Anoteleopatinéc Teyvinéc Luyypoviouol yio
xuothuata Awpotpalopevne Myvrunc

H ATAAKTOPIKH ATATPIBH

UTOBAAAETOL GTNY
optovelon amd TNy I'evint) Yuvéreuon Ewdwrc Xovieoncg

Tou TuAuatoc ITAnpogopinhic Eetactint Entpoony

Ao TOV

Nuorao Kariudvn

W PEPOC TWV Y TTOYREMOEWY YioL TN A Tou

ATAAKTOPIKOY AHIAQMATOY XTHN ITAHPO®OPIKH

Havsmctﬁpto Looavvivey

Mdwoc 2013

Toewernc XuyBovievtinh Emtpony| (ahgpofntind)

Baocihelog Anpaxonoviog, Avarinewthic Kadnyntic tou Turuatog IIinpogo-
o Tou Tavemotnuiou Iwavvivey

Aewvidag ITainog, Avaminpwthc Kadnyntic tou Tuduatoc IIinpogopixrc tou

Ve Ve
Hovemotnuiou Iwavvivey

IMavayinta Patoveou, Enixoven Kadnyrrteia tou Tuuatog Emotiung Yrolo-
yiotov Tou Havemotnulov Kertng

Entoperic E€etaotind) Emitpony (ahgafntixd)

Baocihewog Anpaxonoviog, Avarinewthic Kadnyntic tou Turuatog IIinpogo-
ot Tou Iavemotnuiou Iwavvivey

Arndotolog Zéppag, Enixoupoc Kadnyntic Tou Turuatoc ITknpogpopurc tou Io-

vemotnuiov Iwavvivey

Kwvotavtivog Mayxoltng, Egeuvntic I tou Ivotitodtou IIinpogopurc, I-
opuua Teyvoroylac xou Epeuvog

AnpAterog Nixoronouvhog, Kadnynthc tne Xyohirc Electronics Engineering and
Computer Science tou IHavemotnulov Queens University of Belfast

Acswvidag ITainoécg, Avamhnpntrhic Kadnyntric tov Tuduatog ITAnpogopuxrc tou

Ve Ve
Hovemotnuiou Iwavvivev

Evayyehio ITvtoved, Kadnyhtew tov Tufuatoc IIknpogpopurc tou Iavemotrui-
ou Twavvivey

IMavayinta Patoveou, Enixovpn Kadnyrteia tou Tuuatog Emotiung Yrolo-
yiotov Tou Havemotnulov Kertng

DEDICATION

This dissertation is dedicated to my family.

ACKNOWLEDGMENTS

First, I would like to sincerely thank my supervisor Panagiota Fatourou for motivating
and encouraging me during the entire period that I was conducting my PhD. I would
also like to thank the members of my advisory committee, Vassilios Dimakopoulos and
Leonidas Palios for their support. Many thanks to Dimitris Nikolopoulos for arranging
the provision of access to some of the multi-core machines of the Department of Computer
Science at Virginia Tech where I ran some of the experiments of this dissertation, and to
Michael Scott for providing me access to the Rochester’s Niagara 2 machine. I would also
like to thank the rest of the members of my examination committee, Kostas Magoutis,
Evaggelia Pitoura, and Apostolos Zarras.

Special thanks go to my friends Spiros Agathos, Eytychia Datsika, Vasilis Kagias,
Kostas Lillis, Thanos Mpiliris, Odysseas Petrocheilos, and Kostas Ramantas for support-
ing and encouraging me.

Finally, I would like to thank Empirikion Foundation for the moral and financial

support.

CONTENTS

3 Model

[4 Adaptive Wait-Free Synchronization Algorithms|

A1

The F-RedBlue algorithm|

[4.1.1 Algorithm description|

[4.1.2 Correctness proof|

12

Modified version of F-RedBlue that uses small base objects|

i3

Adaptive synchronization algorithms for large objects|

[> Practical Wait-Free Synchronization Algorithms|

5.1

The Sim algorithm| oo

[>.1.1 Algorithm description|

[>.1.2 Correctness proof| o

[5.1.3 An efficient implementation of COLLECT|

[>.1.4 Space and step complexity|

52

P-Sim: A practical version of Sim[. 0000

[5.2.1 Algorithm description|

[5.2.2 Correctness proof| o

[.2.3 Space and step complexity|o

i

14

22
22
26

28
28
29
34
o1
o4

[5.2.4 Making P-Sim adaptive|.o

[5.4 L-Sim: A synchronization algorithm for large objects]

[.4.1 Algorithm description|

[>.4.2 Correctness proof|

[5.5 SimStack: A wait-free implementation of a shared stack{

[5.5.1 Algorithm description|

[5.6 SimQueue: A wait-free implementation of a shared queue|

[5.6.1 Algorithm description|

[5.6.2 Correctness proof| o

Highly-Efficient Blocking Synchronization Algorithms|

(6.1 CC-Synch: An efficient synchronization algorithm for the CC model . . .

[6.1.1 Algorithm description|

[6.1.2 Time and space complexity]

[6.1.3 Required memory barriers| L.

[6.1.4 Correctness proof|

(6.2 H-Synch: A hierarchical synchronization algorithm based on CC-Synch| . .

(6.3 DSM-Synch: An eflicient synchronization algorithm for the DSM model| .

[6.3.1 Algorithm description|

[6.3.2 'Time and Space complexityl

[6.3.3 Required memory barriers|

[6.3.4 Correctness proof|

[6.4 Performance evaluation of CC-Synch, DSM-5ynch and H-Synch|

[6.5 Highly-efficient blocking data structures

[r__Conclusions and Future Work]

1l

121

. 121

122
124
124
125

. 140
. 142

142
143
143
145
156
163

167

LisT OF FIGURES

v

- =8| .. 30

[4.2 An example of an execution of F-RedBlue, where thread p, applies an op- |
eration to the simulated object.| 33

[4.3 An example of an execution of F-RedBlue.| 40
[5.1 An example execution ot the Sim algorithm.| 65
(6.2 Performance of P-Sim] 0oL 81
[>.3 Average combining degree of P-Sim and flat-combining for different num- |
bers of threads) 82

(5.4 Average number of failed CAS instructions per request for different numbers |
of threads.) 83

[5.5 Average number of atomic instructions (excluding Read and Write opera- |
tions) per request performed by P-Sim for different numbers of threads.| . . 83

(0.6 Performance of P-Sim for different values of random work.) 86
[5.7 Performance of P-Sim for large numbers of threads.| 87
[>.8 Performance of P-Sim when a large number of threads are initiated but |
only 10% are active.| 87

6.9 Performance of SimActSet). oo 88
[5.10 An example of an execution of L-Sim.| 96
[b.11 Performance of SimStackl). oo 106
[>.12 Performance of SimQueue.|o 119
6.1 Average throughput of CC-Synch and DSM-Synch on the Magny Cours |
| machine while simulating a Fetch&Multiply object. 157
(6.2 Average throughput ot CC-Synch, DSM-5ynch and H-Synch on the Niagara |
| 2 machine while simulating a Fetch&Multiply object.|. 159

[6.3 Average throughput of CC-Synch, DSM-5Synch and H-Synch on the Niagara 2 |
machine for n > 128 (over-subscribing) while simulating a Fetch&Multiply |
object.| L L 160

[6.4 Average degree of combining of CC-Synch, DSM-Synch and H-Synch while |
simulating a Fetch&Multiply object.| 161

[6.5 Average number of atomic instructions (CAS, Swap and Add) that CC-Synch, |
DSM-5Synch and H-Synch execute on the Niagara 2 machine while simulating |
a Fetch&Multiply object.| 162

[6.6 Average throughput of CC-Synch, DSM-Synch and H-Synch for ditterent |
values of random worklJ oo 163

[6.7 Average throughput of CC-Stack and DSM-5Stack on the Magny Cours ma- |
chinel 164

[6.8 Average throughput of CC-Stack, DSM-Stack and H-Stack the Niagara 2 |
machinel 165

(6.9 Average throughput of CC-Queue and DSM-Queue on the Magny Cours |
machine 165

[6.10 Average throughput of CC-Queue, DSM-Queue and H-Queue on the Niagara |
2 machinel 166

LisT OF TABLES

(1.1 Algorithms and their properties proposed in this dissertation.| 7
[2.1 ~ Wait-tree universal algorithms and their complexities.| 16
[>.1 Notation used in the proot ot Sim.|. 64
[>.2 Notation used in the proot of P-Sim.| 75

[>.3 Average cpu cycles spent in cpu stalls per request for P-Sim and flat- |

combining forn = 16.f.o 85
[5.4 Sensitivity of P-Sim to the backoft upper bound parameter.|. 86
[>.5 Notation used in the proot of L-Sim/|. 94
[6.1 Notation used in the proot of CC-Synch.| 127
[6.2 Notation used in the proot of DSM-Synch.| 145

[6.3 Cache misses and memory stalls per operation for n = 16 ot CC-Synch, |

P-Sim and flat-combining.| 163

vi

LIST OF ALGORITHMS

i Pseudocode for F-RedBluel00 31
[2 Pseudocode for Calculate and Propagate of F-RedBlue| 32
[Pseudocode for 5-RedBluel o000 52
{4 Pseudocode for Propagate and Calculate of S-RedBlue,| 53
5 Pseudocode for [S-RedBlue)o 00000 56
6 Pseudocode for BLS-RedBluel o000 57
[7 Pseudocode for Calculate of BIS-RedBluel. 58
[8 Pseudocode for SimJ 62
9 Data structures used in P-Sim. oL 72
(10 Pseudocode of P-Sim.J oo 73
(11 Data structures used in L-Sim and pseudocode for LSIMAPPLYOP.,| 91
12 Pseudocode for L-SimJ oo 92
(13 Implementation of POP and PUSH for SimStack.| 105

(14 Data structures for SimQueue, the implementation of ENQUEUE and DE- |

QUEUE in SimQueue, and the implementations (enqueue and dequeue) of |

the sequential versions of enqueue and dequeue.| 108
[15 Pseudocode for the Attempt in SiImQueue.| 109
(16 Pseudocode for EngLinkQueue and DeqLinkQueue in SimQueue.| 110
(17 Pseudocode for CC-Synch.| 123
[18 Pseudocode tor H-Synch.|o oo 141
(19 Pseudocode tor DSM-Synch.| 144

vil

ABSTRACT

Nikolaos D. Kallimanis.

Highly-Efficient Synchronization Techniques in Shared-Memory Distributed Systems.
PhD, Department of Computer Science, University of loannina, Greece.

May, 2013.

Thesis Supervisor: Vassilios Dimakopoulos.

Overcoming the difficulty of concurrent programming has never become more urgent
due to the proliferation of multicore machines and the imperative necessity of exploiting
their computational power. One way to achieve this is by designing efficient concurrent
data structures; common structures, like stacks and queues, are the most widely used inter-
thread communication mechanisms. Additionally, synchronization techniques are required
to efficiently execute, in a concurrent environment, those parts of modern applications that
require significant synchronization. Although the efficient parallelization of these parts is
not an easy task, Amdhal’s law implies that achieving this is necessary in order to avoid
significant reductions in speed-up.

In this dissertation three families of highly efficient synchronization algorithms, called
RedBlue, Sim and Synch are presented for executing concurrently blocks of code that have
originally been programmed to be executed sequentially in asynchronous shared-memory
distributed systems.

We start by presenting the RedBlue family of adaptive synchronization algorithms that
use common base objects (LL/SC or CAS and Read-Write) provided by the majority of the
real-world machines. The first of these algorithms achieves better time complexity than
all previously presented algorithms and it matches a lower bound presented by Jayanti in
PODC 1998. This algorithm uses large LL/SC base objects and it comprises the keystone

for the design of the other RedBlue algorithms that use smaller base objects. Specifically,

viil

the second algorithm significantly reduces the size of the required base objects. The last
two algorithms have been designed for large objects improving previously presented work
for large objects.

In the Sim family of synchronization algorithms, we aim at (1) getting better time
complexity by using base objects other than LL/SC and read-write (i.e. Swap, Add, etc)
and (2) competing in terms of performance with the state-of-the-art synchronization algo-
rithms (i.e. high performance spin-locks, etc), while having the nice theoretical properties
that RedBlue algorithms have. Sim algorithms achieve these goals.

Sim is a simple synchronization algorithm with constant step complexity using an Add
additional to an LL/SC object. Sim answers the open problem that was mentioned by
Jayanti in PODC 1998: “If shared-memory supports all of Read, Write, LL/SC, Swap,
CAS, Move, Add, Fetch&Multiply, would the Q(logn) lower bound still hold?”. Sim has
been implemented for a real shared-memory machine architecture. Its practical version,
called P-Sim, outperforms several state-of-the-art lock-based and lock-free synchronization
algorithms, while being wait-free, i.e. satisfying a stronger progress condition than all the
algorithms that it outperforms.

The Sim and RedBlue families of synchronization algorithms can be considered as
efficient wait-free implementations of the combining technique in which, one thread (the
combiner) in addition to its own operation, serves the operations of other active threads.
The RedBlue synchronization algorithms are adaptive and employ LL/SC (or CAS) and
read-write base objects, whereas Sim are much simpler algorithms that are highly-efficient
in practice and require Add base objects.

We further study blocking implementations of the combining technique with the goal
of discovering where their real performance power resides and whether or how perfor-
mance is impacted by ensuring some desired properties (e.g. fairness in serving requests).
This is accomplished by presenting two new blocking implementations of the combining
technique; the first (CC-Synch) is highly-efficient in systems that support coherent caches,
whereas the second (DSM-Synch) works better in cache-less NUMA machines. In compar-
ison to previous blocking implementations, the new implementations (1) provide bounds
on the number of remote memory references (RMRs) that they perform, (2) support a
stronger notion of fairness, and (3) use simpler and fewer base objects. CC-Synch and

DSM-Synch achieve better performance than P-Sim as well as any other algorithm pro-

X

vided in the past. The experimental analysis sheds light to the questions that were aimed
to be answered.

Several modern multicore systems organize the cores into clusters and provide fast
communication within the same cluster and much slower communication across clusters.
A hierarchical version of CC-Synch, called H-Synch, is presented, which exploits the hier-
archical communication nature of such systems to achieve better performance. Experi-
ments show that H-Synch significantly outperforms previous state-of-the-art hierarchical
approaches.

Based on P-Sim, CC-Synch, DSM-Synch, and H-Synch, we provide very efficient im-
plementations of common shared data structures like stacks and queues. Specifically, the
implementations SimStack and SimQueue that are based on P-Sim are wait-free, whereas
those based on CC-Synch, DSM-Synch and H-Synch are blocking but achieve better perfor-
mance than SimStack and SimQueue as well as any other algorithm provided in the past.
SimStack and SimQueue are the first stack and queue implementations that satisfy both
wait-freedom and high performance.

The results of this dissertation have been published in the following conferences/journals:
ACM PPoPP 2012, ACM SPAA 2011, DISC 2009 and Theory of Computing Systems Spe-
cial Issue on SPAA 2011.

EXKTETAMENH [IEPIAHUYH STA EAAHNIKA

Nudhaog Kahhpdvng tou Anunteiou xar tng Nixoréttag.

PhD, Turua IIAnpogoputc, Havemotiuo Iwavvivey.

Mcduog, 2013.

Arnoteheopatinéc Teyvinéc Luyypoviopol yio Yuotidota Awpotpalouevne Myvrunc.

Emprénwv: Baotheiog Anuoxonoviog.

H eldmiwon twv mohumbpnvewy eneepyaoTt®dy Ta TEAsUTalo YeoVio €YEL XUTACTAOEL €-
Cape TG avory ol TNV EXPETIAAEUOY TNG UTohoYIo TS WoyVog Toug. ‘BEvag tpomog yia
™V anodotixy| ¥efon cucTnudtwy ou PouciCovial oe mTohundpnvoug eMelepYacTEC Elval O
OYEBLOUOC amoBoTIXOVY BLopotpalOUEVLY (ToedhAnAat TEOOTEAGOIUWY omd TOARS VAuaTa)
OOUWY OEDOUEVLV (TE.X. oTOBOY o oupo’gv), ol oTtoleg yenoyonoolvTal we Evae VeUehlo-
ONG UMYAVIOUOS ETUXOWVOVIOG Xl GUYYEOVIOHOU UETOEY TWY YNUAT®wY Tou cuoThuatog. H
OMOTEAEOUATIXT TORAAANAT) EXTEAECT) TOMAGDY EQURUOY®Y ETUBAAEL TNV AVATTUE N OTOBOTIXCOVY
ahyoplduwy cLYyEOVIOUOU oL Yo GUYYEOVILOLY UTOTEAECUATIXG. TAL TUHUOTO TOV EQUOUOY MY
TOU EXTEAOUVTOL OF BlopopeTind emelepyaoTxd ototyela. O vouog tou Amdhal umodeixvi-
€L OTL 1 YPNOT AMOBOTIXDY TEYVIXOY CUYYPOVIOUOU elval amopodtnTn yiot Ty eniteuén tng
HEYLOTNG BUVATAC Tay UTNTAS UTOAOYLOUMY.

Ye auth) T SteBn TapouctdlovTon TEES OWOYEVEIEG VEWY aAYopliuwY GUYYEOVIoHOD
eloupeTind LPNATC andédoorg, ol onoieg ovoudlovton RedBlue, Sim xau Synch. Ou ev hoyw
oAy OEIIUOL GUYYEOVIOUOU YENOWOTO0VTAL Yot TNV TUOIAANAT EXTEAECT) XWOIXA TTOU EYEL
TEOYQUUMATIO TEL VoL EXTEAELTOL GELRLOXTL.

Apywd napousctdlovton ot Tpocopuootixol akybéprduol ouyypeoviopol RedBlue (ot mpo-
copuocTxol ahyopLiuoL €youv yeovixr) TOALTAOXOTNT avdhoY T TOU aELIHoD TWV EVEQY®Y

VNUAT®YV), ot omtolol TANEoVY TNV 1BtoTNTa eAeDlepT-avapovrc (wait-free) xau etvon xatdAAniol

X1

yior o0y ypove cuo Thuata Slapotpalouevne uvAune. O mpdtog and autolc Toug alyopld-
uoug, o ornoloc ovoudletan F-RedBlue, emtuyydver tnv xolbtepn ypovixry moAumhoxdtnta
am6 Toug alyopituoug Tou elyay TapouctacTel TakidTEpa Xt efvan Ypovixd BEATIOTOS 0ol
ETUTUYYAVEL TO AT OPLO YPOVIXY|G TOAUTAOXOTNTOS TOU TOEOUCLAGTNXE antd Tov Jayanti
oto PODC 1998. O oeltepog ahyodpripog tne owoyévelwns RedBlue ypnowonolel Baowd
avTixeipeva uxpotepou peyédouc amd 6t o F-RedBlue evd ol 600 teheutalor ahydprduol tne
owoyévewg RedBlue Behtidvouy teyvixég mou elyav mapouclac el TahdTERA.

Katd ty avdmtuén v Sim alyopiduwy cuyypoviouol, otdyog Atav (1) n tepartépon
UEleoN TNG YPOVIXHAC TOAUTAOXOTNTAUC YENOWOTOLWVTAS Boctnd avTIXEUEVOL DIUPOPETING TWV
LL/SC xo Read-Write (6mw¢ Swap xou Add Boowxd avtixeipeva) xou (2) 1 Bertiowon g
amoBoCHS TOUG, MOTE Ol EMOOCEC TOUg Vo elvon TETOlEC Tou vor avtaywvilovto 1 xon va
Eemepvolv TIC EMBOOELC TWY YENY0pdTEP®Y ahyopliuwy cuyyeoviouol (xAedouata, XTh)
€y 0VToC TOREAANAOL Ohat ToL xaAd VewpenTnd yopoxtnelotixd Twv RedBlue ohyoptduwy. H
OOYEVELL TwV Sim aAyopllumy EmTUYYdvEL GhOUS auToUC TOUC GTOYOUC.

O ahyoprduog ouyypoviogol Sim yenowonotel €va Add xon évor LL/SC Baoind avTixe(le-
vo xa emtuyydvet O(1) ypovixh molumhoxdtnra. O Sim akydprduoc amavtd oto avorytd
TeoBANUa Tov téinxe ond tov Jayanti oto PODC 1998, yio 10 av 10 xdtw 6pto Q(log(n))
oy Vel oTNV TERITTWON TToL 1) Slopoleal OUEVY) Vi utooTnellel Gha Toug TUTOUS BacINwY
avtixeyevewy Read, Write, LL/SC, Swap, CAS, Move, Add xau Fetch&Multiply. H ypo-
VXt TohuTAoXOTNTAL Tou Sim efvan oTodepr), XU ETOUEVKC 1) AMAVTNGCT GTO EPWTNUO oUTO
ebvor apvnTer). H mpoxtiny) éxdoon tou Sim akyopituou, mou ovoudletar P-Sim, Eemepvd
O€ EMOOCELS TOUG YPNYOROTEPOUS aAYORilUOUS GUYYPOVIONOU, EVE TauTOY POV TANEol TNV
Loy ueoTEEN oUVITXN TepUaTiopol (eAelepn avopovic).

Ov owoyéveleg Twv RedBlue xau Sim ahyoplduwy cuyypoviouol eivon ouctlactixd anodo-
TXEC UAOTIOLAGELS TNG oLvepYaTixrc Teyvixnc (combining technique), oty onola éva viua
elvon duvaTd var eQupUolel Aettovpyieg ot GAAWY VNUdT®Y BonlmVTAS Ta VoL TEAELWOGOLY TNV
extéheor| Touc. Ou RedBlue alydprduot ebvar mpocopuootixol xou yenotuonowoly LL/SC (n
CAS) Boowxd avtixelueva, eved ot Sim ahydprduol eivor amholotepol ahydprduol Touv Gty
TEAET ETULTUYYAVOLY TOAD UPMAES emBOCELS, 0AAd Yenotponotoly Add Boacixd avTixelueva.

Ye auth ™ owtelPn uehethAinxe oe Bddoc n cuvepyaTiX| TEYVIXT UE GTOYO TNV avd-
Ttugn epmodioTixedv (blocking) ahyoplduwy cuyypoviouol ue BeAtiwpévn anddoon xou Ue

YoEoXTNELO TIXG dixondTepne eCumneétnong. Avamtiydnxoay 0o VEol eunodioTixol alyoprd-

xii

HOL GUYYPOVIOUOU Tou avixouy aTtnyv owoyévela Synch. O mpdhtog ovoudleton CC-Synch xou
elvon aTdAANAOC yior unyavéS Tou utoo TNeiCouv GUVETEIC XPUQES UVAUES (coherent NUMA
machines), evé o debtepoc ovoudletar DSM-Synch xau eivon xatdhhnhoc yior tohuenedep-
Yoo téc ywplc xpupéc uvnueg (cache-less NUMA machines). Ye avtideon ye moloudtepoug
eUmOBIoTIX0UG GUVERYOTXOUS ahyoplduoug, ot mopamdve akybprduol (1) mpoopépouv dve
bpLot 6ToV 0pLIUd TWV ATOUOXPUOUEVWY OVAPORWY 6T uviun, (2) Teoocpépouy neptochdTe-
on Oxnoclvn xaTd TNV TEOCTEANCT] GTO XOWOYENOTO AVTIXEUEVO, Xt (3) YENOYOTOoL0Y
amholotepa Baowd avtixeipeva. O CC-Synch xou o DSM-Synch emituyydvouy xohidtepn
am6d00n amd Tov P-Sim, oahhd xou 6Aoug TouC TOAUOTEPOUS OAYORLIUOUSC GUY Y POVIGUOU.

ITohhd moAuTOpnVOL GUOTHUATO OPYAVYOLY To EMECEQYUCTIXG G TOLYEll OF OUADdES Xou
TOEEYOLY YR YORT ETXOWVWYIN PETOED TKV ETEEEQYACTIXWY GTOLYEY Tou Bploxovtoul oty
{dlar opdda, evey TopEyouy oYY ETOeVio HETOED TwY ETECERYUCTIXWDY OTOLYEIWY dlago-
CETIXOV OUdWY. e auTh TN dtatelfr] mapouctdleton o tepopynt| éxdoor tou CC-Synch
mou ovopdleton H-Synch. O H-Synch expetodiedetan tnv tepapy x| @OoTN TN Emixovwviog
TETOLWY CUC TNUATWY X0l 1) TELRUUATIXY TOU UEAETT €0eI&e OTL EEMEPVA xaTd TOAD o€ amddoo
ONEC TOUC TOALOTEPOUC LEQUEYIXOUE YO 1) AAYORLIUOUC GUYYEOVIOUOU.

Ye auth) dlateBt| Tapouctdlovton VAOTONOEL BlaotpalOUEVKY 0UPMY Xl GTOWBGOY
ToAD uPNAGOY emdooewy Tou Bacilovtar otoug P-Sim, CC-Synch, DSM-Synch xat H-Synch.
Ewdwotepa, ot uhonotfoelc SimStack xouw SimQueue mou BaciCovton otov P-Sim wavorotodv
™ oLV TEPUATIONOY EAelepn-avauovhc, eV exciveg mou Bactlovton otoug CC-Synch,
DSM-Synch xar H-Synch eivar eunodictuixéc add emtuyydvouy xahlTepec emBOCE oo
tov SimStack xou SimQueue ahhd xan Ohec TiC mohoudtepeg LAomoloelc. Ou SimStack xou
SimQueue eivan oL TPOTEC VAOTIOAGELC XOWVOYENC TV GTOYBMY X0l OUPMY TOLU TANEOLY TNV
OLOTNTO EAEVVERT-UVOUOVHC X0l THUTOYEOVAL ETLTUY Y AVOLY LPNAT amddooT).

To epeuvnind amoteréopato auTAC TNG BtaTEBNg Eyouy tapouctaciel oo Bledvh cuVE-
optar/meprodixd: ACM PPoPP 2012, ACM SPAA 2011, DISC 2009 xow Theory of Comput-
ing Systems Special Issue on SPAA 2011.

CHAPTER 1

INTRODUCTION

The last decade, the computer industry has made a significant turn towards developing
multicore systems which nowadays, are used in any computing device (from smartphones
to large scale multiprocessor machines). A wide variety of low cost commercial computing
devices are equipped with processors containing a dozen or more processing cores. Even
smartphones are equipped with multicore processors. In all of these devices, increased
performance can be achieved by exploiting parallelism; thus, harnessing the difficulty of
concurrent programming is currently very important.

