
Embedded Testing Architectures

DISSERTATION

submitted to the Inquiry Commission,

designated by the General Assembly of Special Composition of

the Department of Computer Science & Engineering

of the School of Sciences of University of Ioannina,

by

Vasileios Tenentes

in partial fulfillment of the requirements

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

June 2013

Advisory Committee Inquiry Commission

Xrysovalantis Kavousianos Xrysovalantis Kavousianos

University of Ioannina University of Ioannina

Yiorgos Tsiatouhas Yiorgos Tsiatouhas

University of Ioannina University of Ioannina

Krishnendu Chakrabarty Krishnendu Chakrabarty

Duke University Duke University

Aristides Efthymiou

University of Ioannina

Dimitris Nikolos

University of Patras

Dimitris Gizopoulos

University of Athens

Emmanouil Kalligeros

University of the Aegean

c©Copyright by Vasileios Tenentes 2013

All Rights Reserved

This thesis is deticated to my parents.

For their endless love, support and understanding

Acknowledgements

First and foremost I have to thank my parents for their love and support throughout my

life.

I would like to sincerely thank my supervisor, Prof. Kavousianos, for his guidance and

support throughout this study, and especially for his confidence in me. I wish that the

priviledge of working closely with him blessed me with just some of his virtues as a scien-

tist and a person. I would also like to thank Prof. Chakrabarty for serving as a member

of my thesis committee and for the oportunity he gave me to spend some months at Duke

University. Not just his insight and his ingenious mind, but also his multicultural person-

ality make the work with him a delightful experience. Also, I thank Prof. Tsiatouhas for

the discussions we had and his important tutoring and Prof. Kalligeros for the interpre-

tation of some results presented in this thesis.

Also, I want to thank my colleagues Vartziotis and Sfikas for the important discussions

we had throughout many lunches.

To all my friends, thank you for your understanding and encouragement. Although, I

cannot list your names, you are always part of my life.

I am also grateful to all those people that supported with their hard work the “Heraclitus

II ” scholarships.

Table of Contents

1 Introduction 1

1.1 Prologue . 1

1.2 Manufacturing of Integrated Circuits . 3

1.3 Defects’ Sources . 4

1.4 Manufacturing Testing . 4

1.5 Structural Manufacturing Testing . 6

1.6 Modeling of ... Unmodeled Defects . 8

1.7 Basic Test Cost Factors . 9

1.8 Design for Testability . 10

1.8.1 Ad-hoc DFT . 11

1.8.2 Scan Design . 12

1.8.3 Built-In Self-Test . 13

1.8.4 Test Resource Partitioning . 13

1.9 Additional Test Challenges . 16

1.9.1 The post-Dennard Era: Low-power Testing 16

1.9.2 Multi-Core Systems-on-Chips and IP Cores 18

1.10 Contributions & Dissertation Structure . 19

2 Background 21

2.1 Fault Models . 21

2.1.1 Stuck-at Faults . 21

2.1.2 Transistor Faults: Stuck-open and Stuck-short 21

2.1.3 Wire Open and Short Faults . 22

2.1.4 Delay testing and Delay Fault Models 25

2.1.5 Automatic Test Pattern Generation 28

2.1.6 N -detection . 28

2.1.7 Unmodeled Faults . 28

2.2 Test Response Partitioning Techniques . 31

2.2.1 Static LFSR Reseeding Techniques 32

2.2.2 Dynamic LFSR Reseeding . 35

2.2.3 Code-based Techniques . 37

2.2.4 Industry Practice: Embedded Deterministic Test (EDT) 39

i

2.3 Low-Power Testing Techniques . 41

2.3.1 Structural Low-Power Testing Approaches 42

2.3.2 Algorithmic Approaches: Low-Power X-Filling Techniques 44

3 State-Skip LFSRs: Bridging the Gap between Test Data Compression

and Test Set Embedding 46

3.1 Overview . 46

3.2 Motivation . 47

3.3 State-Skip Circuit And Proposed LFSR Encoding 49

3.3.1 State-Skip Circuit . 50

3.3.2 LFSR Encoding using State-Skip Circuits 52

3.4 Single-State-Skip LFSRs . 56

3.4.1 Decompression Architecture . 57

3.4.2 Experimental Results . 58

3.4.3 Limitations . 61

3.5 Variable-State-Skip LFSRs . 62

3.5.1 VSS LFSRs Scheme . 63

3.5.2 Decompression Architecture . 63

3.5.3 Experimental Results of VSS LFSRs 65

3.6 Comparisons . 68

3.7 Conclusions . 71

4 Self-Freeze Linear Decompressors for Low Power Testing 72

4.1 Overview . 72

4.2 Background . 73

4.3 Power Aware Encoding . 75

4.3.1 Test Data Analysis . 76

4.3.2 Encoding Algorithm . 79

4.4 Architecture . 80

4.5 Experiments . 82

4.6 Conclusions . 85

5 Defect Aware X-Filling for Low-Power Testing 86

5.1 Overview . 86

5.2 Modified Fill Adjacent - the new X-Filling Method 87

5.2.1 Generation of Power Efficient Candidate Test Vectors 87

5.2.2 Evaluation and Selection of Test Vectors 90

5.3 Experiments . 92

5.4 Conclusions . 97

6 LFSR Reseeding Techniques for High-Quality Testing 98

6.1 Overview . 98

6.2 Motivation . 99

ii

6.3 A Deviation-based Metric for Time-related Defects 102

6.4 Generation of Defect-Aware Seeds . 104

6.4.1 Window-Based Reseeding . 104

6.4.2 Classical Static LFSR Reseeding and Dynamic Reseeding 108

6.5 Fault simulation Results . 111

6.6 Conclusions . 117

7 Low-Power and High-Quality Test Data Compression 120

7.1 Linear-based Decompressor . 120

7.1.1 Motivational Example . 121

7.1.2 Proposed Method . 123

7.1.3 Experimental Results . 130

7.2 Code-based Decompressor . 135

7.2.1 Motivation . 136

7.2.2 Basic Idea . 137

7.2.3 Encoding Method . 139

7.2.4 Unmodeled Defect Coverage Improvement 146

7.2.5 Decompression Architecture . 147

7.2.6 Experimental Results . 152

7.3 Conclusions . 160

8 Conclusions 161

iii

List of Figures

1.1 ITRS’07 test cost predictions . 2

1.2 Silicon to ingot and then sliced to create wafers. 2

1.3 Dies printed on wafer . 2

1.4 Packaging . 3

1.5 Silicon defects . 3

1.6 Possible causes of failures . 4

1.7 Structural testing, wafer slicing and faulty die disard 5

1.8 KGD packaging and functional testing . 5

1.9 Basic Testing Approach. 6

1.10 Unmodeled defect coverage . 8

1.11 Explosion of test data volume. 9

1.12 DFT test point . 11

1.13 Adding test points at a sequential circuit. 11

1.14 A typical scan design. 12

1.15 BIST scheme. 13

1.16 Test Resource Partitioning Architecture . 14

1.17 ITRS’07 compression prediction requirements 15

1.18 Moore’s Law in Respect to Transistors Number, Single Thread Perfor-

mance, Frequency, Power and Number of Cores 16

2.1 Bridging fault models . 22

2.2 LOC and LOS operation for delay testing 27

2.3 Output deviations example . 30

2.4 Classical LFSR-based decompression architecture 33

2.5 Classical LFSR reseeding example . 34

2.6 (a) Static reseeding versus (b) dynamic reseeding 35

2.7 Partial/Dynamic LFSR symbolic simulation 36

2.8 Optimal Selective Huffman Example . 38

2.9 A Ring Generator . 40

2.10 EDT basic Architecture . 40

2.11 Switching Activity caused by Successive Slices 42

2.12 (a) Low power EDT controlled by an additional “update” channel, (b) Low

power EDT controlled by compressed stimuli 43

iv

3.1 Classical LFSR-based decompression architecture 48

3.2 Average TDV improvement and average TSL increase of window-based

LFSR encoding compared to the encoding of L = 1 49

3.3 Example of ordinary LFSR (a) and State-Skip LFSR (b) for k = 2 50

3.4 State-Skip LFSRs encoding process. 52

3.5 Example of State-Skip LFSR encoding. 55

3.6 SSS LFSR Decompression Architecture. 57

3.7 TSL Improvement for Various Values of k, S and L. 59

3.8 Hardware overhead of State Skip Circuit. 60

3.9 VSS LFSR Decompression Architecture. 64

3.10 TSL using one additional speed up factor K. 66

3.11 Hardware overhead of State-Skip circuits in the range [2, 500]. 67

4.1 Switching activity caused by successive slices 73

4.2 (a) Low power PDT controlled by an additional “update” Channel, (b)

Low power EDT controlled by compressed stimuli 74

4.3 Incompatibilities of the test set and UPDATES per slices of FDR 75

4.4 a) Configuration selection algorithm, b) Test set encoding 79

4.5 Self-freeze architecture . 80

4.6 PET (R) metric validation using Monte Carlo generated test sets 82

4.7 PET (R) metric validation on actual test set (s5378) 83

4.8 Switching activity reduction, test data volume increase trade-off 84

5.1 X-Filling Flow for MFA/MFA+P . 90

5.2 Transition delay fault coverage for various values of L (for s9234). 93

5.3 Power-reduction/Defect-coverage tradeoff for s38417. 95

5.4 Transition delay fault coverage ramp-up for s9234. 96

6.1 Generic LFSR reseeding architecture . 100

6.2 Example of classical and window-based LFSR reseeding 101

6.3 An example to illustrate the generation of T candidate seeds 106

6.4 Final ranking of the selected seeds . 108

6.5 Illustration of the generation of candidate seeds for dynamic reseeding . . . 110

6.6 Transition fault coverage ramp-up for window-based reseeding (w = 5) . . 118

6.7 Transition fault coverage ramp-up for dynamic reseeding 119

7.1 Low power decompressors . 121

7.2 Example of encoding using shadow registers 122

7.3 Proposed Architecture . 124

7.4 Encoding example . 125

7.5 Percentage of encode-able test cubes for the Ethernet benchmark 128

7.6 Update Generation Module . 129

7.7 Transition delay fault coverage ramp-up 134

v

7.8 Classical selective Huffman coding . 136

7.9 Selective Huffman coding with pre-merged blocks 137

7.10 Percentage of mergeable test cubes for ethernet 141

7.11 Pre-Merging Example . 142

7.12 Encoding process . 144

7.13 Swap procedure on node N1 for repeat-friendly code 145

7.14 Blocks replacement and candidates generated 146

7.15 Proposed decompression architecture . 148

7.16 Signal probabilities generation unit . 149

7.17 Selective Huffman Decoder . 151

7.18 Tradeoffs for a value for s13207 . 153

7.19 TDV, TAT and ASA for various blocksize l values on s13207 154

7.20 Tradeoffs for blocks substitution probability P on s13207 155

vi

List of Tables

1.1 Contributions and Dissertation Structure 19

2.1 Test Set Partitioned to Data Blocks and Distinct Blocks’ Frequencies . . . 38

2.2 Fill-Adjacent X-Filling∗ . 44

3.1 TDV and TSL of classical (L = 1) and window-based (L > 1) LFSR reseeding 48

3.2 TSL improvements . 61

3.3 TSL improvements of VSS LFSR architecture 67

3.4 Variable VS Single State-Skip for multiple cores 68

3.5 Comparisons of State Skip with other TSE methods 69

3.6 Comparisons with TDC methods∗ . 70

4.1 Proposed method results. TDV reported in Kbits. 84

5.1 FA and Proposed X-Filling∗ . 87

5.2 X-Filling for test cube T=xxx1xxx0xxx0xxxxx1 88

5.3 Total average power reduction (% compared to RF) 92

5.4 Defect Coverage (%) . 94

6.1 Test data volume results (in Kbits) . 112

6.2 Test sequence length results (# vectors applied) 113

6.3 Transition-fault coverage (%) . 114

6.4 BCE+ and random bridging-fault coverage results (%) 116

7.1 Comparisons TSL, TDV, TDF & BF (%) 131

7.2 Benchmarks Information . 153

7.3 Comparisons TDV, TSL and ASA . 157

7.4 Comparisons TDF . 158

7.5 Comparisons with Test Data Compression Techniques (in Kbits) 158

7.6 Hardware Overhead Comparisons . 159

vii

Glossary

AMC Airborne Molecular Contamination

ASA Average Switching Activity

ATE Automatic Test Equipment

ATPG Automated Test Pattern Generation

BCE+ Bridging Coverage Estimation

BF Bridging Fault

BIST Built-In Self-Test

CMOS Complementary Metal-Oxide-Silicon

CUT Circuit Under Test

DFT Design For Testability

DRAM Dynamic Random-Access Memory

EDT Embedded Deterministic Test

FA Fill Adjacent

IC Integrated Circuit

IDDQ Technique for monitoring steady-state power supply (Iddq)

I/O Input/Output

IP Intellectual Property

ISCAS International Symposium on Circuits and Systems (refers to benchmark’ suite)

ITA Interface Test Adapter

ITRS International Technology Roadmap for Semiconductors

IWLS International Workshop on Logic and Synthesis (refers to benchmark’ suite)

KGD Known Good Die

LFSR Linear Feedback Shift Register

LOC Launch-On-Capture

LOS Launch-On-Shift

LSI Large-Scale Integration

LSSD Level-Sensitive Scan Design

MCSoC Multi-Core System on Chip

MFA Modified Fill Adjacent

MID Mobile Internet Device

ORA Output Response Analyzer

OSH Optimal Selective Huffman

PCI Peripheral Component Interconnect

viii

PDA Personal Digital Assistant

PI Primary Input

PO Primary Output

PPI Pseudorandom Primary Input

PPM Parts Per Million

PPO Pseudorandom Primary Output

RAM Random-Access Memory

PF Preferred-Fill

RF Random-Fill

RISC Reduced Instruction Set Computing

SE Scan Enable

SI Scan Input

SO Scan Output

SoC System on Chip

SSI Small-Scale Integration

SSLFSR State-Skip Linear Feedback Shift Register

SSS LFSR Single-State-Skip Linear Feedback Shift Register

TAT Test Application Time

TDC Test Data Compression

TDF Transition Delay Fault

TDP Thermal Design Power

TDV Test Data Volume

TPG Test Pattern Generator

TRP Test Resource Partitioning

TSE Test Set Embedding

TSL Test Sequence Length

UDL User Define Logic

VDSM Very-Deep Sub-Micro

VLSI Very-Large-Scale Integration

VSS LFSR Variable-State-Skip Linear Feedback Shift Register

ix

Abstract

Tenentes, Vasileios, PhD

Department of Computer Science & Engineering, University of Ioannina, Greece.

June, 2013

Title of Dissertation: Embedded Testing Architectures

Thesis Supervisor: Xrysovalantis Kavousianos

The shrinking of transistor’s size in the Very Deep Sub-Micron (VDSM) technologies en-

abled the manufacturing of Multi-core Systems-on-Chips (MCSoCs) that contain billions

of transistors. The exponential decrease in the transistor’s manufacturing cost is the main

contributor to the widespread use of electronic systems. However, due to manufacturing

process imperfections, which cause manufacturing defects, electronic devices need to be

tested for compliance with their specifications before they are shipped to customers. Test-

ing of such complex systems becomes increasingly difficult and costly while the overall

cost must remain below certain bounds.

Manufacturing testing of Integrated Circuits (ICs) is conducted by expensive specialized

Automatic Test Equipment (ATE) with limited resources, such as communication chan-

nels, memory and channels’ bandwidth. Test cost depends on the time a chip spends on

an ATE as well as on the utilization of these resources. An efficient testing method should

be fast, accurate and must utilize the minimum number of ATE resources. At the same

time, outdated ATEs are commonly in use due to the high cost associated with upgrading

this equipment. To enable the testing of contemporary dense devices on outdated ATE’s,

Test Resource Partitioning (TRP) techniques emerged. According to TRP, testing archi-

tectures are embedded on chip and operate in synergy with ATEs in order to decrease

test cost.

Test cost is also affected by both the shrinking of transistor and the high integration of

transistors in MCSoCs. As transistor shrinks the amount of tests that are required in

order to achieve high defect coverage and assure quality goals increases, due to the ICs

becoming more and more sensitive to physical phenomena. Moreover, the high integration

of transistors in MCSoCs sets power consumption constraints during testing. Violations

of these constraints during testing may cause circuits failures, which do not occur in the

field. Power consumption constraints increase further test complexity, since the circuit

consumes more power in test mode than in normal mode of operation. As a result, new

x

low-power testing techniques are required in order to handle in a unified manner all test

cost related objectives.

In this dissertation methods are presented that target multiple test cost objectives:

1. To decrease both the test application time and the ATE memory requirements, a new

technique is proposed that shortens the test sequence length of Test Set Embedding (TSE)

techniques. TSE techniques have very small ATE memory requirements, but they suffer

from long test sequences that forbid their practical use. A new device is proposed that

skips efficiently the useless parts of the test sequences, making TSE techniques attractive

for manufacturing testing.

2. To reduce the power demands of linear-based decompressors without any additional

ATE memory requirements, a linear-based method which offers both high compression

and low shift power consumption is proposed. A low-cost, flexible scheme is also described,

which can be combined with any linear-based method for reducing the shift power during

testing.

3. To reduce the average power requirements of tests under peak power constraints, and

also to increase the arbitrary defects that can be detected by these tests, a unified al-

gorithmic test generation technique is proposed. The proposed method generates tests

that exhibit average power reduction similar to that of the best power-driver algorithmic

method in the literature, while at the same time, a) it complies with peak power spec-

ifications, and b) it generates tests with enhanced defect coverage on arbitrary defects.

4. To increase the defect coverage of the generated tests, new defect-oriented compression

algorithms are proposed that can be applied on most linear-based reseeding schemes. The

proposed methods are based on a probabilistic fault model and a novel probabilistic fault

coverage measurement metric for grading the tests during the compression of linear-based

decompressors. The case studies include classical linear decompressors with both classical

static reseeding and window-based static reseeding, as well as the state-of-the-art ring

generators with dynamic reseeding. It is shown that, compared to standard compression-

driven approaches, higher defect coverage is obtained without any loss on compression.

5. To reduce power consumption during testing and also to increase the defect coverage, a

novel deterministic TRP architecture is presented. The proposed method can be applied

on both a) linear-based and b) symbol-based TRP techniques. The application of the

scheme on code-based decompressors revealed an interesting property: the new decom-

pressor exploits both the low fill rate and the correlations in the test cubes, offering better

compression than any existing compression technique. Moreover, this property, together

with the decompressor’s low pin-count interface, enables the usage of the same decompres-

sor for testing Intellectual Property (IP) and non-IP cores that usually coexist in MCSoCs.

xi

Chapter 1

Introduction

1.1 Prologue . 1

1.2 Manufacturing of Integrated Circuits . 3

1.3 Defects’ Sources . 4

1.4 Manufacturing Testing . 4

1.5 Structural Manufacturing Testing . 6

1.6 Modeling of ... Unmodeled Defects . 8

1.7 Basic Test Cost Factors . 9

1.8 Design for Testability . 10

1.9 Additional Test Challenges . 16

1.10 Contributions & Dissertation Structure . 19

1.1 Prologue

Nowadays, Very-Deep-Sub-Micron (VDSM) integration technology is in our everyday life

with portable Multi-Core Systems-on-Chips (MCSoCs) that contain billions of transistors.

However, even from their first construction, in the 1960s, the integrated circuits (ICs),

commonly referred to as microchips or simply chips, were accompanied by the need of

testing. Tens of transistors integrated into Small-scale integration (SSI) devices in the

early 1960s and hundreds of transistors integrated into medium-scale integration (MSI)

devices in the late 1960s, were relatively simple to test. However, thousands and tens

of thousands of transistors integrated into large-scale integration (LSI) devices in the

1970s and hundreds of thousands of transistors integrated into very-large-scale integration

(VLSI) devices in the early 1980s introduced serious test challenges.

This trend of higher integration scaling over the years, generally known as Moore’s law

[104], is the result of the exponential decrease in a transistor’s manufacturing cost. How-

ever, the test cost of a transistor does not share the same trend. Figure 1.1 illustrates the

1

Figure 1.1: ITRS’07 test cost predictions

Figure 1.2: Silicon to ingot and then sliced to create wafers.

Figure 1.3: Dies printed on wafer

test versus manufacturing cost of a transistor over the years as reported in 2007’s Inter-

national Technology Roadmap of Semiconductors (ITRS) [2]. These news were alarming

and IC testing emerged as a potential bottleneck for future exponential integration scaling

according to Moore’s law.

This section presents the motivation for IC testing and the major drivers that affect

test cost. It introduces scan design, which is the most widely used manufacturing testing

architecture, and presents the new architectural and designing trends that affect test cost.

2

Figure 1.4: Packaging

Figure 1.5: Silicon defects

1.2 Manufacturing of Integrated Circuits

The manufacturing of ICs consists of wafer fabrication and packaging. Wafer fabrication

involves first creating the wafer from sand (Figure 1.2) and then printing geometric shapes

corresponding to the layout onto wafer layers [43] (Figure 1.3). As each wafer contains a

large number of chips, the wafer is first cut and each die is packaged (Figure 1.4).

The manufacturing process of ICs is not a perfect process. Imperfections of this process

are the sources of defects, which are responsible for chip malfunctions. Defects should be

identified and the defective chips must be discarded before shipment of the products. For

example, particles (material which is not removed in the areas exposed by the masking

process) may cause conductive or non-conductive bridges between two or more lines;

incorrect spacing between connections (design rule violation or masking problem) may

cause circuit shorts; holes (exposed areas that are unexpectedly etched) may lead to open

interconnects or delays. Images taken with electronic microscope of manufacturing defects

are presented in Figure 1.5. Figures 1.5a and 1.5b present two sites where particles trapped

in the silicon during the manufacturing process caused non-conductive and conductive

defects respectively. Figure 1.5c presents a thin interconnection, probably caused by

process variations, which may cause the poor performance of the interconnection because

of its higher resistivity.

The quality of a manufacturing process is important because it is linked to the profit

margin. To grade the quality of an ICs manufacturing process, a metric is used, named

yield. As yield of a manufacturing process is defined the percentage of acceptable parts

3

Figure 1.6: Possible causes of failures

among all parts that are fabricated [172].

Yield =
Number of acceptable parts

Total number of parts fabricated

1.3 Defects’ Sources

Several examples of contaminations and mechanisms responsible for defects are identified

by the ITRS in 2011 [3] and are also shown in Figure 1.6:

• Airborne Molecular Contamination (AMC) or particles of organic or inorganic mat-

ter caused by the environment or by the tools.

• Process induced defects as scratches, cracks, and particles, overlay faults, and stress.

• Process variations may result in differing doping profiles or layer thicknesses.

• Deviation from design, due to pattern transfer from the mask to the wafer, results

in deviations and variations of layout and critical dimensions.

• Diffusion of atoms through layers and in the semiconductor bulk material.

To overpass completely the reasons that cause the defects is not an easy task and in

practice it is also limited by cost constraints. For example, the complete elimination of

AMC is impossible and therefore research is conducted on contamination’s tolerable levels

under cost constraints.

1.4 Manufacturing Testing

Manufacturing testing is the process applied to detect the defective chips during manu-

facturing in order to avoid shipping them to customers. Because of the high complexity

of the chips, manufacturing testing is done using Automated Test Equipment (ATE).

4

Figure 1.7: Structural testing, wafer slicing and faulty die disard

Figure 1.8: KGD packaging and functional testing

The ATE is a precision measurement tool which provides the environment required to

test the circuit under test (CUT). ATE’s architecture consists of a Workstation (usually

a computer) that synchronizes the communication between the ATE, the CUT, and the

rest of devices participating in testing. Historically, custom-designed controllers or relays

were used by ATE systems. The ATE can be used on packaged dies or directly on the

silicon wafer. For packaged dies, the ATE guides a robotic placement tool, called han-

dler, in order to place the devices on an Interface Test Adapter (ITA). For silicon wafers,

the ATE guides high precision robotic probes above the location of the dies to be tested

and the testing is conducted through contact. When silicon wafers are tested, an ATE

may sometimes test multiple dies at once. At the left-most edge of Figure 1.7 a prober

is illustrated, ready to contact a silicon wafer. At the right-most edge of Figure 1.7 a

handler is shown removing dies from a silicon wafer. At the right-most edge of Figure 1.8

a packaged die appears mounted on an ITA.

The Workstation is a normal desktop computer with sufficient Peripheral Component

Interconnect (PCI) interfaces for accommodating different types of signal-sensing cards.

Workstation takes up the role of an administrator in the ATE system: it is used for the

development of test applications and storage of responses; it performs measurements on

the CUT; it synchronizes measurements, such as I/O waveforms, at the proper timing.

The manufacturing testing flow is different on each technology but some common

phases can be isolated and are pin-pointed on Intel’s generic flow [34] in Figures 1.7 and

1.8. The wafer is first subjected to wafer sort, where most of the faulty dies are identified.

Then the wafer is cut and the faulty dies are discarder. Next, the remaining known good

dies (KGD) are packaged and are further tested in order to eliminate the defects which

escaped wafer sort (due to electrical limitations). In order to identify weak devices with

5

Figure 1.9: Basic Testing Approach.

high risk of failure in the short term, a process called burn-in testing is applied. During

burn-in testing, the chip is let to operate at high-voltage and high-temperature conditions,

in order to stress it and accelerate its infant mortality [6, 16]. Finally, the functionallity

of the device is tested for conformance with the specifications. As final step, sometimes

the manufactured chips are binned to different categories based on their performance

characteristics that were measured through the testing process and then shipped to the

customers.

However, manufacturing testing suffers also from imperfections. This is why, grading

metrics for the quality of manufacturing testing also exist. When ICs are tested, the

following two undesirable situations may occur:

1. A faulty device appears to be a good part passing the test.

2. A good device fails the test and appears as faulty.

As a result of the first case, even if all products pass acceptance test, some faulty devices

can still be found in the field. When these faulty devices are returned to the IC man-

ufacturer, they undergo Failure Mode Analysis (FMA) for possible improvements to the

ICs designing and manufacturing processes. The ratio of field-rejected parts to all parts

passing quality assurance testing is referred to as the reject rate, also called the defect

level:

Reject rate =
Number of faulty parts passing final test

Total number of parts passing final test

The reject rate provides an indication of the overall quality of the manufacturing

testing process [16]. Generally speaking, a reject rate of 500 parts per million (PPM)

chips may be considered to be acceptable, while 100PPM or lower represents high quality.

The goal of six sigma manufacturing, also referred to as zero defects, is 3.4PPM or less.

1.5 Structural Manufacturing Testing

There are many techniques developed over the years for IC’s manufacturing testing, but

the most widely adopted one, that offers the lowest reject rate versus test cost, is structural

testing. In this section, the basic concepts of structural testing are introduced.

A fault is a representation of a defect reflecting a physical condition that causes a

circuit to fail to perform as designed. A failure is a deviation in the performance of

a circuit or system from its specified behavior and represents an irreversible state of a

component such that it must be repaired in order for it to provide its intended design

6

function. A circuit error is a wrong output signal produced by a defective circuit. A

circuit defect may lead to a fault, a fault can cause a circuit error, and a circuit error can

result in a system failure [172].

During testing a set of test stimuli (referred also as test vectors or test patterns) is

applied to the n inputs of the CUT, and its m output responses are analyzed, as illustrated

in Figure 1.9. Circuits that produce the correct output responses for all input stimuli pass

the test and are considered to be defect-free. Those circuits that fail to produce a correct

response at any point during the test sequence are assumed to be defective.

The ultimate target of any ICs test mechanism is to test the chips for all possible

defects, or in other words, to achieve complete defect coverage. However, such a goal is

not realistic, and thus fault models are adopted. Fault models save time and improve test

efficiency, as a limited number of test patterns that target specific faults, related to the

structure of the CUT, are applied at the circuit’s inputs. This process is called structural

testing. Any input pattern (test stimuli), that produces a different output response in a

faulty circuit from that of the fault-free circuit is a test vector that will detect the faults.

Any set of test vectors is called a test set. The goal of Automatic Test Patterns Generation

(ATPG) tools is to find an efficient test set that detect as many defects as possible for a

given CUT and a given fault model. These tools provide a quantitative measure of the

fault-detection capabilities of a given test set for a targeted fault model. This measure is

called fault coverage and is defined as:

Fault coverage =
Number of detected faults

Total number of faults

Fault coverage is linked to the quality of a manufacturing process, which is expressed by

the yield, and the quality of a the testing process, which is expressed by the reject rate,

by the following relation [187]:

Reject rate = 1− yield (1−fault coverage)

From this equation, we can show that an SoC with 40 cores, each having 90% fault

coverage and 90% yield, could result in a reject rate of 41.9%, or 419,000 PPM. As a result,

improving fault coverage can be easier and less expensive than improving manufacturing

yield because making yield enhancements can be costly. Therefore, generating test stimuli

with high fault coverage is very important.

Unfortunately, structural testing has its own limitations too. Fault models are used

as an abstraction description of possible defects on a given design structure.

• A single fault model cannot cover all possible defects. To overcome this limitation,

industry uses multiple fault models.

• Even when defects can be modeled by a fault model, sometimes it is impossible to

get 100% fault coverage due to testability limitations caused by either the structure

of the CUT or by the way the test is conducted (undetected faults1).

1An undetectable fault occurs where there is no test to distinguish the fault-free circuit from a faulty

circuit containing that fault.

7

Figure 1.10: Unmodeled defect coverage

1.6 Modeling of ... Unmodeled Defects

Although, improving fault coverage for structural tests can be an easy way to improve

the quality of a testing process and yield, we should not ignore practical limitations that

forbid a complete defect screening process. For example, it is not feasible to test against

all known fault models, and even if it was, there still be defects.

Figure 1.10 depicts a set representation of defect coverage. In Figure 1.10a the space of

all possible defects is shown as a large square. Three subsets are highlighted which contain

defects that can be covered by the three theoretical fault models: A, B, C. In Figure 1.10b

the set of modeled defects covered is presented. Finally, Figure 1.10c illustrates the set

of defects that are not covered in light grey color. Defects that do not belong to the

set of modeled defects are called unmodeled defects. It follows from this Figure that a

test to cover a fault (some defects) may cover a defect that is also covered from another

fault model or a defect that it was not even modeled. This property of a test is called

unmodeled defect coverage.

Later, contributions on the concept of enhancing the quality of structural testing techniques

by increasing the unmodeled defect coverage of their generated tests are presented.

8

Figure 1.11: Explosion of test data volume.

1.7 Basic Test Cost Factors

Beside the quality enhancement of structural testing methods that indirectly reduce test

cost, new testing techniques should also consider the classical test cost factors. Since,

the market demands require faster and denser ICs over the years, these basic cost factors

have been stressed by the new dense and complex integration technologies. These fac-

tors are the cost and the limitations of ATEs, the time required to perform testing and

unpredictable human factors.

Equipment Cost: The major contributor to the cost of testing is the cost of the ATEs.

As devices continue to grow more complex, the test capabilities need to be constantly im-

proved. Also, the speed of the ATE is required to increase because constant device scaling

since the mid-1980s has pushed the device speeds significantly higher. Manufacturers are

constantly looking for low-cost ATEs that can reliably test complex and high-speed device

during high-volume production testing.

ATE Limitations: The ever-increasing number of gates results in an ever-increasing

number of test patterns. The 2007 ITRS test report [2] predicted that the test-data

volume for integrated circuits will be as much as 38 times higher and the test-application

time will be about 17 times larger in 2015 than it was in 2007. Figure 1.11 captures this

trend. While test data increase, the previous ATEs generations cannot cope with the

demanding memory and CUT/ATE communication requirements. All these result to the

following ATE limitations:

• Bandwidth limitations between Workstation/ATE: the test patterns need to be up-

loaded from the workstation to the ATE memory. Limited data bandwidth between

workstation/ATE may stall this process from several tens of minutes to hours [55].

9

While ATE remains idle, the cost of test increases [165].

• ATE memory limitations: New generation ATEs with the required memory may not

be available (or may be very expensive). Test data are truncated to fit the memory,

resulting to quality degradation [55].

• Bandwidth limitations between ATE/CUT: To apply the test patterns at the CUT,

they need to be trasnfered from the ATE (where they are stored) to the CUT.

Additionally, the responses must pass from the CUT to the ATE in order to be

analyzed. The bandwidth of the channels between ATE/CUT are limited. The

above process may increase dramatically test time and consequencly test cost [165].

Production Test Time: Apart from the cost of ATEs, large test application time is a

major factor for increased test costs. Typically, test time for wireless devices ranges from

a few seconds to a few minutes. During production, when millions of devices are tested,

even such apparently small test times can create a bottleneck. Suppose, for example,

that a device test time required during production is 60 seconds. Therefore, the number

of devices that can be tested is 1440 per day (= 24 × 3600/60). Considering that 10

ATEs are used, then to release a million devices to the market requires 70 days. This

clearly shows that a small reduction in test time can increase the throughput significantly.

Therefore, there is a constant need in the test community to reduce production test time.

Production test time is affected by many factors, such as the time needed to design the

tests (by the test engineer), the time required for the equipment (handlers and probers)

to prepare the environment for the test, the Test Application Time (TAT), which is the

time needed to excite the CUT with the test stimuli and get the responses.

Human factor: Additional costs come from engineering errors or other human factors.

For example, an improperly designed IC or a bug in the test program can significantly

increase the time required to release a product. This can cause the manufacturer to loose

significant market share for that product. Such factors can be fatal for small businesses,

and the success of the manufacturer relies heavily on the test process.

In general, all the above limitations (except human factor) stem from the same reason:

the increasing amount of test data (stimulus and response data) [163, 165]. The

test cost solution to this problem is to often upgrade ATEs, but this solution is very

impractical and extremely costly to be adopted by companies. The necessity to overpass

this dead end, decrease test cost and handle the increased complexity of new integration

technologies, motivated the consideration of testing during the early life of manufacturing

ICs: the design. It was the dawn of Design for Testability (DFT).

1.8 Design for Testability

Test engineers usually have to construct test vectors after the design is completed. This

invariably requires a substantial amount of time and effort that could be avoided if testing

was considered early in the design flow to make the design more testable. As a result,

10

Figure 1.12: DFT test point

Figure 1.13: Adding test points at a sequential circuit.

integration of design and test, referred to as design for testability (DFT), was proposed

in the 1970s.

To test the structure of ICs, we need to control and observe logic values of internal

nodes. Unfortunately, some nodes in sequential circuits can be very difficult to control

and observe; for example, activity on the most significant bit of an n-bit counter can

only be observed after 2n−1 clock cycles. Testability measures of controllability and/or

observability were first defined in the 1970s [48] to help find those parts of a digital circuit

that will be most difficult to test and to assist in test pattern generation for fault detec-

tion. Many DFT techniques have been proposed since that time [101]. DFT techniques

generally fall into one of the following three categories: (1) ad-hoc DFT techniques, (2)

scan design, or (3) built-in self-test (BIST).

1.8.1 Ad-hoc DFT

Ad-hoc methods were the first DFT techniques introduced in the 1970s. The goal was to

target only those portions of the circuit that would be difficult to test and to add circuitry

to improve the controllability or observability. Ad-hoc techniques typically use test point

insertion to access internal nodes directly. An example of a test point is a multiplexer

inserted to control or observe an internal node, as illustrated in Figure 1.12.

11

Figure 1.14: A typical scan design.

1.8.2 Scan Design

In scan design [39] external access is provided at the storage elements of ICs in order

to increase their controllability and observability. The modified storage elements are

commonly referred to as scan cells. Once the capability of controlling and observing

the internal states of a design is added, the problem of testing a sequential circuit is

transformed into a problem of testing combinational logic, which is an easier task. Figure

1.13 presents the re-designing of D flip-flops for a sequential circuit to scan cells. Widely

used scan cell designs are: muxed-D scan cell, clocked-scan cell [101], and level-sensitive

scan design (LSSD) cell [35, 39].

In order to save I/O pins, the scan cells are connected into multiple shift registers,

called scan chains. A typical scan design, with a single scan chain, is presented in Figure

1.14. Scan design accomplishes this task by replacing all selected storage elements with

scan cells, each having one additional scan input (SI) port and one shared/additional

scan output (SO) port. By connecting the SO port of one scan cell to the SI port of

the next scan cell a scan chain is created. This way a sequential CUT is transformed

into a combinational circuit. The control points of the combinational circuit are called

pseudorandom primary inputs (PPIs) and the observable points are called pseudorandom

primary outputs (PPOs). The selection between operations of a typical scan design (scan

or normal operation modes) is controlled by a scan enable (SE) signal. Testing based on

scan design is called scan testing and is conducted as follows:

• During the scan mode (when SE=‘1’), the scan chain is used to shift in (or scan in)

a test vector to be applied to the combinational logic.

• During one clock cycle in the system mode (when SE=‘0’ and it is also called capture

mode) of operation, the test vector is applied to the combinational logic and the

output responses are clocked into the flip-flops.

• Also in scan mode, the scan chain is used to shift out (or scan out) the combina-

tional’s logic output response to the test vector while shifting in the next test vector

to be applied.

12

Figure 1.15: BIST scheme.

1.8.3 Built-In Self-Test

Built-in self-test (BIST) was proposed around the 80s [116, 144, 145]. The basic idea

is to integrate a test-pattern generator (TPG) and an output response analyzer (ORA)

together with the CUT in order to perform testing internal, as illustrated in Figure 1.15,

without any need of external tester. Since an external tester is not required, BIST reduces

considerably test cost. However, there are many challenges in making a design BIST-

ready: efficient logic BIST structures must be integrated that should achieve high test

quality. However, there are different efficient BIST architectures [46, 47, 161] based on

the nature of the logic inside the CUT. A constant problem remains the automation of

the BIST-architecture design with the ICs design without impacting the overall product

schedule. In [55] it was shown that with automation of the designing process and with

constant upgrade of this automation, BIST can become viable for large industrial designs.

1.8.4 Test Resource Partitioning

Test Resource Partitioning (TRP) is a DFT approach for highly dense ICs that decreases

test cost by easing the burden of outdated ATE systems. TRP focuses on transferring

test functionalities from the ATE towards the CUT. The basic idea is to compress large

volumes of test data to small test sets that fit in the memory of an ATE and they are

based on a hybrid scan design/built-in-self-test (BIST) approach. The test data are stored

on the ATE in a compressed form downloaded at the CUT where they are decompressed

and applied. After their application, the responses are compressed on the CUT before

they are sent back to the ATE in compressed form.

Figure 1.16 presents the general TRP architecture. The compressed form of test vec-

tors stored into the ATE are called test data. The size of test data, which is the amount of

memory required to store the test data on ATE, is called Test Data Volume (TDV). During

testing, the test data are transferred through the low-bandwidth ATE/CUT channels to

the CUT where they are decompressed on-chip by embedded decompression architectures.

The test vectors are shifted into the scan chains setting the CUT into a predetermined in-

ternal state. Afterwards, the CUT is let to operate normally and the response is captured

into the scan chains. Then, the procedure starts over, but now with the decompression of

the next vector. During the shift-in of the next vector, the responses of the previous vec-

13

Figure 1.16: Test Resource Partitioning Architecture

tor already contained into the scan chains are shift-out towards the TRC where a unique

signature for them is created. Signatures are shifted out towards the ATE, where they

are compared against fault-free signatures.

The amount of ATE’s participation in the testing procedure is the key of categorizing

a compression TRP technique. Thus, there are two categories of TRP techniques:

• Test Set Embedding (TSE): long pseudorandom sequences are generated on-chip

with minimum interaction with the ATE. TSE techniques have small ATE’s mem-

ory requirements but they impose large hardware overhead on the embedded de-

compression architectures and long TAT.

• Test Data Compression (TDC): compression codes, such as statistical, the Run-

length, the Golomb, the Frequency-Directed Run-length (FDR) coding, the Huffman

code, are utilized to compress the test data. These methods occupy relatively small

ATE’s memory space, which however is higher than that of TSE techniques, and

they also require more frequent usage of the ATE/CUT channels. On the other

hand the hardware overhead of the decompressors is very low and the TAT is very

short.

TRP techniques are further categorized based on the nature of both the compression

code and decompression logic used. There are TRP techniques based on:

• Compression codes (code-based): the Golomb [56], the Huffman [57], the Run-length

etc [11, 18, 20, 21, 49, 60–62, 71–74, 74, 87, 90, 96, 111, 126, 139, 149, 150, 177, 189,

190, 192].

• Linear decompressors (linear-based): Linear Feedback Shift Registers (LFSRs), Ring

generators etc [12, 54, 67, 77, 79, 81, 82, 102, 138, 155, 166].

• Broadcast schemes: pseudorandom values broadcasted simultaneously into the scan

chains [51, 86, 103, 112, 133, 140, 142, 148, 170, 171].

Commercial tools for test compression are also available [10, 78, 123]. The most widely

TRP techniques are based on linear decompressors.

14

Figure 1.17: ITRS’07 compression prediction requirements

Figure 1.17 depicts the trajectory in compression requirements of contemporary TRP

methods in order to cope with the upcoming explosion of test data. The y-axis, which is

the compression requirements between 2007 and 2015, shows the ratio of uncompressed

test data to compressed test data. Since, the existing TRP techniques cannot achieve

those compression requirements, new TRP techniques are needed.

The efficiency of TRP’s compression is achieved so far, by exploiting only one out of

two properties of the test vectors. Specifically, the test vectors consist of logic values ‘0’,

‘1’ as well as undefined values ‘x’es. The undefined values can be any logic value (‘0’

or ‘1’) without affecting the stimulation of the fault that the test vector was generated

for (undefined values ‘x’es are also refered as don’t cares or unspecified values, and logic

values ‘0’ and ‘1’ are refered as defined or specified values in the literature). When a

vector contains undefined values it is called test cube. The ratio between specified and

unspecified values of a test set is called fill rate. The two properties that TRP techniques

exploit to offer compression are the low fill rate of the test sets (the large amount of

unspecified values ‘x’es) and the correlation of the specified values that stem from CUT’s

structural correlation [158]. Linear-based methods exploit the unspecified values, while

code-based techniques exploit the correlations. There is not such technique, so far, that

exploits both these properties for compression [158].

Later, a code-based compression method is presented that exploits both the low fill rates of

test sets and the correlation in the test cubes.

15

Figure 1.18: Moore’s Law in Respect to Transistors Number, Single Thread Performance,

Frequency, Power and Number of Cores

1.9 Additional Test Challenges

1.9.1 The post-Dennard Era: Low-power Testing

During the last years we have witness a tremendous change in the industry’s target group,

since individuals, and not corporations and government agencies, are nowadays the main

consumers of semiconductors. During this era the demands for testable low-power mo-

bile devices have been increased dramatically. Nowadays we can find mobile Internet

devices (MIDs), personal digital assistants (PDAs) and smartphones which are mobile

multimedia-capable devices with wireless Internet access: “supercomputers of older eras

in consumers’ “pockets”. The manufacturing of these portable computing devices became

reality because of the huge density and speed of contemporary ICs. During these years

we also witnessed the transformation of testing ICs to low-power testing ICs.

Density and speed of ICs have increased exponentially for several decades, follow-

ing a trend described by Moore’s Law. The original version of Moore’s law states that

transistor density doubles every 18-24 months. Although Moore’s law still holds true,

Dennard scaling [36] does not. Dennard scaling is the observation that as transistors get

smaller, the power used by each transistor shrinks. Unfortunately, the shrinking factor

(although it still holds true) is not fast enough to cope with the increase in the number

of integrated transistors and as a result, the overall circuits’ power demands have been

increased. Consequently, in the post-Dennard era contemporary ICs with billions of tran-

sistors are underclocked because of two reasons: a) to dissipate less power in order to

extend the battery life of mobile devices and b) to dissipate the power without violating

the power dissipation limits that result to overheating.

16

In the past the higher integration level from era to era was followed by an increase

in the operational frequency and so the TAT per transistor was decreasing. As shown in

Figure 1.18 the operational frequency of contemporary ICs tends to saturate the last years

breaking the frequency prosperity. This seems an inevitable effect as long as the material

limits have been reached and there are not any other material level technologies to fill this

gap. Manufacturers no longer provide a processors’ power consumption characteristic but

they provide the Thermal Design Power (TDP) which is the maximum amount of power

that can be dissipated. Contremporary processors (like Ivy Bridge which is Intel’s 22nm

series) exhibit TDP at the range of [35 - 130] Watts. The TDP limitation on the amount

of power that a chip can dissipate introduced additional two testing obstacles:

• The underclocked circuits require more testing time compared to overclocked cir-

cuits. Although, more tests are needed to test higher density technologies compared

to previous technologies, the tests cannot be conducted faster anymore.

• Traditional testing techniques decrease test cost by concurrently targeting as many

defects as possible, leading thus to elevated test power consumption, which can be

several times higher than that in functional mode [8]. The TDP limits forbid that

because the tested devices might be harmed or tests may fail their purpose.

Power unaware testing techniques cause the circuit to consume much more power

in test mode than in normal mode [16, 44, 59, 110, 118, 137, 198]. It was shown in

[198] that test power can be more than twice the power consumed in normal functional

mode. Specifically, some reasons for this gap between normal’s and test’s mode power

consumption include:

• ATPG tools tend to generate test patterns with a high toggle rate in order to reduce

pattern count and thus test application time. Therefore, the node switching activity

of the device in test mode is often several times higher than that in normal mode.

• Parallel testing is often used to reduce test application time, particularly for testing

MCSoCs devices. This parallelism inevitably increases power dissipation during

test.

• Circuitry inserted in the circuit to alleviate test issues is often idle during normal

operation but may be intensively used in test mode. This surplus of active elements

during test also induces an increase of power dissipation.

• Elevated test power can come from the lack of correlation between consecutive test

patterns, while the correlation between successive functional input vectors applied

to a given circuit during normal operation is generally very high [173].

As a result old test practices are deprecated and low power testing techniques are

required. The new techniques ought to be faster than power-unaware testing techniques

and on the same time to handle the power dissipation limits. Later, contributions on

algorithmic ATPG techniques as well as on TRP techniques that achieve to reduce the

power demands for structural testing are proposed.

17

1.9.2 Multi-Core Systems-on-Chips and IP Cores

The sustaining of Moore’s law growth is essential not only because it offers prosperity on

almost every aspect of human life but also because it provides payback of the huge capital

investment of semiconductor’s industry (an industry with starting capital that overpasses

3 billion dollars). To fill the processing gap of the no-longer-increased operating frequency,

the industry has counter-proposed Multi-Core Systems-on-Chips (MCSoCs). They are

based on exploiting the concurrent processing in order to offer faster systems.

However, MCSoCs require specialized assemble processes that increase test cost. There

is a general agreement with the rule of ten, which says that the cost of detecting a faulty

IC increases by an order of magnitude as we move through each stage of manufacturing,

from device level to board level to system level and finally to system operation in-the-field.

Nevertheless, MCSoCs brought not only challenges but also oportunities. Techniques such

as parallel and multi-site testing [52] have been introduced. These techniques exploit ca-

pabilities of new generation DFT-aware test equipments [14, 68] for test resources sharing.

In order for this technology to be efficient, DFT methodologies with reduced pin-count

interface between ATE/CUT are required.

Intellectual Property (IP) cores that usually reside within MCSoCs complicate further

testing. There are two main types of components within an MCSoC: the cores and the user

defined logic (UDL). A core is a pre-designed, pre-verified silicon circuit block that can

be used in building a larger or more complex application on a semiconductor chip. Cores

can perform a wide range of functions (e.g., digital signal processors, RISC processors,

or DRAMs) and can be found in a number of technologies (e.g., complementary metal-

oxide-silicon (CMOS) logic, DRAM and analog circuits). Furthermore, the more complex

cores come in hierarchical compositions (i.e., complex cores comprise a number of simple

cores). Often these cores are products of technology, software, and know-how that are

subject to patents and copyrights. Hence, a core block represents IP that the core builder

licenses to the core user. Therefore, the core user is not always entitled to make changes

to the core and is forced to reuse it as is (as a black box), being knowledgeable only about

the cores functionality, however, not about the implementation details. In addition, while

ICs are delivered to the customer in a manufactured and tested form, cores are delivered

in a range of hardware description levels (soft, firm, and hard). These two fundamental

differences influence not only the design of the MCSoCs, but also their testing.

Usually, IP cores are accompanied by pre-computed and pre-compacted test sets i.e.

test sets with high fill rate. The compression efficiency of linear-based TRP methods

drops drammatically when they are applied on test sets with high fill rate, because there

are not many undefined values. On the other hand, although code-based compression

methods are more efficient at compressing test sets with high fill rate, there are not any

industry tools that supports them, because their compression efficiency on the test sets

with low fill is moderate.

Later, contributions on TRP techniques for testing IP cores are proposed. A novel

TRP method is presented that is based on code-based TRPs and requires low pin-count

18

Table 1.1: Contributions and Dissertation Structure

Algorithmic
Test Resouce Partitioning Goals

Linear-based Code-based Power
quality

X-Filling StaticDynamic Huffman shift capture

Chapter 3 X

Chapter 4 X X

Chapter 5 X X X X

Chapter 6 X X X

Chapter 7 X X X X

ATE/CUT interface. In addition, a novel linear-based TSE architecture is proposed that

almost eliminates the useless parts from the long test sequences of linear-based TSE tech-

niques.

1.10 Contributions & Dissertation Structure

Providing a low-cost test solution for MCSoCs does not only require the understanding of

the test cost factors, but it also requires to understand the implications and limitations of

previous approaches which addressed these factors. Therefore, a comprehensive analysis

of previous work is given in Chapter 2, which further motivates the usage of test resource

partitioning, the low-power testing, and the probabilistic fault models to enhance test

quality. The next Chapters present novel contributions in these areas. The contributions

of this dissertation (also briefly illustrated in Table 1.1) are discussed below:

Chapter 3: The method presented in Chapter 3 contributes to test set embedding ar-

chitectures. Test set embedding techniques are the TRP architectures with the best com-

pression in the literature and they could be used for BIST applications. However, their

long test sequences renders them impractical. The method presented in this Chapter

targets the test sequence length reduction of test set embedding techniques. A trade-off

between test sequence length of linear-based test set embedding techniques and hardware

overhead is presented. This contribution is important at the post-Dennard era, where the

hardware overhead is not the basic bottleneck, and can be traded for test cost reduction.

Chapter 4: The method presented in Chapter 4 contributes to the area of low power

decompression of linear-based decompressors. A new low-cost, test-set-independent linear

equations generation scheme is presented for deterministic test data compression, which

can be combined with any linear decompressor for reducing the shift power during test-

ing. Contrary to existing low power linear-based techniques that required additional test

data, the low power property of the proposed method is pseudorandomly handled by an

embedded control unit and it does not require data to be stored on the tester. Exten-

sive experiments with the state-of-the art linear decompressors show that the proposed

method offers reduced test power, test sequence length and test data volume at the same

time, with very small area requirements.

