrix of the vth view, whose ith row corresponds to

x
(v)
i ∈ ℜd(v)

, and w(v) ∈ ℜd(v)
be the corresponding projection vector. We shall here de

scribe CCA in the case of two views, however note that it is also applicable to problems

with more views. CCA simultaneously searches for those projection directions w(1) and

w(2) that maximize the correlation ρ between the projected views:

ρ =
w(1)⊤X(1)⊤X(2)w(2)

√(
w(1)⊤X(1)⊤X(1)w(1)

)(
w(2)⊤X(2)⊤X(2)w(2)

) . (1.12)

The solution to this optimization is given by the eigenvectors of a generalized eigenvalue

problem. Note that different eigenvectors define different pairs of projection vectors. De

pending on the desired number of dimensions for the CCA projection, the top pairs, i.e.

directions, yielding the largest correlations are retained. In essence, CCA aims to re

cover a latent subspace that is shared by all views. Afterward, learning can be executed

in this subspace. Notice that CCA considers linear projections of the instances, thus it

is impossible to accurately capture the properties of data exhibiting nonlinearities. To

circumvent this issue, the kernelized version of CCA can be employed [51].

Two interesting CCAbased methods for multiview clustering are those of Blaschko

and Lampert [13] and Chaudhuri et al. [24]. The first [13], projects the data onto the top

directions obtained by kernel CCA across the views and then applies kmeans to cluster

those projections. In the second [24], each of the views is assumed to be generated by

a mixture of distributions and CCA is employed to project the data to the subspace

spanned by the distributions’ means. Then, a standard clustering algorithm is used in

this subspace to partition the instances. The subspace is endowed with an important

property for clustering: when projected onto it, the means of the distributions are

wellseparated, yet the distances between points from the same distributions is smaller

than in the original space. Additionally, the authors provided theoretical results which

ensure the method can recover the correct clusters with high probability.

Other Approaches

Several multiview clustering methods employ matrix factorization techniques, in par

ticular nonnegative matrix factorization (NMF) [72], to derive a partitioning of the data.

Given a matrix A ∈ ℜn×d with nonnegative entries (A ≥ 0), NMF aims to find two ma

trices B ∈ ℜn×k and C ∈ ℜk×d, also with nonnegative entries, whose product yields a

good approximation of A, hence A ≈ BC. Different factorizations emerge by consider

ing different cost functions for measuring the reconstruction error of the approximation,

such as the minimization of the squared error:

min
B,C

‖A − BC‖2
F , s.t. B ≥ 0, C ≥ 0. (1.13)

In general, the NMF solution is not unique, since BC = (BQ−1)(QC) for an arbitrary

invertible matrix Q ∈ ℜk×k. Thus, additional constraints are usually imposed to ensure

17



both uniqueness and that a clustering solution naturally emerges from the resulting

factorization. Notice that for most cost functions the underlying optimization problem

is not convex, therefore NMF algorithms can only locate local optimal solutions for B

and C.

Gao et al. [46] apply NMF to factorize the data matrix of each view. Specifically,

they optimize the sum of the NMF reconstruction errors of the individual views, regu

larized by a term enforcing consensus among the views’ factorizations, in order to find

a clustering that is consistent with all views. In [70], each view is represented by a

similarity matrix and these matrices are linearly combined to get a composite matrix

which contains similarity information from all views. A partitioning of the instances is

found by performing NMF, with crossentropy as the cost function, on the composite

matrix. Importantly, the method learns appropriate weights for the linear combination,

along with the factorization. Weights reflect the quality of the views and determine their

contribution to the clustering task accordingly.

When considering problems with multiple views, it is possible to, first, cluster each

view independently from the others, with an appropriate single view algorithm, and,

then, combine the individual clusterings to produce a final partitioning which is based

on all views [50,77]. Here, we assume that each view’s partitioning is described by a

cluster indicator matrix, whose entries reflect the assignment of instances to clusters.

In [50], an NMFbased approach is adopted to reconcile the groups arising from the

individual views. Specifically, a matrix that contains the partitionings of all views

is created by concatenating the cluster indicator matrices of the views and is then

decomposed to two matrices (using NMF): the one showing the contribution of the

individual partitionings to the final clusters, called metaclusters, and the other the

assignment of instances to the metaclusters. In [77], a general model for multiview

unsupervised learning is proposed. According to this model, the final partitioning of

the data, which is based on all views, is derived by minimizing an objective function

that measures how close this final partitioning is to the clustering of each view, with

the help of a mapping function. The whole process can be seen as performing NMF on

the cluster indicator matrices of the views, where the factorizations across the views

share a common factor. The generalized Idivergence is used as the NMF cost function.

Some other interesting approaches for clustering multiview data can be found in

[18,20,100,102].

1.3 Multiple Kernel Learning

Kernelbased methods [92], e.g. SVM [19] and kernel kmeans [37,90], have become

increasingly popular in recent years for both supervised and unsupervised machine

learning tasks. Remember that (Section 1.1), a kernel implicitly induces a nonlinear

transformation φ : X → H that maps the instances, X = {xi}N
i=1, from input space to

feature space H and is defined through a kernel function K : X × X → ℜ [41], where
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K(xi,xj) = φ(xi)
⊤φ(xj) (see Table 1.1 for kernel function examples). Hence, learning

is executed in feature space instead of input space, which allows for nonlinearities in

the data to be uncovered and has been demonstrated to substantially enhance perfor

mance. The effectiveness of kernel methods, however, strongly depends on the choice

of an appropriate kernel for the underlying problem. If an unsuitable kernel is selected,

the quality of the solution can significantly degrade, which makes kernel selection a

rather crucial step in the application of such methods. Unfortunately, the best kernel

for a specific dataset is rarely known in advance.

Multiple kernel learning (MKL) [49] assumes a parametric form for the kernel and

aims at estimating the values of these parameters during training, in order to au

tomatically infer a kernel that suits the data. The most common MKL strategy is to

parametrize the kernel as a linear (e.g. [62,88]), or nonlinear (e.g. [28,111]) combination

of some predefined kernels, called basis kernels5. Hence, learning the kernel becomes

equivalent to learning appropriate values for the combination coefficients. Basis ker

nels are obtained by applying a single type, or different types of kernel functions on

the same instances (e.g. RBF kernels with different σ values and/or polynomial kernels

of different degrees). Moreover, for multiview data (Section 1.2), they can be derived

by using the different representations of the instances describing the different sources

(or modalities) of the data. Under this perspective, MKL can be seen as a special case

of multiview learning, where basis kernels correspond to views. Note that for super

vised problems crossvalidation can be employed to select the best kernel. However,

crossvalidation requires an additional validation set and retains a single kernel in

the solution, while MKL approaches find a combination of the available kernels, thus

utilizing information from all kernels and leading to improved results (e.g. [69,88]).

MKL has been predominantly studied in the supervised domain under the SVM

paradigm (e.g. [49,69,88,96]), while related literature focusing on clustering problems,

such as those studied in this thesis, is considerably more limited (e.g. [110,130]). In

Section 1.3.1 and Section 1.3.2 we review a number of approaches for both cases. Note

that MKL has been also applied to the problems of dimensionality reduction [75] and

metric learning [116].

1.3.1 Supervised MKL

Suppose we are given a labeled dataset X = {(xi, yi)}N
i=1, xi ∈ ℜd and yi ∈ {±1},

and a kernel K̃ : X × X → ℜ that is parametrized by a vector θ of parameters, in

ducing a transformation φ̃ : X → H̃ that maps the instances to feature space H̃,

hence K̃(xi,xj) = φ̃(xi)
⊤φ̃(xj). Most MKL methods based on the SVM classifier (the

reader is referred to [12,19] for details on SVM), in principle, derive from the following

5Basis kernels are kernels for which the parameters of their corresponding kernel functions (e.g. the

RBF σ parameter) are fixed to specific values before training.
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optimization problem:

min
θ,w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi, (1.14)

s.t. yi

(
w⊤φ̃(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, Ω(θ),

where w, b are the coefficients of the SVM hyperplane (‖w‖ is the reciprocal of the

margin), ξ = [ξ1, . . . , ξN ]⊤ is the vector of slack variables capturing the misclassification

error, C > 0 is the regularization constant and Ω(θ) is a set of constraints on the kernel

parameters. This optimization closely resembles that of the standard SVM [12, 19],

with the only difference being that we also minimize w.r.t. θ (s.t. Ω(θ)) in order to

simultaneously find the hyperplane with the largest margin and also learn the kernel.

Unlike the standard (convex) SVM for which the global optimum can be obtained,

the above problem is not convex in general, due to θ and its associated constraints.

Therefore, various optimization techniques, such as semidefinite programming (SDP)

[68,69], semiinfinite linear programming (SILP) [96,133], gradientbased methods [88,

111] etc., have been employed to locate local optimal solutions.

Lanckriet et al. [68, 69] were of the first to study MKL and they considered learn

ing linear combinations of basis kernels. A linear mixture of kernels gives rise to a

composite kernel K̃:

K̃(xi,xj) =

V∑

v=1

θvK(v)(xi,xj), (1.15)

that is parametrized by θ = [θ1, . . . , θV ]⊤. Each of the V basis kernels K(v) : X ×X → ℜ
implicitly induces a transformation φ(v) : X → H(v) on the instances to a feature

space H(v), hence K(v)(xi,xj) = φ(v)(xi)
⊤φ(v)(xj). Let us denote by K(v) ∈ ℜN×N , K̃ ∈

ℜN×N the kernel matrices corresponding to the basis kernels and the composite kernel

respectively, i.e. K
(v)
ij = K(v)(xi,xj) and K̃ij = K̃(xi,xj). For the linear combination

case it is easy to see that:

K̃ =
V∑

v=1

θvK
(v). (1.16)

Note that a kernel matrix is always a positive semidefinite matrix and vice versa, since

it can be interpreted as a Gram matrix. Hence, when learning a parametric kernel we

must ensure that positive semidefiniteness is satisfied in order to get a valid kernel.

According to Lanckriet et al. [68, 69], MKL with the linear mixture (1.15)(1.16) is

formulated as:

min
θ

ω(θ), s.t. θv ≥ 0, K̃ � 0, tr(K̃) = c, (1.17)
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ω(θ) = max
α

N∑

i=1

αi −
1

2

N∑

i=1

N∑

j=1

αiαjyiyjK̃ij, s.t. 0 ≤ αi ≤ C,
N∑

i=1

αiyi = 0, (1.18)

where ω(θ) at a given θ is defined as the optimal objective value of the standard SVM

dual in feature space H̃ and tr(K̃) denotes the trace of matrix K̃. To solve this problem

they cast it into a quadratically constrained quadratic program (QCQP), where the con

straint enforcing positive semidefiniteness (K̃ � 0) can be dropped, since it is implied

by the nonnegativity of θv. Moreover, they consider the more general case where θv is

allowed to also take negative values and cast the problem into an SDP (K̃ � 0 is now

necessary to get a valid kernel).

When considering a linear combination of basis kernels whose coefficients are re

stricted to nonnegative values, a sufficient condition ensuring that K̃ is a valid kernel

as mentioned above, it can be verified that φ̃(xi) =
[√

θ1φ
(1)(xi)

⊤, . . . ,
√

θV φ(V )(xi)
⊤
]⊤

,

therefore (1.14) can be rewritten as (w = [w⊤
1 , . . . ,w⊤

V ]⊤):

min
θ,w,b,ξ

1

2

V∑

v=1

‖wv‖2 + C
N∑

i=1

ξi, (1.19)

s.t. yi

(
V∑

v=1

w⊤
v

(√
θvφ

(v)(xi)
)

+ b

)
≥ 1 − ξi, ξi ≥ 0, θv ≥ 0, Ω(θ).

Rakotomamonjy et al. [87,88] address MKL by solving the following problem to infer

a linear mixture of basis kernels:

min
θ,w,b,ξ

1

2

V∑

v=1

‖wv‖2

θv

+ C
N∑

i=1

ξi, (1.20)

s.t. yi

(
V∑

v=1

w⊤
v φ(v)(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, θv ≥ 0,

V∑

v=1

θv = 1,

which can be directly derived from (1.19) by a simple change of variable (wv =
√

θvwv).

Their framework, called simpleMKL, imposes a 1norm constraint on θ,
∑V

v=1 θv = 1, to

avoid overfitting, which is known to produce sparse solutions. To optimize (1.20) they

reformulate it as:

min
θ

J(θ), s.t. θv ≥ 0,

V∑

v=1

θv = 1, (1.21)

J(θ) = min
w,b,ξ

1

2

V∑

v=1

‖wv‖2

θv

+ C
N∑

i=1

ξi, s.t. yi

(
V∑

v=1

w⊤
v φ(v)(xi) + b

)
≥ 1 − ξi, ξi ≥ 0,

(1.22)
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where J(θ) at a given θ is actually the optimal objective value of the standard SVM in

feature space H̃, and propose an iterative procedure that consists of two steps: i) solve

a standard SVM for given θ to get J(θ) and ii) update θ using the gradient of J(θ) w.r.t.

θ. Specifically, a projected gradient update is executed so that the constraints on the

composite kernel parameters are not violated. SimpleMKL can be readily extended to re

gression and oneagainstall, or oneagainstone multiclass classification [88]. In [23],

a second order method is presented, extending simpleMKL, and is shown to converge

faster than simpleMKL.

Kloft et al. [62] generalize MKL to arbitrary pnorms (p ≥ 1) on the composite kernel

coefficients:

min
θ,w,b,ξ

1

2

V∑

v=1

‖wv‖2

θv
+ C

N∑

i=1

ξi, (1.23)

s.t. yi

(
V∑

v=1

w⊤
v φ(v)(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, θv ≥ 0, ‖θ‖p

p ≤ 1.

To solve this problem they devise two alternating approaches, based on Newton descent

and cutting planes. Note that simpleMKL (1.20) is a special case of (1.23) for p =

1. Moreover, they prove that an alternative formulation for pnorm MKL, where an

additional regularizer µ‖θ‖p
p is inserted into the objective function in place of the norm

constraint ‖θ‖p
p ≤ 1 (such a formulation is considered by Varma and Ray [112] for p =

1), is equivalent to (1.23). MKL for arbitrary pnorms has been also studied in [63,124],

where closedform solutions are derived for updating θ. Both [63] and [124] arrive at the

same solution, although they approach the problem from different perspectives. These

closedform solutions are utilized in an iterative optimization procedure that solves a

standard SVM for fixed θ and, subsequently, reestimates θ.

Bach et al. [4]6 and Sonnenburg et al. [95,96] adopt a slightly different approach to

MKL and use a (2/1)block norm on the blocks of w = [w⊤
1 , . . . ,w⊤

V ]⊤7:

min
w,b,ξ

1

2

(
V∑

v=1

‖wv‖
)2

+ C
N∑

i=1

ξi, s.t. yi

(
V∑

v=1

w⊤
v φ(v)(xi) + b

)
≥ 1 − ξi, ξi ≥ 0. (1.24)

The solution of this problem yields a composite kernel of the form described in (1.15),

where θv ≥ 0 and
∑V

v=1 θv = 1, although the kernel parameters are omitted from

the objective. Note that the block norm on w results on a 1norm constraint on θ,

thus promoting a sparse outcome. In [4], eq. (1.24) is treated as a secondorder cone

program (SOCP) which allows for the development of an SMObased (sequential minimal

optimization) algorithm, while in [95, 96] it is converted to a SILP formulation that is

capable of handling large scale problems with hundreds of basis kernels.

6For simplicity we set dj in Bach et al. [4] to one.
7A 2norm is applied within each block (‖wv‖), while the 1norm is applied over the blocks, giving∑V

v=1
‖wv‖.
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Performing MKL with SVM as the underlying classifier suffers from a serious limita

tion: due to the SVM we are restricted to problems with two classes only. One possible

way of dealing with multiclass problems is to decompose them into binary problems,

following a oneagainstall, or a oneagainstone strategy (e.g. [88]). Zien and Ong [133]

propose an SVMbased MKL framework that can directly handle multiclass data, by

extending the formulation in (1.20). For the optimization they consider both QCQP and

SILP techniques. Additionally, they make an important observation. Their formulation

(in the case of two classes) is equivalent to that of Bach et al. [4] and Sonnenburg et

al. [95,96]. Kloft et al. [62] further extend this result and show that the formulations of

Rakotomamonjy et al. [87,88] and Varma and Ray [112], as well as their own pnorm

MKL (1.23) for p = 1, fall into the same equivalence class with [4,95,96,133]. Moreover,

in [124] it is proved that the pnorm MKL (1.23) for p ≥ 1 is equivalent to the following

(2/q)block norm problem:

min
w,b,ξ

1

2

(
V∑

v=1

‖wv‖q

) 2
q

+ C
N∑

i=1

ξi, s.t. yi

(
V∑

v=1

w⊤
v φ(v)(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, (1.25)

with q = 2p
p+1

. Note that when varying p in the interval [1,∞), q is limited to [1, 2].

Hence, the block norm formulation is strictly more general and was pursued in [64],

together with an elastic net regularizer, for 1 ≤ q < ∞.

Despite their variety, all the aforementioned MKL methods focus on a linear com

bination of the basis kernels (1.15). On the remainder of this section, we will review

approaches that learn a composite kernel as a nonlinear mixture of basis kernels, or

even accommodate general types of parametric kernels. Cortes et al. [28] develop a

polynomial combination of basis kernels:

K̃(xi,xj) =
∑

k1+...+kV =d
kv∈Z+∪{0}

θk1
1 θk2

2 . . . θkV
V

(
K(1)(xi,xj)

)k1
(
K(2)(xi,xj)

)k2
. . .
(
K(V )(xi,xj)

)kV
,

(1.26)

that is parametrized by θ = [θ1, . . . , θV ]⊤ and its degree is determined by the choice

of the constant d. Note that all kv exponents are nonnegative integers and the sum

mation in (1.26) is over all possible combinations of k1, k2, . . . , kV values whose sum

equals d. This composite kernel is applied to regression problems using kernel ridge

regression (KRR) as the underlying learning algorithm. The coefficients θ are restricted

to nonnegative values (θv ≥ 0), in order to get a valid kernel, and, furthermore, either a

1norm constraint, ‖θ−θ0‖1 ≤ Λ, or a 2norm constraint, ‖θ−θ0‖ ≤ Λ, is imposed (θ0

and Λ are predefined constants). An iterative gradientbased procedure is employed to

optimize the resulting objective. Gönen and Alpaydin [48] introduce a composite kernel

that assigns different coefficients to the basis kernels in different regions of the input

space, thus accounting for localities in the data:

K̃(xi,xj) =

V∑

v=1

θv(xi)K(v)(xi,xj)θv(xj). (1.27)
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As it can be seen, the parameters of K̃ are actually functions of the instances and

their values are calculated through a gating model. In [48], the softmax function is

considered as a possible instantiation of the gating model:

θv(x) =
exp(f⊤v x + fv0)∑V
v=1 exp(f⊤v x + fv0)

. (1.28)

Hence, learning K̃ equals learning the gating model parameters fv, fv0, which is done by

incorporating the composite kernel into the SVM classifier and obtaining the following

MKL problem:

min
fv,fv0,w,b,ξ

1

2

V∑

v=1

‖wv‖2 + C

N∑

i=1

ξi, s.t. yi

(
V∑

v=1

w⊤
v

(
θv(xi)φ

(v)(xi)
)

+ b

)
≥ 1 − ξi, ξi ≥ 0.

(1.29)

To solve (1.29), a two step iterative procedure is proposed. This procedure is inspired

by simpleMKL [88] and alternates between solving a standard SVM for fixed fv, fv0, i.e.

fixed θv(x), and updating the parameters of the gating model by means of gradient

descent. Another nonlinear MKL approach can be found in [73].

Varma and Babu [111] propose an MKL framework that can handle generic types

of parametric kernels K̃ and, therefore, unlike the methods we have so far presented

in this section, is not limited to a specific form of K̃. This generalized MKL framework

optimizes the following objective:

min
θ,w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi + r(θ), s.t. yi

(
w⊤φ̃(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, θv ≥ 0, (1.30)

where r(θ) is a regularizer on the kernel parameters θ. To efficiently solve (1.30), it is

reformulated as:

min
θ

T (θ), s.t. θv ≥ 0, (1.31)

T (θ) = min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi + r(θ), s.t. yi

(
w⊤φ̃(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, (1.32)

and an iterative process, closely resembling that of simpleMKL [88], is applied, where

a standard SVM is executed for given θ to get T (θ) and, then, θ is updated using

the gradient of T (θ) w.r.t. θ while preserving θv ≥ 0. Note that the only restric

tion imposed on the learned kernel K̃ and the regularizer r(θ) is that they must be

continuously differentiable functions of θ, to ensure the gradient exists. In [111],

gender identification experiments on a collection of face images are conducted, with

K̃(xi,xj) =
∏d

v=1 exp(−θv(xiv − xjv)
2) (xiv is the vth attribute of instance xi) and a

1norm regularizer. Gai et al. [45] also present an MKL scheme that is able to handle

various forms of parametric kernels K̃. However, they utilize the ratio between the
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margin of the SVM and the radius of the minimum enclosing ball of the data in feature

space H̃, denoted by R(θ), to perform MKL. The resulting objective is given by:

min
θ,w,b,ξ

1

2
R2(θ)‖w‖2 + C

N∑

i=1

ξi, s.t. yi

(
w⊤φ̃(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, Ω(θ), (1.33)

where the square of the radius of the minimum enclosing ball for a specific θ can be

obtained by:

R2(θ) = min
t,c

t, s.t. t ≥ ‖φ̃(xi) − c‖2, (1.34)

which is a convex problem that is optimally solved through its dual. Integrating R(θ)

into (1.33) is motivated by the observation that the margin alone is not a suitable mea

sure of the goodness of the learned kernel, as it can become arbitrarily large by simply

scaling K̃, something known as the scaling problem. Hence, even a poor performing

kernel can give an arbitrary large margin. Moreover, the scaling problem causes the

initialization problem, i.e. the solution is affected by the initial scalings of the basis

kernels. Gai et al. [45] prove that their formulation is scale invariant and, in the case

of a linear combination of basis kernels, it also avoids the initialization problem and

is invariant to the choice of pnorm constraint on θ. The whole MKL process is trans

formed into a trilevel optimization problem that is solved by an iterative gradientbased

algorithm. This algorithm alternates among finding R(θ) for fixed θ, solving a standard

SVM for the current {R(θ), θ} values and taking a step along the projected gradient,

to update θ without violating the constraints Ω(θ). For the gradient to exist, K̃ must

be a continuously differentiable function of θ.

Although the vast majority of MKL methods is built upon the SVM classifier, it is

worth mentioning that there exist approaches that employ other types of base learners.

For example, kernel ridge regression is utilized in [27] and [28] to learn a linear and a

nonlinear combination of basis kernels, respectively, while in [44, 60] linear mixtures

of basis kernels are found using kernel Fisher discriminant analysis. Another popular

direction to perform MKL is to consider the kernel alignment criterion. Kernel alignment

[30] defines a notion of cosine similarity between two arbitrary kernel matrices K(1) ∈
ℜN×N and K(2) ∈ ℜN×N as follows:

A(K1, K2) =

〈
K(1), K(2)

〉
F√

〈K(1), K(1)〉F 〈K(2), K(2)〉F
, (1.35)

where
〈
K(1), K(2)

〉
F

=
∑N

i=1

∑N
j=1 K

(1)
ij K

(2)
ij is the Frobenius product. For a binary

classification task, we can view the matrix yy⊤ as the ‘‘ideal’’ kernel matrix, where

y = [y1, . . . , yN ]⊤, yi ∈ {±1}, is the vector of the class labels. Hence, to learn a

parametric kernel K̃, we try to maximize the alignment between its kernel matrix K̃

and yy⊤, w.r.t. the parameters θ. Afterward, a classifier can be built using the learned

kernel. Kernel alignment is applied to infer linear combinations of basis kernels in

[29,55,57,69], which are then used to train a standard SVM.
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1.3.2 MKL Clustering

Enhancing clustering algorithms by learning an appropriate kernel for the dataset

at hand along with the cluster assignments, using MKL techniques, constitutes an

interesting research direction. However, few approaches have been presented in the

literature to tackle this problem. Here, we will mainly focus on those approaches that

extend a relatively new clustering paradigm, called maximum margin clustering [121],

to the MKL setting and briefly mention some other MKL methods for clustering as well.

First of all, however, we shall provide a quick overview of maximum margin clustering.

Maximum Margin Clustering

Maximum margin clustering (MMC) has been proposed by Xu et al. [121] and expands

the large margin principle of SVM to the clustering domain. Given a dataset X =

{xi}N
i=1, xi ∈ ℜd, MMC attempts to find a labeling (clustering) y = [y1, . . . , yN ]⊤, yi ∈

{±1}, of the instances, such that a subsequent training of a standard SVM [12, 19]

would result in a margin that is maximal over all possible labellings. MMC is formulated

as:

min
y

min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi, (1.36)

s.t. − ℓ ≤
N∑

i=1

yi ≤ ℓ, y ∈ {±1}N , yi

(
w⊤φ(xi) + b

)
≥ 1 − ξi, ξi ≥ 0,

where w, b, ξ and C are the usual SVM parameters (see (1.14) for details) and a kernel

K : X ×X → ℜ is used to implicitly define a transformation φ : X → H of the instances

to a feature space H, i.e. K(xi,xj) = φ(xi)
⊤φ(xj). To prevent the trivially ‘‘optimal’’

solution of assigning all instances to the same cluster and thus obtaining an infinite

margin (‖w‖ = 0), a cluster balance constraint (−ℓ ≤
∑N

i=1 yi ≤ ℓ) is necessary, where

ℓ ≥ 0 is a constant controlling the imbalance of the clusters. Note that MMC can only

handle datasets exhibiting a twocluster structure (yi ∈ {±1}).

The MMC problem is nonconvex with integer parameters y, making the optimiza

tion much trickier than that of the standard (convex) SVM where the labels y are known

in advance. To ease the optimization, Xu et al. [121] make a number of relaxations

with regard to y and also remove the bias b (b = 0), hence the recovered hyperplane

is required to pass through the origin. Subsequently, they cast MMC into an SDP

problem, whose number of parameters is quadratic in the number of instances, and

the cluster assignments are recovered by eigendecomposition of an appropriate matrix.

Valizadegan and Jin [110] reduce the number of parameters in the SDP from N2 to

N and reinstate the bias term in the hyperplane, leading to an improved MMC frame

work. Solving an SDP is computationally expensive and the algorithms in [110,121]

can only cluster datasets containing a few hundreds of samples. Zhang et al. [129]
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present a more efficient optimization strategy that alternates between the inner and

the outer minimization in (1.36). However, instead of relying on a straightforward im

plementation, where a standard SVM is executed for given y and, then, y is updated

according to yi = sign(w⊤φ(xi) + b), they perform a key modification. The SVM arising

in the inner subproblem is replaced by support vector regression (SVR), to avoid the

premature convergence issue observed when SVM is employed. Moreover, the bias b

is not directly determined through the SVR, but is set (after obtaining w for the cur

rent y using the SVR) to an appropriate value that guarantees the cluster update rule

yi = sign(w⊤φ(xi) + b) will respect the cluster balance constraint. Another efficient

approach for solving MMC, based on the cutting plane method, is reported in [115].

Finally, [115,122] extend MMC to the multiclass case (i.e. to problems with more than

two clusters).

Combining MMC with MKL

As in Section 1.3.1, we assume a kernel K̃ : X × X → ℜ (parametrized by a vector

θ of parameters) to which a transformation φ̃ : X → H̃ corresponds. There exist two

methods that couple MMC with MKL techniques [110,130]. Both [110] and [130] infer

a linear mixture of basis kernels, of the form described in (1.15)(1.16), and impose a

1norm and a 2norm constraint on θ, respectively.

In more detail, Zhao et al. [130] express kernel learning under the MMC paradigm

analogously to the pnorm MKL (1.23):

min
θ,w,b,ξ

1

2

V∑

v=1

‖wv‖2

θv
+ C

N∑

i=1

ξi, (1.37)

s.t. − ℓ ≤
N∑

i=1

(
V∑

v=1

w⊤
v φ(v)(xi) + b

)
≤ ℓ,

∣∣∣∣∣

V∑

v=1

w⊤
v φ(v)(xi) + b

∣∣∣∣∣ ≥ 1 − ξi,

ξi ≥ 0, θv ≥ 0, ‖θ‖2 ≤ 1.

Note that a slightly relaxed cluster balance constraint is used compared to (1.36) and

the cluster assignments are calculated as yi = sign
(∑V

v=1 w⊤
v φ(v)(xi) + b

)
, allowing for

the removal of y from the objective. Zhao et al. [130] devise a cutting plane method to

optimize (1.37) and also expand their formulation to problems with several clusters.

As already mentioned, Valizadegan and Jin [110] convert MMC (1.36) into an SDP

problem (see the MMC subsection above). This SDP formulation is further extended to

perform MKL by incorporating a linear mixture of basis kernels into it, leading to the

following optimization problem:

max
θ,γ

N∑

i=1

γi, (1.38)
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s.t. P⊤K̃−1P + Cee0e
⊤
0 −

N∑

i=1

γiI
i
N+1 � 0, 0 ≤ γi ≤ Cδ, θv ≥ 0,

V∑

v=1

θv = 1,

where the kernel matrix K̃ is defined as in (1.16), γ is a vector of dual parameters, Ce

and Cδ are regularization constants, e0 is an (N + 1)dimensional vector whose last

element is zero and all other elements are equal to 1, I i
N+1 is an (N + 1) × (N + 1)

matrix with all the elements being zero except the ith diagonal element which is equal

to 1 and P = [I, e] is an N × (N + 1) matrix, where I is the identity matrix and e is a

vector with all its elements equal to 1. By solving (1.38), we are able to simultaneously

resolve the cluster memberships (through γ) and learn the composite kernel K̃ (1.15)

(through θ).

Other Approaches

Zeng and Cheung [126,127] consider a linear combination of basis kernels (1.15) within

the framework of local learning based clustering [119]. An iterative gradientbased

procedure is deployed to locate the clusters and learn the composite kernel. Baili

and Frigui [7] utilize a kernelized version of the popular fuzzy cmeans algorithm [99]

and learn a clusterdependent linear mixture of basis kernels, i.e. the coefficients of

the basis kernels have different values across the different clusters. The optimization

process resembles that of the original fuzzy cmeans algorithm, where an additional step

is included to update the clusterdependent coefficients using closedform expressions.

Some other interesting unsupervised methods, which infer a linear combination of

basis kernels, can be found in [1,117].

1.4 Thesis Contribution

In this thesis, we study the clustering problem, mainly focusing on three different

axes: i) proximitybased clustering, ii) clustering of data available in multiple views

and iii) learning the kernel along with the cluster assignments using multiple kernel

learning (MKL) techniques. Note that these problems are not completely independent

and there is certain overlap among them. For example, MKL is related to proximity

based approaches, since instances are represented by kernel matrices, or to multiview

learning if the basis kernels are derived from different views. Next, we summarize the

contribution of this thesis.