Multicore systems are typical examples of distributed systems. A distributed system
consists of a set of computing entities (threads), which have the ability to communicate.
Distributed systems are distinguished in two main types depending on how the threads
communicate. The first type consists of systems where threads communicate through a
shared memory (shared memory systems), while the second type consists of systems that
their threads communicate by exchanging messages (message passing systems). In recent
years, a lot of research is conducted in shared memory systems due to the proliferation
of the multicore systems. A multicore system is usually a shared memory system, since
it consists of many tightly connected processing cores that communicate through shared
memory.

Several applications that could be parallelized contain parts whose parallelization re-

quires significant synchronization and coordination. Amdhal’s law [9] implies that failing

in parallelizing these parts may result in a significant limitation on the speed-up that
could be achieved. However, these parts usually require accesses to shared data and thus,
parallelizing them demands the design of low-overhead synchronization mechanisms; with-
out such efficient mechanisms the synchronization cost may overshadow any performance
gain that could result from the parallelization of these parts.

In a shared memory system, threads use shared atomic objects (or briefly atomic ob-
jects) as main communication mechanism. Every atomic object stores some information,
which is accessible to system’s threads via atomic operations. Intuitively, an atomic op-
eration is an operation that seems to be executed instantly at some point in time. Some
objects, called base objects, are provided by the hardware and therefore the hardware
guarantees that the supported operations are executed atomically.

The most common type of base objects are the Read-Write ones. A Read-Write base
object supports two operations for accessing and modifying the stored data: a) Read(O),
which returns the stored data of O without modifying it, and b) Write(O, v), which stores
value v in O and returns an acknowledgment.

Other types of base objects are CAS, LL/SC, Add, Swap, etc. Specifically, a CAS base
object O supports two operations: a) Read(O) that returns the stored value in O without
modifying it and b) CAS(O, V14, Vnew)- CAS(O, Void, Unew) compares the current value of O
with v, and if they are equal it stores the value v,,.,, in O and returns true. Otherwise, the
contents of O remain unchanged and false is returned. An Add object supports, in addition
to Read, the operation Add(O, x) that atomically adds some (positive or negative) value
x to object O. A Swap object O supports in addition to Read, the operation Swap(O,v)
which (atomically) writes in O the value v and returns the previous value of O. An LL/SC
object O supports the atomic operations a) LL(O) which returns the current value of O,
and b) SC(O,v) whose execution by a thread p; must follow the execution of LL(O) by p;
and changes the value of O to v if no other SC (by some other thread) has changed the
value of O since the execution of p;’s latest LL on O. If the value of O changes to v by
SC(O,v), true is returned; otherwise, the value of O does not change and false is returned.

Apparently, common base objects as those described above offer very simple opera-
tions for accessing stored data. The design of more complex atomic objects significantly

simplifies the parallel programming of most modern applications. Thus, the design and

implementation of such complex objects in software using simpler objects provided by the
hardware is of high importance.

Any atomic object can be easily implemented using locks. A thread that wishes to
perform an operation to the shared object, acquires the lock that is associated to the
shared object, executes the sequential code of the operation and releases the lock. This
methodology has been widely used in several real-world applications systems (e.g. data
base applications, etc). However, this technique has a serious drawback; a thread may
fail (i.e. stops its execution due to a software or hardware failure) while holding the lock
leading the system to a total failure. Properties that guarantee system’s progress are
desirable, since it is very important for a system to be fault tolerant. A property that
guarantees high tolerance in thread failures is wait-freedom [12], [16]. Wait-freedom ensures
that each thread finishes the execution of the code block it wants to execute within a finite
number of its own steps independently of the speed or the state of the other threads.

Atomic objects are arguably useful; however they are practical only in the case that
they are implemented efficiently. From a theory perspective, the main complexity mea-
sures are the step complexity of an implementation, and the number and size of the
base objects it employs. The step complexity of an operation is the maximum number
of shared memory accesses that any thread executes in order to complete the operation.

Some desirable properties when designing atomic objects in software are the following:
e The step complexity of every operation of the object should be as low as possible.
e The used base objects should support as fewer complex operations as possible.

e The needed base objects should have size equivalent to the size of hardware base

objects (usually less or equal to 128 bits).

e The implementation should be fault tolerant, thus wait-freedom property should be

satisfied.

A universal synchronization algorithm is a generic mechanism to implement any shared
object; it supports an operation, called APPLYOP, that takes as a parameter the sequential
implementation of any operation of the simulated object, and simulates its execution in a

concurrent environment. A universal algorithm provides the implementation of any shared

object for free. So, if efficient implementations of universal algorithms are provided then
the programming effort is highly reduced and high performance is achieved.

In the first part of this dissertation, a family of wait-free universal synchronization
algorithms, called RedBlue, is presented. In shared memory systems it is often the case
that the total number of threads n taking part in a computation is much larger than the
actual number of threads that concurrently access the shared object. For this reason, a
flurry of research [2, 3 T3], (14, [38] has been devoted to the design of adaptive algorithms
whose time complexity depends on k, the maximum number of threads that concurrently
access the shared object. All RedBlue algorithms are adaptive.

All RedBlue algorithms use two perfect binary trees of [log,n| + 1 levels each. The
first tree (red tree) is employed for the estimation of any encountered contention, while the
second tree (blue tree) is used for the synchronization with other threads when applying
an operation. In each of these trees, a thread is assigned a leaf node (and therefore also
a path from this leaf to the root node, or vice versa). A thread that wants to apply an
operation to the simulated object, traverses first its path in the red tree from the root
downwards looking for an unoccupied node in this path. Once it manages to occupy such
a node, it starts traversing the blue tree upwards from the isomorphic blue node to the
occupied red node, transferring information about its operation (as well as about other
active operations) towards the tree’s root. In this way, each operation traverses at most
O(min{k,logn}) nodes in each of the two trees. Once information about the operation
reaches the root, the operation is applied to the simulated object.

The first algorithm of the RedBlue family, which is called F-RedBlue, has time com-
plexity O(min{k,logn}) which is better than any previously presented algorithm using
LL/SC and read-write base objects. However, F-RedBlue uses big LL/SC base objects; thus
it is mainly of theoretical interest. A lower bound of Q(logn) on the time complexity of
wait-free universal synchronizations algorithms that use LL/SC base objects is presented
n [42]. It holds even if an infinite number of unbounded-size base objects is employed.
Therefore, F-RedBlue is optimal in terms of time complexity.

The second algorithm (S-RedBlue) of the RedBlue family is a slightly modified version
of F-RedBlue that uses smaller base objects and it is therefore practical in many cases.
S-RedBlue uses O(n) LL/SC base objects, one for each of the trees’ nodes and n+ 1 single-
writer base objects per thread. Each base object of the red tree has size [log, n]+1. Each

base object of the blue tree stores n bits, one for each thread. One of the base objects (the
base object corresponding to the blue root) is big. This base object is implemented by
single-word LL/SC objects using the technique presented in [44]. In current systems where
base objects of 128 bits are available, S-RedBlue works with single-word LL/SC objects for
up to 128 threads. In fact, even if n/128 = ¢ > 1, where ¢ is any constant, the algorithm
can be implemented by single-word LL/SC base objects with the same time complexity
(increased by a constant factor) using the implementation of multi-word LL/SC from
single-word LL/SC of [44].

Most of the universal algorithms presented in the past, as well as F-RedBlue and S-
RedBlue, copy the entire state of the object each time an update is to be performed on
it by some thread. This is not practical for large objects whose states may require a
large amount of storage to maintain. Anderson and Moir [I1] presented a lock-free and a
wait-free synchronization algorithm that is practical for large objects. Their algorithms
assume that the object state is represented as a continuous array which requires B data
blocks of size S each for its storage. Each operation can modify at most T blocks and
each thread can help at most M > 2T other threads. We combine some of the techniques
introduced in [I1] with the techniques employed by the RedBlue algorithms in order to
design two simple wait-free synchronization algorithms which have the nice properties
of the constructions in [I1] while achieving better time complexity and being adaptive.
The time complexity of the first algorithm is better than the synchronization algorithm
presented in [I1] but it does not assume an upper bound on the number of threads a
thread may help as the wait-free construction in [II] does. BLS-RedBlue exhibits all the
properties of the wait-free construction in [I1] and still achieves better time complexity. In
particular, its time complexity is similar to the time complexity of the wait-free algorithm
in [11] but with & replacing n and thus the algorithm is adaptive. The space complexity
of the algorithm is the same as that of the wait-free algorithm in [IT]. RedBlue algorithms
are much simpler than the constructions presented in [11], and they improve on time
complexity upon these algorithms. Table provides the exact time complexities and
the space overheads of all of the algorithms presented in this dissertation.

In the Sim family of synchronization algorithms, we aim at (1) getting better time
complexity by using base objects other than LL/SC and read-write (i.e. Swap, Add, etc) and

(2) competing in terms of performance with the state of the art synchronization algorithms

] Algorithm \ Base objects \ Progress property \ Published in ‘

Synchronization Algorithms

F-RedBlue CAS, rw wait-free DISC "09

S-RedBlue CAS, rw wait-free DISC '09

LS-RedBlue CAS, rw wait-free DISC '09

BLS-RedBlue CAS, rw wait-free DISC '09
Sim Add, CAS, rw wait-free SPAA 11
P-Sim Add, CAS, rw wait-free SPAA 11
L-Sim Add, CAS, rw wait-free unpublished
CC-Synch Swap, rw blocking PPoPP ’12
DSM-Synch | Swap, CAS, rw blocking PPoPP 12
H-Synch Swap, rw blocking PPoPP 12

Shared Stacks

SimStack Add, CAS, rw wait-free SPAA 11
CC-Stack Swap, Iw blocking PPoPP 12
DSM-Stack | Swap, CAS, rw blocking PPoPP 12
H-Stack Swap, Iw blocking PPoPP 12

Shared Queues

SimQueue Add, CAS, rw wait-free SPAA ’11
CC-Queue Swap, rw blocking PPoPP 12
DSM-Queue | Swap, CAS, rw blocking PPoPP 12
H-Queue Swap, rw blocking PPoPP ’12

Table 1.1: Algorithms and their properties proposed in this dissertation.

(i.e. high performance spin-locks, etc), while having the nice theoretical properties that
RedBlue algorithms have. The family of Sim synchronization algorithms achieve these
goals.

The Sim synchronization algorithm follows the simple idea presented by Herlihy in [37]:
a thread p starts by recording the request that it wants to execute in a shared struct that
it owns. This struct additionally contains a toggle bit. A set of toggle bits, one for each
thread, are also stored as part of the simulated state. Based on the values of the toggle
bits, p finds out which other requests are active and serves them by executing their code
on a local copy of the simulated state. Finally, p tries to change a shared reference, stored
in an LL/SC object, to point to this local struct. Process p may have to apply these steps
twice to ensure that its request has been served. An array containing n response values
is also stored as part of the simulated state. Once p ensures that its request has been

served, it finds its response value in the LL/SC object.

We start with Sim, a simplified version of this technique that allows us to derive some
theoretical results. In Sim, the announcement of the requests and the discovery of the
active requests by each thread have been abstracted using a collect object. A collect object
consists of n components Ay, ..., A,, one for each thread, where each component stores
a value from some set and supports two operations UPDATE(v) and COLLECT. When
executed by thread p;, 1 <14 < n, UPDATE(v) stores the value v in A;; COLLECT returns
a vector of n values, one for each component. It is remarkable that a collect object is
not atomic (see Section [3| for a description of the correctness condition that needs to be
ensured by an implementation of a collect object). A snapshot object is an atomic version
of a collect object.

We describe simple implementations of collect and snapshot objects using a single
atomic Add (or XOR) object. An Add (XOR) object supports the operation Add (XOR) in ad-
dition to Read; Add(O, z) adds some (positive or negative) value x to object O (XOR(O, z)
computes O XOR v and stores it into O). These implementations exhibit constant step
complexity (under the standard theoretical model of shared memory computation where
even if the size of the Add object is large, an Add can be executed atomically as a sin-
gle step). Using these simple implementations, one could get improved performance for
several previously presented algorithms [7, [15] 140l 57].

By plugging in to Sim the implementation of collect discussed above, the step com-
plexity of Sim becomes constant as well. Jayanti [42] has proved a lower bound of 2(log n)
on the step complexity of any oblivious universal synchronization algorithm using LL/SC
objects; an oblivious universal synchronization algorithm does not exploit the semantics
of the object being simulated. This lower bound holds even if the size of the base objects
used by the universal synchronization algorithm is unbounded. One of the open problems
mentioned in [42] is the following: ”If shared-memory supports all of Read, Write, LL/SC,
Swap, CAS, Move, Fetch&Add, would the Q(logn) lower bound still hold?” Sim has constant
step complexity and it uses a single Add (or XOR) object in addition to an LL/SC object,
thus proving that the lower bound in [42] can be beaten if we use just a single Add (or XOR)
object in addition to an LL/SC object. So, an (logn) lower bound can be derived for
the step complexity of any implementation of an Add, XOR, collect, or a snapshot object,

from LL/SC objects.

Sim is an efficient wait-free implementation of the well-known combining technique [29]
34, 37, 52, 541, 56], 60]. Most of the previous implementations of this technique, including
the algorithm presented in [52] (which we will call OyamaAlg from now on) and flat-
combining [34], employ locks and therefore they are blocking (i.e. threads may have to
wait for actions performed by other threads in order to make progress). Specifically, in
those algorithms, a thread, called the combiner, holding a coarse-grain lock, serves, in
addition to its own request, active requests announced by other threads while they are
waiting by performing local spinning (and possibly periodical checking of the lock status).

We present a practical version of Sim, called P-Sim, which we have implemented and
experimentally tested on a real shared memory machine. We provide a detailed exper-
imental analysis illustrating that P-Sim is highly-efficient in practice. Specifically, our
experiments show that P-Sim outperforms several state-of-the-art synchronization algo-
rithms, both lock-based (like local spinning) and lock-free (Figures [5.2}5.12)). Moreover,
the performance of P-Sim is as good as that of the best-known implementations [34] [52]
of the combining technique, and in some cases even better than them. More specifically,
we experimentally compare P-Sim with OyamaAlg [52], flat-combining [34], CLH spin
locks [23], 47], and a simple lock free algorithm. Our experiments (Figure show that
P-Sim outperforms all these algorithms in several cases. Besides that, P-Sim is wait-free
whereas all other algorithms ensure only weaker progress properties. P-Sim proves that
the common belief that ensuring wait-freedom is too expensive to be practical is in many
cases wrong.

We have used P-Sim to design new highly-efficient wait-free implementations of com-
mon concurrent data structures like queues and stacks. We experimentally prove that
our stack implementation, called SimStack, outperforms most well-known previous shared
stack algorithms, like the lock-free stack implementation of Treiber [5§], the elimination
back-off stack [35], a stack implementation based on a CLH spin lock [23],[47], and a linked
stack implementation based on flat-combining [34]. Similarly, our queue implementation,
called SimQueue significantly outperforms the following previous queue implementations:
a lock-based algorithm [50] which uses two CLH locks [23] [47], the lock-free algorithm pre-
sented in [50], and the implementation using flat-combining provided by Hendler et. al [34].

In this dissertation, a further investigation of the combining technique is provided

aiming at discovering where its real performance power resides, understanding the perfor-

mance implications of using different primitives when implementing it, and investigating
whether and how ensuring some desired properties (e.g., fairness in serving requests) would
impact performance. We do so by presenting two new blocking implementations of this
technique. The first, called CC-Synch, is suitable for cache coherent (CC) shared memory
systems where accesses to shared objects are performed via cached copies of them; an
access to a shared object is a remote memory reference (RMR) if the cached copy of this
object is invalid, so the access causes a cache mis{?] The vast majority of modern parallel
architectures follow the CC shared memory model. The second implementation, called
DSM-Synch, is better suited for the cache-less NUMA shared memory systems, where a
part of the shared memory is associated with each processor; so, each shared object is
allocated (and resides) in the part of the shared memory that is associated to a specific
processor. Processors do not have access to local caches, so a thread p performs a remote
memory reference (RMR) if it accesses a shared object residing in the shared memory
part of some processor other than that where p is being executed. Since an RMR is sig-
nificantly more costly than a local memory reference [49], it is highly desirable to design
algorithms that perform as few RMRs as possible; CC-Synch and DSM-Synch perform a
bounded number of RMRs.

CC-Synch and DSM-Synch use a single FIFO queue to both implement the lock and
store the active synchronization requests. Therefore, the synchronization needed for im-
plementing the list of active requests comes for free. Specifically, each newly activated
thread adds a node to the tail of the queue to announce its request and participate to the
implementation of the lock. Thus, each active thread is assigned one of the nodes of the
queue. The active thread ¢ that owns the first node of the queue becomes the combiner
and undertakes the responsibility of applying some (or all) of the requests listed in the
queue. Each active thread whose node is not first in the queue performs local spinning.

The experimental analysis (Section reveals that the use of a highly-efficient queue-
like lock which, in addition to its low synchronization overhead, provides the implemen-
tation of the list of announced requests for free, significantly reduces the synchronization
required to implement the combining technique. Moreover, the new implementations are

simpler to program than previous combining-based synchronization approaches [34] [52].

* Once the cache miss is served and as long as the data item is not updated by threads that are being
executed on other processors, future accesses to the data item by threads that are being executed on this
processor are local.

10

These result in a performance benefit in comparison to P-Sim as well as to any other al-
gorithm provided in the past. Additionally, the new implementations exhibit several nice
properties, not ensured by previous blocking combining implementations [34, 52]. First,
they provide stronger fairness guarantees in serving the requests. Second, they provide
bounds on the number of remote memory references that are executed. Specifically, in
CC-Synch, the combiner thread performs O(h + t) RMRs, where h is an upper bound on
the number of synchronization requests that the combiner may serve, and t is the size of
the shared data that should be accessed in order to execute these h requests; we remark
that h is a parameter that can be determined by the user and it can be chosen to be
constant. The combiner in DSM-Synch performs O(dh) RMRs, where d is the average
number of RMRs required to serve a single request. In both algorithms, all threads, other
than the combiner, perform local spinning and cause only a constant number of RMRs.
Thus, the amortized number of performed RMRs is O(d). Moreover, no thread may ever
starve. Finally, the new implementations do not employ any form of backoff and they
need minimal tuning to achieve the best performance.

CC-Synch uses a Swap object in addition to Read-Write base objects. DSM-Synch
uses an object that supports CAS and Swap in addition to Read-Write base objects; a
CAS(O,u,v) (atomically) checks if the current value of O is w and if this is so, it changes
the value of O to v and returns true, otherwise the value of O remains unchanged and false
is returned. CC-Synch and DSM-Synch use just one primitive stronger than Read-Write
base objects and in CC-Synch this is a Swap object which is weaker than CAS. In CC-Synch,
each thread maintains a single node to insert in the list, and therefore the total space
overhead of CC-Synch is O(n), where n is the number of threads; this is no more than
that of previous combining-based synchronization approaches. The total space overhead
for DSM-Synch is also O(n).

We experimentally compare CC-Synch and DSM-Synch with several state-of-the-art
synchronization approaches, like P-Sim, flat-combining [34], CLH spin locks [23| [47], and
a simple lock free algorithm. The experiments (Figures show that CC-Synch
outperforms all these approaches in most cases. DSM-Synch outperforms all algorithms
other than CC-Synch. DSM-Synch has the advantage over CC-Synch that it is designed
to be efficient even in machines that support the DSM model; so, it can be executed

efficiently by architecture unaware applications.

11

The experimental analysis reveals that the number of cache misses incurred per re-
quest is smaller in the new implementations than in previous algorithms and the same is
true for the cycles invested in memory stalls. Based on experiments, we conclude that the
algorithm of repeatedly performing CAS until it succeeds, even if it comes together with an
appropriately-tuned back-off scheme, causes more cache misses and more branch mispre-
dictions than employing Swap or other non-comparison primitives. Experiments also show
that the average number of requests served by a combiner in CC-Synch and DSM-Synch is
larger than in other algorithms, so the synchronization overhead paid to serve an amount
of requests in these implementations is closer to the ideal than in previous approaches. So,
the achieved combining degree has a significant impact on the performance of combining
implementations.

We used CC-Synch and DSM-Synch to implement shared stacks and queues (Sec-
tion [6.5). The stack implementation (CC-Stack) based on CC-Synch, outperforms all
state-of-the-art shared stack implementations like SimStack, the linked stack implemen-
tation based on flat-combining [34] where elimination has also been applied [35], and the
stack implementation based on CLH spin locks [23],[47]. The stack implementation (DSM-
Stack) based on DSM-Synch, outperforms all implementations other than CC-Stack. We
also use CC-Synch and DSM-Synch to get two highly efficient shared queue implemen-
tations, called CC-Queue and DSM-Queue. More specifically, these implementations are
derived by simply replacing the ordinary locks in the two-locks queue implementation
presented by Michael and Scott in [50] with two instances of either CC-Synch or DSM-
Synch. These implementations were experimentally compared to SimQueue, the two-locks
implementation [50], and the queue implementation based on flat-combining presented in
[34]. CC-Queue performs up to 2.5 times faster than the queue implementation of [34] and
outperforms SimQueue by a factor of up to 1.5.

For modern multi-core systems that organize the cores into clusters and provide fast
communication (via shared caches) to the threads running in the same cluster and much
slower communication across clusters, we present an hierarchical version of CC-Synch,
called H-Synch, which exploits the hierarchical communication nature of such systems
to achieve better performance. Experiments show that in such systems, H-Synch signifi-
cantly outperforms CC-Synch and DSM-Synch as well as the state-of-the-art flat-combining
NUMA locks recently presented by Dice et. al in [24]. H-Synch is used to design highly

12

efficient implementations of stacks and queues for such machines. These implementations
outperform by far, in such machines, CC-Stack, DSM-Stack, CC-Queue and DSM-Queue,
respectively, as well as all other concurrent stack and queue implementations with which
these implementations have been compared.

Many hardware manufactures have been influenced by the universality result [36], and
they have equipped their machines with strong atomic primitives (like CAS and LL/SC).
Sim shows that machines that additionally support Add instructions, have important per-
formance advantages, and can ensure wait-freedom. CC-Synch and DSM-Synch show that
machines that support Swap objects have even better performance benefits. We believe
that the results of this dissertation provide some motivation for seeing primitives such as
Add provided in the instruction set of more architectures in the future.

Note that CC-Synch, similarly to Sim and flat-combining [34], cannot be trivially ap-
plied in an efficient way for designing data structures such as search trees, where m lookups
can be executed in parallel performing just a logarithmic number of shared memory ac-
cesses each. In such cases, it is expected that CC-Synch will perform well, only if several
instances of it are employed. It is an interesting open problem to find efficient ways to
synchronize these instances. It is also not obvious how to use the combining technique to
implement data structures, like shared linked lists, if several instances of the combining
implementation should be employed to achieve good speed-up.

The synchronization algorithms of the RedBlue synchronization algorithms have been
presented in DISC ’09 [27], synchronization algorithms based on Sim have been presented
in SPAA 2011 [28] and an extended version will appear to Theory of Computing Systems
Special Issue on SPAA 2011, while the Synch synchronization algorithms are presented
in PPoPP [29].

This dissertation is organized as follows. The related work is discussed in Chapter [2
The model of the system is described in Chapter [3] In Chapter [4] the family of RedBlue
algorithms is presented. The family of Sim algorithms is provided in Chapter [5] Finally,
the family of Synch algorithms is presented in Chapter [6]

13

CHAPTER 2

RELATED WORK

In [36], Herlihy provides the first wait-free universal synchronization algorithm using Read-
Write base objects and consensus objects. This universal algorithm can be used to sim-
ulate any other shared object in a system of n threads. Herlihy’s algorithm uses O(n?)
Read-Write base objects and O(n?) consensus objects of size s, where s is the size of
the state of the simulated object. The consensus objects can be easily implemented by
using CAS or LL/SC base objects [36]. The step complexity of Herlihy’s synchronization
algorithm is O(n).

Afek, Dauber and Touitou [4] have presented algorithm GroupUpdate which also uses
a tree technique to keep track of the list of active threads. They then combine this tree
construction with Herlihy’s universal algorithm [36], B7] to get a universal construction
with time complexity O(klogk + W + kD), where W is the size (in words) of the sim-
ulated object state and D is the time required for performing a sequential request on
it. F-RedBlue retains the basic structure of GroupUpdate but achieves better time com-
plexity (O(min{k,logn})) by employing a faster mechanism to discover the encountered
contention and by using large LL/SC base objects. S-RedBlue addresses the problem of
using large base objects still achieving better time complexity than GroupUpdate.

Although the first of the RedBlue algorithms shares a lot of ideas with GroupUpdate, it
also exhibits several differences: (1) it employs two complete binary trees each of which has

one more level than the single tree employed by GroupUpdate; in each of these trees, each

14

thread is assigned its own leaf node which identifies a unique path (from the root to this
leaf) in the tree for the thread; (2) threads traverse the red tree first in order to occupy a
node and this procedure is faster than a corresponding procedure in GroupUpdate. More
specifically, GroupUpdate performs a BF'S traversal of its employed tree in order for a
thread to occupy a node of the tree, while each thread in any of the RedBlue algorithms
always traverses appropriate portions of its unique path. This results in reduced time
complexity for some of the RedBlue algorithms.

Afek, Dauber and Touitou [4] present a technique that employs indirection to reduce
the size of the base objects used by GroupUpdate (each tree base object stores a thread
id and a pointer to a list of ids of currently active threads). A similar technique can
be applied to the RedBlue algorithms in case n is too large to have n bits stored in a
constant number of LL/SC base objects. The resulting algorithms will have just a pointer
stored in each of the blue nodes (thus using smaller base objects than GroupUpdate which
additionally stores a thread id in each of its LL/SC base objects). However, employing
this technique would cause an increase to the step complexity of our algorithms by an
O(klogn) additive term.

Afek, Dauber and Touitou present in [4] a second universal construction, called Indi-
vidualUpdate, that has time complexity O(k(W + D)). IndividualUpdate stores sequence
numbers in base objects and therefore it requires unbounded size base objects or base
objects that support the VL request in addition to LL and SC. The first two RedBlue algo-
rithms achieve better time complexity than IndividualUpdate. Some of our algorithms use
single-word base objects (however, they also employ LL/VL/SC objects).