19

Chapter 5: The techniques that target the enhancement of the unmodeled defect cov-

erage of test vectors exploit the unspecified values (‘x’). However, this target contradicts

the main objective of the X-filling techniques that decrease power consumption of struc-

tural testing. In addition, the low power X-filling techniques introduce high correlation

in the test vectors which adversely affects the unmodeled defect coverage. As a result, to

optimize different characteristics on a single method requires sophisticated approaches.

Another major limitation of the quality enhancement metrics used in the literature is

that they evaluate each test vector for either timing-independent or timing-dependent

defects. Chapter 5 proposes a unified X-filling method that targets both power reduction

(shift and capture) and high-quality test generation. To enhance the unmodeled defect

coverage a new output deviations evaluation metric is proposed that maximizes the effec-

tiveness of the selected patterns with respect to the detection of both timing-related and

timing-independent defects at the same time. The shift power of the new method is as

low as the shift power of the Fill-Adjacent X-filling technique and its unmodeled defect

coverage is similar to that of Random X-filling. This simple method, also (besides being

a contribution), serves as a simple application example to familiarize the reader with the

idea of targeting unmodeled defects using output deviations.

Chapter 6: Exploiting the unspecified values (‘x’) to increase the unmodeled defect

coverage of the test vectors, contradicts with the main objective of linear-based TRP

methods, which is to exploit the unspecified values for improving the test data volume.

The contributions of Chapter 6 are on high quality enhancements of the test vectors gen-

erated by linear-based test data compression. It provides efficient candidates generation

algorithms for the unmodeled defect coverage enhancement of the most well-known linear

decompressors and reseeding techniques, including the state-of-the-art ring generators.

Chapter 7: This Chapter presents a technique that targets all the aforementioned goals

simultaneously for linear-based and code-based TRP architectures: high-quality generated

vectors with increase unmodeled defect coverage, low-power dissipation, and compression

maximization. Specifically, in Chapter 7 a novel compression method and a low-cost

decompression architecture is presented that can be applied on a) linear-based and b)

symbol-based decompressors in order to reduce shift power and also increase the unmod-

eled defect coverage of the generated patterns. Moreover, the application of the scheme

on code-based decompressors revealed an interesting property: the new decompressor

exploits both the low fill rate and the correlations in the test cubes offering better com-

pression than any existing compression technique. Therefore, it can be applied efficiently

on test sets of both IP and non-IP cores, that usually co-exist in MCSoCs. This property

together with its low pin-count ATE/CUT interface enable the sharing of the decompres-

sor among different types of cores. As a result it can be used for efficient multi-site testing

approaches.

Finally, Chapter 8 summarizes the presented work and concludes this dissertation. The

contributions outlined in Chapters 3, 4, 5, 6 and 7 resulted in original work published in

[8, 70, 75, 151–157] and itemized in the end of the dissertation.

20

Chapter 2

Background

2.1 Fault Models . 21

2.2 Test Response Partitioning Techniques . 31

2.3 Low-Power Testing Techniques . 41

2.1 Fault Models

Because of the diversity of VLSI defects, it is difficult to generate tests for real defects.

Fault models are necessary for generating and evaluating a set of test vectors. Generally,

a good fault model should satisfy two criteria: (1) it should accurately reflect the behavior

of defects, and (2) it should be computationally efficient. Many fault models have been

proposed [4], but, unfortunately, no single fault model accurately reflects the behavior of

all possible defects that can occur. As a result, a combination of different fault models is

often used for manufacturing testing.

2.1.1 Stuck-at Faults

The stuck-at fault is a logical (logic-level) fault model that has been used successfully

for decades. A stuck-at fault affects the state of logic signals on lines in a logic circuit,

including primary inputs, primary outputs, internal gate inputs and outputs, fanout stems

(sources), and fanout branches. A stuck-at fault transforms the correct value on the faulty

signal line to appear to be stuck at a constant logic value, either a logic 0 or a logic 1,

referred to as stuck-at-0 or stuck-at-1, respectively.

2.1.2 Transistor Faults: Stuck-open and Stuck-short

At the switch level, a transistor can be stuck-open or stuck-short, also referred to as stuck-

off or stuck-on, respectively. An example of stuck-open fault is a transistor isolated from

21

Source: [172]

Figure 2.1: Bridging fault models

ground (VSS) which causes the transistor to keep its previous state. In order to detect

this fault in a CMOS combinational circuit a sequence of two vectors for detection rather

than a single test vector for a stuck-at fault is required.

Stuck-short faults, on the other hand, will produce a conducting path between VDD

and VSS. For example, if a transistor is stuck-short, there will be a conducting path

between VDD and VSS. This may create a voltage divider at a node that may or may not

be interpreted as an incorrect logic level by the gate inputs driven by the gate with the

transistor fault.

Stuck-short transistor faults may be detected by monitoring the power supply current

during steady state, referred to as Iddq. This technique of monitoring the steady-state

power supply current Iddq to detect transistor stuck-short faults is referred to as IDDQ

testing.

2.1.3 Wire Open and Short Faults

Defects in VLSI devices can include opens and shorts in the wires that interconnect

the transistors of the circuit. Opens in wires that interconnect transistors’ gates tend to

behave like transistor stuck-open faults. On the other hand, opens in wires interconnecting

logic gates tend to behave like stuck-at faults. Therefore, a set of test vectors that provide

high stuck-at fault coverage will also detect open faults; however, a resistive open does

not behave the same as a transistor or stuck-at fault but instead affects the propagation

delay of the signal path [172].

22

Wired Bridging Faults

A short between two elements is commonly referred to as a bridging fault. These elements

can be transistor terminals or connections between transistors and gates. The case of an

element being shorted to power (VDD) or ground (VSS) is equivalent to the stuck-at fault;

however, when two signal wires are shorted together, a logical fault model is required. A

logical fault model is more flexible because it can be easily fault-simulated using stuck-at

fault simulators with the proper changes on the simulated netlist (circuits’ logical level

structure). According to the first bridging fault model, the logic value of the shorted nets

modeled as a logical AND or OR of the logic values on the shorted wires. This model is

referred to as the wired-AND/wired-OR bridging fault model. The wired-AND bridging

fault means the signal net formed by the two shorted lines will take on a logic 0 if either

shorted line is sourcing a logic 0, while the wired-OR bridging fault means the signal net

will take on a logic 1 if either of the two lines is sourcing a logic 1. Therefore, this type

of bridging fault can be modeled with an additional AND or OR gate, as illustrated in

Figure 2.1a, where AS and BS denote the sources for the two shorted signal nets and

AD and BD denote the destinations for the two nets. This new structure can then be

combined with a stuck-at fault simulator to provide fault coverage.

Dominant Bridging Faults

The wired-AND/wired-OR bridging fault model was originally developed for bipolar VLSI

and does not accurately reflect the behavior of bridging faults typically found in CMOS

devices. The dominant bridging fault model was proposed for CMOS VLSI where one

driver is assumed to dominate the logic value on the two shorted nets. Two fault types are

normally evaluated per fault site, where each driver is allowed to dominate the logic value

on the shorted signal net (see Figure 2.1b). The dominant bridging fault model is more

difficult to detect because the faulty behavior can only be observed on the dominated net,

as opposed to both nets in the case of the wired-AND/wired-OR bridging fault model.

However, it has been shown that a set of test vectors that detects all dominant bridging

faults is also guaranteed to detect all wired-AND and wired-OR bridging faults [172].

The dominant bridging fault model does not accurately reflect the behavior of a re-

sistive short in some cases. A recent bridging fault model has been proposed based on

the behavior of resistive shorts observed in some CMOS VLSI devices [41]. In this fault

model, referred to as the dominant-AND/dominant-OR bridging fault, one driver domi-

nates the logic value of the shorted nets but only for a given logic value (see Figure 2.1c).

While there are four fault types to evaluate for this fault model, as opposed to only two

for the dominant and wired-AND/wired- OR models, a set of test vectors that detect

all four dominant-AND/dominant-OR bridging faults will also detect all dominant and

wired-AND/wired-OR bridging faults at that fault site.

Bridging faults commonly occur in practice and can be detected by IDDQ testing.

It has also been shown that many bridging faults are detected by a set of test vectors

that obtains high stuck-at fault coverage, particularly with N -detect single stuck-at fault

23

test vectors. In the presence of a bridging fault, a combinational logic circuit can have a

feedback path and behave like a sequential logic circuit, making the testing problem more

complicated. Another complication in test generation for bridging faults is the number

of possible fault sites versus the number of realistic fault sites. While there are many

signal nets in a VLSI circuit, it is impractical to evaluate detection of bridging faults

between any possible pair of nets; for example, a circuit with N signal nets would have

N − choose − 2 = N × (N − 1)/2 possible fault sites, but a bridging fault between two

nets on opposite sides of the device may not be possible. One solution to this problem is

to extract likely bridging fault sites from the physical design after physical layout.

Bridging Fault Coverage Estimation Metrics

The bridging fault coverage cannot be accurately measured since the set of bridging

faults is huge and not all of them are equally possible. Bridging fault coverage can only

be accurately (and reasonable) estimated when layout information is available (after the

routing of the interconnections during the final steps of a designing process). Using layout

information, it is feasible to isolate the most possible pairs and drop the complexity of

estimating accurately the bridging fault coverage. However, this approach is infeasible

during test generation, because that is taking place during the early stage of designing

process, when layout information is not yet available. As a result various metrics and

methods have been proposed to measure the bridging fault coverage during the early

stages of a designing process. Although these metrics do not offer an accurate estimation

of the bridging fault coverage, they are very useful for comparison purposes. In this

dissertation we used the following two approaches:

• The Bridging Coverage Estimation (BCE+) metric: In [178] a metric has

been proposed for evaluation of tests in terms of their achieved bridging-fault cov-

erage. That BCE+ metric is:

BCE+ =
n∑

i=1

f sa−v
i

|F |
·

 |S|∑
j=1

1

|S|
(
1− (1− pj,v)i

)
where v = 0, 1. The parameter f sa−v

i refers to the number of stuck-at-0 faults (for

v = 0) and stuck-at-1 faults (for v = 1) that are detected i times by the test vectors

(n is the maximum number of detections for any stuck-at fault). |S| is the number

of circuit lines, |F | is the total number of stuck-at faults and pj,v is the probability

of signal j to receive the logic value 0 (for v = 0) and 1 (for v = 1). As noted in

[178], BCE+ is not very accurate for estimating the real bridging fault coverage of a

method, but it is very useful for comparing two different methods (the method with

the highest value of BCE+ is deemed to be more effective for defect screening).

• Random bridging fault coverage: Another approach to compare the bridging

fault coverage between two test sets is to use fault simulation against a set of random

bridging faults e.g. n pairs of lines can be selected randomly from the CUT. For

24

each pair, four bridging faults are simulated by considering the four dominant-

AND/dominant-OR bridging faults 4 ·n faults are finally simulated. The larger the

n the better the estimation on bridging fault coverage.

2.1.4 Delay testing and Delay Fault Models

Motivation for delay testing

Fault-free operation of a logic circuit requires performing the logic function correctly and

within a specified time limit. A delay fault causes excessive delay along a path such that

the total propagation delay falls outside a specified time limit. Delay faults have become

more prevalent with decreasing feature sizes. In the early days of VLSI technologies, most

defects affecting the performance could be detected using tests for gross delay defects [168].

Later, the aggressive timing requirements of high-speed designs have introduced the need

to test smaller timing defects and distributed faults caused by statistical process variations

[15, 97, 113, 117, 119, 120, 191, 193, 194]. Moreover, the increase of the circuit size has

resulted in fault models that can detect distributed defects localized to a certain area of

the chip [95, 143]. Finally, with the introduction of VDSM technologies, noise effects are

becoming significant contributors to timing failures [16] and further adaptations of the

fault models and testing strategies are required.

The objective of delay testing is to detect timing defects and ensure that the design

meets the desired performance specifications. The need for delay testing has evolved from

a common problem faced by the semiconductor industry: designs that function properly

at low clock frequencies might fail at the desired operational speed. To detect such faults,

functional tests created for design verification are applied at system operational speed to

screen out parts with delay defects. However, applying functional tests is becoming very

expensive, given the need for a high-speed tester to apply such tests. This approach is still

used extensively for high performance parts, such as microprocessors and digital signal

processors (DSPs) for which the functional tests can be loaded into on-chip caches and

then applied with a low-cost tester. Another problem with using functional tests is the lack

of assurance for high test quality. Several industrial experiments (e.g., [100]) have shown

that tests not specifically targeting delay faults have limited success in detecting timing

defects. The above-mentioned problems can be alleviated by using structurally based

generated tests tests that target specific delay fault models and which can be applied

through design for testability (DFT) structures using lower-cost testers. For the rest of

the section, our discussion is focused on such structurally based delay testing approaches.

To observe delay defects, it is necessary to create and propagate transitions in the cir-

cuit running at-speed (at its specified operating frequency). Creating transitions requires

application of a vector pair, V =< v1, v2 >, at the inputs of the combinational part of

the circuit. The first vector initializes the relevant internal signals to desired initial logic

values, while the second vector causes the desired transitions and sensitizes the transition

from the target fault site to an output.

25

The most popular delay fault models are the transition-delay fault model, the gate-

delay fault model, and the path-delay fault model. It is assumed that in the nominal

design each gate has a given fall (rise) delay from each input to the output pin. Also, the

interconnects are assumed to have given rise (fall) delays. Because the gate pin-to-pin

delays and the interconnect delays can be combined together, the term “gate delay” will be

used to denote this sum. Transition and gate-delay models are used for representing delay

defects lumped at gates, while the path-delay model addresses defects that are distributed

over several gates. The transition-delay fault model is briefly presented below.

Transition-delay Fault Model

The transition-delay fault model [25, 88, 168] assumes that the delay fault affects only one

gate in the circuit. There are two transition faults associated with each gate: a slow-to-

rise fault and a slow-to-fall fault. It is assumed that in the fault-free circuit, each gate has

some nominal delay. Delay faults result in an increase of this delay. Under the transition

fault model, the extra delay caused by the fault is assumed to be large enough to prevent

the transition from reaching any primary output at the time of observation. In other

words, the delay fault can be observed independent of whether the transition propagates

through a long or a short path to any primary output; therefore, this model is also referred

to as the gross-delay fault model. To detect a transition fault in a combinational circuit

it is necessary to apply two input vectors, V =< v1, v2 >. The first vector, v1, initializes

the circuit, while the second vector, v2, activates the fault and propagates its effect to

some primary output. Vector v2 can be found using stuck-at fault test generation tools.

For example, for testing a slow-to-rise transition, the first vector initializes the fault site

to 0, and the second vector is a test for a stuck-at-0 fault at the fault site. A transition

fault is considered detected if a transition occurs at the fault site and a sensitized path

extends from the fault site to some primary output.

The main advantage of the transition fault model is that the number of faults in the

circuit is relatively small (linear in terms of the number of gates). Also, the stuck-at fault

test generation and fault simulation tools can be easily modified for handling transition

faults. On the other hand, the expectation that the delay fault is large enough for the

effect to propagate through any path passing through the fault site might not be realistic

because short paths may have a large slack (slack is defined as the difference between the

clock period and the nominal delay of the path for the fault-free circuit). The assumption

that the delay fault only affects one gate in the circuit might not be realistic either. A

delay defect can affect more than one gate, and even though none of the individual delay

faults is large enough to affect the performance of the circuit, several faults can together

result in performance degradation. For practical simplicity, the transition fault model

is frequently used as a qualitative delay model, and circuit delays are not considered in

deriving tests.

26

Figure 2.2: LOC and LOS operation for delay testing

Test Application Schemes for Testing Delay Defects

Testing schemes for scan design have been proposed in the literature [25, 115, 135,

136]. These techniques are Launch-On-Capture (LOC), also called broad-side test [136],

Launch-On-Shift (LOS), also called skewed-load test [115, 135], and enchanced scan test-

ing [37].

Enchanced scan testing is based on a modified scan cell with an additional latch in

order to store and aply two possible bits for delay testing. Its main advantage is that

it can achieve high delay-fault coverage, by applying any arbitrary pair of test vectors,

that otherwise would have been impossible. A disadvantage, though, is that many false

paths, instead of functional data paths, may be activated during test, causing an over-

test problem. Also, in enhanced-scan testing, both vectors in the vector pair have to be

stored in the tester memory. The first vector is loaded into the scan chain, followed by

its immediate application to initialize the circuit under test. Next, the second vector is

scanned in, followed by an immediate application and capture of the response. Note that

the node values in the circuit is preserved during the shifting-in of the second vector.

In order to reduce over-test, and the requirement to store both vectors on the ATE, the

conventional LOS and LOC delay test techniques using normal scan chains can be used.

In LOC based testing, all the n bits of a vector are scanned into the circuit at slow

speed, followed by another clock which creates the transition. Finally, an at-speed func-

tional clock is applied that captures the response. Thus, only one vector has to be stored

per test, and the second vector is directly derived from the initial vector by pulsing the

clock. In LOS testing, the first n− 1 bits of an n-bit vector are shifted in at slow speed.

The final nth shift is performed, and it is also used to launch the transition. This is

followed by an at-speed quick capture. Similar to LOC, only one vector has to be stored

per test, as the second vector is simply the shifted version of the first vector.

Figure 2.2 illustrates the timing diagram of these two schemes. In LOC, the activation

pattern is launched by capture; in LOS, the activation pattern is launched by last shift.

Once the activation pattern is launched, the test response is captured after the functional

27

clock period to see whether the transitions reach the primary output and flip-flops in

time. This functional cycle is called launch cycle.

2.1.5 Automatic Test Pattern Generation

Generating effective test patterns for a digital circuit is the goal of any Automatic Test

Pattern Generation (ATPG) tool. ATPG tools can determine a list of faults, based on

the targeting fault model, and the test vectors which detect the faults with the corre-

sponding fault free responses. In addition, using fault detection simulation (or simply

fault-simulation) ATPG tools can estimate the fault coverage (how many from the total

modelled faults can be detected), and they can also be used for fault diagnosis i.e. iden-

tifying the possible root that caused the defect). The test vectors generated by ATPG

can be completely specified (e.g., 1100) or incompletely specified (e.g., 1x0x) in which

case they are referred to as test cubes. Hereafter “test cube” refers to a test pattern

consisting of specified (‘0’ or ‘1’) and unspecified values (‘X’), while “test vector” refers

to a completely specified test pattern.

2.1.6 N-detection

In order to enhance the quality of a test set, one may wish to derive different test sets

targeting different fault models as an attempt to capture potential defects that could arise.

However, this requires multiple ATPG engines, each targeting a different fault model.

While this may be theoretically possible, it may not be possible in practice. Instead, to

increase the coverage of all possible defects, one may generate a test set that achieves

multiple detections of every fault under a given fault model. A fault is detected multiple

times, if it is detected with different vectors. By exciting the fault and propagating the

fault effect different ways, it is hoped that any defect locally close to the target fault

will have an increased chance of being detected [23, 38, 98]. The size of an N -detect

test set grows approximately linearly with respect to N [127]. Note that N -detection can

be considered as an ad-hoc approach to increase the unmodeled defect coverage of the

generated tests.

2.1.7 Unmodeled Faults

The need for more and more complex fault models is rapidly increasing the test data

volume for integrated circuits testing. Moreover, in VDSM technologies many defects

cannot even be accurately modeled using known fault models [162]. It is, therefore,

important to grade the tests patterns of well-practiced fault models (such as stuck-at)

based on their ability to detect unmodeled defects. For this reason probabilistic fault

models have been developed. This section describes a probabilistic gate oriented fault

model and a technique which is called output deviations that grades a test vector on its

ability to detect faults from the probabilistic fault model (similar to fault simulation, but

28

in a probabilistic approach). Most importantly, this methodology is not biased towards

any particular fault model. As shown in [169], unbiased testing provides higher test

quality than a test method that is biased by a particular fault model.

Output Deviations

In [176, 178–180] a probabilistic gate-level fault model is presented together with a tech-

nique to compare tests patterns for their ability to detect arbitrary defects. This model is

based on probability measures, named output deviations, at primary outputs and pseudo-

outputs (all referred to as outputs) that reflect the likelihood of error detection at these

outputs. It was shown in [178], test patterns with high deviations tend to be more effective

for fault detection.

According to this model a probability map (referred to as the confidence-level vector)

is assigned to every gate in the circuit. The confidence level Ri of a gate Gi with m inputs

and a single output is a vector with 2m components, Ri =< r0...00i , r0...01i , . . . , r1...11i >,

where each component denotes the probability the gate’s output to be correct for the

corresponding input combination. This gate-level confidence level vectors can be gener-

ated in a number of ways, e.g., using layout information, inductive fault analysis [42],

and failure data analysis. It can also be estimated using simple transistor-level failure

probabilities. In practice, multiple sets of confidence-level vectors estimates can be used.

Two rules apply on this probabilistic fault model:

1. Each gate can fail independently of other gates.

2. The fault behavior of the circuit is described by the confidence-level vectors of all

its gates.

For grading a test based on its ability to detect faults of this fault model, signal

probabilities are required. So, signal probabilities pi,0 and pi,1 are associated with each

line i in the circuit (the term “line” is used to denote a “net”), where pi,0 and pi,1 are

the probabilities for line i to be at logic 0 and 1, respectively. Obviously we have pi,0 +

pi,1 = 1. The calculation of the signal probabilities is along the same lines, as introduced

in [114], and used later in [132]. To reduce the amount of computation, as in [114,

132], signal correlations due to reconvergent fanout are not considered. The following

example illustrates the simple propagation function of the signal probabilities based on

the confidence-level r of a NAND gate Gi with output wire y and input wires a, b:

py,0 = pa,1pb,1r
11
i + pa,0pb,0(1− r00i) + pa,0pb,1(1− r01i) + pa,1pb,0(1− r10i),

py,1 = pa,0pb,0r
00
i + pa,0pb,1r

01
i + pa,1pb,0r

10
i + pa,1pb,1(1− r11i)

Likewise, the signal probabilities can be computed for other gates. Under this fault

model, the expected output values of the circuit in response to an input pattern is no

longer deterministic. Rather, it is given by the signal probabilities at primary outputs.

Note that the circuit behavior is assumed to be deterministic after manufacturing; the

probabilistic fault model is only used during test development.

Based on this propagation method for signal probabilities under the confidence-level

vectors, we can compute a measurement of the expected signal probability for an observed

29

Figure 2.3: Output deviations example

output (based on an input pattern and the fault-free value for this input pattern on the

observed output), that is proportional to the likelihood for that pattern to produce an

observable error at that output. Specifically, for any gate Gi in a circuit, let its fault-free

output value for any given input pattern tj be d, with d ∈ {0, 1} (d = 0 or d = 1). The

output deviation ∆Gi,j of Gi for tj is defined as pG,d, where d is the complement of d.

The probability that a pattern will produce an observable error at an output for this

probabilistic fault model is directly proportional to that output’s deviation.

Example 2.1. Figure 2.3 depicts a small combinational circuit and a Table that contains

patterns to be evaluated using output deviations for their unmodeled defect coverage.

The first column of this Table contains different test patterns for the primary inputs

a, b, c, d of this circuit. Under column z the fault-free values for the output z for the

corresponding input pattern are listed. The next 6 columns contain the expected output

signal probabilities for all the lines and possible observable logic values ‘1’ or ‘0’ in the

circuit (e, f, z). On the primary output z of the circuit, we observe Pz,0 and Pz,1 as

the expected signal probabilities for values 0 and 1 respectively. The output deviation

of the output z for all the input patterns are shown in bold inside the table (only the

complements of fault-free values are evaluated). These output deviations are proportional

to the probability to observe a fault at the output z for the given input combination. At

this example the last pattern 1111 is the one with the highest output deviation value

(pz,0 = 0.396 and its fault-free value is ‘1’) and the most likely to offer the highest defect

coverage on this probabilistic fault model for this circuit (among the patterns evaluated

here). �

Although, the basic idea behind grading tests based on the output deviations is simple,

the generation and grading of candidates is not. As a result there are different metrics

for this purpose. Their basic idea is to first, calculate the maximum output deviations

that can be observed on a single output and, then to aggregate only the highest output

deviation values. Additionally, there is not a general rule for the test generation of

candidates, except that the candidates should contain diversity in order to increase the

probability some of them to maximize the output deviation values. For example under

TRP compression environments the candidates generation cannot be done by the filling of

the undefined ‘x’ values because that would compromise compression and it would increase

test cost. As result, the efficiency of a candidates’ generation algorithm is important to

quality enhancements based on the propabilistic fault model of output deviations.

30

Validation of Output Deviations

To overcome the problem of accurately measuring the unmodeled defect coverage surro-

gate fault models were used, i.e. fault models that are not targeted by the generated test

sets. For example, for a test set generated to cover stuck-at faults, surrogate fault models

could be the transitions fault model and the bridging fault model. This idea is based on

the assumption presented in Figure 1.10d: if a test covers the same modeled-defects but

more unmodeled-defects than another, then the set of the overall covered defects of that

test is deemed to be larger. A larger set of covered defects is more likely to contain defects

of another fault model (i.e. a fault modeled that was not considered during the generation

of the test). As a result, observing the fault coverage on surrogate fault models is a way

to evaluate the unmodeled defect coverage of tests.

Literature on Output Deviations

In [176, 179] test set enhancement techniques for selection of test patterns that maximize

output deviations were presented. The reordering technique of test patterns presented in

[178] maximizes the defect coverage ramp-up for an abort-on-first-fail test environment,

while [69] describes a static compaction technique for stuck-at test vectors that maximizes

output deviations. The compression method of [180] presents a quality enchancement

for classical LFSR reseeding [78] technique that maximizes the output deviations of the

generated patterns by exploiting wasted variables.

2.2 Test Response Partitioning Techniques

In order to offer high compression, TRP techniques usually exploit the following inherent

properties of test cubes (test cubes are vectors consisting of ‘0’, ‘1’ and ‘x’ values):

1) The correlation between the specified ‘0’, ‘1’ values that stems from the structural

correlation of faults [158],

2) The large amounts of unspecified (‘x’) values.

Code-based techniques exploit the correlations between the specified values, while linear-

based techniques exploit the large amount of unspecified values.

The most widely adopted linear-based method is that of reseeding LFSRs [77, 79, 80].

LFSR reseeding exploits the low fill rate of test cubes. In [106] ring generators were

proposed as an alternative to classical LFSRs and in [123] embedded deterministic test

(EDT) was presented. Other well known techniques have been presented in [7, 13, 30,

31, 125, 156, 196, 197]. However linear-based methods do not exploit the high correlation

between test cubes’ specified bits. In addition, they are ineffective for testing IP-cores

which are usually accompanied by pre-computed and pre-compacted test sets. The main

idea behind LFSR reseeding is to exploit the low density of specified bits in the test cubes

(i.e., test patterns with ’x’ logic values) in order to compress test cubes into LFSR seeds.

A seed is computed by solving a system of linear equations, where the initial state of each

31

LFSR cell is considered to be a binary variable. Although there are many LFSR reseeding

techniques, each technique falls in one of the following categories: a) static reseeding or

b) dynamic reseeding. In static LFSR reseeding the contents of the linear decompressor

are flushed during reseeding, while in dynamic approaches they are not (flushed).

Many TRP techniques have been proposed that are suitable for cores of known struc-

ture [12, 53, 54, 66, 79, 102, 124, 159, 164, 188]. The high efficiency of these techniques

is mainly attributed to the exploitation of the capabilities offered by the ATPG and fault

simulation tools during the compression process. However, in the case of IP cores, where

the structure of embedded cores is hidden from the system integrator, the utilization

of such tools is not an option. The only option provided in these cases is to directly

compress a pre-computed and usually pre-compacted test set which is provided by the

core vendor. As a result, various methods have been proposed so far for compressing

pre-computed test sets of IP cores. Among them, many methods utilize linear decom-

pressors [7, 81, 82, 82, 85, 138, 166, 181] whereas others utilize various compression codes

[20–22, 49, 60, 71–74, 111, 130, 149, 150, 171]. Although, these techniques are efficient for

compressing pre-compacted test sets of IP cores, they are less efficient for cores of known

structure. Also, there are also methods that do not belong in any of the above categories,

e.g., [92] and [125]. Commercial tools have also been developed [10, 78, 123].

The next sections present, briefly, some of the most popular TRP techniques: the

classical static LFSR reseeding, the window-based LFSR reseeding, the dynamic/partial

LFSR reseeding, and the Optimal Selective Huffman (OSH) code-based technique.

2.2.1 Static LFSR Reseeding Techniques

In static reseeding, test cubes are encoded into seeds, and every seed is loaded into a

Linear Feedback Shift Register (LFSR) before decompression begins. Static reseeding,

in its classical form, uses one new initial LFSR state (seed) for encoding a single test

cube of the test set [77]. The major drawback of this approach is that it offers limited

compression. Many other static LFSR reseeding methods have been proposed in the past

[60, 67, 81, 82, 102, 155, 166] which offer better compression than [77]. A particularly

efficient approach is window-based reseeding [67], where each seed is used to generate

more than one test vector i.e., each seed is expanded into a window of test vectors.

Classical LFSR Reseeding

The classical LFSR reseeding scheme [77] uses an LFSR-based decompression logic as

presented in Figure 2.4. Every n-bit seed (n is the LFSR size) is transferred from the

ATE to the LFSR, where it is expanded into a test vector of m × r bits (m is the scan-

chain volume and r the scan-chain length) and is loaded into the scan chains. When a

test vector is loaded into the scan chains of the CUT, the response of the previous vector

is shifted out to the Test Response Compactor. The phase shifter [9, 58, 99] is used to

reduce the linear dependencies [107] of the bit sequences generated by the LFSR cells.

32

Figure 2.4: Classical LFSR-based decompression architecture

Algorithms for designing synthesizable phase shifters are presented in [106, 121, 122]. The

test set of the core consists of test cubes of m × r-bits each, and every one of them is

compressed into an n-bit seed (n � m × r) which is calculated by solving a system of

linear equations. This system is formed according to the specified bits of the test cube

[77] (the ‘X’ bits are filled with pseudorandom data during decompression). Specifically,

the initial state of the LFSR is considered as a set of binary variables α0, α1, . . . , αn−1. At

every clock cycle, m linear expressions of these variables are generated at the m outputs of

the phase shifter. During r successive clock cycles, m× r linear expressions are generated

at the outputs of the phase shifter, and each one of them corresponds to one of the m× r
scan cells. Thus, each bit of a test cube corresponds to exactly one linear expression.

Every linear expression corresponding to a specified bit of a test cube is set equal to that

bit, and in this way the system of linear equations is formed (the unspecified bits of the

test cubes are not considered during this step). The solution of this system is the seed

of the LFSR. The system with the maximum number of linear equations corresponds to

the test cube with the maximum number of specified bits, smax, which in turn determines

the minimum required LFSR size. As it was shown in [77], if the LFSR size n is equal to

smax + 20, then the probability of not being able to solve the linear system for encoding

a test cube is less than 10−6. However, LFSR polynomials with size less than smax + 20

exist, which can compress all test cubes [12].

Example 2.2. Figure 2.5 presents a reseeding example. On the upper left corner of the

figure there is the test cube to be encoded, while under it there is the utilized LFSR. At

the left of the LFSR there are the clocks numbered and the symbolic states of the LFSR,

presented line-by-line for each cycle though symbolic simulation (the terms αiαj . . . αk at

the symbolic simulation are used to denote the values α1 ⊕ αj ⊕ . . .⊕ αk, where ⊕ is the

XOR logic function). Suppose that a scan chain is directly loaded with the contents of

33

Figure 2.5: Classical LFSR reseeding example

the last cell of the LFSR. The contents of the scan chain for each cycle can be seen at

the right of the LFSR. By applying the test cube on this symbolic representation of the

scan chain’s contents and equalizing its defined bits with the symbolic representations,

we form the linear system. The solution of this system is the LFSR’s seed that generates

the encoded test cube. Notice that the number of equations that form the linear systems

strongly depends to the number of specified bits of the test cube. �

Window-Based LFSR Reseeding

According to the classical LFSR reseeding, every seed is used for encoding a single test

cube. The achieved compression in this case is moderate, since usually in a test set there

are many test cubes with fewer specified bits than the bits of the maximum specified test

cube. As a result, a lot of variables remain unspecified when the corresponding systems

are solved, and therefore much of the potential of LFSR’s encoding is wasted.

Various methods have been proposed for better utilization of LFSR’s variables, [79,

123, 166, 195] to name a few. A very attractive one is to utilize the same seed for encoding

more than one test cube in a sequence of L pseudorandom vectors. In other words, each

seed is expanded into a window of L vectors, instead of one. The number of test cubes

encoded in the window is usually much smaller than L, which means that useless vectors

are also applied to the CUT. This approach is very effective since for every test cube, L

(and not just one) systems of equations are constructed, and among the solvable systems,

the one resulting in the highest compression is selected. In other words, each test cube is

encoded in such a way so as to maximize the overall encoding efficiency. There are many

ways to encode multiple test cubes in an L-vector window. One very effective algorithm

for minimizing the number of seeds is the following [33, 65]: initially, the test cube with

the highest number of specified bits is selected and the system corresponding to the first

vector of the window is solved (the selection of the LFSR polynomial and the phase shifter

guarantees that this system is always solvable). The remaining test cubes are selected

34

source: [79]

Figure 2.6: (a) Static reseeding versus (b) dynamic reseeding

iteratively according to the following criteria:

• Among the solvable systems that correspond to the test cubes containing the max-

imum number of specified bits, we identify those that their solution leads to the

replacement of the fewest variables in the L-vector window.

• Among them, we find those corresponding to the cube that can be encoded the

fewest times in the window.

• Finally, among them we select the system nearest to the first vector of the window.

After solving the selected system, some of the variables are replaced by logic values,

whereas the rest remain unspecified and they are utilized for encoding additional test

cubes. The construction of a seed is completed when no system for any of the unencoded

test cubes can be solved in the L-vector window. Although, test set embedding techniques,

such as window-based LFSR reseeding, can achieve high compression efficiency they suffer

from long test sequences. Later, a new technique is presented for shortening the test

sequence length of window-based LFSR technique making this encoding method feasible

and attractive for testing IP cores.

2.2.2 Dynamic LFSR Reseeding

Dynamic reseeding methods [78, 79, 123] constitute another class of methods that offer

high compression. In these approaches the content of the linear decompressor are not

flushed during the reseeding and as a result any remaining unsolved variables inside the

decompressor can be still exploited for compression.

As we mentioned for classical LFSR reseeding in Section 2.2.1, and we highlight again

in Figure 2.6a, an r-bit LFSR is loaded with an r-bit seed and then generates the desired

test vectors. Afterwards, it flushes its contents and it is being loaded with a new r-bit seed

etc. This kind of reseeding results into wasted variables because the size of the LFSR r

35

source: [79]

Figure 2.7: Partial/Dynamic LFSR symbolic simulation

depends on the number of bits smax of the most specified test cube in a test set. Dynamic

LFSR reseeding is shown in Figure 2.6(b). Note that an extra XOR gate is included in

the feedback of the LFSR. The LFSR of the figure has only one input and loads serially

the seeds on it. The initial r-bit seed it used to initialize the LFSR and it is let to operate

and generate the generated test vector. Afterwards, instead of flushing its contents, it

dynamically (the term dynamic used by [79] to denote “without flushing”) loads the next

n-bit seed (where n < r; from this property stems the term partial LFSR reseeding and

it was first introduced by [195] with the term variable-length seeds) without flushing. As

a result any unresolved variables from the previous r-bit seed remain active in the LFSR

and may be utilized in a later phase. The next generated vector can now exploit any

unresolved variables from previous seeds together with the newly inserted n-bit seed.

The contents of an LFSR that is dynamically and partially reseeded may be symbol-

ically simulated in a similar way with the symbolic simulation of static LFSR reseeding.

An example of the new symbolic simulation procedure and linear systems forming is il-

lustrated in Figure 2.7. However, there is a difference between the symbolic simulation of

static and dynamic reseeding. The symbolic simulation for dynamic reseeding is a very

time consuming process because the linear equations for the test cubes need to be solved

altogether [79]. As a result, dynamic reseeding may not be scalable to large designs unless

proper actions are taken. To this end [79] proposed a test set partitioning method which

provides sub-optimal results but reduces the CPU time of dynamic reseeding symbolic

36

simulation and linear equations solving. The reported CPU times at [79] are in the order

of hours (on CPUs of that time) when the partitions consist of hundreds of test cubes. In

the experiments presented in this dissertation and concern dynamic LFSR reseeding we

have not implemented this partitioning technique as we intended to provide the most fa-

vorable results in terms of compression for dynamic reseeding. Nevertheless, even for our

largest benchmark circuit, “Ethernet” with 10 thousands of test cubes from the IWLS [1]

benchmarks suite, the CPU run-times for forming and solving the equations of dynamic

LFSR reseeding without the partitioning technique of [79] are in the order of hours (on

contemporary CPUs).

2.2.3 Code-based Techniques

Code-based schemes use data compression codes to encode the test cubes. This involves

partitioning the original data into symbols, and then replacing each symbol with a code

word to form the compressed data. To perform decompression, a decoder simply converts

each code word in the compressed data back into the corresponding symbol. Code-based

compression techniques are classified depending on whether the symbols have a fixed or

variable size (symbols have the same of different numbers of bits respectively) and whether

the codewords have a fixed or variable size. Therefore, four categories follow: fixed-to-fixed

[126, 190], fixed-to-variable [11, 60, 61, 72, 90, 96, 139, 192], variable-to-fixed [62, 177, 189]

and variable-to-variable[18, 20–22, 71, 73, 74, 87, 111, 149, 150].

The first data compression codes that researchers investigated for compressing scan

vectors encoded runs of repeated values. In [61, 62] a scheme based on run-length codes

that encoded runs of repeated ‘0’ values using fxed-length code words is proposed. In

[20] a technique based on Golomb codes that encodes repeated values with variable-

length codewords is presented. The use of variable-length code words allows efficient

encoding of longer runs, although it requires a synchronization mechanism between the

tester and the chip. Further optimization is achievable by using frequency-directed run-

length (FDR) codes [21, 22, 40] and variable-input Huffman codes [49, 60, 71, 72, 74],

which customize the code based on the distribution of different run lengths in the data.

Other techniques that utilize other compression codes or multiple codes simultaneously

are [11, 111, 149, 150, 189].

Code-based schemes are very effective in exploiting correlations in test cubes and

they do not depend on the Automatic Test Pattern Generation (ATPG) process used.

Consequently, they are very effective on pre-computed (and usually pre-compacted and

densely specified) test sets for Intellectual Property (IP) cores. However, they suffer from

several serious drawbacks that prohibit their use in industrial designs: they do not exploit

the low fill rate of test cubes; they impose long testing times as they cannot exploit the

large number of scan chains; they require extensive interaction with the tester.

37

Table 2.1: Test Set Partitioned to Data Blocks and Distinct Blocks’ Frequencies

Test Set T Distinct Blocks Occur. Freq.

1010 0000 1010 1111 1010 9/20

1111 0000 1010 0001 0000 5/20

1010 0000 0010 1010 1111 3/20

0000 1010 1010 0000 0001 2/20

1010 1111 1010 0001 0010 1/20

source: [72]

Figure 2.8: Optimal Selective Huffman Example

Optimal Selective Huffman

The Huffman code [57] is a fixed-to-variable code that uses short codewords to encode

frequently occurring blocks and long codewords for the less-frequent ones. The Optimal

Selective Huffman (OSH) code encodes only the m most frequent blocks [60] while the rest

of the blocks remain un-encoded and they are distinguished by using an extra Huffman

codeword [72].

Let us assume a core with n scan chains of length r (we assume a balanced scan

structure where the shorter scan chains are padded with ‘x’ logic values). Each scan slice

constitutes a single block. Let T be a set of test cubes and |T | be its size in bits. T

is partitioned into |T |/l data blocks of size l. Among these blocks the m most frequent

distinct blocks, b1, b2, ..., bm, with frequencies (probabilities) of occurrence f1 ≥ f2 ≥
· · · ≥ fm respectively are stored in a dictionary and they are encoded using m Huffman

codewords. The rest of the blocks with an aggregate frequency fun = fm+1 + fm+2 + . . .

remain not-encoded and a single codeword is used to precede them (they are stored in

a raw form in the compressed test data [72]). A binary tree is constructed beginning

from the leaves and moving towards the root. For every dictionary entry bi a leaf node is

generated, and a weight equal to fi is assigned to it. The pair of nodes with the smallest

weights is selected first and a parent node is generated with a weight equal to the sum

38

of the weights of both nodes. This is repeated iteratively, until the root is left unselected

(each node can be selected only once). After the tree is constructed each leaf node is

assigned a codeword as follows: starting from the root, all nodes are visited once and the

logic ‘0’ (‘1’) value is assigned to each left (right)-child edge. The codeword of block bi is

the sequence of the logic values of the edges on the path from the root to the leaf node

corresponding to bi.

Example 2.3. Consider the test set of Table 2.1 and that m = 3, that is 0001 and 0010

are the unencoded blocks. The sum of the occurrence frequencies of 0001 and 0010 is

equal to 2/20 + 1/20 = 3/20. The OSH encoding as well as the compressed test set are

given in Figure 2.8. The encoding distinct blocks 1010, 0000 and 1111 are encoded by

codewords 0, 10 and 110 respectively. The unencoded data blocks are distinguished by

the 3-bit codeword 111. Finally, the number of bits for the compressed test data is 42

bits (from the nested Table of Figure 2.8), while the uncompressed test data were 80 bits

(from Table 2.1). �

Despite the fact that there are many blocks in a test set consisting mostly (or even

entirely) of ‘x’ values, each and every one of them has to be encoded using a separate

codeword. As a result even if a test was fully specified still many bits would be required

for its encoding. Assume that the test set of Table 2.1 was fully unspecified. Then 20

bits (1 bit per block) would be the size of the compressed test set by the OSH method.

It becomes obvious that although, the selective Huffman code [60], [72] offers low cost

decompressors and high compression at the same time, it can not be used for industrial

applications because it cannot exploit the unspecified values in the test sets. Another

important drawback is that it requires a synchronization mechanism between the ATE

and the CUT.

Later, an OSH based decompression architecture is described that does not require

synchronization between ATE/CUT. Moreover the new compression method that exploits

both the correlations and the undefined values in the test sets offering higher compression

than any other known test data compression method.

2.2.4 Industry Practice: Embedded Deterministic Test (EDT)

Embedded Deterministic Test (EDT) was proposed in [123] and it is constantly being

enriched with new properties since then. So, it is a collection of tools and methods to

create a successful embedded testing architecture based on a modified LFSR called ring

generator.

Similar to linear-based approaches, ring generators are based on prime LFSR poly-

nomials. Usually (if not always), prime polynomials XOR taps synthesis result to high

fan-outs of the decompressors and as a result slow decompression feedback operation. In

[106] a transformation method was presented of an LFSR to a more synthesizable-friendly

form with XOR’s fan-out maximum value of 2. In Figure 2.9 a ring generator is presented.

Figure 2.10 illustrates the basic EDT architecture:

39

Figure 2.9: A Ring Generator

Figure 2.10: EDT basic Architecture

• Compressed data are provided to the ring generator [106] from the ATE.

• The pseudorandom test sequences generated by the ring generator are shifted by

the Phase Shifters [9, 58, 99, 106, 121, 122] and then fill the scan chains.

Every generated vector of length L is loaded into the scan chains as K slices of S size

each where S is also the number of the scan chains and L = K × S.

EDT utilizes dynamic/partial reseeding on ring generators. Symbolic simulation for

dynamic reseeding requires all the variables to be handled together (see Section 2.2.2).

This is a bottleneck for the execution time and it was handled by [79] with a partitioning of

the test set. But, the original algorithm of EDT proposed in [123] is not applied on a pre-

computed test set, so this partitioning is not feasible. So, EDT has adopted a variable’s

elimination strategy to handle this bottleneck. Moreover, variable elimination exploits

contemporary ATE’s REPEAT command [167]. Suppose that variables are injected from

a channel between the ATE and the ring generator. Any unresolved variable is decided

if it will be eliminated (the elimination is to be set to ‘1’ or ‘0’ for symbolic simulation

scaling reasons) or not based on some criteria (Variables Elimination criteria). Some,

criteria are based on profiles on the number of specified bits of the test cubes (Non-

Adaptive Variables Elimination) or ad-hoc criteria during the compression based on the

remaining free variables (Adaptive Variables Elimination). In order not to compromise the

compression by this approach, ATE’s REPEAT command is exploited and the eliminated

variables are set to the previous value that was injected from the same channel. This

way the compression tool of EDT overpasses the bottleneck of handling all the variables

together and also becomes applicable in synergy with ATPG and fault simulation.

40

EDT uses fault simulation after the generation of a test pattern in order to drop

any easy-to-detect faults (faults with test cubes that have few specified values and are

randomly tested). The ATPG generates test cubes during the compression (as a result the

compression algorithms gets the next-to-compress test cube directly from the ATPG tool).

This interaction between ATPG/compression-tool can maximize compression, especially

for N -detection test sets, because faults are directly dropped during the fault simulation

step and they are not considered from the ATPG tool for the generation of the next test

cube.

2.3 Low-Power Testing Techniques

A drawback of both linear-based and symbol-based test data compression techniques is

that they elevate switching activity beyond acceptable levels and thus degrade production

yield [141]. Power consumption during scan testing consists of two switching activity com-

ponents, namely shift and capture power. In particular, shift switching activity (referred

also as shift power) is caused during the shift (scan in-out) mode of scan designs when

successive complementary logic values are shifted into the scan chains. When complemen-

tary values are shifted into a scan chain they generate transitions on the scan cells while

they travel to their final destination. The transitions on the scan cells, inevitably, gener-

ate more transitions at the combinational part of the circuit that is attached at the scan

chain. The result is increased switching activity during the shift in-out mode. This in-

creased switching activity is responsible for the average power consumption that increases

the generated heat during testing beyond the acceptable TDP limits. On the other hand,

capture switching activity (referred also as capture power) is caused during the capturing

of the responses on the scan cells. The transitions generated during capture mode may

increase the instantaneous power demand of the CUT leading to ground/voltage bounces

that introduce noise at CUTs signal values. Capture power values above certain lim-

its can undermine the reliability of the testing procedure causing yield loss of operational

CUTs that appear mistakenly as faulty. To alleviate switching activity during scan testing

various techniques have been developed.

Numerous methods have been proposed in the literature for limiting power consump-

tion during testing, targeting shift power [17, 18, 28, 32, 45, 64, 85, 105] or capture power

[24, 93, 129, 182–186]. In addition, some methods simultaneously target the reduction of

both shift and capture switching activity [19, 76, 89, 128, 134]. These methods can be

further categorized as being either structural [18, 24, 28, 32, 45, 76, 85, 105] or algorithmic

[134, 182, 183] based on their nature. Structural methods interfere with the scan design

architecture by modifying it for low power purposes. On the other hand at the algorithmic

methods there are low power ATPG techniques and test cubes manipulation techniques

[17, 19, 64, 89, 93, 128, 129, 182, 185, 186] also known as X-filling.

Below the most known structural and algorithmic low power testing techniques are

briefly presented.

41

Figure 2.11: Switching Activity caused by Successive Slices

2.3.1 Structural Low-Power Testing Approaches

Even though traditional TDC techniques (like for example [7, 13, 60, 72, 77, 80, 123]) are

very efficient in compressing test data, they become deprecated under power dissipation

limitations. Especially large power demands exhibit the linear decompressors, because

they fill the ‘X’ values pseudorandomly and they increase thus both the shift and cap-

ture power during scan testing. Specifically, linear decompressors are very effective in

compressing the test data, they elevate the power dissipation during testing above the

functional power budget of the circuit. A few symbol-based TDC techniques such as

[20–22, 61, 111], inherently offer low shift power but they are not suitable for cores with

multiple scan chains.

To comply with power consumption requirements, linear decompressors which offer

low switching activity during testing have emerged [29, 32, 84, 105]. These techniques

require additional data to control the switching activity. Specifically, the state-of-the-art

low power dynamic reseeding [26, 105] utilizes a shadow register to offer low power shift

testing by repeating test data but it requires additional test data compared to EDT [123]

for controlling the low power operation of the decompressor. In [27] selective scan enable

deactivation is used for low capture power and in [160] presents a TDC technique with

narrow ATE-bandwidth requirements. The method proposed in [31] exploits similarities

between test cubes to offer higher compression and utilizes both shadow registers and

scan enable deactivation to generate low power vectors.

Low-power Linear Decompressors

Figure 2.11 presents the classical scan based architecture. The CUT consists of c scan

chains of length r (for simplicity we assume that all scan chains are of equal length). The

compressed test data are downloaded from the ATE, they are decompressed using the

42

Figure 2.12: (a) Low power EDT controlled by an additional “update” channel, (b) Low

power EDT controlled by compressed stimuli

embedded decompressor and they are shifted into the scan chains. For applying a test

vector to the CUT the decompressor first generates r successive test slices of size c which

are shifted into the scan chains to reach their respective scan slices (hereafter, the term

test slice tj refers to the test bits of test cube t which correspond to scan slice j with

j ∈ [1, r]. After the last test slice of t (i.e. tr) is shifted into the scan chains, t is applied

to the CUT and the response is shifted out concurrently with the loading of the next test

vector. Linear decompressors fill ‘X’ values pseudorandomly, and thus they fail to control

the number of incompatibilities between successive test slices.

In Figure 2.11, every pair of successive test slices exhibits potential bitwise incompat-

ibilities, i.e. pairs of successive complementary test bits loaded into the same scan chains.

For example test slices denoted as “Slice Pair A” in Figure 2.11 are incompatible in the bit

positions corresponding to scan chains 1, 2, c. As the test slices travel through the scan

chains during the scan-in process, every pair of complementary successive test bits causes

transitions on the scan chains which propagate through the combinational logic and cause

switching activity to the CUT. The number of incompatibilities between successive test

slices can be reduced by exploiting the unspecified values which exist in large volumes in

test sets. However, linear decompressors fill ‘X’ values pseudorandomly, and thus they

fail to control the number of incompatibilities between successive test slices.

Low-power EDT

The authors of [105] proposed a linear based encoding method which exploits the ‘X’

values, wherever they exist, to reduce incompatibilities between successive test slices, and

thus to reduce shift power. According to this method, whenever a group of k (k > 1)

successive test slices of a test cube are compatible (i.e., every slice in this group exhibits no

bitwise incompatibilities with any other slice in this group) one test slice Sk is computed

which is compatible with all k test slices. This slice is encoded using the ring generator

and it is loaded into the scan chains for k successive clock cycles. This is achieved by

43

Table 2.2: Fill-Adjacent X-Filling∗

Test Cube Block FA

i 0x. . . x0, 0x. . . x, x. . . x0 00. . . 00

ii 1x. . . x1, 1x. . . x, x. . . x1 11. . . 11

iii 0xx. . . x1 011. . . 11

iv 1xx. . . x0 100. . . 00
*the rightmost bit is loaded first into the scan chain

the use of a shadow register shown in Figure 2.12 which can hold its contents if it is

properly controlled. Specifically, instead of generating the first slice of this group, the

ring generator generates slice Sk and it transfers this slice to the shadow register. This

is called UPDATE operation. During the next k successive clock cycles, the shadow

register holds its contents and loads the scan chains with slice Sk. This is called HOLD

operation. The selection between these two operations of the shadow register requires

additional control data which are either provided directly from the ATE (Figure 2.12a) or

they are encoded as compressed stimuli (Figure 2.12b). In both cases the additional cost

is considerable especially when the number of ATE channels is small and the number of

slices per vector is large.