In Chapter 2, we present an approach that improves the kmeans algorithm [76].

Specifically, we alter the kmeans objective and instead of minimizing the sum of the

intracluster variances, we optimize a weighted sum of the intracluster variances [108].

The optimization is performed using an efficient iterative algorithm, which closely re

sembles kmeans, and the values of the weights are updated through closedform

expressions. The main novelty of the proposed objective is that the weights on clusters

predispose our model towards primarily minimizing those clusters which in the current
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iteration exhibit large intracluster variances. In this way, the solution space is grad

ually restricted towards clusters with similar variances. The unweighted summation

in the original kmeans objective does not account for the relative differences of the

cluster variances, thus is it very easy, after a bad initialization, to come up with a so

lution where some of the natural groups in the data have been merged (large variance

clusters) and others have been split (small variance clusters). Hence, our approach can

produce high quality partitionings more regularly than kmeans, while restarted from

random initial centers. Moreover, our clustering scheme utilizes a parameter, whose

value must be set prior to execution, that controls how strongly the weighted objec

tive penalizes larger variance clusters relative to smaller variance clusters. A practical

framework is developed to automatically tune this parameter to the underlying dataset,

so that the intrinsic structures in the data are successfully uncovered. Finally, we also

present a kernelized version of the weighted objective to perform clustering in kernel

space (i.e. feature space) [41] and thus locate nonlinearly separable clusters. The fea

ture space extension requires only the kernel matrix and not the instances as input,

i.e. it is a proximitybased method.

In a nutshell, we make the following contributions:

• we introduce a novel weighted objective to circumvent the initialization problem

of kmeans,

• we incorporate in our model a parameter that controls its behavior, allowing

its adaptation to the dataset, and devise a practical framework to automatically

adjust the value of this parameter,

• we extend our approach to kernel space,

• we experimentally evaluate the efficacy of our approach in overcoming bad initial

izations and systematically obtaining high quality solutions.

Chapter 3 and Chapter 4, focus on unsupervised multiview learning (see Sec

tion 1.2). Most of the existing multiview methods treat all available views as being

equally important during training. However, in practice, degeneracies may occur, as

views can contain noise or be irrelevant to the problem at hand. Including such views

in the learning process can result in a significant performance degradation. Our key

contribution in multiview learning is that we present approaches that assign weights

to the views and automatically tune these weights to reflect the quality of the views

and determine their contribution to the clustering solution accordingly, thus providing

robustness over degenerate views.

In more detail, in Chapter 3, we develop two multiview algorithms that are based

on convex mixture models (CMMs) [71]. CMMs are simplified mixture models that

locate exemplars in the dataset and are characterized by the ability to converge to the

global optimum, thus avoiding the initialization problem of standard mixture models

(see Section 1.1.5). Our first approach is a simple extension of CMMs to data with
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multiple views that considers all views as equally important [104]. Its most interesting

features are the global optimality of the returned solution, the use of the pairwise

distance matrix of the instances and that the different statistical properties of the views

are taken into account. Our second approach represents each view with a CMM and

learns a weighted combination of those CMMs [106]. Hence, degenerate views can

be identified and appropriately handled. Moreover, this weighted combination has a

probabilistic interpretation and takes into account the statistical properties of each

view. Experiments reveal the superiority of assigning weights to the views.

In a nutshell, we make the following contributions:

• we present two CMMbased multiview methods, where the first relies equally on

every view and can find the global optimum solution, while the second associates

a weight with each view and, therefore, can spot degenerate views,

• we consider the different statistical properties of the views,

• we experimentally evaluate the effectiveness of our approaches on both noisy and

noisefree artificial datasets, as well as on real data.

Also, in Chapter 4, we draw inspiration from the MKL literature and perform multi

view clustering by representing each view with a kernel matrix (derived by employing

a kernel function [41] on the view) and learning a weighted combination of the kernel

matrices [107]. The influence of the views can be adjusted through the weights, thus

the effects of degenerate views can be confined. The formulation includes a parameter,

whose value must be set prior to execution, that controls the sparsity of the weights.

A low value results in retaining only the best view (sparse solution), which is useful if

most views are of poor quality, while a large value leads towards a uniform solution,

which is preferable when all views are of similar quality. Intermediate values provide a

tradeoff between these ends. To infer the weights and the cluster assignments, we de

velop an iterative algorithm that is based on kernel kmeans [37,90] (see Section 1.1.3)

and estimates the weights using closedform updates. Moreover, we exploit the con

nection between kernel kmeans and spectral clustering [37] and present an alternative

optimization algorithm under the spectral perspective.

In a nutshell, we make the following contributions:

• we present a multiview method that assigns weights to the views,

• we use kernel matrices to represent the views, which connects multiview learning

to MKL,

• we utilize a parameter in our formulation that controls the sparsity of the weights,

• we develop two optimization strategies, one based on kernel kmeans and the

other on spectral techniques,

• we perform experiments on both synthetic and real data.
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Finally, in Chapter 5, we focus on the MKL problem, to simultaneously infer an

appropriate kernel (i.e. infer its parameters) and cluster the instances. As already

mentioned (see Section 1.3), the vast majority of existing (supervised and unsupervised)

MKL frameworks exploit the large margin principle of SVM [12,19] and perform learning

by maximizing the margin. Instead, here, we propose an objective that utilizes the ratio

between the margin and the intracluster variance criterion of kernel kmeans [37,90].

The main advantages of this objective are that it explicitly considers both the separation

(margin) and the compactness (intracluster variance) of the clusters, hence higher

quality solutions can be possibly attained compared to approaches that rely on either

of the two. Moreover, it has been shown that the margin alone is an unsuitable measure

of the goodness of the learned kernel [45], as it can become arbitrary large by simply

scaling the kernel. We prove that our ratiobased objective is invariant to kernel scaling

and, also, that its global optimum solution is invariant to the type of norm constraint

on the kernel parameters when a linear combination of basis kernels is considered.

Additionally, our formulation can learn different types of parametric kernels (if some

mild conditions are satisfied), while most of the available MKL methods can only handle

parametric kernels of a specific form (usually a linear mixture of basis kernels). For the

optimization, a gradientbased iterative algorithm has been developed that alternates

between updating the kernel parameters and the cluster assignments.

In a nutshell, we make the following contributions:

• we introduce a novel ratiobased objective for MKL clustering that considers both

the separation and the compactness of the clusters,

• we prove that our formulation is invariant to scalings of the learned kernel, as

well as invariant (on its global optimum) to the type of norm constraint on the

kernel parameters when basis kernels are linearly mixed,

• we show that our approach can handle different types of parametric kernels,

• we perform experiments on several diverse real datasets to demonstrate the po

tential of our framework.

1.5 Thesis Layout

The rest of this thesis is structured as follows. In Chapter 2, we introduce a novel

approach to circumvent the initialization problem of kmeans and, also, provide a

kernel space extension of our approach. In Chapter 3 and Chapter 4, we consider the

multiview clustering problem from different perspectives and develop methods that

assign weights to the views, so that degenerate views are automatically identified and

appropriately handled. Chapter 5 presents a multiple kernel learning method, where

the kernel is learned along with the cluster assignments using a ratiobased objective.

Finally, Chapter 6 summarizes this thesis and overviews directions for future work.
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Chapter 2

The MinMax kmeans Clustering

Algorithm

2.1 kmeans

2.2 MinMax kmeans

2.3 Improving MinMax kmeans

2.4 Empirical Evaluation

2.5 Extension to Kernel Space

2.6 Summary

Clustering, is a fundamental problem in data analysis that arises in a variety of fields,

such as pattern recognition, machine learning, bioinformatics and image process

ing [41, 123]. It aims at partitioning a set of instances into homogeneous groups,

i.e. the intracluster similarities are high while the intercluster similarities are low, ac

cording to some clustering objective. However, exhaustively searching for the optimal

assignment of instances to clusters is computationally infeasible and usually a good

local optimum of the clustering objective is sought.

One of the most wellstudied clustering algorithms is kmeans [76], which minimizes

the sum of the intracluster variances. Its simplicity and efficiency have established

it as a popular means for performing clustering across different disciplines. Even an

extension to kernel space has been developed [37, 90], namely kernel kmeans, to

enable the identification of nonlinearly separable groups. Despite its wide acceptance,

kmeans suffers from a serious limitation. Its solution heavily depends on the initial

positions of the cluster centers, thus after a bad initialization it easily gets trapped

in poor local minima [21, 86]. To alleviate this shortcoming, kmeans with multiple

random restarts is often employed in practice.
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Several methods attempt to overcome the sensitivity to the initialization in a more

principled way. A first group of methods applies special techniques aiming at systemat

ically avoiding partitionings of poor quality during the restarts. In [3], the initial centers

are selected through a stochastic procedure such that the entire data space is covered.

Theoretical guarantees are provided about the capability of the method to approximate

the optimal clustering. Two approaches that start from random centers and penal

ize clusters relative to the winning frequency of their representatives are presented

in [8, 114]. Discouraging clusters to which several points have already been assigned

from attracting new points in the subsequent steps has a regularizing effect. Centers

that were initially illplaced and are currently underutilized can actively participate in

the solution on the following steps, which obstructs outlier clusters from forming and

in effect balances the sizes of the clusters. Some other, analogous, strategies can be

found in [15,97].

A second group of methods attempts to eliminate the dependence on random initial

conditions, hence restarts are not anymore necessary. Global kmeans [74] and its

modifications [5,6] are incremental approaches that start from a single cluster and at

each step a new cluster is deterministically added to the solution according to an appro

priate criterion. A kernelbased version of global kmeans is also available [103,105].

In [128] and its extension [38], spectral clustering is applied to locate the global opti

mum of a relaxed version of the kmeans objective, by formulating the problem as a

trace maximization. Although these algorithms are not susceptible to bad initializa

tions, they are computationally more expensive.

In this chapter we present MinMax kmeans, a novel approach that tackles the

kmeans initialization problem by altering its objective [108]. Our method starts from

a randomly picked set of centers and tries to minimize the maximum intracluster

variance instead of the sum of the intracluster variances. Specifically, a weight is as

sociated with each cluster, such that clusters with larger variance1 are allocated higher

weights, and a weighted version of the sum of the intracluster variances criterion is

derived. Different notions of weights have been exploited in the literature across sev

eral kmeans variants. In fuzzy cmeans and Gaussian mixture models [99] weights

are used to compute the degree of cluster membership of the instances, while in other

variants weights are assigned to features, or groups of features, such that the tasks of

clustering and feature selection are simultaneously performed [54,79]. Also, in [58], a

weighting factor is added to each instance in order to detect outliers.

The per cluster weights predispose our algorithm towards primarily minimizing

those clusters that currently exhibit a large variance, in essence confining the occur

rence of large variance clusters in the outcome, and are learned automatically, along

with the cluster assignments. The proposed method alternates between a minimiza

tion step, resembling the kmeans procedure, and an additional maximization step,

1To avoid cluttering the text, we shall also refer to the intracluster variances, simply, as the variances

of the clusters.
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in which the weights are calculated using closedform expressions. By applying this

weighting mechanism, results become less affected by the initialization and solutions of

high quality can be more consistently discovered, even after starting from a bad initial

set of centers. In addition, the obtained clusters are balanced with respect to their

variance.

The presented algorithm also incorporates a parameter p, whose value must be

specified prior to execution, that adjusts the degree of its bias towards penalizing large

variance clusters. When p = 0, kmeans, which has a zero bias, can be deduced as

a special case of our method. A practical framework extending MinMax kmeans to

automatically adapt this parameter to the dataset is also developed here, so that the

hidden group structures in the data can be successfully uncovered.

Experiments are conducted on several diverse datasets, including images, handwrit

ten digits, proteins and patient records. MinMax kmeans is compared to kmeans, as

well as to kmeans++ [3] and pifs kmeans [8] that evade degenerate optima, the first by

methodically picking the initial centers and the second by balancing the cluster sizes.

Our empirical evaluation reveals the effectiveness of the proposed clustering scheme in

restricting the emergence of large variance clusters and producing superior solutions

compared to the other three approaches, while restarted from random initializations.

Furthermore, we observe that our algorithm constitutes a very promising technique for

initializing kmeans.

Finally, we provide a kernel space extension of MinMax kmeans, which enables

the identification of nonlinearly separable clusters in the data. This kernelized version

of MinMax kmeans is compared to kernel kmeans [37,90] and the obtained results

confirm the superiority of our approach in kernel space as well.

The rest of this chapter is organized as follows. We next briefly describe kmeans,

while in Section 2.2 the proposed MinMax kmeans algorithm is presented and its

properties are analyzed. Section 2.3 introduces our practical framework for setting the

p parameter. The experiments with regard to MinMax kmeans follow in Section 2.4,

before its extension to kernel space is presented in Section 2.5. Section 2.6 concludes

the chapter.

2.1 kmeans

To partition a dataset X = {xi}N
i=1, xi ∈ ℜd into M disjoint clusters, {Ck}M

k=1, kmeans

[76] minimizes the sum of the intracluster variances (2.1), where Vk =
∑N

i=1 δik‖xi −
mk‖2 and mk =

∑N
i=1 δikxi/

∑N
i=1 δik are the variance and the center of the kth cluster,

respectively, and δik is a cluster indicator variable with δik = 1 if xi ∈ Ck and δik = 0

otherwise.

Esum =
M∑

k=1

Vk =
M∑

k=1

N∑

i=1

δik‖xi −mk‖2 (2.1)
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Clustering proceeds by alternating between assigning instances to their closest center

and recomputing the centers, until a local minimum is (monotonically) reached.

Despite its simplicity and speed, kmeans has some drawbacks, with the most

prominent being the dependence of the solution on the choice of initial centers [21,86].

Bad initializations can lead to poor local minima, thus multiple random restarts are

usually executed to circumvent the initialization problem. Often, the solutions returned

by the restarts significantly vary in terms of the achieved objective value, ranging from

good to very bad ones, particularly for problems with a large search space (e.g. many

clusters and dimensions). Therefore, numerous runs of the algorithm are required to

increase the possibility of locating a good local minimum.

2.2 MinMax kmeans

As discussed in Section 2.1, the sensitivity of kmeans to initialization and the diverse

solutions uncovered during the restarts make it difficult to find a good partitioning

of the data. Motivated by this, we propose the optimization of a different objective

and a new methodology that allows kmeans to produce high quality partitionings more

systematically, while restarted from random initial centers.

2.2.1 The Maximum Variance Objective

Consider a dataset X = {xi}N
i=1, xi ∈ ℜd to be split into M disjoint clusters, {Ck}M

k=1. In

stead of minimizing the sum of the intracluster variances (2.1), we propose to minimize

the maximum intracluster variance:

Emax = max
1≤k≤M

Vk = max
1≤k≤M

{
N∑

i=1

δik‖xi − mk‖2

}
, (2.2)

where Vk, mk and δik are defined as in (2.1).

The rationale for this approach is the following: the summation over all clusters

in the kmeans objective (2.1) allows for similar Esum values to be achieved either by

having a few clusters with large variance that are counterbalanced by others with

small variance, or by having a moderate variance for all clusters. This means that

the relative differences among the cluster variances are not taken into account. Note

that the variance of a cluster is a measure of its quality. The above remark does not

hold when minimizing Emax though, as the first case above would lead to a higher

objective value. Hence, when minimizing Emax, large variance clusters are avoided and

the solution space is now restricted towards clusters that exhibit more similar variances.

The previous observation has two important implications. Since kmeans minimizes

Esum, it cannot distinguish between the two cases, thus a bad initialization yields a poor

solution that is characterized by substantially different variances among the returned

clusters; a result of natural groups getting merged (large variance clusters) and others
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Figure 2.1: Example (a) of a bad initialization that (b) leads to a poor kmeans solu

tion, consisting of clusters with significantly different variances. On the contrary, our

method, which is based on the notion of the maximum intracluster variance, man

ages to correctly locate the clusters (c), starting from the same initial centers. Different

symbols and colors represent the cluster assignments and centers.

getting split (small variance clusters), or of outlier clusters being formed2. As explained,

the maximum intracluster variance objective Emax is less likely to converge to such

solutions, hence it is easier to overcome a bad initialization. Thus, we expect a kmeans

type algorithm coupled with this objective to be able to uncover better group structures

more consistently during the restarts. An example is illustrated in Figure 2.1.

Additionally, a balancing effect on the clusters occurs. Balanced outcomes have

been pursued in different ways in the literature. For example, in [8] kmeans and

spherical kmeans are modified to penalize clusters in proportion to the number of

instances assigned to them, while in [39, 83] a graph cut criterion is optimized which

favors the creation of subgraphs where the sums of the edge weights within the sub

graphs (subgraph associations) are similar. In our case, balancing is done with regard

to the variance of the clusters and not the number of cluster instances. As many real

life applications demand partitionings of comparable size for subsequent data analy

sis [8], this is a nice and desired property of the presented objective (2.2). Note that a

known shortcoming of kmeans is its tendency to produce skewed solutions, i.e. clus

ters with widely varying number of instances and/or nearempty clusters, especially

for data with many dimensions and clusters, since the solution space vastly expands

in this case [8,99].

2.2.2 A Relaxed Maximum Variance Objective

Despite the aforementioned advantages, directly minimizing the maximum intracluster

variance Emax poses a nontrivial optimization problem. To tackle this problem, the ob

2Let us clarify that a solution with quite different variances on the clusters is not necessarily a bad

one. There are datasets where the natural groups exhibit such structure. We simply claim that such

behavior also arises after a bad initialization, where some groups are merged and others are split.
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jective is relaxed so it can be readily optimized in a kmeans iterative fashion. Specifi

cally, we construct a weighted formulation Ew of the sum of the intracluster variances

(2.3), where greater emphasis, i.e. a higher weight wk, is placed on clusters with large

variance, to mimic the behavior of the maximum variance criterion (2.2).

Ew =

M∑

k=1

wp
kVk =

M∑

k=1

wp
k

N∑

i=1

δik‖xi − mk‖2, wk ≥ 0,

M∑

k=1

wk = 1, 0 ≤ p < 1 (2.3)

In contrast to Emax, now, all clusters contribute to the objective, albeit to different

degrees regulated by the wk values (the wp
k values, to be precise). Obviously, the more

a cluster contributes (higher weight), the more intensely its variance will be minimized,

as in this way a bigger reduction of the objective is possible. Note that the weights are

not constants, but parameters that must be optimized together with the cluster labels.

We treat weights as parameters to allow their values to accurately reflect the variance

of their respective clusters at each iteration during training and constrain them to

sum to unity to avoid overfitting and get a meaningful optimization problem. The p

exponent is a user specified constant that takes values in the range [0, 1) and controls

the sensitivity of the weight updates to the relative differences of the cluster variances,

i.e. how strongly these differences are echoed by the weights. We shall shortly provide

more insight into the Ew objective and thoroughly explain the role of p.

The general goal of clustering is to produce a partitioning with low intracluster

variances (compact clusters) and at the same time we wish to rigorously guard against

solutions in which large variance clusters occur, analogously to Emax. In order for the

relaxed objective to penalize large clusters, a higher variance should lead to a higher

weight, which can be realized by maximizing Ew with respect to the weights. The

resulting optimization problem is a minmax problem of the form:

min
{Ck}

M
k=1

max
{wk}

M
k=1

Ew, s.t. wk ≥ 0,

M∑

k=1

wk = 1, 0 ≤ p < 1. (2.4)

We propose an iterative algorithm, called MinMax kmeans, that alternates between

the Ck and wk optimization steps to get a local optimum of Ew and the corresponding

derivations are presented next. Note that p is not part of the optimization and must be

fixed a priori.

Minimization Step

By keeping the weights fixed, new cluster assignments and representatives mk are

calculated. For the assignments, because the terms of Ew involving the cluster indi

cator variables δik for the ith instance are independent of the other instances, the

optimization is straightforward, giving:

δik =

{
1, k = argmin1≤k′≤M wp

k′‖xi − mk′‖2

0, otherwise
. (2.5)
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Hence, each instance is assigned to the cluster whose weighted distance from the

representative to the instance is the smallest. Moreover, it is evident that as the weight

wk increases, only instances that are very close to the representative mk are assigned

to the kth cluster.

To estimate the representatives, the derivatives of the objective function with respect

to mk are set to zero, which yields:

mk =

∑N
i=1 δikxi∑N
i=1 δik

. (2.6)

As for kmeans, the representatives coincide with the centroids of the clusters and are

independent of the weights.

Maximization Step

To update the weights for given cluster assignments and centers, the weight constraints

(2.4) are incorporated into the objective via a Lagrange multiplier and the derivatives

with respect to wk are set to zero. It is easy to verify that the constrained objective is

concave with respect to the weights when 0 ≤ p < 1, hence their optimal values that

maximize Ew given the current partitioning can be determined. After some manipulation

the following closedform solution emerges3:

wk = V
1

1−p

k

/ M∑

k′=1

V
1

1−p

k′ , where Vk =

N∑

i=1

δik‖xi − mk‖2. (2.7)

As 1/(1−p) > 0, since 0 ≤ p < 1, it can be observed that the larger the cluster variance

Vk the higher the weight wk.

2.2.3 Discussion

In this section some aspects of the MinMax kmeans algorithm and its relaxed objective

(2.3) are analyzed in more detail. According to (2.7), for a given partitioning of the

data the weights are set proportionally to the cluster variances. In the subsequent

minimization step, the assignment of instances to clusters is made using the weighted

distance from the cluster centers (2.5). Apparently, for highly weighted clusters, the

weighted distance of their representatives from the instances increases. Consequently,

a cluster with large variance may lose some of its current instances that are away from

its center (instances on the periphery of the cluster) and its variance is expected to

decrease. At the same time, low variance clusters, due to the small weights, may also

acquire instances that are not close to their centers and their variance will increase.

Therefore, the iterative procedure of MinMax kmeans punishes large variance clusters

3The proof of (2.7) is very similar to that provided in Appendix B (Section B.1) for the MVKKM method,

presented in Chapter 4 of the thesis.

38



and operates towards clusters with similar variances, resembling the maximum variance

objective (2.2) whose advantages are carried over.

MinMax kmeans requires initial values for the cluster representatives and the

weights. At the start no information about the variance of the clusters is available

and the weights should be uniformly initialized, i.e. wk = 1/M . Similar to kmeans,

the solution depends on the initialization of the centers and multiple restarts are nec

essary. However, as Ew shares the same properties with Emax, high quality solutions

are anticipated on a regular basis compared to kmeans.

Regarding the p values, the most natural choice would be to propose a method

where p = 1. For p = 1 the estimation of the weights simplifies to:

wk =

{
1, k = argmax1≤k′≤M Vk′

0, otherwise
. (2.8)

Obviously, in each iteration only the highest variance cluster receives a nonzero weight

and thus in the following minimization step all its instances will be randomly assigned

(2.5) to one of the other, zeroweight, clusters, which clearly signifies a degenerate case.

If p > 1 is selected, the relaxed objective becomes convex with respect to the weights,

thus the weight updates, which take the same form as in (2.7), will minimize Ew instead

of maximizing it as required by (2.4). Therefore, only 0 ≤ p < 1 can be permitted.

As for the effect of the p exponent (0 ≤ p < 1), based on (2.7) it can be shown that

the greater (smaller) the p value the less (more) similar the weight values become, as

the relative differences of the variances among the clusters are enhanced (suppressed).

This remark also holds for the wp
k values, which are the actual coefficients used in the

relaxed objective (2.3). To demonstrate the above in detail, the ratio between any two

weights, wk/wk′, can be considered as an indicator of their similarity. The more this

ratio tends to 1 the more similar the weights. Assume a fixed clustering, i.e. fixed

cluster variances Vk and Vk′. From (2.7), wk

wk′
=
(

Vk

Vk′

) 1
1−p

and
wp

k

wp

k′
=
(

Vk

Vk′

) p
1−p

, 0 ≤ p < 1.

As p increases, the value of the 1/(1 − p) and p/(1 − p) exponents grows, thus the

relative differences of the cluster variances are enhanced and both ratios deviate more

from 1, i.e. the weights and coefficients wp
k attain less similar values (the exact opposite

holds when p is decreased). In other words, p adjusts how intensely the differences of

the cluster variances are reflected on the weights.

Therefore, for a high p value, large variance clusters accumulate considerably higher

wk and wp
k values compared to low variance clusters, resulting in an objective that

severely penalizes clusters with high variance. Note that an extremely high p may force

clusters with large variance to lose most, or even all their instances, as their enormous

weights will excessively distance the instances from their centers (2.5), something not

desired of course. On the other hand, for p = 0, all wp
k coefficients equal 1, hence the

differences of the cluster variances are ignored and actually the kmeans criterion is

recovered, which permits high variance clusters. As shown in Section 2.2.1, preventing

the appearance of large variance clusters is helpful in evading poor solutions after a bad
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initialization and also balances the clusters. However, this tactic may prove problematic

when natural groups with different amounts of variance exist in the dataset, a common

scenario in practice, as it will hinder the clustering process from unveiling the true

structure of the data. We believe that intermediate p values provide a good compromise,

since high variance clusters will be admitted up to a certain extent. In a nutshell, the

p exponent controls how strongly the relaxed objective of MinMax kmeans restricts the

occurrence of large variance clusters, allowing its adaptation to the dataset. This is an

important advantage over the maximum variance objective Emax, whose strictness over

large variance clusters cannot be adjusted.

2.3 Improving MinMax kmeans

A crucial limitation of the MinMax kmeans algorithm is the treatment of the p exponent

as a predefined constant. While from the above discussion it is clear that a moderate p

is preferable, this is a rough assessment that hardly provides an indication as to which

exact p values suit a specific dataset. Therefore, manually selecting an appropriate p is

not trivial and requires repeating the clustering for several p values. This task becomes

even harder given the dependence of the solution on the initial centers for a particular

p.

To circumvent this limitation, we devise a practical framework that extends MinMax

kmeans to automatically adapt the exponent to the dataset, while alternating between

the minimization and maximization steps as before. Specifically, we begin with a small

p (pinit) that after each iteration is increased by step pstep, until a maximum value

is attained (pmax). After pmax is reached, clustering continues without changing p.

The idea behind this strategy is that the clusters formed during the first steps are

heavily influenced by the initialization and should be allowed to freely evolve without

considering their differences in variance, thus a small p is desirable (we set pinit = 0). As

clustering progresses, p is gradually increased to restrain large variance clusters that

persist in the solution and result in poor outcomes, especially after a bad initialization.

Note that such a progressive punishment of large variance clusters is not possible

when p is fixed a priori. Moreover, since clusters with high variance must not be

completely eliminated in order to correctly uncover the intrinsic structures in the data

(Section 2.2.3), extremely high values for pmax should be avoided.

As p grows, large variance clusters are susceptible to relinquishing most of their

current instances (see Section 2.2.3). If an empty or singleton cluster appears, it

will receive zero weight in the maximization step as Vk = 0. This will cause all the

dataset instances to be assigned to it in the subsequent minimization step (2.5) and

the clustering process will collapse. This situation indicates that p has attained a very

high value for the particular dataset. Whenever an empty or singleton cluster emerges,

irrespective of whether pmax has been reached or not, we decrease p by pstep, revert

back to the cluster assignments corresponding to the previous p value and resume
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clustering from there. Note that p is never increased again in the following iterations.

This manipulation of the p exponent has the same effect as setting pmax to be equal

to the reduced p value from the beginning (here the adjustment is done automatically

though) and actually shows that the presented framework is not very sensitive to the

choice of pmax, as p will stop increasing when necessary.

To enhance the stability of the MinMax kmeans algorithm, a memory effect could

be added to the weights:

w
(t)
k = βw

(t−1)
k + (1 − β)

(
V

1
1−p

k

/ M∑

k′=1

V
1

1−p

k′

)
, 0 ≤ β ≤ 1, (2.9)

where β controls the influence of the previous iteration weights to the current update,

allowing for smoother transitions of the weight values between consecutive iterations.

It should be stressed that when memory is applied (β > 0), the newly derived weights

no more correspond to their optimal values for the current partitioning, in contrast

to the case where memory is not employed (see the Maximization Step subsection in

Section 2.2.2). However, this does not negatively affect our method, as convergence to a

local optimum cannot be guaranteed, irrespective of the use of memory, since at every

iteration both a minimization and a maximization of the objective is performed. On

the contrary, our empirical evaluation has shown that memory is beneficial in several

cases and that fewer empty clusters are created.

The change of the relaxed objective’s value (2.3) between two consecutive iterations

serves as the termination criterion. When this change is less than a tiny value ǫ,

we stop. However, as mentioned above, convergence cannot be theoretically ensured,

therefore we also stop if a predefined number of iterations tmax is exceeded. In practice

we observed that convergence was achieved in many of our experiments. The pseu

docode for the complete MinMax kmeans algorithm is shown in Algorithm 2.1.

2.4 Empirical Evaluation

The performance of MinMax kmeans4 is studied on several datasets and we wish to

investigate if indeed its relaxed objective (2.3) limits the occurrence of large variance

clusters and how effective the proposed method is in overcoming bad initializations and

attaining good solutions more regularly than kmeans.

To demonstrate the above, first, a comparison to the basic kmeans algorithm is

made. As already discussed, kmeans does not consider the relative differences of

the clusters, allowing high variance clusters to emerge. Also, its solution is greatly

affected by the initial centers. Hence, this comparison will provide strong evidence

on the effectiveness of MinMax kmeans. Moreover, we also experiment with two k

means variants, called kmeans++ and partially incremental frequency sensitive (pifs)

kmeans.

4Matlab code is available at: http://www.cs.uoi.gr/˜gtzortzi.

41



Algorithm 2.1 MinMax kmeans.

Input: Dataset X = {xi}N
i=1, Initial centers

{
m

(0)
k

}M

k=1
, Number of clusters M , Secondary

parameters (see text) pmax, pstep, β, ǫ, tmax

Output: Cluster assignments {δik}i=1,...,N,k=1,...,M , Final centers {mk}M
k=1

1: Set t = 0

2: Set pinit = 0

3: Set w
(0)
k = 1/M , ∀k = 1, . . . ,M

4: Set empty = false // No empty or singleton clusters yet detected.

5: p = pinit

6: repeat

7: t = t + 1

8: for i = 1 to N do // Update the cluster assignments.

9: for k = 1 to M do

10: δ
(t)
ik =

{
1, k = argmin1≤k′≤M

(
w

(t−1)
k′

)p
‖xi − m

(t−1)
k′ ‖2

0, otherwise

11: end for

12: end for

13: if empty or singleton clusters have occurred at time t then // Reduce p.

14: empty = true

15: p = p − pstep

16: if p < pinit then

17: return NULL

18: end if

// Revert to the assignments and weights corresponding to the reduced p.

19: δ
(t)
ik = [∆(p)]ik, ∀k = 1, . . . ,M , ∀i = 1, . . . , N

20: w
(t−1)
k = [w(p)]k, ∀k = 1, . . . ,M

21: end if

22: for all mk, k = 1 to M do // Update the centers.