Afek, Dauber and Touitou [4] discuss a method similar to that presented in [I7] to
avoid copying the entire object’s state in IndividualUpdate. The resulting algorithm has
time complexity O(kD log D). The work of Anderson and Moir on universal constructions
for large objects [11] follows this work. Our last two algorithms improve in terms of time
complexity upon the constructions presented in [I1]. They achieve this using single-word
base objects (and the last algorithm with the same space complexity as the wait-free
construction in [11]).

Jayanti [43] presented f-arrays, a generalized version of a snapshot object which al-
lows the execution of any aggregation function f on the m elements of an array of m

memory cells that can be updated concurrently. As F-RedBlue, f-arrays has time com-

15

’ Algorithm \ Primitives \ Shared Memory Accesses \ Required Space \

Wait-free synchronization algorithms presented in this dissertation

F-RedBlue LL/SC O(min{k,logn}) O(n? + s)
S-RedBlue LL/VL/SC, r/w regs Ok +s) O(n% + ns)
LS-RedBlue LL/VL/SC, r/w regs O(B + k(w+TL)) O(n? +n(B +kTL))

O((k/min{k, M/T}) (B +

BLS-RedBlue LL/VL/SC, r/w regs ML + k + min{k, M/T}w)) O(n? +n(B+ ML))
Sim LL/SC or CAS, FAD o(1) O(n+s)
P-Sim LL/SC or CAS, Fetch&Add O(n+s) O(n? + ns)
Related Work
Herlihy [36] consensus objects, r/w regs O(n) O(n3s)
Herlihy [37] LL/VL/SCor CAS, r/w regs O(n+s) O(ns)

LL/SC r/w regs, consensus

: 2
GroupUpdate [4] objects O(min{n, klogk}) O(n*slogn)
IndividualUpdate [4] LL/VL/SC O(kwlogw) O(nw + s)
Anderson & Moir O((n/ min{k, M/T}) (B+ 9
[10] LL/VL/SC ML 4 nw)) O(n*+n(B+ ML))
Chuong, et. al [20] CAS, r/w regs O(nw) O(n+s)

Table 2.1: Wait-free universal algorithms and their complexities.

plexity O(min{k,logn}); the algorithm uses a tree structure similar to that employed by
GroupUpdate and our algorithm. F-RedBlue is universal, thus achieving wider functional-
ity than f-arrays. Constructions for other restricted classes of objects with polylogarithmic
complexity are presented in [19].

Afek et al. [5, 6] and Anderson and Moir [10] have presented universal algorithms
for multi-object requests that support access to multiple objects atomically. The main
difficulty encountered under this setting is to ensure good parallelism in cases where
different requests perform updates in different parts of the object’s state. In Table a
comparison between the wait-free algorithms proposed in this dissertation and previous
work is displayed. Notice that w is the maximum number of different memory words
accessed by an operation on the sequential data structure. In [10, 27], B is the number
of blocks, each of size L, required to store the object’s state, and each thread is allowed
to modify at most 7" blocks and help at most M /T other threads, where M > 2T is some
integer.

P-Sim uses an efficient implementation of the Add-based collect object. This allows a
thread to read only the announcement records of those requests that are active improving
upon the technique described in [37] where threads read all n such records. Furthermore,
in P-Sim each thread uses its own pool of structs to store the simulated state. In the

recycling technique of [37] threads share the same pool which leads to a significantly higher

16

number of cache misses. P-Sim validates not only whether the copied state is consistent
(as does the validation mechanism in [37]), but also if the reference to the shared state
has changed in the meantime. If the validation fails, P-Sim avoids performing unnecessary
work. Moreover, P-Sim uses a simple backoff scheme to guarantee that a thread executing
a request will help a large number of other active threads; in [37], the employed backoff
scheme aims at reducing the contention in updating the LL/SC object.

Herlihy [37] starts by presenting a lock-free version of the universal synchronization
algorithm where each thread does not help requests initiated by other threads. It rather
performs LL on the reference to the simulated state, copy the state locally and apply its
SC; these actions are applied repeatedly until the SC succeeds. Experiments presented
in [37] show that Herlihy’s wait-free implementation does not perform well in comparison
to this lock-free version and a Test-And-Test-And-Set spin lock (with backoff).

The combining technique is old. It was first been introduced by Gottlieb et. al
on network switches [31] that connect processors to memory; messages with the same
destination were merged to reduce memory traffic and contention. Software combining
was first realized in combining trees [30, [60], at which requests to modify a concurrent data
structure are transferred from the leaves of the tree towards the root applying combining
at every internal node. However, each thread applies ©(logn) CAS operations per access
and therefore the synchronization overhead is high. To reduce this overhead a lot of
research work has focused on designing adaptive versions of combining trees [32, [49]
(e.g., for implementing barriers) or decentralized algorithms for dynamically changing tree
size [55], [56]. For some of these algorithms [32, [49], it is not clear how they can be used to
design general concurrent data structures, others [55] satisfy weaker consistency conditions
than linearizability, and for others, experiments [34] have shown that the synchronization
overhead they introduce is still high.

Oyama, Taura and Yonezawa present in [52] a different approach for implementing
the combining technique. Their algorithm uses a coarse-grain lock implemented with a
CAS object O, and a list of announced requests implemented as a stack. Fach thread has
a record that it uses to announce its request by pushing it in the stack. The CAS object
may store the values free, locked, or a pointer to some of the threads’ records. A thread
with a newly-activated request first performs a CAS in an effort to change the value of O

from free to locked. If this CAS succeeds, the thread becomes the combiner and starts

17

executing its request. Otherwise, the thread tries to announce its request by inserting its
record in the stack; this is done by repeatedly performing CAS on O to change its value
from locked to a pointer to its record. If this succeeds, the thread performs local spinning
on its record until the combiner thread notifies it that its request has been served. When
the combiner finishes the execution of its own request, it tries to change the value of O
from locked to free by performing a CAS. If this CAS is successful, the stack is empty,
i.e. no other thread has an active request, so the work of the combiner is done and the
combiner can return. On the opposite case, the combiner performs a Swap to store in O
the value locked and get a pointer to the stack of announced requests. Then, it serves
all the requests listed in the stack. After this, it tries again to change the value of O from
locked to free using CAS. In the meantime, other newly-activated threads may have
created a new stack pointed to by O. So, the combiner thread must apply the procedure
described above again until it manages to change the value of O from locked to free
which would mean that there are no more active requests in the system.

OyamaAlg [52] has several drawbacks. First, the list of announced requests is treated
in a LIFO way, so requests are not served in the order they enter it. CC-Synch and
DSM-Synch provide a stronger notion of fairness since they serve requests in FIFO order
of entering the list. Moreover, in OyamaAlg, the combiner may starve since there may
always be newly-activated requests, so the combiner may never manage to change the
value of O from locked to free; other threads may also starve when they repeatedly
try to insert their record in the list. In our algorithms, the combiner can choose how
many requests it will serve and no thread ever starves. Finally, the algorithm in [52]
has significant performance overheads in comparison to CC-Synch and DSM-Synch for
the following reasons. First, threads need to succeed on a CAS in order to have their
requests announced; this causes a lot of contention and leads to a significant performance
degradation. Second, the number of RMRs performed by any thread is unbounded since
threads may starve as described above.

Flat-combining has been presented by Hendler et. al in [34]. As in OyamaAlg, flat-
combining employs a global lock that protects the shared data and a list of announced
requests; the global lock is again implemented using a CAS object O. There are however
two main differences between flat-combining and OyamaAlg. First, the list of announced

requests usually contains one record for each thread independently of whether it has a

18

currently active request; this reduces the number of insertions in the list. However, it
increases the work of the combiner which should now traverse a longer list than necessary.
To avoid this extra overhead, the combiner cleanups the list periodically keeping in it only
records of threads that have recently initiated a request. A thread that initiates a request
starts by checking if its record is in the list; if not, it first tries to insert it (as the first
record of the list). Second, the CAS object O is not used to manipulate the head of the
list as in OyamaAlg. This results in less overhead since the combiner does not interfere
with threads that are trying to insert their records in the list.

Dice, Marathe and Shavit [24] have recently presented an hierarchical spin-lock im-
plementation, called flat-combining NUMA lock; this hierarchical lock is based on flat-
combining and exploits the cache hierarchies in order to provide good performance. As it
is shown in [24], this lock implementation greatly outperforms the previous (hierarchical
and non-hierarchical) spin-lock implementations presented in [23, 46, 47, [49] [53]. H-Synch
exhibits a significant performance improvement over the flat-combining NUMA locks [24],
since it (1) is simpler, (2) employs combining to serve the thread requests in each cluster,
whereas this is not the case in the hierarchical lock presented in [24], and (3) is based
on CC-Synch which performs better than flat combining. Our experiments show that not
only H-Synch, but also CC-Synch outperforms flat-combining NUMA locks, CC-Synch by
a factor of up to 1.65 (Figure and H-Synch by a factor of up to 2.65 (Figure .
Our stack and queue implementations based on H-Synch outperform the stack and queue
implementations based on flat-combining NUMA locks by similar factors.

CC-Synch implements a combining-friendly version of the CLH queue lock [23] 47]; in
contrast to the CLH implementation where the maintained queue is implicit, the queue
maintained by CC-Synch is explicit so that the combiner can traverse it. DSM-Synch
implements a combining-friendly version of the MCS spin lock [49].

CC-Synch and DSM-Synch provide a stronger notion of fairness than flat-combining
since in flat-combining requests, that have been inserted in the list later than other re-
quests, may be served first. In flat combining, the combiner cannot starve but this does
not come without an extra performance overhead; specifically, the combiner may choose
to return without serving all the active requests in the list, but this makes it necessary to
have each active thread checking regularly whether the coarse-grain lock has been released

by the combiner and if yes, trying to become a combiner itself instead of performing just

19

local spinning. Finally, flat combining experiences performance overheads in comparison
to CC-Synch and DSM-Synch. First, in CC-Synch and DSM-Synch no extra cost is paid
for maintaining the list of active requests since this list is provided for free by the imple-
mentation of the lock. Second, the cost paid by the combiner is larger in flat combining
since the combiner usually has to traverse a longer list than necessary. Finally, threads in
flat combining may perform an unbounded number of RMRs when trying to insert their
records in the list.

Treiber has presented a lock-free shared stack implementation in [58]. Treiber’s shared
stack is implemented as a linked list and there is a CAS base object that points to the top-
most element. Each thread that wants to PUSH/POP an element to the stack repeatedly
performs CAS instructions to the CAS object trying to PUusH/POP a node to the top of the
linked list. The performance of Treiber’s stack is significantly enhanced by employing a
simple adaptive backoff scheme.

Hendler, Shavit and Yerushalmi [35] use an elimination layer on top of Treiber’s lock-
free stack. The elimination layer offers the ability to eliminate concurrent PusH/Pop
operations instead of competing to modify the CAS object that points to the topmost
element of the stack. In cases of high contention, this results to a better scaling compared
to Treiber’s lock-free implementation.

Hendler et. al in [34], use an instance of flat-combining in order to implement a
scalable blocking shared stack. This results to better performance comparing to the lock-
free stack implementation presented in [58] and the elimination scheme presented in [35].
SimStack achieves much better performance than the lock-free stack implementation pre-
sented in [58], the elimination algorithm algorithm of [35] and the shared stack based
on flat-combining [34] (see Section [5.3)). Furthermore, SimStack ensures stronger notion
of progress, since it is wait-free. CC-Stack, DSM-Stack and H-Stack offer even better
performance but they are blocking.

Michael and Scott [50] present a lock-free implementation of shared queue that is
implemented using a linked-list. There are two CAS base objects; the first object points
to the head of the queue, while the second one points to the tail of the queue. Threads
that want to ENQUEUE/DEQUEUE elements to the shared queue repeatedly perform CAS
instructions to these CAS objects. In the same paper, Michael and Scott present a blocking

alternative of the lock-free queue. Similarly to the lock-free queue, the blocking queue

20

is implemented using a linked-list. Two ordinary locks are used, the first one protects
the head of the list and the second protects the tail of the list. This gives the ability to
enqueuers and dequeuers to run independently.

Hendler et. al [34], uses an instance of flat-combining in order to implement a scalable
blocking shared queue implementation, which is called FCQueue. In the experiments
presented in [34], it is shown that FCQueue outperforms prior work (i.e the lock-free queue
implementation of [50], a queue implementation based on OyamaAlg, etc). SimQueue
achieves much better performance than the lock-free queue implementation presented
in [50] and the shared queue based on flat-combining [34] (see Section[5.3). Furthermore,
SimQueue ensures stronger notion of progress, since it is wait-free. CC-Queue, DSM-Queue

and H-Queue offer even better performance but they are blocking.

21

CHAPTER 3

MODEL

3.1 General

3.2] Pseudocode conventions

3.1 General

We consider an asynchronous system of n threads, p1, ..., pn, each of which may fail by
crashing. In case of thread failure, the thread simply stops executing its algorithm, i.e. it
stops taking steps. Threads communicate by accessing shared base objects. Each shared
base object stores some information and provides operations to threads to read and modify
the stored information; these operations may be executed by threads concurrently.

The most basic shared object is a Read-Write base object R which stores a value and
supports two atomic operations: Read(R) which returns the current value of R and leaves
its content unchanged, and Write(R,v) which writes the value v into R and returns an
acknowledgment. A base object is multi-writer if all threads can change its content; on
the contrary, a single-writer base object can be modified only by one thread. A base
object is unbounded if the set of values that can be stored in it is unbounded; otherwise,

the base object is bounded.

22

An Add object O supports two atomic operations Read(O) and Add(O,v). Opera-
tion Add(O,v) adds the (positive or negative) value v to the value of O and returns an
acknowledgment, while operation Read(O) returns the value stored in O.

An LL/SC object O supports the atomic operations LL and SC. LL(O) returns the
current value of O; the execution of SC(O,v) by a thread p must follow the execution of
LL(O) by p, and changes the contents of O if O has not changed since the execution of
p’s latest LL on O. If SC(O,v) changes the value of O to v, true is returned and we say
that the SC is successful; otherwise, the value of O does not change, false is returned and
we say that the SC is not successful or it is failed. Some LL/SC base objects support the
operation VL in addition to LL and SC; when executing by some thread p, VL returns true
if no thread has performed a successful SC on O since the execution of p’s latest LL on
O, and false otherwise.

A CAS object O supports in addition to operation Read(O), the atomic operation
CAS(O, Vpid, Vnew) Which stores vpe,, to O if the current value of O is equal to v,y and
returns true; otherwise the contents of O remain unchanged and false is returned. A Swap
object stores a value from a set V' and in addition to Read(O), it supports the atomic
operation Swap(O, v), which stores v to O and returns the current value of O.

An active set is a shared object that identifies the set of threads that participate
in some computation; it supports the operations (1) JOIN which is called by a thread to
identify its participation to the computation, (2) LEAVE to request removal from the set of
participating threads, and (3) GETSET which returns the set of the currently participating
threads.

A collect object consists of n components Ay, ..., A,,, one for each thread, where each
component stores a value from some set; it supports the operations (1) UPDATE(v) which,
when executed by p;, it stores the value v in A;, and (2) COLLECT which returns a vector
of n values, one for each component.

A universal object simulates any other shared object. It supports an operation, called
AprpLYOP(operation op), which simulates the execution of operation op on the simulated
object; APPLYOP returns the return value of operation op.

An implementation of a (high-level) object from base objects provides, for each opera-

tion of the simulated object and for each thread, an algorithm that uses the base objects

23

to implement the operation. An implementation of a universal object is called oblivious
if it does not exploit the semantics of the type of the simulated object.

A configuration consists of a vector of n+r values, where r is the number of base objects
in the system; the first n attributes of this vector describe the state of the threads, and the
last r attributes are the values of the r base objects of the system. Thus, a configuration
C' describes the system at some point in time. At an initial configuration, the base
objects contain initial values and each thread is in an initial state. A thread completes
the execution of a step each time it executes an operation on a shared object (i.e. a step
consists of a single operation on a base object and possibly some local computation). An
execution « is a sequence of steps executed by threads. An execution fragment of o is a
part of « consisting of any number of consecutive steps. A thread starts the execution
of a (simulated) operation by invoking its algorithm and finishes it when it gets back
a response; thus, for each instance of an operation that is executed in «, there is an
invocation and a response. A thread is active at some configuration C, if it has invoked
an operation op at C' but it has not yet issued a response for op; in this case, we also say
that op is active at C'. The ezecution interval of op is the part of the execution that starts
with op’s invocation and ends with op’s response.

An implementation is blocking if a thread may have to wait for some event caused
by another thread. An implementation is wait-free [30] if in each execution, each thread
finishes the execution of every operation it initiates within a finite number of steps in-
dependently of the speed or the failure of other threads. Wait-freedom is the strongest
non-blocking progress property. A weaker such property is lock-freedom, which ensures
that some thread finishes the execution of an operation within a finite number of steps.

For the sake of studying the performance of blocking algorithms, we consider that the
system’s shared memory is divided into memory chunks. Each memory chunk stores a
number of base objects and is associated with some processor. We consider two shared
memory models. In cache-less NUMA machines (this model is also known as DSM), a
thread p performs a remote memory reference (RMR) if it accesses a base object residing in
the memory chunk associated with some processor other than p; all other memory accesses
by p are called local. In cache-coherent (CC) machines, accesses in shared memory are
performed on cached copies of the base objects. In this case, if the cached copy of the

base object is invalid, the memory reference is called remote. Then, a cache miss occurs

24

and a valid copy of the base object should first be fetched in the local cache before it can
be accessed. It is worth pointing out however that once this occurs and as long as the
base object is not updated by other processors, all future accesses to the base object by
the processor are local. This is not the case in the DSM model, where every access to a
base object that resides in a remote memory is remote. We remark that since an RMR is
significantly more costly than a local memory reference, our goal when designing blocking
algorithms, is have them to perform as few RMR as possible.

For the sake of studying the performance of non-blocking algorithms, we define the step
complezity of an operation, to be the maximum number of steps that a thread performs to
complete such an operation in any execution. The step complezity of an implementation
is the maximum between the step complexities of the operations of the simulated object.

The interval contention of an instance of an operation in an execution « is the max-
imum number of threads that are active in the execution interval of this instance. The
interval contention of an operation in an execution « is the maximum number of threads
that are active in the execution interval of any instance of the operation in «. The total
contention of an execution « is the total number of threads that have taken steps in
a. If the step complexity of an implementation depends on the interval (or the total)
contention of the simulated operations in each execution, and not on the total number of
threads n, then the implementation is called adaptive.

Let « be any execution. Linearizability [39] ensures that, for each operation op on the
simulated object in «, there is some point, called linearization point, within the execution
interval of op, such that op appears as if it has executed instantaneously (or as so called
atomically) at this point; more specifically, the response returned by op in « should be the
same as the response op would return if all operations in a were executing sequentially
in the order determined by their linearization points. When this holds, we say that the
response of op is consistent. An implementation is linearizable if all its executions are
linearizable.

We remark that an implementation of a collect object does not have to be linearizable.
In such an implementation, the vector returned by each cOLLECT Col must contain, for
each component A;, the value written by the last UPDATE U on A; by p; that has finished
its execution before the invocation of Col (or the initial value if such an UPDATE does

not exist), given that p; has not started the execution of a new UPDATE U’ in the interval

25

between the end of U and the end of C'ol. If p; has started the execution of a new update
U’, then Col may return either the value of U’ or that of U (or the initial value, if U does
not exist) for A;. Moreover, an instance of COLLECT G which has started its execution
after the response of some other instance of COLLECT G’, must return, for each component
A;, either the same value v with that returned by G or some value v that has been written
in A; by an UPDATE U’ which has started its execution after the response of the UPDATE
U that writes into A; the value v read by G. A similar correctness property must be
ensured by any implementation of an active set. A snapshot object is a linearizable
version of a collect object (we then use the term SCAN instead of COLLECT). A snapshot
implementation is single-writer, if each component can be updated only by a specific
thread, so it is only this thread that can apply UPDATE operations to the component. In

multi-writer snapshots, each thread can execute UPDATE operations to any component.

3.2 Pseudocode conventions

The code description (pseudocode) of an algorithm for shared memory machines provides
pseudocode for every thread. The pseudocode of an algorithm for shared memory ma-
chines is similar to the pseudocode of serial algorithms. The pseudocode includes accesses
to local variables (thread’s local variables consist thread’s state) and accesses to shared
base objects. Shared base objects are similar to local variables, but the keyword shared is
inserted in the beginning of their declaration (e.g. the declaration shared int X; means
that base object X is a shared base object of type int, on the contrary int z; declares a
local variable). The first character of shared base object’s name is usually capitalized.
For simplicity, instead of using Read and Write instructions in the pseudocode, the
following conventions are used: (i) a reference to the shared base object at the left of
an assignment means that a Write instruction is executed on the base object, (ii) and
a reference to the shared base object at the right of an assignment means that a Read
instruction is executed on the base object. For example, if X and Y are shared base
objects, then the X =Y expression means that the value of Y is read and its value is
written to base object X. A simple expression of the pseudocode may contain a lot of

references to shared base objects. In such a case, the Read instructions to shared base

26

objects that are placed at the right of the expression are executed from left to right, the
returned values from the Read instructions are stored to temporary local variables, the
calculation of the expression is executed on the local variables and the result is written
to the base object appearing to the left part of the expression. For example, if X, Y and
Z are shared base objects, then X = Y + Z means that initially the value of Y is read
and its value is stored into a temporary local variable, after that Z is read and its value is
stored to a local variable, and finally the sum of local variables is written to base object

X. Comments in the pseudocode start with //.

27

CHAPTER 4

ADAPTIVE WAIT-FREE

SYNCHRONIZATION ALGORITHMS

41l The F-RedBlue algorithm
Modified version of F-RedBlue that uses small base objects

Adaptive synchronization algorithms for large objects

In this chapter, the family of RedBlue synchronization algorithms is presented. In
Section [4.1, we present F-RedBlue. In Section .2 we present S-RedBlue, which is a
modified version of F-RedBlue that uses small base objects. Section presents two
algorithms, LS-RedBlue and BLS-RedBlue. These algorithms combine techniques presented
in [I1] and the techniques employed by S-RedBlue algorithms in order to achieve the nice
properties of the algorithms presented in [I1] with better time complexity.

4.1 The F-RedBlue algorithm

In this section, we present the first algorithm of the RedBlue family, which is called F-
RedBlue. F-RedBlue has time complexity O(min{k,logn}), uses LL/SC and read-write

base objects, and is optimal in terms of time complexity.

28

4.1.1 Algorithm description

We first describe a relatively simple wait-free algorithm that F-RedBlue is based on. This
simple algorithm uses a perfect binary tree (called the blue tree) of [lgn| + 1 levels, each
node of which is a LL/SC object. We assume that the root node is placed at level [lgn]+1
and that the leaf nodes are placed at level 1. Each thread p owns one of the tree leaves
and it is the only thread capable of modifying this leaf. Thus, there is a unique path pt(p)
(called blue path for p) from the leaf node assigned to p up to the root. The LL/SC object
of each node stores an array of n request types (and their parameters), one for each thread
to identify the request that the thread is currently executing. The root node additionally
stores the state of the simulated object and the return value for the last request applied
to the simulated object by each thread. We denote by §, the initial value of the state
field.

Whenever thread p wants to apply a request req to the object, it moves up its path
until it reaches the root node and ensures that its request req is recorded in all nodes of
the path by executing two LL/SC on each of them. If any of the LL/SC that p executes on
some node succeeds, req is successfully recorded in it; otherwise, the algorithm guarantees
that req is recorded for p in the node by some other thread before the execution of the
second of the two SC instructions executed by p. In this way, req is propagated towards
the root where req is applied to the object. Besides that, p records in each node the
requests that are being executed by other active threads in an effort to help them finish
their executions. Successful SC instructions that are executed at the root node may result
the application of several requests to the simulated object. In this way, the algorithm
guarantees wait-freedom.

Once p ensures that req has been applied, it traverses its path from its leaf up to the
root once more to eliminate any evidence of its last request by overwriting req with the
special value L. This allows p to execute additional requests later on the simulated object.
A new request req’ by p, is applied to the simulated object only if req’ is propagated to
the root node and the thread p thats stores it, finds that the previous value for p is L.

This relatively simple algorithm requires O(logn) steps to execute. In order to make
it adaptive, F-RedBlue uses one more tree (the red tree), isomorphic to the blue tree

(Figure . Each thread p is assigned a leaf node of the red tree which identifies a

29

red tree blue tree

wesce [1] - [2] [o] [« [s] [¢J [[J [J [[[[[[[
Figure 4.1: The red and the blue tree of F-RedBlue for n = 8.

unique path from the root to this leaf (red path for p). The red tree allows threads
to obtain information about the encountered contention which is then used to shorten
the paths that threads traverse in the blue tree (i.e. a thread starts its traversal of its
blue path possibly from some internal node of blue the tree (instead of starting from its
assigned leaf) which is at a level that depends on the encountered contention).

Each node of the red tree stores information about the request req of a single (active)
thread. We then say that p “occupies” the node. More specifically, each thread p first
tries to occupy a node of the red tree and then starts traversing (part of) its blue path.
In order to occupy a red node, p traverses its red path downwards starting from the
root, until it finds a clean node (i.e. a currently unoccupied node, such a node stores
the value < 1, —1 >) and manages to occupy it by recording its request type and its id
in it. We prove that each red node is occupied by at most one thread at any point in
time. An occupied node identifies a thread that is currently active, so as long as p reaches
occupied nodes, it encounters more contention. We prove that p will eventually reach an
unoccupied node and record the appropriate information there. In the worst case, p will
occupy its leaf node. Once p occupies some red node with id z,., it performs two traversals
of its blue path from the node of the blue tree that corresponds to z,. up to the root. By
employing the red tree, threads traverse shorter paths in the blue tree. This improves the
time complexity of the algorithm to O(min{k,logn}), where k is the interval contention
of req.