2.3.2 Algorithmic Approaches: Low-Power X-Filling Techniques

X-filling techniques aim at a power-aware logic assignment of the unspecified X-bits. X-

filling has negligible impact on ATPG process, and affects neither the scan chain structure

nor the circuit under test (CUT). Moreover, they can be combined with other techniques

for further reducing test power.

A popular X-filling method for reducing shift power is Fill-Adjacent (FA) technique

[17]. This technique targets only the scan-in portion of the shift power, but it also reduces

the scan-out power, because, as shown in [19], the scan-in power is highly correlated to

the scan-out power. In addition, it can be easily combined with capture-power reduction

techniques such as the Preferred-Fill (PF) technique [128, 129], to provide an efficient

unified power-reduction solution. The FA and the PF X-filling techniques, for shift and

capture power reduction respectively, are briefly presented below.

Overview of Fill-Adjacent

A well-known technique to reduce shift power dissipation is the Fill-Adjacent (FA) tech-

nique [17]. This technique targets only the scan-in portion of the shift power. The

simplicity of FA and the reason that it can reduce the overall shift power (both scan-in

and scan-out, as shown in [19]) is the key of its success.

Every two complementary consecutive test bits loaded into a scan chain generate

switching activity as they travel along the scan chain. The FA technique minimizes the

shift power by exploiting the X-bits of the test cubes in order to minimize the volume

44

of the consecutive complementary test bits loaded into the scan chains as well as the

distance they travel along the scan chains. For instance, consider a CUT with c scan

chains, and assume that the test cube segment Sj = XXX1XXX01XX0XXX1 has to

be loaded into scan chain j (1 ≤ j ≤ c) from right to left. By applying FA to fill the

Xs, we get the test vector segment Tj = 1111000010001111. Table 2.2 shows all possible

X-fillings produced by the FA technique. The first column shows all possible blocks of test

bits comprising any test cube segment that consists of n (n ≥ 1) unspecified logic values

bounded at the left and/or right by specified logic values. The second column shows the

X-filling produced for all these blocks.

Overview of Preferred-Fill Techniques

The Preferred Fill (PF) technique (denoted hereafter as PF) is an X-filling technique for

reducing the switching activity during capture [16, 17]. Consider a two-pattern Launch-

On-Capture (LOC) test < V1, V2 > where V1 = (v11, v12, v13, . . . , v1n) is the first n-bit

vector applied on the CUT and V2 = (v21, v22, v23, . . . , v2n) is the response of V1 which is

applied as the second test vector to the CUT. If the logic value of V1 corresponding to

cell i, (i.e., v1i) is unspecified then it should be filled with value 1(0) provided that the

probability of v2i (i.e., the logic value of V2 corresponding to the scan cell i) taking the

value 1(0) is higher than taking the value 0(1). In other words, the v1i bit is filled with a

value that is more likely to be held after the capture in the ith scan cell.

X-Filling Limitations

A major drawback of power-aware X-filling techniques is that they are often accompanied

by a reduction in defect coverage, since the impact on unmodeled fault coverage is not

considered during X-filling. ATPG engines, on the other hand, increase the fortuitous

detection of modeled as well as of unmodeled faults by filling randomly the Xs. However,

this step elevates the test power.

Later, a unified X-filling method that simultaneously targets power reduction and high

defect coverage is proposed.

45

Chapter 3

State-Skip LFSRs: Bridging the

Gap between Test Data

Compression and Test Set

Embedding

3.1 Overview . 46

3.2 Motivation . 47

3.3 State-Skip Circuit And Proposed LFSR Encoding 49

3.4 Single-State-Skip LFSRs . 56

3.5 Variable-State-Skip LFSRs . 62

3.6 Comparisons . 68

3.7 Conclusions . 71

3.1 Overview

Test set embedding techniques offer a very effective means for compressing test sets of IP

cores. Test set embedding techniques require considerably less test data storage than test

data compression methods, as they use long pseudorandom sequences generated on-chip

in order to embed the pre-computed test vectors of IP cores. Various test set embedding

methods have been proposed so far in the literature. In [63] and [146] the pseudorandom

sequences are generated by counters. In [91] an area demanding reconfigurable intercon-

nection network is presented that achieves a vast reduction of the test data stored on

ATE. The main drawback of these techniques is their prohibitively long test application

time. The multiphase method proposed in [67] has small hardware overhead and generates

shorter test sequences than [63, 91, 146]. An even higher reduction of the test sequence

46

length is achieved in [33] at the expense of a slight increase in test data volume. However,

[67] and [33] still require long test sequences which are unacceptable for testing modern

SoCs. Therefore, despite the fact that test set embedding techniques are very attractive

in terms of compression ratio, their excessively long test application times render them

inapplicable in nanoscale technologies.

To alleviate this problem we present two new types of Linear Feedback Shift Registers,

the Single-State-Skip and the Variable-State-Skip LFSRs (SSS LFSRs and VSS LFSRs

respectively). SSS LFSRs are normal LFSRs with the addition of a small linear circuit,

the State-Skip circuit, which can be used, instead of the characteristic-polynomial feed-

back structure, for advancing the state of the LFSRs. In such a case, the LFSRs perform

successive jumps of constant length in their state sequence, since the State-Skip circuit

omits a predetermined number of states by calculating directly the state after them. How-

ever, the test-sequence length reduction potential of SSS LFSRs cannot be fully exploited

when multiple non-identical IP cores in a SoC should be tested. In this case it is rather

unlikely that the single constant length jump performed by an SSS LFSR will be suf-

ficient for minimizing the test sequence length of every different core embedded on the

SoC. Thus, the low cost solution of using a common SSS LFSR for all cores is not an

optimal one. To overcome this problem, the second LFSR architecture, i.e., the Variable-

State-Skip LFSR (VSS LFSR) is proposed. VSS LFSRs are very flexible and can fully

exploit the State-Skip property in the case of testing multiple IP cores in a SoC, since they

embed multiple State-Skip circuits and thus they can perform jumps of variable lengths

in the normal LFSR state sequences. VSS LFSRs achieve greater test-sequence-length

reduction compared to SSS LFSRs at the expense of a moderate increase in the hardware

overhead. We have to note however that this hardware overhead is comparable to that of

most state of the art compression schemes and it is also compensated by the sharing of

VSS LFSR among the multiple cores.

The combined effect of test set embedding techniques (our case study is the window-

based LFSR encoding process) with the powerful test sequence length reduction property

of both SSS LFSRs and VSS LFSRs offer very short test sequences, close to the test

sequences of test data compression methods, with significantly smaller test data volumes.

By using SSS LFSRs for testing single or multiple identical cores and VSS LFSRs for

testing multiple non-identical cores State-Skip LFSRs bridge the gap between test data

compression and test set embedding techniques, rendering the latter a very attractive

testing approach for IP cores.

3.2 Motivation

The classical LFSR reseeding scheme is shown in Figure 3.1. Every n-bit seed (n is the

LFSR size) is transferred from the ATE to the LFSR, where it is expanded into a test

vector of m ·r bits (m is the scan-chain volume and r the scan-chain length) and is loaded

into the scan chains. The test set of the core consists of test cubes of m · r bits, and every

47

Figure 3.1: Classical LFSR-based decompression architecture

Table 3.1: TDV and TSL of classical (L = 1) and window-based (L > 1) LFSR reseeding

Circuit LFSR Size
Classical Reseeding (L = 1)

Window-Based Reseeding (L > 1)

L=50 L=200 L=500

TDV TSL TDV TSL TDV TSL TDV TSL

s9234 44 10692 243 8008 9100 7128 32400 6688 76000

s13207 24 8856 369 5328 11100 3816 31800 2688 56000

s15850 39 11622 298 7410 9500 6669 34200 6201 79500

s38417 85 58225 685 50660 29800 48110 113200 47005 276500

s38584 56 22680 405 10584 9450 7056 25200 5152 46000

one of them is compressed into an n-bit seed (n � m · r) which is calculated by solving

a system of linear equations (for details refer to Section 2.2.1).

According to the classical LFSR reseeding proposed in [77], every seed is used for

encoding a single test cube. The achieved compression in this case is moderate, since

usually in a test set there are many test cubes with fewer specified bits than the number

of specified bits smax of the most defined test cube [77]. Window-based LFSR reseeding,

which is also covered in Section 2.2.1, is an approach to eliminate these wasted variables.

To show the compression superiority of the window-based method over the classical

LFSR reseeding we conducted the following experiment: uncompacted test sets generated

by Atalanta [83] for complete coverage of stuck-at faults for the largest ISCAS’89 bench-

mark circuits were compressed using the LFSR encoding proposed in [33] for L = 1, as

well as for L =50, 200, 300, 500 and 1000 (window-based encoding). 32 scan chains were

assumed for each circuit. For providing a fair comparison, the same encoding approach

was applied for all examined window sizes. Hence, even for L = 1, each seed was let

encode as many test cubes as possible (i.e., all compatible test cubes that can be merged

into a single cube, as long as the linear system for calculating the corresponding seed is

still solvable). Note that this approach provides much better compression than the clas-

sical reseeding approach of [77] where compacted test cubes are encoded into LFSR seeds

(in [77] one seed encodes just one cube). For every circuit we calculated the required test

48

Figure 3.2: Average TDV improvement and average TSL increase of window-based LFSR

encoding compared to the encoding of L = 1

data volume (TDV) and test sequence length (TSL) i.e. the amount of patterns applied

at the CUT for all the aforementioned values of L. The results for L =1, 50, 200 and 500

are shown in Table 3.1. Then, for each circuit and each window size, we calculated both

the test data volume improvement and the test sequence length increase of window-based

reseeding according to the formulas:

TDVimpr = 1− TDVL>1/TDVL=1, TSLimpr = 1− TSLL>1/TSLL=1

Figure 3.2 illustrates the average test data volume improvement and the average test

sequence length increase of all examined ISCAS circuits. The x-axis represents the window

size (i.e. the values of L). The right y-axis (curves) presents the average improvement

in test data volume and the left y-axis (bars) presents the average test sequence length

increase of window-based reseeding compared to the reseeding case of L = 1.

It is obvious that as the window size L increases, the compression improves consider-

ably. However, at the same time, the test sequences grow rapidly and become prohibitively

long, especially for large windows. For example, in order to achieve 50% better compres-

sion comparing to the LFSR encoding of L = 1 we have to use window size of L = 500

and thus apply 250× (times) more test vectors. Note that the TSL does not increase

proportionally to the window size, due to the reduction of the seed-volume achieved as

the window size increases.

3.3 State-Skip Circuit And Proposed LFSR Encoding

In this section we first present the State-Skip circuit and then we propose a window-based

LFSR encoding method which exploits the test sequence length reduction offered by the

State-Skip circuit and provides short test application time.

49

Figure 3.3: Example of ordinary LFSR (a) and State-Skip LFSR (b) for k = 2

3.3.1 State-Skip Circuit

Consider the LFSR shown in Figure 3.3a, which consists of four cells c0, c1, c2, c3, and two

exclusive-or gates between cells c0, c1 and c2, c3 implementing the characteristic polynomial

x4 + x3 + 1. Let the initial state of the LFSR be (c0, c1, c2, c3) = (a0, a1, a2, a3). Then the

symbolic contents of each LFSR cell during cycles t0 . . . t3 are shown in Figure 3.3a, next

to the respective cell. Let us focus on the contents of the LFSR cells during clock cycles

t0 and t2. We observe that the value of cell c0 at cycle t2 is equal to the Exclusive-OR of

the values of cells c2, c3 at cycle t0, i.e., c0(t2) = c2(t0) ⊕ c3(t0), where ci(tj) is the value

of cell ci during cycle tj. For the rest cells we derive similar relations: c1(t2) = c2(t0),

c2(t2) = c0(t0) ⊕ c3(t0), c3(t2) = c1(t0) ⊕ c2(t0) ⊕ c3(t0). These relations depend solely

on the characteristic polynomial and the distance between the clock cycles of interest (2

cycles in the above example). Hence, they are satisfied for every pair of cycles ti+2, ti,

i.e.: c0(ti+2) = c2(ti) ⊕ c3(ti), c1(ti+2) = c2(ti), c2(ti+2) = c0(ti) ⊕ c3(ti) and c3(ti+2) =

c1(ti)⊕ c2(ti)⊕ c3(ti). For example, if we set i = 1 we can easily verify from Figure 3.3a

that the relations are satisfied in this case too. Generally, for an LFSR of size n and for

every k ≥ 1, n linear expressions F k
0 , . . . F

k
n−1 exist that satisfy the following relations:

50

c0(ti+k) = F k
0 (c0(ti), c1(ti), . . . , cn−1(ti))

...

cn−1(ti+k) = F k
n−1(c0(ti), c1(ti), . . . , cn−1(ti))

When k = 1, the above expressions represent the operation of the LFSR according to

its characteristic polynomial. The linear expressions F k
0 , . . . F

k
n−1 are easily calculated by

setting i = 0 and simulating the LFSR symbolically [equations 3.3.1 are satisfied for every

value of i and thus they are satisfied for i = 0 too]. Specifically, the LFSR is initialized

at symbolic state (c0(t0), c1(t0), . . . , cn−1(t0))=(a0, a1, . . . , an−1), and is clocked k times.

After the k-th clock cycle, the contents of the LFSR cells c0(tk), c1(tk), . . . , cn−1(tk) are

linear expressions of the variables a0, a1, . . . , an−1, which correspond to the initial con-

tents c0(t0), c1(t0),. . . , cn−1(t0) of the LFSR cells, and they constitute the required linear

expressions F k
0 , . . . F

k
n−1.

The basic idea proposed in this chapter is to integrate F k
0 , . . . F

k
n−1 in the LFSR struc-

ture. The modified LFSR, which is called hereafter State-Skip LFSR, operates in two dif-

ferent modes, Normal and State-Skip. In Normal mode, the sequence of the LFSR states

is generated according to the characteristic polynomial, whereas in State-Skip mode, the

state sequence is generated by the integrated linear circuit embedding the F k
0 , . . . F

k
n−1

functions. When the LFSR operates in State-Skip mode, it performs a jump of k states

ahead at every cycle, skipping in this way the k− 1 intermediate states which would have

been generated if the LFSR had operated in the Normal mode. Therefore, in State-Skip

mode, the generated vector sequence is shortened by a factor k, which is called hereafter

speedup factor.

Example 3.1. Figure 3.3b presents the State-Skip version of the LFSR of Fig 3a, for

k = 2. At the input of every LFSR cell, a 2:1 multiplexer selects either the logic value

generated by the characteristic polynomial (Normal mode) or the value generated by the

State-Skip circuit (State Skip mode). Assuming that the initial state of the LFSR is

(c0, c1, c2, c3) = 1011, the logic values generated at the outputs of the phase shifter are

shown in the upper right part of Figure 3.3b, for operation either in Normal mode (all logic

values inside the grey horizontal bars) or in State-Skip mode (boldfaced and highlighted

by the vertical bars). In State-Skip mode only half of the logic values are generated at the

outputs of the phase shifter and thus the test sequence is shortened by a factor 2 (= k)�

We have to note that the concept of state skipping has been reported in the past

[159] in a circular BIST environment, but it exhibits fundamental differences comparing

to the proposed State-Skip circuit. Specifically, [159] presents a method to design “state

skipping” logic which causes the circular chains to break out of the limit cycles and

correlations, and hopefully reach a state with greater potential to detect random-resistance

faults. In this way, fault coverage is increased. On the contrary, the proposed State-Skip

circuits are systematically designed to perform successive jumps of constant length in the

LFSR state sequence, in order to reduce the test application time in a test set embedding

environment.

51

Figure 3.4: State-Skip LFSRs encoding process.

3.3.2 LFSR Encoding using State-Skip Circuits

The flowchart of the proposed encoding method is shown in Figure 3.4. At the first

step, the test cubes are encoded using the window-based LFSR reseeding. Every seed is

computed so as to encode as many test cubes as possible in the sequence of L successive

test vectors (L is the size of the window). There are many ways to encode multiple test

cubes in an L-vector window. One very effective algorithm for minimizing the number

of seeds has been presented in [33]: initially, the test cube with the highest number of

specified bits is selected and the system corresponding to the first vector of the window is

solved (the selection of the LFSR polynomial and the phase shifter guarantees that this

system is always solvable). The remaining test cubes are selected iteratively according to

the following criteria:

1) Among the solvable systems that correspond to the test cubes containing the max-

imum number of specified bits, we identify those that their solution leads to the

replacement of the fewest variables in the L-vector window.

2) Among them, we find those corresponding to the cube that can be encoded the

fewest times in the window.

3) Finally, among them, we select the system nearest to the first vector of the window.

These criteria are applied for selecting every new test cube, in the order they appear

above. After solving the selected system, some of the variables are replaced by logic

values, whereas the rest remain unspecified and they are utilized for encoding additional

test cubes. The generation of a seed is completed when no system for any of the unencoded

test cubes can be solved in the L-vector window.

52

Based on the above process, it is obvious that when a test cube t is encoded at the

window position i of seed s, then the ith test vector generated by seed s is compatible

with t (i.e., they match in all the specified bit positions of t). Usually though, most of

the test vectors of a seed do not encode any test cubes. These pseudorandom test vectors

can be omitted as they do not contribute to the resulting fault coverage. By using the

State-Skip mode to skip the majority of the window positions corresponding to useless

pseudorandom vectors, the test sequence length can be considerably shortened.

The highest test-sequence-length reduction can be achieved by skipping every window

position that does not encode a test cube. However, this requires complex decoding

logic, especially for large window sizes. To this end, we adopt the following cost-effective

solution: we first partition the window of test vectors into L/S segments of size S each

(step 2 at Figure 3.4), where S is a designer-defined parameter in the range [1, L]. Then

we examine every segment and we determine if it is useful or useless (step 3 at Figure

3.4). A segment is useful if it embeds at least one test cube not embedded in any other

useful segment; otherwise it is a useless one. Note that we do not rely solely on the

encoding process to determine if a segment is useful or not. If for example, during the

encoding process a test cube is encoded at window position i of seed s, the corresponding

segment is not necessarily determined as useful segment. This is based on the following

very important property of the window-based reseeding: although, during the encoding

process, each test cube is encoded only once, a sparsely specified test cube may fortuitously

appear in more than one segment, due to the generation of pseudorandom vectors by every

seed (it is very possible for a pseudorandom vector to be compatible with a test cube with

very few defined bits). Since there are various sparsely specified cubes in the test sets,

this happens quite frequently. We exploit this property in order to minimize the number

of segments which are determined as useful, and consequently, the test sequence length.

At the right part of Figure 3.4 we present the selection process of useful segments

(step 3) in detail. At first we identify all essential segments. Essential segments are

those segments that uniquely embed test cubes, i.e., they include test cubes that are not

embedded in any other segment. At this step, essential segments are labeled as useful and

all the test cubes embedded in these segments are not further considered. We have to note

that, by default, the first segment of every seed is considered as an essential one. This

stems from the window-based encoding according to which, the first test cube encoded

by every seed is the most specified one and it is encoded at the first position (and thus

at the first segment) of the window. Since it is rather unlikely that a densely specified

test cube is fortuitously embedded in other segments too, we can safely consider the first

segment of every seed as essential. This step simplifies considerably both the selection of

the useful segments and the implementation of the decompressor.

After the identification of the essential segments, and provided that there are test

cubes not embedded in the selected segments so far, the selection process continues by

choosing the minimal number of segments which embed the remaining test cubes. To

this end, we adopt the following greedy heuristic: we find those segments that embed the

53

largest number of the remaining test cubes (step 3b at Figure 3.4) and if more than one

such segments exist, we select the one which is closest to the beginning of the window

(step 3c at Figure 3.4). Step 3c favors the selection of segments closest to the beginning

of the window, since, as it will become apparent soon, this offers additional benefits for

test sequence length reduction. Then, we drop the test cubes that are embedded in the

selected segment and we repeat steps 3b and 3c until all the test cubes are dropped (i.e.,

all test cubes are embedded in segments labeled as useful).

We have to note that the test sequence of every seed can be shortened even further, if

the generation of the test vectors of every seed terminates immediately after the generation

of the last useful segment. In this way the generation of the last useless segments for every

seed is completely eliminated instead of just being shortened by using the State-Skip mode

of operation. However, this complicates the decompressor, since dedicated logic should

be implemented to determine the number of useful segments for each seed. In order to

overcome this problem, we follow a different approach (step 4 at Figure 3.4): the seeds are

grouped according to their useful segment volume, and the groups are sorted in ascending

order of this volume (i.e., group 1 contains all the test cubes with 1 useful segment, group

2 contains all the test cubes with 2 useful segments etc). By applying the seeds in this

order the decompressor uses only a counter to indicate the current group and embeds only

the functionality required to increase this counter every time the last seed of each group

is loaded into the LFSR. At the same time, every seed belonging to group k consists of

exactly k useful segments (and L/S − k useless ones). The decompressor keeps track of

the number of useful segments applied at the CUT for every seed, and when the last (i.e.,

the kth useful segment) is applied, it immediately terminates the generation of the test

vectors of the current seed and initiates the loading of the next seed from the ATE. Thus

the decompression logic is considerably simplified. The following example illustrates the

above process.

Example 3.2. Figure 3.5a presents the encoding locations of 12 test cubes (T1, . . . , T12)

into 6 different seeds (each seed corresponds to one row) using window of size L = 30

vectors. Every window position which is compatible with a test cube is labeled after the

respective test cube (note that some cubes are embedded to multiple locations). Figure

3.5b presents the partitioning of the window of every seed into 6 segments of S = 5 vectors.

Additionally, the essential segments, which uniquely embed test cubes T1, T3−T7, T9, and

T10, are marked using dashed lines. These selected essential segments are marked as

useful and the test cubes embedded in these segments are dropped. The selection process

continues since test cubes T2, T8, and T11 are not yet embedded into any of the selected

segments. Figure 3.5c presents the segments embedding the remaining test cubes, as well

as the segments selected for covering these test cubes (the useful segments selected at

the previous step are denoted with the dark color). Note that segment 3 of seed 3 is

marked as useful as it embeds the highest number of remaining test cubes (i.e. T2 and

T11). The segment 5 of seed 5 is the last segment selected as it embeds the last test cube

(T8) and additionally it is closer to the beginning of the window than the other segments

54

Figure 3.5: Example of State-Skip LFSR encoding.

55

embedding T8. Finally, the seeds are grouped according to their useful segments’ volume

and the groups are sorted in ascending order of this volume. Group G1 consists of seeds

2, 4 and 6 with one useful segment, group G2 consists of seeds 1 and 3 with two useful

segments and finally group G3 consists of seed 5 with three useful segments. The last

useless segments of each group which are totally eliminated are denoted as “Eliminated

Segments”, whereas the useless segments which are skipped using the State-Skip mode,

are denoted with the arrows inside the vector boxes. Note that only 10 of the 36 segments

are normally generated, 6 segments are skipped and the rest 20 are completely eliminated,

reducing thus considerably the test sequence length. �

The efficiency of the described test-sequence-reduction process strongly depends on

the value of S (segment size). As it will be shown later, small segments lead to higher

test-sequence-length reductions compared to large segments, but impose a little higher

hardware overhead than the large ones. In an area constraint design the best value of S

should be the smallest one for which the area of the decompressor does not violate the

area constraint. Another design problem is that if S · r (r is the scan chain length) is not

divided exactly by the speedup factor k, then the last vector of each useless segment will

be shorter than the others and it will not completely fill the scan chains. This case can be

trivially handled by the control unit of the decompressors with negligible cost. However,

if the shift-capture sequence should remain untouched, then S · r and k must be properly

selected so as the product S · r to be divided exactly by k.

3.4 Single-State-Skip LFSRs

In this section we present the architecture of the Single-State-Skip LFSRs (SSS LFSRs).

SSS LFSRs operate as follows:

1) They generate the test vectors of useful segments according to the characteristic

polynomial structure of the LFSRs.

2) They skip the useless segments using the State-Skip mode according to a speedup

factor k.

3) They totally eliminate the last useless segments of every seed.

The main advantages of SSS LFSRs are the vast reduction of the test sequence length of

window-based reseeding as well as the simplicity and the low hardware overhead of the

decompressors. Before describing the architecture in detail, let us present an example

which illustrates the potential of this architecture for reducing the test sequence length

of window-based reseeding.

Example 3.3. We refer again to the example of Figure 3.5, and we consider a SSS LFSR

with k=5. Suppose that each test vector is generated in c clock cycles. Then the gen-

eration of a useful segment using the characteristic polynomial requires 5c clock cycles

while the generation of a useless one using the State-Skip mode requires 5c/5=1c cycles.

Consequently, the initial test sequence length is equal to 36 · 5c = 180c cycles which is

56

Figure 3.6: SSS LFSR Decompression Architecture.

reduced to 10 · 5c + 6 · 1c + 20 · 0c = 56c cycles using the SSS LFSRs. This corresponds

to 69% reduction of the test sequence length. �

In the rest of this section we present the SSS LFSR architecture, the experimental

results and finally we will discuss the limitations of this architecture.

3.4.1 Decompression Architecture

The SSS LFSR decompression architecture is shown in Figure 3.6. It consists of the Vector

Generation unit, the Controller unit and the Segment Type unit. The Vector Generation

Unit consists of the LFSR, the phase shifter and the State-Skip circuit and it is already

described in Section 3.3.1. In the sequel we will describe in details the rest two units.

Controller Unit: This unit controls the operation of the decompressor and specifically

the generation of all segments. It consists of the following six counters:

• Group Counter: it counts the number of seed-groups.

• Seed Counter: it counts the number of seeds loaded into the LFSR from the ATE

for every seed-group.

• Segment and Useful Segment Counters: they count the total number of segments

and the number of useful segments respectively generated for every seed.

• Bit and Vector Counters: they control the loading of the test vectors into the scan

chains.

The Group Counter is initialized to the value ‘1’ and retains this value until all seeds of

the first group are loaded into the LFSR from the ATE. Every time a new group of seeds

is initiated, the Group Counter increases by one. Specifically, when the first seed of each

group is loaded into the LFSR the seed counter is initialized to 0 and it increases every

57

time a new seed of the group is loaded into the LFSR. When the seed counter reaches

the last value for each group (i.e., the number of seeds of this group), then the Group

Counter is triggered to increase by one in order to begin the processing of the next group

of seeds.

As we explained in the previous section, every seed of group i consists of exactly i

useful segments. Therefore, every time a new seed is loaded into the LFSR, Useful Segment

Counter is loaded with Group Counter’s value and thus it is set equal to the number of

useful segments of the seed. At the same time the Segment Counter is initialized to 0.

For every new segment generated, the Segment Counter increases by one and the Segment

Type unit determines if this segment is useful or not. For every useful segment generated,

Useful Segment Counter decreases by one. When the Useful Segment Counter reaches 0,

Seed Counter increases by one and the next seed is loaded into the LFSR from the ATE.

In that way all the last useless segments of each seed are completely eliminated.

Segment Type Unit: This unit consists of the Mode Select block and the Decoder

block. The Mode Select block is a combinational circuit that determines if the next

segment is a useful or a useless one. It receives the decoded outputs of the Segment,

Seed and Group Counters which are provided by the Decoder block and generates the

Mode signal that is driven to the Vector Generation unit. Mode signal is equal to 1

(Normal Mode) if the segment is a useful one, else it is equal to 0 (State-Skip Mode).

The overhead of this combinational circuit depends mainly on the total number of useful

segments which are only a very small portion of the total segments. Moreover, as we

noted in Section 3.3.2, the first segment of every seed is always considered as a useful

one. Consequently, the first segment of each seed requires minimum decoding logic and

therefore the implementation of Mode Select unit is significantly simplified. Additionally,

in a multi-core environment, only the Mode Select unit has to be re-implemented for every

core, whereas the rest of the units are common for all cores.

Finally, we have to note that in order to avoid the ATE-SoC synchronization problem,

a small FIFO has to be inserted between the LFSR and the ATE channels as proposed

in [50]. The size of the FIFO, the number of ATE channels used and the frequency of

transferring test data can be adjusted in such a way as to avoid FIFO overflow, and thus

eliminate the need for sending a synchronization signal back to the ATE.

3.4.2 Experimental Results

The proposed method was implemented in the C programming language and experiments

were conducted for the larger ISCAS ’89 benchmark circuits, assuming 32 scan chains for

each one of them. Uncompacted test sets generated by Atalanta [83] that offer complete

stuck-at fault coverage (100%) were used in all cases.

Initially, we study the influence of speedup factor k, segment size S and window size L

on the test sequence length (TSL) improvement achieved by the SSS LFSR architecture.

58

Figure 3.7: TSL Improvement for Various Values of k, S and L.

In every experiment the TSL improvement is calculated by the following formula:

TSL Improvemet(%) =

(
1− TSL of prop method

TSL of original window-based method

)
To present the trade-offs we focus on s13207, since the rest circuits exhibit similar

behavior. In the sequel the TSL is reported as the number of test vectors applied to

the CUT and the test data volume (TDV) as the number of bits stored in the tester.

Please note that the TDV results of the proposed method are the same with those of

the window-based LFSR reseeding approach contained in Figure 3.1, since the proposed

method targets only the shortening of the TSL.

Figure 3.7 demonstrates the effect of speedup factor k on the TSL improvement. At

first we study this effect for various segment sizes S (we refer to the bars of Figure 3.7).

We present results for 3 ≤ k ≤ 24, and S = 4, 10, 12 and 20, assuming windows of L = 300

vectors. From the bars shown in Figure 3.7, it is obvious that the TSL improvement is

significant (from 69%-78% for k = 3, to 80%-93% for k = 24) for all segment sizes. The

improvement increases when speedup factor k increases and/or segment size S decreases.

When k increases, the number of cycles required for the generation of useless segments

decreases, and thus TSL decreases too. When S decreases, the segmentation becomes

finer, i.e., the total size of useful segments (in terms of vector count) decreases while

the total size of useless segments increases (their sum though remains constant). This is

explained by the fact that most useful segments contain also some useless pseudorandom

vectors, the number of which depends on size S. By decreasing S, fewer useless vectors

remain in the useful segments, and since a useless segment is generated faster than a

useful one (its major portion is skipped or it is completely eliminated), the overall TSL

decreases.

We next study the effect of speedup factor k on the TSL improvement for various

window sizes (L). The curves in Figure 3.7 present the TSL improvement for 3 ≤ k ≤ 24

and L =50, 100, 300 and 500 (S was set equal to 5 in these experiments). We observe

that as L increases, the TSL improvement increases too. This is explained by the fact

that large windows contain more useless segments than the small ones, and the length of

useless segments is drastically shortened by the proposed technique.

59

Figure 3.8: Hardware overhead of State Skip Circuit.

As we have already seen, the speedup factor k is critical for the reduction of the TSL.

However, k also affects the hardware overhead of the State-Skip circuit. For assessing this

overhead, we used a commercial tool for synthesizing the State-Skip circuits of various

LFSRs, with primitive characteristic polynomials. Results concerning LFSRs of size 65

with 3, 5 and 9 taps (internal XORs implementing the characteristic polynomial), con-

sidering every value of k in the interval [2, 50] are shown in Figure 3.8, where we present

the hardware overhead of the State-Skip circuits in gate equivalents (a gate equivalent

corresponds to a two input NAND gate). We observe that this overhead: a) increases

almost linearly with k and, b) increases as the number of the LFSR internal XOR gates

increases. Both these trends are explained by the fact that during every cycle in Nor-

mal mode, a number of XOR operations equal to the volume of internal XOR gates are

executed by the LFSR. In State-Skip mode, the LFSR executes in one cycle the linear

operations of k successive cycles in Normal mode. Therefore, when the number of internal

XOR gates and/or the value of k increase, the number of linear operations increases and

consequently the hardware overhead of the State-Skip circuit increases too. However, it

is obvious from Figure 3.7 that a value of k in the range [12, 24] maximizes the TSL im-

provement, and, as can be seen in Figure 3.8, the hardware overhead of the corresponding

State-Skip circuits is small for all polynomials (between 60 and 100 gate equivalents in

the average case). Thus, we conclude that a value of k in the range [12, 24] is a very good

choice for SSS LFSRs.

In Table 3.2 the test sequence length reduction achieved by the SSS LFSRs for L =

50, 200, 500, S=2, 5, 10, and 5 ≤ k ≤ 24 is reported (the best result for the various

values of S and k is shown). Columns labeled “Orig.” present the test sequence length

(# vectors) of the window-based approach with ordinary LFSRs, whereas the columns

with label “SSS” present the test sequence length of the window-based approach with

SSS LFSRs. Note that the TSLs of SSS LFSRs are reported in vector volumes in order

to be compared with the window-based approach (i.e., the total number of cycles in each

60

Table 3.2: TSL improvements

Circ.
L=50 L=200 L=500

Orig. SSS Impr. Orig. SSS Impr. Orig. SSS Impr.

s9234 9100 1082 88% 32400 1784 94% 76000 3055 96%

s13207 11100 1309 88% 31800 1756 94% 56000 2701 95%

s15850 9500 1129 88% 34200 1740 95% 79500 2791 96%

s38417 29800 7626 74% 113200 13113 88% 276500 21865 92%

s38584 9450 3805 60% 25200 6639 74% 46000 9054 80%

case was divided by the number of cycles required for applying a single test vector to

the CUT). Columns labeled “Impr.” present the reduction percentage for each case.

Note that both approaches (the original and the proposed one) have the same test data

volumes (the TDVs of these methods are reported in Table 3.1). It is obvious that the

TSL reduction achieved by the proposed method is very high (60%-96%).

Finally, we present the total hardware overhead of the proposed decompressors. We

again focus on s13207 (the results for the rest circuits are similar, since apart from the

LFSR and the Mode Select unit, the hardware overhead of the rest decompressor does not

depend on the test set). The overhead of the State-Skip circuit is very low for the speedup

factors of interest (k ≤ 24). For example, in the case of s13207, as k increases from 12 to

32, the overhead of the State-Skip circuit increases from 52 to 119 gate equivalents. For

the same circuit and for various values of L and S, the average total overhead of the rest

of the decompressor, excluding the Mode Select unit (i.e., LFSR, Phase Shifter, Controller

unit, and Decoder of the Segment Type unit), was 320 gate equivalents. This overhead

is very small and similar to that of most test data compression and test set embedding

techniques in the literature. Moreover, the aforementioned decompressor units, as well

as the State-Skip circuit have to be implemented only once in a SoC and reused for all

cores. On the other hand, the hardware overhead of the Mode Select unit, which has to

be implemented for every core separately, was between 44 and 262 gate equivalents, for

50 ≤ L ≤ 500 and 2 ≤ S ≤ 50.

3.4.3 Limitations

The test-sequence length reduction potential of State-Skip circuits cannot be fully ex-

ploited by the SSS LFSR decompression architecture, when multiple non-identical IP

cores exist in a SoC. This is mainly attributed to the strong dependence of the TSL re-

duction on the segment size S, the window size L, and the speedup factor k as it is shown

in the previous subsection. The design of a SSS LFSR has to be based on a single set of

values for S, L, k. However, it is unlikely that the TSL of every core will be drastically

shortened using the same values of S, L and k. Therefore, the system integrator has to

resort to the very expensive solution of using a separate decompressor for each core, for

minimizing the overall TSL. On the other hand, if an area efficient solution is required,

61

a single decompressor must be shared among all cores, which however cannot achieve

maximum TSL reduction.

Another limitation of the SSS LFSR architecture is that, for simplifying the decoder, k

should divide exactly the product S ·r, which is the number of clock cycles required for the

normal generation (i.e., not in State-Skip mode) of each segment (each vector requires

r clock cycles for loading the scan chains). If this condition is satisfied then a whole

segment is traversed by using the State-Skip circuit for exactly S · r/k successive clock

cycles and thus the design of the decompressor is simpler. However, since small segments

are preferable (usually in the range [2, 10]), the maximum value of k that divides exactly

the product S · r is bounded by the value of r and thus a large speedup factor may not be

possible. This limitation has an even more serious effect when multiple non-identical IP

cores should be tested in a SoC. In this case, it is almost certain that the value of r will

be different for every core, and thus the probability of finding a suitable value of k for

the State-Skip circuit is very low. Thus, the only way to develop SSS LFSR for testing

all cores is to consider the same segment size S for every core and to select a value of k

which divides exactly S, so as to satisfy the above condition for every core. In this way

though, it is impossible to select a small value for S and, at the same time, a large value

for k (this combination offers the highest efficiency). In fact, the values of k and S will

be either both large or both small. In the first case, every useful segment will contain

many useless pseudorandom vectors and thus the total number of cycles required for its

generation will increase. In the second case, the small speedup factor k will not be able

to drastically shorten the time required for the generation of the useless segments. Both

scenarios negatively affect the performance of the proposed method. In order to overcome

these limitations we present in the next section the Variable-State-Skip LFSRs.

3.5 Variable-State-Skip LFSRs

In this section we present a very efficient decompression architecture, the Variable-State-

Skip LFSRs (VSS LFSRs). VSS LFSRs consist of multiple State-Skip circuits. Each

State-Skip circuit implements a different speedup factor, and thus VSS LFSRs are able

to perform jumps of variable lengths. We confine our study in the case of VSS LFSRs

integrating two State-Skip circuits, one with small speedup factor (k) and one with large

speedup factor (K), since we observed that two speedup factors are sufficient to achieve

very high TSL reduction. Apart from implementing and utilizing multiple speedup factors,

the VSS LFSR architecture is also more flexible compared to the SSS LFSR architecture,

in the sense that both values of k and K can be selected independently of the values

S, r, as will be explained shortly. This enables the designer to fully exploit the “test

time – hardware overhead” trade-off for single cores, as well as to achieve maximum test-

sequence-length reduction for every core that is tested by a common decompressor in a

multi-core SoC.

62

3.5.1 VSS LFSRs Scheme

A VSS LFSR with two embedded State-Skip circuits operates in two State- Skip modes:

a) K-mode which enables the VSS LFSR to perform a long jump of K cycles ahead and

b) k-mode which enables the VSS LFSR to perform a short jump of k cycles ahead. Let

A be the number of useless segments between two useful segments Si, Sj (j = i+A+ 1).

The total length (in clock cycles) of these A useless segments is C = A · S · r. Then an

ordinary LFSR requires C cycles for traversing these useless segments in Normal mode.

By using the Variable-State-Skip LFSR, these A segments can be traversed much faster.

Specifically, at first K- mode is used (the LFSR performs long jumps of length K) for

C1 = bC/Kc (successive cycles. Then the remaining part has length L1 = C − C1 · K
which is smaller than K and it cannot be traversed using K-mode. Thus, VSS LFSR

switches to k-mode (the LFSR performs short jumps of length k) for C2 = bL1/kc cycles.

Finally, the remaining part has length L2 = L1 − C2 · k which is smaller than k and it

cannot be traversed using either K or k mode. Consequently Normal mode is used for

C3 = L2 cycles. Note that C = C1 ·K+C2 ·k+C3 as each one of the C1, C2 and C3 cycles

corresponds to a jump of length K, k and 1 respectively. Therefore, instead of C cycles,

only C1 + C2 + C3 cycles, are required for traversing the useless segments. Note that the

use of Normal Mode for traversing the last part of the useless segments (the one that its

size cannot be divided by either K or k) eliminates the requirement that the values of K

and k should divide exactly the product S · r.

Example 3.4. Consider a VSS LFSR architecture with K = 100 and k = 15 which is used

to shorten 60 successive useless segments (A = 60) with size S = 6 vectors each. Let us

assume also that r = 7 cycles are required for the application of every test vector at the

core under test. Then, we have C = 2520, C1 = 25, C2 = 1, and C3 = 5 and thus 31

cycles are required instead of 2520 cycles. For the same values of S and r an SSS LFSR

can be alternatively used with a value of k in the set {2, 3, 6, 7, 14, 21, 42} (note that k

must divide exactly the product S · r). Even for the highest possible value of k = 42, the

reduced TSL is 60 cycles which is almost twice as long as that provided by the VSS LFSR.

�

3.5.2 Decompression Architecture

The VSS LFSR architecture is shown in Figure 3.9. It consists of four main units:

1) The Vector Generation unit, which comprises the LFSR, the Phase Shifter and the

Variable-State-Skip circuit. Signal SelectMode is used to select between the various

modes of operation of the LFSR.

2) The Controller, which comprises various counters with the same functionality as in

the SSS LFSR case. This unit controls the operation of the whole decompressor.

3) The Segment Type unit, which consists of a decoder and a combinational logic block,

the Segment Type Select block, and determines whether a segment is useful or not.

This unit is identical to the respective unit of SSS LFSR.

63

Figure 3.9: VSS LFSR Decompression Architecture.

4) The Look-Ahead unit, which consists of the Segment Look-Ahead counter and the

Jump Select block. It first locates the next useful segment and then it controls

the Vector Generation unit so as to traverse the intermediate useless segments in

K-mode, k-mode, or Normal mode.

Most of the VSS LFSR units resemble the units of SSS LFSR and they have the same

functionality (the reader can refer to Section 3.4 for further details). The major difference

between the SSS LFSR and the VSS LFSR is the Look-Ahead unit. The Look-Ahead unit

has two different modes of operation: a) the C-calculation mode and b) the C-skipping

mode. The Look-Ahead unit enters the first mode at the beginning of the generation

of every useful segment, let say Si. Then, during the generation of useful segment Si,

it calculates the value of C, i.e., the number of cycles than must be skipped after the

generation of useful segment Si, in order to reach the next useful segment, let say Sj.

This calculation is done on the fly, concurrently with the generation of the test vectors

of Si. Specifically, while the test vectors of segment Si are loaded and applied to the

core, the next segments (Si+1, Si+2, . . .) are examined one by one until the next useful

segment Sj is found. For every useless segment found, the value S · r (i.e., its size in

cycles) is added to a counter. Consequently, when the next useful segment is found, this

counter contains the number C of intermediate clock cycles between Si and Sj. After

the calculation of C, and upon completion of the generation of the test vectors of useful

segment Si, the Look-Ahead unit enters the second mode (the C-skipping mode) and

controls the operation of the Vector Generation unit in order to skip the C cycles. Let us

now present the operation of this unit in detail.

64

The Look-Ahead unit is activated at the beginning of seed-group 2 (seeds of group 1

consist of only one useful segment, which is the first one, and thus they do not contain any

useless segments). The Segment Look-Ahead counter is reset at the beginning of every

seed. The values of this counter are in the range [0, L/S) and correspond to the L/S seg-

ments of every window. At the beginning of the generation of any useful segment, let say

Si (i ∈ [0, L/S)), this counter contains the value i (i.e., it points to the currently generated

segment). At every successive clock cycle and concurrently with the loading of the test

vectors of segment i into the scan chains, the Segment Look-Ahead counter increases by

one and examines the segments that follow the useful segment that is currently generated

(i.e., Si+1, Si+2, Si+3, . . .) until the next useful one Sj is found. This is indicated by the

Segment Type unit, which monitors the value of the Look- Ahead counter. Depending

on the values of Seed and Group counters, it responds by setting the signal FoundUse-

fulSegment=0 every time the value of the Look-Ahead counter corresponds to a useless

segment, or by setting FoundUsefulSegment=1 when the value of this counter corresponds

to useful segment. For each increase of the Segment Look-Ahead counter by a step of

one, the Cycle counter inside the Jump Select unit increases by a step of S · r. When the

Segment Look-Ahead counter reaches the value j, then signal FoundUsefulSegment is set

to ‘1’ to indicate that Sj is the next useful segment. At this point Cycle counter contains

the value C and the Look- Ahead unit waits until the generation of the segment Si (which

is currently generated by the Vector Generation unit) finishes.

When the generation of the test vectors of the current useful segment Si completes,

and provided that Cycle counter has non-zero value (i.e., one or more of the next segments

are useless), the Look-Ahead unit enters the second mode of operation and, at the same

time, the LFSR operation is switched to the Variable-State-Skip mode. Then, the value

of Cycle counter is compared against K, and while it is greater than or equal to K, the

K-mode is used and the counter is decremented by K (i.e., at every clock cycle, K states

of the LFSR sequence are skipped). When the value of Cycle counter drops below K, the

above process continues with comparisons against k. While the Cycle counter value is

greater than or equal to k, the k-mode is used and the counter is decremented by k (i.e.,

at every clock cycle, k states of the LFSR sequence are skipped). When Cycle counter

drops below k, then the Normal mode is used and the counter is decremented by 1 until

it reaches 0 (note that in this case, the LFSR simply passes through the states, i.e., no

vector is loaded in the scan chains). At this point the LFSR is already at the first state

of segment Sj, and thus the generation of the useful segment Sj begins.

3.5.3 Experimental Results of VSS LFSRs

In the first set of experiments we study the effect of using two speedup factors K, k on

the test sequence length. We focus on the large factor K as it has more profound effect

on the TSL. To this end we set k = 15 and we vary K in the range [50, 240]. Figure 3.10

presents the TSL improvement obtained for the s13207 and s15850 benchmark circuits

(the remaining circuits exhibit similar behavior). The segment size used in all cases was

65

Figure 3.10: TSL using one additional speed up factor K.

S = 2 and the window size was L = 200. It is obvious that when K increases, TSL reduces.

The achieved reduction saturates when K increases above a value, which depends on the

core under test. We observe that for some values of K, the test sequence length exhibits

large instant drops. The reason is that the corresponding values of K happen to divide

exactly the number of cycles required for generating normally a number of, let say m,

segments. Consequently, every time the number of useless segments between two useful

ones is a multiple of m, these segments are traversed by using only the large speedup

factor K (i.e., without using the small speedup factor and/or the Normal Mode of the

LFSR).

In the next set of experiments, we study the area overhead of the State-Skip circuits for

various speedup factors. Figure 3.11 presents this overhead (reported in gate equivalents)

for the examined benchmark circuits (the LFSRs used are the same with those reported

in Table 3.1). Note that in Figure 3.11 every examined State-Skip circuit implements

one speedup factor. The results in Figure 3.11 are partitioned into two regions separated

by the dashed line: the left region corresponds to the State-Skip circuits implementing

the small speedup factors k (this case is already studied in Figure 3.8), whereas the right

region corresponds to the State-Skip circuits implementing the large speedup factors K.

By looking at the left region (small speedup factors k) we can see that the overhead of

the State-Skip circuit is low (below 120 gate equivalents in all cases) and increases almost

linearly with k. By looking at the right region (large speedup factors K) we see that the

overhead is higher compared to the results of the left region, but interestingly it exhibits

significant fluctuations (i.e., ups and downs). According to the experiments, this behavior

is caused by exactly the same fluctuations in the mean number of binary variables per

LFSR cell, during symbolic LFSR simulation. The designer can take advantage of this

property and choose a high speedup factor that is near to a local minimum so as to

66

Figure 3.11: Hardware overhead of State-Skip circuits in the range [2, 500].

Table 3.3: TSL improvements of VSS LFSR architecture

Circuit

L=200 L=500

K/k
TSL of Imp. (%) over

K/k
TSL of Imp. (%) over

VSS Norm. SSS VSS Norm. SSS

s9234 54/18 1465 95.50% 17.90% 165/15 2455 96.80% 19.60%

s13207 230/46 1180 96.30% 32.80% 230/46 1440 97.40% 46.70%

s15850 168/42 1091 96.80% 37.30% 168/42 1470 98.20% 47.30%

s38417 318/53 3026 97.30% 76.90% 318/53 3230 98.80% 85.20%

s38584 235/47 1935 92.30% 70.90% 235/10 1958 95.70% 78.40%

achieve high performance and low area overhead at the same time. The large speedup

factors that were chosen for each benchmark circuit are circled in Figure 3.11. Even though

the selected values of K are very high (between 54 and 318) the hardware overhead of

the corresponding State-Skip circuit is between 50 and 250 gate equivalents, which is

rather small. Note that the overall area overhead of the Variable- State-Skip circuits will

be higher, due to the addition of the State-Skip circuit implementing the small speedup

factor k.

Table 3.3 presents the test sequence length (TSL) results of the VSS LFSRs and

comparisons against the classical window-based LFSR encoding (labeled “Imp. % over

Norm”) and the SSS LFSRs (labeled “Imp. % over SSS”) for L=200 and L=500. The

test data volumes of the cases “Norm.”, “SSS” and “VSS” are the same and can be

found in Table 3.1 for both values of L. Note that excluding the VSS case, the TSLs

of the rest methods can be found in Table 3.2. The first column presents the circuit

names. Columns 3 and 7 present the TSL values achieved by the VSS LFSRs (labeled as

“TSL of VSS”) for L=200 and L=500 respectively. Note that the TSL of VSS LFSRs is

reported in number of vectors in order to be compared with the rest methods. Columns

labeled “K/k” present the values of the large/small speedup factors of the VSS LFSRs

67

Table 3.4: Variable VS Single State-Skip for multiple cores

S
SSS-LFSR VSS-LFSR TSL

k TSL Hardw. Overh. K k TSL Hardw. Overh. Impr. (%)

2 2 53471 9% 318 21 8511 10,5% 84.10%

5 5 31358 7.70% 159 5 15682 8.80% 50.00%

10 10 33736 6.60% 18 10 26731 7.80% 20.80%

that were used in each case [the large speedup factors are near to local area-minimums

(see Figure 3.11) in order to keep the hardware overhead low]. It is obvious VSS LFSRs

offer very short test sequences in all cases. Moreover, the test-sequence-reduction ability

of VSS LFSRs is only slightly affected by the utilized window size, giving the designer

the opportunity to increase the compression as much as possible with very small test-

sequence overhead.

We next present the hardware overhead results of the proposed method for the case

of s13207 (the results for the rest circuits are similar, since excluding the LFSR and the

Segment Type Select unit, the hardware overhead of the remaining decompressor units

does not depend on the core under test). The overhead of the Variable-State-Skip circuit

for k = 46 and K = 230 is equal to 203 gate equivalents. For the same circuit, the total

overhead of the LFSR, Phase Shifter, Controller unit, Look-Ahead unit, and the Decoder

of the Segment Type unit, for L = 200 and S = 5, is 627 gate equivalents. All the above

units need to be implemented only once in a SoC, where a common decompressor is used

for testing different cores. This makes their overall cost much smaller. The only unit that

has to be implemented separately for every core is the Segment Type Select unit, whose

hardware overhead for s13207 is between 44 and 262 gate equivalents, for 50 ≤ L ≤ 500

and 2 ≤ S ≤ 50.