23: m
(t)
k =

∑N
i=1 δ

(t)
ik xi/

∑N
i=1 δ

(t)
ik

24: end for

25: if p < pmax and empty = false then // Increase p.

26: ∆(p) = [δ
(t)
ik ] // Store the current assignments in matrix ∆(p).

27: w(p) = [w
(t−1)
k ] // Store the previous weights in vector w(p).

28: p = p + pstep

29: end if

30: for all wk, k = 1 to M do // Update the weights.

31: w
(t)
k = βw

(t−1)
k + (1 − β)

((
V(t)

k

) 1
1−p
/∑M

k′=1

(
V(t)

k′

) 1
1−p

)
,

where V(t)
k =

∑N
i=1 δ

(t)
ik ‖xi − m

(t)
k ‖2

32: end for

33: until

∣∣∣E(t)
w − E(t−1)

w

∣∣∣ < ǫ or t ≥ tmax

34: return

{
δ
(t)
ik

}
i=1,...,N,k=1,...,M

,

{
m

(t)
k

}M

k=1
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Object 2 Object 3 Object 4 Object 7 Object 9 Object 10 Object 11 Object 15 Object 18 Object 19

Figure 2.2: The COIL20 objects considered in the experiments.

Figure 2.3: Indicative images belonging to three individuals from the Olivetti collection.

In kmeans++ [3] a stochastic procedure is employed to pick the initial cluster

centers and then kmeans is executed from these centers. Specifically, given that k− 1

centers have already been selected, instance xi may be selected as the kth initial center

with a probability that is proportional to its minimum distance from the k − 1 centers.

The above procedure aims at selecting initial centers that cover the entire data space,

thus providing better initializations to kmeans (compared to random starts), and,

therefore, constituting a worthy competitor against which to measure our method.

Pifs kmeans [8] explicitly penalizes clusters in proportion to the number of in

stances already assigned to them, according to the following cluster update rule5:

δik =

{
1, k = argmin1≤k′≤M |Ck′ |‖xi − mk′‖2

0, otherwise
, (2.10)

where |Ck| is the current size of the kth cluster. Based on (2.10), the larger the

cluster the lower the chance of an instance being acquired by that cluster. Thus,

clusters are balanced in terms of their size, which has been shown to decrease the

sensitivity to bad initializations [8, 114]. Remember (Section 2.2.3), that MinMax k

means, implicitly, through its weighting strategy, operates towards clusters with similar

variances. Therefore, it is interesting to examine how these two different balancing

approaches compare against each other.

2.4.1 Datasets

Six popular datasets are utilized in our empirical study for which the groundtruth is

available. Their features are normalized to zero mean and unit variance, unless stated

otherwise.

5Note that the exact cluster update rule proposed in [8] contains an additional d ln |Ck′ | term, where

d is the dataset dimensionality. However, better results were obtained without using this term in our

experiments.
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Table 2.1: Main characteristics of the tested datasets.

Dataset Instances Features Classes Balanced

Coil1 & Coil2 216 1000 3 Yes

Coil3 360 1000 5 Yes

Multiple features 

pixel averages
2000 240 10 Yes

Multiple features 

profile correlations
2000 216 10 Yes

Pendigits 10992 16 10 Almost

Olivetti 900 2500 10 Yes

Ecoli 307 7 4 No

Dermatology 366 34 6 No

Coil20 [81] contains 72 images taken from different angles for each of the 20

included objects. As in [56], SIFT descriptors [78] are first extracted from the images

which are then represented by the bag of visual words model using 1000 visual words

and the data vectors are normalized to unit length. For our purposes, three subsets

of Coil20 were created, Coil1 (objects 3, 9 and 10), Coil2 (objects 15, 18 and 19) and

Coil3 (objects 2, 4, 7, 10 and 11). The tested objects are shown in Figure 2.2.

Multiple features & Pendigits are two collections of handwritten digits (09) from

the UCI repository [42]. Multiple features digits (200 per class) are described in terms

of six different feature sets and we select two of them, namely pixel averages and profile

correlations. Pendigits consists of 10992 instances (roughly 1100 samples per numeral)

in 16dimensional space.

Olivetti is a face database of 40 individuals with ten 64×64 grayscale images per

individual. Based on [43], we only retain the first 100 images, belonging to ten per

sons, and apply the same preprocessing. Specifically, each image is smoothed using

a Gaussian kernel and then rotated by 10, 0 and 10 degrees and scaled by a factor

of 0.9, 1.0 and 1.1, resulting in 900 images. Finally, a central 50×50 window of the

images is kept and its pixels are normalized to zero mean and 0.1 variance. A subset

of the considered images is shown in Figure 2.3.

Ecoli (UCI) [42] includes 336 proteins from the Escherichia coli bacterium and seven

attributes, calculated from the amino acid sequences, are provided. Proteins belong

to eight categories according to their cellular localization sites. Four of the classes

are extremely underrepresented and are not considered in our evaluation. Note that

classes differ in size, i.e. it is an unbalanced dataset.

Dermatology (UCI) [42] is comprised of 366 patient records that suffer from six

different types of the EryhematoSquamous disease. Each patient is described by both

clinical and histopathological features (34 in total). This dataset is also unbalanced.

A summary of the datasets is provided in Table 2.1.
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2.4.2 Experimental Protocol

All tested algorithms, apart from kmeans++, are restarted 500 times from the same

randomly chosen initial centers. For kmeans++, the stochastic initialization procedure

is executed 500 times. The number of clusters is set equal to the number of classes

in each dataset, throughout the experiments. To evaluate the quality of the returned

solutions, the maximum cluster variance Emax, defined in (2.2), and the sum of the

cluster variances Esum, defined in (2.1), serve as the main performance measures and

their average and standard deviation over the 500 runs is reported. Note that Esum

favors kmeans and kmeans++ in the comparisons, since this is the objective optimized

by these two methods. Likewise, Emax favors our framework which optimizes a relaxed

version of (2.2). Since the groundtruth is available, the achieved NMI score (2.11)6 is

also reported. Higher NMI values indicate a better match between the cluster labels

and the class labels.

NMI =
2
∑M

k=1

∑C
h=1

nh
k

N
log

nh
kN

∑M
i=1 nh

i

∑C
i=1 ni

k

HM + HC
(2.11)

Moreover, to assess the computational complexity of the algorithms, their average exe

cution time (in seconds) is reported.

In a second series of experiments, the cluster centers derived by each execution of

MinMax kmeans and pifs kmeans are used to initialize a subsequent kmeans run.

This allows us to determine if kmeans performance can be improved when initialized

by these two approaches and also facilitates the comparison of the tested methods

under a common objective (Esum).

For MinMax kmeans, some additional parameters must be fixed prior to execution

(pmax, pstep, β, ǫ and tmax). Our method is not particularly sensitive to either pmax or

pstep. Regarding pmax, p stops increasing when empty or singleton clusters are detected.

For pstep, one should simply avoid a large step which will cause abrupt changes to the p

value between consecutive iterations. Thus, we do not finetune these two parameters

for each dataset and for all the experiments we set pmax = 0.5 and pstep = 0.01. Note that

empty clusters appear quite often for the selected pmax value, indicating that it is already

set to a high value. For β, we tried three different levels of memory, β ∈ {0, 0.1, 0.3}, and

present the corresponding results. Finally, ǫ = 10−6 and tmax = 500 for all experiments.

2.4.3 Performance Analysis

The comparison of the algorithms across the various datasets is shown in Tables 2.2

2.10, where MinMax kmeans and pifs kmeans are abbreviated as MinMax and pifs,

respectively. Tables 2.2(b)2.10(b), labeled as ‘‘method + kmeans’’, refer to the ex

periments where kmeans is initialized from the solution of the method designated by

6N is the dataset size, M the number of clusters, C the number of classes, nh
k the number of points

in cluster k belonging to class h, and HM , HC the entropy of the clusters and the classes, respectively.
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the corresponding row. For example, we denote as MinMax+kmeans (pifs+kmeans),

the method where MinMax kmeans (pifs kmeans) is executed first and its solution is

used to initialize a subsequent run of kmeans. Of course, reinitializing kmeans with

its own, or the kmeans++ solution has no effect and the results are just replicated

from Tables 2.2(a)2.10(a) for readers’ convenience. Asterisk (*), dagger (†) and double

dagger (‡) superscripts denote that MinMax kmeans has a statistically significant dif

ference to kmeans, kmeans++ and pifs kmeans, respectively, according to the ttest

(the significance level is taken as 0.05). A line above (below) these symbols stands for

a higher (lower) average.

From the tables two main observations can be made. First, all memory levels of

MinMax kmeans exhibit better (smaller) Emax than kmeans, kmeans++ and pifs k

means for every dataset (Tables 2.2(a)2.10(a)), but Pendigits. This clearly displays that

the relaxed objective (2.3) minimizes large variance clusters and mimics the maximum

variance criterion (2.2). Note also that kmeans, when initialized by our algorithm,

leads to clusters with lower Emax for most datasets (Tables 2.2(b)2.10(b)). However,

kmeans optimizes the sum of the variances and does not consider the maximum

variance. Hence, it is reasonable in this case that Emax increases compared to that

before employing kmeans and that pifs+kmeans produces equal or better Emax scores

than MinMax+kmeans for half of the datasets.

Second, our method outperforms kmeans for all the metrics (apart from execution

time) reported in Tables 2.22.10, demonstrating its ability to attain good partitionings

on a more frequent basis. To add to the above, MinMax+kmeans obtains lower Esum

and higher NMI values than kmeans, i.e. kmeans converges to better local minima

when initialized by MinMax kmeans. Actually, the main difference between kmeans

and MinMax+kmeans is that some restarts of the former return solutions with exces

sively high Esum (its higher standard deviation is indicative of that), while for the latter

such poor outcomes do not emerge, illustrating the robustness of MinMax kmeans

over bad initializations.

Considering kmeans++, its stochastic initialization process improves performance,

as lower Emax and Esum (and equal NMI) values are acquired on most cases compared

to the randomly restarted kmeans. When put up against MinMax kmeans though,

similar conclusions to those mentioned above for kmeans can be drawn, further estab

lishing the potential of the presented framework. It is of particular interest that Min

Max+kmeans yields better Esum and NMI scores on every dataset, despite kmeans++

carefully picking the initial centers. This definitely reveals that the centers outputted

by MinMax kmeans consist good initializations for kmeans.

The proposed algorithm is also superior to pifs kmeans. Specifically, it always

reaches a lower Emax (the exception being Multiple featuresprofile correlations for β =

0.1 and Pendigits for β = 0.1 and β = 0.3), while for Esum it gets ahead on four of the

nine datasets and it is only beaten two times. For the remaining three (Coil3, Multiple

featuresprofile correlations and Pendigits), there is at least one memory level for which
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Table 2.2(a): Comparative results on the Coil1 dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 46.61 ± 0.00∗†‡ 119.02± 0.00∗†‡ 0.88 ± 0.00†‡ 0.54 (0.54)

MinMax (β = 0.1) 45.75 ± 0.00∗†‡ 119.24± 0.00∗†‡ 0.87 ± 0.00∗†‡ 0.42 (0.42)

MinMax (β = 0.3) 45.04± 0.00∗†‡ 119.40± 0.00∗†‡ 0.87 ± 0.00∗†‡ 0.42 (0.42)

kmeans 66.33 ± 19.46 121.24 ± 7.12 0.89 ± 0.16 0.07

kmeans++ 64.92 ± 18.83 121.01 ± 7.18 0.90 ± 0.16 0.09

Pifs 53.43± 0.00 117.82± 0.00 1.00± 0.00 0.07

Table 2.2(b): Comparative results on the Coil1 dataset when kmeans is initialized by

the solution returned by MinMax kmeans and pifs kmeans.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 53.43± 0.00∗† 117.82± 0.00∗† 1.00± 0.00∗† 0.58 (0.58)

MinMax (β = 0.1) 53.43± 0.00∗† 117.82± 0.00∗† 1.00± 0.00∗† 0.45 (0.45)

MinMax (β = 0.3) 53.43± 0.00∗† 117.82± 0.00∗† 1.00± 0.00∗† 0.46 (0.46)

kmeans 66.33 ± 19.46 121.24± 7.12 0.89 ± 0.16 0.07

kmeans++ 64.92 ± 18.83 121.01± 7.18 0.90 ± 0.16 0.09

Pifs 53.43± 0.00 117.82± 0.00 1.00± 0.00 0.09

Table 2.3(a): Comparative results on the Coil2 dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 58.74± 0.36∗†‡ 154.49± 1.04∗†‡ 0.95± 0.14∗†‡ 1.94 (0.47)

MinMax (β = 0.1) 57.14± 0.35∗†‡ 155.09± 0.85∗‡ 0.91 ± 0.13∗†‡ 0.45 (0.44)

MinMax (β = 0.3) 58.73± 0.42∗†‡ 154.56± 1.09∗†‡ 0.94 ± 0.14∗†‡ 0.52 (0.52)

kmeans 77.46± 18.74 155.49± 2.26 0.80 ± 0.16 0.09

kmeans++ 74.33± 16.87 155.18± 1.85 0.82 ± 0.16 0.10

Pifs 59.48 ± 1.11 155.96± 1.61 0.75 ± 0.19 0.11

Table 2.3(b): Comparative results on the Coil2 dataset when kmeans is initialized by

the solution returned by MinMax kmeans and pifs kmeans.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 58.95± 0.97∗†‡ 154.38± 0.93∗†‡ 0.95± 0.13∗†‡ 1.97 (0.50)

MinMax (β = 0.1) 59.03± 1.70∗†‡ 154.39± 0.94∗†‡ 0.95± 0.13∗†‡ 0.47 (0.46)

MinMax (β = 0.3) 59.11± 1.98∗†‡ 154.42± 0.96∗†‡ 0.94 ± 0.14∗†‡ 0.55 (0.55)

kmeans 77.46± 18.74 155.49± 2.26 0.80 ± 0.16 0.09

kmeans++ 74.33± 16.87 155.18± 1.85 0.82 ± 0.16 0.10

Pifs 62.84 ± 7.06 155.58± 1.50 0.77 ± 0.19 0.14
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Table 2.4(a): Comparative results on the Coil3 dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 58.00± 0.27∗†‡ 245.95± 0.71∗†‡ 0.99± 0.03∗†‡ 3.29 (0.74)

MinMax (β = 0.1) 57.90± 0.25∗†‡ 245.64± 0.75∗†‡ 0.99± 0.03∗†‡ 5.46 (0.81)

MinMax (β = 0.3) 53.24± 0.40∗†‡ 249.82± 0.24†‡ 0.94 ± 0.01∗† 3.36 (0.82)

kmeans 101.95± 29.81 249.64± 5.64 0.88 ± 0.08 0.15

kmeans++ 96.35± 28.37 249.13± 5.45 0.89 ± 0.07 0.18

Pifs 58.39 ± 1.07 246.47± 2.52 0.95 ± 0.08 0.20

Table 2.4(b): Comparative results on the Coil3 dataset when kmeans is initialized by

the solution returned by MinMax kmeans and pifs kmeans.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 58.30± 2.85∗†‡ 245.41± 0.41∗†‡ 0.99± 0.02∗†‡ 3.33 (0.82)

MinMax (β = 0.1) 58.26± 2.72∗†‡ 245.41± 0.41∗†‡ 0.99± 0.02∗†‡ 5.51 (0.90)

MinMax (β = 0.3) 58.03± 1.77∗†‡ 245.40± 0.23∗†‡ 0.99± 0.01∗†‡ 3.40 (0.89)

kmeans 101.95± 29.81 249.64± 5.64 0.88 ± 0.08 0.15

kmeans++ 96.35± 28.37 249.13± 5.45 0.89 ± 0.07 0.18

Pifs 64.12 ± 9.50 245.68± 2.01 0.96 ± 0.06 0.25

Table 2.5(a): Comparative results on the Multiple features (pixel averages) dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 149.60± 9.56∗†‡ 1239.33± 6.19†‡ 0.68 ± 0.03∗†‡ 2.59 (2.00)

MinMax (β = 0.1) 146.73± 14.70∗†‡ 1240.49± 8.61∗†‡ 0.68 ± 0.03∗†‡ 2.36 (1.98)

MinMax (β = 0.3) 145.00± 17.17∗†‡ 1243.09± 13.05∗†‡ 0.68 ± 0.04∗†‡ 2.22 (1.50)

kmeans 222.50± 33.95 1238.36± 12.51 0.71 ± 0.04 0.66

kmeans++ 219.63± 36.34 1237.24± 11.18 0.71 ± 0.04 0.80

Pifs 150.75± 4.47 1237.84± 4.31 0.72± 0.05 1.03

Table 2.5(b): Comparative results on the Multiple features (pixel averages) dataset when

kmeans is initialized by the solution returned by MinMax kmeans and pifs kmeans.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 202.03± 23.73∗†‡ 1230.64± 5.56∗†‡ 0.72 ± 0.03∗†‡ 2.87 (2.28)

MinMax (β = 0.1) 200.20± 23.89∗†‡ 1230.52± 5.38∗†‡ 0.72 ± 0.03∗†‡ 2.66 (2.28)

MinMax (β = 0.3) 198.91± 24.51∗†‡ 1229.77± 4.27∗†‡ 0.72 ± 0.03∗†‡ 2.55 (1.83)

kmeans 222.50± 33.95 1238.36± 12.51 0.71 ± 0.04 0.66

kmeans++ 219.63± 36.34 1237.24± 11.18 0.71 ± 0.04 0.80

Pifs 177.06± 21.25 1232.07± 3.53 0.74± 0.04 1.30
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Table 2.6(a): Comparative results on the Multiple features (profile correlations) dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 118.60± 7.63∗†‡ 966.96± 8.43∗†‡ 0.69 ± 0.04‡ 2.84 (1.98)

MinMax (β = 0.1) 150.97± 52.71∗†‡ 1004.81± 52.86∗†‡ 0.67 ± 0.04∗†‡ 3.93 (1.82)

MinMax (β = 0.3) 120.21± 15.16∗†‡ 972.86± 13.50∗†‡ 0.69 ± 0.04‡ 2.13 (1.03)

kmeans 179.22± 41.17 970.18± 15.90 0.69 ± 0.04 0.49

kmeans++ 175.74± 37.88 968.81± 15.43 0.69 ± 0.03 0.63

Pifs 133.29± 10.57 974.54± 5.63 0.71± 0.04 1.00

Table 2.6(b): Comparative results on the Multiple features (profile correllations) dataset

when kmeans is initialized by the solution returned by MinMax kmeans and pifs k

means.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 155.36± 16.13∗†‡ 958.28± 6.97∗†‡ 0.70 ± 0.03∗†‡ 3.05 (2.19)

MinMax (β = 0.1) 154.59± 13.08∗†‡ 957.78± 6.54∗†‡ 0.70 ± 0.03∗†‡ 4.17 (2.04)

MinMax (β = 0.3) 153.97± 12.22∗†‡ 957.63± 6.28∗†‡ 0.70 ± 0.03∗†‡ 2.37 (1.26)

kmeans 179.22 ± 41.17 970.18 ± 15.90 0.69 ± 0.04 0.49

kmeans++ 175.74 ± 37.88 968.81 ± 15.43 0.69 ± 0.03 0.63

Pifs 160.16 ± 11.63 962.93± 3.56 0.72± 0.04 1.26

Table 2.7(a): Comparative results on the Pendigits dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 7769.50± 1249.80∗†‡ 61140.86± 659.81†‡ 0.68 ± 0.01∗†‡ 2.72 (2.23)

MinMax (β = 0.1) 17497.21± 5431.65∗†‡ 71599.61± 5066.73∗†‡ 0.64 ± 0.03∗†‡ 4.79 (1.47)

MinMax (β = 0.3) 8849.21± 1706.73∗†‡ 62345.44± 1266.36∗†‡ 0.69 ± 0.01‡ 2.27 (0.91)

kmeans 11576.43± 3125.47 61024.17± 1333.92 0.69 ± 0.02 0.55

kmeans++ 11857.89± 3039.04 60940.96± 1294.01 0.69 ± 0.02 0.56

Pifs 8623.37± 329.35 61895.12± 643.98 0.70± 0.01 3.06

Table 2.7(b): Comparative results on the Pendigits dataset when kmeans is initialized

by the solution returned by MinMax kmeans and pifs kmeans.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 9403.21± 2760.33∗† 60681.71± 710.50∗† 0.69 ± 0.01‡ 2.88 (2.39)

MinMax (β = 0.1) 9835.21± 2444.54∗†‡ 60447.71± 751.37∗†‡ 0.70 ± 0.01∗†‡ 4.99 (1.60)

MinMax (β = 0.3) 9258.11± 2590.49∗† 60366.92± 731.99∗†‡ 0.69 ± 0.01‡ 2.50 (1.07)

kmeans 11576.43± 3125.47 61024.17± 1333.92 0.69 ± 0.02 0.55

kmeans++ 11857.89± 3039.04 60940.96± 1294.01 0.69 ± 0.02 0.56

Pifs 9289.79± 672.91 60722.65± 684.59 0.71± 0.00 3.25
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Table 2.8(a): Comparative results on the Olivetti dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 1217.72± 55.18∗†‡ 11016.58± 44.35∗†‡ 0.34± 0.04 7.80 (7.43)

MinMax (β = 0.1) 1207.91± 86.61∗†‡ 11019.11± 83.40∗† 0.34± 0.04 7.26 (7.10)

MinMax (β = 0.3) 1198.19± 92.13∗†‡ 11019.25± 69.03∗† 0.34± 0.04 6.50 (6.22)

kmeans 1610.49± 152.77 11034.37± 61.38 0.34± 0.03 2.40

kmeans++ 1624.46± 158.38 11031.70± 64.07 0.34± 0.03 2.82

Pifs 1305.87± 36.61 11024.36± 45.72 0.34± 0.03 2.97

Table 2.8(b): Comparative results on the Olivetti dataset when kmeans is initialized

by the solution returned by MinMax kmeans and pifs kmeans.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 1383.35± 120.45∗†‡ 10985.52± 41.70∗†‡ 0.34± 0.04 8.61 (8.24)

MinMax (β = 0.1) 1374.73± 117.89∗† 10984.49± 41.86∗†‡ 0.34± 0.04 8.04 (7.88)

MinMax (β = 0.3) 1367.46± 116.57∗† 10980.86± 42.48∗†‡ 0.34± 0.04 7.33 (7.05)

kmeans 1610.49± 152.77 11034.37± 61.38 0.34± 0.03 2.40

kmeans++ 1624.46± 158.38 11031.70± 64.07 0.34± 0.03 2.82

Pifs 1362.69± 101.90 10993.37± 40.90 0.34± 0.03 3.91

Table 2.9(a): Comparative results on the Ecoli dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 5.29 ± 0.15∗† 15.94± 0.24∗†‡ 0.58 ± 0.01∗†‡ 0.18 (0.06)

MinMax (β = 0.1) 5.02 ± 0.25∗†‡ 15.72 ± 0.04‡ 0.57 ± 0.01∗†‡ 0.11 (0.05)

MinMax (β = 0.3) 4.80± 0.00∗†‡ 15.73 ± 0.00‡ 0.58 ± 0.00∗†‡ 0.05 (0.05)

kmeans 6.38 ± 0.88 15.68± 0.54 0.61± 0.02 0.02

kmeans++ 6.60 ± 1.58 15.79 ± 1.02 0.61± 0.03 0.01

Pifs 5.30 ± 0.28 16.19 ± 0.15 0.55 ± 0.01 0.04

Table 2.9(b): Comparative results on the Ecoli dataset when kmeans is initialized by

the solution returned by MinMax kmeans and pifs kmeans.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 6.29 ± 0.11∗†‡ 15.40± 0.03∗†‡ 0.63± 0.00∗†‡ 0.19 (0.06)

MinMax (β = 0.1) 6.29 ± 0.00∗†‡ 15.39± 0.00∗†‡ 0.63± 0.00∗†‡ 0.12 (0.06)

MinMax (β = 0.3) 6.29 ± 0.00∗†‡ 15.39± 0.00∗†‡ 0.63± 0.00∗†‡ 0.05 (0.05)

kmeans 6.38 ± 0.88 15.68 ± 0.54 0.61 ± 0.02 0.02

kmeans++ 6.60 ± 1.58 15.79 ± 1.02 0.61 ± 0.03 0.01

Pifs 6.04± 0.35 15.65 ± 0.19 0.61 ± 0.02 0.05
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Table 2.10(a): Comparative results on the Dermatology dataset.

Method Emax Esum NMI Time

MinMax (β = 0) 1513.85± 316.42∗†‡ 5672.82± 272.21∗†‡ 0.82± 0.03‡ 0.37 (0.18)

MinMax (β = 0.1) 1439.76± 296.76∗†‡ 5685.16± 237.35∗†‡ 0.82± 0.03‡ 0.37 (0.16)

MinMax (β = 0.3) 1368.05± 347.04∗†‡ 5703.26± 195.87∗†‡ 0.82± 0.01‡ 0.49 (0.16)

kmeans 2247.59± 804.75 5885.92± 542.49 0.82± 0.07 0.10

kmeans++ 2134.54± 681.34 5800.23± 448.38 0.82± 0.07 0.11

Pifs 1650.13± 91.99 6057.18± 50.62 0.80 ± 0.01 0.08

Table 2.10(b): Comparative results on the Dermatology dataset when kmeans is ini

tialized by the solution returned by MinMax kmeans and pifs kmeans.

Method + kmeans Emax Esum NMI Time

MinMax (β = 0) 1683.33± 402.51∗†‡ 5578.95± 295.56∗†‡ 0.86 ± 0.04∗†‡ 0.42 (0.23)

MinMax (β = 0.1) 1609.88± 379.81∗†‡ 5548.56± 263.49∗†‡ 0.86 ± 0.03∗†‡ 0.42 (0.21)

MinMax (β = 0.3) 1395.32± 109.48∗†‡ 5441.13± 107.40∗†‡ 0.87± 0.01∗† 0.54 (0.21)

kmeans 2247.59± 804.75 5885.92± 542.49 0.82 ± 0.07 0.10

kmeans++ 2134.54± 681.34 5800.23± 448.38 0.82 ± 0.07 0.11

Pifs 1761.13± 358.36 5496.97± 207.25 0.87± 0.02 0.10

pifs kmeans is outperformed. As Emax is biased towards MinMax kmeans and Esum is

optimized by neither algorithm, to get a more meaningful and fair comparison we should

focus on MinMax+kmeans and pifs+kmeans. In this case, Esum is the most informative

measure, since it coincides with the kmeans objective, and consistently MinMax+k

means edges ahead (apart from Dermatology when β = 0 or β = 0.1), signifying that

the MinMax kmeans solutions are of higher quality and thus when fed to kmeans

improved local optima are attained. In terms of NMI, they are closely matched, each

achieving a better score than the other on half of the datasets (Tables 2.22.10). Note

that apart from Ecoli and Dermatology, all other datasets consist of classes of equal

size, thus we would expect pifs kmeans, which explicitly balances the cluster sizes,

to have the upper hand for this metric. Therefore, we can conclude that balancing the

variance of the clusters is a more effective strategy.

By examining how memory affects the results, the following pattern arises. As the

amount of memory grows, a greater reduction of Emax is possible, which is usually ac

companied by an increase over Esum (Tables 2.2(a)2.10(a)). This can be explained from

Table 2.11, which depicts a remarkable rise on the number of restarts that are free of

empty or singleton clusters as memory increases. When no empty or singleton clusters

are detected, p reaches pmax in our framework and, remember, that for higher p values

large variance clusters are heavily punished, while less effort is put into minimizing the

sum of the cluster variances. Two datasets severely deviate from the previous pattern,

Multiple featuresprofile correlations and Pendigits, for which the use of memory (es

pecially β = 0.1) yields partitionings of very poor quality. NMIwise, β = 0.1 seems to

be slightly worse than β = 0 and β = 0.3. For MinMax+kmeans, the setting where
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Table 2.11: Percentage (%) of MinMax kmeans restarts over all nine datasets for which

empty or singleton clusters never occur, in relation to the memory level.

Memory Level Percentage

β = 0 14.96

β = 0.1 54.37

β = 0.3 91.19

β = 0.3 always displays (apart from Coil2) a better or, at least, equal score for Emax,

Esum and NMI than the other two β settings. However, the performance differences

between the memory levels for MinMax+kmeans are small and, in general, not statis

tically significant on most datasets. Hence, larger memory seems to only slightly boost

efficacy when initializing kmeans.

The average execution time per run (in seconds) unveils, as anticipated, that k

means is the fastest method, followed by kmeans++, pifs kmeans and MinMax k

means. MinMax kmeans is slower than kmeans by a factor ranging between 36,

depending on the dataset. This higher execution time is a direct consequence of our

method requiring more iterations to converge, due to the process employed for adapting

p to the data, and also the fact that for some restarts convergence is not achieved, hence

tmax iterations are performed. Note that tmax is set to a high value in the experiments

(tmax = 500). For this reason, the execution time for only those restarts that do converge

is also shown (in parentheses) and for Coil3, Multiple featuresprofile correlations,

Pendigits, Ecoli and Dermatology a significant reduction is observed. However, MinMax

kmeans is still more time consuming.

Overall, the experimental evaluation has revealed that MinMax kmeans is superior

to kmeans, kmeans++ and pifs kmeans, although it incurs a higher computational

cost. Importantly, our method guards against large variance clusters and evades poor

solutions after bad initializations. Furthermore, it constitutes a sound approach for

initializing kmeans. This superior performance has been attained for general pmax and

pstep values that were not tailored to each particular dataset, which greatly enhances

the applicability of the presented algorithm. Regarding the use of memory, a higher

memory further limits large variance clusters as well as the occurrence of empty or

singleton clusters, but increases Esum and its gains when used to initialize kmeans are

small. We could argue that memory is helpful, but not considerably, and even without

memory (β = 0) solutions of very good quality can be obtained. As already discussed,

the convergence of MinMax kmeans cannot be theoretically guaranteed. However, for

the conducted experiments about 60% of the restarts across all datasets do converge,

empirically validating that runs which stop at a local optimum of the relaxed objective

(2.3) are frequently encountered. Finally, a note on the Olivetti dataset, where the

compared methods attain identical NMI scores (Tables 2.8(a)2.8(b)): despite the NMI

being equal on average, many of the individual restarts exhibit significant differences

across the different methods.
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2.5 Extension to Kernel Space

The MinMax kmeans algorithm can be readily extended to perform kernelbased clus

tering [41], so that nonlinearly separable clusters are detected in the data. Analogously

to kernel kmeans7 [37, 90], which generalizes kmeans to kernel space, the dataset

X = {xi}N
i=1, xi ∈ ℜd is mapped from input space to a higher dimensional reproducing

kernel Hilbert space H, a.k.a. feature space, via a nonlinear transformation φ : X → H.

The MinMax kmeans relaxed objective becomes:

Ew =

M∑

k=1

wp
k

N∑

i=1

δik‖φ(xi) − mk‖2, wk ≥ 0,

M∑

k=1

wk = 1, 0 ≤ p < 1, (2.12)

where mk =
∑N

i=1 δikφ(xi)/
∑N

i=1 δik is the center of the kth cluster in feature space.