We continue to provide a more technical description of F-RedBlue (Algorithm. Since
the blue (red) tree is perfect and there is only one such tree with [lgn] + 1 levels, we
implement it using an array bn (rn) of 2n—1 elements. The nodes of the tree are numbered

so that node z is stored in bn[z] (rn[z], respectively). The root node is numbered with 1,

30

= © 00 O ULk Wi+

11
12
13
14
15
16
17
18

and the left and right children of any node z are nodes 2z and 2z 4 1, respectively. Red
and blue trees for n = 8 are illustrated in Figure [4.1] Thread p, 1 < p < n, is assigned to
the leaf node numbered n + p — 1. We remark that traversing up the path from any node
z to the root can be implemented in a straightforward manner: the next node of z in

the path is node numbered |z/2|. However, the downward traversal of the path requires

struct RedNode{
request req;

int pid;

b

struct BlueNode{
state st; // this field is used only at the root node
RetVal rvals[n]; // this field is used only at the root node
request reqgs[n];

¥

shared RedNode rn[1..2n-1] = {< L, -1 > .., < 1, —-1>};
shared BlueNode bn[1..2n-1]={<3,< 0,...,0 >,< L1, .., 1>> .., <§<0,..,0> <L, L>>}

RetVal F-RedBlue(request req){ // pseudocode for thread p
int direction = n/2, levels = lg(n) + 1;
int z=1, 1, j;
RetVals rv;
for (1=levels; 1 > 1; 1--) { // traversal of red path from the root node
LL(enf7));

if(rnfz] == < L,-1>)
if(SC(rn[z], <req, p>)) break;

if (p < direction) { // find the next node in the path
direction = direction - 2!=3;
7z=2%z // move to the left child of z
} else{
direction = direction + 2!~3;
z=2%z+1; // move to the right child of z
¥
}
Propagate(z, p); // first traversal of blue path: propagating the request
rv = bn[l].vals[p];
LL(mfz));
SC(rn[z], < L, p>); // the request occupying rn[z] starts its deletion phase
Propagate(z, p); // second traversal of blue path: propagating L
LL(rn[z));
SC(rn[z], < L, -1>); // re-initialize the occupied red node to L
return rv; // return the appropriate value

Algorithm 1: Pseudocode for F-RedBlue.

some more calculations which are accomplished by the lines 5 — 10 of the pseudocode.

1 —10). For each node z of this path, it checks if the node is unoccupied (line 3) and if

this is so, it applies an SC instruction to it in an effort to occupy it (line 4). If the SC is

When a thread p wants to execute a request reg, it first traverses its red path (lines

31

void Propagate(int z){
BlueNode bt;

19 while (2!=0){ // traversal of the blue path
20 for (j=1 to 2) do{ // two efforts to store appropriate information at each node
21 LL(bnlz]);
22 bt=Calculate(z);
23 SC(z, bt);
}
24 z =z/2];
}
}

BlueNode Calculate(int z) {
BlueNode tmp=< 1,<0,...,0 >, < 1,..., 1L >>;
BlueNode blue=bn|z], le, rc;
RedNode red = rn[z];
int q, range;

25 if (2%z+41 < 2n) { // in case that z is not a leaf node
26 lc = bn[2*7]; // read the contents of the left child in the blue tree
27 rc = bn[2*z+1]; // read the contents of the right child in the blue tree
28 range = 2'8(M)~Me(=)1; // compute the number of leaves that each subtree has

// copy the requests placed on the left subtree
29 tmp.regs[2g-range..2q] = lc.reqs[2g-range..2q];

// copy the requests placed on the right subtree
30 tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];

}

31 if (red.pid # -1) tmp.reqgs[red.pid]=red.req; // if thread ¢ occupies a red node
32 if(z==1){

33 tmp.rvals[l..n] = blue.rvals[l..n]; // copy the return values
34 tmp.st = blue.st; // copy object’s state
35 for q=1 to n do{ // local loop
// apply any pending request
36 if (tmp.regs[q] # L AND tmp.regs[q] # blue.regs[q])
37 apply tmp.reqgs[q] to tmp.st and store into tmp.rvals[q] the return value;
}
}
38 return tmp; // a blue node is returned
}

Algorithm 2: Pseudocode for Calculate and Propagate of F-RedBlue.

successful, the traversal of the red path ends (line 4). Otherwise, the next node in the
path is calculated (lines 5 — 10) and one more iteration of the loop is performed.

Once a red node z,. has been occupied, req performs two traversals of (a part of) its
blue path starting from the node in the blue tree corresponding ro z,., up to the root. This
is accomplished by the two calls to Propagate (lines 11 and 15). Each of these traversals
propagates the request type written into z, to the root node. Notice that p records L, as

its request type, into z, (lines 13 —14) before it starts its second traversal (we remark that

32

red tree blue tree

level 3

level 2

level 1

weacs [1] - [2] [s] [o] [s] [[) [[[[[[[[[
(a) Nodes with ids 1,2,3,10 and 13 are occupied by active threads, all other nodes are unoccupied.

red tree blue tree

level 2

wescs (1] [2] [s] [«] [s] [J [[J O[] [] [[[[[e]
(b) Thread p4 follows the path from node 1 to node 11 and occupies the first unoccupied node, which
is 5.

red tree blue tree

level 4
level 3
level 2

level 1

weasn[1] o] [o] [[] L] [[[[[[[[[[

(c) Thread p4 traverses the path from its occupied node 5 to the root node.

Figure 4.2: An example of an execution of F-RedBlue, where thread p, applies an operation
to the simulated object.

this occurs by performing one more LL/SC since we assume that an LL/SC base object
supports only Read, LL, and SC and not Write).

On each node z of the traversed path, Propagate performs twice the following: (1)
an LL instruction on z (line 21); (2) calculates the appropriate information to write into
z by calling function Calculate (line 22); (3) an SC to store the result of Calculate into
z (line 23). Finally, it moves up to the next node of the blue path (line 24). Thread p
re-initializes its occupied red node by writing in it the value (L, —1) (lines 16 — 17) just

before it returns.

33

Figure shows an example of the application of some operation by thread ps in a
system of 8 threads. Assume that p, wants to apply some operation op and assume that
some nodes of the red tree are already occupied. More specifically, red nodes with black
circles are occupied by active threads (see Figure . At first, py traverses the path
from the root node to its leaf until it occupies a red node (see Figure [£.2(b)). The first
unoccupied node from the root node to the leaf of p4, is node 5. After occupying this
node, p4 continues its execution with the traversal of the blue path. Now, p, traverses the
path from the occupied node, which is 5, to the root node upwards (see Figure .
In each node of this path, p tries to store the values read in both child-nodes and also the
value that is stored to the isomorphic red node.

We finally discuss the details of function Calculate. Function Calculate applies a
(potentially new) request for each thread ¢ (lines 35—37) as described below. If ¢ occupies
node with id z (line 31), then ¢’s new request is the one which is recorded into the red
node. Otherwise, the request for ¢ is found in the previous node of that with id 2z in
¢’s blue path. In case z is the root node (z = 1) and the calculated request for ¢ is not
already written in z and it is different than L (line 36), then the request of ¢ is a new
one and should be applied to the simulated object (line 37). This is simulated by calling
function apply.

4.1.2 Correctness proof

In this section we prove the correctness of F-RedBlue and analyze its time and space
complexity. In order to prove that F-RedBlue is correct, we first study the execution
fragment of a request req executed by thread p, where p traverses the red tree. Intuitively,
we prove that req manages to occupy exactly one red node, and as long as req is executed,
no other request succeeds in occupying this red node. After this point and once req finishes
its execution, it stores into this red node its initial value in order to allow its re-occupation
by some other request. We then study the properties of the execution fragment of req
that traverses the blue tree. We prove that if req occupies a red node with id z,, req
will be recorded into all nodes of the path starting from the blue node with id z, up to

the blue root. Therefore, req eventually reaches the root node and it is applied to the

34

object. We also prove that the application of each request occurs only once and that the
calculated response values are correct.

We first study the properties of the execution fragment of an F-RedBlue request req
that traverses the red tree. Intuitively, we prove that req manages to occupy a red node
(Lemma from that point and as long as req is executed, no other request succeeds in
updating this red node (Lemmas and . Once req finishes its execution, it stores
into its red node its initial value in order to allow its re-occupation by some other request.

Call the SC instructions of line 4 SC of type 1, the SC instructions of line 14 SC of
type 2, and the SC instructions of line 17 SC of type 3. Let p be any thread. By the
pseudocode, only p executes SC instructions on rnn — 1+ p|, the red leaf associated to p.
Thus, all these instructions succeed. Therefore, the condition of line 3 of the pseudocode
is evaluated to true when executed on rn[n — 1+ p| and, by the pseudocode, the sequence
of SC executed on rn[n — 1 + p| alternates between SC of type 1, SC of type 2, and SC

of type 3.

Observation 4.1. Let p be any thread. Then,
1. only thread p executes SC instructions on base object rn[n — 1+ p|;
2. the condition of line 3, when executed on rnln — 1+ p|, is evaluated to true;
3. all SC on rnjn — 1+ p| succeed;

4. the sequence of SC executed on rn[n — 1+ p| alternates between SC of type 1, SC of
type 2, and SC of type 3.

Based on Observation [£.0] it is easy to prove that any request req, executed by some
thread p, performs a successful SC of type 1 at some node of the red tree, since, in the

worst case, this will occur at p’s red leaf, the last node of p’s red path.

Lemma 4.1. Any instance req of APPLYOP executes a successful SC instruction of type

1 at some node of the red tree.

Proof. Let p be the thread that executes req. Assume, by the way of contradiction, that
req does not execute a successful SC of type 1 on any node of the red tree. Then, by the

pseudocode (lines 1-10), req executes an SC instruction of type 1 on any node of the red

35

path of p. Since the last node in this path is rn[n — 1+ p], it follows that the SC executed
by p on rn[n — 1 + p| is not successful, which contradicts Observation (Claim 3). »

Let z, 1 < z < 2n — 1, be the id of a node of the red tree. For any j > 1, denote by
SCY(z) the j-th successful SC of type 1 executed on z (i.e. on the node with id z), and
let 7eq;(2) be the request that executes SCY(z). We often abuse notation and omit z,
whenever it is clear from the context. Notice that, by definition, there are no successful
SC instructions of type 1 between SC? and SCJ™.

We say that a red node with id z is occupied by a thread p at some configuration C,
if it holds that rn[z].pid = p at C. If p is executing request req at C', we also say that
z is occupied by req at C'. We continue to prove that each red node, occupied by some
request req, should first be released by req before it can be occupied again by some other

request.

Lemma 4.2. For each j > 1, req; executes a successful SC instruction of type 3, which

we denote by SC3, on rn|z] between SC and SCI™.

Proof. First, we prove that at least one successful SC of type 3 is executed on rn[z]
between SCY and SCI™. We let SC’% be the first of these successful SC instructions.
Then, we prove, by induction on j, that ch is executed by reg; (i.e. the same request

that executes SCY).

1. Assume, by the way of contradiction, that no successful SC of type 3 is executed on
rn[z] between SCY and SC{*'. Recall that req; is the request that executes SCY

and reg;;1 is the request that executes SC’{H.

First, we prove that the read of 7n[z] (line 3) by reg; 4 follows SCJ. Assume, by the
way of contradiction, that this read occurs before SC7. The execution of the LL of
line 2 by reg;;+1 precedes this read, so the execution of this LL occurs before SC’{.
Since the corresponding SC to this LL is SCJ™, and occurs after the successful
S C’f instruction, S C’f“ cannot be successful, which is a contradiction. Therefore,

the read at line 3 by reg;; follows the execution of S C’f .

Since reg;4; executes S CI by the pseudocode (lines 3 — 4), it follows that req;t1
has read —1 into rn[z].pid (line 3). Let SC, be the last successful SC on rn[z]

preceding SC’fH. Recall that we have assumed that no successful SC of type 3 is

36

executed on rnlz] between SCY and SCIT'. Moreover, by definition of SCY and
SCI | no successful SC of type 1 occurs between SCY and SCY*". Thus, SC, must
be either SC{ or some successful SC of type 2. In either case, it follows by the
pseudocode (lines 4, 14), that SC, writes a value different than —1 into rn[z].pid,
which is a contradiction. Thus, there is at least one successful SC of type 3 executed

on 7n[z] between SCY and SCJ.

Let S Cg be the first successful SC of type 3 executed on rn[z] between SCY and
St

2. We prove, by induction on j, that SC’L{ is executed by reg;. Fix any j > 1 and

assume that the claim holds for any j',1 < j' < j.

We prove that the claim also holds for j. Assume, by the way of contradiction, that
S Cg is executed by some request req # req;. By the pseudocode (lines 4, 14) and
by Lemma req executes a successful SC instruction of type 1 on some node of
the red tree before SCJ; let SC, be this SC instruction. By the pseudocode (lines

4,17), SC; and ch are executed on the same node, namely on node z.

By the definitions of SCY and SC{™, no other successful SC of type 1 is executed
on z between SC and SCY*'. Moreover, SCY # SCy since SC} is executed by
req; # req. Thus, SC; is executed before S Cf.

If j = 1, this is a contradiction, since, by definition, S C{ is the first successful SC
of type 1 on rnfz]. If 7 > 1, let SC} be the first successful SC of type 1 on rn[z]
following SC;. Notice that SC/ is either SCY or some earlier successful SC of type
1 on z. As proved above (item 1), there is at least one successful SC of type 3
executed on rn[z] between SC; and SC]. Let SCj5 be the first such SC; obviously,
S5 precedes SC?];. Then, by the induction hypothesis, SCj5 is executed by req. By
the pseudocode, req executes only one SC of type 3, which contradicts the fact that
req executes both SCs and SCJ. 4

We continue to prove that the SC instructions executed on rn[z] by any request req #

req; between SCJ and SCJ fail.

Lemma 4.3. Let req # req; be any request. Then, no successful SC is executed by req on

rn|z] between SCY and SCI™.

37

Proof. By definition, no successful SC of type 1 is executed between SC{ and SC’fﬂ.
Assume, by the way of contradiction, that req executes a successful SC of type 2 or 3 on
rn[z] between SCY and SCJ™. Let SC), be the first of these successful SC instructions.

Lemma implies that req executes a successful SC of type 1 on some node of the
red tree before SC’; let SCy be this instruction. By the pseudocode (lines 4, 17), SC} is
executed on the same node as SCj,, namely on node rn[z]. Since req # req; and SCY is
executed by reg;, SCy # SC{. Since no successful SC of type 1 is executed between S C’{
and SCI™ it follows that SC| is executed before SCY.

If j = 1, this is a contradiction since, by definition, SC{ is the first successful SC of
type 1 on rnfz]. If j > 1, let SCY be the first successful SC of type 1 on rn[z] following
SCy. Then, SC! is either SCY or some earlier successful SC of type 1 on rn[z]. Lemma
implies that req executes a successful SC of type 3 on rn[z] between SC; and SC]; denote
by SCj5 this SC instruction. Then, SC3 precedes SC},, so SC3 # SC),. By the pseudocode,
S} is the only SC of type 3 executed by req. Moreover, by the pseudocode, req executes
only one SC of type 2 and it does so between SC and SCj5; let SC5 be this SC instruction.
Then, SCy # SC),. It follows that SC} cannot be an SC of the type 2 or of type 3 executed

by req. This contradicts our assumption.

Recall that, by the pseudocode, req executes exactly one SC of type 3. Thus, Lem-
mas [4.2] and [£.3 immediately imply the following observation.

Observation 4.2. For each j > 1, SCL{, executed by req;, is the only successful SC of
type 3 executed on rn[z] between SCI and SCIT.

It is now easy to prove that between any successful SC of type 1 and the following
successful SC of type 3 on rn|z], there is exactly one successful SC of type 2 on rnz]

executed by the same thread.

Lemma 4.4. For each j > 1, there is exactly one successful SC' of type 2, namely SC%,
on the red node with id z between SCY and SCI™, and SCY is executed by req; between

SCY and SCY.

Proof. By Observation , S C’g is executed by reg;. By the pseudocode (line 14), reg;
executes exactly one SC of type 2, namely SC%, and this happens between S Cf and S C’g.
Moreover, the only SC of type 3 executed by reg; is S C’g. Let LL% be the matching LL

38

instruction to SC’%. By the pseudocode (lines 4, 13, 14), it follows that LL% is executed
after SCY. Lemma implies that no successful SC is executed on rn|z| by any request
req # req; between SCY and SCIT'. Tt follows that SCY succeeds and it is the only
successful SC of type 2 executed on 7nz] between SCY and SCY*. Since in addition SCY

is executed by req; between § Cf and ch, the claim follows. 1

Lemmas and and the pseudocode (line 4) imply that each request req occupies
exactly one red node during its execution. We denote by z,(req) the id of this red node;

whenever req is clear from the context, we abuse notation and use z, instead of z,.(req).

Observation 4.3. The following claims hold: (1) Assume that C' is some configuration at
which a thread p, performing some request req at C', has executed the type 1 SC instruction
of req but it has not yet executed its type 3 SC instruction. Then, there exists exactly one
integer z,, 1 < z. < 2% n — 1, such that p occupies the red node with id z, at C. (2)
Assume that C' is some configuration at which a thread p does not execute any request.

Then, for each integer z, 1 < z < 2xn—1, p does not occupy the red node with id z at C'.

We continue to study the properties of the execution fragment of a request req executed
by thread p, where p traverses the blue tree. Intuitively, we prove that for each request
req that occupies a red node with id z,; req will be recorded into all nodes of the path
starting from the blue node with id z, up to the blue root (Lemma . Therefore, req
is eventually recorded into the root node of the blue tree.

Consider any integer z, 1 < z < 2n — 1, and let level(z) = lg(n) — |lg(2)| + 1, i.e.
level(z) is the level of the node with id z in any of the trees. For the rest of this section, let
req be any instance of APPLYOP executed by some thread p. By Lemmal[d.I] req executes
a successful SC of type 1 on some node with id z,(req) of the red tree. By the pseudocode
(line 4), this is the only SC of type 1 executed by req. Let pt(req) be the path of the blue
tree from the node with id z. to the root. For each h,level(z,) < h < lg(n) + 1, denote
by zp, the id of the node of pt(req) at level h; notice that when h = level(z,), z, = 2.

The following observation is an immediate consequence of the pseudocode (lines 20, 23).

Observation 4.4. Let 7 be the execution of any instance of Propagate by req. Then, ™

executes two SC instructions on every node of pt(req).

Let 7 (req) and mo(req) be the two instances of function Propagate executed by req,

in order. By Observation [1.4] for each i € {1,2}, m(req) executes two SC instructions

39

req req’
71 (req) mo(req) m1(req’) mo(req’)

| | |
61(7’6@ 02(T€Q) Cg(rleq) C’l(req’) C’g(req’) Cg(lreq/) time D

Figure 4.3: An example of an execution of F-RedBlue.

on each node of pt(req). For each h, level(z,) < h <logn + 1, denote by Cj,(req) the
configuration immediately following the execution of the second of these SC instructions
(line 23) on node bn[z,] by m;(req). Let reqt[l] = req and reqt[2] = L. Denote by
C(req) the configuration just after the successful SC of type 1 by req (that writes the
pair < req,p > into rn|z.]), let Cy(req) be the configuration just after the successful
SC of type 3 by req (that writes the pair < L,p > into rn[z,.]) and let Cs(req) be the
configuration just after the successful SC of type 3 by req (that writes the pair < 1, —1 >
into rnfz]). In case h = level(z,), let Cy p—1(req) = Ci(req) and Cyp_1(req) = Cy(req).
For simplicity of presentation, we sometimes omit req from the above notation if it is

clear from the context. An example of the above notation is shown on Figure [4.3

Lemma 4.5. For each i € {1,2}, and for each h, level(z,) < h <logn + 1, there is a

configuration C;p(req) such that:
1. Cyp(req) is the first configuration at which req is contained in bnlzy].reqs[p);
2. Cyp(req) is the first configuration following Cop_1(req) at which L is returned;
8. Cin(req) follows Cip1(req) and comes before or at Cf,(req);
4. at each configuration between Cy p(req) and Cyy(req), bnlzp).reqs|p] contains req;
5. at each configuration between Cyp(req) and Cs(req), bnlz,].regs[p] = L.

Proof. The proof is by induction on h. Fix any integer h, level(z.) < h <logn + 1 and
assume that the claim holds for each R/, level(z,) < h' < h. We prove that the claims
hold for h.

Fix any 7 € {1,2}. Recall that p is the thread executing req. By Observation 4.4} m;
executes two SC instructions on the blue node with id zj,. Let SC;;, SC;2 be these two
SC instructions and let LL;,, LL;2 be the matching LL instructions, respectively. By

the pseudocode, 7; reads rn[z;] and bn[z,_1] during the execution of any of the instances

40

of its Calculate. We prove that req calculates the value regt[i] as the new value of
bn|zp].reqs(p).

Assume first that h = level(z,). By definitions of z, and C; 1 (when h = level(z,)),
and by the pseudocode (lines 4, 14), the pair (reqt[i], p) was written into rn[z,| at C; 1,
and therefore before the execution of LL;; and LL;,. By the pseudocode, and by Lem-
mas [4.2] and [4.4] it follows that rn[z,] contains the pair (reqt[i], p) until the execution by
req of the SC of type (i + 1) which comes after the final configuration of ;. Therefore,
each of the reads of rn|z,] by m; following LL; and LL; 5 returns reqt[i] for thread p and,
by the pseudocode (lines 27 — 28), Calculate writes reqt[i] for p in the new set of request
types it calculates.

Assume now that h > level(z,), so z, # z.. Then, Observation (Claim 1) im-
plies that rn|z,].pid # p. By the pseudocode (lines 29 — 30), it follows that Calculate
will consider, as the new request type for p, the value read for p in bn[z,_1]. By the
induction hypothesis, there is a configuration C;j_1(req) in which regt[i] is written in
bn|zn_1].reqs[p], and C;p1(req) precedes Cj, ;. We argue that request reqt[i] is con-
tained into bn[z,_1].regs[p| from C;p_1(req) until the execution of the SC instruction of
type (i + 1) by req (which occurs after the final configuration of ;). If ¢ = 1, this is
implied by the induction hypothesis (Claim 2) and because Cy_1(req) = Ca(req) when
h = level(z,.). If i = 2 this is immediate from the induction hypothesis (Claim 3). By the
definition of €}, _,, and by the pseudocode, it follows that LL;; and LL;2 occur between
Ci,_1 and the final configuration of 7;. Thus, when bn|z, 1] is read between LL;; and
SC;1 (or LL; 5 and SC;), reqtli] is found in bn|z,_1].regs[p].

If any of the SC;, or SC; 4 is successful, then reqt[i] is recorded into bn[z,].reqs[p| by
this successtul SC.

Assume now that both SC;; and SC; fail. Since SC; fails, it must be that, between
LL; and SCj there is at least one successful SC instruction on bn[zp,]. Let SCj, be the
first of these instructions, and let req; # req be the request that executes SC;,. Let LL;,
be the matching LL instruction to SC},. Since SCj; fails, it must be that between LL;;
and SCj;, there is at least one successful SC instruction on bn[z]; let SC;, be any of
them. LL;, follows LL;;, since otherwise SC7,, which follows LL;;, would cause SCj,

to fail.

41

The pseudocode implies that req; reads rn[z;] and bn|z,_1] during the execution of its
Calculate between LL;, and SCj,. Recall that req occupies z,. We prove that request
req, calculates the value reqt[i] as the new value of bn|z].regs[p|.

Assume first that h = level(z,.), so z, = z,.. Recall that the pair (regt|i],p) was
written into rn[z,] before the execution of LL;; and LL;»; moreover, rn|z,| contains the
pair (reqt[i], p) until the execution of the SC instruction of type (i+1) by req which comes
after the final configuration of 7;. By the pseudocode (line 20), req; reads rn[z,| after LL; ,
(which follows LL; ;) and before SC; , (which precedes SC;» and the final configuration of
m;) . Thus, req, reads the pair (regt[i], p) in rn[z,]. So, by the pseudocode (lines 27 — 28),
the instance of Calculate executed by req; between LL;, and SCj,, stores reqt[i] for p
in the new set of request types it calculates and req} writes reqtli] into bn|z].reqs|p|] when
it executes SC7,.

Assume now that h > level(z,), so z, # z,. Then, Observation (claim 1) implies
that rnlz,].pid # p. By the pseudocode (lines 28 — 30), it follows that the instance of
Calculate executed by req; between LL;, and SCj,, will consider as the new request
type of p the value read in bn|z,_1].regs[p]. By the induction hypothesis, there is a
configuration C; 1 in which reqt[i] is written into bn[z,_1].regs[p], and C; 1 precedes
C} ,_1; moreover, reqt[1] is contained in bnz, ;] from Cy 1 until Cyp,—y (which follows
the final configuration of), and reqt[2] is contained in bn|z,_1] from Cyp_y until the
execution of the SC instruction of type (i+1) by req (which follows the final configuration
of my). Thus, in either case reqt[i] is contained in bn[z,_1].regs[p] from C;;—; until the
final configuration of 7;. By the definition of C7, ,, and by the pseudocode, it follows
that LL;; and SC; 2 occur between Cz{,h—l and the final configuration of 7;. Thus, when
bn[z,_1] is read between LLj, (which follows LL;;) and SCj, (which precedes SCjy),
reqt[i] is found in bn[z,_1].reqs[p]. So, by the pseudocode (lines 27 — 28), reqt[i] i stored
for p in the new set of request types calculated by req; and is written into bn|zp].reqs|p|
by SCi,.

In both cases, we conclude that there is at least one configuration between SC;; and
SC; o at which the value regt[i] is written into bn|zp].regs[p].

Let SC;n(req) be the first successful SC that writes reqt[i] into bn[zp].regs[p] and
follows C; p—1(req); let C; n(req) be the configuration immediately following the execution

of SC;p(req). Therefore, it follows that SC;(req) precedes SC;5. (We remark that

42

SC;n(req) may also precede SCj;.) Since, by definition, Cj, follows SC;a, SC;p(req)
precedes Cj,. Thus, C;(req) comes before or at Cj,. By definition, SCjp(req) follows
Cin-1(req), so C;n(req) follows C;_1(req). This concludes the proof of Claim

We continue to prove Claim . We argue that the first time that regt[1] appears in
bn[zn—1].reqs[p] is at C;p_1. If h = lever(z,), this is implied by the pseudocode and by
the fact that Cy_1(req) = Ci(req) in this case. If h > level(z,), this is implied by
the induction hypothesis (Claim ; moreover, in this case, Observation implies that
rnlzy).pid # p at all configurations starting from C(req) until Cs(req) (which comes
after C;,_1(req)). Thus, by the pseudocode, it follows that no SC can write regt[1] into
bn[zp).reqs[p] before C; ;1 (req). Since (by definition) SC} ,(req) is the first successful SC
that writes reqt[1] into bn[z,].reqs[p] after C; ,_1(req), C1 x(req) is the first configuration
at which regqt[1] is contained in bn|zp].regs[p|.