In our last experiment we used the SSS LFSRs as well as the VSS LFSRs on a hypo-

thetical multi-core SoC consisting of the 5 larger ISCAS ’89 benchmarks. In both cases a

common decompressor was used and only the Segment Type Select unit was implemented

separately for each core. Table 3.4 presents the TSL and area overhead results for three

segment sizes, 2, 5 and 10, and for LFSR size=85. The hardware overhead is reported

as the percentage of the hardware overhead of the decompresssor to the total hardware

overhead of the 5 cores. It is obvious that the TSL gain offered by VSS LFSRs is very

high compared to SSS LFSR and reaches 84.1%. However, this comes at the expense of a

small increase on the hardware overhead (between 1-1.5% of the total area of the 5 cores).

3.6 Comparisons

We will now compare the proposed methods against the most efficient test set embedding

and test data compression methods, which are suitable for IP cores of unknown structure.

Note that no comparisons are provided against approaches that need structural informa-

68

Table 3.5: Comparisons of State Skip with other TSE methods

Circuit
Test Data Volume Test Sequence Length

[33] [91] SSS, VSS [33] [91] SSS VSS

s9234 6688 648 6688 24592 135765 3055 2455

s13207 2688 162 2688 24724 152596 2701 1440

s15850 6201 396 6201 27630 222336 2791 1470

s38417 47005 5440 47005 85885 625273 21865 3230

s38584 5152 228 5152 29358 383009 9054 1958

tion of the CUT or require ATPG synergy. Such methods target cores of known structure

and thus employ fault simulation, and, most of the times, specially constrained ATPG

processes, which reduce significantly and tailor to the encoding method the data that

need to be compressed. We mention that for cores of unknown structure neither ATPG

nor fault simulation can be performed.

In Table 3.5, the TSL comparisons of the proposed SSS LFSRs and VSS LFSRs,

for L = 500, against the test set embedding approaches of [33] and [91] are presented

(comparisons against [67] are omitted, since [33] reports much shorter test sequences than

[67] with comparable TDVs). Note that the TDV of both of the proposed methods is

exactly the same with that of [33], since the proposed method is a post-processing step

on that technique in order to reduce its TSL. The first three columns present the TDV

comparisons between the proposed method and the methods of [33] and [91]. The next

four columns present the respective TSL comparisons. As can be seen from Table 3.5,

both SSS LFSRs and VSS LFSRs exhibit very short test sequences compared to both [33]

and [91]. The approach of [91] has very small ATE-memory requirements, but its test

sequences are extremely long. Moreover, in [33] it is analytically shown that the hardware

overhead required for implementing this method is prohibitively large, especially for high

scan-chain volumes (estimated between 1300-9800 gate equivalents for 32 scan chains, and

4500-12500 gate equivalents for 64 scan chains, for the larger ISCAS 89 circuits).

Table 3.6 compares the proposed Single-State-Skip and Variable-State-Skip LFSRs

for L = 200 against the most efficient test data compression methods which are suitable

for IP cores of unknown structure and provide results for the ISCAS benchmarks. Note

that we omit the comparisons against [20–22, 49, 60, 72, 72, 73, 111, 130, 149, 150] as

we compare against [73], which is more efficient than all these methods. Additionally,

in order to provide comparisons with dynamic reseeding, we implemented this technique

omitting the fault simulation step (in this case, ring generators [106] were utilized). Note

that [81, 85, 181] as well as [92, 125] require the same TSLs and for that reason they

have been reported under one common column in both cases. In all but one case (s38417)

the proposed method performs better than the compared test data compression methods,

in terms of test data volume. We have to note though that in the case of s38417 the

volume of specified bits is very high (93123 specified bits) and this negatively affects the

compression achieved.

69

T
ab

le
3.

6:
C

om
p
ar

is
on

s
w

it
h

T
D

C
m

et
h
o
d
s∗

C
ir

cu
it

[7
]

[8
1]

[8
1]

[8
5]

[1
81

]

[9
2]

[9
2]

[1
25

]
[8

2]
[1

38
]

D
y
n
am

ic

[7
4]

S
S
S

L
F

S
R

s
(L

=
20

0)
V

S
S

L
F

S
R

s
(L

=
20

0)
[8

5]
[1

25
]

R
es

ee
d
.

[1
81

]

T
S

L
T

D
V

T
S

L
T

D
V

T
S

L
T

D
V

T
S

L
T

D
V

T
S

L
T

D
V

T
S

L
T

D
V

T
S

L
T

D
V

T
S

L
T

D
V

T
S

L
T

D
V

s9
23

4
17

0
15

.1
20

5
12

.4
10

.3
-

15
9

30
-

-
-

16
1

17
.2

47
7

10
.6

15
9

12
.8

17
84

7
.1

14
65

7
.1

s1
32

07
22

9
12

.8
26

6
11

.9
10

.5
10

.8
23

6
21

74
26

6
14

.3
24

2
26

53
6

8.
2

23
6

14
,6

17
56

3
.8

11
80

3
.8

s1
58

50
24

4
15

.5
26

9
12

.7
11

.4
12

.4
12

6
25

26
22

6
15

.1
30

6
32

.2
52

4
10

.8
12

6
16

.6
17

40
6
.7

10
91

6
.7

s3
84

17
37

6
37

37
6

36
.4

3
2
.2

32
.2

99
85

45
37

6
49

85
4

89
.1

92
0

55
.2

99
58

.7
13

11
3

48
.1

30
26

48
.1

s3
85

84
29

6
31

.6
29

6
30

.4
31

.2
31

13
6

57
.1

74
29

6
29

59
9

63
.2

63
9

21
.2

13
6

55
.4

66
39

7
.1

19
35

7
.1

∗
T

D
V

re
p

or
te

d
in

K
b
it

s
(1

K
b
it

=
10

3
b
it

s)

70

The test sequences of the proposed methods are longer but close to those of the test

data compression methods. The test data compression methods offer very short test

sequences mainly due to the utilization of compacted test sets, and also due to the fact

that they do not apply any pseudorandom vectors. On the contrary, the utilization

of uncompacted test cubes and the application of pseudorandom vectors are the main

reasons for the prohibitively long test sequences of window-based reseeding. However, the

proposed methods shorten the test sequences of window-based reseeding drastically, thus

offering test sequence lengths comparable to that of test data compression methods. In

fact, in the case of VSS LFSRs the TSLs achieved are relatively short, especially for the

largest ISCAS s38417 and s38584.

Tables 3.5 and 3.6 demonstrate the two options for testing IP cores of unknown struc-

ture: test data compression (many data, small test sequences) and test set embedding

(few data, greater test sequences). Until now, the test sequences of the latter category of

techniques were prohibitively long. State-Skip LFSRs bridge this gap by offering the well-

known high compression efficiency of test set embedding with very small test sequences.

Taking also into account the high volume of scan chains (a few, fast, internal-clock cycles

are required for loading each vector) and the fact that, compared to test data compression,

significantly fewer data need to be transferred through the slow ATE-SoC connections in

test set embedding, we conclude that the test application time is really not an issue in

State-Skip LFSR-based test set embedding, rendering therefore test set embedding a very

attractive testing approach.

3.7 Conclusions

Two new types of LFSRs, the Single-State-Skip and Variable-State-Skip LFSRs were

introduced, which drastically shorten the test sequences of LFSR- reseeding-based test-

set-embedding methods. Single-State-Skip LFSRs offer relatively short test sequences

with small area requirements, especially when they are used for testing single cores or

multiple identical cores. On the other hand, Variable-State-Skip LFSRs offer higher test

sequence length reduction and more flexibility for testing multiple cores, with a relatively

small increase in their hardware overhead, which can however be compensated in a multi-

core environment. Both types of State-Skip LFSRs bridge the gap between test data

compression and test set embedding by offering the high compression efficiency of test set

embedding with test sequences reduced to such an amount (up to 98.8%) that approach

the length of the sequences of test data compression methods. In this way, test set

embedding becomes an attractive approach for testing IP cores.

71

Chapter 4

Self-Freeze Linear Decompressors

for Low Power Testing

4.1 Overview . 72

4.2 Background . 73

4.3 Power Aware Encoding . 75

4.4 Architecture . 80

4.5 Experiments . 82

4.6 Conclusions . 85

4.1 Overview

Even though linear decompressors constitute a very effective solution for compressing

test data, they cause increased shift power dissipation during scan testing. Recently, new

linear decompression architectures were proposed which offer reduced shift power at the

expense however of increased test data volume and test sequence length. This chapter

presents a linear encoding method which offers both high compression and low shift power

dissipation at the same time. A low-cost, test-set-independent scheme is also described

which can be combined with any linear decompressor for reducing the shift power during

testing. Extensive experiments show that the new method offers reduced test power

dissipation, test sequence length and test data volume at the same time, with very small

area requirements.

The method proposed in this chapter offers low shift power dissipation and high com-

pression efficiency at the same time. This technique exploits inherent properties of the

test data to provide a fairly simple and low-cost weighted pseudorandom scheme which

controls the decompression process and enables the power efficient encoding of test data,

without the need of any additional control data. The major advantages of this scheme

72

Figure 4.1: Switching activity caused by successive slices

are: a) it constitutes a generic test-set-independent architecture, and b) it can be com-

bined with any linear decompressor scheme for reducing shift power. Moreover, it offers

a tradeoff between area overhead and shift power reduction. The combined use of this

scheme with the test pattern generator proposed in [105] reduces the test data volume of

[105] and achieves great power reductions with very small hardware cost.

4.2 Background

Figure 4.1 presents the classical scan based architecture. The CUT consists of c scan

chains of length r (for simplicity we assume that all scan chains are of equal length). The

compressed test data are downloaded from the ATE, they are decompressed using the

embedded decompressor and they are shifted into the scan chains. For applying a test

vector to the CUT the decompressor first generates r successive test slices of size c which

are shifted into the scan chains to reach their respective scan slices (hereafter, the term

test slice tj refers to the test bits of test cube t which correspond to scan slice j with

j ∈ [1, r]. After the last test slice of t (i.e. tr) is shifted into the scan chains, t is applied

to the CUT and the response is shifted out concurrently with the loading of the next test

vector. Linear decompressors fill ‘X’ values pseudorandomly, and thus they fail to control

the number of incompatibilities between successive test slices.

In Figure 4.1, every pair of successive test slices exhibits potential bitwise incom-

patibilities. These incompatibilities appear between the successive bits loaded into the

same scan chains when their value is complementary. For example test slices denoted

as “Slice Pair A” in Figure 4.1 are incompatible in the bit positions corresponding to

scan chains 1, 2, c. As the test slices travel through the scan chains during the scan-in

73

Figure 4.2: (a) Low power PDT controlled by an additional “update” Channel, (b) Low

power EDT controlled by compressed stimuli

process, every pair of complementary successive test bits causes transitions in the scan

chains which propagate through the combinational logic and cause switching activity to

the CUT. The number of incompatibilities between successive test slices can be reduced

by exploiting the unspecified values which exist in large volumes in test sets. However,

linear decompressors fill ‘X’ values pseudorandomly, and thus they fail to control the

number of incompatibilities between successive test slices.

Recently, the authors of [105] proposed a linear based encoding method which exploits

the ‘X’ values, wherever they exist, to reduce incompatibilities between successive test

slices, and thus to reduce shift power. According to this method, whenever a group of k

(k > 1) successive test slices of a test cube are compatible (i.e., every slice in this group

exhibits no bitwise incompatibilities with any other slice in this group) one test slice Sk

is computed which is compatible with all k test slices. This slice is encoded using the

ring generator and it is loaded into the scan chains for k successive clock cycles. This is

achieved by the use of a shadow register shown in Figure 4.2 which can hold its contents

if it is properly controlled. Specifically, instead of generating the first slice of this group,

the ring generator generates slice Sk and it transfers this slice to the shadow register.

This is called UPDATE operation. During the next k successive clock cycles, the shadow

register holds its contents and loads the scan chains with slice Sk. This is called HOLD

operation. The selection between these two operations of the shadow register requires

additional control data which are either provided directly from the ATE (Figure 4.2a) or

they are encoded as compressed stimuli (Figure 4.2b). In both cases the additional cost is

considerable especially when the number of ATE channels is small and the number of slices

per vector is large. The additional control data can be completely eliminated by exploiting

inherent properties of the test data. Specifically, during the generation of test slice tj of

any test cube t, the Update operation occurs with a unique probability. This probability

depends solely on the test cubes and in particular on the probability a test slice tj to

be incompatible with the test slices corresponding to its predecessor test slices (i.e. tj−1,

tj−2, . . .) for any test cube t. By controlling the Update operation using predetermined

74

Figure 4.3: Incompatibilities of the test set and UPDATES per slices of FDR

weighted pseudorandom sequences generated by these probabilities, the additional control

data are eliminated. Pseudorandomly controlled Update and Hold operations provide high

power reduction and they can be easily implemented using embedded low-cost hardware

modules. Let as see an example.

Example 4.1. An uncompacted test set for s9234 was encoded using the method proposed

in [105], for r = 16, c = 16. X-axis in Figure 4.3 shows the index of each scan slice. For

each scan slice left y-axis shows the percentage of test cubes where the respective test slice

was incompatible with its predecessor groups of k ≥ 1 successive compatible test slices

(line labeled “Probability of incompatibilities”). The right y-axis presents the percentage

of test vectors which triggered an Update operation at scan slice i (line labeled “Update

Operation”). The number of test vectors is smaller than the number of test cubes, as the

ring generator encodes multiple test cubes on the same test vector (this elevates a slice’s

probability of incompatibility with its predecessors). The correlation between these two

cases is clear. �

To estimate the scan power dissipation we will use the metric proposed in [105], which

counts the number of invoked transitions in successive scan cells, while taking into account

their relative positions. Let tij,t
i
j+1 be the two successive test bits (between succesive slices

that belong on the same scan chain) of test vector t loaded into scan chain i. tij is of scan

slice j and tij+1 is of scan slice j + 1. The average shift power dissipated is given by the

formula:

Sav(t) = 2[cr(r − 1)]−1
c∑

i=1

[
r−1∑
j=1

(r − j)(tji ⊕ t
j+1
i)

]
(4.1)

4.3 Power Aware Encoding

In this section we will first present the statistical analysis of test data and then we will

present the encoding method.

75

4.3.1 Test Data Analysis

Let TS be a test set of N number of test cubes for testing a CUT with c scan chains

of length r (i.e., each test cube consists of r test slices of size c bits). Hereafter, we will

refer to every scan cell using its location in the scan chain structure (for example, scan

cell (j, i) is the cell located at the scan slice j, scan chain i). Let N0(j, i), N1(j, i) be the

number of test cubes of TS with logic value ‘0’, ‘1’ respectively at the scan cell (j, i).

Definition 1: The Zero (One) Fill Rate of scan cell (j, i) is the probability scan cell

(j, i) to be assigned to logic value ‘0’ (‘1’) for any test cube of TS. The Zero, One Fill

Rates of scan cell (j, i) are denoted as f0(j, i), f1(j, i) and they are computed as follows:

f0(j, i) = N0(j, i)/N , f1(j, i) = N1(j, i)/N , with j ∈ [1, r], i ∈ [1, c].

Definition 2: The Zero (One) Fill Rate of scan slice j (j ∈ [1, r]) is the probability any

scan cell of slice j to be assigned to logic ‘0’ (‘1’) for any test cube of TS. The Zero, One

Fill Rates for slice j are denoted as f0(j), f1(j) respectively and they are computed using

formulas:

f0(j) =
1

c
·

c∑
i=1

f0(j, i), f1(j) =
1

c
·

c∑
i=1

f1(j, i), j ∈ [1, r]

Theorem 1: The probability two test slices x, y of any test cube in TS to be compatible

is given by the formula:

PSC(x, y) = (1− f0(x)f1(y)− f1(x)f0(y))c (4.2)

Proof: Let xi, yi be two bits of test slices x, y corresponding to scan chain i. If xi, yi are

both specified and complementary then test slices x, y are incompatible. The probability

for xi, yi to be incompatible is equal to Pinc(xi, yi) = f0(x)f1(y) + f1(x)f0(y) and thus

the probability for xi, yi to be compatible is equal to Pc(xi, yi) = 1 − Pinc(xi, yi). Slices

x, y are compatible when all bit pairs (x1, y1), (x2, y2), . . . , (xc, yc) are compatible. Thus,

PSC(x, y) = PC(x1, y1) · PC(x2, y2) · . . . · PC(xc, yc), which gives equation 4.2. �

Lemma 1: The probability a group of k successive test slices j, j+1, j+2, . . . , j+k−1

of any test cube in TS to be compatible is:

Pgc(j, j + 1, . . . , j + k − 1) =

j+k−2∏
a=j

j+k−1∏
b=j+1

PSC(a, b) (4.3)

Proof: A group of successive test slices is compatible if every two slices in this group are

compatible. Thus the probability Pgc(j, j + 1, . . . , j + k − 1) is equal to the product of

the probabilities PSC(a, b) of every possible slice pair a, b (a, b ∈ [j, j + k − 1]), thus

Pgc(j, j + 1, . . . , j + k − 1) =
∏j+k−2

a=j

∏j+k−1
b=j+1 PSC(a, b). �

Let uj = 1 (uj = 0) denote the occurrence of an Update (Hold) operation during the

generation of the test data loaded into scan slice j (j ∈ [1, r]. Then the Update vec-

tor U = (u1, u2, . . . , ur) represents the Update-Hold operations occurring at the shadow

76

register during the generation of a vector. Since the first scan slice of each vector has

no predecessors we set u1 = 1, that is an Update operation always occurs during the

generation of it for every vector. Let t be a test cube consisting of r test slices i.e.

t = (t1, t2, . . . , tr).

Lemma 2: Test cube t is encodable for Update vector U = (u1, u2, . . . , ur), if for every

j ∈ [1, r], k ≤ r with uj = 1 and uj+1 = uj+2 = . . . = uj+k = 0 (j + k ≤ r) test slices

tj, tj+1, . . . , tj+k are compatible.

Proof: Since uj = 1, during the generation of the test slice tj the shadow register will be

updated from the linear generator with a test slice sj, and since uj+1 = . . . = uj+k = 0

then the same slice sj will be loaded into scan slices j, j + 1, . . . , j + k. If test slices

tj, tj+1, . . . , tj+k are compatible then for every i ∈ [1, c] the test bits of all test slices cor-

responding to scan chain i are either unspecified or exhibit the same logic value (‘0’ or

‘1’). Then, the test slice sj can be computed as follows: for every i ∈ [1, c] if any of the

test slices tj, tj+1, tj+2, . . . , tj+k exhibit a logic value v =‘0’ or v =‘1’ the respective bit of

sj is set equal to v, else it is left unspecified. In that way sj is compatible with all test

cubes tj, tj+1, tj+2, . . . , tj+k and thus test cube t is encodable. �

The most power-efficient Update vector is U = [1, 0, . . . , 0] which can be used for en-

coding only those test cubes which have all their slices compatible. On the other hand,

the most power consuming but at the same time highly efficient in respect to its encoding

ability Update vector is U = [1, 1, . . . , 1]. This vector can encode any test cube which

is encodable by the decompressor. In order to maximize the power efficiency of linear

decompressors without compromising their encoding efficiency, we need to maximize the

volume of zeros in the Update vector of the decompressor and minimize at the same time

the probability any test cube to become un-encodable. However, it is rather unlikely that

a single Update vector will suffice to encode all test cubes. We will show that multi-

ple Update vectors achieving these goals can be generated in a weighted-pseudorandom

fashion.

Let Rj be the probability of an Update operation during the generation of scan slice

j (1−Rj is the probability of a Hold operation during the generation of scan slice j). We

denote hereafter as Pseudorandom-Configuration Vector or simply as Configuration, the

probability vector R = [R1, R2, . . . , Rr]. Since u1 = 1, we also set R1 = 1.

Theorem 2: The probability any test slice in TS corresponding to scan slice j to be

encodable using configuration vector R = [R1, R2, . . . , Rr] is given by the formula:

PE(j) =

j∑
m=1

Rm · PGC(m, . . . , j) ·
j∏

k=m+1

(1−Rk) (4.4)

Proof: Any arbitrary test slice tj corresponding to scan slice j is encodable if either the

update operation occurs during the generation of this slice or if the update operation

occurs during the generation of a predecessor slice tk (of the same test cube) and all

test slices tk, tk+1, tk+2, . . . , tj are bitwise compatible. Therefore, for slice j we have the

77

following (also j in number) cases:

1: P1 = Rj is the probability of an update operation at slice j.

2: P2 = (1−Rj)Rj−1Pgc(j− 1, j) is the probability the update operation to occur at slice

j − 1 (and not at slice j) and at the same time test slices j − 1, j to be compatible.

. . .

j: Pj = (1 − Rj)(1 − Rj−1) . . . (1 − R2)R1Pgc(1, 2, . . . , j) is the probability the update

operation to occur at slice 1 (and not at slices 2 . . . j) and test slices 1, 2, . . . , j to be

compatible. Thus PE(j) = P1 + P2 + . . .+ Pj which gives equation 4.4. �

Finally, since every test cube is encodable when all its test slices are encodable, we

have that the overall probability PET for any test cube in TS to be encodable using

configuration vector R = [R1, R2, . . . , Rr] is given by formula:

PET (R) = PE(1) · PE(2) · . . . · PE(r) (4.5)

Besides the encoding ability of the decompressor, the Configuration vector R affects

also the switching activity during the scan-in process, which is calculated as follows.

Theorem 3: The average scan-in switching activity SCav for any test cube t in TS under

Configuration R = [R1, R2, . . . , Rr] is:

SCav(R) =
1

r(r − 1)

r−1∑
j=1

(r − j)Rj+1 (4.6)

Proof: Let tj, tj+1 be two successive test slices, and let tij, t
i
j+1 be the test bits of these

slices which correspond to scan chain i. Relation 4.1 gives the average switching activity

for any test cube t in TS. The term tij ⊕ tij+1 in 4.1 is equal to ‘1’ if tij, t
i
j+1 are different

else it is equal to ‘0’. Given a Configuration vector R, these bits can be different only

if an update operation occurs during the generation of slice tj+1. Since Rj+1 is the

probability of an update operation at slice tj+1 and 1/2 is the probability tij+1 to be

generated complementary to tij (assuming linear independent generation) the probability

these test bits to be different is Pdiff (tij ⊕ tij+1) = Rj+1/2. Then, relation 4.1 becomes:

Sav(t) = 2[cr(r − 1)]−1
c∑

i=1

[
r−1∑
j=1

(r − j)(Pdiff (tji , t
j+1
i))

]

and provided that t is generated using configuration R we have:

SCR = 2[cr(r − 1)]−1
c∑

i=1

[
r−1∑
j=1

(r − j)(Rj+1

2
)

]

which gives 4.6. �

In the next Section we will give an algorithm to compute the configuration vector

R = [R1, R2, . . . , Rr] for any given set of test cubes, which maximizes the switching

activity reduction and does not violate a minimum encoding probability PET (R).

78

Figure 4.4: a) Configuration selection algorithm, b) Test set encoding

4.3.2 Encoding Algorithm

The flowchart of the proposed encoding method is shown in Figure 4.4 (Figure 4.4a

presents step E3 in details). The main target of the encoding method is to calculate the

configuration R which offers the minimum average switching activity without compromis-

ing the encoding efficiency of the decompressor. This is shown in Figure 4.4a. Specifically,

R = [R1, R2, . . . , Rr] is initially set equal to [1, 1, . . . , 1] which is the configuration offer-

ing the maximum encoding probability PET (R) = 1. Then, the values of Rj (j ∈ [2, r])

are iteratively decreased until PET (R) drops below a pre-determined threshold Pmin or

when all R2, R3, . . . , Rr reach their minimum values and they cannot be further reduced.

We remind that as the values of Rj decrease, both the average switching activity during

scan-in and the encoding probability PET (R) decrease too.

During every iteration, r − 1 candidate configurations A2, A3, . . . , Ar−1 are generated

based on R. Specifically, the candidate configuration Aj (j ∈ [2, r]) is derived from R

by decreasing the probability Rj by a predetermined value p (all the other probabilities

remain intact). Thus Aj = [R1, R2, . . . , Rj−p, . . . , Rr], with j ∈ [2, r] (note that R1 is

set always equal to 1). Next, candidate configurations are evaluated using the following

formula:

CostAj =
∆PET (Aj)

∆SCav(Aj)
with

∆PET (Aj) = PET (Aj)− PET (R)

∆SCav(Aj) = SCav(Aj)− SCav(R)
(4.7)

79

Figure 4.5: Self-freeze architecture

∆PET (Aj) is the reduction of the encoding probability and ∆SCav(Aj) is the average

switching activity reduction of Aj compared to R. The candidate Abest with the lower

value of Cost(Abest) is selected and R is set equal to Abest.

Usually, one configuration does not suffice to encode all test cubes. Thus, multiple

configurations must be generated using the algorithm shown in Figure 4.4b. The algorithm

begins with set TS of test cubes and it selects the first configuration, let say R1 using

the algorithm shown in Figure 4.4a. Based on R1, it generates a weighted pseudorandom

bit sequence SQ1, which controls the Update operation during the decompression process

(the generation of this sequence is based on pseudorandom properties of simple hardware

modules as we will show in the next section). Using SQ1 the encoding process attempts

to encode as many test cubes as possible and it drops the encoded test cubes from TS.

This process is repeated and configurations R2, R3, . . . (and thus sequences SQ2, SQ3, . . .)

are selected, until TS becomes empty. At each iteration, the value of Pmin increases by a

step s in order to favor the encoding ability of the next configurations and decrease thus

their volume, at the expense however of an increase in the switching activity. Relations

4.2-4.7 are recomputed in each iteration using the remaining set of test cubes.

4.4 Architecture

The low power decompression architecture is shown in Figure 4.5. It consists of the

Test Data Decompression Unit (TDU) and the proposed Freeze Control Unit (FCU).

TDU is a classical decompression architecture and it consists of the linear decompressor,

the shadow register, and the phase shifter. Even though any linear decompressor can

be used, ring generators [106] were used, as in the case of [105]. FCU generates the

update signal which controls the shadow register based on the configuration R (when

80

update=1 the Update operation is applied). It consists of a set of r registers which store

the configuration vector R1, R2, . . . , Rr, the slice counter which selects the register for

the next generated test slice, and the Weighted Signal Generation Unit (WSG) which

generates a set of weighted pseudorandom signals with pre-determined weights. WSG

unit generates a set of n pseudorandom signals WS0,WS1, . . . ,WSn−1 with probabilities

W0 ≤ W1 ≤ . . . ≤ Wn−1 respectively. Specifically, signal WSi is assigned to logic value

‘1’ with probability Wi and to logic value ‘0’ with probability 1−Wi. Depending on the

configuration R, register j is loaded from the ATE before the decompression begins with

a value d in the range [0, n−1]. d selects the input of MUX-B which corresponds to signal

WSd with probability Wd equal to Rj. Slice counter counts from 1 to j and whenever

it is equal to j, register j selects signal WSd which is driven to the update input of the

shadow register. Thus the Update operation is applied with probability Rj during the

generation of the test data loaded into scan slice j.

Many techniques have been presented in the past for designing WSG units ([5, 174,

175]). A small LFSR which is loaded initially with a randomly selected seed is utilized,

and a few AND gates of 2, 3 and 4 inputs driven by the LFSR cells (note that this

small LFSR operates only as a pseudorandom generator and it does not participate in the

decompression process). Since each LFSR cell is set to the logic value ‘1’ with probability

P1 = 1/2, every q-input AND gate produces a weighted pseudorandom signal at its output

with probability P1 equal to (1/2)q. By using three AND gates of 2, 3 and 4 inputs driven

by different LFSR cells, and by using both the normal and the inverted outputs of the

AND gates, we generate signals with the following P1 probabilities: 0.0625, 0.125, 0.25,

0.5, 0.75, 0.875, 0.9375. During the encoding process (Figure 4.4a) the values Rj are

selected among the P1 probabilities only for the remaining test cubes. The encoding of

the test cubes is done using the pseudorandom sequences generated at the outputs of the

WSG unit. After the calculation of a configuration Ri, the WSG unit is simulated and

it generates a pseudorandom sequence SQi using signals WS0,WS1, . . . ,WSn−1. The

predetermined sequence SQi is used for encoding remaining test cubes.

The area overhead of this architecture (Figure 4.5) increases as the number of slices

(and thus the number of registers) increases. To overcome this problem an area-efficient

alternative architecture will be described which reduces the number of register at the

expense of a slight performance degradation. Specifically, k (k < r) registers are used and

every register corresponds to more than one slices. The registers are assigned to scan slices

in a modulo-k fashion. For example, register j is used for controlling the update signal

during the generation of scan slices j, j+k, j+2k, . . . etc (note that scan cell 0 is excluded

from this process because an update operation occurs always during the generation of this

slice. In this case, the encoding method shown on 4.4a is modified accordingly in order

to consider the reduced set R1, R2, . . . , Rk. Thus, the process begins with set R where

Rj = Rj mod k and at each iteration k candidate configurations are generated.

81

Figure 4.6: PET (R) metric validation using Monte Carlo generated test sets

4.5 Experiments

The proposed method was developed using the C programming language. We conducted

experiments on test sets for complete stuck-at coverage generated using a commercial

ATPG tool for the largest ISCAS’89. All the shift power estimations were done using

formula 4.1. The proposed method does not negatively impact the complexity of the

encoding method since it only requires a constant additional time per test cube for com-

puting the generated pseudorandom sequences by simulating the operation of the freeze

control unit.

In order to examine the efficiency of the PET (R) metric of formula 4.5 we conducted

the following experiments. First we examined the efficiency of the metric on Monte Carlo

generated test sets based on the fill rate value 4.5% (this is the fill rate of s5378 benchmark

circuit). Monte Carlo generated test sets were generated using normal distribution with

mean value 0.045 and variance value 0.045. These Monte Carlo generated test sets contain

test cubes with normally distributed number of defined values. However, actual test sets

contain some test cubes with very high number of defined values, while most of the test

cubes have just few defined values. In order to capture this property of real test sets on

the Monte Carlo generated test sets, we used a log-normal distribution. The log-normal

distribution with mean value 0.045 and variance 0.075 was used. The length of test cubes

generated was selected as 218 (the same with the length of the test cubes of s5378) and the

configuration used was the R = [11, 0.252, 0.253, . . . , 0.25r], where r the number of scan

slices. The parameter that changes on this set of experiments is the number of scan chains

82

Figure 4.7: PET (R) metric validation on actual test set (s5378)

c, which also afects the number of scan slices r. The scan chains are selected in the interval

c ∈ [2, 120] and for each instance of scan chains selected c the probability to encode a

cube PET (R = [11, 0.252, 0.253, . . . , 0.25r]) is computed. Also for each instance, two test

sets with 100K random generated test cubes each are created based on the distributions

discussed above. The probability to encode a test cube with configuration R on a Monte

Carlo generated test set is computed using formula P =
of encoded test cubes

100000
. Figure

4.6 depicts the results of this experiment. The results show that the PET (R) metric

can succesfully capture the trend of the probability to encode test cubes for a given

configuration R. The error of the metric is high for very small number of scan chains

because then the number of scan slices increases. Moreover, for small scan chains values c

the error becomes high since the metric uses just a single fill rate as statistical information

input for the generated test sets and does not exploit scan slices’s fill rates.

For the next experiment we applied the metric on the test set of s5378 benchark circuit.

The results of this experiment are shown in Figure 4.7. The encodability on specific test

sets is computed by the formula Encodability =
of encoded test cubes

test set size . Again the PET

metric labeled as “PET (R = [1, 0.25, 0.25, . . . , 0.25]) single fill rate” succesfully predicts

the trend for large number of scan chains (small number of slices) but exhibits large error

for small number of scan chains i.e. large number of slices. In this Figure another metric is

shown labeled as “PET (R = [1, 0.25, 0.25, . . . , 0.25]) per slice fill rates”, which is the metric

of formula 4.5 using the per slice fill rates of s5378. From the Figure becomes obvious

that the usage of slice fill rates decreases considerably the error for the computation of

encodability for small number of scan chains c (large number of scan slices r).

Figure 4.8 presents the test data volume (TDV) increase (right y-axis) and the switch-

83

Figure 4.8: Switching activity reduction, test data volume increase trade-off

Table 4.1: Proposed method results. TDV reported in Kbits.

circuit
SA reduction % TSL TDV without repeat TDV with repeat

DF Prop. PU DF Prop. PU DF Prop. PU DF Prop.

s5378 90 78 250 463 392 7 25 10 3 6.3 5.2

s9234 80 67 309 611 419 19 38 26 7 14 10

s13207 96 78 276 432 380 24 57 33 18 28 22

s15850 94 80 293 511 347 22 60 27 17 30 20

s38417 98 85 626 2374 924 65 493 96 33 124 48

s38584 98 82 267 1088 373 49 300 68 37 150 51

ing activity reduction (SAR at the left y-axis) of the proposed technique against the power

unaware dynamic encoding (PU) method. In both cases the s13207 benchmark circuit

was used assuming c = 16 and r = 44. The proposed method was applied for 2, 4, 8,

16 and 32 registers and various values of parameter s (s = 0.01, s = 0.05, s = 0.1 and

s = 0.15). It is obvious that as the number of registers increase, the pseudorandom se-

quences reflect more accurately the specific requirements of the scan slices and thus the

switching activity reduction improves. It is worth noting however, that even a relatively

small number of registers suffices to achieve very high reduction of the switching activity.

On the other hand, the TDV increases as the number of registers increase, because more

data are required for loading the registers for every configuration. In respect with pa-

rameter s, it is obvious that small values of s improve the power reduction compared to

PU but also increase the test data volume. The reason is that small values of s favor the

switching activity reduction at the expense however of generation of more configurations.

Table 4.1 presents the results of a) the proposed technique using 8 registers, b) the

power unaware dynamic encoding (PU) and c) the deterministic freeze method (DF) pre-

sented in [105] and re-implemented here. We note that in the implemented DF method

we assume that the control data are sent from the ATE to the CUT using an extra chan-

84

nel (Figure 4.2a). In all cases 8 or 16 scan chains and 1 or 2 ATE channels were used

(excluding the control channel for DF). Note that both DF and PU methods were imple-

mented by omitting the fault simulation step in order to provide fair comparisons with

the proposed method (the fault simulation step can be trivially included in all cases). The

first column presents the circuit’s name, while the next two columns present the average

switching activity reduction of both DF and the proposed method against the power un-

aware method (PU). The next three columns in Table 4.1 present the test sequence length

of the PU, the DF and the proposed technique. The results indicate that the proposed

technique achieves a vast reduction of the average switching activity (67%-85%). Note

that, although the switching activity of the proposed method is larger compared to DF,

this is attributed to the high TSL of the DF method. The large TSL of DF method

is a consequence of its trend to minimize the volume of Update operations and to limit

thus the ability of the decompressor to encode multiple test cubes on the same generated

vector. As a result, the number of generated vectors (i.e. the TSL) increases consider-

ably especially for large test sets. Nevertheless, the switching activity of the proposed

technique remains significantly lower than PU and thus the probability to comply with

the functional power budget of the CUT (which is the most important target of any low

power testing technique) is still very high.

The next six columns present the test data volume (TDV) comparisons between the

DF and the proposed method. The first three of these columns report the TDV results

assuming that the repeat command is not supported by the ATE, while the next three

report the TDV results assuming that the repeat command is supported by the ATE.

As it has already been mentioned in [105] the use of the repeat command considerably

reduces the TDV. The proposed method achieves very high TDV reduction against DF

in both cases (in the range of [30%-81%] whenever the repeat command is not supported

and in the range of [17%-66%] whenever the repeat command is supported).

Finally, we synthesized the proposed scheme for 8 registers. The hardware overhead of

the proposed FCU unit is less than 100 gate equivalents (one gate equivalent corresponds

to a 2-input nand gate). This overhead is less than the 25% of the overhead of the TDU

unit. Additionally, we note that the same decompressor can be used for testing any

number of cores, which makes its application very attractive to modern SoCs.

4.6 Conclusions

A new linear encoding method which exploits inherent properties of test data to reduce

the scan-in switching activity during testing was presented. A low-cost embedded scheme

was also presented which can be combined with any linear-decompressor architecture and

achieves very high reduction of the switching activity at the expense of only a small

increase on the test data volume. Compared to the state-of-the-art power aware linear

encoding method, the method described in this chapter provides comparable shift power

reduction with considerably lower test data volume.

85

Chapter 5

Defect Aware X-Filling for

Low-Power Testing

5.1 Overview . 86

5.2 Modified Fill Adjacent - the new X-Filling Method 87

5.3 Experiments . 92

5.4 Conclusions . 97

5.1 Overview

Various X-filling methods have been proposed for reducing the shift and/or capture power

in scan testing. The main drawback of these methods is that X-filling for low power

leads to lower defect coverage than random-fill. We propose a unified low-power and

defect-aware X-filling method for scan testing. The proposed method reduces shift power

under constraints on the peak power during response capture, and the power reduction

is comparable to that for the Fill-Adjacent X-filling method. At the same time, this

approach provides high defect coverage, which approaches and in many cases is higher

than that for random-fill, without increasing the pattern count. The advantages of the

proposed method are demonstrated with simulation results for the largest ISCAS and the

IWLS benchmark circuits.

In this chapter, a new X-filling technique is presented that achieves the following goals:

1) It provides substantial reduction in shift power during scan testing, close to that

obtained using Fill-Adjacent X-filling.

2) It ensures that the capture switching activity is less than a pre-determined limit.

3) It provides increased defect coverage, which approaches and even outperforms in

many cases, the random filling of Xs, without increasing the test pattern count.

86

Table 5.1: FA and Proposed X-Filling∗

Test Cube Block FA MFA

i 0x. . . x0, 0x. . . x, x. . . x0 00. . . 00 00. . . 00

ii 1x. . . x1, 1x. . . x, x. . . x1 11. . . 11 11. . . 11

iii 0xx. . . x1 011. . . 11 011. . . 11, 001. . . 11, . . . , 000. . . 01

iv 1xx. . . x0 100. . . 00 100. . . 00, 110. . . 00,, 111. . . 10
*the rightmost bit is loaded first into the scan chain

4) It offers a tradeoff between power efficiency and defect coverage and thus it can be

adjusted to the specific requirements of a design.

The new method exploits different ways of filling the Xs, and selects the most effective

one with respect to defect coverage and shift power, under constraints on the capture

power. High defect coverage is ensured by the use of a surrogate metric based on output

deviations [178], for evaluating the quality of test vectors. Output deviations provide an

efficient probabilistic means to evaluate test vectors based on their potential for detecting

arbitrary defects and, most importantly, without being biased towards any particular

fault model. As shown in [169], unbiased testing provides higher test quality than a test

method that is biased by a particular fault model. The efficiency of the new method is

demonstrated through experiments with the ISCAS and IWLS [1] benchmark circuits. To

the best of our knowledge this is the first X-filling method that achieves power reduction

and high defect coverage in a unified manner.

5.2 Modified Fill Adjacent - the new X-Filling Method

The new method generates multiple power-efficient candidate test vectors by filling the

Xs of each test cube in multiple power-efficient ways. The candidate test vectors for

each test cube are evaluated with respect to their potential for detecting defects, using

an output-deviation based quality metric, and the most efficient one is selected. In this

section, we describe first the process of generating the candidate test vectors and then

the selection of the most efficient ones.

5.2.1 Generation of Power Efficient Candidate Test Vectors

In order to reduce the average shift power for the candidate test vectors, a modified version

of the FA technique, hereafter called MFA, is presented. MFA fills the Xs of a test cube

in multiple power efficient ways by compromising only a very small portion of the shift

power efficiency offered by FA technique. Specifically, as it is shown in column 2 of Table

5.1, only the blocks of types iii, iv cause scan-in switching activity when they are filled

according to FA technique because they contain one pair of consecutive complementary

test bits. FA fills the Xs in such a way as to locate every such pair at the leftmost position

of each block in order to minimize the distance that this pair has to travel during scan-

87

Table 5.2: X-Filling for test cube T=xxx1xxx0xxx0xxxxx1
MFA MFA+20

Random Fill Moderate SA Moderate SA

010110100110101001 111111000000001111 101111000000001111

PSI(T): 75.16% PSI(T): 13.1% PSI(T): 15%

FA Worst SA Worst SA

111100000000111111 111111100000000001 010111100000000001

PSI(T): 10.5% PSI(T): 15.7% PSI(T): 19.6%

in (note that the leftmost position is loaded last). To retain a low power profile of the

candidate test vectors, MFA fills blocks of types i and ii in the same way as FA, while

for blocks of types iii and iv, MFA allows the pairs of consecutive complementary test

bits to be located at any point relative to the scan output; see Column 3 of Table 5.1.

Consequently, FA can be considered as a special case of MFA. For any block of either

type iii or iv consisting of n unspecified bits, n + 1 different fillings exist according to

MFA, and for any test cube consisting of m such blocks with n1, n2, . . . , nm unspecified

bits each, (n1+1)·(n2+1)·. . .·(nm+1) different candidate vectors can be generated. Note

that as we move from the first to the last filling of MFA shown in Table 5.1 at both iii,

iv types of blocks, scan-in switching activity increases because the pair of complemented

test bits travels a longer distance in the scan chain.

Example 5.1. Table 5.2 presents a hypothetical test cube that is filled a) randomly, b)

using FA, and c) using MFA. In order to evaluate the scan-in switching activity, PSI(T),

of every test cube T generated using each of these fillings, we use the normalized weighted

switching activity [105]. This metric counts the number of transitions in successive scan

cells, taking also into account their relative positions, and normalizes this value by dividing

it by the upper bound of the volume of switching flip- flops. The values of this metric

are in the range 0% (no switching activity) to 100% (all flip flops are switching at every

cycle). In the first column of Table 5.2, we show a potential random filling of the cube,

the filling provided by FA technique, and their respective PSI(T) values. It is obvious that

FA causes less switching activity than random filling. In the second column, we present

two different X-fillings using MFA: one filling with moderate scan-in switching activity

and one filling with the highest scan-in switching activity that can be possibly generated

by MFA (i.e., for every block of either type iii or iv, the last combination shown in the

third column of Table 5.1 is used). We can see that even in the worst case, the scan-in

switching activity of the MFA method is only slightly higher than that of FA, while it is

still much lower than that of random filling. �

Even though the shift power of MFA is only slightly higher compared to FA, the test

vectors generated using MFA exhibit significant differences with respect to their potential

to detect un-modeled defects. The magnitude of these differences depends mainly on the

diversity of these vectors, which is greatly affected by the way the Xs are filled. In order

88

to increase the diversity of the candidate test vectors, a step that slightly increases the

switching activity is required. This step is used sparingly in our X- filling technique.

We randomly fill a small and carefully selected portion of the Xs of each test cube.

Specifically, for every test cube segment loaded into any scan chain, we fill randomly the

Xs corresponding to the leftmost scan cells (i.e. the scan cells that are closer to the input

of the scan chain) that make a small contribution to the scan-in switching activity (they

travel the shortest distance in the scan chains during scan-in). Thus, depending on a

user-defined parameter P , all Xs corresponding to the P% leftmost scan cells of every

scan chain are filled randomly. As P increases, the defect coverage of the test vectors

increases but they consume more shift power. Thus, P offers a tradeoff between scan-in

switching activity and defect coverage. This enhanced version of MFA is called MFA+P.

Note that MFA is a special case of MFA+P with P = 0%.

Example 5.2. In Column 3 of Table 5.2, we present two fillings, one with moderate and

one with the highest possible scan-in switching activity, using MFA+20 (P = 20%). It is

obvious that the scan-in switching activity is increased compared to MFA but it is still

much lower than that for random fill. �

It has been observed that the FA technique adversely affects the peak capture power,

which may even be higher than the peak capture power for random filling [19]. To

eliminate this problem in the MFA method, we invoke the Preferred Fill (PF) technique

[128, 129] for specifying as many Xs as necessary in order to limit the peak capture power

under the power budget. This is done in a stepwise fashion and concurrently with the

application of MFA/MFA+P technique in order to minimize the number of Xs specified

according to PF. The capture power is measured as the Hamming distance between the

test vector and the first response (this pair always exhibits the peak power as noted in

[129]. Other, more sophisticated metrics can be also used. The functional limit on peak

capture is considered as a maximum number L of scan cells switching during capture.

The complete flow is shown in Figure 5.1. The goal of this process is to generate a

set CS(t) of at most N candidate test vectors (N is a constant value pre-determined by

the designer) for every test cube t. At first one test cube t of test set TS is selected, and

it is filled using solely MFA or MFA+P (i.e., PF is not applied yet) in order to generate

N · C candidate test vectors (C is also a constant pre-determined by the designer). All

these N ·C candidate test vectors are checked for the violation of the peak capture power

limit, and the test vectors that violate this limit are discarded. The remaining test vectors

are inserted into the set of candidate test vectors CS(t). If these vectors are more than

N , then N of them are randomly selected else the PF technique is invoked to provide

additional test vectors as follows: at first the 10% (arbitary selected step value, it can be

selected according to designer needs) of the Xs of the test cube t which are the most highly

potential to reduce the peak capture power according to PF are specified. Then again

N · C candidate test vectors are generated using the MFA or MFA+P for the modified

test cube t and these test vectors are checked for violating the peak capture power limit.

Again the test vectors that do not violate this limit are appended into set CS(t). If

89

Figure 5.1: X-Filling Flow for MFA/MFA+P

CS(t) at this step still consists of less than N candidate test vectors, then the same flow

is repeated by specifying another 10% of the Xs of test cube t with the highest possibility

to reduce the peak capture power. When either CS(t) contains N test vectors or test

cube t is fully specified by PF, the generation of CS(t) stops and the process continues

with the next test cube. C and N values affect the execution time of the proposed method

as well as the quality of the result. The larger they are the better the results are and the

longer is the execution time. In the experiments section more details follow about these

parameters value selection.

5.2.2 Evaluation and Selection of Test Vectors

The candidate test vectors CS(t) for every test cube t ∈ TS are evaluated using an output-

deviation-based quality metric and the best test vector is selected for every test cube. This

metric is an advanced version of the quality metric proposed in [69] as it evaluates the

defect coverage potential of a test vector using concurrently both its first and its second

test response (we consider LOC scheme). Thus the proposed metric targets both timing-

dependent and timing-independent defects at the same time. The quality metric exploits

the following properties:

1) For every candidate test vector v, the output deviation values (see Chapter 7.2,

90

Section 2.1.7) for both responses are calculated. Then, the outputs where the devi-

ations reach their highest values among all candidate vectors are the most promising

for detecting defects (the rest are not further considered). These outputs are parti-

tioned into four sets for each vector v as follows. For the first response of vector v,

the outputs with maximum deviation values and fault free logic value 0 (1) form set

MS0(v, 0) (MS0(v, 1)). The respective outputs for the second response form sets

MS1(v, 0) and MS1(v, 1).

2) Every circuit output is weighted according to its potential to detect defects. This

weight depends: a) on the amount of logic at the fan-in logic cone of the respective

output (more defects can be potentially observed at the outputs of the large cones

than at the outputs of the small ones), b) on the fault-free response vaue at each out-

put (it considers the possbility to detect different defects at every output according

to different fault free logic values) and c) on the volume of potential defects at each

cone which are not yet detected by previously selected test vectors at the respective

output. This volume is tracked by considering the number of previously selected

test vectors which maximize the deviation at this output. The higher this number,

the higher is the expected volume of defects already detected at this output, and

thus the lower is the volume of defects remaining to be detected (at this output).

Based on the above properties, the evaluation process is conducted as follows. Initially,

a set CS of all candidate vectors is generated as the union of sets CS(t) for all t ∈
TS. Then, one pair of weights is assigned at each circuit output i corresponding to

the first response assuming both fault free logic values 0, 1, that is wo0(i, 0) and wo0(i, 1)

respectively, and another pair of weights is assigned at each circuit output i corresponding

to the second response and fault free logic values 0, 1, that is wo1(i, 0) and wo1(i, 1)

respectively. All these weights are initially set equal to the number of lines (nets) in the

fan-in logic cone of the respective output. Next, for every test vector v ∈ CS(t) the output

deviation values are computed and the setsMS0(v, 0),MS0(v, 1),MS1(v, 0),MS1(v, 1) are

generated. Then the following process is repeated and at each repetition one test vector

is selected.

At first the next formula is used to compute the quality metric of each vector:

WT (v) =
∑
i=0,1

∑
j=0,1

∑
k∈MSi[v,j]

woi(k, j)

Intuitively, WT (v) is the sum of the weights of all outputs which have maximum deviation

value at the first and/or second response when test vector v is applied. Among the

evaluated test vectors, the one with the highest value of this metric is selected since

it is the most promising one for defect detection. After the selection of vector v, the

remaining vectors of set CS(t) are discarded from set CS and the weights wo0(k, 0) for

all k ∈ MS0(v, 0), wo0(k, 1) for all k ∈ MS0(v, 1), wo1(k, 0) for all k ∈ MS1(v, 0) and

wo1(k, 1) for all k ∈ MS1(v, 1), are divided by a constant factor F2 (these outputs are

expected to detect many defects, after the application of test vector v, and thus they are

considered as less effective for the selection of the next vectors). As proposed in [69],

91

Table 5.3: Total average power reduction (% compared to RF)

circuit # cubes FA FA* MFA MFA+10 MFA+20

s5378 134 51.39 37.68 45.93 30.3 25.74

s9234 166 36.96 33.91 34.64 31.36 27.11

s13207 269 43.63 41.11 42.2 39.99 37.41

s15850 162 49.97 49.86 49.93 45.55 41.9

s38417 143 55.31 55.47 54.94 51.21 48.02

s38584 185 49.5 49.08 49.29 45.21 40.94

ac97 ctrl 66 46.32 46.32 45.56 42.94 39.04

mem ctrl 603 59.65 59.5 58.37 53.31 47.59

pci bridge32 298 55.93 56.14 55.61 51.35 46.73

tv80 757 59.84 59.87 58.88 53.94 50.45

usb funct 136 38.84 36.28 36.74 34.73 32.47

ethernet 1113 73.4 73.47 73.17 66.01 58.68

the value of F2 was set equal to 8. Then, the new weights WT (v) are calculated for all

remaining vectors v, and the next vector is selected.