The cluster indicator variables δik, the weights wk and the p exponent are defined as

in (2.3). To obtain a partitioning of the data, we must solve the minmax optimization

problem of (2.4), but with Ew defined according to (2.12).

As for kernel kmeans, a kernel function K : X × X → ℜ [41] is applied to directly

provide the inner products in feature space without explicitly determining transforma

tion φ, giving rise to the kernel matrix K ∈ ℜN×N , Kij = K(xi,xj) = φ(xi)
⊤φ(xj). The

squared Euclidean distances in (2.12) can now be computed using solely the kernel

matrix entries:

‖φ(xi) − mk‖2 = Kii −
2
∑N

j=1 δjkKij
∑N

j=1 δjk

+

∑N
j=1

∑N
l=1 δjkδlkKjl

∑N
j=1

∑N
l=1 δjkδlk

. (2.13)

Note that although the centers mk cannot be analytically calculated, since φ is un

known, Algorithm 2.1 requires only a few, tiny modifications in order to conduct clus

tering in feature space, giving rise to the MinMax kernel kmeans algorithm.

2.5.1 Empirical Evaluation

To investigate whether the potential observed in input space for MinMax kmeans

carries over to feature space, MinMax kernel kmeans is compared to kernel kmeans

[37,90] on the Multiple features and Pendigits handwritten numerals, the Olivetti face

database, and the artificial, Ten rings, dataset shown in Figure 2.4. The description of

the first three datasets and their preprocessing details can be found in Section 2.4.1.

Ten rings consists of five copies of two rings, where the inner ring is dense and has

700 points, while the outer ring has 300 points, yielding a total of 5000 points and ten

clusters.

For all experiments we employ the rbf kernel function. The same experimental

protocol as for the input space case is adopted (Section 2.4.2), however, Emax and Esum

are appropriately redefined to reflect the maximum cluster variance and the sum of

7For details on kernel kmeans see Chapter 1, Section 1.1.3.
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Figure 2.4: The Ten rings dataset.

the cluster variances in feature space, respectively. Similarly to MinMax kmeans, we

execute an additional series of experiments, where the solution returned by MinMax

kernel kmeans is used to initialize a subsequent run of kernel kmeans.

Results are reported in Tables 2.122.16, where MinMax kernel kmeans is abbre

viated as Kernel MinMax. It can be observed that our method attains lower Emax values

for all datasets, demonstrating, once again, its ability to penalize large variance clus

ters. It also outperforms kernel kmeans in terms of Esum and NMI, hence higher quality

solutions are located on a more regular basis. Importantly, kernel kmeans converges

to better local minima when initialized by MinMax kernel kmeans (Tables 2.12(b)

2.16(b)). Let us stress that for the Ten rings dataset, kernel kmeans uncovers the

correct partitioning three times over the 500 restarts, while, when initialized by our

approach it does so for 11 (β = 0), 26 (β = 0.1) and 29 (β = 0.3) times. Of course,

kernel kmeans is faster on all tested data for the same reasons kmeans is faster than

MinMax kmeans (Section 2.4.3).

Overall, the superior performance of MinMax kmeans in input space is carried over

to feature space and similar conclusions can be drawn for our method.

2.6 Summary

In this chapter, we have presented the MinMax kmeans algorithm, a principled ap

proach to circumvent the initialization problem associated with kmeans [108]. Weights

are assigned to the clusters in proportion to their variance and a weighted version of the

kmeans objective is optimized to restrain large variance clusters from appearing in the

solution. A user specified p exponent is utilized to control the strictness of our method

over large variance clusters. By punishing large variance clusters, bad initializations

can be readily overcome to consistently uncover partitionings of high quality, irrespec

tive of the initial choice of the cluster centers. Additionally, clusters are balanced in

terms of their variance, which may prove useful as many data analysis scenarios re
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Table 2.12(a): Comparative results on the Ten rings dataset.

Method
Emax Esum NMI Time

σ = 1.8

Kernel MinMax (β = 0) 671.82± 390.04∗ 1290.80± 175.90∗ 0.85 ± 0.03∗ 119.63 (13.02)

Kernel MinMax (β = 0.1) 297.43± 272.89∗ 1103.29± 113.92 0.88 ± 0.01∗ 80.28 (14.77)

Kernel MinMax (β = 0.3) 150.81± 95.40∗ 1062.91± 47.54∗ 0.88 ± 0.01∗ 32.71 (15.30)

Kernel kmeans 337.63± 225.56 1092.89± 165.66 0.91± 0.04 5.05

Table 2.12(b): Comparative results on the Ten rings dataset when kernel kmeans is

initialized by the solution returned by MinMax kernel kmeans.

Method + kernel kmeans
Emax Esum NMI Time

σ = 1.8

Kernel MinMax (β = 0) 280.59± 85.07∗ 1052.48± 67.93∗ 0.92 ± 0.03∗ 124.00 (15.99)

Kernel MinMax (β = 0.1) 249.04± 66.71∗ 1028.55± 51.96∗ 0.93 ± 0.03∗ 83.45 (18.18)

Kernel MinMax (β = 0.3) 208.90± 42.50∗ 1011.98± 47.74∗ 0.95± 0.03∗ 36.27 (18.92)

Kernel kmeans 337.63± 225.56 1092.89± 165.66 0.91 ± 0.04 5.05

Table 2.13(a): Comparative results on the Multiple features (pixel averages) dataset.

Method
Emax Esum NMI Time

σ = 15

Kernel MinMax (β = 0) 109.18± 6.22∗ 937.11± 4.10 0.70 ± 0.04∗ 4.30 (3.80)

Kernel MinMax (β = 0.1) 106.48± 4.73∗ 937.26± 3.98 0.70 ± 0.05∗ 4.36 (3.86)

Kernel MinMax (β = 0.3) 103.70± 6.53∗ 937.41± 3.55 0.70 ± 0.05∗ 4.06 (3.33)

Kernel kmeans 172.10± 27.68 937.04± 7.13 0.72± 0.04 1.18

Table 2.13(b): Comparative results on the Multiple features (pixel averages) dataset

when kernel kmeans is initialized by the solution returned by MinMax kernel kmeans.

Method + kernel kmeans
Emax Esum NMI Time

σ = 15

Kernel MinMax (β = 0) 150.30± 17.19∗ 931.87 ± 3.47∗ 0.74± 0.04∗ 4.99 (4.49)

Kernel MinMax (β = 0.1) 148.84± 17.40∗ 931.76 ± 3.22∗ 0.74± 0.04∗ 5.07 (4.58)

Kernel MinMax (β = 0.3) 145.24± 17.27∗ 931.66± 3.15∗ 0.74± 0.04∗ 4.76 (4.02)

Kernel kmeans 172.10± 27.68 937.04± 7.13 0.72 ± 0.04 1.18

Table 2.14(a): Comparative results on the Multiple features (profile correlations)

dataset.

Method
Emax Esum NMI Time

σ = 9

Kernel MinMax (β = 0) 154.81± 7.88∗ 1328.24± 7.83∗ 0.74 ± 0.05∗ 4.65 (3.94)

Kernel MinMax (β = 0.1) 152.03± 9.64∗ 1328.23± 7.63∗ 0.74 ± 0.05∗ 4.19 (3.96)

Kernel MinMax (β = 0.3) 146.88± 6.63∗ 1328.34± 6.83∗ 0.75± 0.05∗ 4.01 (3.30)

Kernel kmeans 263.28± 57.90 1332.17± 12.37 0.72 ± 0.03 1.02
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Table 2.14(b): Comparative results on the Multiple features (profile correlations) dataset

when kernel kmeans is initialized by the solution returned by MinMax kernel kmeans.

Method + kernel kmeans
Emax Esum NMI Time

σ = 9

Kernel MinMax (β = 0) 213.95± 14.14∗ 1320.24± 7.16∗ 0.75 ± 0.03∗ 5.26 (4.56)

Kernel MinMax (β = 0.1) 213.23± 12.83∗ 1319.68± 6.95∗ 0.75 ± 0.03∗ 4.81 (4.58)

Kernel MinMax (β = 0.3) 212.91± 11.86∗ 1318.93± 6.23∗ 0.76± 0.03∗ 4.64 (3.93)

Kernel kmeans 263.28± 57.90 1332.17± 12.37 0.72 ± 0.03 1.02

Table 2.15(a): Comparative results on the Pendigits dataset.

Method
Emax Esum NMI Time

σ = 2.1

Kernel MinMax (β = 0) 770.06± 26.33∗ 6622.69± 12.46∗ 0.74 ± 0.01∗ 90.71 (86.48)

Kernel MinMax (β = 0.1) 753.16± 49.07∗ 6627.69± 12.52∗ 0.74 ± 0.01∗ 94.08 (89.68)

Kernel MinMax (β = 0.3) 728.18± 46.54∗ 6632.42± 8.12∗ 0.75± 0.01∗ 79.13 (64.87)

Kernel kmeans 1712.13± 291.25 6659.10± 108.98 0.74 ± 0.03 27.75

Table 2.15(b): Comparative results on the Pendigits dataset when kernel kmeans is

initialized by the solution returned by MinMax kernel kmeans.

Method + kernel kmeans
Emax Esum NMI Time

σ = 2.1

Kernel MinMax (β = 0) 1568.09± 34.37∗ 6515.30± 4.46∗ 0.78± 0.00∗ 100.51 (96.31)

Kernel MinMax (β = 0.1) 1570.27± 43.60∗ 6516.96± 11.03∗ 0.78± 0.00∗ 103.72 (99.30)

Kernel MinMax (β = 0.3) 1568.22± 17.76∗ 6515.51± 5.46∗ 0.78± 0.00∗ 88.25 (73.83)

Kernel kmeans 1712.13± 291.25 6659.10± 108.98 0.74 ± 0.03 27.75

Table 2.16(a): Comparative results on the Olivetti dataset.

Method
Emax Esum NMI Time

σ = 6.5

Kernel MinMax (β = 0) 24.42 ± 1.04∗ 223.48± 0.80∗ 0.35± 0.04 0.52 (0.49)

Kernel MinMax (β = 0.1) 24.18 ± 0.86∗ 223.47± 0.81∗ 0.35± 0.04 0.49 (0.47)

Kernel MinMax (β = 0.3) 23.96± 0.95∗ 223.44± 0.80∗ 0.35± 0.04 0.44 (0.43)

Kernel kmeans 32.69 ± 3.40 223.88± 1.19 0.35± 0.03 0.18

Table 2.16(b): Comparative results on the Olivetti dataset when kernel kmeans is

initialized by the solution returned by MinMax kernel kmeans.

Method + kernel kmeans
Emax Esum NMI Time

σ = 6.5

Kernel MinMax (β = 0) 27.66 ± 2.33∗ 222.91± 0.76∗ 0.35± 0.04 0.60 (0.56)

Kernel MinMax (β = 0.1) 27.52 ± 2.40∗ 222.90± 0.77∗ 0.35± 0.04 0.57 (0.55)

Kernel MinMax (β = 0.3) 27.37± 2.38∗ 222.87± 0.75∗ 0.35± 0.04 0.52 (0.50)

Kernel kmeans 32.69 ± 3.40 223.88± 1.19 0.35± 0.03 0.18
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quire groups of roughly the same size. Training involves a minmax problem that is

iteratively solved, where the weights are updated in the maximization step to accurately

reflect the variances of the clusters at each iteration. Moreover, we have presented a

methodology for adjusting the p exponent to the underlying dataset properties, so that

the intrinsic group structures can be identified, which greatly facilitates the applica

tion of our algorithm. Furthermore, we have developed the MinMax kernel kmeans

algorithm, which locates nonlinearly separable clusters by extending MinMax kmeans

to perform clustering in kernel space.

To draw reliable conclusions, MinMax kmeans was extensively tested on various

datasets. Results demonstrate its robustness over bad initializations and its efficacy,

as for most cases it outperforms (in terms of clustering quality) all three compared

methods, namely kmeans, kmeans++ [3] and pifs kmeans [8]. Furthermore, we no

ticed that kmeans solutions can be significantly improved when initialized by MinMax

kmeans, suggesting an important additional usage of our approach. Similar observa

tions to the above can be also made for MinMax kernel kmeans, which was compared

to kernel kmeans. Overall, MinMax kmeans appears to be a very competitive and

easy to employ method for dealing with the sensitivity to initialization of kmeans.
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Chapter 3

Multiple View Clustering Using

Exemplarbased Mixture Models

3.1 Convex Mixture Models

3.2 Multiview Convex Mixture Models

3.3 Weighted Multiview Convex Mixture Models

3.4 Empirical Evaluation

3.5 Summary

The most common approach for the machine learning and data mining settings is to

assume that instances are represented in a single, vector or graph, space. However,

in many reallife problems data with multiple views naturally arise. Multiview data

consist of instances that have multiple representations (views) from different feature

spaces. Usually these multiple views are from different vector spaces, or different

graph spaces, or a combination of vector and graph spaces. The most typical example

are web pages. Web pages can be represented using the text of the web page and the

hyperlink graph among the web pages. Another example is scientific articles, which

can be represented by utilizing the text appearing in the abstract and the title, as well

as the coauthor and citation graphs.

The natural and frequent occurrence of multiview data has raised interest in the so

called multiview learning1. The main challenge of multiview learning is to develop al

gorithms that use multiple views simultaneously, given the diversity of the views. Most

studies on this topic address the semisupervised classification problem and multi

view classification algorithms have often proven to utilize unlabeled data effectively and

substantially improve classification accuracy (e.g. [14,17,80,84]).

1For details on multiview learning see Chapter 1, Section 1.2.

58



This chapter focuses on multiview unsupervised learning and particularly in multi

view clustering. Multiview clustering explores and exploits multiple representations

simultaneously, in order to produce a more accurate and robust partitioning of the data.

The intuition behind this approach is that the different representations are potentially

more informative regarding the correct partitioning of the dataset, than a single view.

Therefore, by taking advantage of all the available views, we expect to locate a better

split of the data. The available literature for this topic is growing fast (e.g. [10,13,24,

34,50,77,131]), with encouraging results.

On the following, we present a multiview clustering algorithm based on the convex

mixture models (CMMs) of Lashkari and Golland [71]. CMMs (a.k.a. exemplarbased

mixture models) are a special case of mixture models that identify exemplars in the

dataset (i.e. instances that serve as the representatives of the clusters), by optimizing

a convex criterion whose global optimum solution can be found. Hence, they avoid

the initialization and local optima problems of standard mixture models, which require

multiple executions of the EM algorithm [12, 35]. Moreover, they can be applied to

problems where only the pairwise distance matrix of the data is available and not the

instances. The proposed multiview convex mixture model (multiview CMM) generalizes

CMMs2 to data with multiple representations and locates exemplars, through a convex

optimization, by equally considering all available views [104]. The aforementioned ad

vantages of the single view CMM are retained and, additionally, the different statistical

properties of the views are taken into account.

An important observation is that most multiview algorithms rely equally on every

view in order to compute a clustering. However, the useful information conveyed by

the available views can vary significantly. For example, some views may contain noise,

or outliers, or be irrelevant to the underlying task. Including such views in the parti

tioning process may result in performance degradation. Identifying and removing such

views beforehand is not easy though. For this reason, we also present a multiview

clustering method that assigns different weights to the views and learns those weights

automatically [106]. The weights reflect the quality of each view and, therefore, affect its

contribution to the final clustering solution accordingly. Specifically, we extend multi

view CMMs to accommodate weights for the views. This weighted multiview convex

mixture model (weighted multiview CMM) is actually a weighted combination of CMMs

(one for each view) that incorporates most of the advantages of multiview CMMs, plus

the ability to spot irrelevant views through the weights. As we shall see, this model has

also a probabilistic interpretation.

Experiments with our two algorithms on noisy artificial datasets and two real

datasets, demonstrate in most cases a considerable improvement on the clustering

performance, especially for the weighted multiview CMM, when compared to: i) the

single view CMM [71] applied on the individual views, ii) the single view CMM that uses

2We shall refer to CMMs as single view CMMs, whenever it is necessary to make the distinction to

their multiview counterparts explicit.
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the concatenation of the views and iii) the multiview clustering method of [13] that

first combines the views through kernel canonical correlation analysis projection [51]

and then clusters the derived projections. Moreover, results confirm the ability of the

weighted multiview CMM to correctly measure the quality of the views and adjust the

weights so as to get good clustering solutions, not affected by the presence of noisy or

noninformative views.

The rest of this chapter is organized as follows. Section 3.1 reviews single view

CMMs. The proposed algorithms follow in Section 3.2 and Section 3.3. The experimen

tal evaluation on artificial and real data is discussed in Section 3.4. Finally, Section 3.5

summarizes the chapter.

3.1 Convex Mixture Models

This section briefly describes convex mixture models (CMMs) [71], also called exemplar

based mixture models, since they consist a key part of our new algorithms. CMMs are

simplified mixture models which result in probabilistic (soft) assignments of data points

to clusters and in the extraction of representative exemplars from the dataset. When

training these models, which is done by maximizing the loglikelihood, all instances

compete to become cluster representatives (i.e. exemplars), since the number of the

CMM components is equal to the number of data points and each component distribution

is centered at a distinct dataset point. In the end, the instances corresponding to

the components that have received during training the highest priors are selected as

exemplars.

Given a dataset X = {xi}N
i=1, xi ∈ ℜd, the CMM distribution is:

Q(x) =
N∑

j=1

qjfj(x), x ∈ ℜd, (3.1)

where qj ≥ 0 denotes the prior probability of the jth component, satisfying the con

straint
∑N

j=1 qj = 1, and fj(x) is an exponential family distribution, with its expectation

parameter equal to the jth data point xj. Note that the same exponential family is

used for all components. Taking into account the bĳection between regular exponential

families and Bregman divergences [9], we can write:

fj(x) = Cϕ(x) exp(−βdϕ(x,xj)), (3.2)

with dϕ denoting the Bregman divergence corresponding to the components’ distribu

tions, Cϕ(x) being independent of xj and β being a constant controlling the sharpness

of the components [71].

A clustering is produced by maximizing the dataset loglikelihood (3.3) over the prior

probabilities {qj}N
j=1, s.t. qj ≥ 0,

∑N
j=1 qj = 1. Note that the priors of the components are
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the only adjustable parameters of a CMM.

L
(
X ; {qj}N

j=1

)
=

1

N

N∑

i=1

log

(
N∑

j=1

qjfj(xi)

)
=

1

N

N∑

i=1

log

(
N∑

j=1

qje
−βdϕ(xi,xj)

)
+ const.

(3.3)

If we define P̂ (x) = 1/N , x ∈ X to be the empirical dataset distribution, we can equiv

alently formulate the above likelihood maximization problem in terms of the Kullback

Leibler (KL) divergence between P̂ (x) and Q(x), since their KL distance is:

D(P̂‖Q) = −
N∑

i=1

P̂ (xi) log Q(xi) − H(P̂ ) = −L
(
X ; {qj}N

j=1

)
+ const. , (3.4)

where H(P̂ ) is the entropy of the empirical distribution that does not depend on the

parameters qj of the CMM. Now the maximization of (3.3) is equivalent to the minimiza

tion of (3.4). This minimization problem is convex and can be solved with an iterative

algorithm, whose updates for the components’ prior probabilities are given by:

q
(t+1)
j = q

(t)
j

N∑

i=1

P̂ (xi)fj(xi)∑N
j′=1 q

(t)
j′ fj′(xi)

, (3.5)

and the algorithm is guaranteed to converge to the global minimum as long as q
(0)
j > 0, ∀j

[31]. Updating the priors costs O(N2τ) scalar operations, where τ is the number

of iterations until convergence. Importantly, the prior probability qj associated with

instance xj is a measure of how likely this instance is to become an exemplar.

The ability of always being able to locate the global optimum makes this model

attractive as it avoids the initialization and local optima problems of standard mixture

models, which demand multiple executions of the EM algorithm [12, 35]. Another

important feature is that only the pairwise data distances dϕ(xi,xj) take part in the

calculation of the priors (3.5) as Cϕ(xi) cancels out, thus the values of the instances

are not required if we are given the distances.

Splitting the dataset into M disjoint clusters is done by requiring the instances

with the M highest qj values to serve as exemplars and then assigning the remaining

instances to the exemplar with the highest posterior probability.

Finally, when clustering with a CMM we must select an appropriate value for the

constant β (0 < β < ∞). It is possible to identify a reasonable range of β values by

determining a reference value β0. Lashkari and Golland [71] proposed the following

empirical rule for β0:

β0 = N2 log N/
N∑

i,j=1

dϕ(xi,xj). (3.6)
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3.2 Multiview Convex Mixture Models

Motivated by the potential of CMMs, here, we extend them to data with multiple rep

resentations [104]. Suppose we are given a dataset with N instances and V views,

X = {xi}N
i=1, where xi contains the representations of the ith instance across the

views, i.e. xi =
{
x

(v)
i

}V

v=1
, x

(v)
i ∈ ℜd(v)

. Define for each view a CMM distribution:

Qv(x(v)) =
N∑

j=1

qjf
v
j (x(v)) = Cϕv(x

(v))
N∑

j=1

qje
−βvdϕv (x(v),x

(v)
j ), x(v) ∈ ℜd(v)

, (3.7)

and a uniform empirical dataset distribution P̂ v(x(v)) = 1/N,x(v) ∈ {x(v)
1 ,x

(v)
2 , . . . , x

(v)
N },

analogously to Section 3.1. Note that all Qv(x(v)) distributions share the same prior

probabilities qj to allow the views to interact, but have different component distributions

f v
j (x(v)).

Our aim is to locate high quality exemplars (cluster centroids) in the dataset, by con

sidering all views simultaneously, around which the remaining instances will cluster.

To achieve this, the proposed multiview convex mixture model (multiview CMM) gen

eralizes (3.4) by minimizing the sum of KL divergences between P̂ v(x(v)) and Qv(x(v))

across all views:

min
{qj}N

j=1

V∑

v=1

D(P̂ v‖Qv), s.t. qj ≥ 0,

N∑

j=1

qj = 1

⇒ min
{qj}N

j=1

−
V∑

v=1

N∑

i=1

P̂ v(x
(v)
i ) log Qv(x

(v)
i ) −

V∑

v=1

H(P̂ v), s.t. qj ≥ 0,
N∑

j=1

qj = 1, (3.8)

where H(P̂ v) is the entropy of the empirical distribution of the vth view, that does not

depend on the parameters qj of the multiview CMM.

It is quite straightforward to see that the optimized objective is convex, since it is the

sum of the single view objectives which are convex functions (Section 3.1). The same

iterative algorithm as for the single view CMM can be used to find the global minimum

of (3.8) and it can be shown that the rule for updating the priors is given by:

q
(t+1)
j =

q
(t)
j

V

V∑

v=1

N∑

i=1

P̂ v(x
(v)
i )f v

j (x
(v)
i )

∑N
j′=1 q

(t)
j′ f v

j′(x
(v)
i )

, (3.9)

which is a generalization of the single view case (3.5). Obviously, the prior qj associated

with the jth instance is a measure of how likely this instance is to be an exemplar,

taking into account all views.

The multiview CMM has some very important characteristics. To capture the di

versity among the views, they are allowed to have distributions f v
j (x(v)) coming from

different exponential families, i.e. have different βv values and Bregman divergences

dϕv . For example, a Gaussian CMM can be used for one view and a Bernoulli CMM for
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another. A key property of single view CMMs is convexity, which enables the identi

fication of the global optimum qj values, and we wish to preserve this property in the

multiview setting. As a result, summing the single view objectives to construct the

multiview objective is a natural choice. Moreover, the priors qj are the same across all

views, to allow the extraction of representative exemplars based on every view. There

fore, an instance whose corresponding prior has a high value, will more or less be a

good exemplar for all views. Finally, for the qj updates (3.9) only the pairwise distances

dϕv(x
(v)
i ,x

(v)
j ) in each view are required, as Cϕv(x

(v)
i ) cancels out. Hence, we can apply

the multiview CMM even when the actual data points are unknown.

Splitting the dataset into M disjoint clusters, {Ck}M
k=1, is done by selecting the

instances with the M highest qj values to serve as exemplars. To find the exemplars, we

iteratively update the priors (3.9) until the M highest qj values correspond to the same

instances for a number of consecutive iterations. Moreover, we require that the order

among the M highest qj values remains the same during these iterations. Afterward,

we assign each of the remaining N −M instances to the cluster Ck, associated with the

kth exemplar, that has the largest sum of posterior probabilities over all views (3.10).

Notice that we denote by XE =
{
xE

k

}M

k=1
⊂ X the set containing the exemplars and

refer to the prior probabilities and component distributions (in the vth view) of the

exemplars, as qE
k and f vE

k (x(v)), k = 1, . . . , M , respectively.

Ck =
{
xE

k

}
∪
{

xi

∣∣∣∣∣

V∑

v=1

qE
k f vE

k (x
(v)
i )

∑N
j=1 qjf v

j (x
(v)
i )

>
V∑

v=1

qE
l f vE

l (x
(v)
i )

∑N
j=1 qjf v

j (x
(v)
i )

, ∀l 6= k, xi /∈ XE

}
(3.10)

To employ multiview CMMs, appropriate values for the βv constants must be cho

sen. Since a separate CMM is defined for each view, we can identify a reasonable range

of βv values by following the ideas of the single view case (Section 3.1), leading to the

derivation of the following empirical βv
0 value:

βv
0 = N2 log N/

N∑

i,j=1

dϕv(x
(v)
i ,x

(v)
j ). (3.11)

As for the complexity of multiview CMMs, the update of the priors costs O(N2V τ)

scalar operations, where τ is the number of iterations until convergence. If the pairwise

distances dϕv(x
(v)
i ,x

(v)
j ) of the views are not given, their calculation usually costs an

extra O(N2V d), d = max
{
d(1), d(2) . . . , d(V )

}
, scalar operations.

3.3 Weighted Multiview Convex Mixture Models

In this section, we present another CMMbased multiview clustering approach, where

weights are assigned to the views and adjusted through training [106].
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3.3.1 Model Description

From the multiview CMM objective (3.8), it can be observed that all views contribute

equally to the sum, regardless of how ‘‘good’’ each view is for the problem at hand.

Our target is to locate exemplars in the dataset by allowing the views to participate

with different weights to the objective function, measuring how ‘‘informative’’ is the

corresponding view, and by learning those weights automatically, i.e. as part of the

learning process. Such an approach generalizes the previous one and could be helpful

in cases where a view is irrelevant to the clustering task, or contains noise.

To accomplish our target we introduce a weighted combination of exemplarbased

models. For the vth view a CMM distribution Qv(x(v)), of the same form as in (3.7),

is defined and a positive weight πv is associated with it. The views are combined by

summing the corresponding weighted CMMs.

In more detail, suppose we are given a dataset with N instances and V views,

X = {xi}N
i=1, where xi =

{
x

(v)
i

}V

v=1
, x

(v)
i ∈ ℜd(v)

. Our model, to which we will refer to

as weighted multiview convex mixture model (weighted multiview CMM), is given by:

F
(
x =

{
x(1),x(2), . . . ,x(V )

})
=

V∑

v=1

πvQv(x(v)) =

V∑

v=1

πv

N∑

j=1

qjf
v
j (x(v)), x(v) ∈ ℜd(v)

,

(3.12)

where f v
j (x(v)) = Cϕv(x

(v))e−βvdϕv (x(v),x
(v)
j ), πv ≥ 0,

V∑

v=1

πv = 1, qj ≥ 0,
N∑

j=1

qj = 1.

Note the imposed constraints on the weights πv. Due to these restrictions, F (x) has a

probabilistic interpretation. Specifically, it is a mixture model, whose number of com

ponents is equal to the number of the views and each component is a CMM distribution

Qv(x(v)), corresponding to the vth view. Hence, the weights can also be seen as the

prior probabilities of the views under the mixture model.

The above formulation has some rather attractive characteristics. Similar to the

multiview CMM (Section 3.2), as the statistical properties of individual views may

differ substantially, different views are allowed to have component distributions f v
j (x(v))

coming from different exponential families, i.e. have different βv values and Bregman

divergences dϕv . Moreover, all views share the same priors qj in order to interact and

allow the extraction of representative exemplars based on every view. Since a CMM is

used for each view, all instances will be considered as possible cluster centroids (i.e.

exemplars) during training. Finally, a low πv value indicates that the vth view conveys

little information regarding the partitioning of the dataset.

3.3.2 Model Training and Multiview Clustering

Since F (x) can be viewed as a mixture model, to partition the dataset X , we must

maximize the loglikelihood (3.13) w.r.t. the parameters {πv}V
v=1, {qj}N

j=1, s.t. the con

64



straints πv ≥ 0,
∑V

v=1 πv = 1, qj ≥ 0,
∑N

j=1 qj = 1. It must be stressed that in contrast

to multiview CMMs, this optimization task is not convex due to the introduction of the

weights πv. However, we hope to compensate for the lost convexity by the ability to

estimate different weights for the views.

L
(
X ; {πv}V

v=1 , {qj}N
j=1

)
=

N∑

i=1

log

(
V∑

v=1

πvQv(x
(v)
i )

)
=

N∑

i=1

log

(
V∑

v=1

πv
N∑

j=1

qjf
v
j (x

(v)
i )

)

(3.13)

Local maxima of the loglikelihood can be found by applying the EM algorithm

[12,35]. This algorithm uses an initial guess for the parameters and iteratively adjusts

them, such that the likelihood always increases, until a local optimum is reached.

Our model has only prior probabilities that can be adjusted, hence initializing them

uniformly and avoiding multiple restarts for EM is a natural choice (this approach is

followed in the experiments), i.e. πv(0) = 1/V, q
(0)
j = 1/N . Of course, if prior knowledge

for the quality of the views exists, this can be directly incorporated into the optimization

by initializing πv accordingly. To briefly illustrate the steps of EM, define {X ,Z} to be

the complete dataset, where Z = {zi}N
i=1 contains the latent variables indicating the

mixture component responsible for generating each instance, i.e. zi ∈ {1, 2, . . . , V }.

The analytical derivation of the EM equations can be found in Appendix A.