By Claim [3| proved above, (', precedes the final configuration of m; moreover, Cs,
follows Cy(req) which comes after the final configuration of m;. Thus, Cy), follows Cf 4.

Assume, by the way of contradiction, that there is a configuration C; between C 5 and
Co.p, such that bn[z,].reqs[p| contains a value « # reqt[1] at C;. By definition of C}, there
is at least a successful SC instruction that writes x into bn|zp].regs[p] and occurs between
C1,, and the configuration that precedes Cy . Let SC] be the first of these instructions,
let it be executed by request req] # req and let LL| be its matching LL instruction.
Recall that SC , is the successful SC instruction executed just before Cy j,. Since SCj is
a successful SC instruction, LL} must follow SC . By the pseudocode, req) reads rn|z)
and bn|z,_;] during the instance of Calculate executed between LL| and SC|. Recall
that p occupies z,.

Assume first that h = level(z,). Then, the pseudocode (lines 4 or 14), and Lemmas[1.2]
and [4.4) imply that req] reads either the pair (reqt[1], p) or the pair (reqt[2], p) into rn[z,]
(depending on whether the read happens between C j, and Cyj,—1 or between Cyj,—1 and
the configuration that precedes Cs, respectively) when executing Calculate between
LL} and SCi. Assume now that h > level(z,), so z, # z.. Then, Observation
(Claim 1) implies that rn[z;].pid # p. By the pseudocode (lines 28 — 30), it follows that
req] will consider as the new request type for p, the value read in bn|zj,_1].regs[p| when
executing Calculate between LL| and SC|. By the induction hypothesis (Claim [f)), req

is contained in bn[z,_1].reqs|p| at all configurations between C ;_;(req) and Cy —1(req).

43

Thus, req! reads either the pair (regt[1], p) or the pair (reqt[2],p) (depending on whether
the read happens between C'; and Cy 1 or between Cs 1 and the configuration that
precedes Cy p,, respectively) in bn[z,] when executing Calculate between L) and SCj.
We conclude that this is so in either case.

If req] reads the pair (regqt[1],p), by the pseudocode, it follows that req’ writes the
value reqt[1] into bn[zp).reqs[p] when it executes SC|. This is a contradiction to our
assumption that SC writes x # reqt[1] into bn|zp].reqs[p]. Thus, assume that req] reads
the pair (L, p). Then, by the pseudocode, it follows that req] writes L into bn[z].regs[p]
when it executes SC]. Recall that, in this case, the read by req! that occurs between
LI and SC] must take place after Cyj_1(req). Therefore, SC; occurs after Cs—1(req)
and before SCy p,(req). Then, it is SC} (and not SCy (req)) the first SC after Cy ,—1(req)
that writes L into bn|zp].regs[p|, which contradicts the definition of SCy (req).

We continue to prove Claim 5| By definition of Cyp,, L is contained in bn|zp].regs[p| at
Cop. So, we continue to prove that L is contained in bn[z;].regs[p] at each configuration
between Cy), and Cs(req).

By the definitions of Cj, and Cs(req), and by the Claim [3| that is proved above,
Cs(req) follows Cyp,. Assume, by the way of contradiction, that there is a configuration
C) between Cy), and Cs(req), such that bn[z,].regs[p] contains a value z # L at C).

By definition of C, there is at least a successful SC that writes x into bn[z,].reqs[p]
and occurs between Cy) and the configuration that precedes Cs(req). Let SCY be the
first of these instructions, let it be executed by request req) # req and let LL) be its
matching LL instruction. Recall that SCy), is the successful SC instruction executed just
before Cy 5. Since SCj is a successful SC instruction, LLj follows SCy .

If h = level(z,), Lemmas and imply that the read of rn[z,] by req], which
occurs between LL, and SCY (at the beginning of the execution of its Calculate) returns
(L,p). Thus, by the pseudocode, reqy writes L # x into bn[z,].reqs[p] by executing SCY,
which is a contradiction.

Assume now that h > level(z,). Observation[d.3(Claim 1) implies that rn[z;].pid # p.
By the pseudocode (lines 28 — 30), it follows that the instance of Calculate executed by
reqy between LL, and SCY, will consider as the new request type of p the value read in
bn|zn—1].reqs[p]. By the induction hypothesis, there is a configuration Cyj,—1 at which L

is written into bn|z,_1].regs[p|, and Cy 1 precedes CY, _;; moreover, L is contained in

44

bn[zn—1].reqs[p] from Cyj_y(req) until Cs(req). Thus, the read of bn|zp] by regy, which
occurs between LL, and SCY returns the value L for p. Thus, by the pseudocode, reg,

writes L # x into bn[z,].regs[p] by executing SC%, which is a contradiction.

We remark that information about req (namely, req and the id p of the thread that
executes it) is recorded for the first time into one of the base objects when req occupies its
red node z,. Lemma implies that it is then transferred to the blue node with id z,. (by
req or some other request); moreover, only when it is written there, it can be forwarded
to the next node of the blue path of req. This transfer continues up to each node of req’s
blue path until the request type of req eventually reaches the root. Recall that for each
h, level(z,) < h <logn+1, req is written into node z;, at level h of pt(req) by SCi n(req)
just before Cy j(req), and L is written into bn|z] by SCap(req) just before Cy (req).

The following claim is an immediate consequence of Lemma [4.5| when h = logn + 1.

Corollary 4.1. The request type of any request req is successfully recorded in the blue

root by SCY jogn+1(req).

We continue to prove that the value L is contained for some thread p in a blue node
z from the time that a request by p writes L into z until the time that the subsequent
request by p (for which z is contained in its path) writes its request type into z (or until

the final configuration if such a request does not exist).

Lemma 4.6. Consider any request req executed by some thread p. For each z, € pt(p),
let C, = Cyp(reqm,) if p executes a subsequent request reqy, such that zp € pt(regm,);
let Cy, be the final configuration if such a request does not exist. Then, bn|z].regs[p] = L

at each configuration between Cs(req) and Cj,.

Proof. Assume, by the way of contradiction, that the claim does not hold and let C' be the
first configuration at which the claim is violated. Let req be the request (let it be executed
by some thread p) and z;, € pt(p) be the node that causes this violation. More specifically,
if req,,, is the first request executed by p after req for which z, € pt(regm,), then C' is
between Cs(req) and Cy (regy,) and bn[z,).reqsp] = x # L at C (if such a request does
not exist, then C' is between C3(req) and the final configuration). Assume that SC’ is the

SC instruction executed just before C' which writes the value in bn[z;].regs[p] and let

45

req’ be the request that executes SC’. Denote by LL' the corresponding LL instruction
to SC".

Assume first that req’ reads x in rnlz,].req. Notice that req’ performs this read (let
it be r’) at some configuration C’ that precedes C'. By the pseudocode, it follows that
rnlzp).pid = p and rnlz].req = x at C’. Thus, p is active executing some request req” at
C" such that zj, is the first node in pt(req”).

If zj, € pt(req), let reqs, = req; otherwise, let req,, be the last request by p preceding
req such that z, € pt(regqy,). (Since zj, € pt(req”), req, is well-defined.) By the pseu-
docode, LL' happens before 1. If C' precedes Cy p(reqy,), then LL' precedes Cs p(regy,).
Since, by Lemma SCy p(reqy,) happens just before configuration Cyp(req,) and it
is a successful SC on bnlz], SC’ cannot be successful. This is a contradiction. Thus,
C" follows Cyp(reqy,). Lemmas and imply that rnf[z;] = (L,p) at Copn(regs,).
By definition of regq,, no other request following reg,, and containing z;, in its path is
executed by p before reg,,,. It follows that, at each configuration between Cy j,(regs,) and
C", rn[zp] # (x,p). This is a contradiction (since we have assumed that req’ reads (z,p)
in rnlz,] at C7).

Assume now that req’ reads x in bn|z,_1].reqs[p] (where z;,_; is the node preceding z;, in
pt(p)); let " be this read. Notice that r” results in some configuration C” which precedes
C. Let reqy,,_, be the first request executed by p after req such that z,_1 € pt(regm,_,). If
Zn-1 € pt(req), let reqy, , = req; otherwise, let regy, , be the last request by p preceding
req such that z,_; € pt(reqy,_,). In case regy, , does not exist, denote by Csj,_1(regs,)
the initial configuration. Similarly, in case regq,, does not exist, let Cy ,(regy,) be the initial
configuration. If reg,, , does not exist, denote by C4 y_1(regy,_,) the final configuration.
Similarly, in case reg,,, does not exist, let C} j(regm,) be the final configuration.

Since zj, is an ancestor of zj,_; in the blue tree, it follows that z, € pt(regn,_,) and
2, € pt(reqy,_,). Thus, either regq,, , = req, or reqy, , precedes req,. Similarly, either
T€qm,,_, = T€qm, O T€qy, , follows regq,, .

Assume first that reg,,, , follows reg,, , so that C' precedes C4 _1(regy,_,). By the
pseudocode, LL’ happens before . Obviously, C” follows the initial configuration. If C”
precedes Cy p(reqy,), then LL' precedes Cyy(reqy,). Since, by Lemma SCyp(reqy,)
happens just before Cy j,(regy,) and it is a successful SC on bnzp], SC’ cannot be successful.

This is a contradiction. Thus, C” follows Cy j(1egy,)-

46

We now prove that, at each configuration between Cyp(regy,) and Cyp_1(regm,),
bn[zn—1].reqs[p] = L. In case that req,, , = reqy,, Lemma implies that Cy 1 (reqs,)
precedes Cyp(reqy,), and at each configuration between Cyj_i(reqy,) and Cs(regy,), it
holds that bn[z,_1].regs[p] = L. Otherwise, recall that req,, , precedes reg,, and they
are both executed by p, so Cs(regy,_,) precedes Cyp(reqy,). Since C'is the first configu-
ration at which the claim of the lemma is violated, it must be that, at each configuration
between Cs(regqy,) and Cyp_1(regm,), bn[zn_1].regs[p] = L.

Assume that C precedes Cy ,_1(regy,, _,). It follows that at each configuration between
Cs(reqy,_,) and C it holds that bn[z,_1].reqs[p] = L. It follows that r” reads L # z in
bnz,_1].reqs[p] and writes L # x in bn|z,].reqs|p|, which is a contradiction.

Assume now that C' follows Cyj_1(regm,_,). In case that request reg,,, , follows
request regqy, , it holds that configuration C' precedes Cy j_1(reqm,_,), so it must be that
T€qm, , = T€qm,. Since (1) it holds that bn|z,_1].regs[p] = L at each configuration
between Cy p,(reqy,) and Cy p—1(regm,_,) = Cip—1(reqm,), (2) r" occurs after Cy p(regy,),
and (3) r” returns « # L, it must be that r” occurs after Cy j,_1(regy,). Thus, 7" occurs
between Ci p_1(reqny,) and Cyu(reqn,). Lemma implies that, at all configurations
between C j_1(reqm,) and Cy p(reqy,,), it holds that bn|z,_1].reqs[p] = req,. Thus, r”
reads regq,,, in bn[z,_1].regsp|] and writes the same value in bn|z,].reqs[p] by executing
SC’. However, Lemmaimplies that the first configuration after C ;,_1(regy,,) at which
reqm, is written into bn|zp].regs|p| is Cy p(reqnm,). Since we have assumed that C' precedes

Ch1.n(reqm,), this is a contradiction. n

We are now ready to assign linearization points to the requests of F-RedBlue. By
Observation [4.1] there is at least one successful SC that records the request type of req in
the blue root node. Recall that SC jogn+1(7eq) is the first of these SC instructions. We
place the linearization point of req at SCi jogn+1(req); ties are broken by the order that

thread identifiers impose.

Lemma 4.7. For each request req, the linearization point of req is placed in its execution

interval.

Proof. By Lemma [1.5] the request type of req is recorded in the root node by some SC
instruction and this occurs before the execution of the type 2 SC instruction by req (line

14). Thus, the linearization point of req precedes the end of its execution interval.

47

Let SC(req) be the first successful SC that records the request type of req in the
blue root node. Notice that req is invisible to all threads until it performs its first store
request, writing its information into the red node that it occupies. Thus, SC(req) must

follow the beginning of the execution interval of req.

We say that a request req is applied on the simulated object if (1) procedure Calculate
executed by some request req’ (that might be req or another request), reads in the ap-
propriate child node of the blue root or in the red root node, a value equal to req (i.e.
the request type written there for req) and records it as the new request type for p, (2)
Calculate by req’ applies this request type with its parameters, and (3) the execution of
the SC of line 23 (let it be SC,.) on bn[l] by req" succeeds (thus writing there the value
req for p). When these conditions are satisfied, we sometimes also say that req’ applies
req on the simulated object or that SC, applies req on the simulated object. We next

prove that each request req is applied on the simulated object exactly once.

Lemma 4.8. Fach request req is applied on the simulated shared object exactly once by

SCl,log n+1 (7’6(]) .

Proof. Assume that req is executed by thread p. We first prove that req is applied on
the simulated object at least once. Lemma 4.5/ implies that req is successfully recorded in
the root node of the blue tree at least once and that SC' jogn1 is the first SC instruction
that stores req into bn[l].regs[p|. Let req’ be the request that executes SCi jognt1-

In case p executes a request before req, let Cy, = Coiognt1(r€q,), Where regy, is the
last preceding to req request executed by p; otherwise, let (, be the initial configuration
of the algorithm. If req’ performs the read of bn[l] that precedes SCi jogn+1 before G,
then SC jogn+1 fails. This is so because, by the pseudocode, the corresponding LL to
SC1 lognt+1 Precedes this read, and, by the definition of Cj, and Lemma , a successful SC
on bn[l] (namely SCsogn+1(reqy,)) occurs at Cy, , thus causing the failure of SCY jogp+1-
This is a contradiction.

Thus, req’ performs its read after C,,. Lemmas and imply that, at each
configuration between Cp, and C jogn+1(r€q), bn[l].reqs[p] = L. It follows that req’ reads
1 into bn[l].regs[p] during the execution of Calculate that precedes SCiogn+1(req).
Since req # L, req’ evaluates the condition of the if statement of line 31 to true. We

conclude that req’ applies req.

48

We now prove that req is applied at most once on the simulated object. Assume, by
the way of contradiction, that req is applied at least twice, and let SC” be the first SC
after SC1 1ognt1(req) that applies req. Let req” be the request that executes SC” and let
' be the last read of bn[l] executed by req” before SC.

If " occurs before SCY jogn+1(req), then the corresponding LL to SC’, which precedes
', precedes also SCijogn+1(req). Thus, SCiiegnt1(req) causes SC” instruction to fail,
which is a contradiction. Therefore, 1 follows SC1 jogn+1(req).

If " occurs between configurations Cf jogn+1(7eq) and Cs o6 nt1(req), then Lemmas
and imply that ' reads the value req in bn[l]. Since req” apply req, it must be that
tmp.reqs|p| = req when req” executes line 31 of the instance of Calculate that precedes
SC'". Thus, by the pseudocode (line 31), it follows that the condition of the if statement
of line 31 is evaluated to false. Thus, req’ does not call APPLYOP which contradicts the
fact that req’ applies req.

Assume finally that r’ follows C5 o5 p+1(req). Lemma and Observation imply
that rn[l] # req at all configurations after the configuration at which req executes its
type 2 SC instruction. Moreover, if any of the root children belongs to pt(req), then
Lemma imply that Cyogn(req) precedes Cjognt1(req), and bnlogn|.regs[p] # req
after Cyogn(req). By the pseudocode, it therefore follows that procedure Calculate
executed by req” before SC’, calculates as the new value of bn[l].regs[p] a value other

than req and therefore it does not apply req, which is a contradiction. 1

In order to prove consistency, we use the following notation. Denote by SC,,, m > 0,
the mth successful SC instruction on b[1], which is the root node of the blue tree, and let
LL,, be its matching LL. Obviously, between SC,, and SC,, 1, b[1] is not modified.

Denote by «,,, the prefix of a which ends at SC,,, and let C,,, be the first configuration
following SC,,. Let agy be the empty execution. Denote by L,, the order defined by the
linearization points, assigned as described above, of the requests in «,,. We remark that
b[1].st stores a copy of the simulated state at each point in time. Moreover, each thread
applies requests on its local copy of the simulated state sequentially, the one after the
other. We say that b[1].st is consistent at C,, if it is the same as the state that results if

the requests of a,, are executed sequentially in the order specified by L,,.

49

Lemma 4.9. For eachm > 0, (1) b[1].st is consistent at Cy,, and (2) Ly, is a linearization

order for au,.

Proof. We prove the claim by induction on m.

Base case (m=0): The claims hold trivially: by the initialization of b[1], b[1].st contains
3, which is the initial state of the simulated object, and «q is empty.

Induction hypothesis: Fix any m > 0 and assume that the claims hold for m — 1.
Induction step: We prove that the claim holds for m. By the induction hypothesis,
it holds that: (1) b[1].st is consistent at C,_1, and (2) L, is a linearization order for
am_1. Let req be the request that executes SC,,. Assume that req applies 7 > 0 requests
on the simulated object. Denote by reqi, ...,req; the sequence of these requests ordered
in increasing order of the identifiers of the threads that initiate them.

Notice that req performs L L,, after C,,_; since otherwise SC,,, would not be successful.
By the induction hypothesis, b[1].st is consistent at C,,—;. Thus, the local copy of b[1]
that is last stored by req in tmp, represents a consistent state of the simulated object.
Lemma implies that regqi, ..., reg; are applied only once. This is realized when SC,,
is executed. Thus, none of these requests have been applied in the past.

Given that the application of req, ..., req; is simulated by the thread executing req
sequentially, in the order mentioned above, starting from the state stored in tmp, it is a
straightforward induction to prove that (1) for each f, 0 < f < j, a consistent response
is calculated for reqy, and the new state of the simulated object is calculated in a correct
way in the local variable tmp of the Calculate executed by req. Therefore, b[1].st is
consistent after the execution of req’s successful SC. Notice that, by the way linearization
points are assigned, Ly, = Ly,_1,7eqi, ..., req;. It follows that L,, is a linearization order

for ay,. 1

Pseudocode (lines 1 and 19-24) implies that an operation op takes as many steps as the
path length it traverses in the red and blue tree. Lemma and the pseudocode (lines 4
and 17) imply that when a process occupies some red node, then the interval contention
is at least equal with the depth of the occupied node. Since the maximum path length
of the red and blue trees is Ign + 1, the time complexity of F-RedBlue is O(min{k,lgn}),

where k is the point contention. Thus, the following theorem holds.

20

Theorem 4.1. F-RedBlue is a linearizable, wait-free implementation of a universal object

that uses 2n — 2 LL/SC objects. Its step complexity is O(min {k,lgn}).

4.2 Modified version of F-RedBlue that uses small base objects

In this section, we present S-RedBlue, a modified version of F-RedBlue that uses small base
objects. Now, each red node stores [logn]|+1 bits. A blue node other than the root stores
n bits. The blue root stores n bits, a thread id and the state of the object. This LL/SC
base object is implemented by single-word LL/SC base objects using the implementation
presented in [44].

In S-RedBlue, a thread p uses a single-writer base object to record its current request
(line 1). As in F-RedBlue, the thread starts the execution of any of its requests by
traversing the red tree. However, to occupy a red node, the thread just records its id
and sets the bit of the node to true.

Similarly, each thread, moving up the path to the root of the blue true, just sets a bit
in each node of the path to identify that it is currently executing a request. Thus, the bit
array of the root identifies all threads that are currently active.

To avoid storing the return values in the root node, each thread p maintains an array
of n single-writer base objects, one for each thread. When p reaches the root (during the
application of one of its requests), it first records the responses for the currently active
threads in its appropriate single-writer base objects (lines 25 — 26). Then, it tries to store
the new state of the object in the blue root together with its id and the set (bit vector)
of active threads. A thread finds the response for its current request in the appropriate
single-writer base object of the thread whose id is recorded in the root node.

The state is updated only at the root node and only when the bit value for a thread
changes from false to true in the blue root’s bit array (line 23). This guarantees that the
request of each thread is applied only once to the simulated object. However, all threads
reaching the root, record responses for each currently active thread p in their single-writer
base objects, independently of whether they also apply p’s request to the simulated object.
This is necessary, since the request of p may be applied to the object by some thread ¢

and later on (and before p reads the root node for finding its response) another thread ¢’

51

struct RedNode{
boolean req;

int pid;

b

struct BlueNode{
state st; // this field is used only at the root node
RetVal rvals[n]; // this field is used only at the root node
boolean regs[n];

¥

shared RedNode rn[1..2n-1] = {<F, -1>, ..., <F, -1>};

shared BlueNode bn[l..2n-1]={<F, <0,0>, <F,....F>> .< 1,<0,..,0>< 1,..., 1 >>};
shared RetVal rvals[l.n|[1..n] = {{L,..., L}, ..., {L,...,L}};

share request Announce[l..n];

RetVal ApPLYOP(Request req){ // pseudocode for thread p

int direction = n/2, z = 1, levels = Ig(n) + 1, 1, j;

RetVals rv;
1 announce[i] = req; // p announces its request
2 for(1=levels;1>1;1--){ // traversal of red path
3 LL(rn[z));
4 if(rn[z] == <F, -1>)
5 if(SC(rn[z], <req, p>)) break;
6 if(p<direction){ // find the next node in the path
7 direction = direction - 2!=3;
8 z=2%g // move to the left child of z
9 } else{
10 direction = direction + 2!73;
11 z=2%z+41; // move to the right child of z

}

}
12 Propagate(z); // first traversal of blue path: propagating the request
13 rv = bn[1].rvals[pl;
14 LL(rn[z]);
15 SC(rn[z], <F, p>); // the request occupying rnz| starts its deletion phase
16 Propagate(z); // second traversal of blue path: propagating L
17 LL(rn[z));
18 SC(rn[z], <F, -1>); // re-initialize the occupied red node to L
19 return rv; // return the appropriate value

}

Algorithm 3: Pseudocode for S-RedBlue.

may overwrite the root contents. thread ¢’ will include p in its calculated active set but
it will not re-apply p’s request to the object, since it will see that p’s bit in the active set
of the root node is already set. Still ¢’ should record a response for p in its single-writer
base objects since p may read ¢’ and not ¢ in bn[l].pid when seeking for its response.
The proof that S-RedBlue is correct closely follows the correctness proof of F-RedBlue.
The main difference of the two algorithms is on the way that response values are calculated.

If ¢ is the thread that applies some request req, the response for req is originally stored

52

void Propagate(int z){ // pseudocode for thread p

20 while (z!=0){ // traversal of the blue path
21 for (j=1 to 2) do{ // two efforts to store the appropriate information
22 LL(bnl[z]);
23 bt=Calculate(z, i);
24 SC(z, bt);
}
25 z =|z/2];
}
}

BlueNode Calculate(int z) {
BlueNode tmp=< 1,<0,...,0>,< 1,..., L >>;
BlueNode blue=bnlz], lc, rc;
RedNode red = rn[z];
int q, range;

26 if (2*z+1 < 2n) {

27 le = bn[2*7];
28 rc = bn[2*z+1];
} // if z is an internal node
29 range = 2'8(M)—Me(x)]. // compute the number of leaves of each subtree

// copy the requests placed on the left subtree
30 tmp.regs[2q-range..2q] = lc.regs[2q-range..2q];
// copy the requests placed on the right subtree
31 tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];
32 if (red.pid # -1) tmp.regs[red.pid]=red.req; // if thread ¢ occupies node red
33 if(z==1){

34 tmp.rvals[1..n] = blue.rvals[l..n]; // copy the return values
35 tmp.st = blue.st; // copy object’s state
36 for q=1 to n do{ // local loop
37 if (tmp.regs[q]==T AND blue.reqs[q]==F) // apply any pending request
38 apply tmp.regs[q] to tmp.st and store into tmp.rvals[q] the return value;
39 else if(tmp.reqs[q]==T) // store the return value for pending request g
40 rvals[p][q]=rvals[b.pid][q];
}
¥
41 return tmp;
}

Algorithm 4: Pseudocode for Propagate and Calculate of S-RedBlue.

in rvals(q][p] and the id of ¢ is written into the root node. The next thread to update
the root node will find the id of ¢ in the root node and (as long as req has not yet read
its response by executing line 8), it will see that tmp.reqs[p| = T. Therefore, it will copy
the response for req from rvals|q][p] (line 26) to its appropriate single-writer base object.
So, when p seeks for the response of req it will find the correct answer in the single-writer
base object of the thread recorded at the root node.

S-RedBlue uses O(n) multi-writer LL/SC objects and O(n?) single-writer read/write

base objects. One of the multi-writer base objects is large and it is implemented using the

23

implementation of a W-word LL/SC object from single-word LL/VL/SC objects presented
in [44]. This implementation achieves time complexity O(W) for both LL and SC and
has space complexity O(nW). Thus, the number of base objects used by S-RedBlue is
O(n* + nW). In common cases where n bits fit in a constant number of single-word
base objects, the time complexity of S-RedBlue is O(k + W) since Calculate pays O(k)
to record k response values in the single-writer base objects and O(W) for reading and

modifying the root node.

Theorem 4.2. S-RedBlue is a linearizable, wait-free implementation of a universal object

that uses O(n* +nW) base objects and its step complezity is O(k + W).

4.3 Adaptive synchronization algorithms for large objects

In the universal constructions for large objects presented by Anderson and Moir in [11] the
object is treated as if it were stored in a contiguous array. Moreover, the user is supposed
to provide sequential implementations of the object’s requests which call appropriate
Read and Write procedures (described in [11]) to perform read or write requests in the
contiguous array (see [I1, Section 4] for more information on what the user code should
look like and a example). The universal constructions partition the contiguous array into
B blocks of size S each, and during the application of a request to the object, only the
block(s) that should be modified are copied locally (and not the entire object’s state).
The authors assume that each request modifies at most 7" blocks.