5.3 Experiments

The simulation platform was developed using the C language and the power simulations

were done using commercial tools. We report total power values that include the power

consumed in the circuit (scan-in, capture, scan- out). We conducted experiments on

the largest ISCAS’89 circuits and a subset of the IWLS’05 circuits [1] for multiple scan

chains. All methods were applied on dynamically compacted test sets generated using

a commercial ATPG tool for complete stuck-at fault coverage. Please note, that the

execution time of the proposed method is very fast because its complexity is linear. For a

single threaded implementation the overall complexity is O(N ·C ·|T |) where |T | is the size

of the test set. For very small values of N and C the expression N · C can be considered

as constant and the complexity is linear to the size of test set O(|T |). Although, higher N

and C values theoritically result to better quality results, our experiments indicate that

the quality gain saturates as these values increase. In all our case studies the values of

N = 30 candidate test vectors generated for every test cube and C = 3 value achieve

a near the maximum quality gain result with very fast execution time (it requires some

minutes for all the benchmark circuits and almost 10 minutes for the largest ethernet

benchmark circuit). Moreover, the proposed method can be easily parallelized by letting

each thread handle a test cube. This way the N · C factor that impacts complexity can

be shortened. A parallel implementation with 32 threads on a 4-cores CPU increases by

only 4X the execution time for N = 30 and C = 3 (that would otherwise theoritically

increase the execution time by 90X) compared to the PF X-filling approach. Nevertheless,

92

Figure 5.2: Transition delay fault coverage for various values of L (for s9234).

even the theoritical 90X execution time increase of a single threaded implementation, still

requires very short execution time, even for very large designs, because the PF is fast.

Due to the dynamic compaction performed by the ATPG, the first few test cubes

generated are usually densely specified and thus decrease the potential of the PF technique

to reduce capture power below the pre-determined limit. This pre-determined limit can

be selected according to the power profile of the circuits during their normal operation.

In order to avoid time consuming bit-relaxation techniques, we replace these few but very

densely specified test cubes with a small number of less specified test cubes generated in

a second ATPG pass. We note that in the absence of the power profile of the benchmark

circuits during normal operation, we set (unless otherwise noted) the capture power limit

L (max number of cells switching during capture) equal to 30% of the scan cells switching

during capture. The reason for this selection is twofold: a) the compacted nature (large

volume of specified test bits) of the test sets prevents the reduction of the peak-capture

power below certain values of L, b) as it will be apparent soon, the value of L does not

affect the effectiveness of the MFA method to provide X-filling with high defect coverage.

For even further reduction of the capture power, bit relaxation techniques [108, 109] can

be utilized, and/or less compacted test sets can be used. Nevertheless, this study is

beyond the scope of this work. We note that, as was expected, the FA method in most

cases violated the capture power limit. Thus for providing a fair comparison with the

MFA methods that do not violate this limit, we also implemented a slightly modified

version of FA, denoted as FA*: for every cube violating the capture power limit when

filled according to FA, 10% of the Xs (the most efficient ones) of the test cube are filled

according to PF and the rest according to FA. If the test vector still violates the capture

power, then the percentage of the test cube’s Xs specified using PF is increased by 10%.

This is repeated until a test vector is generated which does not violate the capture power

limit.

93

T
ab

le
5.

4:
D

ef
ec

t
C

ov
er

ag
e

(%
)

C
ir

cu
it

T
ra

n
si

ti
o
n

-F
a
u

lt
C

o
v
e
ra

g
e

B
ri

d
g
in

g
-F

a
u
lt

C
o
v
e
ra

g
e

B
C

E
+

4
0
0
K

R
a
n
d
o
m

F
a
u
lt

s
C

o
v
e
ra

g
e

R
F

F
A

F
A

*
M

F
A

M
F
A

+
M

F
A

+
R

F
F
A

F
A

*
M

F
A

M
F
A

+
M

F
A

+
R

F
F
A

F
A

*
M

F
A

M
F
A

+
M

F
A

+

1
0

2
0

1
0

2
0

1
0

2
0

s5
3
7
8

61
.4

7
55

.4
8

55
.1

8
56

.9
5

61
.3

4
61

.8
1

95
.2

93
.8

1
93

.5
5

94
94

.1
4

94
.2

6
94

.2
7

92
.1

9
92

.0
8

92
.5

4
92

.7
9

92
.9

1

s9
2
3
4

41
.4

7
40

.8
2

41
.0

1
43

.2
6

44
.0

4
48

.3
2

87
.5

1
87

.1
2

87
.2

8
87

.2
8

87
.4

4
87

.4
2

86
.3

8
85

.4
9

85
.7

7
86

86
.2

4
86

.3
4

s1
3
2
0
7

62
.2

9
60

.3
1

61
64

.0
5

65
.4

3
65

.9
92

.7
7

92
.7

1
92

.1
6

92
.9

3
93

.0
2

93
.1

1
91

.9
7

91
.3

91
.1

4
91

.7
3

91
.8

92
.0

6

s1
5
8
5
0

51
.5

3
51

.0
5

50
.3

3
52

.5
1

52
.5

6
54

.0
3

94
.2

4
94

.0
9

93
.8

4
93

.8
2

93
.9

1
93

.9
8

93
.5

2
93

.1
1

93
93

.0
3

93
.1

5
93

.2
9

s3
8
4
1
7

79
.5

3
76

.2
76

.2
2

78
.4

8
79

.0
9

80
.3

8
98

.2
97

.5
6

97
.6

2
97

.7
5

97
.8

3
97

.8
5

97
.1

6
96

.2
8

96
.3

2
96

.6
96

.6
8

96
.7

3

s3
8
5
8
4

61
.8

61
.0

7
60

.8
3

61
.6

7
62

.1
7

62
.0

8
90

.3
1

90
.1

89
.5

3
89

.8
89

.8
5

89
.9

1
89

.8
6

89
.5

8
89

.2
9

89
.5

89
.5

5
89

.5
6

a
c9

7
ct

rl
42

.6
2

42
.5

3
42

.4
8

44
.3

1
44

.3
9

44
.9

6
94

.5
4

94
.1

1
94

.0
9

94
.2

4
94

.2
9

94
.3

8
96

.9
4

96
.6

6
96

.6
5

96
.7

2
96

.7
6

96
.8

3

m
e
m

ct
rl

40
.9

6
36

.9
7

36
.7

6
38

.1
8

38
.9

2
40

.2
6

62
.3

2
59

.7
2

59
.5

9
60

.0
9

60
.3

4
60

.7
74

.5
6

72
.5

4
72

.4
3

72
.8

4
72

.9
9

73
.2

4

p
ci

b
ri

d
g
e

64
.4

61
.7

4
61

.8
2

65
.3

8
66

.6
8

67
.5

95
.7

5
95

.4
1

95
.4

6
95

.6
2

95
.6

7
95

.7
1

96
.6

1
96

.3
3

96
.3

6
96

.4
8

96
.5

2
96

.5
4

tv
8
0

53
.4

7
51

.1
51

.1
53

.2
6

57
.4

8
58

.1
4

91
.4

9
91

90
.9

9
91

.1
1

91
.1

5
91

.1
2

89
.3

88
.3

8
88

.3
8

88
.8

7
88

.8
7

88
.9

u
sb

fu
n
ct

63
.9

4
63

.1
4

62
.4

6
64

.4
1

63
.9

8
64

.2
7

93
.7

4
93

.2
1

93
.3

4
93

.3
9

93
.4

4
93

.4
9

95
.1

4
94

.7
7

94
.8

6
94

.9
6

95
.0

3
95

.0
4

e
th

e
rn

e
t

47
.5

8
46

.7
4

46
.7

9
48

.2
4

48
.5

8
49

.0
7

88
.8

1
88

.5
7

88
.5

4
88

.6
8

88
.7

4
88

.7
9

90
.7

90
.3

5
90

.3
6

90
.5

3
90

.5
2

90
.5

6

94

Figure 5.3: Power-reduction/Defect-coverage tradeoff for s38417.

Table 5.3 presents the power consumption during testing (shift and capture) compar-

isons between FA, FA, MFA, MFA+10 and MFA+20 methods. Note that all the methods,

except the FA, that are compared in this Table honor the same capture power limit and

their shift power is the bigest contributor at the overall power consumption (capture

power is negligible compared to shift power because “number of shift clock cycles” �
“number of capture cycles” is very high). The first two columns present the circuit name

and the number of test cubes for each circuit, which is the same for all methods. The re-

maining columns present the percentage reduction in average power consumption achieved

by each method compared to random fill (RF). It is obvious that the highest average power

reduction is offered by FA; however, FA is a capture power-unaware method. In the case

of FA*, the filling of a portion of the Xs for reducing the capture power increases, in most

cases, the average power consumed compared to FA. The reductions in average power

offered by FA and MFA compared to RF are almost the same. Methods MFA+10 and

MFA+20 provide smaller reduction, which still remains significant. Note that there is

an unexpected result in a few cases where the FA* technique is inferior to MFA. This is

caused by the PF technique, which tends to specify more Xs in the FA case than in the

MFA case. This is explained by the fact that MFA generates many candidate test vectors

for each test cube and thus the possibility of some of them to comply with the capture

power limit at early stages of the generation process increases (at early stages PF has

only limited effect on the filling of Xs). This does not happen in the case of FA*, where

any violation of the capture power limit causes an immediate increase in the number of

bits that have to be specified according to PF technique.

For evaluating the effectiveness of the MFA methods for defect screening, we consider

the coverage of un-modeled faults, namely transition and bridging faults, obtained by

applying to the circuit under test the stuck-at test vectors generated by the MFA methods.

As it is common in industry, we use the launch-on-capture (LOC) scheme, also referred

to as broadside scan, to apply test-vector pairs. Note that none of these two fault models

95

Figure 5.4: Transition delay fault coverage ramp-up for s9234.

were targeted by the stuck-at test sets (transition and bridging faults are used as surrogate

fault models). For evaluating the defect-screening potential of the MFA methods in respect

to bridging faults, we first used the BCE+ metric [147], which is useful for comparing

different methods (the method with the highest value of BCE+ is deemed to be more

effective for defect screening). Since BCE+ is not accurate for estimating the real bridging

fault coverage, we also simulated 400K bridging faults as follows: 100K pairs of lines were

selected randomly for each circuit, and four bridging faults were simulated for each pair

by considering both lines as aggressors and victims, and by considering both logic values

0 and 1 at the aggressors.

At first we present the transition delay fault coverage of the FA, MFA and MFA+20

methods for various values of the power limit L in the range [15%, 45%]. Note that

the transition delay faults were not targeted by the stuck-at test sets used for these

experiments. We present trade-off results for s9234 in Figure 5.2 (the remaining circuits

exhibit similar behaviour). We can see that, for every value of L shown in this Figure

(even the less one) the transition fault coverage improvement is significant. However, we

have to note that due to the compacted nature of the test sets, in the case of L=15%,

the PF technique fails to provide test vectors with capture power below the limit L for

many test cubes. This problem can be overcome with the use of bit-relaxation techniques

and/or less specified test sets. Figure 5.3 presents the trade-off between power reduction

and defect coverage based on the value of P. Specifically the power reduction of MFA+P

techniques for P=0% (i.e., MFA), 10%, 20%,. . . , 100% as well as the respective transition

fault coverage achieved for circuit s38417 are reported (the other circuits exhibit similar

behaviour). It is obvious that the defect coverage increases as P increases. On the other

hand, the power reduction achieved compared to RF decreases linearly and tends to zero

as P approaches 100%, where all Xs are filled randomly.

Table 5.4 presents the defect coverage results. The first column presents the circuits’

96

name and the next six columns present the transition fault coverage for RF, FA, FA*,

MFA, MFA+10, and MFA+20, respectively. It is obvious that the FA and FA* techniques

provide the lowest coverage, while all the MFA methods provide higher coverage, which is

even higher than that for the RF method in the majority of cases. This indicates that the

proposed method exloits the Xes better than RF in terms of maximizing the unmodeled

defect coverage. We note that the MFA techniques exhibit higher coverage ramp-up than

RF and FA*. This is a significant advantage as it decreases the test time in an abort-

at-first- fail environment. Due to lack of space, only the graph for s9234 is presented in

Figure 5.4.

The next twelve columns in Table 5.4 present the bridging fault coverage comparisons

of the above mentioned methods (the first six present the BCE+ comparisons and the

next six present the random bridging fault coverage comparisons). All results indicate

that the MFA methods achieve higher coverage than FA, FA*, approaching that for the

RF method.

5.4 Conclusions

We presented two novel X-filling methods, MFA MFA+P, for reducing the power con-

sumption during testing and for enhancing defect coverage. MFA considerably increases

the defect coverage of the resulting (filled) test vectors compared to the power-efficient

FA technique, with comparable average power consumption. MFA also ensures that peak

power limits during response capture are not violated. Further improvements in defect

coverage are achieved by the MFA+P technique, at the cost of a small increase in the

average power consumption.

97

Chapter 6

LFSR Reseeding Techniques for

High-Quality Testing

6.1 Overview . 98

6.2 Motivation . 99

6.3 A Deviation-based Metric for Time-related Defects 102

6.4 Generation of Defect-Aware Seeds . 104

6.5 Fault simulation Results . 111

6.6 Conclusions . 117

6.1 Overview

Defect screening is a major challenge for nanoscale CMOS circuits, especially since many

defects cannot be accurately modeled using known fault models. The effectiveness of test

methods for such circuits can therefore be measured in terms of the coverage obtained for

unmodeled faults. In this Chapter, we present new defect-oriented LFSR reseeding tech-

niques for test-data compression. The proposed techniques are based on a new “output

deviations” metric for grading stuck-at patterns derived from LFSR seeds, and include a

window-based static reseeding method as well as a dynamic reseeding method based on a

ring generator. We show that, compared to standard compression-driven LFSR reseeding

and a previously proposed deviation-based method, higher defect coverage is obtained

using stuck-at test cubes without any loss of compression. The defect coverage for the

proposed reseeding methods based on stuck-at test cubes is evaluated using two surrogate

fault models, namely the transition fault model and the bridging fault model.

In this Chapter, a new encoding method that offers high compression and increased

unmodeled defect coverage, for static and dynamic LFSR reseeding is presented. The

main contributions are:

98

1) The new encoding method is suitable for both static window-based and dynamic

LFSR reseeding, which are among the most efficient reseeding techniques.

2) High unmodeled defect coverage is achieved by using a new output- deviation-based

metric that is more effective than [180] for detecting defects.

3) The encoding method enhances the defect-detection potential of the generated seeds

without compromising compression.

4) Instead of exploiting free variables, defect detection is facilitated simply by care-

fully encoding the test cubes into seeds using compression as well as defect-oriented

criteria.

Simulation results are presented for stuck-at test sets generated for the ISCAS’89 and

IWLS’05 benchmark circuits [1]. These results show that the defect-aware window-based

and dynamic reseeding methods offer higher defect coverage than the original (defect-

unaware) window-based and dynamic reseeding methods, without any adverse impact

on compression. In addition, due to the efficient output deviation metric introduced

in this Chapter, the new method clearly outperforms [180] in terms of defect coverage.

Finally, by grading the seeds in the case of static window-based reseeding and applying

the most efficient seeds first, faster coverage ramp- up is achieved, thus reducing the

test-application time in an abort-at- first-fail environment. Even for dynamic reseeding,

where seed ordering is not an option, the carefully-tuned defect-oriented reseeding provides

steeper coverage ramp-up.

The rest of the Chapter is organized as follows. Section 6.2 presents motivation for

this work and Section 6.3 presents the new output deviation-based metric. Section 6.4 de-

scribes the procedure used for generating high-quality seeds using this metric. Simulation

results are presented in Section 6.5 and Section 6.6 concludes the Chapter.

6.2 Motivation

Figure 6.1 presents the decompression architecture used in static as well as in dynamic

reseeding. It consists of an L-bit sequential linear decompressor, which can be either

an LFSR or a ring generator [106], and a phase shifter that receives the outputs of the

decompressor and drives m scan chains (m > L). A test response compactor is also in-

cluded in the scheme. The decompressor is reseeded by the Automatic Test Equipment

(ATE), and it generates a test vector through the phase shifter. In static reseeding, the

seed of the decompresor is its initial state and it is considered as a set of binary variables

a0, . . . , aL−1 that are loaded directly from the ATE. In dynamic reseeding, the decom-

pressor is reseeded at every cycle from the ATE by injecting test bits into it through the

ATE channels. Every injected test bit is considered as a binary variable and all variables

injected during the generation of one test vector constitute the dynamic seed for this test

vector. In both cases, a seed is determined by solving a system of linear equations, which

is formed according to the specified bits of the test cubes and the feedback polynomial of

the LFSR [77].

99

Figure 6.1: Generic LFSR reseeding architecture

The main disadvantage of the static LFSR reseeding is that every new seed flushes

the decompressor contents and thus any variables left unspecified (free) during the seed-

computation process are wasted (see Section 2.2.1). The method proposed in [180] exploits

these free variables in order to increase unmodeled defect coverage. In order to achieve this

goal, it utilizes the notion of output deviations [178]. Output deviations are probability

measures at primary outputs and pseudo-outputs that indicate the likelihood of error

detection at these outputs. As it was shown in [178], test patterns with high deviations

tend to be more effective for fault detection. The method proposed in [180] attempts to

improve the output deviations of the seeds as follows: it first applies multiple random

fillings on the variables that remain free after each system of linear equations is solved,

in order to generate multiple candidate seeds for each test cube. Then it selects the seeds

that generate the vectors with the highest output deviation values.

Even though [180] constitutes an effective way to utilize the otherwise wasted vari-

ables, it still suffers from limited compression. Window-based reseeding [67] and dynamic

reseeding [78, 79, 123] offer considerably better compression than [77], [180] as they man-

age to exploit very efficiently the seed variables. In the case of window-based reseeding

every seed is expanded into w > 1 test vectors (w is referred to as the window size). Every

position of the window can be used for encoding a different test cube, and thus multiple

incompatible test cubes (i.e., test cubes that differ in at least one of their specified bit

positions) as well as multiple compatible test cubes can be encoded at the same window

(i.e. seed). Moreover, by carefully encoding each test cube at the window position that

requires the replacement of the fewest variables, the probability of encoding additional

test cubes at the same seed using the remaining variables increases. In the case of dynamic

reseeding high compression is achieved by continuously injecting test data from the ATE

channels into the decompressor, through linear (exclusive-or) operations with the current

data of the decompressor. Thus the decompressor is not flushed and the unspecified vari-

ables remain inside the decompressor and they are exploited at a later step for encoding

other test cubes.

100

Figure 6.2: Example of classical and window-based LFSR reseeding

Both window-based and dynamic reseeding techniques exploit almost all variables

in order to reduce the seed volume, thus they offer high compression. Moreover, [180]

requires all the candidate seeds for all the test cubes to be computed before the selection

process begins, which is not feasible in window-based and dynamic reseeding. Therefore,

it is clear that the approach of [180] cannot be used in these cases. To overcome this

problem, a different approach is followed in this Chapter, which efficiently compresses

the test cubes, and also provides high defect coverage of the resulting vectors. The main

idea of the new method is to generate multiple candidate seeds that implement different

unique encodings of the test cubes. The encoding of each candidate seed is different

from the encodings of the other candidate seeds, therefore, the probability of generating

a vector with high output deviation values increases. At the same time, high compression

is ensured by intelligently generating the candidate seeds in such a way that best exploits

the variables for decreasing the seed volume. Let us see an illustrative example.

Example 6.1. Consider the circuit shown in Figure 6.2, which consists of two scan chains

loaded using a 4-bit LFSR. The initial state of the LFSR is α1α2α3α4. Let us first encode

test cubes t1, t2 shown in Figure 6.2 into seeds using [180]. Since test cubes t1, t2 are

incompatible (they differ at the specified test bit corresponding to c1), they can not be

encoded by the same seed, and consequently two separate seeds are required. By solving

the system of equations for t1, we compute the seed α1α2α3α4 = 01x0 (denoted as C sd1

in the Table of Figure 6.2). Note that α3 is a free variable and it can be replaced by either

logic value ‘0’ or ‘1’ providing thus two candidate seeds α1α2α3α4 = 0100 or 0110. In the

same way we compute seed C sd2 for encoding t2 and we calculate the eight candidate

seeds by replacing the three free variables with all eight possible binary combinations.

The test vector applied to the circuit for each of these seeds and the respective output

deviations are shown in Columns 2, 3 of the Table (the output deviations are computed as

in [180]). By selecting the candidate seed corresponding to the first vector in the case of

seed C sd1 and the last vector in the case of C sd2 the maximum output deviation value

101

achieved is equal to 0.156. Now let us apply the window-based encoding for window size

equal to 3. In this case, higher compression can be achieved because both test cubes t1,

t2 can be encoded into a single seed. For example t1 can be encoded at the first position

of the window, and t2 can be encoded at the third position. However, the computed

seed (labeled as W sd1) has no free variables and thus it cannot provide any candidate

seeds. We can easily see though, that t2 can be also encoded at the second position of

the window (W sd2 in Table 1), which provides a second candidate seed offering the same

compression as the first one (i.e. a single seed suffices to encode both test cubes in this

case too). However, it is obvious from the output deviation values of the respective test

vectors of both seeds (sixth column of table), that by selecting W sd2 instead of W sd1,

the maximum value of output deviation increases from 0.156 to 0.452. �

It is therefore obvious that different window-based encodings yield similar results in

terms of seed volume, but they exhibit significant variations in terms of output deviation

values and potentially of defect coverage. In fact these variations are more significant

than in [180]. This is because the encoding of different combinations of test cubes into a

candidate seed affects the generated vectors much more than the random replacement of

the free variables.

Finally, we emphasize that the metric proposed in [180] is not efficient since it ignores

important parameters such as the structure of the circuit under test and the output

deviations of previously selected seeds. A more efficient output deviation-based metric

was proposed in [69] for generating test sets with high defect coverage. This metric takes

into account structural information of the circuit under test in order to further increase

the defect coverage. A major limitation of this metric is that it evaluates each test vector

for either timing-independent or timing-dependent defects. In this Chapter, we use the

metric proposed in Chapter 5 in order to evaluate the unmodeled defect coverage of a set

of test vectors.

6.3 A Deviation-based Metric for Time-related Defects

In this section we present the proposed output deviation-based metric for evaluating a

candidate seed s (we present the metric assuming that the s is calculated using window-

based reseeding, as the extension to the dynamic reseeding case is straightforward). We

assume that each seed s is expanded into w test vectors (w is the size of the window) and

each one of them is applied using two capture cycles r1, r2. In other words we assume the

Launch-On-Capture (LOC) technique as it is common in industry. Although, the metric

described here is based on the one proposed in Chapter 5, it still requires to support the

window-based LFSR encoding, because of a special property of window-based method’s

seeds. During window-based LFSR encoding a seed generates w vectors (contrary to

the other LFSR based techniques). So, it is not clear how a seed is evaluated using the

metric of Chapter 5, which is applied on a single vector. The answer is that the metric is

applied to all the vectors inside w simultaneously, as if all w vectors were a single huge

102

test vector. Moreover, the calculation of maximum expected deviations values is slightly

different compared to Chapter 5, since it was done with random assignement. In this

Chapter, the metric is applied on linear decompressors and the maximum values should

capture any limitations imposed by the linear correlations of the decompressors used.

Below, the formulation of the new metric is given:

The Maximum Expected Deviation value for output i at capture cycle rk (k = 1,

2) and fault-free response v (v = 0, 1), denoted as MED(i, rk, v) is an estimate of the

maximum deviation value expected throughout the seed-computation process on output

i when its fault-free response is v at capture cycle rk. It is calculated as follows: initially,

for every test cube, a predetermined number of single-vector seeds (i.e., seeds encoding

only one test cube) are generated by randomly replacing the free variables. For each

output i, the generated test vectors are partitioned into four groups: those producing

fault-free responses 0 and 1 at capture cycles r1 and r2. The output-deviation values of

all generated test vectors are calculated and the greatest value for every output i and for

each fault- free response v = 0, 1 at capture cycle rk constitutes MED(i, rk, v). After

calculating the MED(i, rk, v) values, the generated single-vector seeds are discarded.

With the use of the MED values, the evaluation of the candidate seeds at each step of

the seed computation process is done as follows. Let D(s, j, i, rk, v) be the deviation value

at output i for the jth test vector in the window of candidate seed s (j ∈ [1, w]), where w is

the window size), which produces fault-free response v at that output at capture cycle rk.

The value D(s, j, i, rk, v) is considered to be maximum if it is very close to MED(i, rk, v),

or equivalently, if the following inequality is true:

D(s, j, i, rk, v) ≥ F1 ·MED(i, rk, v), v = 0, 1 (6.1)

F1 is a real-valued parameter that must be close to 1 for selecting seeds with output

deviation values that are very close to the maximum expected deviation. However, a

value of F1 = 1 must be avoided since sometimes it results in a failure to select seeds (the

predicted MED(i, rk, v) value becomes hard to reach during the selection of the seeds).

As in the case of [69] we also verified that a value of F1 in the interval [0.99, 0.995] provides

high-quality seeds in all cases, and for our experiments we set F1 = 0.995.

The second task of the evaluation process is to rank all outputs according to their

potential of observing errors due to defects. Every output i is assigned two pairs of

weights wo(i, rk, 0), wo(i, rk, 1) for k = 1, 2, which are initially all set equal to the number

of lines in the logic cone of the corresponding output. These weights are indicative of the

volume of undetected defects that can be possibly detected for both fault-free responses

0 and 1 at output i during both capture cycles r1, r2. The set of weights {wo(i, r1, 0),

wo(i, r1, 1), wo(i, r2, 0), wo(i, r2, 1)} and the output deviation values are used during the

evaluation of the candidate seeds for determining a weight WS(s) for every candidate

seed s as follows: assume that seed s is expanded into a window of w test vectors, and let

j be one of the w window positions, i.e., j ∈ [1, w]. Let the number of observable outputs

in the circuit be k. For test vector j, the sets MS[s, j, r1, 0], MS[s, j, r1, 1], MS[s, j, r2, 0],

103

MS[s, j, r2, 1] consist of all outputs i, with 1 ≤ i ≤ k, for which any of the deviation

values D(s, j, i, r1, 0), D(s, j, i, r1, 1), D(s, j, i, r2, 0), D(s, j, i, r2, 1) satisfy inequality 6.1.

Finally, for evaluating each candidate seed, the sum of its weights is calculated using

the formula:

WS(s) =
∑
k=1,2

∑
j∈[1,w]

 ∑
i∈MS[s,j,rk,0]

wo(i, rk, 0) +
∑

i∈MS[s,j,rk,1]

wo(i, rk, 1)

 (6.2)

The above formula means simply that, for either fault-free response 0 or 1, only the

weights of the outputs that get near-maximum deviation values for capture cycles r1, r2
(i.e., those belonging to MS[s, j, r1, 0],MS[s, j, r1, 1], MS[s, j, r2, 0], and MS[s, j, r2, 1])

participate into the final weights sum WS(s). Note that the first response targets the

timing- independent defects, while the second response targets timing-dependent defects.

The seed with the highest WS value is selected as the one with the best potential to

detect timing-independent as well as timing-dependent unmodeled defects.

The weight WS(s) enables the selection of seeds that generate vectors with the maxi-

mum deviation values at the outputs of large cones of the CUT. The larger the cones are

the greater is the probability of detecting unmodeled defects. However, maximizing the

deviations only at a subset of outputs may result in low defect coverage, even when this

subset consists of the outputs of the largest logic cones. To this end, for every selected

seed, every output i which satisfies equation 6.1 is identified, and the respective weight

wo(i, rk, v) is divided by a constant factor F2. In that way, the outputs with reduced

weight have much smaller impact on the selection of the next seeds. This is motivated

by the fact that if seed s provides a high deviation at output i for fault-free response v at

capture cycle rk then it is likely that many defects at the fan-in cone of i will be detectable

at output i when s is applied. Thus, test vectors that maximize the deviation at output

i for the same fault-free response and the same capture cycle will be less effective for

increasing the defect coverage during the application of the next seeds. We have chosen

the value of F2 to be equal to 8, as we verified experimentally that a value of F2 in the

interval [2, 10] is sufficient to maximize the deviations at all outputs.

6.4 Generation of Defect-Aware Seeds

In this section, we first describe the encoding algorithm for defect-aware window-based

LFSR reseeding. Next we discuss the special case of window-based reseeding with window

size w = 1, and the defect-aware dynamic reseeding method.

6.4.1 Window-Based Reseeding

The window-based reseeding approach proposed in [67] attempts to maximize compression

by using the following very effective encoding criterion:

Compression Maximization Criterion: “The first test cube encoded by every seed is the

104

one with the highest number of specified bits, and it is encoded at the first window

position. The next most-specified test cube is then encoded at the window position that

results to the replacement of the minimum number of variables. If more than one such test

cubes exist, the test cube that requires the replacement of the fewest variables is encoded.

This continues until no system for any of the unencoded test cubes can be solved in the

same window.”

This criterion efficiently exploits all the properties offered by window-based reseeding

mentioned in Section 2.2.1. In addition, it attempts to increase the number of densely

specified test cubes encoded by every seed, which, as shown in [67], tends to decrease the

overall seed volume even more. These are all major differences with other strategies used

in the literature for encoding test cubes, e.g., the incremental solver proposed in [123].

In the method presented in this Chapter, two objectives are simultaneously addressed:

the efficient compression of test cubes, and the high defect coverage of the resulting

patterns. High defect coverage is targeted by generating candidate seeds implementing

different unique encodings of test cubes. For the selection of every seed, T candidate seeds

(T is a user-defined parameter) are first generated and then evaluated using the output-

deviation-based metric presented in section 6.3. The best candidate seed according to

this metric is selected each time. High compression is ensured by carefully generating

the candidate seeds using a new encoding criterion which ensures that all candidate seeds

provide nearly the same level of compression that is obtained if the seed is generated using

the compression- maximization criterion (i.e., according to [67]).

The generation of the T candidate seeds is done as follows: we start by encoding the

most-specified test cube (say t1) in the first position of the corresponding window. Next,

for initiating the generation of the T different candidate seeds, we independently apply the

compression-maximization criterion T times in that window, excluding each time all the

previous decisions. In other words, we identify the best T different test-cube encodings

that can be independently performed in the window that embeds t1 in its first position.

As a result, T different windows with t1 in their first position, and other test cubes in the

rest of the positions are determined.

The above procedure implies that we initially target windows that embed two different

test cubes. Note that this does not necessarily mean that the T chosen windows embed T

different pairs of cubes (i.e., t1 along with another cube). Test cube t1 can be combined

with the same test cube, ti, more than once, if ti can be encoded in different positions of

the window and the corresponding solutions are among the T best solutions according to

the compression-maximization criterion. Hence, among the T chosen windows, there may

be more than one embedding t1 and ti, with ti encoded in a different window-position

every time. However, if all possible windows that embed t1 with a second test cube are

fewer in number than T , then we increase the volume of the already chosen windows

by encoding in them a different third test cube. Two new different windows embedding

three (n) test cubes can be derived from one window which embeds two (n − 1) test

cubes, by separately encoding in the latter either two different test cubes (one for each

105

Figure 6.3: An example to illustrate the generation of T candidate seeds

new window), or the same cube in two different positions. The same procedure is repeated

until we get T different windows, corresponding to the T candidate seeds. At this point,

the set of candidate seeds has T members; therefore, we continue by encoding as many test

cubes as possible in the window of each candidate seed by using only the compression-

maximization criterion. Finally, the T generated candidate seeds are evaluated using

formula 6.2, and the most promising one for increasing the defect coverage is selected.

Then, the test cubes encoded in its window are dropped and the seed-computation process

continues in the same way for selecting the next seed. We provide insights into the above

process with the following example.

Example 6.2. Let t1, t2, . . . , t10 be 10 test cubes sorted in descending order according to

their number of specified bits, w = 4 be the window size, and T = 5 be the number of

candidate seeds. In Figure 6.3, we present each window as a column with 4 cells, one

for each window position. Each encoded test cube is reported inside the corresponding

cell and the newly encoded test cubes are highlighted at each step. Initially, we encode

test cube t1 (the most specified one) in window position 1 (Figure 6.3a). Let us assume

that the systems of equations for test cubes t2, t4, t8, and t10 are independently solvable in

the same window with t1 (t2 is the first cube selected by the compression-maximization

criterion, t4 is the next selection, i.e., if we exclude t2, and so on). As a result, we initiate

the generation of four new candidate seeds (Figure 6.3b) by encoding each one of these

test cubes separately into the window that we previously encoded t1 (i.e., each one of the

four seeds encodes one of the following pairs of test cubes: t1 and t2, t1 and t4, t1 and t8,

t1 and t10). Since though, the upper limit of T = 5 candidate seeds has not been reached

yet, we continue and attempt to encode a third test cube in the windows generated so

far. This is shown in Figure 6.3c. After encoding test cube t4 first, and then t8, in the

window embedding t1 and t2 (the compression-maximization criterion is again used for

these selections), we reach the limit of 5 candidate seeds. Therefore, the expansion of the

tree (i.e., the generation of new windows) now terminates and we continue by encoding in

each of the T windows only the test cubes that maximize compression (Fig 3d). Finally,

106

we have generated five candidate seeds s1, . . . , s5 which are subsequently evaluated using

formula 6.2. Note that the leftmost seed (s1 in this case) provides the best compression.

Assuming though that seed s3 has the highest weight among all seeds according to 6.2,

s3 is selected and test cubes t1, t4 and t8 are dropped from the set of test cubes to be

encoded. �

In contrast to [67], we examine various encoding options, apart from the one that

maximizes compression (i.e., t1 along with t2 and t4 used in the previous example). Thus,

several choices are available for maximizing defect coverage. By trying different encod-

ings early on in the encoding process (i.e., after the selection of just the first cube for

every window) we guarantee that the T candidate seeds will be sufficiently different (and

hence they will potentially provide sufficiently different defect coverage). By selecting

these different encodings using the compression-maximization criterion, we ensure that

compression is not compromised.

Note that by generating multiple candidate seeds with diverse encoding, we cannot

always guarantee an increase in defect coverage. However, we experimentally found that

among the candidate seeds, there exist seeds that increase defect coverage, and these

seeds are effectively identified and selected by the metric presented in Section 6.3. In

addition, note that by trying different encodings, the complexity of the encoding process

increases. However, we found in our work that even a small value of T can provide

significant increase in the defect coverage offered by the resulting seeds, and thus the

encoding process is feasible for large circuits. This can be easily concluded with the

following analysis. Suppose that the proposed deviation based enhancement method is

applied on an encoding technique with complexity O(N), where N is the size of the test

set that needs to be encoded. The proposed method adds a multiplier factor T at the

complexity of the encoding method that is applied on, and the new complexity becomes

O(T · N). The gain in unmodeled defect coverage saturates very fast as T increases.

As a result, an efficient gain can be achieved for very small values of T (experiments

show that small values of T even with T ≤ 30 can almost maximize that gain and, so,

we selected T = 30 for all our experiments). Given that, the proposed method can be

treated as adding a constant complexity factor to the complexity of the encoding method

and consequently the complexity remains unaffected.

After all the seeds are generated, they are sorted according to their potential to detect

defects. Seeds with higher potential are loaded first in the LFSR in order to detect defects

as quickly as possible and thus to decrease the test application time in an abort-at-first-

fail environment. The ranking of the seeds is based on an evaluation process that is

similar to the T candidate seeds evaluation procedure. The difference lies in the fact

that this procedure is now applied to all the selected seeds, and not to candidate seeds.

Moreover, since all seeds are known at this step, the actual maximum deviation value

MD(i, rk, v) for each output i and fault-free response v = 0, 1 at capture cycle rk can be

easily computed (it is the largest among the output-deviation values of all test vectors

generated by all calculated seeds). Equation 6.2 is applied in this case too, but this

107

Figure 6.4: Final ranking of the selected seeds

time the set MS[s, j, rk, v] is calculated by replacing values MED(i, rk, v) with values

MD(i, rk, v) in inequality 6.1. A flowchart for this final ranking of the seeds is shown in

Figure 6.4.

6.4.2 Classical Static LFSR Reseeding and Dynamic Reseeding

One of the advantages of window-based reseeding is that the size of the window (w) offers

a tradeoff between compression and test sequence length. Specifically, large values of w

offer very high compression at the expense of relatively increased test sequence length,

whereas small values of w offer short test sequence length at the expense of relatively

reduced compression. In the degenerate case of w = 1, every seed generates only one

test vector. The test-application time is minimized, but only compatible test cubes can

be encoded by each seed. This restriction limits the encoding ability of the T candidate

seeds’ generation process described in the previous section, and consequently it adversely

affects both the encoding ability and the defect-screening potential of the resulting seeds.

However, the use of uncompacted test cubes combined with the defect aware compression-

maximization criterion presented in the previous section almost eliminates these adverse

effects and also offers the potential for a wide range of encoding options. This is the

significant difference between the classical and the window-based reseeding approach as

for w = 1; in classical reseeding, as proposed in [77] (and adopted in [180]), only one

test cube is encoded by each seed, whereas in window-based reseeding for w = 1, the

utilization of the defect-aware compression-maximization criterion offers an efficient way

to combine more than one compatible test cubes in the same encoded pattern. Thus, as

will be shown in the experimental section, the volume of the defect-aware seeds is low and

their quality is high for w = 1 as well.

Dynamic reseeding resembles window-based reseeding for w = 1, in the sense that they

both generate one test vector per seed. Thus, even though the way in which the systems

of equations are formed is different from static reseeding, the criterion for generating the

T candidate dynamic seeds can be applied in this case too. However, using this criterion,

the seeds are generated in no particular order of effectiveness in terms of defect coverage.

108

Most of the time, a seed selected near the end of the selection process may be more

efficient than a seed near the beginning. In the case of static window-based reseeding,

the final sorting of the generated seeds, according to their output deviations (Figure 6.4)

solves this problem and provides steep defect coverage ramp-up. Note that in the case

of static reseeding, there is no dependency between the static seeds, because each seed

flushes the contents of the LFSR; therefore, sorting of the seeds is possible. However,

in the case of dynamic reseeding, reordering of the dynamic seeds is not possible since

the LFSR is never flushed. To provide both high defect coverage and steep coverage

ramp-up in dynamic reseeding, we allow a small reduction in compression offered by the

T -candidate seeds generation process, in order to facilitate the generation of high-quality

seeds. Specifically, instead of encoding the most-specified test cube as the first test cube

of every candidate seed, we select the T most-specified test cubes which have not yet

been encoded. Each one of these test cubes is encoded as the first test cube of each of the

corresponding T candidate seeds. Consequently, every candidate seed encodes a different

test cube as its first test cube. Then, for each candidate seed, we continue by encoding

the test cubes providing the highest compression (i.e., the most specified ones that also

require the replacement of the fewest variables), excluding all the T test cubes selected

at the first step.

This modification allows us to increase the likelihood of generating high- quality can-

didate seeds as early as possible but it can also potentially reduce the amount of test

compression. However, in the modified criterion, the candidate seeds are still among the

most efficient ones in respect to the achieved compression. Experimental results show

that the reduction in compression is infrequent and very small.

Very frequently during the candidate-seed generation process, a single test cube should

be selected from a subset of equivalent, according to the Compression Maximization Cri-

terion, test cubes (i.e., test cubes that include the same maximum number of specified

bits and, at the same time, their encoding requires the replacement of the same minimum

number of variables). In most of these cases, only one of them can be encoded, because

the selection of any such test cube prevents the encoding of the others in the same seed

(i.e., after any one of them is encoded the rest become un-encodable). We exploit this

property to increase the quality of the candidate seeds without sacrificing compression.

Specifically, during the generation of every candidate seed, the first time that a set of

test cubes, say ST , is found with the above property, we select m of them (m is a pre-

determined parameter) and we separately encode them in the candidate seed. Thus the

candidate seed is replaced by m new ones, and each one of them embeds all the test

cubes of the initial candidate seed (i.e., the one that we replace with the m new ones)

as well as one of the test cubes of set ST . Note that this is done only for the first (and

consequently most- specified) m test cubes found for each one of the initially generated T

candidate seeds, in order to keep the candidate-seeds’ volume low. To bound the number

of candidate-seeds’ volume, we set the maximum value of m equal to 2. Thus, the volume

of generated candidate seeds cannot exceed 2 · T , which is relatively small.

109

Figure 6.5: Illustration of the generation of candidate seeds for dynamic reseeding

Example 6.3.Let t1, t2, . . . , t10 be 10 test cubes sorted in descending order according to

their number of specified bits, T = 3 be the number of candidate seeds, and m = 2. Figure

6.5 presents the various steps of the encoding process. Each dynamic seed encoding test

cubes ta and tb is denoted as s(a, b). At the first step (Figure 6.5a) test cubes t1, t2, t3
are selected (they are the most specified ones) and the candidate seeds s(1), s(2), s(3)

are determined. Next we proceed with the seed s(1) and we select the most specified test

cubes (excluding tC2, t3) that can also be encoded by this seed. Let cubes t4, t5 and t6
have the same number of specified bits. Suppose that they also require the replacement

of the same number of variables, and let all three of them be separately encode-able (only

one at a time) at seed s(1). Since m = 2 we select the first two among them, namely t4,

t5. Thus candidate seed s(1) is replaced by candidate seeds s(1, 4) and s(1, 5) – see Figure

6.5b. We proceed with each one of them separately by encoding cubes t8 and t9 at seed

s(1, 4) and s(1, 5), respectively – Figure 6.5c. At this point, the generation of the first

two candidate seeds terminates and we proceed with the next candidate seed s(2) in the

same way. Finally, six (equal to the upper limit of 2 · T) candidate seeds are generated.

These seeds are underlined in Figure 6.5d. �

Note finally that in dynamic reseeding, each dynamic seed may not be fully specified.

Some variables may remain unspecified and are utilized by the next seeds. However, in

order to apply relation 6.2 for computing the output-deviation metric of each candidate

dynamic seed, every unspecified variable has to be assigned either the logic ‘0’ or ‘1’

value. To overcome this problem, the encoding estimates the output deviation values by

110

temporarily replacing these variables randomly, and based on these estimates, it selects

the best dynamic candidate seed. Then it removes the random assignment from the

variables (i.e., they become unspecified again) and proceeds to the computation of the

next dynamic seed. In this way, compression is not compromised as the variables are

utilized only for encoding test cubes, whereas, at the same time, a good estimate of the

defect-screening potential of each candidate seed is obtained.

6.5 Fault simulation Results

In this section, we evaluate the effectiveness of the defect- aware reseeding methods. The

simulation platform was developed using the C programming language, and all ATPG

and fault simulations were carried out using commercial tools. We conducted experiments

using the largest ISCAS’89 circuits and a subset of the IWLS’05 circuits [1]. The number

of scan chains was set equal to 30 for the ISCAS circuits, 50 for the medium sized IWLS

circuits, and 100 for the large ethernet IWLS circuit. For evaluating the window-based

reseeding method, we considered two window sizes, w = 1 and w = 5. For each benchmark

circuit, a dedicated LFSR with a characteristic primitive polynomial of near minimum

size was selected following the smax + 20 rule (see Section 2.2.1 and [77]).

For evaluating the dynamic reseeding method, we conducted experiments with various

ATE-channel volumes (the best results are reported). In addition, the LFSRs used in

window-based reseeding were replaced by ring generators of the same size in dynamic

reseeding. In the rest of the section, two cases are reported for both reseeding approaches:

a) the case, denoted as “Cmp” which refers to the encoding that targets only compression

(the original approach without applying the proposed enhancement method), and b) the

case noted as “Cmp & Def”, which refers to the encoding that targets compression and

defect coverage at the same time. For the “Cmp & Def” case, T was set to 30, m was set

to 2 (m is used only in dynamic reseeding) and the constants F1 and F2 were set equal

to 0.995 and 8 respectively.

To demonstrate the advantage of the proposed method compared to the classical

reseeding-based method of [180], which uses a different output deviation-oriented metric,

we have implemented the method of [180] as well as the defect-unaware classical reseeding

method [77]. We conducted experiments for these two methods using compacted test sets

generated by the same commercial ATPG engine used for the rest of the experiments.

Note that in contrast to the other methods (window-based and dynamic reseeding), for

the classical LFSR reseeding approaches of [77] and [180] we used compacted stuck-at test

sets in order to minimize both the number of required seeds as well as the test-sequence

length. These methods are not accompanied by a dynamic compaction technique. So,

their TSL is the same with the size of the test set. As a result, these methods exhibit the

best TSL and TDV when they are applied on compacted test sets.

In Table 6.1, we present the TDV in Kbits (1Kbit =103 bits) for the window-based

and dynamic reseeding methods, as well as for the classical (static) reseeding approaches.

111

Table 6.1: Test data volume results (in Kbits)

Circuit

Classical Window-Based Reseeding
Dynamic ReseedingReseeding w = 1 w = 5

Test Set
[77, 180] Cmp Cmp & Def Cmp Cmp & Def Cmp Cmp & Def

Size

s5378 28.7 16.1 8 8 6.2 6.3 7.6 7.9

s9234 41 23.2 16.9 18.4 14.2 14.3 17.3 17.6

s13207 188.3 78 12 12.8 8.2 8 15.1 15.5

s15850 99 47 18.6 19 13.6 14 16.2 16.7

s38417 238 117.3 64.6 65.4 58.2 59.7 65.6 68.4

s38584 270.8 148 34 34 27.2 26.9 42.3 41.6

ac97 ctrl 148.7 68.6 11 10.9 7.2 7.3 13.9 13.7

mem ctrl 720 373.9 113.9 117.8 79.7 86.6 126.8 128.8

pci bridge 1160.6 343.2 111.4 110.3 100.2 99.7 123 122.9

tv80 281.6 151.4 99.8 102.5 54.3 55.7 81.4 82.7

usb funct 252.7 129.2 57.5 57.4 48.9 49.4 55.1 56.2

ethernet 11.8× 103 1.7× 103 203.8 225.5 162.5 165.1 231.3 233.1

The first column lists the names of the benchmark circuits. The next column presents the

size of the compacted test set used for the evaluation of both the classical defect unaware

LFSR reseeding method ([77]) and the method proposed in [180]. The third column

presents the TDV for these two methods, which is the same for both of them (note that

[180] differs from the classical LFSR reseeding approach only in the way that the free

variables are filled and does not impact TDV). The next three pairs of columns present

the TDV of the w = 1, w = 5 and dynamic reseeding cases, in their defect-unaware

versions (“Cmp”) and at the proposed defect-aware versions (“Cmp & Def”).

As it is obvious from Table 6.1, window-based and dynamic reseeding clearly outper-

form the classical static reseeding approaches ([77] and [180]), while the highest compres-

sion is always achieved by window-based reseeding for w = 5. Dynamic and window-based

reseeding for w = 1 provide comparable results. The most important observation though

is that for both the window-based and the dynamic reseeding method, the proposed defect-

aware encoding (columns labeled “Cmp & Def”) provides nearly the same compression

as the original defect-unaware encoding (columns labeled “Cmp”). In a few cases, the

proposed defect-aware encoding provides even better compression than the original defect-

unaware encoding. We attribute this result to the window-based encoding criteria, which

consist a heuristic encoding approach and they do not offer an optimal solution. As a

result, arbitary changes on the encoding order caused by the proposed method may re-

sult to better compression results. Nevertheless, it is obvious that the utilization of the

output-deviation metric has no significant adverse impact on compression for both static

and dynamic reseeding methods.

112

Table 6.2: Test sequence length results (# vectors applied)

Circuit

Classical Reseeding Window-Based Reseeding
Dynamic Reseeding[77], [180] w=1 w=5

Cmp Cmp & Def Cmp Cmp & Def Cmp Cmp & Def

s5378 134 199 199 770 785 232 243

s9234 166 282 307 1185 1195 317 324

s13207 269 300 320 1030 1005 313 322

s15850 162 310 316 1130 1170 385 396

s38417 143 808 818 3635 3730 585 611

s38584 185 485 485 1945 1920 288 283

ac97 ctrl 66 274 273 895 910 151 149

mem ctrl 603 876 906 3065 3330 879 894

pci bridge 330 1238 1226 5565 5540 867 866

tv80 757 1663 1708 4525 4645 1693 1719

usb funct 136 959 956 4075 4115 724 739

ethernet 1111 2912 3222 11610 11790 2155 2182

Table 6.2 presents the test-sequence lengths (TSLs) of the examined reseeding methods

in terms of the test vectors applied to each circuit. Column 2 presents the TSLs of the

classical reseeding approaches (which are the same for both [77] and [180]). The next three

pairs of columns present the TSLs of the w = 1, w = 5 and dynamic reseeding cases, in

their defect unaware versions (“Cmp”) as well as in their proposed defect aware versions

(“Cmp & Def”). As expected, the classical, dynamic, and window-based reseeding for

w = 1 offer short and comparable, in many cases, test sequence lengths. Note that

the TSLs of the classical reseeding approaches are shorter than those of window-based

reseeding for w = 1, due to the use of compacted test sets in the former case. As expected,

the TSLs of window-based reseeding for w = 5 are greater than those of the other methods,

due to the larger value of w. However, this can be also attributed to the small LFSR sizes

used here. Larger LFSRs offer considerably shorter TSLs (due to the smaller number of

calculated seeds) with minimal impact on compression. For example, if we increase the

size of the LFSR used for the pci bridge circuit from 90 bits to 200 bits, the test-sequence

length decreases form 5565 vectors to 2695 vectors, whereas the compressed test data

volume has only a limited increase from 100.2 Kbits, to 107.8 Kbits. It is obvious that as

the size of the LFSR increases, the test application time drops considerably, while at the

same time the compression is not significantly affected. In our experiments we selected

the size of the LFSRs based on the smax + 20 rule (see Section 2.2.1 and [77]), where smax

the number of defined bits of the most specified test cube.

For evaluating the effectiveness of the proposed defect-aware reseeding methods for

defect screening, we consider the coverage of unmodeled faults, namely transition and

bridging faults, obtained by applying to the circuit under test the test vectors generated

113

Table 6.3: Transition-fault coverage (%)

Circuit

Classical Reseeding
Window-Based Reseeding Dynamic

w=1 w=5 Reseeding

[77] [180] Cmp Cmp & Def Cmp Cmp & Def Cmp Cmp & Def

s5378 61.1 63.49 62.9 66.38 65.66 70.32 63.64 66.2

s9234 40.7 49.63 43.04 53.08 53.94 58.41 45.84 53.52

s13207 62 69.48 62.94 68.28 64.31 70.32 60.18 68.52

s15850 52.8 55.25 53.58 56.95 57.58 58.31 53.87 58.04

s38417 79.2 80.24 85.42 87.93 88.85 90.6 84.99 87.32

s38584 61.5 62.21 65.03 66.32 68.1 69.07 63.25 64.02

ac97 ctrl 42.7 45.6 47.18 56.42 52.4 63.95 45 50.81

mem ctrl 41.1 44.24 42.69 46.01 44.03 47.36 43.32 45.72

pci bridge 65.2 69.5 77.39 85.8 82.96 87.5 73.78 82.97

tv80 53.8 59.31 60.16 64.76 61.97 64.9 59.44 62.45

usb funct 63.2 64.49 71.4 75.53 74.53 79.39 70.01 74.2

ethernet 47.6 49.56 53.94 63.79 71.37 83.14 50.75 54.92

by the computed seeds. As is common in industry, we use the launch-on-capture (LOC)

scheme, also referred to as broadside scan, to apply test-vector pairs. Note that none of

these two fault models were targeted by the test sets (they are only used as surrogate fault

models). The concept of n-detection has been also used in the literature as a surrogate

defect coverage model. However, as shown in [69] n-detection is not always indicative of

defect coverage, therefore we do not use this metric in this Chapter. Finally, as mentioned

in Section 6.3, for the proposed reseeding methods (w = 1, w = 5 and dynamic reseeding)

the output-deviation metric considers both the responses of each test vector pair. On the

other hand, [180] considers only one response (either the first or the second). Therefore, for

generating results using [180], we chose to evaluate the generated seeds using the second

response of each test-vector pair. This decision favors the timing-dependent defects of

[180] i.e. the transition-fault coverage of its generated patterns.