Estep

In practice we are not given the complete dataset, but only the observations X . Our

state of knowledge for the latent variables is described through the posterior proba

bilities P (zi = v|xi) (3.14), which at iteration t are calculated ∀i ∈ {1, 2, . . . , N}, ∀v ∈
{1, 2, . . . , V } as:

P (t)(zi = v|xi) =
πv(t)Qv(t)(x

(v)
i )

∑V
v=1 πv(t)Qv(t)(x

(v)
i )

. (3.14)

Mstep

The posterior probabilities of the Estep are useful in estimating new values for the

parameters during the Mstep. By setting to zero the derivatives of the constrained

complete dataset loglikelihood expectation (see equation (A.7) in Appendix A), under

the posterior probabilities distribution, w.r.t. {πv}V
v=1, {qj}N

j=1, and a little manipulation,

we get the updates for the parameters:

πv(t+1) =
1

N

N∑

i=1

P (t)(zi = v|xi), (3.15)

q
(t′+1)
j =

q
(t′)
j

N

N∑

i=1

V∑

v=1

P (t)(zi = v|xi)
f v

j (x
(v)
i )

∑N
j′=1 q

(t′)
j′ f v

j′(x
(v)
i )

. (3.16)
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Some remarks on the optimization process, whose pseudocode is illustrated in

Algorithm 3.1, follow. First, the new estimation q
(t′+1)
j depends on the previous value

q
(t′)
j , therefore a nested loop in the Mstep of the EM algorithm is required to perform

multiple updates on qj for the same set of posterior probabilities values in order to

get q
(t+1)
j . This loop finishes when the change on qj values between two iterations

is less than a small value ǫ′ (line 21). Second, EM terminates when the likelihood

between consecutive pairs of E and M steps changes less than a small value ǫ (line 24).

Third, we must explicitly incorporate into the calculation of the posterior probabilities

(3.14) the Cϕv(x
(v)
i ) values (for the qj estimations (3.16) the Cϕv(x

(v)
i ) values still cancel

out). Hence, the pairwise distances alone do not suffice to compute the updates and

the dataset instances are required in the general case, contrary to the single view

and multiview CMMs, but for certain distributions f v
j (x(v)) this is not necessary, as

demonstrated in the experimental section for the Gaussian distribution. Fourth, the

same empirical βv
0 values (3.11) as in Section 3.2 can be adopted to guide the search

for appropriate βv values. Finally, it is obvious that the view weights πv are determined

automatically during the Mstep.

If we wish to split the dataset X into M disjoint clusters, {Ck}M
k=1, after EM ter

mination, we must select the instances that will act as exemplars. For this pur

pose the instances with the M highest qj values are chosen, denoted by the set

XE =
{
xE

k

}M

k=1
⊂ X . The remaining N − M instances are assigned to the cluster Ck,

associated with the kth exemplar, that has the largest posterior probability P (Ck|xi):

P (Ck|xi) =
qE
k

∑V
v=1 πvf vE

k (x
(v)
i )

∑V
v=1 πv

∑N
j=1 qjf v

j (x
(v)
i )

, (3.17)

where we refer to the prior and the component distribution (of the vth view CMM)

corresponding to exemplar xE
k , as qE

k and f vE
k (x(v)) respectively (the proof of (3.17) can

be found in Appendix A). Hence, the cluster assignments are given by:

Ck =
{
xE

k

}
∪
{
xi

∣∣P (Ck|xi) > P (Cl|xi), ∀l 6= k, xi /∈ XE
}

. (3.18)

3.3.3 Additional Aspects

If the data points of each view are mapped from input space to a higher dimensional

feature space (i.e. kernel space), through a nonlinear transformation φ(v), our method

can be readily applied to the mapped data

{
φ(1)(x

(1)
i ), φ(2)(x

(2)
i ), . . . , φ(V )(x

(V )
i )
}

, i =

1, 2, . . . , N and thus perform multiview clustering in feature space. By representing

the instances in a new space, a clearer group structure may emerge. A kernel function

K(v)(x
(v)
i ,x

(v)
j ) [41] can be employed to get the inner products in feature space without

explicitly determining φ(v), giving rise to the kernel matrix K(v) ∈ ℜN×N , where K
(v)
ij =

K(v)(x
(v)
i ,x

(v)
j ) = φ(v)(x

(v)
i )⊤φ(v)(x

(v)
j ). Hence, it is not necessary to define φ(v), when the

calculations of the underlying algorithm only involve inner products in feature space

(for certain kernel functions the corresponding transformation is intractable). This is
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Algorithm 3.1 EM for weighted multiview CMMs.

Input: Multiview dataset X = {xi}N
i=1, where xi =

{
x

(v)
i

}V

v=1

Output: Model parameters estimation: {πv}V
v=1, {qj}N

j=1

// Initialize the parameters.

1: Set πv(0) = 1/V , ∀v = 1, . . . , V

2: Set q
(0)
j = 1/N , ∀j = 1, . . . , N

3: Set t = 0

4: repeat

5: // Estep.

6: for i = 1 to N do

7: for v = 1 to V do

8: P (t)(zi = v|xi) =
πv(t)Qv(t)(x

(v)
i )

∑V
v=1 πv(t)Qv(t)(x

(v)
i )

=
πv(t)

∑N
j=1 q

(t)
j fv

j (x
(v)
i )

∑V
v=1 πv(t)

∑N
j=1 q

(t)
j fv

j (x
(v)
i )

9: end for

10: end for

11: // Mstep.

12: for all πv, v = 1 to V do // Update the weights πv.

13: πv(t+1) = 1
N

∑N
i=1 P (t)(zi = v|xi)

14: end for

15: Set t′ = t

16: repeat // Update the priors qj.

17: for all qj, j = 1 to N do

18: q
(t′+1)
j =

q
(t′)
j

N

∑N
i=1

∑V
v=1 P (t)(zi = v|xi)

fv
j (x

(v)
i )

∑N
j′=1 q

(t′)

j′
fv

j′
(x

(v)
i )

19: end for

20: t′ = t′ + 1

21: until
∑N

j=1

∣∣∣q(t′)
j − q

(t′−1)
j

∣∣∣ < ǫ′

22: t = t + 1

23: Set

{
q
(t)
j

}N

j=1
=
{
q
(t′)
j

}N

j=1

24: until

∣∣∣∣L
(
X ;
{
πv(t)

}V

v=1
,
{

q
(t)
j

}N

j=1

)
− L

(
X ;
{
πv(t−1)

}V

v=1
,
{

q
(t−1)
j

}N

j=1

)∣∣∣∣ < ǫ

25: return {πv}V
v=1 =

{
πv(t)

}V

v=1
, {qj}N

j=1 =
{

q
(t)
j

}N

j=1
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the case for our approach when considering Gaussian CMMs in the feature space of

each view, as dϕv(φ
(v)(x

(v)
i ), φ(v)(x

(v)
j )) = ‖φ(v)(x

(v)
i )− φ(v)(x

(v)
j )‖2 = K

(v)
ii + K

(v)
jj − 2K

(v)
ij .

Consequently, the required pairwise distances are expressed using only the entries of

the kernel matrices. This also makes our method directly applicable for unsupervised

multiple kernel learning3 [110], in case we are given multiple kernels for the instances

of a single view dataset and wish to find an appropriate combination of the kernels that

clusters the data efficiently, i.e. our algorithm will treat each kernel as being a distinct

view, will compute the pairwise distances as shown above and a combination of the

kernels will be obtained through the weights πv.

As for the complexity of the EM for our model, the calculation of the posteriors

P (zi = v|xi) requires O(N2V ) scalar operations, while the updates on the weights πv

and the priors qj cost O(NV ) and O(N2V ) scalar operations respectively. Assuming τ

EM iterations are performed until convergence and τ ′ iterations in each nested loop of

the Mstep when estimating the priors qj, the overall complexity is O(N2V τ + NV τ +

N2V ττ ′) = O(N2V ττ ′). Finally, if we are not given the pairwise distances dϕv(x
(v)
i ,x

(v)
j )

of each view, their computation usually costs an extra O(N2V d) scalar operations,

where d = max{d(1), d(2), . . . , d(V )}.

3.4 Empirical Evaluation

3.4.1 Experimental Setup

The performance of the multiview CMM and the weighted multiview CMM is studied

on both synthetic and real data. The real datasets are a collection of academic web

pages and a set of images on Internet pages, where multiple views occur naturally.

Our focus is to conduct a comparison between the two proposed methods, to inves

tigate whether assigning different weights to views (weighted multiview CMM) provides

any gains over an unweighted combination of the views (multiview CMM). Moreover, a

single view CMM (Section 3.1) is applied to each of the individual views of the datasets,

to examine if multiple views boost the clustering quality. Note that both our algorithms

reduce to the single view CMM when only one view is present. Since the easiest way

to partition data with multiple representations is to concatenate the views (e.g. by ap

pending the vectors) and then apply a single view algorithm on this concatenation, the

single view CMM is also tested using the concatenated view, in order to explore if our

multiview approaches lead to improved performance.

Gaussian CMMs are adopted for all cases and views, i.e. dϕv(x
(v)
i ,x

(v)
j ) = ‖x(v)

i −
x

(v)
j ‖2. Remember that for the single view and the multiview CMM only the pairwise

distances are required to calculate the updates (equations (3.5) and (3.9)), as Cϕv(x
(v)
i )

always cancels out, but this does not hold for the weighted multiview CMM in general.

3For details on multiple kernel learning see Chapter 1, Section 1.3.
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However, for Gaussian components, Cϕv(x
(v)
i ) =

(
βv

2π

)d(v)/2
, hence Cϕv(x

(v)
i ) does not

depend on the instance values x
(v)
i . Therefore, the pairwise distances along with each

view’s dimensionality d(v), suffice to calculate the updates of the weighted multiview

CMM (see equations (3.14)(3.16)), without needing the instance values. In our experi

ments we have removed Cϕv(x
(v)
i ) from the update rule (3.14), as if it is canceling out.

This is done as we wish to treat problems where only the pairwise distances are avail

able for each view and not the instances themselves. In such cases, the dimensionality

of the views is not known in order to compute Cϕv(x
(v)
i ). Such problems are very com

mon in practice and we would like to test weighted multiview CMMs under this setting.

Moreover, for the weighted multiview CMM a single execution of the EM algorithm has

been always performed using a uniform initialization (πv(0) = 1/V, q
(0)
j = 1/N ), since

no prior information for the quality of the views exists in any of the datasets. The

multiview CMM is also executed once (q
(0)
j = 1/N ), as the prior updates converge to

the global optimum (Section 3.2).

Additionally, in each experiment the partition returned by all the aforementioned

clustering methods is used to initialize an execution of the kernel kmeans algorithm4

[37, 90]. Such a run is conducted in order to determine whether there is room for

improving CMMs results, or they are already close to a very good solution that cannot

be further fine tuned. A linear kernel, in order to be consistent with the choice of

dϕv(x
(v)
i ,x

(v)
j ) = ‖x(v)

i − x
(v)
j ‖2, is selected for each view and since kernel kmeans is

a single view method, a final kernel is built as a weighted sum of the individual view

kernels. Those weights when fine tuning the weighted multiview CMM are the final

πv values, while for the multiview CMM they are set equal to 1/V . For the single

view cases no weight is used. Note that for the concatenated case the linear kernel is

calculated on the appended view vectors.

To further explore the potential of our two methods, we compare them to a multi

view algorithm from the literature [13], namely correlational spectral clustering (CSC),

which is built upon kernel canonical correlation analysis (KCCA) [51]. This approach

simultaneously uses all views, which are all thought of as being of the same quality (i.e.

no view weights are available), to find appropriate projection directions that maximize

the correlation between the projected views and then applies kmeans to the projections

of the views to get a partitioning of the instances. For the experiments with CSC we

use the algorithm implementation made available by the authors of [13] and adopt a

very similar experimental protocol to [13]. Specifically, the number of projection axes

is set equal to the cluster number, a linear kernel is selected (for the same reason as

for kernel kmeans), the KCCA regularization parameters are determined automatically

using grid search, and kmeans is restarted 30 times with random initializations and

the run with the smallest kmeans objective is kept. Note that the grid search steps

grow exponentially with the number of views and together with the fact that KCCA

requires solving a generalized eigenvalue problem (which is a timely procedure), make

4Kernel kmeans is outlined in Chapter 1, Section 1.1.3.
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Figure 3.1: Examples of the synthetic dataset: (a) the original dataset generated from

three 2d Gaussian distributions; (b) one of the ‘‘corrupted’’ views for m = 50 and zero

translation. The circled point in (a) (blue class) is wrongly represented here as belonging

to the black class (circled point); (c) one of the noisy views.

the application of CSC prohibitive for datasets with many views. Also note, that since

it is not clear which view’s projections to use to get the final clustering with kmeans,

we cluster each of the available views’ projections and report results for the best and

worst performing ones.

For each dataset the groundtruth class of every instance is available and the num

ber of clusters is set equal to the true class number, unless stated otherwise. To assess

the returned clusters quality the average entropy metric [10, 11,34], which measures

the impurity of the partitions w.r.t. the groundtruth classes, is used. Average entropy

is given by (3.19), where N is the dataset size, M the number of clusters, C the number

of classes, nh
k the number of points in cluster k from class h and nk the size of the kth

cluster. Lower average entropy values indicate that each cluster consists of instances

belonging to the same class.

H =
M∑

k=1

nk

N

(
−

C∑

h=1

nh
k

nk

log
nh

k

nk

)
(3.19)

It must be emphasized that in all tested methods the groundtruth labels have not been

used during training. They are used only to compute the performance measures after

training.

3.4.2 Synthetic Datasets

The muliview and weighted multiview CMMs are first tested on a dataset with 700

instances, generated from three twodimensional Gaussian distributions (Figure 3.1(a)).

Each of the distributions represents a distinct class and this serves as the groundtruth.

From this (original) dataset seven artificial views were created. For each of the first five

views, as an initial step, all original instances were equally translated and, then, m
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of them were randomly selected and replaced by new ones. To replace each of the m

instances, we randomly picked a class, different from the one that the instance belongs

to in the original dataset, and generated a new point from the corresponding class

distribution. Therefore, each view is ‘‘corrupted’’, as according to the groundtruth m

points belong to an incorrect class. For the experiments we set m = 50 and an example

is illustrated in Figure 3.1(b). For the remaining two views, a high amount of zeromean

Gaussian noise was added to the original instances (noise std = 2.5), making it hard to

separate the classes (Figure 3.1(c)).

Independently clustering any of the five ‘‘corrupted’’ views will probably result in

misclassifing all m misplaced instances. We wish to examine if the simultaneous

consideration of multiple views helps to ‘‘fix’’ some of these errors. The noisy views

contain little useful information for the problem at hand and we want to explore how

that fact is reflected by the weights πv of the weighted multiview CMM. Note that the

original dataset is correctly separated by a CMM, i.e. H = 0.

Four noisefree datasets were constructed, including 2, 3, 4 and 5 ‘‘corrupted’’ views

respectively. Also, four noisy datasets were created by adding the two noisy views to

the noisefree datasets. Results for the noisefree and noisy datasets are reported in

Table 3.1 and Table 3.3, respectively, for three clusters and βv = βv
0 (3.11).

From Table 3.1 we see that the multiview methods (on the rest of this section

(Section 3.4.2), when writing multiview methods we refer to the CMMbased ones

and not CSC) always outperform the best single view (apart from one case), indicating

that multiple views contribute to the correction of the errors in the individual views.

The concatenated view is always inferior or equal to at least one of the multiview

approaches. When no kernel kmeans fine tuning is used, both multiview approaches

are ahead. Therefore, appending the view vectors is not a good strategy, something

widely mentioned in the literature (e.g. [11,34]).

Moreover, from Table 3.2 we observe that the weighted multiview CMM roughly

assigns the same weights to the views, something expected given that all views are of

similar quality, hence it behaves like the multiview CMM. This observation is in accor

dance with the results, where the two methods exhibit similar performance. Also, the

multiview schemes take advantage of every available view, since the entropy constantly

drops as the number of views increases. Note that kernel kmeans always degrades the

performance of the multiview methods. Finally, CSC5 is systematically beaten by a

large margin by all CMMbased methods and its performance barely increases as more

views become available, highlighting the strength of CMMs.

When noise comes into play, the true potential of the weighted multiview CMM

becomes apparent, since it achieves by far the least entropy in all cases (Table 3.3).

This happens because it assigns very small weights to the noisy views (as can be seen

in Table 3.4), hence they are almost eliminated from the clustering process, while the

5We stress that in none of the experiments of this or the following sections we have applied kernel

kmeans to the partitions returned by CSC.
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Table 3.1: Results on the noisefree artificial datasets with Gaussian CMMbased meth

ods, in terms of entropy and three clusters (m = 50, βv = βv
0 ). The ‘‘Yes’’, ‘‘No’’ columns

indicate whether kernel kmeans fine tuning is applied or not. Results for the CSC

approach are also reported.

Method

2 views 3 views 4 views 5 views

Kernel kmeans Kernel kmeans Kernel kmeans Kernel kmeans

No Yes No Yes No Yes No Yes

Worst single view CMM 0.300 0.300 0.572 0.300 0.572 0.303 0.572 0.303

Best single view CMM 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299

Concatenated view CMM 0.322 0.320 0.265 0.262 0.147 0.191 0.130 0.124

Multiview CMM 0.289 0.320 0.133 0.262 0.097 0.195 0.081 0.124

Weighted multiview CMM 0.289 0.326 0.176 0.266 0.086 0.191 0.060 0.124

CSC  worst view 0.745 0.766 0.766 0.766

CSC  best view 0.743 0.741 0.739 0.735

Table 3.2: Indicative weights assigned to the views by the weighted multiview CMM

for the noisefree artificial datasets.

2 views 3 views 4 views 5 views

View 1 0.502 0.336 0.251 0.201

View 2 0.498 0.333 0.249 0.199

View 3  0.331 0.248 0.198

View 4   0.252 0.201

View 5    0.201

noisefree views are equally treated. Therefore, this method works as if the noise does

not exist. Indeed, note that its performance is relatively close to that of the noise

free setting. The advantages of automatically determining the view weights are now

clearly exposed, as the weighted multiview CMM exhibits robustness to noise and to

noninformative views in general.

In contrast, the multiview CMM splits are greatly affected by the noise, due to the

equally weighted views, and are considerably inferior to the corresponding noisefree

ones and to those of the best single view (which is a noisefree view). CSC is also affected

by the presence of noise, as the entropy has increased compared to that reported in

Table 3.1, and is largely outperformed by the weighted multiview CMM, demonstrating

the need for methods that distinguish noisy views. Once again, CSC is beaten by

the multiview CMM and the best single view. Additionally, the computational time

concerns regarding CSC (see Section 3.4.1) became evident when handling more than

four views, when it took several hours to find the clusters, while our two frameworks

required a few minutes. Finally, similar conclusions as above can be drawn regarding

the concatenated view and the application of kernel kmeans.

To further investigate the behavior of the weighted multiview CMM, we studied

the sensitivity of the weights on the noise level present on the views. Analytically, we
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Table 3.3: Results on the noisy artificial datasets with Gaussian CMMbased methods,

in terms of entropy and three clusters (m = 50, βv = βv
0 ). The ‘‘Yes’’, ‘‘No’’ columns

indicate whether kernel kmeans fine tuning is applied or not. Results for the CSC

approach are also reported.

Method

2 views 3 views 4 views 5 views
+ noisy views + noisy views + noisy views + noisy views

Kernel kmeans Kernel kmeans Kernel kmeans Kernel kmeans

No Yes No Yes No Yes No Yes

Worst single view CMM 0.935 0.943 0.935 0.943 0.935 0.943 0.935 0.943

Best single view CMM 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299

Concatenated view CMM 0.960 0.748 0.477 0.631 0.472 0.496 0.377 0.402

Multiview CMM 0.385 0.751 0.655 0.631 0.147 0.478 0.576 0.601

Weighted multiview CMM 0.256 0.281 0.220 0.242 0.127 0.206 0.116 0.157

CSC  worst view 1.001 1.078 1.078 1.078

CSC  best view 0.833 0.814 0.800 0.745

Table 3.4: Indicative weights assigned to the views by the weighted multiview CMM

for the noisy artificial datasets.

2 views 3 views 4 views 5 views
+ noisy views + noisy views + noisy views + noisy views

View 1 0.442 0.304 0.224 0.182

View 2 0.435 0.300 0.223 0.181

View 3  0.299 0.222 0.180

View 4   0.226 0.184

View 5    0.183

Noisy view 1 0.064 0.051 0.054 0.046

Noisy view 2 0.059 0.046 0.051 0.044

created several datasets for various amounts of noise that each consisted of two noise

free views (for all cases these are the ones used for the twoview experiment above) and

two noisy views with the same amount of noise. To construct the noisy views, random

zeromean Gaussian noise with a different standard deviation for each noise level was

added to the original dataset. In order to alleviate randomness in our experiments,

for each noise level we created ten datasets and repeated the clustering. The average

and standard deviation of the weight values, corresponding to the four views, over the

ten runs are depicted in Figure 3.2. It can be seen that, as the noise increases, the

differences between the weights of the noisefree and the noisy views become greater,

which is something that we would naturally expect. Note that for noise std = 0.3 the

weight values of the noisy views approach those of the noisefree ones as a low amount

of noise is present, while for noise std = 2.5 they attain very small values.

Finally, a dataset which combines views with two different noise levels (two views for

each noise level) and two noisefree views was constructed. The average and standard

deviation of the weights over ten trials are shown on the rightmost corner of Figure 3.2.
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Figure 3.2: View weights (average and std over 10 trials) assigned by the weighted

multiview CMM to datasets consisting of two noisefree and two noisy views (both with

the same amount of noise), for various noise levels. On the right, the weight averages

and std for a dataset where views with different amounts of noise simultaneously exist,

are shown.

We observe, that the less informative a view is, the smaller its weight. Also, views with

the same amount of noise are assigned very similar weights. From Figure 3.2, we

can conclude that the weighted multiview CMM identifies noisy views and treats them

according to their noise level.

3.4.3 WebKB Dataset

The WebKB dataset is a popular collection for testing multiview algorithms [10,11,14,

34,80], made up of web pages related to the computer science departments of various

universities. Here the version described in [11] is used, consisting of six classes (course,

department, faculty, project, staff and student) and two views. The views are the text of

the pages and the anchor text of all inbound links. As all web pages do not have inbound

links, such instances were removed from the dataset, resulting in 2076 instances with

both views available.

Term frequency inverse document frequency (tfidf) vectors were constructed for each

view and normalized to unit length, so that the squared Euclidean distances of the

Gaussian CMMs reflect the cosine similarity, which is usually employed to document

clustering. The number of clusters was always set to six. Experiments with the CMM

based methods were performed for βv = βv
0 (3.11). We also considered other βv values

for each tested method, by setting βv = αβv
0 and repeating the clustering for several α
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Table 3.5: WebKB results with Gaussian CMMbased methods for βv = βv
0 and βv =

α∗βv
0 , in terms of entropy and six clusters. The ‘‘Yes’’, ‘‘No’’ columns indicate whether

kernel kmeans fine tuning is applied or not. Results for the CSC approach are also

reported.

Method

βv = βv
0

βv = α∗βv
0

Kernel kmeans Kernel kmeans

No Yes No Yes

Single view CMM  text 1.536 1.513 1.485 (α∗ = 1.5) 1.492 (α∗ = 1.5)

Single view CMM  anchor text 1.554 1.471 1.440 (α∗ = 3.5) 1.329 (α∗ = 3.5)

Concatenated view CMM 1.559 1.537 1.481 (α∗ = 1.7) 1.490 (α∗ = 1.7)

Multiview CMM 1.498 1.450 1.396 (α∗ = 1.5) 1.316 (α∗ = 1.5)

Weighted multiview CMM 1.431 1.427 1.299 (α∗ = 3.5) 1.307 (α∗ = 3.5)

CSC  text 1.411

CSC  anchor text 1.309

Table 3.6: Indicative weights assigned to the views by the weighted multiview CMM

(βv = βv
0 ) for the WebKB dataset.

Text view 0.126

Anchor text view 0.874

values. The value of α that yields the least entropy (denoted as α∗) was selected as the

best solution and its results are reported here. This was done in order to show that

results can be possibly improved by trying βv values around βv
0 . Note that a common

value α was used for all views in the multiview algorithms. When applying kernel

kmeans, the βv values already picked by the CMMs were retained. Obviously, for CSC

no βv parameter to fine tune exists.

From Table 3.5 it is apparent that the weighted multiview CMM is only beaten by

CSC and only when βv = βv
0 . It is superior though when βv is fine tuned, demonstrating

that gains in performance are possible by searching around βv
0 (such gains are observed

for all CMMbased methods). The multiview CMM is constantly overcome by both its

weighted counterpart and CSC. Comparing the two proposed approaches, the gap in

performance mainly emanates from the different view weights. Table 3.6 contains the

weights returned by the weighted multiview CMM when βv = βv
0 , where a higher value

is given to the anchor text view. Note that the weighted multiview CMM achieves its

best entropy (H = 1.299) for the optimum βv and no kernel kmeans postprocessing

(fourth column). This is lower than the multiview CMM best (H = 1.316), which is

achieved for the optimum βv with kernel kmeans postprocessing (fifth column). This

indicates that for the WebKB dataset our weighted algorithm provides higher gains,

without needing fine tuning of the returned clusters. The multiview approaches are

always ahead of the single views and the concatenated view, demonstrating once again

the advantages of incorporating multiple views to the clustering task and the inefficiency

of naive vector merging. The concatenated view in most cases is even worse than the
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Table 3.7: IntAd results with Gaussian CMMbased methods for βv = βv
0 , in terms of

entropy and different number of clusters. The ‘‘Yes’’, ‘‘No’’ columns indicate whether

kernel kmeans fine tuning is applied or not. Results for the CSC approach are also

reported.

Method

2 clusters 4 clusters 6 clusters

Kernel kmeans Kernel kmeans Kernel kmeans

No Yes No Yes No Yes

Worst single view CMM 0.517 0.497 0.513 0.474 0.478 0.460

Best single view CMM 0.366 0.382 0.316 0.314 0.366 0.344

Concatenated view CMM 0.496 0.496 0.489 0.489 0.472 0.474

Multiview CMM 0.481 0.362 0.393 0.284 0.393 0.290

Weighted multiview CMM 0.468 0.349 0.403 0.347 0.404 0.267

CSC  worst view 0.517 0.425 0.389

CSC  best view 0.459 0.386 0.343

single views. Finally, for βv = βv
0 kernel kmeans improves the results, while for the

best βv it does so in half of the cases.

3.4.4 Internet Advertisements Dataset

The Internet advertisements dataset (IntAd) [42] contains images from various web

pages that are characterized either as advertisements or nonadvertisements (i.e. the

groundtruth consists of two classes). The instances are described in terms of six views,

which are the geometry of the images (width, height, aspect ratio), the phrases in the url

of the pages containing the images (base url), the phrases of the images’ url (image url),

the phrases in the url of the pages the images are pointing at (target url), the anchor

text and the text of the images’ alt (alternative) html tags (alt text). All views have binary

features, apart from the geometry view whose features are continuous. Details for the

construction of the dataset can be found in [67]. Note that there are several missing

views in this dataset. Specifically, the anchor text view is missing for 94% of the images

and the geometry view for 30%, therefore we decided not to include those views in our

empirical evaluation. After removing the instances that were missing any of the four

remaining views, 2369 images were retained for the experiments.

Similarly to WebKB, we generated normalized tfidf vectors to reflect the cosine sim

ilarity and performed experiments both for βv = βv
0 (3.11) and βv = α∗βv

0 . Different

cluster numbers were tried, specifically two, four and six.

The results in Tables 3.73.86 show that one of the two proposed methods achieves

the least entropy in most cases (in eight out of 12). In the other cases, the best single

view (two times for βv = βv
0 and one for βv = α∗βv

0 ) and CSC (only once, for six clusters

and βv = βv
0 ) are superior. Note that our two multiview approaches are always ahead

6The values reported for CSC are the same in both tables, since for CSC no βv parameter to fine tune

exists.
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Table 3.8: IntAd results with Gaussian CMMbased methods for βv = α∗βv
0 , in terms

of entropy and different number of clusters. The ‘‘Yes’’, ‘‘No’’ columns indicate whether

kernel kmeans fine tuning is applied or not. Results for the CSC approach are also

reported.

Method

2 clusters 4 clusters 6 clusters

Kernel kmeans Kernel kmeans Kernel kmeans

No Yes No Yes No Yes

Worst single view CMM
0.517 0.497 0.472 0.460 0.450 0.422

(α∗ = 1) (α∗ = 1) (α∗ = 1) (α∗ = 1) (α∗ = 1.2) (α∗ = 1.2)

Best single view CMM
0.366 0.382 0.316 0.314 0.353 0.318

(α∗ = 1) (α∗ = 1) (α∗ = 1) (α∗ = 1) (α∗ = 3) (α∗ = 3)

Concatenated view CMM
0.462 0.456 0.391 0.356 0.402 0.366

(α∗ = 2) (α∗ = 2) (α∗ = 0.5) (α∗ = 0.5) (α∗ = 0.5) (α∗ = 0.5)

Multiview CMM
0.386 0.288 0.362 0.324 0.339 0.283

(α∗ = 1.5) (α∗ = 1.5) (α∗ = 1.2) (α∗ = 1.2) (α∗ = 1.2) (α∗ = 1.2)

Weighted multiview CMM
0.337 0.299 0.357 0.295 0.331 0.271

(α∗ = 3.5) (α∗ = 3.5) (α∗ = 3) (α∗ = 3) (α∗ = 1.2) (α∗ = 1.2)

CSC  worst view 0.517 0.425 0.389

CSC  best view 0.459 0.386 0.343

Table 3.9: Indicative weights assigned to the views by the weighted multiview CMM

(βv = βv
0 ) for the IntAd dataset.

2 clusters 4 clusters 6 clusters

Image url view 0.047 0.047 0.047

Base url view 0.237 0.237 0.237

Target url view 0.355 0.355 0.355

Alt text view 0.361 0.361 0.361

of the worst single view. Therefore, for the IntAd dataset, if we test the views one by

one, we sometimes get a better partitioning than simultaneously using all of them,

particularly for βv = βv
0 . The two aforementioned multiple view algorithms though,

provide higher quality solutions more systematically, especially if the βv values are

fine tuned, since in Table 3.8 the best single view is ahead for only one setting. It is

important to stress that CSC is inferior to both the weighted multiview CMM and the

multiview CMM when βv = α∗βv
0 and also for βv = βv

0 when kernel kmeans is applied.

Moreover, it is worse than the best single view CMM most of the times (in nine out of

12). This result shows that CMMs are a powerful clustering technique and support our

decision to adopt them for multiview learning.

Once again the concatenated view is always inferior to the multiview schemes (only

CSC performs worse in a few cases) and also to the best single view (sometimes even

to the worst single view). The weighted multiview CMM is superior to the multiview

CMM for eight out of 12 cases and is the best overall performer six times out of 12. The

difference among the two methods is greater in Table 3.8, where the weighted multi
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view CMM is ahead for all but one case. As an indication of how our weighted algorithm

handles this dataset, its view weights for the run with βv = βv
0 are given in Table 3.9.

Note that the weight values are identical for the different cluster numbers, since they

do not depend on this parameter. Finally, the application of kernel kmeans seems to

be beneficial for all cases.

3.5 Summary

In this chapter, we have presented two multiview approaches that identify exemplars

in the dataset by simultaneously exploiting all available representations (views) of the

instances and are built upon the convex mixture models (CMMs) proposed in [71].