S-RedBlue can easily employ the simple technique of the lock-free construction pre-
sented in [I1I] in order to provide a simple, adaptive, wait-free algorithm (called LS-
RedBlue) for large objects. As illustrated in Algorithm 5| only routine Propagate requires
some modifications. Also, data structures are similar to those of [I1] are needed for stor-
ing the array blocks, having threads making “local” copies of them and storing back the
changed versions of these blocks. More specifically, array BLK stores the B blocks of
the object’s state, as well as a set of copy blocks used by the threads for performing their
updates without any interference by other threads. Since each request modifies at most 7'
blocks, a thread reaching the blue root, requires at most k7" copy blocks in order to make

copies of the kT state blocks that it should possibly modify. So, BLK contains nkT + B

o4

blocks; initially, the object’s state is stored in BLK[nkT + 1],..., BLK[nkT + B] (the
blocks storing the state of the object at some point in time are called active). The blue
root node stores an array named BAN K of B indices; the ith entry of this array is the
pointer (i.e. the index in BLK) of the ith active block. Each thread p has a private
variable ptrs,, which it is used to making a local copy of the BAN K array (line 9).

The application of an active request to the object is now done by calling (in Calculate)
the appropriate sequential code provided by the user. The codes of the Read and Write
routines (used by the user code) are also presented in Algorithm [5| (although they are
the same as those in [11]). These routines take an index addr in the contiguous array
as a parameter. From this index, the block number blkidz, that should be accessed is
calculated as blkidz, = addr div S, and the offset in this block as addr mod S. The actual
index in BLK of the blkidz,-th block can be found through the BAN K array. However,
the thread uses its local copy ptrs, of BANK for doing so. Thus, line 15 simply access
the appropriate word of BLK. If the execution of the V'L instruction of line 16 by some
thread p does not succeed, the SC' instruction of line 11 by p will also not succeed. So,
we use the goto to terminate the execution of its Calculate .

The first time that thread p executes a Write to the blkidz,-th block, it copies it to
one of its copy blocks (line 21). Array dirty, is used to identify whether a block is written
for the first time by p. In this case, the appropriate block is copied into the appropriate
copy block of p (line 21). Indices to the kT copy blocks of p are stored in p’s private
array copy,. The dirty bit for this block is set to true (line 22). Counter dent,, counts the
number of different blocks written by p thus far in the execution of its current request (line
25). The appropriate entry of ptrs, changes to identify that the blkidz,-th block is now
one of the copy blocks of p (line 23). The write is performed in the copy block at line 27.
A thread p uses its copy blocks to make copies of the blocks that it will modify. If later
p’s SC at line 11 is successful, some of p’s copy blocks become active blocks (substituting
those that have been modified by p). These old active blocks (that have been substituted)
consist the new copy blocks of p which it will use to perform its next request. This is
accomplished with the code of line 12.

LS-RedBlue is a wait-free algorithm; it has space overhead ©(n? + n(B + kT'S)) and
its time complexity is ©(B + k(D + T'S)). The wait-free universal construction presented
in [11] assumes that each thread has enough copy blocks to perform at most M /T other

95

SO W N

oo

11
12

13

14
15
16
17

18
19
20
21
22
23
24

25

type INDEX {1,...,nkT + B};
struct BlueNode {
INDEX BANK|B];
int pid;
boolean reqs|n]
b
shared word BLK[1..B + kN = T|[1..5];
INDEX copyp[1..kT], oldlst,[1..kT], denty, blkidx,;
pointer ptrsy[1..B];
boolean dirty,[1..B];
word vp;

void Propagate(int z) { // pseudocode for thread p
BlueNode b;
while(z # 0) {
for(int i=1 to 2) do {
iflz==1) {
for(int j=1 to B) do

dirty,j)=false;
dent, = 0;

}
b=LL(bn[z]);
if (z == 1) ptrs, = b.BANK;
bt = Calculate(z);
if (8C(bnl[z], bt) AND z==1)
for (int 1=1 to dent,) do
copyp[l]=oldlst,l];

}

z =[2/2];
}

}

wordtype Read(int addr) {
vp,=BLK][ptrs,[addr div S]][addr mod SJ;
if (VL(BANK)==false)
goto line 41 of Calculate (Algorithm ;
else return vy;

}

void Write(int addr, wordtype val) {

blkidx,=addr div S;

if (dirty,|blkidz,|=="false) {
memcpy (BLK[copy,|dent,]], BLK[ptrs,[blkidz,]], sizeof (blktype));
dirtyp|blkidzy)=true;
oldlsty|dent,|=ptrs,[blkidz,);
ptrsp|blkidz,)=copy,|dent,];
dent,=dent,+1;

}

BLK |ptrs,[blkidz,||[addr mod S]=val;

¥
Algorithm 5: Pseudocode for LS-RedBlue.

26

struct BlueNode{
int BANK[BJ;
PINDEX pid;
PINDEX help;

// this field used only at root
// this field used only at root
// this field used only at root

boolean reqs[n];
b

void Propagate(int z){
BlueNode b;

while(z!=1){
for (int d=1 to 2) do {
b=LL(bn([z]);
bt=Calculate (z);
SC(bnlz], bt);

}
z =|z/2];

7 b=LL(bn[1]);
8 while (b.regs[p] == false) {

// pseudocode for thread p

T W N

// requests to perform at root

9 for (int j=1 to B) do
10 dirtyplj|=false;
11 dent, = 0;
12 b=LL(bn[1]);
13 ptrs, = b.BANK;
14 bt=Calculate (1);
15 if (8C(bn[1], bt))
16 for (1=1 to dent,) do
17 copypli] = oldlst,li];
}
}

Algorithm 6: Pseudocode for BLS-RedBlue.

requests in addition to its own where M > 2T is any fixed integer. The algorithm uses a
quite complicated helping mechanism with return values written into return blocks which
should then be recycled in order to keep the memory requirements low. This universal
construction has time complexity O((n/min{n, M/T})(B + nD + MJS)). LS-RedBlue
achieves much better time complexity (O(B + k(D + T'S))) and is adaptive. However, it
assumes that threads have enough copy blocks to help any number of other active threads.

LS-RedBlue can be slightly modified to disallow a thread to help more than M/T
other threads. The resulting algorithm (BLS-RedBlue) is much simpler than the wait-
free construction of [11] since it does not require the complicated mechanisms of [11] for
returning values and verifying the application of a request. These tasks are performed in
BLS-RedBlue in the same way as in S-RedBlue.

The BLS-RedBlue algorithm is presented in Algorithm|[6] Propagate executes the same
code as in S-RedBlue for all nodes other than the root. The code executed by a thread p

o7

BlueNode Calculate(int z) { // pseudocode for thread p
BlueNode tmp=< 1,<0,...,0>,< 1,..., 1L >>;
BlueNode blue=bn|z], le, rc;
RedNode red = rn[z];
int q, range, d, help = 0;

18 if (2%241 < 2n) {

19 lc = bn[2*7];
20 rc = bn[2*z+1];
} // if z is an internal node
21 range = 2'8(W—[s(=)1; // compute the number of leaves of each subtree

// copy the requests placed on the left subtree
22 tmp.reqs[2g-range..2q]=lc.reqs[2g-range..2q];
// copy the requests placed on the right subtree
23 tmp.reqs[2q+1..2q+1+range] = rc.reqs[2q+1..2q+1+range];
24 if (red.pid # -1) tmp.regs[red.pid]=red.req; // if thread ¢ occupies node red

25 if(z==1){ // in case z is the root node
26 q = blue.help; // start helping form thread g
27 tmp.pid = p; // set thread’s id
28 tmp.rvals[l..n] = blue.rvals[1..n]; // copy the return values
29 tmp.st = blue.st; // copy object’s state
30 for d=1 to n do { // local loop
31 if (tmp.reqs[q]==true AND blue.regs[q]==false) // apply any pending request
32 if (help < M/T) { // help at most M/T requests
33 apply tmp.regs[q] to tmp.st and store into tmp.rvals[q] the return value;
34 help = help + 1; // increase the number of helped requests
35 } else tmp.reqs[q] = false; // mark that thread ¢ has an unapplied request
36 else tmp.reqs[q]==true) // store the return value for pending request g
37 rvals[p][q]=rvals[b.pid][q];
}

38 return tmp;

}

Algorithm 7: Pseudocode for Calculate of BLS-RedBlue.

when it reaches the blue root (lines 18 —37) is similar to the one of LS-RedBlue. However,
lines 31 — 34 may have to execute more times in order to ensure that p’s request has been
applied to the object. Only when this has occurred, p’s Propagate returns. To speed
up this thread, we store one more field, called help, in the blue root node. Each thread,
applying a successful SC' on the root node, writes there the index of the last active thread
it has helped, and next time threads start their helping effort from the next to this thread.
This has as a result, the body of the while loop (line 8) to execute at most min{k, 2M/T'}
times. Each time that the loop is executed twice, M /T more active threads are helped.
Therefore, after 2k/(min{k, M/T'}) iterations, the request of p will have been applied to
the object.

o8

Each iteration of the loop requires O(B) time to execute lines 9 — 10 and 13. Each
execution of Calculate applies at most min{k, M/T} requests. The cost of applying
these requests is O(M.S + min{k, M/T}D). Finally, the cost of calculating the return
values at each execution of Calculate is O(k). So, the cost of executing the while loop is
O(k/(min{k, M/T})(B + MS + k + min{k, M/T}D)). Given that each thread requires
only O(logk) steps to reach the root node, it follows that the time complexity of BLS-
RedBlue algorithm is O((k/ min{k, M/T})(B + M S + k + min{k, M /T}D)). Obviously,
BLS-RedBlue achieves better time complexity than the wait-free construction of [I1] and
it is adaptive. This is achieved without any increase to the required space overhead which
is O(n* +n(MS + B)) for both algorithms.

In case a return value has size larger than a single word, i.e. it is at most R words,
our algorithms can still work with single-word base objects by substituting the array of
single-writer base objects held by each thread with a bi-dimensional array of nR words.
Then, the time complexity of BLS-RedBlue becomes O((k/min{k, M/T}) (B + MS +
kR +min{k, M/T}D)). The wait-free universal construction of [11] has time complexity
O(n/min{n M/T}(B +nR+nD + MS)) under this assumption.

If n is very large, a technique like the one used by GroupUpdate [4] can be employed to
store a single pointer instead of the bit vector in each blue node. Then, the time complexity
of BLS-RedBlue becomes O(klog k+ (k/ min{k, M/T})(B+MS+kR+min{k, M/T}D)).
We expect that klogk € O((k/ min{k, M/T}) (B4+MS+kR+min{k, M/T}D)) for large

objects in most cases.

29

CHAPTER 5

PrAcCTICAL WAIT-FREE

SYNCHRONIZATION ALGORITHMS

B The Sim algorithm

P-Sim: A practical version of Sim

(.3 Performance evaluation of P-Sim

(.41 L-Sim: A synchronization algorithm for large objects
SimStack: A wait-free implementation of a shared stack

SimQueue: A wait-free implementation of a shared queue

In this chapter, the family of Sim synchronization algorithms is presented. Specifically,
in Section[5.I] we present the Sim wait-free synchronization algorithm based on the simple
algorithm presented in [37]. In Section a practical and efficient implementation of
P-Sim is discussed, while its performance is evaluated in Section [5.3] In Section [5.4], we
present the L-Sim synchronization algorithm, which is suitable for simulating objects with
large state. Section presents a wait-free stack implementation based on P-Sim, while

Section presents a wait-free shared queue implementation also based on P-Sim.

60

5.1 The Sim algorithm

In this section, we present the Sim algorithm. Sim is a wait-free synchronization algorithm

with O(1) step complexity using an Add and an LL/SC object.

5.1.1 Algorithm description

Sim (Algorithm |8) uses an LL/SC object S and a collect object C'ol. The LL/SC object
stores the simulated state st, a vector, called applied, of n bits with initial value 0, and
an array rvals of n elements containing the return values. We remark that the size of
S could be reduced to a single pointer using indirection (see Section which describes
how to build a practical version of Sim).

Each thread maintains a persistent local variable toggle;, initially 0, which it toggles
each time it performs a new request. The collect object consists of n components, one
for each thread. The ith component of Col stores the last request reg; initiated by p; (or
L if no such request exists) and a toggle bit toggle which stores the value contained in
toggle; at the time that req; was initiated (or 0 if no such request exists). Whenever p;
wants to perform some request regq;, it first announces req; by updating component ¢ of
Col with the value (reg;,toggle;) (line 1). It then toggles toggle;. Finally, p; executes a
routine (line 3), called Attempt, to ensure that its request has been executed.

A request by p; is applied only if the toggle field of the ith component of Col differs
from the ith bit of S.applied (lines 13, 15). In more detail, when p; wants to execute its
first request reqq, it writes in the toggle field of the ith component of Col the value 1
(line 3). Each thread ¢ that sees the value 1 in Col[i].toggle and 0 in S.applied|i], will
apply req; on the copy of the simulated state that it works on. However, only one of
them will succeed in updating S on line 18. This update changes S.applied|i] to 1 which
identifies that req; has been applied. When p; initiates its second request, it changes the
toggle field of the ith component of C'ol to 0, thus storing in it a different value than that
of S.applied|i]; this indicates that a new request by p; has been announced.

When a thread p; executes Attempt, it first creates a copy of S (line 6) which contains
the state of the simulated object. Then, it discovers which requests are currently active
(line 7) by executing COLLECT, and performs locally, one after the other, those of them

that have not been applied yet (lines 8 - 11) by using its local copy ls of S. By doing so,

61

typedef struct {
State st;
boolean applied[1..n];
RetVal rvals[1..n];

} StRec;

typedef struct {
Request req;
boolean toggle;
} CollectRec;

// §is the initial state of the simulated object
shared StRec S = (5,(0,...,0),(L,..., L));

// Col is a collect object that stores n structs of type CollectRec
shared CollectRec Col(n) = << L,0>,...,< 1,0 >>;

Boolean toggle;, = 1; // Persistent variable of thread p;

RetVal SIMAPPLYOP(Request req, Threadld i){
1 UPDATE(Col, i, <req, toggle;>); // Announce req
2 toggle; = 1 - toggle;;
3 Attempt(i); // Call Attempt to perform req
4 return S.rvals[i];

}

void Attempt(Threadld i) { // Code for Attempt

StRec ls;
CollectRec vn]; // v stores a copy of the collect object
5 for j=1 to 2 do{
6 Is = LL(S); // create a local copy of S in s
7 v = COLLECT(Col); // discover the active requests
8 for 1=1 to n do {
9 if(v[l].toggle # ls.applied[l]) { // if p; has a request not applied yet
10 apply v[l].req on ls.st and store the return value into ls.rvals[l];
}
11 Is.applied[l] = v[l].toggle;
}

12 SC(S, 1s); // Try to change the contents of S

Algorithm 8: Pseudocode for Sim.

it calculates a new state for the simulated object and a return value for each of the active

requests (line 10); finally, Attempt attempts to write the value of [s into .S by executing an

SC (line 12). If, in the mean time, some other thread managed to replace S with its local

copy of the simulated state, then p;’s SC will not succeed and the actions it performed

during the execution of the current loop of for (of line 8) will be discarded.

62

Recall that thread p; computes the return values (line 8) for the requests that it
attempts to perform and stores them in ls.rvals (line 8). We remark that [s.rvals contains
return values for all active requests (and not only for those that p; attempts to perform)
since all return values recorded in S are copied in [s by executing the LL of line 6.

The instance of Attempt executed by p; performs the above steps twice (lines 6-12)
to ensure that its currently active request req; has been applied to the simulated object
before the instance of SIMAPPLYOP that is currently executed by p; responds. We remark
that executing lines 6-12 just once is not enough. This is so since, if this was the case,
there could be another request regq; executed by some thread p; whose COLLECT on line 7
occurred before the execution of the UPDATE with parameter (reg;,toggle;) (line 1) and
so it did not return reg; for the ith componentf] If the SC instruction, let it be SC4, that
was executed by req; on S was successful, it may have caused reg;’s SC on S to fail. In
this case, p; would return without ensuring that its request has been served.

We finally explain why this problem is overcome if the instance of Attempt executed by
p; performs lines 6-12 twice. Let SC5 be the first successful SC instruction on S executed
after SC;. Notice that SC5 is either the second SC executed by p; or SC; is executed
before this SC. Then, the thread p which executes SC; sees req; and performs it, if this
has not already been done. This is so since the matching LL of SCy (and the COLLECT

that follows it) are executed by p after SC; and reg; is announced before SCY.

5.1.2 Correctness proof

In this section, we prove that Sim is linearizable. We start by introducing some useful
notation. Fix any execution a of Sim. Assume that some thread p;, i € {1, ...,n}, executes
m; > 0 requests in «a. Let reqj. be the argumentﬂ of the jth invocation of SIMAPPLYOP
by p; and let 7} be the instance of Attempt executed by req). Let Ul be the last UPDATE
executed by p; before 7% and let Q7 be the configuration just before the first step of U?;

let Q) be the initial configuration Cyy and let v} be the value written by U ; . The notation

of this proof is summarized in Table

* For simplicity we sometimes say that a request req by a thread p; executes Attempt (or any other
line of the pseudocode) meaning that the instance of SIMAPPLYOP that is called by p; for req executes
Attempt (or any code line in reference). Moreover, when we refer to the execution interval of some request
req, we mean the execution interval of the instance of SIMAPPLYOP that is invoked with parameter req.

 For clarity of the proof, we consider each reqj- as distinct.

63

Notation \ Description

@ Any execution of Sim
C Any configuration in «
Cy The initial configuration of «
i The thread which its id is equal to 4,7 € {1,...,n}
m; Thread p; executes m; requests in «
req; The argument of the jth invocation of SIMAPPLYOP
L The instance of Attempt executed by reg;
U; The last update executed by p; before 7’
b The configuration just before the first step of U;
b The initial configuration Cy
11;- The value written by Us
ci The first configuration between Cj and the end of 7} at
! which S.applied|i] is equal to 1
O The first configuration between the end of w§_1 and the
i end of 71'2- such that S.applied[i] is equal to j mod 2
SC; The SC instruction executed just before C
LL; The matching LL instruction of Cj
SC, The mth successful SC' instruction on S in «
LL,, The matching LL of SC,,
Cm The configuration just after the execution of SC,,
Qm The prefix of @ which ends at SC,,
Qg The empty execution

Table 5.1: Notation used in the proof of Sim.

We first present the following lemma which is an immediate consequence of the pseu-

docode (lines 5, 6 and 12) and of the semantics of the LL/SC operation.

Lemma 5.1. Consider any j, 0 < 7 < m;. There are at least two successful SC instruc-

tions in the execution interval of 7r;

The next lemma also follows from the pseudocode (lines 1 and 2). It states that Uj’f
updates the ith component of C'ol with the value <Teq§, j mod 2) and this value does not

change until the next UPDATE on the 7th component starts its execution.
Lemma 5.2. For each j, 0 < j < m;, the following claims hold:
1. v = (reqj,j mod 2);
2. no UPDATE occurs on the ith component of C'ol between the end of U;_l and Q;

We next prove that, at the end of the execution of 7T;-, it holds that S.applied[i] is
equal to 7 mod 2.

Lemma 5.3. Consider any j, 0 < j < m;. It holds that S.applied[i] is equal to j mod 2

at the end of the execution of 7T;

64

req} req;oq req;

i o T (e B O Y i
Co @ Cl Jj—1 i Qj G time

Figure 5.1: An example execution of the Sim algorithm.

Proof. Assume, by way of contradiction, that S.applied[i] = 1 — (j mod 2) at the end
of 7r; By Lemma there are at least two successful SC instructions in the execution
interval of 7%. Tt follows that the last successful SC instruction that is executed in 7}
writes 1 — (j mod 2) into S.applied[i]. Let SC, be this SC instruction, let LL, be the
matching LL instruction of SC,, let p, be the thread that executes LL, and SC,, and let
G, be the instance of COLLECT executed by p, between LL, and SC,. Since the execution
interval of 7r§- contains at least two successful SC instructions and SC, is the last one and
it is successful, it follows that LL, follows the beginning of 7r;

By the pseudocode (lines 1, 6 and 7), it follows that G, begins its execution after the
end of the execution interval of Uj’ Thus, Lemma implies that G, returns j mod 2
for the toggle field of the ith component of Col. By the pseudocode (line 11), SC, writes

the value j mod 2 into S.applied[i] which is a contradiction.

At Cy, S.applied[i] is equal to 0. If m; > 0, Lemma implies that at the end of
wi, S.applied[i] is equal to 1. Let CY be the first configuration between Cy and the end
of } at which S.applied[i] is equal to 1. Consider any integer 1 < j < m;. Lemma
implies that at the end of 7T§-_1, S.applied[i] is equal to (j — 1) mod 2, whereas at the
end of 7r§-, S.applied[i] is equal to j mod 2. Let C]’: be the first configuration between the
end of 7§_; and the end of 7} such that S.applied[i] is equal to j mod 2; let Cj = Co.
Obviously, C} precedes the end of 7}, Figure [5.1|illustrates the above notation.

By the definition of C}, it follows that just before C’; a successful SC on S is executed.
Let SC;'- be this SC instruction and let LLj- be its matching LL instruction. Denote by
G’ the instance of COLLECT that is executed between LL; and SC; by the same thread
(line 7).

We continue to prove that G returns the value v} written by U; for thread p;. More-

over, we prove that SC?- is executed after Q; (i.e. after the execution of the first step of

Us).

65

Lemma 5.4. Consider any j, 0 < j < m;. It holds that: (1) SC} is executed after Q%

and (2) G% returns v’ for the ith component.

Proof. Assume first that j = 1. Then, SC} writes 1 to S.applied|i]; the code (lines 7, 11
and 12) implies that, in this case, Gi returns the value 1 for the toggle field of the ith
component of Col. However, since the initial value of this field is 0, and U; is the only
UPDATE that is executed on the ith component between Cy and the end of 7t it follows
that G% returns the value written to the ith component by U{. Thus, the execution of G
ends after the beginning of U7, i.e. after @}, and G} returns v}.

Consider now any j > 1. Suppose first that G; starts executing before the beginning
of ! _,. By the pseudocode, it follows that LL! is executed before G and, by its definition,
SC} is executed after the end of 7_,. By Lemma , at least two successful SC instructions
are executed in the execution interval of %_,. It follows that SC} is not successful, which
is a contradiction. Thus, G; starts its execution after the beginning of 7r§._1.

We continue to prove that the value v returned by G;'- for the toggle field of the
ith component of Col is not equal to vj_,.toggle. By definition, SC; writes j mod 2 to
S.applied[i]. Then, by the code (lines 7, 11 and 12), it follows that G; returns the value
v = j mod 2 for the toggle field of the ith component. By Lemma , v;'-_l.toggle =
(j —1) mod 2. Thus, v # v}_,.

By the code (lines 1-4), no UPDATE other than U; is executed on the 7th component
between the end of U_; and the end of m}. Since G’ starts after the beginning of 7’_,
(and therefore after the end of U;_,), ends before the end of 7/, and returns a value not
equal to v}y, it follows that G must return the value v} written by Uj. Therefore, the
execution of Gé- ends after the beginning of the execution of U J’ , and the same is true for

SC} which is executed right after G%. u
We next prove that the value of S.applied[i] remains the same between SC;_1 and SCé-.

Lemma 5.5. Consider any j, 0 < j < m;. At each configuration C following 031:71 and
preceding C%, it holds that S.applied[i] = (j — 1) mod 2.

Proof. By definition of C%, no successful SC writes the value j mod 2 to S.applied|i]
between the end of 7r§_1 and CJ’ Assume, by way of contradiction, that there is some

configuration between C’;_l and the end of 7r§_1 such that S.applied[i] is equal to j mod 2.

66

Let C, be the first of these configurations. Since only SC instructions change the value
of S, there is a successful SC instruction, SC,, which occurs just before C, and writes
the value j mod 2 to S.applied[i]. Let LL, be the matching LL instruction to SC,, let 7,
be the instance of Attempt that executes SC,, and let G, be the instance of COLLECT
executed by p, between LL, and SC,.

We continue to prove that the value v returned by G, for the toggle field of the
1th component of Col is not equal to U§—1- By definition of SC,, SC, writes the value
j mod 2 into S.applied[i]. Then, by the code (lines 7, 11 and 12), it follows that G,
returns a value v = 5 mod 2 for the toggle field of the ith component. By Lemma [5.2]
vi_,.toggle = (j — 1) mod 2. Thus, v # v}_,.

Since SC, is successful, LL, must have occurred after C’;_l. Since (G, occurs between
LL, and SC,, and Uj_, is executed before 7}_,, G, occurs after the end of the execution

of Uj_,. Since no other UPDATE occurs on component i between the end U?_; and the

it follows that G, returns v%_; for the ith component, which contradicts our

end of 7t i

Jj=D

argument above that G, returns v # vé_l. 1

We say that a request req;'- 1s applied on the simulated state if there is some request
req’ (that might be reg} or not) for which all the following conditions hold: (1) the last
COLLECT that is executed by req’ returns (reqé, toggle) as the value of the ith component
of Col, where toggle is a value different from the value returned by the last Read on
S.applied[i] (line 6) that is executed by the Attempt of req’ (so that line 10 is executed),
and (2) the execution of the last SC of line 12 on S by req’ succeeds. When these conditions
are satisfied, we sometimes also say that req’ applies req;.

We continue to prove that req;'- is applied on the simulated object exactly once and

this occurs just before Cj’
Lemma 5.6. For each 7, 0 < 7 < m,, req]i- 15 applied exactly once.

Proof. By the pseudocode (lines 7, 8, 9, and 11) and by definition, it follows that when
some request req initiated by p; is applied, there is some successful SC on S which toggles

the value of S.applied[i]. Lemmas and imply that there should be at least one
m > 0 such that this SC is SC! . Since the requests initiated by p; are distinct, Lemmas

and imply that reqji. is applied if m = j. Thus, reqji» is applied exactly once. 1

67

We are now ready to assign linearization points. For eachi € {1,...,n} and 0 < 7 < m;,,
we place the linearization point of reqj- at C}; ties are broken by the order imposed by

threads’ identifiers.
Lemma 5.7. Each request 'r’eq;, 0 < j < my, is linearized within its execution interval.

Proof. Lemma implies that SC} follows Q%. By its definition, SC! occurs before the

end of 7r; Thus, CJZ: is in the execution interval of req;?, as needed. 1

In order to prove consistency, we use the following notation. Denote by SC,,, m > 0,
the mth successful SC instruction on S and let LL,, be its matching LL. Obviously, between
SC,, and SC,, .1, S is not modified.