First we evaluate the proposed encoding with respect to the achieved transition-fault

coverage. The corresponding results are shown in Table 6.3. Columns 2, 4, 6 and 8 present

the transition-fault coverage achieved by the classical defect-unaware, window-based (for

w = 1 and w = 5) and dynamic reseeding approaches respectively, while columns 3, 5, 7

and 9 present the transition fault coverage achieved by the classical defect-aware, reseeding

of [180] and the proposed defect-aware approaches. We see that in both the window-based

and dynamic reseeding, the use of the proposed output- deviation metric increases the

transition fault coverage significantly. Compared to [77], the method described in [180]

achieves higher transition- fault coverage. Moreover, in nearly all cases, the proposed

window-based and dynamic reseeding approaches offer higher transition-fault coverage

than [180].

114

It is obvious from Table 6.3 that the defect coverage achieved by the proposed method

for w = 5 is higher than the defect coverage achieved by the proposed method for w = 1

and dynamic reseeding. This is mainly a result of the increased diversity of the candidate

seeds in case of w = 5. This diversity can be attributed in part to the fact that many

seeds encode incompatible test cubes when w > 1. Note that the increased test sequence

length in the case of w = 5 contributes also to the increased defect coverage compared to

the other cases. However, according to the results shown in Table 6.3, this contribution

is less significant than the contribution of the proposed encoding method. Specifically, in

most cases, the defect- unaware window-based reseeding for w = 5 offers lower transition

fault coverage than the defect-aware window-based reseeding for w = 1, even though the

test sequences in the former case are much longer.

Figure 6.6 illustrates the transition fault coverge ramp-up achieved by the window-

based reseeding method for w = 5 for selected circuits. In each chart, the x-axis presents

the number of the applied vector pairs and the y-axis the transition-fault coverage. The

seeds for the defect-unaware window-based reseeding method have been sorted: a) ran-

domly (curves “Cmp(Rnd)”), and b) in descending order of their stuck-at-fault coverage

(curves “Cmp(Stuck)”). The curves “Cmp & Def” correspond to the proposed defect-

aware window-based reseeding method. It can be seen that the defect coverage of the

“Cmp & Def” method is considerably higher than that for the other methods. Moreover,

the proposed method exhibits higher coverage ramp-up than both the other methods, with

the “Cmp(Stuck)” being better than the “Cmp(Rnd)”. Finally, for the largest benchmark

ethernet, which consists of 136.2K gates and 10.5K scan flip flops and is more representa-

tive of real-life industry circuits, the improvement in transition-fault coverage is striking.

We have also verified that the “Cmp & Def” method in the case of window-based reseeding

for w = 1 exhibits also higher ramp-up than the “Cmp” method.

Figure 6.7 shows the coverage ramp-up achieved by the dynamic reseeding method

for the same circuits reported in Figure 6.6. As we can see, the proposed defect- aware

method offers steeper coverage ramp-up than the baseline defect- unaware approach for

the dynamic reseeding case as well.

The transition-fault coverage (or the coverage of any other fault model) can be further

improved by using ATPG to generate top-off test cubes, and by subsequently compressing

these test cubes using either static or dynamic reseeding. The advantage offered by

this strategy, when combined with the proposed encoding method is twofold: first, the

encoding of the baseline stuck-at test cubes using the defect-aware encoding will cover a

large number of the targeted faults (i.e., the transition faults in our case) and thus the

number of generated top-off test cubes will be relatively small. Second, if the encoding

of the newly generated top-off test cubes is properly tuned using the proposed output-

deviation metric, the generated seeds for them will offer high coverage of other unmodeled

defects.

In our final experiment, we evaluate the proposed method and [180] in terms of the

achieved bridging-fault coverage. For evaluating the examined reseeding methods in terms

115

T
ab

le
6.

4:
B
C
E

+
an

d
ra

n
d
om

b
ri

d
gi

n
g-

fa
u
lt

co
ve

ra
ge

re
su

lt
s

(%
)

C
ir

cu
it

B
C
E

+
R

an
d
om

B
ri

d
gi

n
g

F
au

lt
s

C
la

ss
ic

al
W

in
d
ow

B
as

ed
R

es
ee

d
in

g
D

y
n
am

ic
C

la
ss

ic
al

W
in

d
ow

B
as

ed
R

es
ee

d
in

g
D

y
n
am

ic

R
es

ee
d
in

g
w

=
1

w
=

5
R

es
ee

d
in

g
R

es
ee

d
in

g
w

=
1

w
=

5
R

es
ee

d
in

g

[7
7]

[1
80

]
C

m
p

C
m

p
C

m
p

C
m

p
C

m
p

C
m

p
[7

7]
[1

80
]

C
m

p
C

m
p

C
m

p
C

m
p

C
m

p
C

m
p

&
D

ef
&

D
ef

&
D

ef
&

D
ef

&
D

ef
&

D
ef

s5
37

8
95

.0
6

95
.2

2
95

.4
9

95
.9

1
95

.7
7

96
.4

95
.4

8
96

.0
1

94
.1

4
94

.3
5

94
.8

5
95

.1
9

95
.7

2
96

.2
6

94
.9

9
95

.3
2

s9
23

4
87

.6
6

87
.3

9
88

.7
6

89
.1

1
88

.6
1

89
.0

8
89

.1
89

.2
2

86
.5

6
86

.5
8

87
.9

5
88

.2
9

88
.7

89
88

.0
5

88
.3

7

s1
32

07
92

.8
5

92
.9

3
92

.9
6

93
.7

8
93

.4
3

94
.1

5
92

.8
1

93
.2

91
.9

9
92

.1
4

92
.0

8
92

.9
5

92
.9

2
93

.5
7

91
.8

2
92

.1
4

s1
58

50
94

.2
94

.1
7

94
.4

5
94

.5
8

94
.5

8
94

.7
6

94
.5

94
.6

2
93

.4
7

93
.5

9
94

.3
8

94
.5

1
94

.7
1

94
.8

9
94

.4
5

94
.5

4

s3
84

17
98

.2
98

.1
98

.2
9

98
.5

6
98

.2
7

98
.4

8
98

.4
3

98
.6

97
.1

3
97

.1
5

97
.8

8
98

.1
5

98
.2

6
98

.4
4

97
.8

5
98

.0
3

s3
85

84
90

.3
6

90
.3

5
91

.3
6

91
.5

6
92

.4
3

92
.8

1
90

.8
1

91
.0

4
89

.8
5

89
.9

1
90

.8
9

91
.0

9
91

.6
7

91
.9

8
90

.4
1

90
.5

2

ac
97

ct
rl

94
.6

6
94

.5
7

97
.9

6
98

.2
7

98
.7

1
98

.9
2

97
.3

3
97

.4
5

97
.0

2
97

.0
2

98
.7

5
98

.8
7

99
.1

99
.2

3
98

.4
2

98
.4

9

m
em

ct
rl

62
.3

4
62

.3
3

63
.3

63
.6

2
64

.3
3

64
.7

4
63

.4
6

63
.5

9
74

.6
74

.6
1

75
.0

8
75

.4
4

75
.7

8
76

.1
75

.2
75

.3
6

p
ci

b
ri

d
ge

96
.0

4
96

.0
5

98
.2

7
98

.4
6

98
.6

8
98

.8
6

98
.1

3
98

.1
8

96
.7

8
96

.8
2

98
.1

4
98

.2
8

98
.4

5
98

.5
5

98
.0

6
98

.0
6

tv
80

91
.4

91
.3

7
93

.4
9

93
.7

9
93

.7
93

.9
4

93
.6

2
93

.7
8

89
.2

6
89

.3
3

90
.8

6
91

.2
3

91
.5

7
91

.7
4

90
.9

1
91

.1

u
sb

fu
n
ct

93
.7

1
93

.7
1

95
.4

7
96

.1
96

.0
3

96
.4

8
95

.3
8

95
.6

5
95

.1
5

95
.1

9
96

.7
3

97
.1

6
97

.1
7

97
.4

5
96

.6
3

96
.8

3

et
h
er

n
et

88
.7

8
88

.8
3

92
.7

9
93

.6
6

96
.0

6
96

.3
2

91
.6

3
92

.2
4

90
.6

3
90

.7
7

93
.5

9
94

.1
8

95
.5

7
95

.7
1

92
.8

1
93

.1
7

116

of their bridging fault coverage, both the BCE+ metric and the random bridging fault

coverage overviewed in Section 2.1.3 were used. As noted before, BCE+ is not very

accurate for estimating the real bridging fault coverage of a method, but it is very useful for

comparing two different methods (the method with the highest value of BCE+ is deemed

to be more effective for defect screening). Table 6.4 presents the results. Regarding

the proposed window-based and dynamic reseeding approaches, we find that in all cases,

both BCE+ values and random bridging-fault coverage indicate that the proposed defect-

aware encoding “Cmp & Def” achieves higher coverage of bridging faults than the original

“Cmp” method. In contrast, in the method described in [180], the improvement is small

compared to the classical defect-unaware reseeding [77], and in some cases, there is even a

decrease in the BCE+ values. Moreover, all the proposed encoding methods offer higher

BCE+ values as well as bridging fault coverage than [180]. The main reason for this

observation is that [180] considers only one of the two responses of each LOC vector-pair

(either the first or the second) for calculating the output deviations. In our experiments,

we considered only the second response, as stated earlier, to enhance the detection of

timing related defects. However, bridging faults are detected by the first response (i.e.,

the response of each stuck-at test). This is another weakness of [180], compared to the

proposed method, which is able to consider both responses of each pair. Consequently,

we conclude that the proposed method improves the bridging fault coverage, which is also

a significant advantage over [180].

6.6 Conclusions

We have presented a defect-oriented LFSR reseeding technique that allows us to detect

unmodeled defects using stuck-at test sets in a test- compression environment. This

technique is based on the output-deviations metric for grading the test patterns produced

by the LFSR seeds. We have considered both static and dynamic reseeding, and evaluated

unmodeled defect coverage using transition faults and bridging faults as surrogate fault

models. Our results show that compared to compression-driven LFSR reseeding, which

is largely in use today, higher defect coverage and faster coverage ramp-up are obtained

using stuck-at tests and output deviations, without any loss of compression.

117

F
ig

u
re

6.
6:

T
ra

n
si

ti
on

fa
u
lt

co
ve

ra
ge

ra
m

p
-u

p
fo

r
w

in
d
ow

-b
as

ed
re

se
ed

in
g

(w
=

5)

118

F
ig

u
re

6.
7:

T
ra

n
si

ti
on

fa
u
lt

co
ve

ra
ge

ra
m

p
-u

p
fo

r
d
y
n
am

ic
re

se
ed

in
g

119

Chapter 7

Low-Power and High-Quality Test

Data Compression

7.1 Linear-based Decompressor . 120

7.2 Code-based Decompressor . 135

7.3 Conclusions . 160

Test data decompressors targeting low power scan testing introduce significant amount

of correlation in the test data and thus they tend to adversely affect the coverage of

unmodeled defects. In addition, low power decompression needs additional control data

which increase the overall volume of test data to be encoded and inevitably increase the

volume of compressed test data.

In this Chapter we show that both these deficiencies can be efficiently tackled by a

novel pseudorandom scheme and a novel encoding method. The proposed scheme can be

combined with existing low power decompressors to increase unmodeled defect coverage

and almost totally eliminate control data.

The first Section of this Chapter applies the scheme on dynamic LFSR reseeding and

the second Section on an optimal selective Huffman decompressor. Extensive experiments

using ISCAS and IWLS benchmark circuits [1] show the effectiveness of the proposed

method when it is combined with state-of-the-art decompressors.

7.1 Linear-based Decompressor

In this Section a new low cost scheme which can be combined with classical linear decom-

presssors to improve the unmodeled defect coverage of the generated test vectors and at

the same time to reduce shift power is presented. The proposed method exploits inherent

properties of test sets to generate multiple diverse power-efficient encodings of test cubes,

and it selects those offering the highest unmodeled defect coverage using the outputs de-

120

Figure 7.1: Low power decompressors

viation evaluation metric proposed in Chapter 5. Contrary to the state-of-the-art low

power decompressors, the proposed scheme does not increase the volume of test data to

be encoded and thus it achieves higher compression.

The proposed architecture is simple, test set independent and can be combined with

linear and code-based decompressors. In particular, it can be combined with the state-of-

the-art linear decompressors presented in [29], [26], [105] as well as with the symbol-based

decompressors presented in [60], [72] to improve both their unmodeled defect coverage and

their compression efficiency. Extensive experiments show the effectiveness of the proposed

method in terms of shift power, test data volume (TDV), test application time (TAT)

and unmodeled defect coverage measured as coverage of surrogate fault models. We note

that, to the best of our knowledge, this is the first test data compression technique for

low power testing which targets unmodeled defect coverage.

7.1.1 Motivational Example

Excessive shift power during scan testing has been traditionally tackled by exploiting

unspecified bits (‘x’) of test cubes (i.e. test vectors consisting of ‘0’, ‘1’ and ‘x’ logic

values) in order to reduce the pairs of successive complementary test bits shifted into scan

chains. For example, the Fill Adjacent technique [17] fills ‘x’ values in such a way as to

load successive scan cells with the same logic value in order to minimize transitions during

scan-in. Even though this (and other similar techniques) is very effective in reducing the

shift power, the generated test vectors tend to suffer from low unmodeled defect coverage

compared to the test vectors generated by randomly filling the ‘x’ values [8].

Using a similar concept, the linear decompressors proposed in [84] decrease shift power

by partitioning test data of each scan chain into blocks. Each unspecified value (‘x’) in

blocks is filled with the last encountered specified value. When the block size is small

the shift power is considerably reduced because many blocks are generated as repeated

versions of the same specified bits. However, one additional control bit per block is needed

which increases the test data. A similar approach was adopted in [29], [26], [105] with the

121

Figure 7.2: Example of encoding using shadow registers

addition of a shadow register between the linear decompressor and the phase shifters, and

it has already been discussed in Section 2.3.1. It was shown that this type of encoding

requires additional data to control the signal Update of the shadow register.

Specifically, the decompressor generates the test data in slices i.e., groups of c bits

concurrently loaded into the c scan chains. Whenever a group Gk of k (k > 1) successive

test slices of a test cube are compatible (i.e., every slice in this group exhibits no bitwise

incompatibilities with any other slice in this group) one test slice Sk which is compatible

with all test slices of group Gk is encoded and it is loaded into the scan chains for k suc-

cessive clock cycles. This is achieved by the use of a shadow register located between the

ring generator and the phase shifter (see Figure 7.1). When Sk has to be generated for the

first time, the ring generator generates and transfers the test data corresponding to slice

Sk to the shadow register by setting signal Update to logic value ‘1’ (Update operation).

During the next k successive clock cycles, the shadow register holds its contents by setting

the Update signal to logic value ‘0’ and thus it continues loading the scan chains with the

same slice Sk (Hold operation).

Even though these methods reduce the shift power they suffer from limited unmodeled

defect coverage due to the correlation induced in the way the ‘x’ values of test cubes are

filled during the decompression. We will show that the adverse effects of this correlation

on the unmodeled defect coverage can be significantly reduced by following a different

encoding method. An example is presented below:

Example 7.1. Figure 7.2a presents a test cube for a circuit with 4 scan chains. Figure

7.2b presents the test vector generated when this cube is encoded using a shadow register.

The decompressor encodes slice 01x1 (this is the result of merging the compatible slices

S1,S2,S3), as well as the slice 1x10 (this is the result of merging slices S4, S5) and loads

them into the shadow register using two Update operations at the 1st and 4th scan cycle

highlighted in Figure 7.2b (the ‘x’ values are randomly filled). The rest of the slices are

generated using Hold operations. This encoding provides low switching activity but it is

not unique. There are other groups of compatible successive slices that can be encoded,

as shown in Figure 7.2c and Figure 7.2d (the 2nd Update operation is applied sooner). �

Different power efficient encodings of test cubes generate different test vectors which

detect different unmodeled defects. If the proper encoding for each test cube is selected

then the unmodeled defect coverage of the generated vectors will improve. Higher volume

of power efficient and diverse test vectors can be generated by partitioning scan chains into

groups loaded by separate and independently controlled shadow registers. For example,

122

suppose that scan chains SC1, SC2 in the example of Figure 7.2 are loaded from shadow

register A and scan chains SC3, SC4 are loaded from shadow register B. Then there are

three possible power efficient encodings for test data of scan chains SC1, SC2 and another

four encodings for scan chains SC3, SC4, providing thus 3× 4 different encodings (we do

not count the first Update operation as it is always applied before the loading of the first

slice). One example is shown at Figure 7.2e.

A similar (but for a different purpose) approach was proposed in [29]. Specifically, in

[29] it was noted that multiple independently controlled shadow registers can be poten-

tially used for further reducing the shift power during scan testing. However this approach

causes test data volume expansion. Consider for example a core consisting of 100 scan

chains and 100 scan slices (i.e., each scan chain consists of 100 scan cells) and let us

assume a typical fill rate of 1% (i.e., in average each test cube consists of 100 specified

and 9900 unspecified bits). Then the number of control bits per cube is equal to 100 (one

control bit per slice) which have to be encoded in conjunction with the 100 specified bits

of the test cube. This results to duplicating the test bits to be encoded and inevitably

results to reduced overall compression. If we use 2, 3, 4, ... shadow registers in the same

example the test data to be encoded increase by 3x, 4x, 5x, ... which renders this approach

impractical.

In this Section we show that the large amount of unspecified bits in test cubes can

be exploited to almost eliminate these control data. This enables the application of an

advanced encoding method which offers a wide variety of unique power-efficient encod-

ings. These encodings are screened by an output-deviation based metric which selects

the encodings offering the highest unmodeled defect coverage. The proposed method is

based on a pseudorandom scheme which controls the shadow register(s) independently of

the decompressor at no additional overhead on control data even when a large number

of shadow registers are used. When this pseudorandom scheme is combined with linear

and symbol-based decompressors it achieves a significant reduction of the volume of com-

pressed test data as it eliminates the need for controlling the shadow register. We note

that the proposed method can be combined with techniques like scan chain disabling [29]

to reduce capture and scan out power as well.

7.1.2 Proposed Method

Basic Concept

Consider a decompressor and a shadow register partitioned into g modules SR1, . . . , SRg

as shown in Figure 7.3. Each module SRi drives a different group of scan chains and

Updatei is the Update signal driving module SRi. Let TS be a set of test cubes generated

using ATPG for a certain type of faults. The basic characteristic of the proposed method

is that the Update operations of each module SRi are determined prior to the encoding

123

Figure 7.3: Proposed Architecture

process by using a pseudorandom binary sequence1 PSi generated using a probability

Pupdate−i. Pupdate−i is the probability signal Updatei to be set to logic value ‘1’. The

encoding of test cubes of TS is adjusted to sequences PSi. Specifically, if PSi(Sj) =

0 (i.e. Updatei = 0, during generation of slice Sj) then SRi holds its contents and

the decompressor does not provide data to the SRi (i.e. no test bits are encoded). If

PSi(Sj) = 1 (Updatei = 1, during generationg of slice Sj), then the contents of SRi are

updated with test data from the decompressor which are calculated in order to match

all subsequent slices Sj+1, Sj+2, . . . which will be generated without updating the shadow

register i.e. PSi(Sj+1) = PSi(Sj+2) = · · · = 0.

The generation of the control sequences PSi is very important for the effectiveness

of the proposed method. Test cubes which exhibit bitwise incompatibilities in slices

corresponding to successive Hold operations in sequence PSi are not encode-able for PSi

(the potential of PSi to encode the test cubes of a test set is hereafter referred to as the

encode-ability of PSi). A large number of Hold operations (i.e., a small value of Pupdate−i)

degrades the encode-ability of PSi while a large value of Pupdate−i improves it (note that

a value Pupdate−i = 1 can encode every test cube). However, a large value of Pupdate−i

increases the number of Update operations and thus the number of complementary bits

shifted into the scan chains. So, when Pupdate−i increases, shift power increases too. On

1The term pseudorandom sequence is used in a different meaning than in the rest of the literature.

It refers to the way the shadow registers are controlled. The encoding of test cubes still remains

deterministic.

124

Figure 7.4: Encoding example

the other hand, a small value of Pupdate−i introduces high correlation in test data and

the unmodeled defect coverage tends to drop (many adjacent scan cells are assigned the

same logic value). Note that PSi, determines only the groups of compatible slices for

any encoded test cube (their specified bits are not affected). The generation of each PSi

sequence is part of the encoding method described next.

Encoding Method

At first we introduce a metric which is representative of the incompatibilities of test

cubes and shows the likelihood a test cube to be encode-able using a pseudorandom

sequence PSi. Let t be a test cube. The volume of incompatibilities, I(t,m), of scan

chain m ∈ [1, SC] for t, is defined as the number of successive complementary bits of

t corresponding to scan chain m. Note that test cubes consist also of ‘x’ logic values

which affect measure I(t,m) based on the way they are filled. Since this is not known

before the encoding, we adopt the following approximation: every ‘x’ logic value shifted

into the scan chain is considered to be equal to the last specified logic value ‘0’ or ‘1’

which was encountered during the loading of this scan chain for t. This is a reasonable

approximation as the proposed encoding tends to fill test cubes in a similar manner. Note

that the ‘x’ values of test cubes are not actually filled which remain unaffected by this

process. For example, for the test cube t of Figure 7.2a we have I(t, 1) = I(t, 4) = 1,

I(t, 2) = I(t, 3) = 0. The volume of incompatibilities I(t) for test cube t is defined as the

maximum value I(t,m) for any of its scan chains m ∈ [1, SC].

A test cube with a high (low) value of I(t) is considered as a hard-to-encode (easy-

to-encode) test cube due to its high (low) volume of incompatibilities between successive

scan cells2. The same classification is done among scan chains. Specifically, for every scan

chain m, IS(m) =
∑

t∈TS I(t,m) is the measure of its incompatibilities among all test

cubes of a test set TS. A scan chain m with high (low) value of IS(m) is considered a

hard-to-encode (easy-to-encode) scan chain. Both these measures can be used to improve

the encoding process. The IS(m) values are used to partition the scan chains into groups

where each group is driven by its own shadow register. The I(t) values are used to bias

the encoding process towards the early encoding of the most hard-to-encode test cubes

which can decrease the overall volume of test data.

2Among two test cubes t1, t2 with I(t1) = I(t2) the most hard to encode is the cube with the highest

value among
∑

m I(t1,m),
∑

m I(t2,m).

125

At first the scan chains are partitioned into a pre-determined (selected by the designer)

number of groups, g, according to their IS values (scan chains with similar IS values are

grouped together). Since every group is independently controlled by a separate shadow

register module, groups consisting of scan chains with small IS values are assigned a low

initial value Pupdate−i, as the encode-ability of the corresponding pseudorandom sequences

is not affected and the gains in switching activity reduction are high. For groups consisting

of scan chains with large IS values large initial Pupdate−i values are assigned to enhance

the encode-ability of the respective sequences. Let Gi be the number of incompatibilities

of group i defined as the sum of the IS values of the scan chains comprising group i. Let

SRw (w ∈ [1, g]) be the module driving the group of scan chains with the highest volume

(Gworst) of incompatibilities. Then the Pupdate−w value for SRw is set equal to a parameter

Pinit selected by the designer among a number of discrete values P1, P2, . . . , Pk. The value

of Pinit is set according to the design objectives for shift power and test sequence length

since if offers a trade-off between these two objectives. A low value of Pinit provides low

shift power but increases the test sequence length. A high value of Pinit increases the

shift power but offers shorter test sequences. The initial probabilities Pupdate−i of the rest

modules are set to lower values which are calulated proportionally to Pinit. Specifically,

Pupdate−i is set equal to the rounding of the value Pinit ×Gi/Gworst to a discrete

value in the set P1, P2, . . . , Pk (note that Gi/Gworst < 1).

After the initial value of every Pupdate−i is determined, the sequence PSi of each group

corresponding to the first generated vector (i.e., for the first r cycles, where r is the

length of the longest scan chain) is generated. This is achieved by the means of a trivial

LFSR-based pseudorandom unit which will be presented in Section 7.1.2. The test cubes

of TS are then examined for encode-ability for the given sequences. The encode-able

cubes are those cubes which consist of slices without bitwise incompatibilities when they

are successively loaded using Hold operations. These cubes are encoded as follows: every

test slice Sj corresponding to an update operation (PSi(Sj) = 1) and its following slices

Sj+1, Sj+2, . . . corresponding to hold operations (PSi(Sj+1) = PSi(Sj+2) = · · · = 0) are

merged into one test slice which is encoded by the decompressor and it is loaded into

SRi when the update operation is applied. The encoding begins from the most hard-to-

encode test cubes in order to minimize both the test data volume and the test sequence

length. Additional test cubes can be encoded by the same sequence PSi provided that

a) they are encode-able for the sequence PSi at hand, b) they are bitwise compatible

with the previously encoded (by the same sequence PSi) cubes and c) the decompressor

has variables left to encode them. When no more test cubes can be encoded this process

continues to the next vector (i.e., the sequence PSi for each SRi is generated for the next

r cycles and the encoding continues with the remaining cubes). The following example

illustrates the encoding process.

Example 7.2. Figure 7.4 shows three test cubes t1, t2, t3 and their I values. Based

on I values the IS values are: IS(sc1) = 1 + 1 + 1 = 3, IS(sc2) = 2, IS(sc3) = 0,

IS(sc4) = 1. Scan chains sc1, sc2 form the first group with G1 = 3 + 2 = 5 and

126

scan chains sc3, sc4 form the second group with G2 = 0 + 1 = 1. Let Pinit = 1/2,

k = 8 and [P1, P2, . . . , Pk]= [1/16, 1/8, 1/4, 1/2, 3/4, 7/8, 15/16, 1]. Since G1 > G2 we

have Pupdate−1 = Pinit = 1/2 and Pupdate−2 = Pinit × G2/G1 = Pinit × 1/5 = 1/10 which

is rounded to the closest discrete Pi value, that is P2 = 1/8. Let us assume that based

on these probabilities the sequences PS1 = 10101, PS2 = 00001 are generated i.e. for

the shadow register driving the first group three Update operations occur at the 1st,

3rd and 5th scan slice; for the shadow register driving the second group one Update

operation occurs at the 1st slice. The test slices that must be compatible in order the

test cubes to be encoded using PS1, PS2 are shown for t1, t2, t3 inside dotted lines. Test

cube t1 is not encodeable for PS2 as the test slices of the second group are not compatible

(they are shown highlighted in Figure 7.4). On the contrary, t2, t3 are both encode-able

for PS1, PS2. Test cube t2 is more hard-to-encode than t3 because I(t2) = I(t3) but∑
m I(t2,m) >

∑
m I(t3,m) and thus it is encoded first. Only the contents of the shadow

registers at the Update operations (shown inside dotted lines in Figure 7.4b) are encoded

by the decompressor. The remaining of the slices are generated using Hold operations.

After encoding t2, few unspecified bits still exist which offer the potential for encoding

also cube t3. The final test vector is shown in Figure 7.4c. �

Certain incompatibilities in scan chains prohibit the encoding of some test cubes.

When no test cubes can be further encoded for a number of successive test vectors, we

increase Pupdate−i of every group to the next higher discrete value and we initiate a new

pseudorandom session. Each pseudorandom session is retained for as long as test cubes are

encoded. In every successive session a different sequence is used for every signal Updatei
with increased rate of Update operations and thus more test cubes become encode-able.

As the values of Pupdate−i increase in successive pseudorandom sessions, the switch-

ing activity increases (see Section 7.1.2) and its peak value may reach a predetermined

limit. This happens because the remaining test cubes have many incompatibilities and

thus they need a large number of Update operations which cannot be easily matched by

pseudorandom sequences unless probabilities Pupdate−i increase a lot. This means that the

pseudorandom mode fails to further adhere with the power specifications of the circuit and

it terminates. Then the deterministic mode is initiated with a global signal controlling

all shadow registers like being one (the control data are encoded in this case as proposed

in [29]).

The above encoding process owns its efficiency to the low fill rates of test sets. Specif-

ically, as it is common in test sets, the vast majority of test cubes are sparsely specified

while only a very small fraction of them are densely specified. The proposed method

efficiently encodes the first ones during the pseudorandom sessions and the second ones

during the deterministic session. In order to show the effectiveness of pseudorandomly

generated sequences PSi to encode large test sets we performed an experiment using the

Ethernet circuit of IWLS suite [1]. This circuit consists of more than 10,000 scan cells

and a dynamically compacted test set for complete coverage of stuck-at faults for this

circuits is almost 12 Mbits in size; therefore it is more representative of realistic industrial

127

Figure 7.5: Percentage of encode-able test cubes for the Ethernet benchmark

designs than the rest of the benchmark circuits. Figure 7.10 presents the percentage of

test cubes which are encode-able for various sequences PSi generated pseudorandomly.

We run three different experiments by using g = 1, 2 and 4 shadow register modules. The

x-axis presents the minimum value Pupdate−i used among the groups (this value is increased

from left to right of the x-axis as successive pseudorandom sessions are applied). At each

pseudorandom session 100 different pseudorandom sequences PSi were generated and the

percentage of test cubes which are encode-able for at least one of them is reported by the

means of bars.

It is obvious that at each successive session more test cubes become encode-able for

the generated sequences. In addition, as the number of shadow register modules increases

more test cubes become encode-able as the pseudorandom sequences match in a better way

the specific characteristics of each group of scan chains. The curves show the test cubes

which remain not encoded at the end of each pseudorandom session (test cubes which

are encode-able for any generated sequence are immediately dropped in this case). It is

obvious that the vast majority of test cubes are easily encoded at the first sessions which

offer very low switching activity. Especially in the case of g = 4 shadow register modules

all test cubes are encoded very fast and the deterministic mode can be eliminated (no test

cubes remain unencoded after the 5th session). Thus it is evident that the effectiveness of

the proposed pseudorandom encoding depends on the specified bits density of test cubes,

which is fairly low in large circuits, and not on the size or amount of test cubes. Therefore,

we conclude that the proposed method is scalable to very large test sets.

Unmodeled Defect Coverage Improvement

The encoding of test cubes is done in two steps: a) at first n different encodings are

generated which all offer the same high compression and low shift power (the method to

generate candidates on dynamic LFSR reseeding can be found in Chapter 6) and b) the n

test vectors corresponding to the n encodings are screened for detecting unmodeled defects

128

Figure 7.6: Update Generation Module

and the most promising one is selected (the best candidate is selected using the output

deviations metric proposed in Chapter 5). Specifically, the n most hard-to-encode test

cubes t1, t2, . . . , tn which are encode-able by the current pseudorandom sequence PS are

selected and n candidate encodings e1, e2, . . . , en are generated. Each candidate encodes

one of the n selected test cubes and as many additional test cubes as possible. All n-

candidates offer high compression as they encode hard-to-encode cubes and the same low

switching activity as they use the same sequence of Update/Hold operations. However,

they generate different test vectors which detect different defects.

Proposed Architecture

The proposed architecture consists of the decompressor and the shadow register modules

SRi shown in Figure 7.3 as well as of the Update Generation unit shown in Figure 7.6.

This module consists of the weighted signals generation unit (WSG), multiplexers (P-

MUXi) selecting between pseudorandom signals with different probabilities, a control

unit which triggers the initiation of each next session and multiplexers (D-MUXi) used

for switching from pseudorandom to deterministic mode. At each clock cycle any number

of 0 up to g modules may concurrently update their contents (note that as it is shown in

Figure 7.3 different outputs of the decompressor feed each shadow register module, thus

the decompressor can even load all modules at the same cycle if necessary).

The weighted signals generator (WSG) consists of a small LFSR which is initially

loaded with a known random seed and a very small combinational logic which generates

pseudorandom signals with various probabilities in the range [0, 1]. This is achieved

by feeding the outputs of different LFSR cells to combinational gates. For example, the

129

output of a two-input AND gate driven by two LFSR cells has probability Pout = (1/2)2 =

25%. We verified that k =8 signals C1, C2, . . . , C8, with probabilities 0 < P1 < P2 < . . . <

P8 ≤ 1 respectively, are sufficient to implement our scheme with negligible cost. Note

that a phase shifter is also included in the WSG unit in order to provide multiple groups

of linearly independent pseudorandom signals C1
1...8, . . . , C

g
1...8. Each of these groups of

signals is used to drive a different shadow register module.

One among the signals Ci
1, . . . , C

i
8 is selected by each P-MUXi (which is an 8 → 1

multiplexer in our case) for generating the PSi sequence to drive signal Updatei. Signals

Ci
1, . . . , C

i
8 are connected to the inputs of P-MUXi in ascending order of signal probability,

i.e, Ci
1 is connected to the first multiplexer input, Ci

2 is connected to the second input

etc. Thus, in order to increase the probability that controls each group, a higher order

input of P-MUXi is selected using a counter Counti which is very small (equal to 3 bits

each for the case at hand). Counti stores the selection address of P-MUXi (let say value

1 ≤ sel ≤ 8) for the entire session (it selects Csel, thus Pupdate−i = Psel). The value

of Counti remains unchanged throughout every session and increases by one every time

a new session is initiated. Note that each session has its own control counter Counti.

Although these counters are triggered simultaneously, their initial value is different and

depends on the incombatibilies observed on the group of scan chains the counter controls,

as described in Section 7.1.2.

In order to simplify the decompression process, at every successive session all counters

simultaneously increase by one and thus every value Pupdate−i increases to the next higher

probability of WSG. This is triggered by internal registers of Session Control unit which

are loaded from the ATE before the decompression process begins with the number of test

vectors applied at each session. Since at most 8 pseudorandom sessions are applied (k = 8

probabilities are used) the area required for these session-registers is negligible. After the

last pseudorandom session, Session Control switches the D-MUXi to the input D Update

which is a global signal common for all groups and the deterministic mode begins. The

control data for signal D Update are encoded by the decompressor.

The proposed scheme shown in Figure 7.6 operates as a “low power converter” of

the test cubes. It converts the test data from the decompressor into low power vectors

compatible with the test cubes of TS. It is independent of the decompressor used to

encode the converted data and thus it can be combined with linear as well as symbol-

based decompressors.

7.1.3 Experimental Results

We implemented the standard dynamic reseeding (SDR), the state-of-the-art low power

dynamic reseeding proposed in [105] (LPDR) and the proposed method using the C++

programming language. For all the methods we used the same ring generators as de-

compressors and their size was selected by the smax + 20 rule, where smax is the number

of specified bits of the most specified test cube. We run experiments on a 4-cores CPU

Linux workstation. The complexity of the proposed method follows the complexity anal-

130

T
ab

le
7.

1:
C

om
p
ar

is
on

s
T

S
L

,
T

D
V

,
T

D
F

&
B

F
(%

)

C
ir

cu
it

T
D

V
(i

n
K

b
it

s)
T

S
L

(#
of

ve
ct

or
s

ap
p
li
ed

)
A

S
A

T
D

F
C

ov
.

(%
)

B
F

C
ov

.
(%

)

S
D

R
L

P
D

R
P

ro
p
.

S
D

R
L

P
D

R
P

ro
p
.

S
D

R
L

P
D

R
P

ro
p
.

S
D

R
L

P
D

R
P

ro
p
.

S
D

R
L

P
D

R
P

ro
p
.

s5
37

8
5.

6
10

6.
9

27
3

30
5

33
1

50
.1

5.
8

12
.4

63
.5

4
62

66
.7

2
94

.9
94

.3
9

95
.1

1

s9
23

4
11

.3
20

.9
13

.9
47

7
50

4
59

7
49

.6
11

.6
19

.3
47

.4
1

49
.8

1
52

.5
9

88
.4

7
88

.1
7

88
.8

1

s1
32

07
10

.9
20

.8
13

.4
34

2
41

9
41

5
50

.1
5.

4
13

.3
62

.2
7

61
.2

5
69

.4
3

92
.5

5
92

.0
9

93
.0

5

s1
58

50
14

.7
26

.8
18

.4
49

8
55

2
61

1
50

.1
7

11
.7

55
.4

54
.6

8
58

.3
9

95
.9

6
94

.4
2

94
.6

7

s3
84

17
64

97
.5

69
.3

16
85

15
48

18
75

50
6.

2
17

.9
87

.3
8

87
.8

1
88

.3
2

98
.1

98
.2

1
98

.1
9

s3
85

84
51

.1
89

.7
59

.4
11

15
11

79
12

81
50

7
13

67
.6

8
67

68
.5

2
91

.6
5

91
.5

7
91

.7
4

ac
97

ct
rl

41
.2

67
.2

44
.4

15
47

15
43

16
65

50
3.

8
3.

9
57

.7
4

57
.4

4
66

.8
8

99
.5

4
99

.4
9

99
.5

3

p
ci

b
ri

d
ge

14
8.

7
23

3
15

4.
9

36
14

34
35

37
31

53
.3

2.
6

5.
7

83
.8

3
81

.8
8

84
.6

98
.6

98
.5

6
98

.6

tv
80

40
.3

72
.5

47
.6

22
57

23
30

26
84

49
.9

10
.8

12
.8

61
.0

6
59

.8
8

64
.2

7
91

.2
4

91
.0

6
91

.3
7

u
sb

fu
n
ct

73
.9

12
3.

7
84

.9
17

09
17

48
18

95
50

5.
2

11
.7

74
.6

7
74

.3
2

77
.0

2
97

.3
5

97
.3

2
97

.4
4

et
h
er

n
et

29
9.

3
49

4.
9

32
2

23
85

25
01

25
74

50
3.

3
12

53
.1

9
53

.2
1

57
.0

1
93

.4
7

93
.3

5
93

.6
1

131

ysis discussed on Chapter 6. The number of candidates T used for the proposed method

was set to T = 30 and our parallel implementation indicates execution times almost 2.5

times the execution time of the LPDR method.

We conducted experiments on the largest ISCAS’89 and a subset of the IWLS’05 [1]

benchmark circuits. We examined various scan chain configurations and we selected the

one that yielded the best result for the baseline SDR method and then all other methods

used that scan chain configuration. For each circuit a test set TS was generated using a

commercial ATPG engine targeting complete coverage of stuck-at faults.

For LPDR a single shadow register was used to keep its TDV low. We implemented the

shadow register control using both techniques proposed in [29], [105] (internal XOR tap

or one additional ATE channel) and the best result is reported. For the proposed method

we used four shadow register modules, n = 30 candidate encodings and the threshold on

peak switching activity was set close to that of LPDR. Various initial values of Pupdate−i

were used and the best results are reported. The WSG unit implements k=8 probabilities:

1/16, 1/8, 1/4, 1/2, 3/4, 7/8, 15/16, 1. The ATE-repeat command was utilized to reduce

the TDV for all methods. We further improve the TDV of both LPDR and SDR methods

by filling free variables in a repeat-friendly way similar to [123]. In the proposed method

all free variables are filled in a non-repeat-friendly way to improve output-deviations. For

all the results we present the test data volume (TDV), the test sequence length (TSL)

and the average scan-in switching activity (ASA) measured using the metric of [29], [105].

For evaluating the unmodeled defect coverage we used two surrogate fault models,

namely the transition delay (TDF) and the bridging fault model (BF). None of these

models were targeted by the stuck-at test sets encoded. For detecting transition

faults each stuck-at test vector generated by the decompressors is applied on the circuit

using two capture cycles according to Launch-On-Capture (LOC) technique. For the

bridging fault model 100K pairs of lines were selected randomly for each circuit. For

each pair, four bridging faults were simulated by considering both lines as aggressors

and victims, and both logic values ‘0’ and ‘1’ at the aggressors. Fault simulations were

carried out using a commercial tool. Note that similar approaches were adopted in many

techniques (e.g. [8], [178]) for evaluating the unmodeled defect coverage.

Table 7.1 presents the TDV in Kbits, the TSL in number of vectors applied and the

ASA values for each method (note that the same number of clock cycles is needed in all

cases to generate, load and apply each test vector). Columns 2-10 present the TDV, TSL

and ASA values of SDR, LPDR and the proposed method. For the proposed method

various initial values of Pupdatei were used (the best results are reported). The SDR

approach offers the best compression but its ASA is unacceptable. LPDR offers very low

ASA, but increases the TDV compared to SDR considerably due to the additional data

required for controlling the shadow register. The proposed method offers short TSL and

small TDV, which approach the respective values of SDR method, and very low ASA

which approaches that of LPDR. The superiority of the proposed method compared to

LPDR in respect to TDV stems from the fact that almost no control data are required

132

by the proposed method (the proposed method requires control data only during the

deterministic mode which constitutes a very small portion of the test mode). The ASA

of the proposed method is a little higher than that of LPDR, but it is still very low

and in most cases lower than 12.5%. This value is important because it is the 1/4 of

the switching activity of the power unaware SDR method, which exhibits normalized

switching activity of 50%. It is widely accepted that the test mode consumes 4 times the

power consumed during normal operation, so it is expected the normal operation to require

around 12.5% normalized weighted switching activity. Note, that the results of 7.1 were

taken by minimizing the TSL of the proposed method in order to have comparable TSL

with that of LPDR. The proposed method can achieve further ASA reduction but that

would increase the TSL. As a result, the proposed method requires power consumption

that it would most probably comply with the power specifications of the circuit, which is

the most critical goal for low power scan testing.

The last 6 columns of Table 7.1 present defect coverage comparisons. As it was ex-

pected, in the majority of the cases the LPDR method offers reduced defect coverage

compared to the SDR approach. In almost all cases the proposed method achieves much

higher TDF and higher BF coverage than both LPDR and SDR methods. We also note

that the improvement of the proposed method against the other methods in terms of BF

coverage is less than the improvement in terms of TDF coverage. However, this is due

to the fact that the bridging fault coverage is very high in all cases and thus there is

no much potential for further improvement. In particular, the average (over all circuits)

number of bridging faults that remain undetected after the application of the proposed

method is less than 2.6% of the total number of faults simulated. This clearly show that

the proposed technique has already achieved very high bridging fault coverage.

Figure 7.7 presents the TDF coverage ramp-up achieved for the representative ac97 ctrl

benchmark circuit. It is obvious that the use of the proposed encoding combined with

the output deviation-based metric offers higher coverage and coverage ramp-up than the

rest methods reducing thus the TAT in an abort-at-first-fail environment.

For evaluating the hardware overhead we synthesized the proposed scheme for a) one

and b) four shadow register modules. The proposed decompressors including all units

(i.e., ring generator, shadow register, phase shifter, WSG, P-MUX, etc) is 15% larger in

case (a) and 55% larger in case (b) than the decompressors of LPDR for a single shadow

register module which are admittedly very small. These results indicate that the hardware

overhead of the proposed method depends on the number of shadow registers, but they

were computed by duplicating all the NAND gates partitipating for the generation of each

Ci
1...8 signal for each group of scan chains that corresponds to a shadow register. Note that

in all the experiments conducted maximum four shadow register groups were used and the

method was efficiently applied with relatively small hardware overhead. However, if more

power reduction is required then one approach would be to use more shadow registers.

At the unlike case (since hardware cost is no longer an issue in the post-Dennard Era)

where the hardware overhead of the proposed method would be formidable, then it could

133

Figure 7.7: Transition delay fault coverage ramp-up

be reduced with the following approaches. Large initial Pupdate−i values for some groups

might render some NAND gates from the WSG units useless and they can be removed

from the synthesis. Moreover, even itentionally some NAND gates can be excluded from

the WSG unit and also left out of the model (decreasing the choices of probabilities,

but reducing hadware overhead). Another approach would be to reuse the NAND gates

that generate Ci
1...8 signals between different groups provided that their outputs are not

utilized simultaneously. This last hardware-overhead minimization basic idea is that even

if 100 groups are used, then the number of 2-input NAND gates that are required to be

embedded at the WSG unit depends only on the simultaneously used values 0.25 and 0.75

signal probabilities (these two values correspond to the two outputs of a 2-input NAND

gate: normal output Q and complementary Q′). If only two groups from the 100 use

simultaneously these probability values, then only two 2-input NAND gates need to be

embedded and the hardware overhead can be reduced considerably.

Finally, in order to show the advantages of the proposed scheme when combined with

other decompressors, we implemented the statistical encoding proposed in [72] as follows:

the test data corresponding to each scan slice are partitioned into multiple constant-

length blocks and each block is encoded using the selective Huffman code. Data sent

by the ATE are decoded using an Optimal Selective Huffman decompressor (see Section

2.2.3), and the decoded blocks fill a register with length equal to the number of scan

chains. When all blocks of a test slice are loaded into the register the slice is loaded

into the scan chains. The proposed scheme is applied to this decompressor as follows:

the aforementioned register plays the role of the shadow register which is partitioned into

modules. Each codeword is used to encode the test data required to load a shadow register

module whenever it is updated according to the pseudorandom sequences. The parts of

the register corresponding to shadow register modules which are not updated at a scan

cycle require no codewords (no encoding is done for these modules similar to the encoding

134

method described in Section 7.1.2). Thus, the proposed method in this case reduces both

TDV and TAT (less codewords and clock cycles are required for loading each test slice

into the scan chains). We provide results only for the ac97 ctrl benchmark circuit for 32

scan chains, block size equal to 8 bits and number of encoded blocks equal to 16. When

the proposed scheme is applied to this decompression architecture, the TDV drops from

55.3Kbits to 24.7 Kbits, the ASA drops from 36.4% to 4.6% and the test application time

is reduced by 25.6% compared to the OSH approach discussed in Section 2.2.3. At the

same time TDF coverage increases from 41.8% to 50.24% and BF coverage increases from

95.8% to 98.6%. Thus the proposed method offers considerable gains in this case too.

The next Section presents extensively this idea.

7.2 Code-based Decompressor

This Section presents a novel low-cost decompression architecture that combines the ad-

vantages of both symbol-based and linear-based techniques and offers a very attractive

unified solution that removes the barriers of existing test data compression techniques.

Besides the traditional goals of high compression and short test application time, the pro-

posed method also offers low shift switching activity and high unmodeled defect coverage

at the same time.

The novel unified test data compression approach is based on code-based decompres-

sors and accomplishes both low power and high quality testing. Moreover, it favors

multi-site testing as it requires a very low pin-count interface to the Automatic Test

Equipment. Finally, contrary to existing techniques, it provides an integrated solution for

testing multi-core SoCs as it is suitable for cores of both known and unknown structure

that usually co-exist in SoCs.

The contributions of this work are:

1) It exploits both the low fill rate and the correlations in the specified bits of test cubes

and thus outperforms both symbol-based and linear-based encoding methods.

2) It offers low shift power during testing.

3) It supports very low pin-count interface as a single ATE channel suffices for fast

downloading test data on-chip.

4) It offers short test application times as it exploits the large number of scan chains

of modern cores.

5) It does not require any kind of synchronization between the ATE and the Circuit

Under Test (CUT).

6) It is decoupled from ATPG process and offers high compression even on highly

compacted test sets of IP-cores.

7) It is suitable for both IP and non-IP cores of modern SoCs.

8) It exploits ATE’s repeat command (wherever available) as an embedded feature of

the encoding process to further decrease test data volume.

In addition we show that statistical codes introduce significant correlation in the gen-

135

Figure 7.8: Classical selective Huffman coding

erated test vectors and thus offer low unmodeled defect coverage. To this end, a new

technique is proposed that offers a trade-off between test data volume and unmodeled de-

fect coverage. This objective has not been targeted yet in the literature by any code-based

TDC technique.

Finally, we present a low-cost decompression architecture that can be shared among

multiple cores without compromising compression. In particular, it offers the potential

to share hardware resources and test data, in order to cost effectively test multiple cores

with different characteristics. The proposed decompressors can be shared even between

IP and non-IP cores and thus they offer an additional advantage to achieve higher quality

test solutions for SoCs at lower cost. Extensive experiments with largest ISCAS and a

subset of large IWLS benchmark circuits [1] show the benefits of the proposed method as

compared to already existing TDC methods.

7.2.1 Motivation

Optimal Selective Huffman was described in Section 2.2.3. At this point we present an

OSH example that intends to help the reader understand the proposed method.

Example 7.3. In Figure 7.8a test cube T1 is presented which is partitioned into r = 12

scan slices s1, s2, ..., s12. Scan slice si is the part of T1 that simultaneously loads the n

scan chains SC1, SC2, ..., SCn at clock cycle ci (the scan slices are loaded from right to

the left, i.e. scan slice s1 is loaded first, s2 is loaded second etc). The number of scan

chains is n = 4 and the block size is l = 4 (each scan slice is considered as a test data

block). The test data blocks and their numbers of occurrences are shown in the first

column of Figure 7.8b. As it was proposed in [60] the two most frequent compatible

136

Figure 7.9: Selective Huffman coding with pre-merged blocks

blocks are merged (two blocks are compatible when they do not differ at any bit position

where they are both specified). The merging provides a new block which has the same

specified bits with the two blocks at the same bit positions with them. This is iteratively

applied until no further merging of blocks is possible. Columns 2-4 of Figure 7.8b present

the merged blocks generated after the most frequent blocks are merged each time (next

to each block its frequency of occurrence is reported). The final encoded distinct blocks

are presented in the fourth column of Figure 7.8b and they constitute the dictionary of

the OSH. The Huffman tree that corresponds to the dictionary example of Figure 7.8a is

shown in Figure 7.8c. The codewords assigned to entries ‘0101’, ‘x11x’ and ‘xx00’ are ‘0’,

‘10’ and ‘11’ respectively. The compressed test set has a size of 16 bits and it is shown in

the first row of the “Decompressed Slices” in Figure 7.8d (one codeword per slice). The

decompressed test data are shown below that row. �

7.2.2 Basic Idea

Despite the fact that there are many blocks in a test set consisting mostly (or even entirely)

of ‘x’ values, each and every one of them has to be encoded using a separate codeword.

However, the blocks corresponding to scan slices s1, s2, s3 of the test cube are compatible

and thus they can be merged into a single block. Another block can be generated by

merging scan slices s4, s5, s6, s7, s8 and another one by merging s9, s10, s11, s12. If we

encode these three blocks instead of the blocks shown in the fourth column of Figure 7.8b

then we can use the first block for loading the scan chains for the first 3 cycles, the second

block for the next 5 cycles and the third block for the last 4 cycles. This way, we use only

three codewords to encode the test cube. In order to know during each scan-in cycle if

137

the last block is repeated or not we need one control bit per block. If the next block is the

repetition of the previous one this bit is set to logic value ‘0’, otherwise it is set to logic

value ‘1’. The control bits of all slices of a test cube comprise the Control Vector (CV).