The first, called multiview CMM, considers all views as being equally important (i.e.

of equal quality) and is characterized by convexity, thus the global optimum solution

can be uncovered, as well as by the ability to handle views with different statistical

properties. The second, called weighted multiview CMM, assigns different weights to

the views which are automatically determined during training, providing robustness

against noisy or low quality views. This method can be interpreted as a mixture model

whose components are CMMs (one for each view) and, like the multiview CMM, takes

into account the different statistical properties of the views (convexity, however, is lost

in this case). Both our algorithms are computationally efficient and involve simple

iterative updates of the parameters during optimization, which for the weighted multi

view CMM are executed using the well known EM procedure.

The two multiview frameworks have been tested on several diverse datasets and

compared to the single view CMM [71] (applied to each individual view and the concate

nated view), as well as to the correlational spectral clustering method (CSC) of [13]. In

general, the results verify the superiority of our approaches, with the weighted multi

view CMM emerging as the best method. Its performance is constantly the best for

the noisy versions of the synthetic datasets. When no noise is present in the syn

thetic data, it is only matched by the multiview CMM. This is expected, as all views

are approximately of the same quality and therefore the impact of weights is minimal.

Also, experiments with varying amount of noise on the views, showed that the weights

assigned to them are in direct association with their noise level. For the real datasets,

our methods are ahead for most of the cases, especially for βv = α∗βv
0 , providing high

quality solutions more systematically than the compared clustering schemes.

Overall, the experiments have shown that multiple views are beneficial in identifying

good partitions, particularly if the views participate with different weights. Moreover, it

has been demonstrated that the concatenation of the representations is not an effective

multiview strategy and that the success of fine tuning the solutions of the CMMbased

methods with kernel kmeans is dataset dependent.

78



Chapter 4

Kernelbased Weighted Multiview

Clustering

4.1 Kernelbased Clustering

4.2 Multiview Kernel kmeans and Multiview Spectral Clustering

4.3 Empirical Evaluation

4.4 Summary

Multimodal datasets are very common in practice due to the use of different measur

ing methods (e.g. infrared and visual cameras), or of different media, like text, video

and audio. Each instance in these datasets has multiple representations, called views,

from various feature spaces. Typical examples include web pages, represented by

both text and hyperlinks, and images, where color and texture information can be uti

lized. The existence of such data has raised interest in the so called multiview learn

ing1, which has been extensively studied under the semisupervised classification set

ting [14,17,33,84,125]. This chapter focuses on multiview clustering [10,13,50,65,77],

where the absence of a groundtruth to guide the learning process makes the under

lining task much harder. The main challenge that arises is to find a suitable way

of simultaneously exploiting the, possibly, complementary information of all available

views in order to derive a robust partitioning, considering the diversity (e.g. different

statistical properties) and the disagreement (i.e. different views produce different parti

tionings) of the views.

Surprisingly, most multiview methods rely equally on every view, something that

may lead to performance degradation in the case of degenerate views (e.g. noisy or

irrelevant views). Identifying and appropriately handling such views is difficult though.

The approach presented in this chapter [107] tackles this problem from the kernel

1For details on multiview learning see Chapter 1, Section 1.2.
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perspective, i.e. data points are mapped to a nonlinear highdimensional space through

a kernel function [41]. Each view is represented by a kernel matrix and views are

combined using a weighted sum of the kernel matrices, accompanied by an appropriate

constraint on the weights. The weights express the quality (importance in clustering) of

the views and determine their degree of contribution to the final solution accordingly.

They are learned automatically, along with the inference of the cluster labels, through

closedform expressions, by minimizing the typical intracluster variance objective of

kmeans in the space induced by combining the individual kernels. Two iterative

optimization strategies are developed, one based on kernel kmeans [37, 90] and the

other on spectral techniques [37].

Our strategy of mixing the kernels is inspired by multiple kernel learning2 [62, 88,

110,126,130], where for a singly represented dataset a, usually linear, combination

of basis kernels is sought along with the partitioning, to solve the kernel selection

problem. In our case those kernels are derived from the views. Thus a connection

between these popular machine learning problems emerges. There appears to be some

dispute over the sparsity3 of the combination weights, with some authors favoring high

sparsity [88,110,126] and others a more uniform solution [62,130]. We believe that

a good choice lies somewhere between the two ends, such that an algorithm is flexible

enough to allow the data to harness the kernel weights, without being too prone to either

end. For this reason, the proposed methodology incorporates a parameter controlling

this flexibility that must be specified prior to execution. Experiments on synthetic and

real world datasets support the above claim and indicate that view weighting under our

framework is successful in reflecting the underlying properties of the studied data. The

main contributions of the presented approach can be summarized in:

1) The estimation of view weights, a subject generally overlooked in multiview clus

tering.

2) The inclusion of a parameter that controls the sparsity of the weights.

3) The use of kernels to represent the views and the way they are combined, which

connects multiview clustering to multiple kernel learning.

The rest of this chapter is organized as follows. Section 4.1 presents the foundations

of our multiview method, which is detailed in Section 4.2. The experiments follow in

Section 4.3, before the concluding remarks of Section 4.4.

4.1 Kernelbased Clustering

Two kerneloriented methods for optimizing the intracluster variance are described in

this section, which are both considered under our framework.

2For details on multiple kernel learning see Chapter 1, Section 1.3.
3Sparsity is defined relative to the number of kernels in the solution that carry significant weights.
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4.1.1 Kernel kmeans

Kernel kmeans [37,90] is a generalization of the standard kmeans algorithm where

the dataset X = {xi}N
i=1, xi ∈ ℜd is mapped from input space to a higher dimensional

reproducing kernel Hilbert spaceH, a.k.a. feature space, via a nonlinear transformation

φ : X → H.

To partition dataset X into M disjoint clusters, {Ck}M
k=1, the intracluster variance

in feature space (4.1) is minimized over clusters {Ck}M
k=1, where mk is the kth cluster

center and δik is an indicator variable with δik = 1 if xi ∈ Ck and δik = 0 otherwise.

EH =

N∑

i=1

M∑

k=1

δik‖φ(xi) − mk‖2, mk =

∑N
i=1 δikφ(xi)∑N

i=1 δik

(4.1)

A kernel function K : X × X → ℜ [41] is employed to get the inner products in

feature space without explicitly defining transformation φ (usually the corresponding

transformation is intractable). Using the kernel function the kernel matrix K ∈ ℜN×N ,

Kij = K(xi,xj) = φ(xi)
⊤φ(xj), can be computed, which is the most common way of

representing a dataset in feature space. Note that, although the centers mk cannot be

analytically calculated, since φ is unknown, the squared Euclidean distances in (4.1)

can be estimated based only on the kernel matrix entries:

‖φ(xi) − mk‖2 = Kii −
2
∑N

j=1 δjkKij
∑N

j=1 δjk

+

∑N
j=1

∑N
l=1 δjkδlkKjl

∑N
j=1

∑N
l=1 δjkδlk

, (4.2)

which suffices to cluster the instances. More details on kernel kmeans can be found

in Chapter 1, Section 1.1.3.

4.1.2 Spectral Clustering

According to [37], the intracluster variance (4.1) can be equivalently posed as a trace

difference:

EH = tr(K) − tr(Y ⊤KY ), Y ∈ ℜN×M , Yik =
δik√∑N
j=1 δjk

. (4.3)

The first term on the above equation is a constant, therefore the minimization of (4.3) is

equivalent to the maximization of tr(Y ⊤KY ) w.r.t. the indicator matrix Y . Due to the

discrete nature of Y this becomes a hard optimization problem, but if Y is relaxed to

be an arbitrary orthonormal matrix (i.e. Y ⊤Y = I), a standard result in linear algebra

states that the optimal Y is composed of the top M eigenvectors of the kernel matrix

K. Therefore, spectral methods (see Chapter 1, Section 1.1.2) which calculate the

top eigenvectors of an appropriate matrix and then perform postprocessing on these

eigenvectors to recover a partitioning can substitute kernel kmeans. A popular spectral

technique is that of [82].
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4.2 Multiview Kernel kmeans and Multiview Spectral Clustering

Motivated by the absence of multiview clustering methods that differentiate the con

tribution of the views according to the conveyed information, we present a simple and

effective kernelbased scheme which embeds in the clustering process an automatic

‘‘ranking’’ of the views. This ‘‘ranking’’ should wipe out a completely uninformative

view, but also allow a less informative one to contribute, with a smaller degree, to the

clustering solution.

4.2.1 Model Description

Consider a datasetX with N instances and V views: X = {xi}N
i=1, where xi =

{
x

(v)
i

}V

v=1

and x
(v)
i ∈ ℜd(v)

are the view vectors for instance xi. As already discussed in Section 4.1,

to apply kernel methods, the dataset is implicitly mapped to a feature space and is

represented through a kernel matrix. Here it is assumed that V kernel matrices are

available,
{
K(v)

}V

v=1
, to which (unknown) transformations

{
φ(v)
}V

v=1
and feature spaces

{
H(v)

}V

v=1
correspond. To take advantage of all views, we propose the following kernel

combination, where wv are the view weights and p is an exponent:

K̃ =

V∑

v=1

wp
vK

(v), wv ≥ 0,

V∑

v=1

wv = 1, p ≥ 1. (4.4)

It is easy to verify that the composite matrix K̃ is a valid kernel matrix, i.e. a pos

itive semidefinite matrix, to which a transformation φ̃(xi) =
[√

wp
1φ

(1)(x
(1)
i )⊤, . . . ,

√
wp

V φ(V )(x
(V )
i )⊤

]⊤
corresponds, i.e. K̃ij = φ̃(xi)

⊤φ̃(xj), that maps the instances to

feature space H̃ = H(1) × . . .×H(V ). The weight values, wv, of the combination (the wp
v

values to be precise) represent the relevance of each kernel (view) to the clustering task.

This technique of kernel mixing is widespread in multiple kernel learning, where

usually the pnorm constraint is applied, i.e. K̃ =
∑V

v=1 wvK
(v), wv ≥ 0,

∑V
v=1 wp

v ≤
1, p ≥ 1. Different norms allow for different levels of sparsity on the weights, with the

1norm [88, 110,126] favoring very sparse weights and the ∞norm [62] reducing to

the unweighted case, i.e. K̃ =
∑V

v=1 K(v). Norms for p > 1 provide a tradeoff between

these two extremes [62,130]. We shall shortly discuss how the exponent p in the above

kernel mixture (4.4) affects sparsity likewise. However, it must be clarified that in this

chapter we do not focus, by any means, on kernel learning, but exploit kernels as a

tool for representing and combining views in multiview learning.

In order to partition the dataset into M disjoint clusters, {Ck}M
k=1, and simultane

ously exploit all views by learning a suitable kernel K̃ of the form (4.4), the intracluster

variance in space H̃ (4.5) is minimized over the clusters and the weights, w.r.t. the con
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straints in (4.6). Note that we do not optimize w.r.t. p, which must be fixed a priori.

EH̃ =

N∑

i=1

M∑

k=1

δik‖φ̃(xi) − m̃k‖2, m̃k =

∑N
i=1 δikφ̃(xi)∑N

i=1 δik

(4.5)

min
{Ck}

M
k=1 ,{wv}

V
v=1

EH̃, s.t. wv ≥ 0,
V∑

v=1

wv = 1, p ≥ 1 (4.6)

Using (4.2) and (4.4) the objective is rewritten as:

EH̃ =

N∑

i=1

M∑

k=1

δik

(
K̃ii −

2
∑N

j=1 δjkK̃ij
∑N

j=1 δjk

+

∑N
j=1

∑N
l=1 δjkδlkK̃jl

∑N
j=1

∑N
l=1 δjkδlk

)

=
V∑

v=1

wp
v

N∑

i=1

M∑

k=1

δik

(
K

(v)
ii −

2
∑N

j=1 δjkK
(v)
ij∑N

j=1 δjk

+

∑N
j=1

∑N
l=1 δjkδlkK

(v)
jl∑N

j=1

∑N
l=1 δjkδlk

)
⇒

EH̃ =

V∑

v=1

wp
v

N∑

i=1

M∑

k=1

δik‖φ(v)(x
(v)
i ) − m

(v)
k ‖2, m

(v)
k =

∑N
i=1 δikφ

(v)(x
(v)
i )

∑N
i=1 δik

. (4.7)

Under the spectral perspective, (4.5) can also be stated in terms of matrix traces,

where Y is defined as in (4.3):

EH̃ = tr(K̃) − tr(Y ⊤K̃Y ) =
V∑

v=1

wp
v

(
tr(K(v)) − tr(Y ⊤K(v)Y )

)
. (4.8)

From (4.7) and (4.8) it is obvious that the intracluster variance in feature space

H̃ is the weighted sum of the intracluster variances of the individual views’ feature

spaces, H(v), under a common clustering. Minimizing the view disagreement is the

basic principle over which multiview approaches are built [10].

4.2.2 Model Training

Two iterative algorithms that in each iteration alternate between updating the clusters

and reestimating the weights are proposed. One follows the distancebased formulation

of EH̃ (4.5) and the other the tracebased spectral formulation (4.8). They are called

multiview kernel kmeans (MVKKM) and multiview spectral clustering (MVSpec), re

spectively.

Updating the clusters for given weights  MVKKM algorithm

When the weights wv are known, the cluster assignments that minimize the intra

cluster variance can be found in the same way as when only a single kernel is available.

The composite kernel, K̃ =
∑V

v=1 wp
vK

(v), is first calculated and then kernel kmeans

is applied in space H̃. Note that kernel kmeans requires an initial set of clusters as

input. The partitioning returned by the previous MVKKM iteration is used for initializing

kernel kmeans for the current iteration.
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Updating the clusters for given weights  MVSpec algorithm

Like MVKKM, the composite kernel is first calculated and then the relaxed version of

(4.8) (i.e. Y is allowed to be an arbitrary orthonormal matrix) is considered to compute

Y . The optimal solution is composed of the M largest eigenvectors of K̃, according to the

discussion in Section 4.1.2. Note that Y should not be discretized during the iterative

process. Otherwise, the monotonic convergence of MVSpec cannot be guaranteed.

Updating the weights for given clusters  MVKKM algorithm

For ease of computation, the form of the objective described in (4.7) is considered

together with the constraints from (4.6). It is easy to verify that the constrained objective

is convex w.r.t. the weights when p > 1, hence their optimal values that minimize EH̃
for the current partitioning can be determined. After some manipulation the following

closedform solution emerges (the analytical proof is provided in Appendix B):

wv = 1/

V∑

v′=1

(Dv

Dv′

) 1
p−1

if p > 1, where Dv =

N∑

i=1

M∑

k=1

δik‖φ(v)(x
(v)
i ) − m

(v)
k ‖2. (4.9)

For p = 1 the optimization problem (4.6) becomes a linear program. Its solutions lie on

the corners of the simplex in the positive orthant spanned by the constraints, which

results in a completely sparse outcome:

wv =

{
1, v = argminv′ Dv′

0, otherwise
if p = 1. (4.10)

Updating the weights for given clusters  MVSpec algorithm

We follow an analogous procedure to that of MVKKM with the only difference being that

the relaxed formulation of (4.8) is used instead of (4.7). All the above remarks regarding

the convexity of the objective and the optimality of the weights carry over to MVSpec.

Thus, if p > 1 the weights are updated through (4.9), while if p = 1 through (4.10),

where now Dv = tr(K(v)) − tr(Y ⊤K(v)Y ).

Initialization and postprocessing

In order to apply both algorithms, initial values for the view weights are required. A

uniform weighting (wv = 1/V ) of the kernels can be used, which is a reasonable choice,

unless prior knowledge regarding the quality of the views is available. Additionally,

MVKKM requires an initial set of clusters. To locate a meaningful initial partitioning

before executing MVKKM, which is very important in avoiding poor minima during the

subsequent iterations, the global kernel kmeans algorithm [105] (see Chapter 1, Sec

tion 1.1.4) is applied that yields nearoptimal solutions in a deterministicincremental

fashion. Finally, in the MVSpec method, the eigenvectors are discretized after conver

gence using kmeans, as in [82], to get the disjoint clusters.
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4.2.3 Discussion

In this section, some aspects of the proposed methods are analyzed, starting with the

effect of the p exponent. As can be seen from (4.9), the less the intracluster variance

Dv of a view the larger its weight. For p = 1 a completely sparse solution emerges

(4.10), regardless of the relative differences in Dv among the views. Hence, p = 1

may discard useful views and thus is effective when a single view is of good quality.

For p > 1 it is easy to see (4.9) that the greater (smaller) the p value the less (more)

sparse the weights wv become, i.e. the relative differences in Dv among the views are

suppressed (enhanced). Therefore, a very large p value is useful when kernels of similar

quality are available. In practice, intermediate p values are a more reasonable choice,

since the most common scenario is that views with complementary information and

also degenerate ones exist for the same problem. The above remarks also hold for the

wp
v values, which are the actual coefficients used to combine the kernels (4.4). Hence,

as p increases the wp
v values become more uniform.

To demonstrate the above a bit more formally, the ratio between any two weights,

wv/wv′ , can be considered as an indicator for the sparsity of the solution. The more

this ratio tends to 1 the less sparse the outcome. Assume a fixed clustering, i.e. a fixed

Dv and Dv′ . From (4.9), wv

wv′
=
(

Dv′

Dv

) 1
p−1

and wp
v

wp

v′
=
(

Dv′

Dv

) p
p−1

, p > 1. As p increases,

the exponents 1/(p − 1) and p/(p − 1) decrease, therefore both ratios get closer to 1.

Hence, the distribution of the wv and wp
v values becomes less sparse as p increases.

Finally, note that 0 < p < 1 is not permitted, as in this case the constrained optimized

objectives (4.7), (4.8) become concave w.r.t. the weights, thus the updates, which take

the same form as in (4.9), will increase EH̃.

Regarding the computational complexity, during each of the τ ′ iterations two main

operations take place; the estimation of the view weights and the cluster updates.

These operations require O(N2V ) and O(N2τ) scalar computations, respectively, for

MVKKM (τ are the kernel kmeans iterations). For MVSpec the corresponding cost is

O(N2MV ) and O(N2M) (top M eigenvectors of K̃) respectively. For both methods an

additional O(N2V ) operations are necessary per iteration, to calculate the composite

kernel. Thus, the overall cost for MVKKM is O(N2(V + τ)τ ′), while for MVSpec is

O(N2MV τ ′). Note that MVKKM additionally requires a cluster initialization step, while

MVSpec an eigenvector discretization step.

It is known that kernel kmeans monotonically decreases the intracluster variance.

The update on the weights further reduces the objective value. Hence, the distance

based iterative scheme is guaranteed to monotonically converge to a local minimum of

EH̃. Moreover, we anticipate this to be a good local mode, since the iterative process

starts with a high quality set of clusters, due to the global kernel kmeans initialization,

which is refined after estimating new values for the weights. As previously mentioned,

the spectral approach provides a matrix Y that is optimal for the current weights

w.r.t. a relaxed version of the considered problem (4.8), where Y is allowed to be an

arbitrary orthonormal matrix. The subsequent update on the weights further reduces
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the objective, leading to a monotonic convergence to a local minimum as well. Note

that a discrete partitioning is obtained only after the MVSpec method has converged.

Therefore, it remains to be seen if the decision to relax Y and thus locate the optimal

Y in each iteration is effective, compared to MVKKM which at each iteration operates

with discrete cluster assignments.

We decided to apply the intracluster variance function for multiview clustering as

this is one of the most popular clustering criteria and is well posed for kernelbased

learning. Moreover, it fits well to the task of automatically constructing a ‘‘ranking’’

of the views, through the kernel combination of (4.4), and it gives rise to two iterative

schemes where the update of the weights and the corresponding partitioning are calcu

lated very easily. Iterative frameworks are constantly gaining ground in multiple kernel

learning [28,88,124,126], and are proving to be quite efficient.

Finally, it is crucial for the application of both methods that views have comparable

intracluster variances in feature space. Hence, views must be normalized, for example,

as in the experiments, by dividing each view’s kernel entries K
(v)
ij by the average of the

pairwise square distances of the view’s instances in feature space:
∑N

i=1

∑N
j=1(K

(v)
ii −

2K
(v)
ij + K

(v)
jj )/N2.

4.3 Empirical Evaluation

The performance of MVKKM and MVSpec4 is studied on synthetic data as well as on

a collection of images and a set of handwritten digits, where multiple views occur nat

urally. The aim of the experimental evaluation is twofold. First to investigate the p

parameters’s impact on the returned clusters and the kernel combination coefficients

wp
v, and second to inspect how effective view weighting under our framework is, com

pared to other multiview algorithms.

To achieve these goals the two proposed algorithms are executed for various p values,

p > 1. Moreover, two trivial kernel combinations, p = 1 and uniform, are considered.

p = 1 corresponds to selecting the best kernel, through the weight update process, and

splitting the dataset using the information of this kernel only, i.e. it is the best single

view case. The uniform combination evenly considers all kernels to obtain a split of the

data, i.e. we fix wv = 1/V in our algorithms and no weight updates are performed (the

uniform combination does not depend on the p value). In addition, they are compared to

correlational spectral clustering (CSC) [13] and the weighted multiview convex mixture

models (MVCMM) we proposed in Chapter 3 (Section 3.3) of this thesis.

CSC projects the views, which are all thought of as being of the same quality (i.e. no

view weights are available), through kernel canonical correlation analysis (KCCA) [51]

and then clusters these projections with kmeans. As in [13], the number of projection

axes is set equal to the number of clusters, the KCCA regularization parameters are

4Matlab code is available at: http://www.cs.uoi.gr/˜gtzortzi.

86



−0.2 0.3 0.8 1.3 1.8
−2.3

−1.8

−1.3

−0.8

−0.3

(a) View 1

−0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

(b) View 2  Noisy

Figure 4.1: The two synthetic views. Different symbols represent the three sought

clusters.

determined using grid search and kmeans is restarted 30 times with random initial

izations and the run with the smallest kmeans objective is kept.

Remember that, in MVCMM each view is modeled by a convex mixture model

(CMM) [71] and an automatically tuned weight is associated with each view. The only

parameter that must be determined in advance is a β parameter which controls the

sharpness of the components of the CMMs. To locate a good β value, we calculate a ref

erence value β0, according to the empirical rule presented in Chapter 3 (equation (3.11)),

and search around it. In particular, β values in the range [0.5, 1, 1.5, . . . , 7]β0 are tried

and the best MVCMM run is reported.

For all datasets the groundtruth labels are given and are only used to assess the

quality of the returned solution with the NMI criterion (4.11)5. Higher NMI values

indicate a better match between cluster labels and class labels.

NMI =
2
∑M

k=1

∑C
h=1

nh
k

N
log

nh
kN

∑M
i=1 nh

i

∑C
i=1 ni

k

HM + HC
(4.11)

The number of clusters is set equal to the true number of classes and linear kernels are

employed for MVKKM, MVSpec and CSC to represent the views, unless stated otherwise.

For MVCMM, Gaussian convex mixture models are used (see Chapter 3). Note that the

global kernel kmeans algorithm is utilized to locate initial clusters for MVKKM (Section

4.2.2), thus avoiding the need for multiple restarts. We do not apply a similar procedure

to initialize the kmeans step in CSC, since we adopt the experimental protocol of the

CSC paper [13].

4.3.1 Synthetic Data

To outline the basic properties of the proposed algorithms, a three cluster toy example

was created, consisting of two views where the second view is a noisy version of the

5N is the dataset size, M the number of clusters, C the number of classes, nh
k the number of points

in cluster k belonging to class h, and HM , HC the entropy of the clusters and the classes, respectively.
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Table 4.1: NMI score and kernel coefficients distribution (wp
v/
∑V

v′=1 wp
v′ ) of MVKKM and

MVSpec on the synthetic dataset, for several p values and for the uniform case.

MVKKM MVSpec

NMI
Coefficients

NMI
Coefficients

View 1 View 2 View 1 View 2

p = 1 1 1 0 0.681 1 0

p = 1.3 1 0.85 0.15 0.671 0.84 0.16

p = 1.5 1 0.77 0.23 0.663 0.74 0.26

p = 2 0.769 0.64 0.36 0.632 0.66 0.34

p = 4 0.749 0.58 0.42 0.593 0.62 0.38

p = 6 0.747 0.56 0.44 0.593 0.62 0.38

Unif. 0.701 0.5 0.5 0.552 0.5 0.5

first (Figure 4.1). Due to the nonlinearly separable nature of the dataset, an rbf kernel

is adopted for each view and its parameter is determined through exhaustive search

(here σ = 0.2 for both views).

From Table 4.1 it is evident that as p increases the coefficients wp
v become more

uniform and clustering degrades. This is anticipated since the first view contains

all the necessary information to correctly split the data, while the second mixes the

clusters. Thus, as the contribution of the second ‘‘noisy’’ view increases, it becomes

less probable to recover the true assignments. For small p values, which admit sparser

outcomes, the weighting is consistent with the noise level present on the views and

MVKKM manages to correctly cluster the data points. Note that even the noisy view

contains structural information, hence it is expected to receive nonzero weight even

for small p (p = 1.3, 1.5). MVSpec, although its coefficients match those of MVKKM,

achieves low NMI. We observed that spectral clustering on the first view alone fails

to recover the clusters (we executed the popular normalized cut method of [82] for

several σ values), giving similar results to MVSpec for p = 1 and explaining the deficit

of MVSpec.

4.3.2 Multiple Features Dataset

Multiple features is a handwritten digits (09) database from the UCI repository [42]

(Figure 4.2). The digits (200 per class) are represented by several attribute sets (i.e.

views), namely Fourier coefficients, profile correlations, KarhunenLove coefficients,

pixel averages and Zernike moments (note that this is the order of the views in Fig

ure 4.3). From the original dataset several four class subsets were created and the

most representative ones are presented here. As attributes within the same view ex

hibit significantly different scales, all views’ attributes were normalized to unit variance.

Moreover, kernel entries were divided by the average pairwise square distance of the

corresponding view, as discussed in Section 4.2.3. This preprocessing was also applied
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Figure 4.2: Examples of handwritten digits contained in the Multiple features dataset.
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Figure 4.3: MVKKM (yellow) and MVSpec (black) kernel coefficients distribution

(wp
v/
∑V

v′=1 wp
v′ ) on the Multiple features dataset, for several p values and for the uniform

case.

to CSC and MVCMM6.

The comparison of the four tested algorithms is provided in Figure 4.4, where the

subsets are named according to the included numerals. Note that CSC and MVCMM

do not depend on p. MVKKM is superior to MVSpec for almost all p values, indicating

that the distancebased formulation of the objective is more effective. MVCMM, de

spite assigning weights to the views, always yields the least NMI, thus highlighting the

potential of our clustering technique. CSC is quite competitive, being slightly (except

for MF0169 and MF4689) inferior to MVKKM and MVSpec for the best p. Moreover,

the single view case (p = 1) proves to be the worst, while the uniform (Unif.) is close

in accuracy to that for the best p. This fact together with i) the effectiveness of the

(unweighted) CSC method for most subsets and ii) the minor, only, drop in NMI as p

increases (for MVSpec even an increase is observed for MF1367 and MF4689), hence

the kernel coefficients, wp
v, distribution evolves towards uniformity (Figure 4.3), lead us

6MVCMM is not kernelbased, therefore the distances in the Gaussian components were instead

normalized.
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Figure 4.4: NMI score of the compared methods on the Multiple features dataset, for

several p values and for the uniform case.
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Table 4.2: Categories contained in the tested Corel subsets.

Subset Categories

Corel1 owls wildlife trains cargo ships

Corel2 buses leopards trains cargo ships

Corel3 buses leopards cars passenger ships

Corel4 owls wildlife hawks roses

Corel5 eagles elephants trains passenger ships

Figure 4.5: Examples of images contained in the Corel collection.

to conclude that all views contribute significantly in the Multiple features dataset. Still

though, a p value that admits some sparsity on the solution can enhance performance,

particularly for MVKKM where p = 1.5 or p = 2 is always the best choice.

4.3.3 Corel Images Dataset

A part of the popular Corel collection consisting of 34 categories, each with 100 images,

serves as our second real multimodal paradigm (Figure 4.5). Images consist of a salient

foreground object, but within each class there is great variance in terms of distance and

angle of the object, color, lighting, and background composition, making this dataset

difficult for unsupervised learning. Attribute vectors that represent the images in terms

of seven views, three colorrelated views (color histogram, moment and coherence) and

four texturerelated views (coarseness and directionality of tamura texture, wavelet and

mrsar texture) are available for this collection7 (note that this is the order of the views

in Figure 4.6). Many four class subsets were extracted and the most representative

ones are included in the experiments (Table 4.2). The kernels were normalized as for

the Multiple features dataset.

Results are depicted in Figure 4.7. MVKKM for p = 2 considerably outperforms the

other three algorithms and its kernel coefficients, wp
v, distribution (Figure 4.6) indicates

that a nonuniform mixture is suited to this dataset, thus explaining the deficit of larger

p values and CSC. Moreover, its advantage over MVSpec, for which the NMI increases

as p increases and a uniform solution is preferable, is significant for all p values. The

difference between the two clustering schemes can be explained from Figure 4.6, where

a disagreement is observed regarding which view should acquire the highest weight

(except for Corel1) and a more peaked coefficient distribution for MVSpec. It seems

that MVSpec selects inappropriate views, indicating that the relaxed problem becomes

detached from the actual objective (4.8) during the iterative process (it even yields worse

results than CSC). It is worth noting that both MVKKM and MVSpec underperform

7http://www.cs.virginia.edu/˜xj3a/research/CBIR/Download.htm
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Figure 4.6: MVKKM (yellow) and MVSpec (black) kernel coefficients distribution

(wp
v/
∑V

v′=1 wp
v′ ) on the Corel dataset, for several p values and for the uniform case.

for very small p (p = 1, p = 1.5), i.e. for very sparse combinations, thus exploiting

information from all views is necessary for the tested real data. Finally note that

MVCMM is not performing well on this or the previous dataset, despite automatically

estimating view weights. This emanates from the very sparse solution recovered by the

method, that assigns a zero weight to most views.

4.3.4 Discussion

The empirical evaluation has shown that the distancebased formulation of the objec

tive provides better results than the spectral. There is dual reason for this behavior.

First, MVSpec provides at each iteration a continuous solution Y which at the end

is discretized to obtain the final partitioning. The continuous solution runs the risk

of deviating from the original nonrelaxed objective, especially in iterative algorithms,

such as MVSpec, where the weights get updated based on the relaxed objective. On

the contrary, MVKKM provides a discrete partition in every iteration, thus following

‘‘closely’’ the intracluster variance objective. Hence, the relaxation can lead to the se

lection of suboptimal views, whose influence is further enhanced for sparser solutions

(i.e. for smaller p). This case arose for the Corel dataset (Figures 4.64.7) and explains

why MVSpec usually attains its highest NMI for the uniform case.

Second, for the initialization of MVKKM the global kernel kmeans procedure was

employed, which is deterministic and very effective [105]. As the experiments with the

synthetic and Multiple features datasets indicate, a properly initialized kernel kmeans

can locate better clusters than spectral techniques, since MVKKM outperforms MVSpec
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Figure 4.7: NMI score of the compared methods on the Corel dataset, for several p

values and for the uniform case.
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despite both techniques resulting in similar wp
v values. The two previous observations

also elucidate why CSC performs better than MVSpec for most p values on the real

data.