Denote by «,,, the prefix of a which ends at SC,, and let (), be the first configuration
following SC,,. Let ag be the empty execution. Denote by L,, the order defined by the
linearization points, assigned as described above, of the requests in «,,. We remark that
S.st stores a copy of the simulated state at each point in time. Moreover, each thread
applies requests on its local copy of the simulated state sequentially, one after the other.
We say that S.st is consistent at C, if it equals the state resulting from executing the

requests of «,, sequentially in the order specified by L,,.

Lemma 5.8. For each m > 0, (1) S.st is consistent at C,,, and (2) Ly, is a linearization

order for ay,.

Proof. We prove the claim by induction on m.
Base case (m=0): The claims hold trivially: by the initialization of S, S.st contains $,
which is the initial state of the simulated object, and oy is empty.
Induction hypothesis: Fix any m > 0 and assume that the claims hold for m — 1.
Induction step: We prove that the claim holds for m. By the induction hypothesis, it
holds that: (1) S.st is consistent at Cy,,—1, and (2) L,,—; is a linearization order for a,,_;.
Let req be the request that executes SC,,. Assume that req applies j > 0 requests on
the simulated object. Denote by reqi, ...,req; the sequence of these requests ordered in
increasing order of the identifiers of the threads that initiate them.

Notice that req performs LL,, after C,,_; since otherwise SC,, would not be successful.
By the induction hypothesis, S.st is consistent at C,,_1. Thus, the local copy of S that is

last stored by req in [s, represents a consistent state of the simulated object. Lemma (5.6

68

implies that req, ..., req; are applied only once. This is realized when SC,, is executed.
Thus, none of these requests have been applied previously.

Given that the application of req, ...,req; is simulated by the thread executing req
sequentially, in the order mentioned above, starting from the state stored in [s, it is a
straightforward induction to prove that (1) for each f, 0 < f < j, a consistent response
is calculated for reqy, and the new state of the simulated object is calculated in a correct
way in the local variable [s of the Attempt executed by req. Therefore, S.st is consistent
after the execution of req’s successful SC. Notice that, by the way linearization points are

assigned, L., = Ly,—1,7eq1, ... ,req;. It follows that L,, is a linearization order for a,,. 1

Theorem 5.1. Sim is a linearizable implementation of a universal object.

5.1.3 An efficient implementation of COLLECT

We present an implementation of a collect object, called SimCollect, which uses a single
Add object and has step complexity O(1). However, the size of the Add object it employs
is large. In Section [5.2] we describe a practical version of SimCollect which has been used
by P-Sim to achieve high performance and scalability.

Recall that a collect object consists of n components. Suppose that each of the compo-
nents stores a value from some set D. Suppose that d is the number of bits that are needed
for the representation of any value in D. SimCollect uses an Add object O of nd bits. O
is partitioned into n chunks of d bits each, one for each thread. Thread p; owns the ith
chunk of d bits, and stores there the value of the component that has been assigned to it.
An UPDATE U with value v by p; first performs an Add to ensure that v is written into the
1th chunk of O, and then keeps a copy of v into a local variable; this copy is maintained by
p; to discover the appropriate value that should be added to the ith chunk of O during its
next UPDATE (which will be the new value minus v). Whenever p; executes a COLLECT,
it simply reads the value stored in O and returns for each component the value stored
in the corresponding chunk. It is apparent that the number of shared memory accesses
performed by SimCollect is 1.

If the size b of an Add object is less than nd bits, then we can employ [nd/b] Add

objects, O1,...,Ofmasp)- In this case, the value last written by p; is represented by the

69

(1-d mod b)th chunk of Oﬁ.d/bﬂ. An UPDATE by p; adds an appropriate value to Or;.qs1,
and COLLECT reads every Add object once and returns the set of values written in the
chunks. This version of the algorithm has step complexity 1 for UPDATE, and O(nd/b) for
COLLECT. Notice that this version is not linearizable (but recall that linearizability is not
necessary for implementations of collect objects). In case b > nd, the implementation is
linearizable; in this case, SimCollect can serve as a single-writer snapshot implementation.

We remark that the same techniques, as in SimCollect, can be used to get an imple-
mentation of an active set, called SimActSet, by using an Add object of n bits (one for
each thread); this implementation has step complexity 1 if b < n, and [n/b] if b > n.

It is apparent that similar implementations of collect, snapshot and active set can be

derived if a XOR object is used instead of an Add object.

5.1.4 Space and step complexity

The step complexity of Sim is O(sc), where sc is the step complexity of the implementation
of the collect object it employs. If this implementation is SimCollect, Sim exhibits constant
step complexity. In this case, it uses an Add object of nd bits and an LL/SC object of size

O(n + s), where s is the size of the simulated state.

Theorem 5.2. By using SimCollect, the step complezity of Sim is O(1) and Sim uses one
Add object of nd bits and one LL/SC object of size O(n + s).

5.1.5 Derived lower bounds

Jayanti [42] has proved that any oblivious implementation of a universal object from
LL/SC objects has step complexity 2(logn). This lower bound holds even if the size of
the LL/SC objects is unbounded. Sim is oblivious. So, the lower bound can be beaten if
just one Add object (or a collect object) is used in addition to an LL/SC object. Thus, the

following theorem holds:

Theorem 5.3. A lower bound of Q(logn) holds on the step complexity of any implemen-
tation of (1) a single-writer snapshot object, (2) a collect object, (3) a XOR object, and (4)
an Add object, from LL/SC objects.

fFor simplicity, we assume that d is a divisor of b, so that the d bits allocated to each thread are not
split across two Add objects.

70

5.2 P-Sim: A practical version of Sim

In this section, we present a practical version of Sim, which is called P-Sim. P-Sim uses
O(n/b) Add objects of size b bits each, one LL/SC object storing a single pointer, and O(n)

Read-Write structs each of size O(n + s). The step complexity of P-Sim is O(n + s).

5.2.1 Algorithm description

First, we discuss the techniques applied to Sim in order to port it to a real-world machine
architecture, like x86_64. Applying these techniques leads to a practical version of Sim,
called P-Sim. In P-Sim, the information stored in struct StRec is now maintained using
indirection; we employ recycling to reduce the space requirements. Each thread p; main-
tains a pool of two structs of type StRec. These pools are implemented by allocating
an array Pool of type StRec which consists of n 4+ 1 rows of two elements each. Thread
p;’s pool is comprised by the 7th row of Poolﬁ. Variable S is now a pointer to one of the
elements of PoollY} initially pointing to Pool[n + 1][1] (where the (n+1)st row is used for
initialization).

The collect object is implemented by a set of n single-writer Read-Write structs of
type Request, called Announce, and a shared bit vector Toggles of n bits, one for each
thread. A struct of type Request contains two fields, a pointer func which points to
a function containing the code of the simulated operation, and an argument. Toggles
is implemented using Add in a way similar to SimCollect. Specifically, when a thread p;
initiates a new request, it toggles Toggles|i] by performing an atomic Add (lines 3-4).
More specifically, Toggles is implemented as an integer (or as an array of [n/b] integers,
if n is larger than the size b of an integer); to toggle bit i, p; atomically adds 2° or —2° to
this integer (or 2¢ medb or —2¢ medb 4 Toggles|[i/b]], respectively). Initially, all bits of
Toggles are equal to 0.

When p; wants to execute a request req, it announces it by writing req (and its
parameters) in Announce[i| (line 2). Thread p; discovers the requests that other active

threads want to perform by reading the appropriate entries of Announce (lines 14-16)

§ We remark that in the real code we use a pool of nC + 1 structs, where C' > 1 is a small constant,
for performance reasons. However, using a pool of just 2n 4 1 structs is enough to prove correctness. For
code simplicity, Algorithm E] uses 2n + 2 such structs.

9 In the real code, Pool is implemented as a one-dimensional array, and S is an index indicating one
of its elements.

71

typedef struct {
void *func; // Function pointer to push or pop
ArgVal arg;

} Request;

1 typedef struct {

State st;
boolean applied[1..n]; // applied is implemented as an integer
RetVal rvals[1..n];
} StRec;
shared Integer Toggles = 0; // Toggles implements a vector of n bits
shared StRec Pool[l..n+1][1..2]; // Initially, Pool[n + 1][1] = (L,0,(L,..., 1))
shared StRec *S = &Pool[n+1][1]; // Initially, S points to Pool[n + 1][1]

shared Request Announce[l..n];

Algorithm 9: Data structures used in P-Sim.

based on the information Read in Toggles and in the struct pointed to by S. This
increases the step complexity of P-Sim but it decreases the size of the Add object which
now stores n bits instead of nd bits that are used in SimCollect. A simplified version of
P-Sim is shown in Algorithms [9H10]

The VL instruction of line 11 guarantees that the copied state (line 10) is consistent. A
slow thread p; may read the state of the simulated object form some struct r while thread
pi, which owns 7, reuses this struct. This will have as a result p; reading an inconsistent
state. Notice that, in this case, the SC instruction of p; on line 18 will fail. Still, p; may
simulate locally the application of several requests , while executing lines 14-17, using an
inconsistent state. Successful execution of the VL of line 11 guarantees that r has not
yet been reused, so the state that was read is consistent. Additionally, the existence of
the VL enhances the performance of P-Sim. Making a local copy of the state (line 10)
is slow, since it usually causes one or more cache misses. In the mean time, another
thread may have successfully updated the state of the simulated object. In this case,
having p; executing lines 14-17 is useless and may cause cache misses due to the Read
operations that are performed on the Announce array. The use of the VL ensures that
this unnecessary overhead is avoided.

The majority of the commercially available shared memory machines support CAS
rather than LL/SC. P-Sim simulates an LL on S with a Read(S). VL is implemented by

reading S and checking whether its timestamp has changed since the most recent previous

72

// Private local variables for thread p;
Integer toggle; = 2°;
Integer index; = 0;

RetVal PSIMAPPLYOP(Request req, Threadld i){ // Code for thread p;

2 Announceli] = req; // Announce req
3 FAD(Toggles, toggle;); // toggle p;’s bit in Toggles
4 toggle; = -toggle;;
5 Backoff();
6 Attempt(i);
7 return S.rvals[il;

}

void Attempt(Threadld i) { // Code for Attempt

boolean ltoggles[1..n]; // ltoggles is implemented as an integer

StRec *1s_ptr;
8 for j=1 to 2 do {

9 Is_ptr = LL(S); // read the pointer stored in S
10 Pooli|[index;] = *1s_ptr; // Create a copy of current state
11 if (VL(S) == 0)
12 continue;
13 ltoggles = Toggles; // Read the vector of toggles
14 for 1=1 to n do {
// If p; has a request that is not applied yet
15 if(ltoggles|[l] # Pool[i][index;].applied[l]) {
// Apply the request and compute return value
16 apply Announcel[l] on Poolli][index;].st
and store the return value into Pool[i][indez;].rvals[l];
}
17 Poolli][index;].applied[l] = ltoggles]l];
18 if(SC(S, &Poolli][index;])) // Try to change the contents of S
19 index;=(index; + 1) mod 2; // If success, p; uses the next struct
20 BackoffCalculate();
}
}

Algorithm 10: Pseudocode of P-Sim.

LL executed by the same thread. Finally, an SC is simulated with a CAS on a timestamped
version of S to avoid the ABA problemlﬂ In the real code S stores just an index to Pool
(and not a full 64 bit pointer), so there are enough bits (in our experiments 48) in a word
to store the timestamp. In systems with more threads, we could use 128 bit words; we

remark that x86_64 machines support 128 bit words.

I This problem occurs when a thread p reads some value A from a shared variable and then some
other thread p’ modifies the variable to the value B and back to A; when p begins execution again, it
sees that the variable has not changed and continues executing normally which might be incorrect.

73

We remark that the performance of P-Sim becomes better when a combining thread
manages to help a large number of other threads while performing its request. For ex-
ploiting this property, we use an adaptive backoff scheme. A thread p; backoffs, after
it has announced its request (line 5) and has indicated in Act that it is active. P-Sim
does not use backoff for reducing the contention on accessing a shared CAS object, as it
is usually the case in previous algorithms [37, 50]. It rather employs backoff in an effort
to achieve a better combining degree. The backoff scheme of P-Sim is simple: it uses a
single parameter which is a backoff upper bound (by default, the backoff lower bound is
set to 1). During backoff, a thread executes ¢ noop instructions (where ¢ is initialized to
1). Each time a new request is initiated ¢ is re-calculated as follows. If the SC instruction
(line 18) of this request succeeds, t is doubled (until it reaches its upper bound); otherwise
t is halved until it reaches its lower bound. In Section [5.3] we discuss the impact of backoff
in the performance of P-Sim.

The full source code of P-Sim is provided at http://code.google.com/p/sim-universal-

construction/.

5.2.2 Correctness proof

The correctness proof of P-Sim is similar to that of Sim presented in Section [5.1.2] We
follow the same notation as in Section where we consider as U} the jth Add executed
by p; (line 3) and as the analog of the COLLECT executed on line 7 of Sim, the Read of
Toggles on line 13 of P-Sim. Let v]i. be equal to 1 if the argument of the jth Add by p;
is positive and 0 otherwise. It is easy to see that, in this way, v; plays the same role as
v}.toggle in the proof of Sim. The notation of this proof is summarized in Table .

We focus on those parts of the proof of Sim that are different than those of the proof

of P-Sim. We start with Lemma [5.1] whose proof is now simpler.

Lemma 5.9. Consider any j, 0 < 7 < m;. There are at least two successful SC instruc-

tions in the execution interval of 7r;

Proof. We prove that during the execution of each iteration of the for loop of lines 8-
17, at least one successful SC instruction is performed. If the iteration is completed on
line 12 of the pseudocode, the VL instruction (line 11) returns 0. This implies that at

least one successful SC instruction occurred between the LL of line 9 and the execution of

74

Notation \ Description

@ Any execution of P-Sim

C Any configuration in «

Cy The initial configuration of «

i The thread which its id is equal to 4,7 € {1,...,n}

m; Thread p; executes m; requests in «

req; The argument of the jth invocation of PSIMAPPLYOP

L The instance of Attempt executed by reg;

U; The jth Add executed by p;
b The configuration just before U;
g The initial configuration Cj

v; The value written by U;

ci The first configuration between Cj and the end of 7} at
1 which S.applied|i] is equal to 1

i The first configuration between the end of 7r§_1 and the
J end of 71'; such that S.applied[i] is equal to j mod 2

SC; The SC instruction executed just before C7

LL; The matching LL instruction of Cj
; The Read of T'oggles that is executed between LL} and

" SCi

SC, The mth successful SC' instruction on S in «

LL,, The matching LL of SC,,

Cnm The configuration just after the execution of SC,,

Qm The prefix of @ which ends at SC,,

g The empty execution

Table 5.2: Notation used in the proof of P-Sim.

VL on line 11. Suppose that the iteration executes the SC instruction on line 18. If this
SC is successful, the claim follows. Otherwise, at least one successful SC instruction was

performed between the execution of line 9 and line 18. 1

We next present the analog of Lemma of Sim. Its proof is a straightforward

induction on j.
Lemma 5.10. For each j, 0 < j < m;, the following claims hold:
1. vi =j mod 2 (i.e. Toggles[i] = j mod 2 after the execution of U});

2. no Add instruction executed between the end of U;_l and Q; changes the ith bit of

Toggles.

It is easy to prove a lemma similar to Lemma [5.3| for P-Sim. Its proof follows the same

arguments as those in the proof of Lemma [5.3]

Lemma 5.11. Consider any j, 0 < j < m;. It holds that S — applied[i] is equal to j
mod 2 at the end of 7r;

75

As in the proof of Sim, we let C? denote the first configuration between Cy and the
end of 7} at which S — applied|i] is equal to 1, and we let C]Z: to be the first configuration
between the end of 7)_; and the end of 7} such that S — applied|i] is equal to j mod 2;
let C¢ = Cy.

We continue to prove that no field of the structure pointed to by S may change its
value as long as S points to it. Thus, S — applied|i] takes different values only by
executing successful SC instructions on S. It follows that recycling does not cause any

implication to the proof.

Lemma 5.12. Let SC; and SCy be two successful SC instructions on S such that no
successful SC on S is executed between SCi and SCy. Let vy be the value of the structure
pointed to by S after SCy. Then, the value of the structure pointed to by S is always vy
between SCy; and SCs.

Proof. Let C and C5 be the configurations resulting from the application of SC; and SC,,
respectively. Let p; be the thread that executes SC;. By the pseudocode (lines 10, 18), it
follows that S points to Poolli][l], for some | € {1,2} at Cy, so Poolli][l] = v;.

Assume, by way of contradiction, that there is a configuration C, between SC; and SC,
at which Pool[i][l] # v1. By the pseudocode (lines 17 and 18), it follows that only p; can
write to Pool[i[l]. Since p;’s pool contains two structures and p; uses a different structure
each time it performs a successful SC on S, it follows that p;, can use Pool[i][l] again
only if it performs a successful SC instruction between SC; and C.. However, this would
contradict our assumption that no successful SC instruction is executed on S between SC;

and SCy. 1

Lemma implies that S — applied|i] takes different values only when successful
SC instructions are executed on S. It follows that just before C’}? a successful SC on S is
executed. Let SC§- be this SC instruction and let LL;'- be its matching LL instruction. Let r;
be the Read of T'oggles that is executed between LL? and SC} by the same thread (line 13)
for the ¢th bit. The following two lemmas are the analogs of Lemmas and of Sim.

Their proofs follow similar arguments as those of these lemmas.

Lemma 5.13. Consider any j, 0 < j < my. It holds that v’ is executed after Q% and

reads j mod 2 in Toggles]i.

76

Lemma 5.14. Consider any j, 0 < j < m;. At each configuration C following C}_l and

preceding C%, it holds that S — applied[i] = (j — 1) mod 2.

We say that a request req;- is applied if there is some request req’ (that might be req§
or some other request) for which all the following conditions hold: (1) the last Read on
Toggles that is executed by req’ returns a value for its ith bit which is different from the
value returned by the last Read on S.applied[i] (line 6) executed by the Attempt of req,
(2) the Read on Announceli] (line 16) by req’ returns reg}, and (3) the execution of the
SC of line 12 on S by req’ succeeds. If these conditions hold, we sometimes say that reqé
is applied when the SC of line 12 on S by req’ is executed.

Following similar arguments as those in the proof of Lemma [5.6] we can prove that

req§ is applied on the simulated object exactly once and this occurs just before C’;

Lemma 5.15. For each 7, 0 < 7 < m; req;- 15 applied to the simulated object only once

and this occurs just before C;

Proof. By the pseudocode (lines 13, 14, 15, and 17) and by definition, it follows that
when some request req initiated by p; is applied, there is some successful SC on S which
toggles the value of S.applied[i]. Lemmas and imply that there should be at
least one integer m > 0 such that this SC is SC! . We argue that req;- is applied when
SC} is executed. By Lemma , rh is executed after Q. By definition of C} and by the
pseudocode (lines 13 and 18), it follows that 7“§ is executed before the end of 7sz By the
pseudocode, it follows that the read of Announceli] on line 16 by the instance of Attempt
that executes SC; occurs between Q) and C}. Since reg) is active between Q' and C?, this
read returns regj. Thus, req} is applied at least once when SC} is executed. Since the

requests initiated by p; are distinct, req§ is not applied any other time.

We assign linearization points for P-Sim in the same way as we do for Sim. We can
then argue, as in Sim, that P-Sim is linearizable. Thus, the following theorem holds for

P-Sim.

Theorem 5.4. P-Sim is a linearizable implementation of a universal object.

77

5.2.3 Space and step complexity

P-Sim performs O(n + s) shared memory accesses. More specifically, the Read of the
structure of type State which is performed on line 10, results in reading the array rvals
of n return values, the bit vector applied which is stored in O(n/b) memory words, and
the entire state of the object, i.e. s memory words. Moreover, the Read of Toggles
on line 13 requires O(n/b) additional shared memory accesses. The algorithm performs
O(k) memory accesses to read the appropriate elements of Announce. Thus, the shared
memory accesses performed by P-Sim is O(n + s). P-Sim uses a pool of O(n) structures
of type State, each of size O(n + s). The algorithm also employs a bit vector of size n

and an array of n values. Thus, the space complexity of P-Sim is O(n? + ns).

Theorem 5.5. P-Sim uses O(n/b) Add objects of size b bits each, one LL/SC object stor-
ing a single pointer, and O(n) Read-Write structures each of size O(n + s). The step

complezity of P-Sim is O(n + s).

5.2.4 Making P-Sim adaptive

In this section, we discuss how we could modify P-Sim in order to get an adaptive version of
it in terms of both space and step complexity. The step complexity of P-Sim is determined
based on the following: (1) T'oggles is a vector of n bits, so a Read on it (line 13) causes
O(n/b) shared memory accesses, (2) each struct of type State contains the simulated state
and a vector of n return values, so a Read on it (line 10) causes O(n + s) shared memory
accesses, and (3) Pool contains O(n) structs. Below, we discuss how we can redesign each
of these data structures to get an adaptive version of P-Sim in terms of both space and
step complexity.

Herlihy, Luchangco and Moir present in [38, Algorithm 1], an adaptive implementation
of a collect object. The step complexity of this implementation is O(k) for COLLECT and
O(1) for UPDATE, where k is the total contention. Its space complexity is O(k).

To avoid maintaining a vector of n bits, we can replace Toggles with the collect
implementation of [38, Algorithm 1]. Whenever a thread p wants to perform a request,
it calls UPDATE to write to its component the value of its bit and its request instead of
recording its request on Announce and executing an Add on Toggles to update the value

of its assigned bit (line 3). The Read of the bit vector performed on line 13 is replaced

78

with a COLLECT on the collect object. This COLLECT returns the set of bits and the
requests of all active threads.

Instead of storing an array of n return values, a set of structs (one for each thread
that has taken steps thus far) is maintained. Each of these structs contain a return value,
a thread identifier, and a toggle bit which is used to identify if a new request has been
initiated by this thread. Whenever a thread executes a request for the first time, the set
is updated with a struct containing the thread’s id. The set can be trivially implemented
as a linked list given that each thread works on its own copy of this list. By applying
these techniques the size of struct State is reduced to O(k + s) and making a copy of it
costs O(k + s).

By applying the two techniques discussed above, the step complexity of P-Sim becomes
O(k + s). However, the space complexity is still a function of n since Pool still contains
n+ 1 structs. Instead of allocating Pool statically at the beginning of the execution, each
thread dynamically allocates its two structs when it executes its first request. Instead
of storing an array of n return values, each struct stores a pointer which will point to
the first element of the list of return values. Thus, the number of such structs that are
allocated is 2k + 1, each of size O(s). S is a pointer to one of the elements of Pool. When
a thread makes a local copy of a struct pointed by S, it should also make a local copy of
the current list of return values which is pointed to by the appropriate field of S. Thus,
the memory overhead for each thread is O(k+s). Therefore, by applying these techniques
the space complexity becomes O(k(k + s)).

The collect implementation presented in [38, Algorithm 1] has the disadvantage that
its step and space complexity is a function of the total contention since it cannot free
the memory that is not used any more. The collect implementation presented in [38,
Algorithm 2] could be used instead, the step and space complexity of which adapt to
operation’s complexity. However, the last implementation uses primitives that are not
supported by real machines. In case primitives are simulated using CAS instructions, the

resulting algorithm would not satisfy the wait-freedom property.

79

5.3 Performance evaluation of P-Sim

We run our experiments on a 32-core machine consisting of four AMD Opteron 6134 pro-
cessors (Magny Cours). Each processor consists of two dies and each of them contains
four processing cores and an L3 cache shared by its cores. Dies and thus processors are
connected to each other with Hyper Transport Links creating a topology with an average
diameter of 1.25 hops [21]. For the experiments presented here, we used the latest version
of the code of P-Sim (version 1.2) [45]. All codes were compiled with gcc 4.3.4, and the
Hoard memory allocator [I8] was used to eliminate any bottlenecks in memory allocation.
The operating system was Linux with kernel 2.6.18. Thread binding was used in order to
get more reliable performance results; the i-th thread was bound to the ¢-th core of the
machine. In this way, we exploited first multi-core, then multi-chip and then multi-socket
configuration.

We first focus on a micro-benchmark which shows the performance advantages of P-
Sim over well-known synchronization algorithms. We have chosen to simulate a simple
Fetch&Multiply operation as a case study; each algorithm has simulated the execution of
107 Fetch&Multiply requests for different values of n, where each thread initiated 107 /n
such requests. We measured the average throughput (i.e. the number of Fetch&Multiply
simulated per second) that each algorithm has exhibited. Specifically, the horizontal axis
of Figures represents the number of threads n, and the vertical axis represents
the throughput (in millions of requests executed per second) that each synchronization
algorithm has performed. For each value of n, the experiment has been performed 10
times and averages have been calculated. Between two Fetch&Multiply requests by the
same thread, we have inserted a random number (up to 512) of dummy loop iterations in
order to simulate a random work load large enough to avoid unrealistically low cache miss
ratios and long runs; we remark that this load is not big enough to reduce contention.
A similar technique is employed by Michael and Scott in [50] for the same reasons. The
performance behavior of our algorithms for different values of random work (Figure
will be discussed later.

We have performed this experiment to measure the performance of the following algo-

rithms: CLH spin lock§™] [23, 47], a simple lock-free algorithm with exponential backoff,

**We experimentally saw that MCS spin locks [49] have similar performance to CLH spin locks, so we
present our results only for CLH locks.

80

~

——P-Sim flat-combining
—0— lock-free —4—spin locks
CAS-Sim OyamaAlg

[e)]
1

(9]
1

>
1

w
1

N
1

/A,/A———A—_A__A__'A_A__A

[y
1

throughput (millions requests per sec)

o

1 4 8 12 16 20 24 28 32 64 96
of threads

Figure 5.2: Performance of P-Sim.

flat-combining [33], 34], and OyamaAlg [52]. The simple lock-free algorithm uses a single
CAS object O, and executes CAS on O repeatedly until it successfully stores the new value
into it; the algorithm employs an exponential backoff scheme to reduce contention. We
also implemented a version of P-Sim, called CAS-Sim, where Add is simulated in a lock-free
way using a CAS object, as in the simple lock-free algorithm discussed above.