The CV that corresponds to the merging of scan slices s1 . . . s3, s4 . . . s8 and s9 . . . s12 is

CV = 000100001001 (the rightmost bit corresponds to s1 and the leftmost to s12). This

CV indicates that: a) blocks s1 . . . s3, s4 . . . s8 and s9 . . . s12 are merged, b) the resulting

blocks are loaded at the 1st, 4th and 9th clock cycles and they are repeated for another 2,

4 and 3 clock cycles respectively. The test cube formed after merging its blocks according

to CV is called CV-merged.

The storage of CV along with the two codewords results to worse compression than

the original encoding shown in the first example of this Chapter. However, for sparsely

specified test cubes (that is test cubes with many ‘x’) there are many different CV s that

can be used. Even for the test cube at hand, which consists of 33.3% specified bits

and is rather densely specified, there are many CV that can be used, like for example

000100001001, 000100000011, 000100100101, etc (as shown in many studies [123, 125] the

vast majority of test cubes of industrial designs consists of less than 5% of specified test

bits). Each different CV implies a different merging process. We exploit this property

to generate pseudorandomly the CV vectors based on probabilistic properties

of test cubes. CV s are generated prior to the encoding and they do not need

to be stored somewhere and thus apply a blocks pre-encoding merging phase which

minimizes the number of blocks which will be encoded using OSH. This process can be

better illustrated by the means of an example.

Example 7.4. Let us assume that for test cube T1 of the first example of this Chapter

the control vector CV = 000101001001 has been pseudorandomly generated. Figure 7.9a

presents the CV -merged T1 for this CV. There are four groups of merged blocks while

only the first block of each group is encoded using OSH (these blocks are shown in bold

and correspond to the logic value ‘1’ in CV). The rest of the blocks are simply repeated

versions of the first block in each group. The CV constitutes the guide for the encoding

process as it is shown in Figure 7.9b. The number of occurrencies of the blocks are

calculated based on the number of times each block has to be encoded (note that only

the blocks corresponding to logic values ‘1’ in the CV, i.e. the first one of each group, are

encoded and thus the number of occurrencies of each block is equal to 1). The generated

code and its tree are presented in Figure 7.9c. Finally, Figure 7.9d shows the codeword

used for each block corresponding to the logic value ‘1’ in the vector CV , as well as the

decompressed blocks loaded in the scan chains. It is obvious, since CV is not stored and

it is generated pseudorandomly, that only 6 bits are needed to compress the given test

cube. �

The compressed bits in the above example are much less than the specified bits of the

test cube. Linear methods cannot reduce the size of the compressed test set below the

volume of its specified bits unless methods like [31] are employed. At the same time the

unspecified values of test cubes are compressed adequately. In addition, the encoding of

138

the most frequently occurring blocks decreases the size of the encoded test data and thus

exploits the correlation between specified test bits. Moreover by loading the same values

in successive scan slices reduces also the shift power during scan-in (and consequently the

scan-out shift power as it was shown in [19]). Further optimizations can be achieved by

employing techniques like [31] on top of the proposed technique.

The idea of grouping scan slices for the purpose of low power shift-in has been proposed

earlier in [29, 32]. This grouping requires the encoding of additional control data and

specifically one bit per test slice. Every control bit is encoded together with the test data

bits. Depending on the number of scan chains, the volume of control bits can be high

compared to the average number of specified bits for a test set. Assume that the 10K

scan cells of the largest circuit in our suite, the Ethernet, are organized into 100 scan

chains (100 test slices per vector), 100 control bits must be encoded for any test cube.

For an average fill rate of 1% (i.e. 100 specified bits per test cube), along with the 100

specified bits for each test cube we need to encode an additional 100 control bits. In this

Section we show that control data can be completely avoided and still achieve very high

shift power reduction.

7.2.3 Encoding Method

Generation of Control Vector

The encoding method and the generation of the pseudorandom vector CV are strongly

interdependent processes. Each CV implies a specific merging of the blocks of test cubes.

Some of the test cubes will have their respective blocks compatible and thus they can be

generated using this particular CV (we call hereafter those test cubes CV -mergeable, or

mergeable for the CV). The probability that a given CV can be used to pre-merge a

given test set depends on two factors:

1) The volume of ‘0’ logic values of CV : a large volume of ‘0’ logic values imposes

extensive compatibility restrictions between successive test slices of test cubes and

decreases the possibility of an arbitrary test cube t to be mergeable for this CV . The

opposite happens when the CV consists of many ‘1’ logic values. For example, every

test cube is mergeable for the all-ones CV as every slice is encoded independently

of the rest of the slices.

2) The volume of ‘x’ values of test cubes: the higher is this volume, the higher is

expected to be the number of compatible slices of the test cubes and thus a larger

population of CV s can be used for such test cubes.

CV s with many ‘0’ values can be used for merging sparsely specified test cubes while

CV s with many ‘1’ values are needed for the densely specified test cubes. However, from

the compression and power perspective, CV s with large volumes of ‘0’ values are more

effective than CV s with large volumes of ‘1’ values (in the first case less blocks are encoded

and less transitions occur during the scan-in as more blocks are repeated versions of their

preceding blocks). A good practice is to begin from CV s with a small volume of ‘1’ values

139

to merge sparsely specified test cubes, and then gradually increase this volume to merge

the remaining densely specified cubes.

A vector CV is generated pseudorandomly as a signal that is set to logic value ‘1’ with

a probability PCV . PCV is set equal to various discrete probability values p1, p2, . . . , pb
(0 ≤ p1 < p2 < · · · < pb = 1). PCV is initially set to p1 and then it is gradually increased

to p2, p3, etc. For each value of PCV many CV s are generated and each one is used to

load one test vector in the scan chains. Every CV is generated by a pseudorandom unit

which will be described in the next Section. This unit is synthesized prior to the encoding

process and thus the exact CV sequences are known during the encoding. Note that if

we set PCV = 1 throughout the whole encoding process, then all blocks are encoded using

traditional OSH [72]. Therefore, this approach is a generalization of OSH.

In order to show the effectiveness of pseudorandomly generated CV s to encode large

test sets we performed an experiment using the Ethernet circuit of the IWLS suite [1].

This circuit consists of more than 10,000 scan cells, so it is more representative of realistic

industrial designs than the rest of the IWLS benchmark circuits. Figure 7.10 depicts the

percentage of test cubes which are mergeable for various CV s generated pseudorandomly

(note that the generated test cubes achieve 100% coverage of stuck-at faults). The x-axis

presents PCV values used in this experiment for generating CV s. For each PCV value, 100

different CV s were generated and the percentage of test cubes which are mergeable for at

least one of the CV s is reported by the means of bars. As the value PCV increases, more

test cubes become mergeable for the generated CV s. The curve shows the test cubes

which remain not merged at the end of each step (test cubes which are mergeable for any

CV generated are immediately dropped in this case). Note, that more than 80% of the

test cubes are mergeable for CV s consisting of less than 25% logic values ‘1’. Also, less

than 2% of the test cubes require CV s with 50%-75% of the logic values being equal to

‘1’. As a result, the vast majority of blocks do not have to be encoded at all (for the

above experiment more than 70% of blocks are generated as repeated versions of other

encoded blocks and thus they require no test data). In conclusion, the effectiveness of

CV depends on the fill rate of test sets, which is fairly low in large circuits, and not on

the size or amount of test cubes. Therefore, the proposed method is scalable to very large

test sets.

Control vectors also affect static and/or dynamic compaction of test cubes. Note that

the term compaction refers to a different process than encoding or compression. In partic-

ular, static compaction is the process of merging all compatible test cubes to be encoded

later (static compaction preceeds encoding), while dynamic compaction is the process of

merging test cubes during the encoding (after encoding the first test cube, additional com-

patible test cubes are encoded in the same test vector generated by the decompressor).

These processes, applied during (or prior to) the encoding process, decrease the volume of

test vectors generated and offer additional compression and test time benefits. Both types

of compaction can be applied in the proposed method. In fact, they can be applied even

more aggressively than in linear-based methods, reducing the volume of applied vectors.

140

Figure 7.10: Percentage of mergeable test cubes for ethernet

Pre-Encoding Merge Process

The pre-encoding merge process is a step-by-step process which is applied before the OSH

encoding. The objective of this process is to reduce as much as possible the volume of

test cubes to be encoded, and decrease thus both the test data volume (less test slices

to be encoded) and the test sequence length (less test vectors to be generated). At the

beginning, all test cubes are appended in a set TS and the probability value of CV is set

to the minimum discrete value p1. Then an iterative process begins and at each iteration

a new CV is generated based on the value of PCV (note that one CV is a sequence of

r logic values which are needed for loading one test vector into the scan chains). Then

the test cubes of set TS that are mergeable for the generated CV are identified and they

are moved to an empty set MS. If no test cube is mergeable for the current CV then

the probability PCV is increased to the next higher discrete value, and the iteration starts

over by generating a new CV . One test cube of set MS is selected and it is merged using

the CV . Then, all test cubes of set MS which cannot be statically compacted with t1 are

removed from set MS and they are appended again back to set TS. Out of the remaining

test cubes in MS one test cube is selected, let say t2 and it is statically compacted with

t1. This is iteratively applied until set MS becomes empty. While TS is not empty the

process continues, until TS becomes empty, by generating the next CV for the current

PCV value.

At each iteration, among the test cubes of MS, we select first the hardest-to-merge

test cubes, i.e., those test cubes that are less likely to be mergeable by CV s generated

using low values of PCV . This is done in order to increase the number of test cubes that

are merged at the early stages for low PCV values; the ones that offer better compression

and shift power than higher PCV values. To this end we rank the test cubes using a

measure which is representative of this likelihood. Let t be a test cube and i ∈ [1, n] be

a scan chain of the core. The volume of incompatibilities, INC(t, i), of scan chain i for

test cube t, is the number of successive test slices of t with complementary logic values

at their positions corresponding to scan chain i. Note that test cubes consist also of ‘x’

141

F
ig

u
re

7.
11

:
P

re
-M

er
gi

n
g

E
x
am

p
le

142

logic values which affect this measure based on the way they are filled. To alleviate this

problem we adopt an approximation according to which every ‘x’ logic value shifted into

the scan chain is considered to be equal to the last specified logic value ‘0’ or ‘1’ which

was encountered during the loading of this scan chain for cube t. Note that the ‘x’ values

of test cubes are not actually filled and thus test cubes remain unaffected by this process.

For example, for the test cube t of Figure 7.8a we have INC(t, 1) = 0, INC(t, 2) = 0,

INC(t, 3) = 2 and INC(t, 4) = 1. This approximation is reasonable as the proposed

method fills the ‘x’ values in a similar manner, therefore there is a high probability that

the ‘x’ values will be eventually filled in this manner (for example this is the case for

the cube when it is encoded as shown in Figure 7.9). Finally we calculate the volume of

incompatibilities INC(t) of test cube t as the sum of the incompatibility values INC(t, i)

of all scan chains i ∈ [1, n]. The test cube with the highest value of INC(t) is considered

as the hardest-to-be-merged test cube and it is always the first one selected from set MS.

Example 7.5. Consider the test cube T1 of the first example and the CV shown in Figure

7.9, and assume that T1 along with test cubes T2 and T3 form test set TS shown in

Figure 7.11 (T1 is ommited in Figure 7.11). T1, T2, T3 are all merge-able for the CV

shown in Figure 7.9 and thus they are moved to set MS. The incompatibility values are

INC(T1) = 3, INC(T2) = 1, INC(T3) = 0 and thus T1 is first selected to be encoded

(the CV-merged version of T1 was shown in Figure 7.9a). We can see that the the CV-

merged versions of T2, T3 (shown below T2, T3 in Figure 7.11) are both compatible with

the CV-merged version of T1. Since INC(T2) > INC(T3) cube T2 is selected next and

the CV-merged versions of T1, T2 are statically compacted as shown at the right of Figure

7.11. The CV-merged cube T3 is no longer compatible with the resulting CV-merged test

cube and thus it is moved back to set TS to be encoded using a new CV. �

Slice Partitioning

So far, we have assumed that a whole slice is encoded as a single Huffman block. This

is realistic when the size of a slice (and thus the volume of scan chains) is small (we

recall that OSH achieves good compression for relatively small sized blocks [60], [72]).

For cores with many scan chains we partition the set of scan chains into groups of equal

size and each group is encoded separately. Let l be the required block size and n be the

number of scan chains. Then the set of scan chains is partitioned into k = dn/le groups

G1, G2, . . . , Gk. Each group is assigned its own CV1, CV2, . . . , CVk which is generated by

its own properly selected probability PCVj
. This partitioning process is applied before the

merging phase and the same groups are retained for the whole test period.

Scan chains with similar volumes of incompatibilities (as they were calculated in the

previous Section) are appended to the same group. Then, groups with low volume of

incompatibilities are assigned lower initial probability PCV than those groups with higher

volume of incompatibilities. This increases the probability of test cubes to be mergeable

with the generated CV s. In order to keep the encoding process (and the decompression

143

1: TS: set of test cubes, n: number of scan chains, l: size of block

2: Partition n scan chains into k = dn/le groups

3: Calculate PCVj value for each group Gj .

4: while TS is not empty do

5: Generate CV1, . . . CVk of r bits each using PCV1 , . . . PCVk
.

6: Move test cubes which are mergeable for the CV s into MS.

7: if set MS is empty then

8: increase all PCV1 , PCV2 , . . . PCVk
values to the next higher discrete value and go to the

next iteration

9: else

10: Statically compact and drop test cubes of MS.

11: Move test cubes remaining in MS back to set TS.

12: Encode the resulting blocks using repeat-friendly OSH.

Figure 7.12: Encoding process

process) simple, each time that a set CV1, CV2, . . . CVk fails to encode a test cube (i.e. no

test cube is mergeable for this set of control vectors), then each one of the probabilities

PCV1 , PCV2 , . . . PCVk
is increased to its next higher discrete value until all of them reach

the highest discrete values (i.e., those that are equal to p1 are increased to p2, those that

are equal to p2 are increased to p3 etc).

First we present how the scan chains are partitioned into disjoint groups of size l each.

Let i be a scan chain. We define the incompatibility load L(i) of scan chain i as the sum

of the INC(t, i) values of all test cubes t of test set T , that is L(i) =
∑

t∈T INC(t, i).

The incompatibility load of each scan chain is then normalized by the worst load, i.e.

the highest value Lmax = max{L(i)} found for any scan chain i, using formula NL(i) =

L(i)/Lmax. Then, the n scan chain are appended in a list of ascending order of their

NL(i) values. The first l scan chains of this list comprise the first group G1, the next

l scan chains comprise the next group G2, etc. Finally we define the normalized load

NLG(j) of group Gj as the maximum NL(i) value of its members i, with 0 ≤ NLG(1) ≤
NLG(2) ≤ · · · ≤ NLG(k) = 1.

After partitioning the scan chains into groups, the initial probability PCVj
used for

generating CVj for each group Gj is determined. This probability depends on two factors:

a) the relation between the normalized load values of different groups and b) the trade-off

between compression, power and test application time as set by the test engineer. The

test engineer selects the initial probability, let say ‘a’, for generating CVk that is the CV

of the group with the largest load. The rest of the groups with lower load than Gk are

automatically assigned an initial probability which is lower than ‘a’ proportionaly to their

NLG value. Specifically, for each group Gj a probability value pgj is calculated using the

formula pgj = a×NLG(j) (we remind that NLG(j) ≤ 1). In that way group Gk is assigned

the probability ‘a’ (note that NLG(k) = 1) and the rest of the groups are assigned lower

probabilities. The higher is the value of ‘a’, the lower is the TSL as many test cubes are

mergeable right from the beginning and higher levels of static compaction can be reached.

144

Figure 7.13: Swap procedure on node N1 for repeat-friendly code

However, a large value of ‘a’ usually results to less compression and higher average shift

power. The opposite trend is observed when a small value of ‘a’ is used. The encoding

process is shown in Figure 7.12.

Repeat-Friendly Huffman Code

Even though Huffman is a very effective code, further improvements can be achieved

by exploiting certain ATE utilities, like the repeat command [167]. Using the repeat

command, multiple successive identical logic values can be stored only once in the ATE-

channel memory and they can be repeatedly transmitted over the ATE channel in succes-

sive cycles. Huffman code optimizes the length of the codewords, but the codewords are

not repeat-friendly. For example, the codewords “10” and “11” of Figure 7.9c require 2

and 1 bits respectively when the repeat command is used (note that the first codeword has

no identical successive logic values and thus the repeat command has no effect, whereas

the second codeword has only one logic bit repeated two times and thus the repeat com-

mand eliminates the need to store the last bit of this codeword each time it is used).

It is obvious that higher gain can be achieved by assigning repeat-friendly codewords to

frequently occuring blocks.

As noted in Section 7.2.1, after the tree is constructed each leaf node is assigned a

codeword by assigning the logic value ‘0’ (‘1’) to each left (right)-child edge. In order

to provide repeat-friendly codewords, we propose a very simple modification of the edge-

assignment process. At the beginning, the edge to the left (right) child of the root is

arbitrarily assigned the logic value ‘0’ (‘1’). Then we visit the rest of the nodes starting

from these two nodes and moving towards the leafs. Every node is processed only when

the edge connecting the node to its parent has been assigned a logic value. Let node A

be one of these nodes. We find the child of A with the highest weight and we assign at

the edge connecting node A with this child the same logic value that is assigned to the

edge connecting node A with its own parent. The opposite logic value is assigned to the

edge connecting node A to its other child with the smallest weight. This way, the more

frequently occuring blocks are assigned more repeat-friendly codewords.

145

Figure 7.14: Blocks replacement and candidates generated

Example 7.6. Figure 7.13a presents the Huffman tree of Figure 7.8c enhanced with more

realistic block frequencies. The memory space required for storing the compressed test

data using the repeat command (ignoring logic-bit repetitions between different code-

words) is equal to 255 × 1 + 210 × 2 + 60 × 1 = 735 bits. The modified Huffman tree is

shown in Figure 7.13b. Even though codewords’ length are the same with Figure 7.13a,

the leaf nodes are assigned different codewords. In Figure 7.13b the edge connecting

nodes N1 and N3 is assigned the logic value ‘1’ and the codeword for b2 is ‘11’ instead

of ‘10’ that was in Figure 7.13a Huffman tree. Memory space required in this case is

255× 1 + 210× 1 + 60× 2 = 585 bits, which is considerably lower than that required by

the encoding of Figure 7.13a. �

7.2.4 Unmodeled Defect Coverage Improvement

The repetitive loading of identical test data into successive slices and the biased encoding

of the blocks towards the most frequent blocks induces correlation, which adversely im-

pacts the unmodeled defect coverage of the generated test vectors as shown in Chapter 5.

Unmodeled defect coverage can be improved by decreasing the correlation between test

vectors and also by adopting effective quality metrics to assess the test quality of each

vector. The correlation of test vectors can be reduced by relaxing the tight objective of

the encoding process to use the most frequent dictionary entries for encoding test data

blocks. The use of a small minority of test data blocks repeatedly is responsible for bias-

ing the generated test vectors towards similar patterns of specified bits. Test quality can

be assessed using the output deviations metric of Chapter 5. Based on this evaluation

metric, the encoding process selects the best test vectors in terms of unmodeled defect

coverage.

The block substitution technique is a post-processing technique on the proposed en-

coding process, so it is applied after the step 12 of the encoding process shown in Figure

7.12. Candidate test vectors are generated by exploiting the potential of sparsely specified

test data blocks to be encoded using multiple dictionary entries. Specifically, according to

OSH, every test data block is encoded using the most frequent dictionary entry in order

to be favored by the shortest possible codeword length. If we remove the requirement

of encoding at the minimum cost, then sparsely specified blocks can be encoded using

compatible less frequent dictionary entries.

146

Example 7.7. To understand how the blocks replacement technique works let us again

consider the Huffman code of Figure 7.9. We also consider the CV -merged test cube pre-

sented in Figure 7.14a that needs to be encoded using this code. Based on the CV shown

on the top of this test cube the blocks to be encoded are the three blocks corresponding

to slices s1, s3, s6 and s9 shown in Figure 7.14a. The block ‘xxx1’ is compatible with

entries b1 and b2 of the dictionary (see Figure 7.9) and thus both codewords ‘0’ and ‘10’

can be used to encode this block. In each case a different test vector will be generated

which is compatible to the encoded test cube (note that these two encodings are actually

two different ways of filling some of the unspecified values of the test cube). The two

encodings are not equally effective in terms of test data volume because codeword ‘10’ is

more expensive than codeword ‘0’. The same can be done for the rest of the slices. In

Figure 7.14b we present all possible compatibilities between the slices s1, s3, s6 and s9
of Figure 7.14a and dictionary entries b1, b2, b3. Based on this table, we can generate all

possible candidates which are equal to 2× 2× 3× 2 = 24 and are shown in Figure 7.14c

in ascending order of test data volume (bold entries correspond to the encoded blocks,

non-bold to repeated blocks). �

In most cases the encoding cost is expected to increase as we can only use less frequent

dictionary entries for each block than those used by the original encoding. The highest

overhead is imposed by the extreme case: when an encoded by a dictionary entry block

is left un-encoded and it is preceded by the codeword corresponding to the un-encoded

blocks (OSH provides this option [72]). Even though this is always an available option

for any block (any block can be simply left un-encoded), it is very expensive and should

be wisely and rather rarely used.

Block substitution changes the dictionary block frequencies and thus codeword lengths

generated for the initial frequencies will not be any further optimal for the new frequencies.

The additional overhead can be moderated if the codewords are re-generated to properly

reflect the new frequencies of the dictionary entries. To this end, the tree is generated

again for the new frequencies resulting after block substitution and a new codeword is

assigned to each dictionary entry. In order to further reduce the additional overhead of

this process, the proposed method bounds the volume of the blocks that are involved in

this substitution process. This is achieved through the use of a pre-determined probability

P , called hereafter as “probability of blocks change”. For example, when P = 10% only

a 10% of randomly selected blocks will be encoded by sub-optimal entries. Higher values

of P increase the TDV cost but also the gain in unmodeled defect coverage.

7.2.5 Decompression Architecture

The proposed decompression architecture is shown in Figure 7.15. It consists of four main

units: the Selective Huffman Decoder (SHD), the Signal Probabilities Generation (SPG)

unit, the Control Vector Generation (CVG) unit and scan-registers SR1, SR2, . . . , SRk

which load the scan chains. It operates as follows: the SHD unit receives the compressed

data from ATE and decodes the codewords. It loads one scan-register at a time with

147

Figure 7.15: Proposed decompression architecture

the decoded block. This register is selected by the unit CVG which generates the control

vectors CV1, . . . , CVk. When CVi is asserted, scan-register SRi is loaded with the block

decoded at the output of the SHD unit. Signals CV1, . . . , CVk are generated from pseu-

dorandom signals produced at the SPG unit. When all registers SRi (which have their

CVi signals asserted) are loaded with new test data, the slice is shifted into the scan chain

and the decompression proceeds to the next scan slice (the rest of the registers hold their

contents). Let us describe each unit in details.

Selective Huffman Decoder Unit (SHD). This unit loads serially the compressed

test data from a single ATE channel and provides the decoded blocks of size l each.

It consist of a finite state machine (FSM) which decodes the codewords and a small

dictionary which stores the distinct block encoded by each codeword. It generates two

signals namely DecodedBlock and BlockReady. It asserts signal BlockReady when a new

block is available at the DecodedBlock output.

Scan Registers (SR). This unit consists of k, l−bit registers, SR1, . . . , SRk which

correspond to groups G1, . . . , Gk respectively. Each scan register SRi is controlled by

signal Loadi which is asserted whenever CVi is asserted and the respective test data are

available at the DecodedBlock output. When Loadi is not asserted then the register holds

its contents.

Signal Probabilities Generation Unit (SPG). The signal probabilities generation

unit is shown in Figure 7.16. It consists of a small LFSR which is initially loaded with a

random seed, and a very small combinational logic which generates pseudorandom signals

of various probabilities in the range of [0, 1]. The operation of this unit is very simple: each

LFSR output has probability of 50% to receive logic value ‘1’. A 2-input AND gate driven

by two signals with probability 50% provides at its output a signal with probability Pout =

148

Figure 7.16: Signal probabilities generation unit

25%. By using various combinational gates with various numbers of inputs, signals with

many discrete probabilities can be generated. In the proposed scheme the 8 probabilities

shown in Figure 7.16 are implemented by just few 2-4 input gates. Since an independent

control vector has to be generated for each group, a different group of signals p1, . . . , p8 is

needed for each control vector (p11, p
1
2, . . . p

1
8 are used for CV1, p

2
1, p

2
2, . . . , p

2
8 for CV2, etc).

In order to eliminate correlations between signals CV1, CV2, . . . , CVk phase shifters are

inserted between the LFSR and the combinational logic. The SPG unit is controlled by

the CVG unit with signal SliceLoaded. This signal is asserted whenever the scan chains

are loaded with the current slice and it enables the LFSR to move to its next state and

to generate signals pj1, p
j
2, . . . , p

j
8 (j = 1 . . . k) for the next slice.

Control Vector Generation Unit (CVG). This unit is responsible for both vectors

CV1, CV2, ..., CVk and signals Load1, Load2, . . . , Loadk. For each CVj signal one multi-

plexer 8-to-1, namely P-MUXj, is used to select one of the pj1, p
j
2, . . . , p

j
8 signals generated

by SPG unit. pj1 is connected to the first input of P-MUXj, p
j
2 is connected to the second

input etc. The selection inputs of P-MUXj are connected to counter GCj. This counter is

initialized before decompression process begins with the value corresponding to the initial

PCVj
calculated at the beginning of the encoding process. Each time PCVj

has to be in-

creased to the next higher discrete value counter GCj is triggered once to count up. This

way it selects the next input of P-MUXj which is already connected to the pseudorandom

signal with the next higher probability. When BlockReady is asserted CVG unit loads

the decoded block to the first scan register that has its respective CV signal asserted and

waits until the next test data block is decoded. When all scan registers with logic value

‘1’ at their control vectors for the current slice are loaded then current slice is shifted into

the scan chains and decoding continues to the next slice.

All GC counters are simultaneously triggered during the decoding process whenever

PCV values are increased. This is done at most 7 times as the minimum possible initial

value for PCV is equal to p1 and it can be potentially increased up to p8. Each triggering

has to be done at a specific vector in the test sequence which is determined during the

encoding (see Figure 7.12). The whole vector sequence is controlled by the means of a

vector-counter (not shown in Figure 7.15 for simplicity). We use 7 registers (also not

shown in Figure 7.15) which are loaded before the decompression process begins with the

specific vector-counter values that should trigger each time the GC counters. Thus, each

149

time the vector counter reaches the value stored in any of these registers all the the GC

counters are triggered once.

The rate at which the blocks are decoded at the output of the SHD unit depends on

the length of the codewords (long codewords need more cycles to be decoded). As a result,

there might be cases that the loading of the scan registers has to wait for the next block

to be decoded and vice versa. The first case is handled by the CVG unit which controls

the loading of the shift registers and stalls both this loading and the scan-in operation

when it is necessary. For the second case there are two solutions: firstly a FIFO can be

used at the output of the SHD unit to hold all blocks which are decoded early (usually a

very small FIFO suffices to store all such blocks). The second solution is to let the SHD

hold the last decoded block and ignore any additional test data sent by the ATE. If the

repeat command is available then it can be used to eliminate these data by repeating the

last useful bit for as many cycles as needed without incurring additional overhead. When

the ATE-repeat command is not available both techniques can be used at the same time

to offer a trade-off between hardware overhead and test data storage. As a result, no

handshaking is required between the ATE and the decompressor.

The SHD unit of the proposed architecture is test set dependent. SHD unit can be

designed in a test-set-independent way if a) the dictionary is implemented using a small

RAM that is loaded from the ATE before the decompression process begins and b) the

FSM is designed to be generic (similar to [94, 131]) - provided of course that it decodes a

pre-determined number of codewords (the exact codewords can be determined at a later

step of the design process). As it has been shown in [60], [72], a very low number of

blocks, 8-16, suffices to provide high compression efficiency. Even in the case that the

SHD is designed to be test set dependent, last minute design changes are neither expected

to affect the Huffman decoder nor the dictionary entries (the same decompressor can be

still used even at the cost of a marginal reduction of the compression achieved). Only in

the case of extensive design modifications (that cause also extensive changes on the test

sets of the SoC’s cores) the SHD must be re-designed to reflect these changes.

Multiple cores residing in the same SoC require in many cases decompressors tuned

to different parameter values. This requires developing a dedicated decompressor for

each core which is an expensive approach. In order to tackle this issue we propose the

development of a low-cost reconfigurable decompressor which can adjust its characteristics

to the requirements of multiple cores at the expense of a slight increase in test data

volume. This decompressor can be shared among multiple cores for decreasing hardware

cost, without sacrificing compression. Specifically, we assume a single decompression unit

for muliple cores which uses a common FSM for the cores but a separate dictionary for

each one (note that the hardware implementation of the dictionary can be also common

if it is implemented as a RAM that is loaded with the particular contents of each core

before it is tested). Using this technique, the same codewords are used for the cores that

share the decompressor, but each codeword corresponds to a different entry that is found

at a separate dictionary for each core. In that way, the FSM, which would be the major

150

Figure 7.17: Selective Huffman Decoder

contributor to the overhead of the decompressor (if not shared), is shared among multiple

cores while at the same time the dictionaries which occupy very limited space and offer

great compression benefits are dedicated and optimized to the characteristics of each core.

The multicore decompressor is presented in Figure 7.17. To account for different scan

chain configurations among different cores we use the same block size l for those cores

that share the decompressor, and we equip the decompressor with the maximum number

of SRs used by any of the cores (we remind that each core requires a number of SRs that

is equal to the number of scan chains divided by the block size). While testing each core

only the necessary SRs are activated.

The use of common codewords for a group of cores requires proper adjustments of the

encoding process. In particular, the repeat-friendly encoding cannot be applied for any

core until the blocks corresponding to the dictionary entries of every core are generated.

The aggregate number of occurrences of these blocks are used to generate common Huff-

man codewords. Since in each core the most frequently met block will be encoded using

the shortest codeword, the aggregation of the frequencies is done in such a way as to bias

the frequencies of the common codewords. In particular, the number of occurencies of the

most frequent blocks are summed to provide the frequency of the most frequent codeword

of the group, and these blocks are stored in the first entry of each dictionary. Then, the

same process is applied to the second most frequent block of each core, etc.

Example 7.8. Let us assume an SoC consisting of two cores with 4 dictionary entries and

number of occurrencies (in descending order) f 1
1 = 30, f 1

2 = 22, f 1
3 = 20, f 1

4 = 18 for the

first core and f 2
1 = 20, f 2

2 = 15, f 2
3 = 10, f 2

4 = 9, for the second core. The aggregate

frequencies for both cores become f 1+2
1 = 50, f 1+2

2 = 37, f 1+2
3 = 30, f 1+2

4 = 27. Based

on the aggregate frequencies a Huffman tree is constructed and it is optimized with the

repeat friendly optimization method presented in Section 7.2.3. The resulting codewords

are used to build a common FSM for the cores. �

151

By properly grouping cores and allocating one decompressor at each group, the area

cost can be retained low. In addition, cores that share a common decompressor should

be located close in the floorplan to minimize the routing overhead. Finally, the ability

of the proposed decompressors to work well with both IP and non-IP cores enables the

sharing of decompressors among both of these types of cores and offers a further degree of

freedom during the grouping process and the allocation of decompressors to each group.

Note that scheduling techniques can be applied to further decrease the test application

time but they are out of the scope of this work.

7.2.6 Experimental Results

We implemented the proposed encoding scheme using the C++ programming language

and we synthesized the decompression logic using commercial tools. The proposed method

was applied on the largest ISCAS’89 and a subset of the large IWLS benchmark circuits

[1]. We used a commercial tool to generate test sets for 100% stuck-at fault coverage.

Unless otherwise stated, the parameters used for the proposed method were set equal to

m = 8 codewords and l = 8 bits block size. The running time for the largest circuit,

the Ethernet, was less than 3 minutes. Note, that this execution time is much shorter

compared to the execution time of dynamic LFSR encoding, which can reach the order of

hours without partitioning techniques to speed up the process (see Section 2.2.2). Table

7.2 contains information on the benchmarks and in particular the size in combinational

gates, the pseudorandom primary input/output pins count (PPI/PPO), the scan cells

count and scan structure represented as number of scan chains (n) multiplied by the

length of scan chains (r).

We implemented the state of the art low power dynamic reseeding proposed in [105]

(LPDR) using ring generators with sizes in the range [40, 150]. In this case we used a single

shadow register to favor the Test Data Volume (TDV) measurements of this method. The

shadow register was implemented using both techniques proposed in [29], [105] (internal

XOR tap or one additional ATE channel) and the best result is reported in every case.

In the case of LPDR, the repeat command was utilized to further reduce the compressed

test data. Moreover, as suggested in [105, 123] the unsolved variables were filled in a

repeat-friendly way to improve further the test data compression of LPDR. Even though

both the ATPG and fault simulation steps can be straightforwardly embedded in both

LPDR method and the proposed encoding, we omitted these steps as they cannot be

applied in the case of IP cores (their internal structure is unknown). We also compare

our method to various code-based methods [72], [74], [92] and [125]. For all methods we

use the minimum number of ATE channels, that is one channel for the proposed method

and code-based methods, and two channels for LPDR (a very small number of channels

is highly desirable in a multisite test environment).

For evaluating the unmodeled defect coverage we used a surrogate fault model, i.e.

a fault model that is not targeted by the generated test sets. That fault model is the

transition delay fault model (TDF). For detecting transition faults each test vector gen-

152

Table 7.2: Benchmarks Information
circuit gates PPI/PPO scan cells n× r
s5378 4285 86 214 16× 14

s9234 4190 77 247 16× 16

s13207 10 103 154 700 32× 22

s15850 11 919 103 611 32× 20

s38417 30 460 136 1664 64× 26

s38584 26 864 292 1464 48× 31

ac97 ctrl 28 554 132 2253 32× 71

mem ctrl 11 440 267 1194 48× 25

pci bridge 45 055 369 3517 128× 28

tv80 14 223 46 372 32× 12

usb funct 27 081 249 1858 32× 59

ethernet 157 520 211 10 647 128× 84

Figure 7.18: Tradeoffs for a value for s13207

erated by the decompressors is applied on the circuit using two capture cycles according

to Launch-On-Capture (LOC) technique. Note that similar approaches were adopted in

many techniques (e.g., [8], [178], [180]). The measurements of average switching activity

(ASA) were done using the normalized weighted transitions metric (WTM) [29].

Impact of parameters a and l.

In Figure 7.18 we present the Test Data Volume (TDV), Average Switching Activity

(ASA), Test Sequence Length (TSL) and Test Application Time (TAT) results of the

proposed method for the s13207 benchmark circuit for various values of the parameter ‘a’

(‘a’ is used to generate the starting signal probabilities of the CVs as shown in Section

7.2.3). It consists of two parts which are aligned on a common X-axis (shown at the

bottom) that presents the selected values for parameter ‘a’. The top part presents the

TDV curve (1Kbit = 1000bits) and the ASA measures (bars) of the proposed method,

153

Figure 7.19: TDV, TAT and ASA for various blocksize l values on s13207

while the bottom bar presents the TAT (line) and the TSL measures (bars). The smaller

is the value of parameter ‘a’, the more sparse are the generated CVs in terms of their

‘1’ logic values and thus the more power efficient are the generated test vectors (‘0’ logic

values in the CVs load the scan chains with the same test data and thus reduce the shift

power dissipation). Higher values of parameter ‘a’ cause the test vectors to become less

power efficient as they increase the number of update operations on the shadow register.

At the same time, as ‘a’ increases the encoding process is less constrained by the shift

power objectives and thus more test cubes are encoded into each test vector during the

pre-merging process. As a result TSL drops considerably but the ASA increases.

An interesting property of the proposed method is that TAT is not affected by the

value of ‘a’ as much as TSL is affected. TSL depends on the number of vectors applied to

the core, while TAT depends mostly on the codeword decoding process and thus on the

TDV which does not depend much on the value of a. Note that the loading of the scan

chains is done in parallel with the decoding of incoming data from the ATE. When the

value of a is high many update operations occur in a short time and the Load Generation

Unit has to stall in these cases for new test data to be decoded through the Selective

Huffman Decoder. Even though the TSL is low (and consequently the overall number of

test slices loaded into the scan chains is low), when the value of ‘a’ is high, there is a

high number of update operations that render the SHD unit the bottleneck of the test

generation process. As the value of ‘a’ drops, the overall number of test slices loaded

into the scan chains increases (due to the increase of TSL) but most of the additional test

slices are repeated versions of their previous ones and are generated without incurring any

additional decoding cost (no test data need to be decoded for those slices). As a result,

the Load Generation Unit stalls less frequently and the decoding process is very well

parallelized with loading the scan chains using mostly repeated test data. Therefore, we

conclude that a low value of ‘a’ is more preferable from both TDV and power perspectives,

while the additional test vectors applied due to the increased TSL in that case, can be

exploited to increase the unmodeled defect coverage with a very small impact on TAT.

Another important parameter that affects both the ASA and the TAT of the proposed

method is the block size. The larger the block size is, the smaller is the number of scan

chain groups and thus the lower is the number of blocks that need to be decoded for

every scan slice. However, as the number of scan chain groups decreases, the benefits on

154

Figure 7.20: Tradeoffs for blocks substitution probability P on s13207

reducing shift power reduces (the probability that a block can be repeatedly loaded into

the scan chains drops as the size of the block increases). Figure 7.19 presents results for

TDV, TAT and ASA for various blocksize values on s13207 benchmark circuit. As block

size l increases, both TDV and TAT drop while ASA increases. Beyond a certain block

size (that is equal to 32 in the case at hand) TAT increases again while TDV saturates.

Therefore, depending on the power budget of the design, an optimal block size exists for

every circuit which can be easily found due to proposed method’s short CPU time.

Impact of parameter P .

The impact of parameter P effect is shown in Figure 7.20 where the lines correspond

to TDF and the bars to TDV results. We present results for the proposed defect-aware

encoding for ‘a = 0.125’ and various values of P labeled as P = 0.01, P = 0.1, P = 0.5

and the proposed defect-unaware encoding labeled as ‘DU’. The LPDR’s method results

are labeled as ‘LPDR’. The x-axis presents the number of vector pairs applied using the

LOC scheme for all the methods and the y-axis presents the TDF measures for each

technique. Although the proposed defect unaware technique is superior in terms of TDV

as compared to the LPDR method (7.0 Kbits over 20.8 Kbits), it is inferior to LPDR

in terms of coverage on the surrogate transitions-delay faults. This is the effect of the

increased correlation of the test slices that results from the biasing of the encoding process

towards a small number of frequently occurring test data blocks. However, the defect

aware proposed scheme improves considerably the TDF coverage. Even for very small

values of P (i.e. the case labeled as P = 0.01) which correspond to the case that only a

very small percentage of blocks are substituted for increasing test quality, TDF becomes

59.8% and almost reaches that of LPDR, with only a slight increase of the test data (they

become 7.8Kbits from 7.0Kbits). If we further increase P to the value of P = 0.1 and

P = 0.5 the TDF of the proposed technique reaches higher values than that of LPDR.

155

Repeat-Friendly Huffman Code: TDV Improvement

We run 10 different experiments for each of the 11 benchmark circuits for the pro-

posed method by varrying the blocks substitution probability P from the set of val-

ues [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.25, 0.5, 1]. In each case, the TDV improvement

TDVimpr offered by using the repeat-friendly version (RF) of the proposed method over the

original not optimized encoding (Orig) was calculated by using the formula TDVImpr =

(TDVOrig − TDVRF)/TDVOrig (we note that in both “RF” and “Orig” cases the com-

pressed test data were further encoded using the ATE repeat command). In the 100 out

of the 110 cases, the TDV improved using “RF” and the improvement was as high as

17.5%. The average and median improvement was 5% and 6.18% respectively. In the rest

5 cases the TDV slightly increased and the increment was in the range [0% - 2.3%]. We

note that the repeat friendly encoding optimizes the internal characteristics of codewords

(intra-codeword) but it does not consider the sequence of codewords (inter-codeword)

which also affect the TDV. This may cause a slight reduction of the TDV benefits and in

those rare cases that the gains from intra-codeword improvements are not high, it slightly

increases the overall TDV.

Comparisons

In Table 7.3 the TDV, TSL and ASA comparisons of the proposed method (labeled

as “Prop.”) against LPDR and OSH [72] are presented. For this comparison we used

uncompacted test sets because LPDR is very efficient with uncompacted test sets. In all

cases the proposed method offers the lowest TDV among all methods. The improvement

ranges between 1.5x and 4.3x as compared to LPDR method and between 2.6x and 8.8x

as compared to the OSH method. The TSL of the proposed method is lower than that

of the LPDR method and higher than that of the OSH. We note that the TSL greatly

depends on the static and/or dynamic compaction policy followed during the encoding

(in our case this is the pre-merge process and, as noted in Section 7.2.3, it belongs to

the static compaction processes). Static and/or dynamic compaction in linear encoding

methods is generally constrained by the size of the linear decompressor, the number

of variables injected into the decompressor and the power constraints. Specifically, the

number of free variables available during the encoding of every test cube must be higher

than the number of specified bits of the test cube. Since every additional encoded test

cube consumes variables for its encoding, it is rather unlike that all compatible test

cubes can be encoded together at the same test vector using linear encoding, unless a

large number of variables are injected at each clock cycle. On the contrary, code-based

decompressors (like for example the Huffman decompressor in the OSH case) do not suffer

from this restriction and thus permit the application of very aggressive static compaction

processes before the compression which reduce the TSL a lot. Even though this is also the

case for the proposed method, the power objectives implemented through the use of CVs

introduce additional constraints into the static compaction process (pre-merging) that do

not permit the TSL to drop as much as it does in the OSH method. However, due to the

156

Table 7.3: Comparisons TDV, TSL and ASA

circuit
TDV (in Kbits) TSL (# of vectors) ASA (WTM %)

LPDR OSH Prop. LPDR OSH Prop LPDR OSH Prop.

s5378 10.0 15.7 5.1 305 155 277 5.8 21.3 14.2

s9234 20.9 29.9 11.7 504 259 438 11.6 21.0 18

s13207 20.8 39.5 10.5 419 255 405 5.4 19.9 12.4

s15850 26.8 43.6 11.2 552 243 523 7.0 24.7 12.9

s38417 97.5 150.9 49.5 1548 267 1094 6.2 31.2 13.5

s38584 89.7 112.3 33.9 1179 245 591 7.0 32.4 13.2

ac97 ctrl 57.5 60.8 15.5 2161 77 206 1.3 34.4 11.1

mem ctrl 115.5 205.7 37.7 2466 884 1581 5.0 14.7 7.4

pci bridge 233.0 418.3 120.6 3435 654 1062 20.6 21.8 20.4

tv80 72.5 131.8 48.1 2330 1662 2115 10.8 35.8 19.0

usb funct 98.2 156.6 49.9 2340 231 763 1.1 35.2 15.5

ethernet 612.4 1257.0 143.1 3115 1100 1811 2.7 10.4 15.4

inherent property of the proposed method to encode the vast majority of test slices using

repeating test data, the proposed method offers much lower TAT than the OSH approach

which counterbalances the increase in TSL.

As far as the ASA measures are concerned, the LPDR gives the lowest WTM values.

In most of the cases this is also related to the long TSL of this technique, that is even

10 times higher in one case than that of the proposed method, and that permits higher

repetition of the test data loaded into the scan chains. However, the WTM values of the

proposed method are very low and much lower than those of OSH technique. Note that,

as it was shown in Figure 7.18, ASA can be considerably reduced by using lower values

of α parameter, which constitute a favorable selection for the proposed method.

In Table 7.4 we present the unmodeled defect coverage comparisons between the pro-

posed method and LPDR. We consider three different instances of the proposed method:

(a) the defect unaware (DU) instance where the test quality improvement technique was

not applied, (b) the defect aware encoding with the values of parameter P selected from

the range [0.1, 0.25] denoted as medium effort (ME) encoding, and (c) the defect aware

encoding with the values of parameter P selected from the range [0.5, 1] denoted as high

effort (HE) encoding. We have to note that the unmodeled defect coverage depends a lot

on the number of test vectors applied. Thus, for providing a fair comparison, we applied

restrictions on the pre-merging phase of the proposed method to increase its TSL (note

that the proposed method offers considerably lower TSL than LPDR). In the first two

columns the TSL results are presented. The next four columns present the TDV com-

parisons. Note that the TDV of the proposed method is lower than that of LPDR for

all values of P in almost all cases (the best results are bolded). The last four columns

present the TDF comparisons (the highest TDF entries are bolded). Note, that “DU” has

relatively low TDF which however is considerably improved by using the proposed test

157

Table 7.4: Comparisons TDF

circuit

TSL TDV (in Kbits) TDF (%)

(#of vectors)
LPDR

Proposed
LPDR

Proposed

LPDR Prop. DU ME He DU ME HE

s5378 305 277 10.0 4.3 4.9 5.1 62.0 60.2 62.4 63.4

s9234 504 438 20.9 10.1 11.2 11.7 49.8 45.6 49.1 49.9

s13207 419 405 20.8 7.0 13.7 17.8 61.3 56.2 63.5 66.2

s15850 552 523 26.8 10.5 11.2 13.7 54.7 54.3 56.4 57.2

s38417 1548 1629 97.5 53.0 64.5 77.2 87.8 83.2 86.3 87.9

s38584 1179 1130 89.7 44.1 44.1 45.2 67.0 65.4 68.2 68.4

ac97 ctrl 2161 2136 57.5 31.1 36.7 36.4 53.4 51.3 56.3 58.8

mem ctrl 2469 2357 115.5 32.3 74.4 81.3 43.7 33.1 36.8 39.3

pci bridge 3435 2774 233.0 105.3 169.7 230.7 81.9 65.5 81.0 83.2

tv80 2330 2426 72.5 45.2 54.7 74.9 59.9 55.2 60.4 62.3

usb funct 2340 2379 98.2 52.6 75.8 94.9 72.7 61.8 71.5 72.9

ethernet 3115 1811 612.4 143.1 182.9 252.6 55.3 49.1 57.7 64.4

Table 7.5: Comparisons with Test Data Compression Techniques (in Kbits)

circuit [74] [92] [125] [111] Proposed

s9234 12.8 30 - 20.6 10.2

s13207 14,6 21 74 28.9 6.3

s15850 16.6 25 26 25.1 10.5

s38417 58.7 85 45 59.0 44.2

s38584 55.4 57.1 74 74.9 24

quality improvement process. In all but one case, when the effort for increasing defect

coverage is set to high, the proposed method offers the highest TDF, and still retains

lower TDV than LPDR. In the vast majority of the cases, the proposed method offers

higher TDF than LPDR even when the effort is set to medium. So, we conclude that

the proposed method offers much lower TDV than LPDR and at the same time it offers

a trade-off between the TDV improvements and the unmodeled defect coverage, yielding

higher unmodeled defect coverage than LPDR for higher values of P .

In Table 7.5 we compare the proposed method against some of the best TDC techinques

in the literature in terms of TDV. Methods [74], [92] and [125] focus on test time and TDV

optimization and method [111] is a TDC method that targets average power reduction

too. In the case of the proposed method we set the value of parameters l = 8, P = 0

and a = 0.0625. For this comparison we used compacted test sets because these methods

perform better with them. It is obvious that the proposed method offers the lowest TDV.

In Table 7.6 we present the area overhead of the decompressors for LPDR, OSH and

the proposed method for various scan chain volumes n, ring generator sizes d and number

of groups k. The hardware overhead is measured in terms of gate equivalents, where

158

Table 7.6: Hardware Overhead Comparisons

n
Dynamic Reseeding HO

OSH
Proposed HO

d=48 d=64 d=96 d=128 d=150∗ k=1 k=2 k=4 k=8 k=16

32 626 774 1072 1370 1574 344 560 622 746 994 1490

64 805 954 1251 1549 1754 417 633 695 819 1067 1563

128 1164 1313 1610 1908 2112 563 779 841 965 1213 1709
∗150 is the size of ring generator used for ethernet in table 7.3

one gate equivalent corresponds to the area of a 2-input NAND gate. The area overhead

strongly depends on the values of the parameters used and it is relatively low in all

methods. In general the hardware overhead of the proposed method is larger than OSH

but lower than dynamic reseeding.

We have to note that the hardware overhead of the proposed decompressors does not

depend on the size of the core under test, but on the dictionary size, the number of

codewords, the block size and the number of scan chains n and scan chain groups k.

As it was shown in previous studies ([60, 72]) a relatively small block size in the range

[8 − 16] and a small number of codewords and dictionary entries in the range [8 − 32]

suffice for high compression. In addition, the value of k is decided by the test engineer

and it can be always in the range [1 − 16] (the value of k = 16 is already very high). In

addition, the overhead increases linearly with k, n. Therefore, the hardware overhead of

the decompressors is not expected to increase for even larger circuits than those reported

in Table 7.6. In addition, as it is shown in Tables 7.3, 7.4 the largest circuit, the Ethernet,

which is almost one order of magnitude larger than most of the rest circuits, gives the

best results. Therefore the proposed encoding method is expected to scale very well even

for larger circuits.

IP-Cores and Multi-Core Experiments

In order to show the effectiveness of the proposed method for pre-computed test sets of

IP cores, we applied it on a pre-compacted test set of the largest circuit, the Ethernet.

Note that in the case of IP-cores, pre-computed and most likely pre-compacted test sets

are provided to the test engineer of the SoC. The size of the compacted test set was 11.6

Mbits (1 Mbit = 106 bits) and after applying the proposed method the TDV dropped by

a factor higher than 50x and reached the value of 221.7 Kbits. The number of specified

bits of the initially generated (and highly compacted) test set is 263.8 Kbits which clearly

show that the proposed method succeeded to reduce the test data volume below this

number which is a lower bound for most of the compression techniques. The TSL was

1100 and the WTM value was 9.2% which are both very low. The TDV of the OSH was

found to be more than 5 times higher than that of the proposed method, and specifically

it is equal to 1246.7K. We note that LPDR technique is not applicable in this case as the

large variation of the specified bits in the test set requires the use of unrealistically large

(in the range of thousand of cells) ring generators. It is also worth noting that despite

159

the fact that this is a very compacted test set and thus the proposed pre-merging process

has no effect, the compressed TDV of the proposed method is very close to that shown

in Table 7.3 which was computed using non-compacted test sets that offer higher degrees

of freedom in the encoding process. So, we conclude that the proposed method is very

efficient for both IP and non-IP cores.