Further ground for the above remarks was provided when we executed for the Corel

subsets i) a run of kernel kmeans using the MVSpecderived composite kernel and ii)

spectral analysis over the MVKKMderived composite kernel. The results were always

inferior to those reported for MVKKM in Section 4.3.3, demonstrating that the distance

based formulation infers both better cluster structures and view weights.

Furthermore, for MVKKM, which is always the best of the tested methods, selecting

either the best view or equally all views proves to be inadequate, highlighting the im

portance of allowing the clustering algorithm to mix views more robustly and finding

a balance between sparsity and uniformity. This is also reported in some of the ex

isting multiview and multiple kernel learning studies, such as [62,70,124,131]. The

appropriate p value is, of course, dataset dependent.

Finally, a word on the computational complexity of the proposed methods and specif

ically on the number of weight and cluster updates performed. For the Multiple fea

tures dataset, MVKKM and MVSpec need between 35 and 410 iterations to converge,

respectively, while for the Corel dataset they need between 411 and 515 iterations

respectively, depending on the p value and the dataset subset. It is evident that both

algorithms quickly converge and, in general, the more the final weights deviate from

their initial, uniform, values (as is the case for smaller p values, or the Corel dataset)

the more iterations are necessary.

4.4 Summary

In this chapter, we have presented two multimodal approaches that represent modal

ities through kernel matrices and optimize the intracluster variance function. A

weighted combination of the kernels that reflects the views’ relevance to the cluster

ing task is automatically learned, using closedform updates, along with the clus

ter assignments. This combination utilizes a p exponent to control the sparsity of

the weights, which resembles the pnorm constraint applied in multiple kernel learn

ing [62]. Both methods, particularly MVKKM, compare favorable to existing ones, un

derlying the strength of our framework and that view weighting can boost the quality

of the partitioning, if the sparsity of the weights is appropriately moderated.
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Chapter 5

Ratiobased Multiple Kernel Clustering

5.1 The RMKC Algorithm

5.2 Empirical Evaluation

5.3 Summary

The success of large margin techniques in supervised learning, particularly that of

support vector machines (SVM) [19], has generated great interest in extending such

techniques to the unsupervised setting, leading to the, so called, maximum margin

clustering1 (MMC) problem [121]. Given a dataset X = {xi}N
i=1, xi ∈ ℜd, MMC ap

proaches attempt to find a labeling (clustering) y = [y1, . . . , yN ]⊤, yi ∈ {±1}, of the

instances, such that a subsequent training of a standard SVM [12,19] would result in

a margin that is maximal over all possible labellings. MMC is formulated as:

min
y

min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi, (5.1)

s.t. − ℓ ≤
N∑

i=1

yi ≤ ℓ, y ∈ {±1}N , yi

(
w⊤φ(xi) + b

)
≥ 1 − ξi, ξi ≥ 0,

where w, b are the coefficients of the SVM hyperplane (‖w‖ is the reciprocal of the

margin), ξ = [ξ1, . . . , ξN ]⊤ is the vector of slack variables capturing the misclassification

error, C > 0 is the regularization constant and φ is a transformation that maps the

instances to a higher dimensional feature space that is implicitly defined using the

kernel trick (K(xi,xj) = φ(xi)
⊤φ(xj)) [41]. Moreover, to prevent the trivially ‘‘optimal’’

solution of assigning all instances to the same cluster and thus obtaining an infinite

margin (‖w‖ = 0), a cluster balance constraint (−ℓ ≤
∑N

i=1 yi ≤ ℓ) was introduced by

Xu et al. [121], where ℓ ≥ 0 is a constant controlling the imbalance of the clusters.

1For details on maximum margin clustering see Chapter 1, Section 1.3.2.
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The MMC problem is nonconvex with integer parameters y, making the optimization

much trickier than that of the standard (convex) SVM where the labels y are known

in advance. To solve (5.1), some approaches employ semidefinite programing (SDP)

[110,121,122], others exploit the cutting plane method [115,130] and others rely on

alternating between the outer and the inner minimization [129].

It is wellknown that the performance of kernelbased approaches [92], like MMC,

heavily depends on the choice of the kernel. However, it is often unclear which is

the best kernel for a particular task. Multiple kernel learning2 (MKL) [49], which has

been mainly studied under the SVM paradigm [19], attempts to simultaneously locate

the hyperplane with the largest margin and also learn a suitable kernel. The kernel,

K̃(xi,xj) = φ̃(xi)
⊤φ̃(xj), is usually parametrized by a vector θ = [θ1, . . . , θV ]⊤ of param

eters. Most existing MKL approaches focus on supervised learning and several of them,

in principle, derive from the following optimization (subject to some slight modifications)

(e.g. [62,63,88,124]):

min
θ,w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi, (5.2)

s.t. θv ≥ 0, ‖θ‖p
p ≤ 1, yi

(
w⊤φ̃(xi) + b

)
≥ 1 − ξi, ξi ≥ 0,

Kernel parameters θv are limited to nonnegative values to ensure the learned kernel

is positive semidefinite and the pnorm constraint is employed to avoid overfitting.

Usually the kernel is parametrized as a linear combination of some given basis ker

nels and either the 1norm that promotes sparsity [88, 96, 133], or a more general

pnorm, p ≥ 1, [62, 63, 124], is chosen. There also exist a few studies that consider

nonlinear combinations of basis kernels [28, 48], or even general types of parametric

kernels [45,111]. The optimization problem in (5.2) is nonconvex due to θ. Depending

on the form of the kernel parametrization and the choice of pnorm, various optimiza

tion strategies have been proposed, several of which alternate between updating θ

and solving a standard SVM to obtain w, b and ξ. For example, semiinfinite linear

programming [62, 96, 133], gradientbased methods [45, 48, 88, 111] and closedform

methods [63,124].

Extending MKL to the clustering domain, and in particular to MMC problems, is an

interesting research direction, however, existing work is rather limited. The methods

of [110,130] seek to find a linear mixture of the basis kernels along with the cluster

assignments, such that the margin is maximized, in essence combining (5.1) and (5.2).

Here, we follow a similar path, but propose [109] a novel objective that considers the

ratio between the margin (a notion of cluster separability) and the intracluster variance

criterion of kernel kmeans [37, 90] (a notion of cluster coherence). Hence, both the

separation and the compactness of the clusters are explicitly taken into account, which

can possibly improve on the solutions returned by approaches utilizing either of the

2For details on multiple kernel learning see Chapter 1, Section 1.3.
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two. Importantly, the margin has been shown to suffer from a major deficiency when

applied to supervised MKL [45]. It can become arbitrarily large by a simple scaling of

the kernel, thus it is inappropriate for assessing the quality of the learned kernel. The

same can be demonstrated to hold for unsupervised MKL and we prove that our ratio

based objective is invariant to kernel scaling, thus overcoming this deficiency. Moreover,

its global optimum solution is invariant to the type of pnorm constraint on the kernel

parameters θ (when a linear combination of basis kernels is employed), making the

selection of a suitable norm less crucial.

A simple gradientbased optimization procedure that alternates between updating

the kernel parameters θ and the cluster assignments y is devised, avoiding the in

vocation of complex optimizers, such as the SDP solvers [110] and the cutting plane

method [130]. Experiments on several datasets, including two collections of handwrit

ten numerals and two image collections, reveal the superiority of the proposed method

over approaches that rely solely on the margin or the intracluster variance.

The rest of this chapter is organized as follows. Section 5.1 introduces our ratio

based formulation and presents its invariance properties and optimization details. Ex

periments follow in Section 5.2, while Section 5.3 provides a summary of the chapter.

5.1 The RMKC Algorithm

5.1.1 Problem Formulation

Consider a dataset X = {xi}N
i=1, xi ∈ ℜd, for which we want to simultaneously infer

the cluster labels and also perform kernel learning under the large margin framework.

While presenting our method we shall restrict ourselves on a linear combination of basis

kernels, which is the most common technique of parametrizing kernels for MKL [63,

88,124]. Later we will show that our model can accommodate more general parametric

forms of kernels.

Assume that V basis kernels, K(v) : X × X → ℜ, are available, each implicitly

inducing a transformation φ(v) : X → H(v) on the instances to a feature space H(v)

through K(v)(xi,xj) = φ(v)(xi)
⊤φ(v)(xj). A linear mixture of kernels gives rise to a

composite kernel K̃:

K̃(xi,xj) =

V∑

v=1

θvK(v)(xi,xj), θv ≥ 0, (5.3)

that is parametrized by θ = [θ1, . . . , θV ]⊤. Since K̃ is a valid kernel it holds that

K̃(xi,xj) = φ̃(xi)
⊤φ̃(xj), φ̃ : X → H̃, and, actually, φ̃(xi) =

[√
θ1φ

(1)(xi)
⊤, . . . ,√

θV φ(V )(xi)
⊤
]⊤

due to the linear combination.

We propose a new formulation that does not depend only on the margin, like most

existing MMC and MKL studies, but utilizes the ratio between the margin and the intra

cluster variance objective of kernel kmeans [37, 90] in feature space H̃. Minimizing
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such a ratio can lead to superior partitionings as both compact and wellseparated

clusters are sought. Moreover, as it will be proved, it makes our formulation invariant

to kernel scaling, an important property when kernel learning is involved [45]. Denoting

by y = [y1, . . . , yN ]⊤, yi ∈ {±1}, the vector of the instances’ cluster labels, we consider

the following optimization problem:

min
θ,y

J (θ,y), s.t. θv ≥ 0, ‖θ‖p
p = 1, −ℓ ≤

N∑

i=1

yi ≤ ℓ, y ∈ {±1}N , (5.4)

J (θ,y) = min
w,b,ξ

1

2
E(θ,y)‖w‖2 + C

N∑

i=1

ξi, s.t. yi

(
w⊤φ̃(xi) + b

)
≥ 1 − ξi, ξi ≥ 0. (5.5)

Here E(θ,y) is the kernel kmeans criterion (5.6) describing the intracluster variance3,

where m̃k is the kth cluster center and δik is a cluster indicator variable with δi1 = 1 if

yi = −1 and δi2 = 1 if yi = 1. Note that due to the SVMlike formulation we are limited

to twocluster solutions, i.e. k ∈ {1, 2}, which is the typical case for MMC methods.

E(θ,y) =
1

N

N∑

i=1

2∑

k=1

δik‖φ̃(xi) − m̃k‖2, (5.6)

δik =

{
1, yi = 2k − 3

0, otherwise
, m̃k =

∑N
i=1 δikφ̃(xi)∑N

i=1 δik

The squared Euclidean distances in E(θ,y) can be posed solely in terms of the entries

of the kernel matrix K̃ ∈ ℜN×N corresponding to K̃ (K̃ij = K̃(xi,xj)), from which it

follows that:

E(θ,y) =
1

N

N∑

i=1

2∑

k=1

δik

(
K̃ii −

2
∑N

j=1 δjkK̃ij
∑N

j=1 δjk

+

∑N
j=1

∑N
l=1 δjkδlkK̃jl

∑N
j=1

∑N
l=1 δjkδlk

)
. (5.7)

Additionally, by using (5.3), the composite kernel matrix K̃ can be written as the sum

of the basis kernel matrices K(v) ∈ ℜN×N , i.e. K̃ =
∑V

v=1 θvK
(v), leading to:

E(θ,y) =
1

N

V∑

v=1

θv

N∑

i=1

2∑

k=1

δik

(
K

(v)
ii −

2
∑N

j=1 δjkK
(v)
ij∑N

j=1 δjk

+

∑N
j=1

∑N
l=1 δjkδlkK

(v)
jl∑N

j=1

∑N
l=1 δjkδlk

)
. (5.8)

For the above optimization problem (5.4), it is easy to verify that its objective function

J (θ,y) at a given {θ, y} is defined as the optimal objective value of a problem (5.5)

that closely resembles the standard SVM. The only difference is that the variance to

margin ratio is employed in place of the margin. Similar to MMC methods [121,129], a

cluster balance constraint (−ℓ ≤
∑N

i=1 yi ≤ ℓ) must be imposed to prevent meaningless

3For simplicity, on the following, we shall also refer to the intracluster variance as the variance of the

clusters.
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solutions from arising. Finally, the composite kernel coefficients θv are required to be

nonnegative so that K̃ is a valid kernel and a pnorm constraint is introduced to avoid

overfitting, as in (5.2).

Hence, the optimization in (5.4) searches for a pair of {θ,y} values that yields a

small variance to margin ratio (E(θ,y)‖w‖2) regularized by the misclassification error

(captured by the slack variables ξ). We shall call this approach Ratiobased Multiple

Kernel Clustering, abbreviated as RMKC.

It should be clarified that the actual problem we are trying to solve is (s.t. the

constraints in (5.4)(5.5)):

min
θ,y,w,b,ξ

1

2
E(θ,y)‖w‖2 + C

N∑

i=1

ξi, (5.9)

which is rather difficult to directly optimize, since it constitutes a nonconvex problem

with integer parameters y. Reformulating it as in (5.4), analogously to Rakotomamonjy

et al. [88], will enable us to devise an alternating optimization strategy, that benefits

from differentiability w.r.t. θ and does not demand the use of complex solvers.

5.1.2 Properties of RMKC

In this section, two properties of RMKC are presented, which highlight some important

advantages of combining the margin with the variance of the clusters.

Suppose the composite kernel K̃ (5.3) is scaled by α > 0, i.e. K̃′ = αK̃. Then

the corresponding transformation becomes φ̃′ =
√

αφ̃. Moreover, as K̃ is a linear

combination of basis kernels, its scaling can be equivalently posed as a scaling on its

parameters, i.e. θ′ = αθ.

Proposition 5.1. (Scale Invariance) If a kernel K̃ of the form defined in (5.3) is scaled

by a scalar α > 0, then J (αθ,y) = J (θ,y).

Proof. From (5.7)(5.8) it is evident that E(αθ,y) = αE(θ,y), hence:

J (αθ,y) = min
w,b,ξ

1

2
αE(θ,y)‖w‖2 + C

N∑

i=1

ξi,

s.t. yi

(
w⊤

(√
αφ̃(xi)

)
+ b
)
≥ 1 − ξi, ξi ≥ 0.

Setting w = w′/
√

α and substituting in the above equation completes the proof, as

(5.5) is recovered.

Our quest for an objective that satisfies Proposition 5.1 was inspired by Gai et

al. [45], where it was illustrated that relying solely on the margin is not sufficient to

perform kernel learning in the supervised case. Analogously, if J (θ,y) in (5.4) is
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replaced with the more conventional marginbased objective:

J ′(θ,y) = min
w,b,ξ

1

2
‖w‖2 + C

N∑

i=1

ξi, s.t. yi

(
w⊤φ̃(xi) + b

)
≥ 1 − ξi, ξi ≥ 0, (5.10)

it can be shown that an arbitrarily small J ′(θ,y) value can be achieved by scaling the

composite kernel, thus constituting the margin criterion unsuitable for evaluating the

true quality of the kernel while learning {θ,y}.

To analyze this in more detail, let {w∗, b∗, ξ∗} be the optimal solution of (5.10)

for some fixed {θ,y}. Assume the composite kernel is scaled by α > 1 and for the

hyperplane coefficients we select w′ = w∗/
√

α and b′ = b∗. Then the hyperplane of the

scaled kernel equals w′⊤
(√

αφ̃(xi)
)

+ b′ = w∗⊤φ̃(xi)+ b∗, hence it is identical to that of

the case without scaling and therefore results in the same slack variables, i.e. ξ′ = ξ∗.

Thus 1
2
‖w′‖2 + C

∑N
i=1 ξ′i = 1

2
‖w∗‖2

α
+ C

∑N
i=1 ξ∗i < 1

2
‖w∗‖2 + C

∑N
i=1 ξ∗i = J ′(θ,y), due

to α > 1. Obviously, the optimal solution of the scaled problem (J ′(αθ,y)) satisfies

J ′(αθ,y) ≤ 1
2
‖w′‖2 + C

∑N
i=1 ξ′i < J ′(θ,y). It is now evident that by enlarging the

composite kernel, the marginbased objective (5.10) can become arbitrarily small.

Note that in the linear combination case (5.3), where scaling the composite kernel

is equivalent to scaling its parameters, the scaling issue can be handled through the

pnorm constraint on θ. However, this is not possible for nonlinear mixtures of basis

kernels. On the contrary, our ratiobased objective (5.5) is scale invariant for arbitrary

forms of composite kernels (the proof is analogous to Proposition 5.1) and also allows

for norm invariance.

Proposition 5.2. (Norm Invariance) Consider a kernel K̃ of the form defined in (5.3) as

well as a) the optimization problem described by (5.4) without the pnorm constraint on θ

(p1) and b) the same problem (5.4), but with the slightly more general pnorm constraint

‖θ‖p
p = c, c > 0, in place of ‖θ‖p

p = 1 (p2). If {θ∗
a,y

∗
a} is a global optimal solution of p1

then
{

c1/p

‖θ∗
a‖p

θ∗
a,y

∗
a

}
is a global optimal solution of p2. Also, if {θ∗

b ,y
∗
b} is a global optimal

solution of p2 then {θ∗
b ,y

∗
b} is a global optimal solution of p1.

Proof. From the scale invariance property and since {θ∗
a,y

∗
a} is a global optimum of p1

we get J
(

c1/p

‖θ∗
a‖p

θ∗
a,y

∗
a

)
= J (θ∗

a,y
∗
a) ≤ J (θ,y) for any {θ,y} satisfying the constraints

of p1. Note that the admissible θ values for problem p2 are a subset of those allowed in

p1, hence the above inequality also holds for every {θ,y} adhering to the constraints

of p2 (the constraints for y are identical in p1 and p2). Together with the fact that∥∥∥ c1/p

‖θ∗
a‖p

θ∗
a

∥∥∥
p

p
= c the first part of the proof is completed.

For any {θ,y} complying to the constraints of p1 it holds that

{
c1/p

‖θ‖p
θ,y

}
is admissible

for p2, since

∥∥∥ c1/p

‖θ‖p
θ

∥∥∥
p

p
= c. The scale invariance property and the global optimality

of {θ∗
b ,y

∗
b} w.r.t. p2 yields J (θ∗

b ,y
∗
b) ≤ J

(
c1/p

‖θ‖p
θ,y

)
= J (θ,y), thus completing the

second part of the proof.
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Proposition 5.2 implies that the global optimal solution of the proposed formulation

(5.4) is insensitive to the selected type of pnorm constraint, up to a scaling on the

composite kernel parameters. The norm constraint can be even dropped from (5.4)

without affecting its optimal solution. Of course, a solver that locates local optima of

the ratiobased objective may produce different solutions when different pnorms are

employed for the same problem, but at least the overall best will be the same, making

the choice of the pnorm less crucial.

5.1.3 Optimizing the RMKC Objective

An iterative algorithm that alternates between updating the cluster labels y and rees

timating the composite kernel coefficients θ, starting from some initial {θ,y} value, is

presented and its main steps are summarized in Algorithm 5.1 and Algorithm 5.2.

Evaluating the Objective Function

To compute the value of the objective function J (θ,y) for some fixed {θ,y}, we need

to solve the convex SVMlike optimization problem in (5.5). This can be facilitated by

turning to its dual, which can be obtained by incorporating the constraints into the

primal via Lagrange multipliers and setting the derivatives w.r.t. w, b, and ξ to zero.

After some manipulation the following dual emerges:

max
α

N∑

i=1

αi −
1

2E(θ,y)

N∑

i=1

N∑

j=1

αiαjyiyjK̃ij, s.t. 0 ≤ αi ≤ C,

N∑

i=1

αiyi = 0. (5.11)

Since the cluster variance E(θ,y) is a constant for given {θ,y}, it can be included

in the kernel matrix and, thus, (5.11) actually coincides with the dual of the standard

SVM, with 1
E(θ,y)

K̃ as the kernel matrix. Hence, the optimal solution for (5.11), denoted

by α∗, can be located using any of the existing SVM solvers (the optimal values for w,

b, and ξ in (5.5) are calculated based on the solution of the dual). Moreover, due to

strong duality, the value of J (θ,y) can be directly acquired from the dual:

J (θ,y) =
N∑

i=1

α∗
i −

1

2E(θ,y)

N∑

i=1

N∑

j=1

α∗
i α

∗
jyiyjK̃ij . (5.12)

It should be clarified that whenever J (θ,y) is evaluated for a different pair of {θ,y}
values, the optimal dual parameters α∗ must be reestimated, since they depend on

{θ,y}.

Updating the Kernel Parameters

Changing the composite kernel coefficients so that the ratiobased objective J (θ,y) is

reduced, while keeping the cluster labels y fixed, can be effectively performed by means
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of gradient descent. Due to strong duality between (5.5) and (5.11) (see the preceding

subsection), we can exploit (5.12) to compute the gradient of J (θ,y) w.r.t. θ.

Proof for the differentiability of J (θ,y) comes from Danskin’s theorem [32], similar

to [88, 111]. To apply this theorem to our problem, two conditions must be satis

fied. First, the optimal solution α∗ of (5.11) must be unique. This can be ensured

by demanding the composite kernel matrix K̃ to be strictly positive definite for every

admissible θ. Second, the objective function optimized in the dual (5.11) must be

continuously differentiable w.r.t. θ, which can be ensured by demanding K̃ to be con

tinuously differentiable w.r.t. θ. As K̃ is a linear mixture of basis kernel matrices K(v),

both requirements are fulfilled as long as every K(v) is strictly positive definite. The

theorem also states that J (θ,y) can be differentiated as if α∗ does not depend on θ.

Therefore, the derivatives can be obtained from (5.12) as:

∂J (θ,y)

∂θv

=
1

2E(θ,y)2

N∑

i=1

N∑

j=1

α∗
i α

∗
jyiyjK̃ij

∂E(θ,y)

∂θv

− 1

2E(θ,y)

N∑

i=1

N∑

j=1

α∗
i α

∗
jyiyj

∂K̃ij

∂θv

,

(5.13)

where
∂K̃ij

∂θv
= K

(v)
ij and

∂E(θ,y)
∂θv

follows directly from (5.8). Note that in order to calculate

the derivatives, we must first obtain α∗ by solving (5.11) for the current {θ,y} values.

The procedure for updating θ for given y, begins by executing a standard gradient

descent update on θ, using (5.13). Afterwards, θ is projected back to its feasible set,

so that the positivity and pnorm constraints (5.4) are enforced. In this chapter, we

consider the values p = 1, 2 and execute the projections as shown in [40,94]. Note that

the gradient descent step size, η, is adjusted according to the Armĳo rule, which may

require additional optimizations of the dual.

Updating the Cluster Labels

Finding a new set of cluster assignments y′ that will further decrease J (θ,y) (keeping

the kernel parameters θ fixed) is not straightforward, since the underlying optimization

is a nonconvex integer problem. Some single kernel MMC approaches relax y on the

continuous domain to ease the optimization (e.g. [110, 121]), however, in the end the

relaxed solution should be mapped back to the discrete space. Here, on the contrary,

our aim is to work directly on the discrete cluster labels without any relaxations.

We have developed a practical search framework, where an improved cluster label

ing y′ is obtained by moving instances between the two clusters. One possible direction

would be to change the cluster label of a single instance only and then proceed with

reestimating θ. However, we have empirically found that such a minor modification

on y results in premature convergence as the algorithm overcommits to the initial

assignments. A better strategy is to change the labels of multiple instances before rees

timating θ. The strategy we follow is motivated by several graph partitioning heuristics

that have been applied to clustering, prominently the KernighanLin algorithm [59]: an
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initial split of the graph is revamped by exchanging several nodes (specified in an incre

mental fashion) between partitions and selecting the best subset of these nodes. Based

on this idea, we build a sequence of L candidate cluster label vectors, y(1), . . . ,y(L),

(L is userdefined) and select the one generating the greatest improvement on J (θ,y)

in order to update y. These L candidate label vectors are constructed incrementally

(one after the other), such that compared to the previous candidate label vector, the

next contains one more instance whose label has been changed (i.e. they differ in one

element). Given y(l), the (l + 1)th instance to change clusters is selected to be the one

that is expected to produce the smallest objective value when added to the current l

changes, thus constructing y(l+1).

A meaningful approach for picking the (l + 1)th instance is to rank the contending

instances based on the confidence about their labeling according to the current (after l

cluster moves) separating hyperplane and select the one with the smallest yi(w
⊤φ̃(xi)+

b) value. This way misclassified instances (if any exist) have a higher priority to change

clusters, since yi(w
⊤φ̃(xi) + b) < 0, followed by those falling inside the margin (if any

exist), since 0 ≤ yi(w
⊤φ̃(xi) + b) < 1, and finally those away from the margin, since

yi(w
⊤φ̃(xi) + b) ≥ 1.

More specifically, let y(0) to be the vector of the cluster labels before commencing

the update process. Assume that y(l) has already been generated, thus at this point

l instances have already changed clusters w.r.t y(0). As mentioned, the (l + 1)th

instance is selected to be the one we are the less confident about its labeling according

to the separating hyperplane. However, when the labels change so does the hyperplane.

Therefore, we must solve the dual (5.11) for the current assignments y(l) to obtain the

corresponding optimal hyperplane parameters w(l)∗ and b(l)∗. Then, the index of the

(l + 1)th instance is given by:

i∗ = argmin
i:y

(l)
i =y

(0)
i

y
(l)
i

(
w(l)∗⊤φ̃(xi) + b(l)∗

)
, (5.14)

and the (l + 1)th candidate label vector is defined as:

y
(l+1)
i =

{
y

(l)
i , i 6= i∗

−y
(l)
i , i = i∗

. (5.15)

From (5.14), it is obvious, that an instance xi whose label has already changed is not

considered again as a contender, since y
(l)
i 6= y

(0)
i , and the selected one flips its label

(5.15). Moreover, observe that the label changes of all previous steps are retained when

constructing y(l+1), leading to an incremental reassignment of the instances. The above

is repeated for l = 0, 1, . . . , L − 1.

The returned cluster assignments that are used to update y correspond to the

cluster label vector y(l∗) attaining the smallest objective value (i.e. y′ = y(l∗)):

l∗ = argmin
0≤l≤L

J (θ,y(l)). (5.16)
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Algorithm 5.1 RMKC.

Input: Basis kernel matrices {K(v)}V
v=1, Initial composite kernel coefficients θ(0) and cluster

assignments y(0)

Output: Final kernel coefficients θ and cluster assignments y

1: Set t = 0

2: Set parameters L, ℓ and C

3: Set K̃(0) =
∑V

v=1 θ
(0)
v K(v)

4: repeat

5: Solve the dual (5.11) for K̃(t) (i.e. θ(t)) and y(t) to obtain α(t)∗

6: for v = 1 to V do // Update θ.

7: θ
(t+1)
v = θ

(t)
v − η(t) ∂J (θ,y)

∂θv

∣∣∣
θ=θ(t),y=y(t),α∗=α(t)∗

8: end for

9: Project θ(t+1) to satisfy the constraints in (5.4)

10: K̃(t+1) =
∑V

v=1 θ
(t+1)
v K(v)

11: y(t+1) = Cluster_upd (K̃(t+1), y(t)) // Update y.

12: t = t + 1

13: until converged

14: return θ = θ(t),y = y(t)

Note that if none of the candidate label vectors y(l) reduces the objective, then l∗ = 0

from (5.16), and no label change is accepted. This ensures that the ratiobased objective

never increases after updating y.

The procedure for modifying y, as described up to this point, selects L instances

belonging to either of the two clusters and flips their label to construct the candidate

label vectors. Some trial experiments indicated that a better approach is to restrict

all L instances that change clusters to originate from the same (i.e. a single) cluster.

For this reason, our final procedure is divided into two phases. In the first phase the

candidate vectors are formed by moving L instances from the cluster associated with

the +1 label to the cluster associated with the −1 label, while in the second phase the

opposite movement direction is considered. The two phases are independent from each

other, both starting from y(0). Hence, one phase does not take into account the cluster

changes of the other. At the end, the best of the 2L candidate vectors is selected to

update the cluster labels. To implement the above idea, in (5.14) we must, additionally

to y
(l)
i = y

(0)
i , require that y

(l)
i = +1 (y

(l)
i = −1) for the first (second) phase contending

instances. Our complete, two phase, framework is shown in Algorithm 5.2.

An issue we have yet to touch on is how to impose the cluster balance constraint

(5.4). Fortunately, this is rather straightforward under our framework, since we can

define an upper bound on the number L of candidate label vectors in each phase and,

therefore, on the number of instances allowed to change clusters, to guarantee that

the constraint is never violated. For the first phase L ≤ (ℓ +
∑N

i=1 y
(0)
i )/2, while for

the second L ≤ (ℓ −
∑N

i=1 y
(0)
i )/2. Note that

∑N
i=1 y

(0)
i describes the initial imbalance

before moving any instances (which, of course, satisfies the constraint) and ℓ ≥ 0 the

104



Algorithm 5.2 RMKC  cluster update.

Input: Current composite kernel matrix K̃ and cluster assignments y

Output: Updated cluster assignments y′

1: function Cluster_upd (K̃, y)

// First phase.

2: Set y(0) = y

3: for l = 0 to L − 1 do

4: Solve the dual (5.11) for K̃ and y(l) to obtain w(l)∗ and b(l)∗

5: Calculate y(l+1) (5.15) with the added constraint y
(l)
i = +1 in (5.14)

6: end for

// Second phase. This phase ignores the cluster moves of the first.

7: Set y(L+1) = y

8: for l = L + 1 to 2L do

9: Solve the dual (5.11) for K̃ and y(l) to obtain w(l)∗ and b(l)∗

10: Calculate y(l+1) (5.15) with the added constraint y
(l)
i = −1 in (5.14)

11: end for

12: l∗ = argmin0≤l≤2L+1 J (θ,y(l))

13: return y′ = y(l∗)

14: end function

maximum admissible imbalance. Also, notice that it is not necessary to set the same

value for L on both phases. Hence, if the upper bound limits L to a tiny value on one

phase, the other can still exploit a larger L.

5.1.4 Discussion

This section examines some additional aspects of the proposed RMKC method, starting

with the convergence of the iterative algorithm used to optimize (5.4). In each iteration,

the gradient descent update on θ reduces the ratiobased objective value. Moreover, the

subsequent update on y selects a candidate cluster label vector that further decreases

the objective. Hence, the overall process is guaranteed to monotonically converge. The

final solution, though, depends on the initial {θ,y} values, thus a local, and not the

global, minimum of J (θ,y) is located. Note that the solution also depends on the user

specified constants C, ℓ and L, as well as, on the selected pnorm for the composite

kernel coefficients constraint.

An important advantage of RMKC is that it can be readily extended to learning gen

eral forms of parametric composite kernels K̃, such as a nonlinear mixture of basis

kernels, without being restricted to just the linear combination case (5.3). The for

mulation itself remains unchanged (e.g. (5.4), (5.5), (5.6), (5.7), (5.11), (5.12)) and the

iterative algorithm is applicable out of the box, if the gradient of the ratiobased objective

can be computed. This is possible when the composite kernel matrix is strictly positive

definite and continuously differentiable w.r.t. its parameters θ (see Section 5.1.3). Of
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course,
∂K̃ij

∂θv
and

∂E(θ,y)
∂θv

in (5.13) depend on the specific form of the composite kernel.

Moreover, the scale invariance of our objective (i.e. scaling K̃ by a scalar α > 0) also

holds in the general case (the proof is analogous to that in Proposition 5.1), but the

same is not true for the norm invariance. Note that scaling K̃ is no more equivalent to

scaling the parameters θ. The ability to accommodate general kernel forms broadness

the applicability of RMKC and constitutes an advantage over existing MKL approaches

that are usually limited to a particular type of composite kernel.

5.2 Empirical Evaluation

To investigate the potential of combining the margin with the variance in the clustering

objective and perform kernel learning, the presented RMKC framework is compared to:

a) kernel kmeans [37,90], which serves as our baseline method, b) iterSVR [129], an

iterative marginbased MMC approach that follows formulation (5.1), and c) the two

iterative variancebased MKL approaches we proposed in Chapter 4 of this thesis that

optimize (5.6), namely multiview kernel kmeans (MVKKM) and multiview spectral

clustering (MVSpec).

The evaluation is made on various diverse datasets from the UCI repository [42]

(Ionosphere, Letter, Satellite, Multiple features and Optdigits), as well as on the COIL

20 image library of objects [81] and a subset of the Corel image collection4. Apart from

Ionosphere, all other datasets contain instances of more than two categories. For this

reason, we conduct experiments using pairs of the included categories. For Letter and

Satellite we simply focus on the first two classes, i.e. AB and C1(red soil)C2(cotton

crop), respectively, as in [129]. For the two databases of handwritten digits (i.e. Multiple

features and Optdigits) we try several pairs of the contained numerals (09), while for the

two image collections we consider pairs of the classes depicted in Figures 5.15.2. The

tested pairs are shown in Tables 5.35.4. Since groundtruth information is available

for every dataset, we employ the clustering accuracy metric to measure performance.

The datasets come in vectorial form, except the COIL20 images for which we first

extracted SIFT descriptors and then represented them using a bag of 1000 visual words,

as in [56]. All UCI data were normalized to zero mean and unit variance on each at

tribute, while the COIL20 and Corel instances were normalized to unit length. Multiple

features and Corel are multiview datasets, hence, for the same instance multiple sets

of attributes are available. Each attribute set naturally defines a basis kernel and

the linear kernel is employed here to represent each view. For the other, single view,

datasets, we follow [110,115] and construct 10 basis RBF kernels, where the kernel

width σ varies from 10% to 100% of the range of distance between any two instances.

Kernels are multiplicatively normalized [63].

Throughout the experiments, our algorithm is configured as follows: we fix the

4http://www.cs.virginia.edu/˜xj3a/research/CBIR/Download.htm
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Figure 5.1: The COIL20 objects considered in the experiments.
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Figure 5.2: Indicative images of the Corel categories considered in the experiments.

number of candidate label vectors in each phase to L = 30, the cluster imbalance

parameter to ℓ = 0.5N (for the Corel images only, ℓ = 0.2N ) and conduct a grid

search on the set {10−2, 10−1, . . . , 102} to locate the best performing value for the C

regularization constant in each dataset. The basis kernels are linearly combined (5.3)

and their coefficients are uniformly initialized such that they adhere to the selected

pnorm constraint, i.e. θv = 1
V 1/p . To initialize the cluster assignments y, we extract

several pairs of instances (usually 0.25N pairs) using a kmeans++like procedure [3],

where the first instance is chosen randomly and the second is picked with a probability

that is proportional to its distance from the first. For each such pair, the remaining

N − 2 instances are assigned to the closest of the two instances in the pair, thus

producing a partitioning of the data. The partitioning y with the minimum J (θ,y)

value is used to initialize a run of RMKC. Since the procedure for choosing the initial y

is nondeterministic, the RMKC performance is averaged over 30 runs for each tried set

of parameters (L, ℓ, C, pnorm). Finally, the LIBSVM toolbox [22] is utilized for solving

(5.11).

5.2.1 Norm Invariance in Practice

In Proposition 5.2, it was proved that the global optimal solution of our formulation

(5.4) is invariant to the pnorm applied on the composite kernel coefficients θ, if K̃ is a

linear mixture of basis kernels (5.3). However, the RMKC method locates local optima

of the ratiobased objective. Hence, it is of particular interest to explore how these local

optima vary for different choices of pnorm constraints.

To demonstrate this, RMKC is executed (according to the above configuration) for

p = 1, 2 and also for the case where no norm constraint is imposed on θ and the results

are illustrated in Table 5.1. Note that for the last four datasets we report the average

clustering accuracy (and its deviation) over all considered pairs of categories. Also, note

that for Ionosphere, Letter and Satellite, where a single pair of classes is examined,

deviations may still appear as RMKC is restarted 30 times. It can be observed that the

solutions obtained across the different norms are very similar, therefore, in practice,
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Table 5.1: RMKC clustering accuracy (%) (averaged over all pairs of categories consid

ered in each dataset) for different pnorm constraints.

Dataset Nonorm 1norm 2norm

Ionosphere 71.51 ± 0.00 71.51± 0.00 71.51± 0.00

Letter 94.47 ± 0.00 94.47± 0.00 94.47± 0.00

Satellite 96.17 ± 0.50 96.19± 0.52 96.16± 0.51

COIL20 98.75 ± 2.60 98.61± 2.65 98.43± 2.73

Corel 94.55 ± 1.62 94.64± 1.58 94.69± 1.62

Multiple features 99.58 ± 0.22 99.53± 0.37 99.59± 0.23

Optdigits 97.77 ± 2.45 97.65± 2.71 97.75± 2.50

the uncovered local optima are not significantly influenced by the choice of pnorm,

although this cannot be theoretically guaranteed. On the following, we shall focus on

the 1norm, when presenting the results of our approach.

5.2.2 Comparative Results

We have conducted a comprehensive evaluation of RMKC, kernel kmeans, iterSVR,

MVKKM and MVSpec on all datasets. RMKC is set up as previously described. Ker

nel kmeans is restarted 30 times, from randomly picked initial centers. For iterSVR

we employ a similar setup to [129], i.e. the cluster imbalance parameter is fixed to

ℓ = 0.03N for balanced and to ℓ = 0.3N for unbalanced datasets, while the initial clus

ter labels are obtained from the kernel kmeans solution (iterSVR is, thus, repeated

30 times). For the C regularization constant, the same grid search as for RMKC is

implemented. Finally, the sparsity controlling parameter p for MVKKM and MVSpec is

selected by a grid search on the values {1, 1.5, . . . , 5}.

Performance is measured in terms of average clustering accuracy (and its deviation)

over the 30 restarts (MVKKM and MVSpec are deterministically initialized, as described

in Chapter 4, Section 4.2.2, thus we have no restarts). Let us stress, that both kernel

kmeans and iterSVR are single kernel methods that do not implement kernel learning.

For this reason, these algorithms are independently executed for each of the individual

basis kernels in each data collection and the kernel attaining the highest accuracy is

reported. Moreover, for iterSVR the average performance over all basis kernels is also

shown. It is important to make clear that it is not possible to know a priori which is

the best basis kernel for a given dataset.

In Table 5.2 we observe that iterSVR with the optimal basis kernel achieves the

best accuracy, being closely matched by RMKC. Only for Ionosphere the difference is

large, where, surprisingly, all three MKL approaches (RMKC, MVKKM and MVSpec) are

even inferior to kernel kmeans. However, this is a difficult dataset to cluster and all

methods yield rather poor outcomes (accuracy does not exceed 75%).

Turning our attention to image clustering (Table 5.3), it is evident that our ratio

based objective constantly outperforms the other methods. For the COIL20 objects,
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Table 5.2: Clustering accuracy (%) of the compared methods on three popular UCI

datasets.

RMKC Kernel IterSVR IterSVR
Dataset (1norm) MVKKM MVSpec kmeans (best) (average)

Ionosphere 71.51± 0.00 71.23 70.66 73.22± 2.90 74.83± 1.65 71.83± 1.99

Letter (AB) 94.47± 0.00 93.50 88.68 93.63± 0.00 94.51± 1.70 92.29± 1.97

Satellite (C1C2) 96.19± 0.52 94.19 96.24 94.15± 0.03 96.42± 0.00 91.53± 5.58

Table 5.3: Clustering accuracy (%) of the compared methods on image clustering.

RMKC Kernel IterSVR IterSVR
Dataset (1norm) MVKKM MVSpec kmeans (best) (average)

COIL20

319 100.00± 0.00 100.00 100.00 94.05 ± 10.27 100.00± 0.00 100.00± 0.00

411 100.00± 0.00 77.78 100.00 96.30 ± 10.41 98.47 ± 8.37 98.34 ± 8.34

1518 100.00± 0.00 90.28 95.83 97.57 ± 3.74 99.72 ± 0.35 99.21 ± 0.21

1519 94.44± 10.59 68.06 86.11 86.57 ± 14.84 93.43 ± 14.30 91.86 ± 14.52

Corel

7004990 97.62± 0.65 95.00 95.00 85.98 ± 9.58 96.43 ± 0.25 83.19 ± 1.85

7005530 92.60 ± 1.42 94.00 94.00 85.50 ± 0.00 88.63 ± 6.40 68.03 ± 3.49

770840 97.55± 0.91 94.50 90.00 90.47 ± 0.37 94.20 ± 3.04 87.85 ± 0.58

7701350 94.03± 1.72 93.50 92.00 88.72 ± 0.96 92.67 ± 1.27 84.10 ± 1.89

13401350 95.50± 0.00 95.00 95.00 91.00 ± 0.00 92.50 ± 0.00 83.71 ± 0.00

28904990 90.57± 4.79 87.00 86.00 85.00 ± 0.00 90.00 ± 0.00 73.04 ± 5.68

whose images are taken from different angles in a neutral background, hence are easy

to distinguish, our approach manages to find the correct clusters for 3/4 of subsets

and iterSVR appears to be its closest competitor. Clustering the Corel images is a

more difficult task, due to variations in the composition of the depicted scene within

each class. Here the differences of RMKC to iterSVR are more distinct and its closest

competitor is MVKKM, which clearly displays the benefits of combining information

from multiple views under MKL.

For the task of handwritten digits recognition (Table 5.4) the best performance is

equally shared between RMKC and iterSVR across the two datasets. Note that for

Multiple features, which, like Corel, is a multiview dataset, RMKC is superior. MVKKM

and MVSpec achieve the highest accuracy on a single case (Optdigits for the pair 17)

and are superior to RMKC for only 3/12 of subsets.

Overall, the proposed RMKC algorithm obtains a higher clustering accuracy for the

majority of the tested category pairs. The marginbased iterSVR approach seems to

be close, or even better, for some cases, provided the optimal basis kernel is used

(iterSVR(best)). However, in practice, the best kernel for a particular dataset is not a

priori known. By looking at the Tables’ last column, one can notice that iterSVR results

degrade significantly if an inappropriate basis kernel is chosen. On the contrary, RMKC

is able to automatically infer a meaningful kernel by combining the basis kernels.
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Table 5.4: Clustering accuracy (%) of the compared methods on the task of handwritten

digits recognition.

RMKC Kernel IterSVR IterSVR
Dataset (1norm) MVKKM MVSpec kmeans (best) (average)

Mult. feat.

17 99.62 ± 0.78 98.75 98.75 98.00 ± 0.00 99.75± 0.00 96.85± 0.00

27 100.00± 0.00 99.00 99.75 97.92 ± 0.24 99.75± 0.00 97.61± 1.73

23 99.70± 0.23 99.25 99.00 99.50 ± 0.00 99.50± 0.00 94.13± 7.16

38 99.28 ± 0.38 99.50 99.50 97.50 ± 0.00 99.75± 0.00 98.78± 0.04

56 99.42± 0.48 98.50 98.50 98.29 ± 0.09 98.75± 0.00 95.68± 2.37

68 99.15± 0.33 97.25 98.50 97.33 ± 0.16 99.00± 0.00 94.94± 6.47

Optdigits

17 99.56 ± 1.41 100.00 100.00 89.38 ± 16.06 96.93± 9.83 94.26 ± 13.14

27 98.03 ± 1.31 96.35 92.42 95.03 ± 8.40 99.32± 0.16 98.88± 0.84

23 96.29 ± 5.44 90.56 88.89 89.92 ± 9.10 96.50± 0.82 95.59± 2.70

38 92.43 ± 8.00 94.12 93.28 92.56 ± 7.80 96.20± 0.16 95.01± 4.08

56 99.72± 0.00 99.45 99.45 99.57 ± 0.14 99.72± 0.00 99.33± 0.01

68 99.89± 0.14 99.15 98.87 99.32 ± 0.26 99.72± 0.00 99.45± 0.06

5.3 Summary

We have proposed a novel formulation that considers the ratio between the margin

and the intracluster variance for multiple kernel learning in the unsupervised domain.

Its objective is optimized by an iterative, gradientbased algorithm to obtain both the

cluster assignments and the composite kernel parameters. Moreover, it is characterized

by two important properties: it is invariant to scalings of the learned kernel and when

basis kernels are linearly mixed it is also invariant (on its global optimum) to the type

of pnorm constraint on the composite kernel parameters. Our framework compares

favorably to approaches that rely either on the margin or the intracluster variance.
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Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

6.2 Directions for Future Work

6.1 Concluding Remarks

The objective of this thesis was the development, implementation and evaluation of (un

supervised) clustering methodologies. During the elaboration of the thesis we mainly

focused on three different axes: i) proximitybased clustering, ii) clustering of data avail

able in multiple views and iii) learning the kernel along with the cluster assignments

using multiple kernel learning (MKL) techniques.

Specifically, in Chapter 2, we presented an approach that tackles the initialization

problem of the kmeans algorithm [76] by altering its sum of the intracluster variances

objective. Weights are assigned to the clusters in proportion to their variance and a

weighted version of the kmeans objective is optimized. The cluster weights predispose

our method towards primarily minimizing those clusters that exhibit large intracluster

variance. We have seen that by punishing large variance clusters, bad initializations

can be readily overcome, to consistently uncover partitionings of high quality, irrespec

tive of the initial choice of the cluster centers. Additionally, the clusters are balanced

in terms of their variance. Moreover, we incorporated in our method an exponent that

controls how strongly the weighted objective penalizes larger variance clusters relative

to smaller variance clusters and developed a practical framework to automatically tune

this exponent to the underlying dataset, to correctly uncover the intrinsic structures

in the data. We also extended our approach to perform clustering in kernel space. The

conducted experiments confirmed the robustness of the proposed method over bad ini

tializations, as well as its efficacy, and demonstrated that kmeans (or kernel kmeans)
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solutions can be significantly improved when initialized by the solution returned by our

algorithm.

In Chapter 3 and Chapter 4, we focused on unsupervised multiview learning and

presented methods that assign weights to the views such that degenerate views are au

tomatically identified and appropriately handled, a subject overlooked in the multiview

literature. Analytically, in Chapter 3, we employed convex mixture models (CMMs) [71]

to represent the views and presented two multiview approaches that identify exem

plars (i.e. cluster representatives) in the dataset by simultaneously exploiting all avail

able views. The first, considers all views as being equally important (i.e. it does not

employ view weights) and is characterized by the ability to locate the global optimum

solution, using simple iterative updates of the involved parameters, and the ability to

handle views with different statistical properties. The second, associates a weight with

each view that reflects the quality of the view and learns those weights during training.

It can be interpreted as a mixture model whose components are CMMs (one for each

view) and, like the first approach, takes into account the different statistical properties

of the views (however, only local optima can be found in this case). The underlying op

timization is carried out using the EM algorithm. The empirical evaluation revealed the

superiority of our weighted framework and illustrated that exploiting multiple views can

boost clustering performance, especially if the views participate with different weights.

Moreover, it verified that concatenating the views is not an effective multiview strategy.

In Chapter 4, we tackled the multiview problem from a different perspective. We

employed kernel matrices to represent the views and learned a weighted combination

of the kernel matrices, that reflects the views’ relevance to the clustering task, along

with the cluster assignments. Our formulation utilizes a user specified exponent to

control the sparsity of the weights, which resembles the pnorm constraint applied in

MKL [62]. We have shown that a low value of the exponent results in retaining only the

best view (sparse solution), which is useful if most views are of poor quality, while a

large value leads towards a uniform solution, which is preferable when all views are of

similar quality. Intermediate values provide a tradeoff between these ends. To learn the

weights and partition the instances, two iterative algorithms were devised, one based

on kernel kmeans [37,90] and another based on spectral techniques [37], where the

view weights are updated using closedform expressions. From the experiments, it was

observed that the new methods, particularly the one based on kernel kmeans, yield

high quality partitionings and that view weighting enhances clustering performance, if

the sparsity of the weights is appropriately moderated.

Finally, in Chapter 5 we proposed a novel MKL formulation that considers the ratio

between the margin criterion of SVM [12, 19] and the intracluster variance criterion

of kernel kmeans [37, 90], to simultaneously infer an appropriate kernel (i.e. infer

its parameters) and cluster the instances. Therefore, both the separation and the

compactness of the clusters are utilized in the objective. We proved that the ratiobased

objective is invariant to scalings of the learned kernel, hence it can correctly capture
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its quality. The same does not hold when relying solely on the margin to perform MKL,

which is the most common criterion employed by existing MKL approaches. Moreover,

based on the scale invariance, we proved that when basis kernels are linearly mixed, our

formulation is invariant (on its global optimum) to the type of norm constraint on the

kernel parameters, making the selection of a suitable norm less crucial. Additionally,

we have shown that different types of parametric kernels can be learned using our

method. Numerical experiments demonstrated that our framework compares favorably

to approaches that rely either on the margin or the intracluster variance.

6.2 Directions for Future Work

Next, we offer some insights on a number of open issues related to this thesis that could

be studied in future work.

For the method presented in Chapter 2, it would be interesting to explore other

possible ways of automatically determining the value of the exponent in the weighted

objective, besides the one proposed here. For the CMMbased multiview approaches

(Chapter 3), a thorough empirical investigation of their application to kernel space

clustering, following the ideas of Section 3.3.3, would provide further insight on the

settings under which our multiview methods prove advantageous. The weighted com

bination of the views’ kernel matrices considered in Chapter 4, utilizes a user specified

exponent to regulate the sparsity of the weights. Finding a way to automatically tune

this exponent to the dataset would greatly enhance the applicability of our formula

tion. Moreover, exploiting other, nonlinear, combinations of the views is in our plans.

Finally, our ratiobased MKL method (Chapter 5) is currently limited to twocluster

problems. Although it is possible to tackle multiple cluster problems by iteratively

solving a sequence of twocluster problems, an alternative strategy would be to extend

our approach to directly handle multiple clusters, following the ideas in [130,133].

Some additional and more general lines for future research are outlined on the

following. Most of the existing multiview methods, including those presented in this

thesis, make an implicit assumption that all views are available for every instance in

the dataset. However, in practice, incomplete views may occur, where the representa

tions of certain instances are not available in those views. For example, on a collection

of web pages that are represented in terms of their text and the anchor text of the

inbound links, it is expected that the second view will be an incomplete view, since

not all web pages have inbound links. Developing multiview approaches which handle

incomplete views and also assign weights to the views, would provide a more com

prehensive solution to the multiview problem. Moreover, the ideas of view weighting

could be adapted to single view datasets in order to perform unsupervised feature (at

tribute) selection [52]/weighting [54]. Specifically, each feature can be treated as being

a distinct view and the weights in the multiview algorithm could be used to keep a

subset of the features (feature selection) or assign different degrees of importance to
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the features (feature weighting). Another intriguing direction for future work is to com

bine multiview learning with MKL techniques in order to infer an appropriate kernel

for each view. Various paths can be followed to solve this problem. For example, the

kernel of each view can be learned independently from the other views. However, a

more principled approach would be to consider all views while learning the kernels, to

allow the views to interact. Moreover, the same or different types of parametric kernels

can be employed for each view (e.g. a linear or nonlinear mixture of basis kernels) and

views may be weighted or not. Finally, it would be interesting to employ the methods

presented in this thesis to applications that involve data clustering, such as web data

analysis, image segmentation, key frame extraction and bioinformatics.
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Appendix A

Proofs Related to the Weighted

Multiview CMM Method (Chapter 3)

A.1 Proof of the EM Algorithm for the Weighted Multiview CMM

A.2 Proof of the Assignment Step for the Weighted Multiview CMM

A.1 Proof of the EM Algorithm for the Weighted Multiview CMM

For clarity we will restate here all mathematical quantities that are necessary for our

proof and explicitly declare the parameters they depend upon. Given a dataset X =

{xi}N
i=1, where xi =

{
x

(v)
i

}V

v=1
, x

(v)
i ∈ ℜd(v)

, the distribution of our mixture model is:

F (x;Θ) =
V∑

v=1

πvQv(x(v); {qj}N
j=1), x(v) ∈ ℜd(v)

, (A.1)

where Qv(x(v); {qj}N
j=1) =

N∑

j=1

qjf
v
j (x(v)), Θ =

{
{πv}V

v=1 , {qj}N
j=1

}
,

πv ≥ 0,

V∑

v=1

πv = 1, qj ≥ 0,

N∑

j=1

qj = 1.

Note that the exponential family distributions f v
j (x(v)) are independent of the param

eters Θ. Our target is to maximize the loglikelihood (A.2) of the dataset X under the

mixture model distribution F (x;Θ), w.r.t. the parameters Θ.

L (X ;Θ) =

N∑

i=1

log

(
V∑

v=1

πvQv(x
(v)
i ; {qj}N

j=1)

)
(A.2)
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Let {X ,Z} be the complete dataset, where Z = {zi}N
i=1 contains the latent variables

indicating the mixture component responsible for generating each instance, i.e. zi ∈
{1, 2, . . . , V }. It must be stressed that the zi values are not known in practice. Now we

will analytically prove each step of the EM process [12,35].

From our model the next probabilities directly follow:

P (zi = v;Θ) = πv, (A.3)

P (xi|zi = v;Θ) = Qv(x
(v)
i ; {qj}N

j=1). (A.4)

Estep. This step uses the current parameter values Θ(t) to find the posteriors of

the latent variables P (zi = v|xi;Θ
(t)), by applying the Bayes’ theorem:

P (zi = v|xi;Θ
(t)) =

P (zi = v;Θ(t))P (xi|zi = v;Θ(t))

P (xi;Θ
(t))

=
πv(t)Qv(x

(v)
i ; {q(t)

j }N
j=1)∑V

v=1 πv(t)Qv(x
(v)
i ; {q(t)

j }N
j=1)

.

(A.5)

Mstep. This step evaluates the expectation of the complete dataset loglikelihood

under the current latent variables posterior distribution (A.6), for some general param

eter value Θ.

Q(Θ;Θ(t)) =

N∑

i=1

< log P (zi, xi;Θ) >P (zi|xi;Θ
(t))

=

N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t)) log (P (zi = v;Θ)P (xi|zi = v;Θ))

=
N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t)) log

(
πvQv(x

(v)
i ; {qj}N

j=1)
)

=

N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t)) log πv+

+
N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t)) log

(
N∑

j=1

qjf
v
j (x

(v)
i )

)
(A.6)

Subsequently it maximizes this expectation to get a new estimate for the parameters,

taking into account any imposed constraints. The constrained expectation is given by

(A.7), where λ, µ are Lagrange multipliers (the nonnegativity constraints on πv and qj

are not enforced into (A.7), since they will be satisfied by the obtained solution).

Qcon(Θ;Θ(t)) = Q(Θ;Θ(t)) + λ

(
V∑

v=1

πv − 1

)
+ µ

(
N∑

j=1

qj − 1

)
(A.7)

We begin by optimizing (A.7) w.r.t. πv, by setting the corresponding derivative equal
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to zero:

∂Qcon(Θ;Θ(t))

∂πv
= 0 ⇒

N∑

i=1

P (zi = v|xi;Θ
(t))

πv
+ λ = 0

⇒ −λπv =
N∑

i=1

P (zi = v|xi;Θ
(t)). (A.8)

Summing over v and making use of the constraint
∑V

v=1 πv = 1 we obtain:

−λ

V∑

v=1

πv

︸ ︷︷ ︸
=1

=

N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t))

︸ ︷︷ ︸
=1

⇒ λ = −N. (A.9)

Using (A.9) to eliminate λ in (A.8) and rearranging, gives the new estimation:

πv(t+1) =
1

N

N∑

i=1

P (zi = v|xi;Θ
(t)).

The maximization of (A.7) w.r.t. qj, by setting the corresponding derivative equal to

zero, follows:

∂Qcon(Θ;Θ(t))

∂qj

= 0 ⇒
N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t))

f v
j (x

(v)
i )

∑N
j′=1 qj′f v

j′(x
(v)
i )

+ µ = 0. (A.10)

By multiplying both sides of (A.10) with qj and then summing over j, together with the

constraint
∑N

j=1 qj = 1, gives:

−µ

N∑

j=1

qj

︸ ︷︷ ︸
=1

=

N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t))

N∑

j=1

qjf
v
j (x

(v)
i )

∑N
j′=1 qj′f

v
j′(x

(v)
i )

︸ ︷︷ ︸
=1︸ ︷︷ ︸

=1

⇒ µ = −N. (A.11)

Using (A.11) to eliminate µ in (A.10) and rearranging, we get:

qj =
qj

N

N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t))

f v
j (x

(v)
i )

∑N
j′=1 qj′f v

j′(x
(v)
i )

. (A.12)

Since we cannot solve analytically for qj in (A.12), we must resort into iteratively

performing updates on qj during the Mstep, before we proceed to the next EM iteration.

That is the reason for writing t′ for the new estimations in the following equation, instead

of t.

q
(t′+1)
j =

q
(t′)
j

N

N∑

i=1

V∑

v=1

P (zi = v|xi;Θ
(t))

f v
j (x

(v)
i )

∑N
j′=1 q

(t′)
j′ f v

j′(x
(v)
i )
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A.2 Proof of the Assignment Step for the Weighted Multiview CMM

The weighted multiview CMM represents all instances as possible exemplars, since

each view’s CMM has N components, centered at the corresponding instances. Viewing

our model as a mixture model, for a given parameter value Θ an instance xi is softly

assigned to the jth component (cluster) with probability P (ci = j|xi;Θ), where ci ∈
{1, 2, . . . , N} indicates the CMM component responsible for generating xi. Apparently,

the ci values are unknown in practice. By applying Bayes’ theorem we write:

P (ci = j|xi;Θ) =
P (ci = j;Θ)P (xi|ci = j;Θ)

P (xi;Θ)
=

P (ci = j;Θ)P (xi|ci = j;Θ)
∑V

v=1 πvQv(x
(v)
i ; {qj}N

j=1)
. (A.13)

For our model it holds that:

P (zi = v|ci = j;Θ) = P (zi = v;Θ) = πv, (A.14)

P (ci = j;Θ) = P (ci = j|zi = v;Θ) = qj , (A.15)

P (xi|zi = v, ci = j;Θ) = f v
j (x

(v)
i ). (A.16)

The second nominator term in (A.13) with the help of (A.14), (A.16) is estimated as:

P (xi|ci = j;Θ) =
V∑

v=1

P (xi|zi = v, ci = j;Θ)P (zi = v|ci = j;Θ) =
V∑

v=1

πvf v
j (x

(v)
i ).

(A.17)

Substituting (A.15) and (A.17) into (A.13) we obtain:

P (ci = j|xi;Θ) =
qj

∑V
v=1 πvf v

j (x
(v)
i )

∑V
v=1 πvQv(x

(v)
i ; {qj}N

j=1)
. (A.18)

Note that the above probability is used in equation (3.17) for those components

whose corresponding instances are selected as the exemplars that represent each of

the M clusters.
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Appendix B

Proofs Related to the MVKKM and

MVSpec Methods (Chapter 4)

B.1 Proof of the Weight Update Formula for MVKKM

B.2 Proof of the Weight Update Formula for MVSpec

B.1 Proof of the Weight Update Formula for MVKKM

For convenience, let us rewrite the optimization problem for given clusters, using the

form of the objective in (4.7):

min
{wv}

V
v=1

V∑

v=1

wp
v

N∑

i=1

M∑

k=1

δik‖φ(v)(x
(v)
i ) − m

(v)
k ‖2, s.t. wv ≥ 0,

V∑

v=1

wv = 1. (B.1)

Consider the case for p > 1 and denote by Dv the intracluster variance of the vth view

feature space H(v), i.e. Dv =
∑N

i=1

∑M
k=1 δik‖φ(v)(x

(v)
i ) − m

(v)
k ‖2. By incorporating into

the objective the sumtounity constraint, the Lagrangian becomes:

L =
V∑

v=1

wp
vDv + λ

(
V∑

v=1

wv − 1

)
. (B.2)

Setting the derivative of the Lagrangian to zero yields

∂L
∂wv

= 0 ⇒ pw(p−1)
v Dv + λ = 0 ⇒ wv =

( −λ

pDv

) 1
p−1

. (B.3)

By summing over all views, together with the constraint
∑V

v=1 wv = 1, we get

V∑

v′=1

( −λ

pDv′

) 1
p−1

= 1 ⇒ (−λ)
1

p−1 = 1/
V∑

v′=1

(
1

pDv′

) 1
p−1

. (B.4)
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Finally, substituting (B.4) into (B.3) completes the proof:

wv = 1/

V∑

v′=1

(Dv

Dv′

) 1
p−1

if p > 1. (B.5)

Note that the nonnegativity of the weights was not enforced into (B.2), since it is verified

by the solution (B.5), as Dv ≥ 0.

For the p = 1 case, it easy to see that for any weight values wv′ obeying the con

straints of (B.1) and corresponding Dv′ ≥ 0, the following holds:

Dv∗ ≤
V∑

v′=1

wv′Dv′ , where v∗ = argmin
v′

Dv′ , (B.6)

from which directly follows that (B.1) is minimized for

wv =

{
1, v = argminv Dv

0, otherwise
if p = 1. (B.7)

B.2 Proof of the Weight Update Formula for MVSpec

Using the form of the objective in (4.8), the optimization problem for given clusters can

be written as:

min
{wv}

V
v=1

V∑

v=1

wp
v

(
tr(K(v)) − tr(Y ⊤K(v)Y )

)
, s.t. wv ≥ 0,

V∑

v=1

wv = 1. (B.8)

The similarity to the MVKKM optimization problem is evident, with the only difference

being that Dv = tr(K(v)) − tr(Y ⊤K(v)Y ). Since K(v) is a positive semidefinite matrix

and Y ⊤Y = I, Y ∈ ℜN×M , by the KyFan theorem [77] we have Dv ≥ 0. Therefore, the

derivations are analogous to the MVKKM case.
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