In the last experiment we study the performance of the proposed method in a multi-

core SoC. To this end we synthesized a hypothetical SoC consisting of all the cores pre-

sented in Table 7.3. For simplicity we assume that all cores are tested in a non-overlapping

manner while concurrency can be straightforwardly applied if multiple decompressors are

available. In order to show the effectiveness of the proposed technique even in the extreme

case that only one decompression unit is available for the entire SoC, we used a single

decompression unit for all the cores and we kept the FSM of the decompression archi-

tecture common in all cases i.e. the same codewords were used for all cores (note that

any test scenario with multiple decompressors will give an even better solution in terms

of compression and test application time). For each of the cores we assumed a different

dictionary which was optimized to the particular characteristics of the core. The overall

TDV is equal to 529.9Kbits. The overhead in that case was found to be less than 0.5% of

the overhead of the SoC. In the case that a different decompressor is used for every core

(optimizing thus the FSM and TDV for each particular core separately) the hardware

overhead increases to the 3% of the SoC. Therefore, the shared decompressor offers very

high TDV benefits at a very small area cost, and thus offers a very compelling solution

for testing multicore SoCs.

7.3 Conclusions

In this Chapter a new decompression scheme and a novel encoding method which can

be combined with various decompressors to offer low shift power, high unmodeled de-

fect coverage and high compression was proposed. Extensive experiments showed that

when the proposed method is combined with state-of-the-art linear and statistical code-

based decompressors, both compression and unmodeled defect coverage improve while

shift power is retained at very low levels. Especially when it is combined with statistical

code-basd decompresors then the results is a TRP method with low pin-count interface of

multi-core SoC that is very effective for cores of both known and unknown structure as it

offers the combined advantages of symbol-based and linear-based techniques. In addition,

the proposed scheme offers an effective low-cost solution (in terms of area overhead) for

testing multi-core SoCs. Therefore, we conclude that the proposed method can serve as

an attractive alternative to the widely adopted solution of linear-based encoding.

160

Chapter 8

Conclusions

The wide spreading of Very Deep Sub-Micron (VDSM) Integrated Circuits’ (ICs), the

architectural advancements that made possible the construction of Multi-core Systems-on-

Chips (MCSoCs), and the power dissipation limitations imposed by the post-Dennard era

created an explosive mixture for the upcoming manufacturing testing technologies. Failure

in sustaining manufacturing testing cost low can make these advancements collapse.

This dissertation has identified and targeted a number of factors that affect test cost:

test data volume, test application time, power consumption during testing and defect

coverage. Viable solutions that can reduce test cost by targeting these factors have been

proposed in the areas of algorithmic post ATPG X-filling algorithms and Test Resource

Partitioning architectures as well as compression algorithms. The efficiency of the pro-

posed solutions has been demonstrated with extensive experiments using academic bench-

mark circuit-suites. The contributions are summarized as follows:

1) A novel architecture was proposed to decrease both the test application time and

the ATE memory requirements of Test Set Embedding (TSE) techniques. Two new

types of Linear Feedback Shift Registers, the Single-State-Skip and the Variable-

State-Skip LFSRs were presented. Single-State-Skip LFSRs perform successive

jumps of constant length in their state sequence, while Variable-State-Skip LF-

SRs embed multiple State-Skip circuits and thus they are able to perform jumps of

variable length in the LFSR state sequence. By using Single-State-Skip LFSRs for

testing single or multiple identical cores and Variable-State-Skip LFSRs for testing

multiple non-identical cores we get the well-known high compression efficiency of

test set embedding with substantially reduced test sequences. The length of the

shortened test sequences approaches that of test data compression methods, thus

bridging the gap between test data compression and test set embedding methods.

2) An architecture and a compression method were proposed to reduce the average

switching activity during scan testing for linear-based decompressors. In partic-

ular, a new linear encoding method which offers both high compression and low

161

shift power dissipation at the same time was presented. A new low-cost, test-

set-independent scheme was also proposed which can be combined with any linear

decompressor for reducing the shift power during testing. Extensive experiments

show that the proposed method offers reduced test power dissipation, test sequence

length and test data volume at the same time, with very small area requirements.

3) A unified X-filling technique was proposed to reduce the average power requirements

of tests under peak power constraints and also to increase the unmodeled defect

coverage of the generated tests. The proposed method reduces shift power under

constraints on the peak power during response capture, and the power reduction

is comparable to that for the Fill-Adjacent X-filling method. At the same time,

this approach provides high defect coverage, which approaches and in many cases is

higher than that for random-fill, without increasing the pattern count.

4) LFSR reseeding approaches were proposed to increase the defect coverage of the

generated vectors. The proposed techniques are based on a new “output deviations”

metric for grading stuck-at patterns derived from LFSR seeds. They include a

window-based static reseeding method as well as a dynamic reseeding method. It

was shown that, compared to standard compression-driven LFSR reseeding and

a previously proposed output-deviation-based method, higher defect coverage is

obtained using stuck-at test cubes without any loss of compression.

5) A Test Resource Partitioning architecture was proposed that reduces power dissipa-

tion during testing and also increases the unmodeled defect coverage of the generated

patterns. The scheme can be combined with existing linear-based and code-based

decompressors to increase their unmodeled defect coverage and almost totally elim-

inate control data for low power testing. The application of the scheme on Optimal

Selective Huffman provides the advantages of both symbol-based and linear-based

techniques and offers a very attractive unified solution that removes the barriers of

existing test data compression techniques. In addition, it favors multi-site testing

as it requires a very low pin-count interface to the Automatic Test Equipment. Fi-

nally, contrary to existing techniques, it provides an integrated solution for testing

MCSoCs, as it is suitable for cores of both known and unknown (IP) structure that

usually co-exist in MCSoCs.

162

Bibliography

[1] IWLS’05 circts., online: http://www.iwls.org/iwls2005/benchmarks.html.

[2] “Test and test equipment,” in Internation Technology Roadmap of Semiconductors,

2007.

[3] “Yield enhancement,” in Internation Technology Roadmap of Semiconductors, 2011.

[4] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design. IEEE Press, Piscataway, NJ, 1994.

[5] N. Ahmed, M. Tehranipour, and M. Nourani, “Low power pattern generation for

bist architecture,” in Circuits and Systems, 2004. ISCAS ’04. Proceedings of the

2004 International Symposium on, vol. 2, 2004, pp. II–689–92 Vol.2.

[6] R. Aitken, “Nanometer technology effects on fault models for ic testing,” IEEE

Computer, vol. 32, no. 11, pp. 46–51, 1999.

[7] K. J. Balakrishnan and N. A. Touba, “Improving linear test data compression,”

IEEE Trans. Comput.-Aided Des., vol. 14, no. 11, pp. 1227–1237, 2006.

[8] S. Balatsouka, V. Tenentes, X. Kavousianos, and K. Chakrabarty, “Defect aware

x-filling for low-power scan testing,” in Proc. DATE, 2010, pp. 873–878.

[9] P. Bardell, “Design considerations for parallel pseudorandom pattern generators,”

Journal of Electronic Testing, vol. 1, no. 1, pp. 73–87, 1990. [Online]. Available:

http://dx.doi.org/10.1007/BF00134016

[10] C. Barnhart, V. Brunkhorst, F. Distler, O. Farnsworth, B. Keller, and B. Koene-

mann, “Opmisr: the foundation for compressed atpg vectors,” in Test Conference,

2001. Proceedings. International, 2001, pp. 748–757.

[11] K. Basu and P. Mishra, “Test data compression using efficient bitmask and dictio-

nary selection methods,” IEEE Trans. Very Large Scale Integr., vol. 18, no. 9, pp.

1277–1286, Sep. 2010.

[12] I. Bayraktaroglu and A. Orailoglu, “Concurrent application of compaction and com-

pression for test time and data volume reduction in scan designs,” Computers, IEEE

Transactions on, vol. 52, no. 11, pp. 1480–1489, 2003.

163

[13] ——, “Test volume and application time reduction through scan chain conceal-

ment,” in Proc. DAC, 2001, pp. 151–155.

[14] J. Bedsole, R. Raina, A. Crouch, and M. S. Abadir, “Very low cost testers: Oppor-

tunities and challenges,” IEEE Des. Test, vol. 18, no. 5, pp. 60–69, Sep. 2001.

[15] S. Bose, H. Grimes, and V. Agrawal, “Delay fault simulation with bounded gate

delay mode,” in Test Conference, 2007. ITC 2007. IEEE International, 2007.

[16] M. L. Bushnell and V. D. Agrawal, Esentials of Electronic Testing for Digital Mem-

ory and Mixed-Signal VLSI Circuits. Kluwer Academic Publishers, 2000.

[17] K. Butler, J. Saxena, A. Jain, T. Fryars, J. Lewis, and G. Hetherington, “Minimizing

power consumption in scan testing: pattern generation and dft techniques,” in Test

Conference, 2004. Proceedings. ITC 2004. International, 2004, pp. 355–364.

[18] A. Chandra and K. Chakrabarty, “Low-power scan testing and test data compres-

sion for system-on-a-chip,” IEEE Trans. on CAD, vol. 21, no. 5, pp. 597–604, may

2002.

[19] A. Chandra and R. Kapur, “Bounded adjacent fill for low capture power scan test-

ing,” in Proc. VTS, 2008, pp. 131–138.

[20] A. Chandra and K. Chakrabarty, “System-on-a-chip test-data compression and de-

compression architectures based on golomb codes,” IEEE Trans. Comput.-Aided

Des., pp. 355–368, 2001.

[21] ——, “Test data compression and test resource partitioning for system-on-a-chip

using frequency-directed run-length (fdr) codes,” IEEE Trans. Comput., vol. 52,

no. 8, pp. 1076–1088, Aug. 2003.

[22] ——, “A unified approach to reduce soc test data volume, scan power and testing

time,” IEEE Trans. Comput.-Aided Des., vol. 22, no. 3, pp. 352–363, Mar. 2003.

[23] J.-Y. Chang, C.-W. Tseng, C.-M. Li, M. Purtell, and E. McCluskey, “Analysis of

pattern-dependent and timing-dependent failures in an experimental test chip,” in

Test Conference, 1998. Proceedings., International, 1998, pp. 184–193.

[24] B.-H. Chen, W.-C. Kao, B.-C. Bai, S.-T. Shen, and J. Li, “Response inversion scan

cell (risc): A peak capture power reduction technique,” in Asian Test Symposium,

2007. ATS ’07. 16th, 2007, pp. 425–432.

[25] K.-T. Cheng, “Redundancy removal for sequential circuits without reset states,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

vol. 12, no. 1, pp. 13–24, 1993.

164

[26] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, P. Szczerbicki, and J. Tyszer,

“Low power compression of incompatible test cubes,” in Proc. ITC, 2010, pp. 1–10.

[27] ——, “Deterministic clustering of incompatible test cubes for higher power-aware

edt compression,” IEEE Trans. Comput.-Aided Des., vol. 30, no. 8, pp. 1225–1238,

Aug. 2011.

[28] D. Czysz, G. Mrugalski, J. Rajski, and J. Tyszer, “Low power embedded determin-

istic test,” in VLSI Test Symposium, 2007. 25th IEEE, 2007, pp. 75–83.

[29] D. Czysz, M. Kassab, X. Lin, G. Mrugalski, J. Rajski, and J. Tyszer, “Low-power

scan operation in test compression environment,” IEEE Trans. Comput.-Aided Des.,

vol. 28, no. 11, pp. 1742–1755, 2009.

[30] D. Czysz, G. Mrugalski, N. Mukherjee, J. Rajski, and J. Tyszer, “On compaction

utilizing inter and intra-correlation of unknown states,” IEEE Trans. Comput.-Aided

Des., vol. 29, no. 1, pp. 117–126, 2010.

[31] D. Czysz, G. Mrugalski, N. Mukherjee, and J. R. J. Tyszer, “Compression based on

deterministic test vector clustering of incompatible test cubes,” in Proc. ITC, 2009,

pp. 1–10.

[32] D. Czysz, G. Mrugalski, J. Rajski, and J. Tyszer, “Low-power test data applica-

tion in edt environment through decompressor freeze,” IEEE Trans. Comput.-Aided

Des., vol. 27, no. 7, pp. 1278–1290, Jul. 2008.

[33] E. D. Kaseridis, Kalligeros, X. Kavousianos, and D. Nikolos, “Efficient multiphase

test set embedding for scan-based testing,” in Inf. Pap. Dig. ETS, 2005, pp. 147–

150.

[34] P. Darling, “From sand to silicon - the making of a chip,” Intel Process,

http://newsroom.intel.com/docs/DOC-2476, feb. 9, 2013.

[35] S. DasGupta, P. Goel, R. G. Walther, and T. W. Williams, “A variation of lssd and

its implications on design and test pattern generation in vlsi,” in ITC, 1982, pp.

63–66.

[36] R. Dennard, “Design of ion-implanted mosfets with very small physical dimensions,”

IEEE Journal of Solid State Circuits, vol. SC-9, no. 5, pp. 256–268, April 1974.

[37] B. Dervisoglu and G. Stong, “Design for testability using scanpath techniques for

path-delay test and measurement,” in Test Conference, 1991, Proceedings., Inter-

national, 1991, pp. 365–374.

[38] J. Dworak, M. Grimaila, S. Lee, L.-C. Wang, and M. Mercer, “Enhanced do-re-me

based defect level prediction using defect site aggregation-mpg-d,” in Test Confer-

ence, 2000. Proceedings. International, 2000, pp. 930–939.

165

[39] E. B. Eichelberger and T. W. Williams, “A logic design structure for lsi testability,”

in Proceedings of the 14th Design Automation Conference, ser. DAC ’77, 1977, pp.

462–468.

[40] A. H. El-Maleh and R. H. Al-Abaji, “Extended frequency-directed run-length code

with improved application to system-on-a-chip test data compression,” in Proc.

ICECS, 2002, pp. 449–452.

[41] J. Emmert, C. Stroud, and J. Bailey, “A new bridging fault model for more accurate

fault behavior,” in AUTOTESTCON Proceedings, 2000 IEEE, 2000, pp. 481–485.

[42] F. Ferguson and J. Shen, “A cmos fault extractor for inductive fault analysis,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

vol. 7, no. 11, pp. 1181–1194, 1988.

[43] S. Gerez, Algorithms for VLSI Design Automation. John Wiley & Sons, 1999.

[44] P. Girard, “Low power testing of vlsi circuits: problems and solutions,” in Quality

Electronic Design, 2000. ISQED 2000. Proceedings. IEEE 2000 First International

Symposium on, 2000, pp. 173–179.

[45] P. Girard, L. Guiller, C. Landrault, and S. Pravossoudovitch, “A test vector in-

hibiting technique for low energy bist design,” in VLSI Test Symposium, 1999.

Proceedings. 17th IEEE, 1999, pp. 407–412.

[46] D. Gizopoulos, A. Pachalis, Y. Zorian, and M. Psarakis, “An effective bist scheme

for arithmetic logic units,” in Test Conference, 1997. Proceedings., International,

1997, pp. 868–877.

[47] D. Gizopoulos, A. Paschalis, and Y. Zorian, “An effective built-in self-test scheme

for parallel multipliers,” Computers, IEEE Transactions on, vol. 48, no. 9, pp. 936–

950, 1999.

[48] L. Goldstein, “Controllability/observability analysis of digital circuits,” Circuits and

Systems, IEEE Transactions on, vol. 26, no. 9, pp. 685–693, 1979.

[49] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici, “Variable-length input huffman

coding for system-on-a-chip test,” IEEE Trans. Comput.-Aided Des., vol. 22, no. 6,

pp. 783–796, Jun. 2003.

[50] P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Synchronization overhead in soc com-

pressed test,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 13, no. 1, pp. 140–152, 2005.

[51] I. Hamzaoglu and J. Patel, “Reducing test application time for full scan embedded

cores,” in Fault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth Annual

International Symposium on, 1999, pp. 260–267.

166

[52] H. Hashempour, F. Meyer, F. Lombardi, and F. Karimi, “Hybrid multisite testing

at manufacturing,” in Test Conference, 2003. Proceedings. ITC 2003. International,

vol. 1, 2003, pp. 927–936.

[53] S. Hellebrand, H.-G. Liang, and H. Wunderlich, “A mixed mode bist scheme based

on reseeding of folding counters,” in Test Conference, 2000. Proceedings. Interna-

tional, 2000, pp. 778–784.

[54] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois, “Built-in

test for circuits with scan based on reseeding of multiple-polynomial linear feedback

shift registers,” Computers, IEEE Transactions on, vol. 44, no. 2, pp. 223–233, 1995.

[55] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J. Ra-

jski, “Logic bist for large industrial designs: real issues and case studies,” in Test

Conference, 1999. Proceedings. International, 1999, pp. 358—367.

[56] D. Huffman, “Run-length encoding,” IEEE Trans. Info Theory, no. IT-12, pp. 399–

401, Jul.

[57] ——, “A method for the construction of minimum-redundancy codes,” Proc. of the

IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952.

[58] B. Ireland and J. Marshall, “Matrix method to determine shift-register connections

for delayed pseudorandom binary sequences,” Electronics Letters, vol. 4, no. 21, pp.

467–468, 1968.

[59] J. T. Janusz Rajski, Arithmetic built-in self-test for embedded systems. Prentice-

Hall, Englewood Cliffs, NJ, 1998.

[60] A. Jas, J. Ghosh-Dastidar, M.-E. Ng, and N. A. Touba, “An efficient test vector

compression scheme using selective huffman coding,” IEEE Trans. Comput.-Aided

Des., vol. 22, no. 6, pp. 797–806, Jun. 2003.

[61] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector compres-

sion/decompression using statistical coding,” in Proc. VTS, 1999, pp. 114–120.

[62] A. Jas and N. Touba, “Test vector decompression via cyclical scan chains and its

application to testing core-based designs,” in Test Conference, 1998. Proceedings.,

International, 1998, pp. 458–464.

[63] D. Kagaris and S. Tragoudas, “On the design of optimal counter-based schemes for

test set embedding,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 18, no. 2, pp. 219–230, 1999.

[64] S. Kajihara, K. Ishida, and K. Miyase, “Test vector modification for power reduction

during scan testing,” in VLSI Test Symposium, 2002. (VTS 2002). Proceedings 20th

IEEE, 2002, pp. 160–165.

167

[65] E. Kalligeros, D. Kaseridis, X. Kavousianos, and D. Nikolos, “Reseeding-based test

set embedding with reduced test sequences,” in Quality of Electronic Design, 2005.

ISQED 2005. Sixth International Symposium on, 2005, pp. 226–231.

[66] E. Kalligeros, X. Kavousianos, and D. Nikolos, “Multiphase bist: a new reseeding

technique for high test-data compression,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 23, no. 10, pp. 1429–1446, 2004.

[67] ——, “Efficient multiphase test set embedding for scan-based testing,” in Quality

Electronic Design, 2006. ISQED ’06. 7th International Symposium on, 2006, pp.

432–438.

[68] R. Kapur, R. Chandramouli, and T. W. Williams, “Strategies for low-cost test,”

IEEE Des. Test, vol. 18, no. 6, pp. 47–54, Nov. 2001.

[69] X. Kavousianos and K. Chakrabarty, “Generation of compact test sets with high

defect coverage,” in Proc. DATE, 2009, pp. 1130–1135.

[70] X. Kavousianos, K. Chakrabarty, E. Kalligeros, and V. Tenentes, “Defect coverage-

driven window-based test compression,” in Test Symposium (ATS), 2010 19th IEEE

Asian, 2010, pp. 141–146.

[71] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel huffman coding: An

efficient test-data compression method for ip cores,” IEEE Trans. Comput.-Aided

Des., vol. 26, no. 6, pp. 1070–1083, Jun. 2007.

[72] ——, “Optimal selective huffman coding for test-data compression,” IEEE Trans.

on Comput., vol. 56, no. 8, pp. 1146–1152, Aug. 2007.

[73] ——, “Multilevel-huffman test-data compression for ip cores with multiple scan

chains,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 16, no. 7, pp. 926–931, 2008.

[74] ——, “Test data compression based on variable-to-variable huffman encoding with

codeword reusability,” IEEE Trans. Comput.-Aided Des., vol. 27, no. 7, pp. 1333–

1338, 2008.

[75] X. Kavousianos, V. Tenentes, K. Chakrabarty, and E. Kalligeros, “Defect-oriented

lfsr reseeding to target unmodeled defects using stuck-at test sets,” Very Large Scale

Integration (VLSI) Systems, IEEE Transactions on, vol. 19, no. 12, pp. 2330–2335,

2011.

[76] H. Ko and N. Nicolici, “Automated scan chain division for reducing shift and cap-

ture power during broadside at-speed test,” Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, vol. 27, no. 11, pp. 2092–2097, 2008.

168

[77] B. Koenemann, “Lfsr-coded test patterns for scan designs,” in Proc. ETS/ETC,

VDE Verlag, 1991, pp. 237–242.

[78] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and D. Wheater,

“A smartbist variant with guaranteed encoding,” in Test Symposium, 2001. Pro-

ceedings. 10th Asian, 2001, pp. 325–330.

[79] C. V. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using partial lfsr

reseeding,” in Proc. ITC, 2001, pp. 885–893.

[80] ——, “Achieving high encoding efficiency with partial dynamic lfsr reseeding,” ACM

Trans. Des. Autom. of Electr. Syst., vol. 9, no. 4, pp. 500–516, Oct. 2004.

[81] C. V. Krishna and N. Touba, “Reducing test data volume using lfsr reseeding with

seed compression,” in Test Conference, 2002. Proceedings. International, 2002, pp.

321–330.

[82] ——, “Adjustable width linear combinational scan vector decompression,” in Com-

puter Aided Design, 2003. ICCAD-2003. International Conference on, 2003, pp.

863–866.

[83] H. K. Lee and D. S. Ha, “Atalanta: An efficient atpg for combinational circuits,” in

TR, Dep’t of Electrical Eng., Virginia Polytechnic Institute and State University,

1993, pp. 93–12.

[84] J. Lee and N. A. Touba, “Lfsr-reseeding scheme achieving low-power dissipation

during test,” IEEE Trans. Comput.-Aided Des., vol. 26, no. 2, pp. 396–401, Feb.

2007.

[85] J. Lee and N. Touba, “Low power test data compression based on lfsr reseeding,”

in Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004. Pro-

ceedings. IEEE International Conference on, 2004, pp. 180–185.

[86] K.-J. Lee, J.-J. Chen, and C.-H. Huang, “Using a single input to support multiple

scan chains,” in Computer-Aided Design, 1998. ICCAD 98. Digest of Technical

Papers. 1998 IEEE/ACM International Conference on, 1998, pp. 74–78.

[87] L.-J. Lee, W.-D. Tseng, R.-B. Lin, and C.-H. Chang, “2n pattern run-length for

test data compression,” Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, vol. 31, no. 4, pp. 644–648, 2012.

[88] Y. Levendel and P. Menon., “Transition faults in combinational circuits: input

transition test generation and fault simulation,” in Proc. Fault Tolerant Computing

Symp., July 1986, pp. 278–283.

169

[89] J. Li, Q. Xu, Y. Hu, and X. Li, “ifill: An impact-oriented x-filling method for shift-

and capture-power reduction in at-speed scan-based testing,” in Design, Automation

and Test in Europe, 2008. DATE ’08, 2008, pp. 1184–1189.

[90] L. Li and K. Chakrabarty, “Test data compression using dictionaries with fixed-

length indices [soc testing],” in VLSI Test Symposium, 2003. Proceedings. 21st,

2003, pp. 219–224.

[91] ——, “Test set embedding for deterministic bist using a reconfigurable interconnec-

tion network,” Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, vol. 23, no. 9, pp. 1289–1305, 2004.

[92] L. Li, K. Chakrabarty, S. Kajihara, and S. Swaminathan, “Efficient space/time

compression to reduce test data volume and testing time for ip cores,” in Proc.

ICVD, 2005, pp. 53–58.

[93] W. Li, S. Reddy, and I. Pomeranz, “On reducing peak current and power during

test,” in VLSI, 2005. Proceedings. IEEE Computer Society Annual Symposium on,

2005, pp. 156–161.

[94] C.-H. Lin and C.-W. Jen, “Low power parallel huffman decoding,” Electronics Let-

ters, vol. 34, no. 3, pp. 240–241, Feb. 1998.

[95] C. J. Lin and S. Reddy, “On delay fault testing in logic circuits,” Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 6, no. 5, pp.

694–703, 1987.

[96] S.-P. Lin, C.-L. Lee, J.-E. Chen, J.-J. Chen, K.-L. Luo, and W.-C. Wu, “A multilayer

data copy test data compression scheme for reducing shifting-in power for multiple

scan design,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 15, no. 7, pp. 767–776, 2007.

[97] X. Lin, K.-H. Tsai, C. Wang, M. Kassab, J. Rajski, T. Kobayashi, R. Klingenberg,

Y. Sato, S. Hamada, and T. Aikyo, “Timing-aware atpg for high quality at-speed

testing of small delay defects,” in Test Symposium, 2006. ATS ’06. 15th Asian,

2006, pp. 139–146.

[98] S. Ma, P. Franco, and E. McCluskey, “An experimental chip to evaluate test tech-

niques experiment results,” in Test Conference, 1995. Proceedings., International,

1995, pp. 663–672.

[99] J. Marshall, B. Ireland, B. Bajoga, and K. Latawiec, “New method of generation

of shifted linear pseudorandom binary sequences,” Electrical Engineers, Proceedings

of the Institution of, vol. 122, no. 4, pp. 448–, 1975.

170

[100] P. Maxwell, R. Aitken, V. Johansen, and I. Chiang, “The effect on different test sets

on quality level prediction: when is 80% betterh than 90%?” in Test Conference,

1991, Proceedings., International, 1991, pp. 358–364.

[101] E. J. McCluskey, Logic design principles - with emphasis on testable semicustom

circuits, ser. Prentice Hall series in computer engineering. Prentice Hall, 1986.

[102] S. Mitra and K. S. Kim, “Xpand: an efficient test stimulus compression technique,”

Computers, IEEE Transactions on, vol. 55, no. 2, pp. 163–173, 2006.

[103] K. Miyase, S. Kajihara, and S. Reddy, “Multiple scan tree design with test vector

modification,” in Test Symposium, 2004. 13th Asian, 2004, pp. 76–81.

[104] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,

vol. 38, no. 8, April 1965.

[105] G. Mrugalski, J. Rajski, D. Czysz, and J. Tyszer, “New test data decompressor for

low power applications,” in Proc. DAC, 2007, pp. 539–544.

[106] G. Mrugalski, J. Rajski, and J. Tyszer, “Ring generators - new devices for embedded

test applications,” IEEE Trans. Comput.-Aided Des., vol. 23, no. 9, pp. 1306–1320,

Sept. 2004.

[107] G. Mrugalski, J. Tyszer, and J. Rajski, “Linear independence as evaluation crite-

rion for two-dimensional test pattern generators,” in VLSI Test Symposium, 2000.

Proceedings. 18th IEEE, 2000, pp. 377–386.

[108] S. Neophytou and M. K. Michael, “Test set generation with a large number of

unspecified bits using static and dynamic techniques,” IEEE Trans. Computers,

vol. 59, no. 3, pp. 301–316, 2010.

[109] ——, “Test pattern generation of relaxed n-detect test sets,” IEEE Trans. VLSI

Syst., vol. 20, no. 3, pp. 410–423, 2012.

[110] N. Nicolici and B. Al-Hashimi, Power-Constrained Testing of VLSI Circuits.

Kluwer Academic, Norwell, MA, 2003.

[111] M. Nourani and M. H. Tehranipour, “Rl-huffman encoding for test compression and

power reduction in scan applications,” ACM Trans. Des. Autom. of Electr. Syst.,

vol. 10, pp. 91–115, Jan. 2005.

[112] A. Pandey and J. Patel, “Reconfiguration technique for reducing test time and test

data volume in illinois scan architecture based designs,” in VLSI Test Symposium,

2002. (VTS 2002). Proceedings 20th IEEE, 2002, pp. 9–15.

[113] E. Park, M. Mercer, and T. Williams, “Statistical delay fault coverage and defect

level for delay faults,” in Test Conference, 1988. Proceedings. New Frontiers in

Testing, International, 1988, pp. 492–499.

171

[114] K. Parker and E. McCluskey, “Probabilistic treatment of general combinational

networks,” Computers, IEEE Transactions on, vol. C-24, no. 6, pp. 668–670, 1975.

[115] S. Patil and J. Savir, “Skewed-load transition test: Part ii, coverage,” in Test Con-

ference, 1992. Proceedings., International, 1992, pp. 714–722.

[116] W. H. M. Paul H. Bardell, “Self-testing of multichip logic modules,” in ITC, 1982,

pp. 200–204.

[117] I. Pomeranz and S. Reddy, “Transition path delay faults: A new path delay fault

model for small and large delay defects,” Very Large Scale Integration (VLSI) Sys-

tems, IEEE Transactions on, vol. 16, no. 1, pp. 98–107, 2008.

[118] B. Pouya and A. Crouch, “Optimization trade-offs for vector volume and test

power,” in Test Conference, 2000. Proceedings. International, 2000, pp. 873–881.

[119] R. Putman and R. Gawde, “Enhanced timing-based transition delay testing for

small delay defects,” in VLSI Test Symposium, 2006. Proceedings. 24th IEEE, 2006.

[120] W. Qiu, L.-C. Wang, D. Walker, D. Reddy, X. Lu, Z. Li, W. Shi, and H. Balachan-

dran, “K longest paths per gate (klpg) test generation for scan-based sequential

circuits,” in Test Conference, 2004. Proceedings. ITC 2004. International, 2004, pp.

223–231.

[121] J. Rajski, N. Tamarapalli, and J. Tyszer, “Automated synthesis of phase shifters for

built-in self-test applications,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 19, no. 10, pp. 1175–1188, 2000.

[122] J. Rajski and J. Tyszer, “Design of phase shifters for bist applications,” in VLSI

Test Symposium, 1998. Proceedings. 16th IEEE, 1998, pp. 218–224.

[123] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded deterministic test,”

IEEE Trans. Comput.-Aided Des., vol. 23, no. 5, pp. 776–792, 2004.

[124] W. Rao, I. Bayraktaroglu, and A. Orailoglu, “Test application time and volume

compression through seed overlapping,” in Design Automation Conference, 2003.

Proceedings, 2003, pp. 732–737.

[125] S. Reda and A. Orailoglu, “Reducing test application time through test data mu-

tation encoding,” in Proc. DATE, 2002, pp. 387–393.

[126] S. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz, “On test data volume reduction

for multiple scan chain designs,” in VLSI Test Symposium, 2002. (VTS 2002).

Proceedings 20th IEEE, 2002, pp. 103–108.

[127] S. Reddy, I. Pomeranz, and S. Kajihara, “Compact test sets for high defect cover-

age,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on, vol. 16, no. 8, pp. 923–930, 1997.

172

[128] S. Remersaro, X. Lin, S. Reddy, I. Pomeranz, and J. Rajski, “Scan-based tests

with low switching activity,” Design Test of Computers, IEEE, vol. 24, no. 3, pp.

268–275, 2007.

[129] S. Remersaro, X. Lin, Z. Zhang, S. Reddy, I. Pomeranz, and J. Rajski, “Preferred

fill: A scalable method to reduce capture power for scan based designs,” in Test

Conference, 2006. ITC ’06. IEEE International, 2006, pp. 1–10.

[130] P. Rosinger, P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Simultaneous reduction

in volume of test data and power dissipation for systems-on-a-chip,” Electronics

Letters, vol. 37, no. 24, pp. 1434–1436, 2001.

[131] M. Rudberg and L. Wanhammar, “High speed pipelined parallel huffman decoding,”

in Proc. ISCAS, 1997, pp. 2080–2083.

[132] L. P. S. C. Seth and V. D. Agrawal, “Predict-probabilistic estimation of digital

circuit testability,” in Intl. Symp. Fault-Tolerant Computing, 1985, pp. 220–225.

[133] S. Samaranayake, E. Gizdarski, N. Sitchinava, F. Neuveux, R. Kapur, and

T. Williams, “A reconfigurable shared scan-in architecture,” in VLSI Test Sym-

posium, 2003. Proceedings. 21st, 2003, pp. 9–14.

[134] K. Sankaralingam, R. Oruganti, and N. Touba, “Static compaction techniques to

control scan vector power dissipation,” in VLSI Test Symposium, 2000. Proceedings.

18th IEEE, 2000, pp. 35–40.

[135] J. Savir, “Skewed-load transition test: Part i, calculus,” in Test Conference, 1992.

Proceedings., International, 1992, pp. 705–713.

[136] J. Savir and S. Patil, “On broad-side delay test,” Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 2, no. 3, pp. 368–372, 1994.

[137] J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P. Sreeprakash,

and M. Hachinger, “A case study of ir-drop in structured at-speed testing,” in Proc.

ITC, vol. 1, Oct. 2003, pp. 1098–1104.

[138] L. Schafer, R. Dorsch, and H. Wunderlich, “Respin++ - deterministic embedded

test,” in Test Workshop, 2002. Proceedings. The Seventh IEEE European, 2002, pp.

37–44.

[139] S.-W. Seong and P. Mishra, “Bitmask-based code compression for embedded sys-

tems,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Transac-

tions on, vol. 27, no. 4, pp. 673–685, 2008.

[140] M. Shah and J. Patel, “Enhancement of the illinois scan architecture for use with

multiple scan inputs,” in VLSI, 2004. Proceedings. IEEE Computer society Annual

Symposium on, 2004, pp. 167–172.

173

[141] C. Shi and R. Kapur, “How power-aware test improves reliability and yield,” EE

Times EDA news online, 09/15/2004.

[142] N. Sitchinava, E. Gizdarski, S. Samaranayake, F. Neuveux, R. Kapur, and

T. Williams, “Changing the scan enable during shift,” in VLSI Test Symposium,

2004. Proceedings. 22nd IEEE, 2004, pp. 73–78.

[143] G. L. Smith, “Model for delay faults based upon paths,” in ITC, 1985, pp. 342–351.

[144] C. Stroud, A Designer’s Guide to Built-In Self-Test. Springer, Boston, MA, 2002.

[145] ——, “An automated bist approach for general sequential logic synthesis,” in Design

Automation Conference, 1988. Proceedings., 25th ACM/IEEE, 1988, pp. 3–8.

[146] S. Swaminathan and K. Chakrabarty, “On using twisted-ring counters for test set

embedding in bist,” in JETTA, vol. 17, no. 6, Dec. 2001, pp. 529–542.

[147] H. Tang, G. Chen, S. Reddy, C. Wang, J. Rajski, and I. Pomeranz, “Defect aware

test patterns,” in Design, Automation and Test in Europe, 2005. Proceedings, 2005,

pp. 450–455 Vol. 1.

[148] H. Tang, S. Reddy, and I. Pomeranz, “On reducing test data volume and test appli-

cation time for multiple scan chain designs,” in Test Conference, 2003. Proceedings.

ITC 2003. International, vol. 1, 2003, pp. 1079–1088.

[149] M. H. Tehranipoor, M. Nourani, and K. Chakrabarty, “Nine-coded compression

technique for testing embedded cores in socs,” IEEE Trans. Very Large Scale Integr.,

vol. 13, no. 6, pp. 719–731, Jun. 2005.

[150] M. Tehranipour, M. Nourani, K. Arabi, and A. Afzali-Kusha, “Mixed rl-huffman

encoding for power reduction and data compression in scan test,” in Circuits and

Systems, 2004. ISCAS ’04. Proceedings of the 2004 International Symposium on,

vol. 2, 2004, pp. II–681–4 Vol.2.

[151] V. Tenentes and X. Kavousianos, “Self-freeze linear decompressors for low power

testing,” in VLSI (ISVLSI), 2010 IEEE Computer Society Annual Symposium on,

2010, pp. 63–68.

[152] ——, “Low power test-compression for high test-quality and low test-data volume,”

in Test Symposium (ATS), 2011 20th Asian, 2011, pp. 46–53.

[153] ——, “Test-data volume and scan-power reduction with low ate interface for multi-

core socs,” in Computer-Aided Design (ICCAD), 2011 IEEE/ACM International

Conference on, 2011, pp. 747–754.

[154] ——, “High-quality statistical test-compression with narrow ate interface,” accepted

for publication in IEEE Transactions on Computer Aided Design of Integrated Cir-

cuits and Systems, 2013.

174

[155] V. Tenentes, X. Kavousianos, and E. Kalligeros, “State skip lfsrs: Bridging the

gap between test data compression and test set embedding for ip cores,” in Design,

Automation and Test in Europe, 2008. DATE ’08, 2008, pp. 474–479.

[156] ——, “Single and variable-state-skip lfsrs: Bridging the gap between test data com-

pression and test set embedding for ip cores,” IEEE Trans. Comput.-Aided Des.,

vol. 29, no. 10, pp. 1640–1644, Oct. 2010.

[157] V. Tenentes and X. Kavousianos, “Self-freeze linear decompressors: Test pattern

generators for low power scan testing,” in VLSI 2010 Annual Symposium, ser.

Lecture Notes in Electrical Engineering, N. Voros, A. Mukherjee, N. Sklavos,

K. Masselos, and M. Huebner, Eds. Springer Netherlands, 2011, vol. 105, pp.

217–230. [Online]. Available: http://dx.doi.org/10.1007/978-94-007-1488-5 13

[158] N. A. Touba, “Survey of test vector compression techniques,” IEEE Design & Test,

vol. 23, no. 4, pp. 294–303, Apr. 2006.

[159] N. Touba, “Circular bist with state skipping,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 10, no. 5, pp. 668–672, 2002.

[160] J. Tyszer, D. Czysz, G. Mrugalski, N. Mukherjee, and J. Rajski, “On deploying

scan chains for data storage in test compression environment,” IEEE Design &

Test, Early access article, 2012.

[161] H. Vergos, D. Nikolos, M. Bellos, and C. Efstathiou, “Deterministic bist for rns

adders,” Computers, IEEE Transactions on, vol. 52, no. 7, pp. 896–906, 2003.

[162] B. Vermeulen, C. Hora, B. Kruseman, E. Marinissen, and R. van Rijsinge, “Trends

in testing integrated circuits,” in Test Conference, 2004. Proceedings. ITC 2004.

International, 2004, pp. 688–697.

[163] E. Volkerink, A. Khoche, L. Kamas, J. Rivoir, and H. Kerkhoff, “Tackling test

trade-offs from design, manufacturing to market using economic modeling,” in Test

Conference, 2001. Proceedings. International, 2001, pp. 1098–1107.

[164] E. Volkerink, A. Khoche, and S. Mitra, “Packet-based input test data compression

techniques,” in Test Conference, 2002. Proceedings. International, 2002, pp. 154–

163.

[165] E. Volkerink, A. Khoche, J. Rivoir, and K.-D. Hilliges, “Test economics for multi-

site test with modern cost reduction techniques,” in VLSI Test Symposium, 2002.

(VTS 2002). Proceedings 20th IEEE, 2002, pp. 411–416.

[166] E. Volkerink and S. Mitra, “Efficient seed utilization for reseeding based compres-

sion,” in VLSI Test Symposium, 2003. Proceedings. 21st, 2003, pp. 232–237.

175

[167] H. Vranken, F. Hapke, S. Rogge, D. Chindamo, and E. Volkerink, “Atpg padding

and ate vector repeat per port for reducing test data volume,” in Proc. ITC, 2003,

pp. 1069–1078.

[168] J. Waicukauski, E. Lindbloom, B. K. Rosen, and V. Iyengar, “Transition fault

simulation,” Design Test of Computers, IEEE, vol. 4, no. 2, pp. 32–38, 1987.

[169] L.-C. Wang, M. Mercer, S. Kao, and T. Williams, “On the decline of testing effi-

ciency as fault coverage approaches 100%,” in VLSI Test Symposium, 1995. Pro-

ceedings., 13th IEEE, 1995, pp. 74–83.

[170] L.-T. Wang, X. Wen, H. Furukawa, F.-S. Hsu, S.-H. Lin, S.-W. Tsai, K. Abdel-

Hafez, and S. Wu, “Virtualscan: a new compressed scan technology for test cost

reduction,” in Test Conference, 2004. Proceedings. ITC 2004. International, 2004,

pp. 916–925.

[171] L.-T. Wang, K. Abdel-Hafez, X. Wen, B. Sheu, S. Wu, S.-H. Lin, and M.-T. Chang,

“Ultrascan: using time-division demultiplexing/multiplexing (tddm/tdm) with vir-

tualscan for test cost reduction,” in Test Conference, 2005. Proceedings. ITC 2005.

IEEE International, 2005, pp. 946–953.

[172] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: De-

sign for Testability (Systems on Silicon). San Francisco, CA, USA: Morgan Kauf-

mann Publishers Inc., 2006.

[173] S. Wang and S. K. Gupta, “Ds-lfsr: A new bist tpg for low heat dissipation,” in

Proceedings of the 1997 IEEE International Test Conference, ser. ITC ’97, 1997,

pp. 848–.

[174] S. Wang and S. Gupta, “Lt-rtpg: a new test-per-scan bist tpg for low heat dissipa-

tion,” in Test Conference, 1999. Proceedings. International, 1999, pp. 85–94.

[175] ——, “Lt-rtpg: a new test-per-scan bist tpg for low switching activity,” Computer-

Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 25,

no. 8, pp. 1565–1574, 2006.

[176] Z. Wang and K. Chakrabarty, “An efficient test pattern selection method for im-

proving defect coverage with reduced test data volume and test application time,”

in Test Symposium, 2006. ATS ’06. 15th Asian, 2006, pp. 333–338.

[177] ——, “Test data compression using selective encoding of scan slices,” Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 11, pp. 1429–

1440, 2008.

[178] ——, “Test-quality/cost optimization using output-deviation-based reordering of

test patterns,” IEEE Trans. Comput.-Aided Des., vol. 27, no. 2, pp. 352 –365, Feb.

2008.

176

[179] Z. Wang, K. Chakrabarty, and M. Goessel, “Test set enrichment using a probabilistic

fault model and the theory of output deviations,” in Design, Automation and Test

in Europe, 2006. DATE ’06. Proceedings, vol. 1, 2006, pp. 1–6.

[180] Z. Wang, H. Fang, K. Chakrabarty, and M. Bienek, “Deviation-based lfsr reseeding

for test-data compression,” IEEE Trans. Comput.-Aided Des., vol. 28, no. 2, pp.

259 –271, Feb. 2009.

[181] S. Ward, C. Schattauer, and N. Touba, “Using statistical transformations to im-

prove compression for linear decompressors,” in Defect and Fault Tolerance in VLSI

Systems, 2005. DFT 2005. 20th IEEE International Symposium on, 2005, pp. 42–50.

[182] X. Wen, K. Miyase, S. Kajihara, H. Furukawa, Y. Yamato, A. Takashima, K. Noda,

H. Ito, K. Hatayama, T. Aikyo, and K. Saluja, “A capture-safe test generation

scheme for at-speed scan testing,” in Test Symposium, 2008 13th European, 2008,

pp. 55–60.

[183] X. Wen, S. Kajihara, K. Miyase, T. Suzuki, K. Saluja, L.-T. Wang, K. Abdel-Hafez,

and K. Kinoshita, “A new atpg method for efficient capture power reduction during

scan testing,” in VLSI Test Symposium, 2006. Proceedings. 24th IEEE, 2006, pp. 6

pp.–65.

[184] X. Wen, K. Miyase, T. Suzuki, S. Kajihara, L.-T. Wang, K. Saluja, and K. Ki-

noshita, “Low capture switching activity test generation for reducing ir-drop in

at-speed scan testing,” J. Electron. Test., vol. 24, no. 4, pp. 379–391, Aug 2008.

[185] X. Wen, K. Miyase, T. Suzuki, Y. Yamato, S. Kajihara, L.-T. Wang, and K. Saluja,

“A highly-guided x-filling method for effective low-capture-power scan test genera-

tion,” in Computer Design, 2006. ICCD 2006. International Conference on, 2006,

pp. 251–258.

[186] X. Wen, Y. Yamashita, S. Morishima, S. Kajihara, L.-T. Wang, K. Saluja, and

K. Kinoshita, “Low-capture-power test generation for scan-based at-speed testing,”

in Test Conference, 2005. Proceedings. ITC 2005. IEEE International, 2005, pp. 10

pp.–1028.

[187] T. W. Williams and N. C. Brown, “Defect level as a function of fault coverage,”

IEEE Trans. Comput., vol. 30, no. 12, pp. 987–988, Dec. 1981.

[188] P. Wohl, J. Waicukauski, S. Patel, F. DaSilva, T. Williams, and R. Kapur, “Efficient

compression of deterministic patterns into multiple prpg seeds,” in Test Conference,

2005. Proceedings. ITC 2005. IEEE International, 2005, pp. 10 pp.–925.

[189] G. Wolff and C. Papachristou, “Multiscan-based test compression and hardware

decompression using lz77,” in Proc. ITC, 2002, pp. 331–339.

177

[190] A. Wurtenberger, C. Tautermann, and S. Hellebrand, “Data compression for mul-

tiple scan chains using dictionaries with corrections,” in Test Conference, 2004.

Proceedings. ITC 2004. International, 2004, pp. 926–935.

[191] H. Yan and A. Singh, “A new delay test based on delay defect detection within slack

intervals (ddsi),” Very Large Scale Integration (VLSI) Systems, IEEE Transactions

on, vol. 14, no. 11, pp. 1216–1226, 2006.

[192] M. Yi, H. Liang, L. Zhang, and W. Zhan, “A novel x-ploiting strategy for improv-

ing performance of test data compression,” Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, vol. 18, no. 2, pp. 324–329, 2010.

[193] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-pattern grading and pattern

selection for small-delay defects,” in VLSI Test Symposium, 2008. VTS 2008. 26th

IEEE, 2008, pp. 233–239.

[194] ——, “Test-pattern selection for screening small-delay defects in very-deep submi-

crometer integrated circuits,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 29, no. 5, pp. 760–773, 2010.

[195] N. Zacharia, J. Rajski, and J. Tyszer, “Decompression of test data using variable-

length seed lfsrs,” in VLSI Test Symposium, 1995. Proceedings., 13th IEEE, 1995,

pp. 426–433.

[196] G. Zeng and H. Ito, “Concurrent core test for soc using shared test set and scan

chain disable,” in Proc. DATE, 2006, pp. 1–6.

[197] Q. Zhou and K. Balakrishnan, “Test cost reduction for soc using a combined ap-

proach to test data compression and test scheduling,” in Proc. DATE, 2007, pp.

1–6.

[198] Y. Zorian, “Testing the monster chip,” Spectrum, IEEE, vol. 36, no. 7, pp. 54–60,

1999.

178

Author’s Publications

Book Chapters

1. V. Tenentes and X. Kavousianos, “Self-freeze linear decompressors: Test pattern

generators for low power scan testing,” in VLSI 2010 Annual Symposium, ser. Lec-

ture Notes in Electrical Engineering, N. Voros, A. Mukherjee, N. Sklavos, K. Mas-

selos, and M. Huebner, Eds. Springer Netherlands, 2011, vol. 105, pp. 217–230.

Journal Papers

2. V. Tenentes, X. Kavousianos and E. Kalligeros, “Single and Variable State Skip

LFSRs: Bridging the Gap Between Test Data Compression and Test Set Embedding

for IP Cores”, Transactions on Computer Aided Design of Integrated Circuits and

Systems (TCAD), vol. 29, no 10, pp. 1640–1644, Oct. 2010.

3. X. Kavousianos, V. Tenentes, K. Chakrabarty, and M. Kalligeros, “Defect-oriented

LFSR reseeding to target unmodeled defects using stuck-at test sets”, Transactions

on Very Large Scale Integrated Circuits & Systems (TVLSI), vol. 19, no 12, pp.

2330-2335, Dec. 2011.

4. V. Tenentes and X. Kavousianos, “High-Quality Statistical Test-Compression with

Narrow ATE Interface”, accepted for publication in Transactions on Computer

Aided Design of Integrated Circuits and Systems (TCAD).

Refereed Conference Papers

5. V. Tenentes, X. Kavousianos and E. Kalligeros “State Skip LFSRs: Bridging the

Gap between Test Data Compression and Test Set Embedding for IP Cores”, Design,

Automation & Test in Europe (DATE) Conference, pp. 474-479, March 2008.

6. S. Balatsouka, V. Tenentes and X. Kavousianos and K. Chakrabarty, “Defect Aware

X-Filling for Low-Power Scan Testing”, Design, Automation & Test in Europe

(DATE) Conference, pp. 873-878, March 2010.

7. V. Tenentes and X. Kavousianos, “Self-Freeze Linear Decompressors for Low Power

Testing”, Computer Society Annual Symposium on VLSI (ISVLSI), pp. 63-68, July

2010.

8. X. Kavousianos, K. Chakrabarty, E. Kalligeros and V. Tenentes, “Defect coverage-

driven window-based test compression”, 19th Asian Test Symposium (ATS), pp.

141-146, Dec. 2010.

9. V. Tenentes and X. Kavousianos, “Test-Data Volume and Scan-Power Reduction

with Low ATE Interface for Multi-Core SoCs”, International Conference on Computer-

Aided Design (ICCAD), session 10B, San Jose, Nov. 2011

10. V. Tenentes and X. Kavousianos, “Low Power Test-Compression for High Test-

Quality and Low Test-Data Volume”, 20th Asian Test Symposium (ATS), session

A2, New Delhi, Nov. 2011

Posters

11. V. Tenentes, X. Kavousianos and E. Kalligeros, “Shrinking the Application Time of

Test Set Embedding by Using Variable-State Skip LFSRs”, European Test Sympo-

sium(ETS), Inf. Digest., May 2008.

Workshops

12. V. Tenentes and A. Papanikolaou “Interactive field-directed floorplan prototyping

for 2D/3D IC’s,” D43D: 4th Design for 3D Silicon Integration Workshop, June

25th-27th 2012, Lausanne.

180

Short Vita

Vasileios Tenentes

Mr. Tenentes received his Bachelor degree in Computer Science

from the University of Piraeus (Greece) in 2003, and the M.S.

degree in Technologies and Applications from the Department

of Computer Science at the University of Ioannina (Greece) in

2007. He has worked as a Senior Developer for Voice over IP

applications with Siemens Enterprise Networks. He participated,

as a Software Engineer with Helic S.A, during the researching,

designing and implementation of an automation-tool for the de-

signing and simulation of Mixed-Signal Architectures. The tool

is now a successful commercial product. Then, Mr. Tenentes

started pursuing his Ph.D. in “Embedded Testing Architectures”

at the Department of Computer Science and Engineering of University of Ioannina, in

Greece, under a scholarship granted by ESF and National support. His research inter-

ests include electronics’ design automation tools in particular for test data compression

architectures, power consumption modeling, probabilistic simulation and timing analysis,

interactive distributed-optimization, test scheduling techniques as well as computational

geometry algorithms and synthetic biology. He is a member of the Test Technology Tech-

nical Council (TTTC) and a student member of the Institute of Electrical and Electronics

Engineers (IEEE) since 2007.

Grant Acknowledgement

This research has been co-financed by the European Union (European Social Fund – ESF)

and Greek national funds through the Operational Program “Education and Lifelong Learn-

ing” of the National Strategic Reference Framework (NSRF) – Research Funding Program:

Heracleitus II. Investing in knowledge society through the European Social Fund.