We carefully optimized these algorithms in our computing environment; for those
that use backoff schemes, we performed a large number of experiments to select the best
backoff parameters in each case. CLH spin locks and OyamaAlg have been evaluated for
only up to 32 threads (so that each thread runs on a distinct core), since otherwise they
result in poor performance. We used the flat-combining implementation provided by its
inventors [33] 34] and we applied similar optimizations on its code as for that of P-Sim;
we also carefully chose its parameters (i.e. polling level, number of combining rounds) to
optimize its performance in our computing environment.

Figure shows the results of our experiment. P-Sim has been proved to be up to 2.5
times faster than spin-locks, and up to 1.7 times faster than the simple lock-free algorithm.
We remark that both P-Sim and flat-combining implement the combining technique, so
we expect both of them to enjoy the performance benefits of this technique. However,
flat-combining is blocking whereas P-Sim is wait-free. Since wait-freedom is expected
to come with some overhead, our first goal was to design a wait-free implementation of
the combining technique that performs the same well as flat-combining (which is however

blocking). F igureshows that P-Sim achieves this goal and even performs slightly better

81

—&—Sim

50 flat combining

40 -+

30 -

average combining degree

10 A

1 4 8 12 16 20 24 28 32 64 96
of threads

Figure 5.3: Average combining degree of P-Sim and flat-combining for different numbers
of threads.

than flat-combining; it exhibits up to 1.20 times better throughput than flat-combining.
Finally, P-Sim outperforms OyamaAlg by a factor of up to 1.9.

As illustrated in Figure[5.2] when n > 4, the simple lock-free algorithm causes a lot of
contention and exhibits performance much worse than P-Sim or flat-combining. However,
it behaves well for up to 4 threads since then all the communication occurs within the same
die, which is much faster than achieving intra-communication between dies. As expected
for queue-locks, the performance of CLH remains almost the same as n increases. For
up to some number of threads, the performance of P-Sim and flat-combining is getting
better as the number of n increases. This is so, since the average degree of combining
that is achieved increases with the number of active requests in the system. We remark
that this enhancement in performance is noticed even for values of n > 32 where the
processing cores are over-subscribed. In contrast, OyamaAlg achieves lower throughput.
This is so since in OyamaAlg threads need to succeed on a CAS in order to have their
requests announced; this causes a lot of contention and leads to a significant performance
degradation. It is worth pointing out that P-Sim is at least 2 times faster than CAS-
Sim which, not surprisingly, exhibits similar performance to OyamaAlg; in CAS-Sim, as in
OyamaAlg, a thread repeatedly executes CAS to announce a request and therefore CAS-Sim
faces a similar performance penalty for the announcement of the requests as OyamaAlg.

Figure [5.3| shows the average number of requests, called average combining degree,

that are executed by the combiners in P-Sim and flat-combining. Specifically, to calculate

82

1.5 1

——P-Sim
14 4 flat-combining
L3 9 e jock-free
1.2 1 CAS-Sim

1.1 1 ——Q0yamaAlg
0.9 -
0.8
0.7 A
0.6
0.5
0.4 -
0.3 A
0.2
0.1

failed CAS instructions per request

4 & VS
v * ¢

) 4
L 4

1 4 8 12 16 20 24 28 32 64 96
of threads

Figure 5.4: Average number of failed CAS instructions per request for different numbers
of threads.

45 4 —e—P-Sim flat-combining
—o— lock-free —&—spin locks
CAS-Sim ——OyamaAlg

3.5 4

¢

*

average atomic instructions per request
<

1 4 8 12 16 20 24 28 32 64 9
of threads

Figure 5.5: Average number of atomic instructions (excluding Read and Write operations)
per request performed by P-Sim for different numbers of threads.

the average combining degree of Sim, we add the number of requests that are applied
each time a successful CAS on S is executed and we divide this sum by the total number
of successful CAS instructions. As shown in Figure [5.3] flat-combining achieves better
combining degree in some cases. This is expected since no more than n requests (one
per thread) can be applied in P-Sim, each time a CAS on S succeeds. In contrast, in flat-
combining, a combiner may apply several requests of the same thread; this may happen, if
the thread initiates a new request before the combiner processes all other requests of the
request list. Because of this, it is reasonable to expect that flat-combining avoids moving

cache lines between the processing cores which is good in terms of performance. However,

83

the performance of flat-combining is not better than that of Sim, since the advantage in
the achieved combining degree of flat-combining is counterbalanced by other performance
factors that are discussed below. Moreover, as shown in Figure [5.3] when the processing
cores are lightly over-subscribed, the combining degree of P-Sim matches the combining
degree of flat-combining. As shown in Figure [5.2] this results in better performance for
P-Sim.

Figure shows the average number of failed CAS instructions executed per request.
Notice that a large number of requests in P-Sim do not execute any unsuccessful CAS
instructions; this is mainly due to the validation that is performed on line 11. So, the
average number of unsuccessful CAS per request in P-Sim is very small. In contrast,
this number is close to one (or larger) for all other algorithms. The large number of
unsuccessful CAS instructions executed in flat-combining occur during the acquisition of
the global lock. This results in a performance degradation. We remark that our efforts
to overcome this problem by increasing the number of combining roundsf’_j (which reduces
the number of times the global lock is acquired) did not result in better performance.
This was so because after the first few combing rounds, flat-combining spent a lot of time
reading records of threads with no announced requests. On the contrary, P-Sim does not
perform non-useful Read operations.

Figure shows the average number of atomic instructions (other than Read and
Write operations) per request that each algorithm executes. For large values of n, P-Sim
and flat-combining execute almost the same number of atomic instructions per request on
average. For smaller values of n, flat-combining executes slightly less atomic instructions
per request on average than P-Sim. However, all the atomic instructions executed in
flat-combining are CAS instructions on a single shared variable that implements the global
lock. In contrast, the atomic instructions that are executed by any request in P-Sim are
not applied on the same base object (one of them is an Add and if there is any other
it is a CAS on S). Moreover, the release of the global lock in flat-combining have not
been taken into consideration in the diagram of Figure (since it is implemented with a
Write). However, these Write instructions cause more contention on the global lock and

additional cache misses.

f"The number of combining rounds determines how many times the combiner (in flat-combining)
traverses the request list before it gives up serving other requests.

84

’ Algorithm \ average cpu cycles spent in cpu stalls per request

P-Sim 6121
flat-combining 6810

Table 5.3: Average cpu cycles spent in cpu stalls per request for P-Sim and flat-combining
for n = 16.

It is worth pointing out that the failed CAS instructions may cause branch miss-
predictions which are expensive since modern microprocessors usually have deep pipelines.
Table shows that flat-combining pays more (in cpu cycles) for stalls due to cache misses
and branch miss-predictions.

In the experiment illustrated in Figure [5.6] we study the behavior of the evaluated
algorithms for different amounts of random work, i.e. for different numbers of dummy loop
iterations inserted between the executions of two Fetch&Multiply by the same thread. We
fix the number of threads to 32 and we perform the experiment for several different random
work values (0—8192). Figure|5.6{shows that, for a wide range of values (64 —2048), there
are no big differences on the throughput exhibited by the evaluated algorithms. The reason
for this is that for all these values the synchronization cost is the dominant performance
factor. For small values of random work (0 — 64), the simple lock-free algorithm achieves
unrealistically high throughput. The reason for this is that a thread can uninterruptedly
perform thousands of Fetch&Multiply. This phenomenon is known as a long run; as
discussed in previous work [50], such runs are unrealistic workloads. A similar behavior,
but in smaller scale, is observed in flat-combining. In cases that the random work is too
high (greater than 4096), the throughput of all algorithms degrades and the performance
differences among them become minimal since the amount of random work becomes then
the dominant performance factor.

Table studies the throughput of P-Sim for different values of the backoff upper
bound. The performed experiment is the same Fetch&Multiply experiment studied in
Figure 5.2, where n = 32 and for a maximum workload of 512. The first row of Table [5.4]
shows the throughput achieved by P-Sim for different values of the backoff upper bound as
well. Notice that the best throughput is achieved when the backoff upper bound is equal
to 1000 dummy loop iterations. The second row of this table The third row shows how
much each of these values diverge from the optimal backoff upper bound value (of 1000)

and line 4 shows the performance degradation in each case. Notice that the performance

85

[y
N
)

——P-Sim —>—QOyamaAlg
flat-combining —&—lock-free
—A—spin locks

o
1

(o]
L

IN
L

N
1

throughput (millions requests per, sec)
(o)}

o

0 32 64 128 256 512 1024 2048 4096 8192
random work (32 threads, 32 cores)

Figure 5.6: Performance of P-Sim for different values of random work.

of P-Sim is very tolerant to overestimated values for the backoff upper bound. More
specifically, even a value greater by 120% than the optimal backoff upper bound cause
a performance drop of just 12.5%. However, P-Sim is less tolerant to smaller backoff
values. Notice that a value for the backoff upper bound smaller by 40% than the optimal
causes a 22.7% performance drop. Thus, if the amount of workload cannot be determined
precisely, overestimated backoff upper bounds is the preferable choice.

Our next experiment, illustrated in Figure [5.7] studies the performance of P-Sim and
flat-combining (the best two algorithms in terms of performance) when n takes values
larger than 96, i.e. when a large number of threads are active and the system is heavily
over-subscribed. The active threads execute 107 Fetch&Multiply in total, as in the
previous experiments. Figure shows that both P-Sim and flat-combining scale well up
to thousands of threads.

Figure [5.8 illustrates how P-Sim performs in cases where an application initiates a
large number of threads from which only a small percentage are active, at any given point

in time. Specifically, we consider systems where the total number of threads ranges from

backoff upper bou'nd (in hundreds of 6 8 10 12 14 18 99
dummy loop iterations)

throughput 4.10 5.00 | 5.03 | 5.02 4.95 4.70 4.47
% divergence from backoff upper bound | —40% | —20% | 0% | +20% | +40% | +80% | +120%
% performance drop 22.7% | ~0% | % | =0% | 1.6% 7% 12.5%

Table 5.4: Sensitivity of P-Sim to the backoff upper bound parameter.

86

oo
)

—&—P-Sim

g 7 flat-combining ~ R — R

S /v v v

2

2%

(%)

3

o

g

24 -

2

s

=

>

£2-

3

3

£17

£

0 T T T T . :

128 256 384 512 768 1024

of threads (32 cores)

Figure 5.7: Performance of P-Sim for large numbers of threads.

6 -

——P-Sim
o P-Sim without return values
g 5 flat-combining
o —
2
34 -
=]
o
1S
23
K]
£
= 2 A
>
o
=
g
g1
S
0 r T r . r
128 256 512 768 1024

of threads (32 cores, 10% activity)

Figure 5.8: Performance of P-Sim when a large number of threads are initiated but only
10% are active.

128 to 1024 and only 10% of them are active at each point in time. The active threads
execute 107 Fetch&Multiply in total, as previously. We remark that this experiment is
in favor of flat-combining: P-Sim requires to read all n bits of the Add object and copy
locally n return values independently of how many of the threads are active, whereas in
flat-combining inactive threads cause no overhead. Figure [5.8| shows there is indeed a
small performance advantage (by a factor of 1.05) of flat-combining in this case. In order
to discover the main overheads of P-Sim in this case, we have implemented an additional
version of it where no return values are calculated. Figure |5.8 shows that the calculation
of the return values is indeed an expensive part of the computation performed by P-Sim.

This shows that the overhead of having each thread performing an Add per request does

87

=
o
)

—&— SimActSet
4 —@—active set based on CAS

throughput (millions requests per sec)

o = N w ~ U)} ~ 0
1

1 8 16 32 64 128 256 384 512 768 1024
of threads (32 cores)

Figure 5.9: Performance of SimActSet.

not cause any significant overhead even for large values of n. We remark that in the
implementation of several shared objects some of the simulated operations do not have
a return value. For instance, a push on a stack or an enqueue on a queue, etc., do not
require the calculation of a return value. We remark that in cases where the percentage
of active threads is larger than 10%, P-Sim achieves much better performance than that
shown in Figure [5.8|

We next explore in more detail the performance characteristics for the Add instruction.
We compare the performance of SimActSet (discussed in Section to that of a simple
lock-free active set implementation that uses CAS objects to store a set of n bits, one for
each thread. Specifically, as in SimActSet, the algorithm uses n/b CAS objects. Whenever
a thread wants to apply a JOIN (LEAVE), it repeatedly executes CAS on the appropriate
object until it succeeds to change its bit to 1 (0, respectively). GETSET simply reads the
CAS objects. An exponential backoff scheme is used to increase the performance of the
lock-free implementation.

We executed 107 JOIN and LEAVE requests, and 107 GETSET requests in total; each
thread executed 107 /n JOIN or LEAVE requests and 107 /n GETSET requests. We measured
the average throughput exhibited by each technique. To study the scalability of our
technique, we consider systems where the total number of threads is large, i.e. it ranges
from 128 to 1024. Again, a random number of (up to 512) dummy loop iterations are
executed between the execution of two requests by the same thread. Figure|5.9|illustrates

that SimActSet outperforms the active set based on CAS by a factor of up to 1.7. This

88

is due to the fact that GETSET causes a small number of cache misses in SimActSet,
whereas the repeated execution of a CAS results in a larger number of cache misses.

Several modern shared memory machines (e.g. those that employ the x86_64 architec-
ture) include an atomic Add (CAS) instruction on up to 64 bit words in their instruction
set. In order to cope with more than 64 threads efficiently, we have implemented the
multi-word bit vector of Add (and CAS, for the lock-free algorithm) by storing its words
to the minimum possible number of cache lines. In this way, GETSET causes a minimum
number of cache misses. Notice that the size of a typical cache line is usually 64 bytes;
thus, a single cache line can store one bit for each of up to 512 threads. So, GETSET
causes more than one cache miss only if the number of threads is more than 512.

As illustrated in Figure [5.9] the throughput of both algorithms does not change for
values of n greater than 16 and smaller than 512, whereas it improves for values larger
than 512. This is because all toggle bits that comprise the active set fit in one cache-line
in case that n < 512. Thus, all processing cores access the same cache line in this case
which results in a lot of contention. On the other hand, when n > 512, the processing
cores work on two different cache-lines which reduces the contention (but increases the
number of cache misses). Figure shows that in this experiment the contention is the

dominant performance factor.

5.4 L-Sim: A synchronization algorithm for large objects

In this section, we present a variation of Sim, called L-Sim, which avoids copying the entire

state and it can be used to handle objects with large (or even unbounded) state.

5.4.1 Algorithm description

Similarly to P-Sim, L-Sim (Algorithms [11] and employs a shared vector Toggles of
n bits (one bit for each thread) and during its jth request, j > 0, thread p; adds 2° or
—2¢ to Toggles depending on whether j mod 2 = 1 or not. L-Sim also employs a set
of n single-writer base objects (Announce array on Algorithm [11)), one base object for

each thread. Each thread starts the execution of a request req by announcing req in its

89

single-writer base object on Announce array (line 1) and by adding 2 or —2° to Toggles
(line 3).

The main difficulty in designing L-Sim was to ensure that at each point in time, all
"up-to-date” threads (i.e. those that have read the current version of State) that are
active and execute some request will help the same set of requests. This is achieved by
storing in State (S) two versions of the applied bit vector (the first one is called applied,
while the second one is called papplied). Each time an instance A of Attempt is executed,
papplied is updated to store the values found in applied at the beginning of A (line 15);
applied is updated based on the values recorded in T'oggles (line 16). Whether a request
by a thread p; should be applied or not is determined based on the values read in the i-th
entry of the arrays applied and papplied of S; if the i-th entry of applied is different than
the ith entry of papplied (i.e. applied|i] # papplied[i]) then the request of thread p; has
not been applied yet and it should be simulated (line 18); otherwise, the request (if any)
has already been applied. In the initial value of S, both applied and papplied contain
false in all their entries. Thus, the first application of a successful Attempt will result in
the simulation of no requests. However, the execution of a successful Attempt stores in .S
information about the requests that should be simulated by the threads that will read the
new value of S. Therefore, all these threads will try to simulate the same set of requests.

In contrast to Sim and P-Sim, the state of the simulated data structure is now shared
and it can be updated directly by any thread. For each data item x, L-Sim maintains
a struct of type ItemSV. This struct stores the old and the current value of the data,
a toggle bit that identifies the position in the wal array of the struct where the current
data for x should be read from, and a sequence number. Consider that two threads p
and ¢ simulate the same request req. It may happen that p is at some earlier point of
its execution (e.g., just before executing line 29), whereas ¢ has finished the simulation
of req (lines 39-43) and has started updating the shared data structure. Then, it could
happen that p reads the updated version for a data item although it should have read
the old version. For this reason, ¢ stores the old value (additionally to the current value)
in one of the entries of val array and uses the toggle bit appropriately to indicate the
updated version. If p discovers that this bad scenario has occurred (line 33), it reads
the old value of the data item found in the 1 — toggle entry of its val array. Notice that

p should continue executing req to ensure wait-freedom (i.e. to help ¢ in case it fails

90

struct NewVar {
ItemSV *var;
NewVar *next;

b

struct NewList {
TtemSV *first;

h

struct State {
boolean applied[1..n], papplied|[1..n];
int seq;
NewList *var_list;
RetVal RVals[1..n];

h

struct DirectoryNode {
Name name;
ItemSV *sv;
Value val,

h

struct ItemSV {
Value val[0..1];
int toggle;
int seq;

b

shared Integer Toggles = < 0,...,0 >;

shared State S =< F,....,. FF >, < F,...,. F >,0,

shared OpType Announce[l..n] = {1, ..., 1L};

// Private local variables for thread p;
Integer toggle; = 2%;

RetVal ApplyOp(request req){
Announceli] = req;
toggle; = -toggle;;
Add(Toggles, toggle;);
Attempt();
Attempt();
return S.rvals[il;

}

S T W N =

// list of newly allocated variables
// points to the actual struct of the variable
// points to the next element of the list

// a stack object

// this struct is stored in a single base object

// indirection to a shared stack
// return values

// variable name
// data item
// new value of the data item

// old and new values of data item
// toggle shows which of val[0..1] is the current value

// Toggles is implemented as an integer of n bits
<L> <Ll >>

// Pseudocode for thread p;
// Announce request req

// 2% is added to toggle p;’s bit

// call Attempt to perform req
// pi returns

Algorithm 11: Data structures used in L-Sim and pseudocode for LSIMAPPLYOP.

without having performed all the required updates). The seq field is used to discover

whether a helper is already obsolete. ‘ For each set of simulated requests “listed” in .S,

the required updates are first performed by each thread p; in local copies of the data

items accessed (lines 19-37), and only later they are applied to the shared data structure

(lines 39-43). To implement this, each thread p; uses a local directory D containing

structs of type DirectoryNode, where it stores information about each item it accesses

during the execution of its current instance of Attempt (lines 33, 34), and performs all

its updates first on these copies (line 36). Only after it has finished the simulation of the

91

void Attempt()(request req){ // pseudocode for thread p;
Pindex q, j;
State s, tmp;
Set lact;
DirectoryNode D;
NewVar *pvar = new NewVar(), *ltop;
ItemSV sv, *psv = new ItemSV();

7 psv— (val, toggle, seq) = << L, 1 >,0,0>;
8 pvar— (var, next,) = <psv, null>;
9 for j=1 to 2 do {
10 D =0 // initialize direcory D
11 Is = LL(S); // read State struct
12 lact = Toggles; // read active set
13 Itop = ls.var_list—first; // read pointer to the current variable list
14 tmp.seq = Is.seq + 1;
15 tmp.papplied[1..n] = ls.applied[1..n];
16 tmp.applied[1..n] = lact[1..n]; // p will attempt to update S with tmp
17 for g=1 to n do { // local loop
18 if (Is.applied[q] # ls.papplied[q]) { // apply request of thread q
19 foreach access of a variable x while applying request Announce[q]{
20 if (x is a newly allocated variable) {
21 if(CAS(ltop—mext, null, pvar)){
22 psv = new ItemSV();
23 psv— (val, toggle, seq) = << L, 1 >,0,0>;
24 pvar = new NewVar();
25 pvar— (var, next,) = <psv, null>;
}
26 Itop = ltop—next; // in any case, use ltop — next as the new variable’s metadata
27 add <x, ltop—var, ltop—var.val[0]> to D; // add variable to local dictionary
28 } else { // x is not a newly allocated variable
29 let svp be a pointer to the ItemSV struct for x;
30 if (this access is a read instruction) {
31 if (x exists in D) read x from D; // perform the request on the local copy of x (if any)
32 else {sv = LL(*svp);
33 if (tmp.seq == sv.seq) add <x, svp, sv.val[l-sv.toggle]> to D;
34 else if (tmp.seq > sv.seq) add <x, svp, sv.val[sv.toggle]> to D;
35 else goto Line 38; // the State read by p is obsolete, start from scratch
36 } else if (this access is a write instruction) update x in D; // perform request on local copy
}
}
37 store into tmp.rvals[q] the return value;
}
38 if (IVL(S)) continue; // the State read by p is obsolete, start from scratch
39 foreach record <x, svp, v> in D {
40 if(svp—seq > tmp.seq) break; // if all requests have been applied, return
41 else if(svp—seq == tmp.seq) continue; // if the variable is modified, continue
42 else if(svp—toggle == 0) SC(*svp, <<svp—val[0],v>, 1, tmp.seq>);// make update visible
43 else SC(*svp, <<v, svp—val[l]>, 0, tmp.seq>); // make update visible
}
44 tmp.var_list = new List(); tmp.var_list—first = null; // re-initiate tmp.var_list
45 SC(S, tmp); // try to modify S
}
}

Algorithm 12: Pseudocode for L-Sim.

set of requests described in Announce, it applies the changes listed in the elements of its
directory to the shared data structure (lines 39-43).

Some additional synchronization that should be achieved between different helpers of
the same set of requests is when new data items are allocated by these requests; Then,
all helpers should use the same allocated ItemSV struct for each of these data items. To

solve this problem, S stores a pointer (called var_list) to a list of newly created data

92

items shared by all threads that read this instance of S. Each time a thread p; needs to
allocate the k-th, k > 1, such data item, it tries to add a struct of type NewVar as the
k-th element of the list (line 21). If it does not succeed, some other thread has already
done so, so p uses this struct (by moving pointer [top to this element on line 13, and by

inserting ltop — var in its dictionary on line 27).

5.4.2 Correctness proof

In this section, we present the correctness proof of L-Sim. We start by introducing a
similar notation to that of Section [5.2.2] Let o be any execution of L-Sim and assume
that some thread p;, ¢ € {1,...,n}, executes m; > 0 requests in a. Let reqj. be the
argument of the jth call of L-Sim by p; and let 7T;- be the jth instance of Attempt executed
by p; in « (see Figure . Define as Qz Add instruction of line 3; let Qf = Cy. We use
Toggles|i], i € {1,...,n}, to denote the i-th bit of Toggles. We denote by toggleé the
value of p;’s persistent local variable toggle; at the end of reqé. The notation of this proof

is summarized in Table 5.5

Lemma 5.16. Consider any j, 0 < 7 < m;. There are at least two successful SC instruc-

tions in the execution interval of ;.

Proof. We prove that during the execution of each iteration of the for loop of line 9, at
least one successful SC instruction is performed. If the iteration is completed on line 38 of
the pseudocode, the VL instruction returns false. This implies that at least one successful
SC instruction occurred between the LL of line 11 and the execution of VL on line 38. Now,
suppose that the iteration executes the SC instruction on line 45. If this SC is successful,
the claim follows. Otherwise, at least one successful SC instruction was performed between

the execution of line 11 and line 45. 1

The following observation is an immediate consequence of the pseudocode (line 2).
Observation 5.1. Consider any j, 0 < 7 < my;. The following claims hold:

1. if j mod 2 =0, toggle’ = 2;

2. if j mod 2 =1, toggle} = —2".

93

Notation \ Description

@ Any execution of L-Sim
C Any configuration in «
Cy The initial configuration of «
Di The thread which its id is equal to 4, ¢ € {1,...,n}
m; Thread p; executes m; requests in «
req The argument of the jth invocation of LSIMAPPLYOP
T The jth instance of Attempt executed by p; in «
; The Add instruction of line 3
4 The initial configuration Cy
Toggles[i] | The i-th bit of Toggles
. The value of p;’s persistent local variable toggle; at the end
toggle; ¢ redi
of reg;
C The configuration just after the execution of the /th Add in «
ci The first configuration between Cj and the end of 7} at which
1 S.applied|i] is equal to 1
i The first configuration between the end of 75, _, and the end
J of my;_, such that S.applied[i] is equal to j mod 2
SC; The SC instruction executed just before C7
LL; The matching LL instruction of C}
i The Read on Toggles|i] executed between LL;- and SC’; by
J the same thread that executes LLj and SC;
G The first configuration after C} such that a successful SC in-
J struction is executed
SC, The [th successful SC instruction on S in «
LL; The matching LL of SC;
Ci The configuration just after SC;
Qq The prefix of o which ends at SC;
g The empty execution

Table 5.5: Notation used in the proof of L-Sim.

For each [> 0, let Cj be the configuration resulting after the execution of the [th Add

istruction in «.

Lemma 5.17. For each | > 0, and for each i € {1,...,n}, if p; has executed j: > 0 Add

instructions by Cy, it holds that Toggles[i] = j¢ mod 2 at C).

(2

Proof. We prove the claim by a (straightforward) induction on /.

Base case (I = 0). Fix any ¢ € {1,...,n}. By the way Toggles is initialized, it
follows that T'oggles[i] = 0 at Cy. Since p; has not performed any request at Cy, it follows
that j? = 0 at Cj, so that 77 mod 2 = 0 and the claim follows.

Induction hypothesis. Fix any [> 0 and assume that the claim holds for C;_;.

Induction step. We prove that the claim holds for C;. Assume that the /th Add is

executed by some thread p; and let j! be the number of Add that has been executed by

94

p; until C;. At C;_1, p; has executed jf_l = j! — 1 Add. By the induction hypothesis,
Toggles[i] = 55! mod 2 = (5! —1) mod 2 at C;_;.

Assume first that j/ mod 2 = 1. In such a case, it follows that j! —1 mod 2 = 0.
Induction hypothesis implies that Toggles[i]| = 0 at C;_;. By Observation , it follows
that zfoggleézb1 = 2!, During the /th Add instruction, zfoggleézb1 is added to Toggles.
Notice that Toggles is updated only by executing Add (line 3). Thus, Toggles remains
unchanged between C;_; and the [th Add. Tt follows that Toggles|i] = 0 just before the
execution of the /th Add. Thus, the only change that the [th Add causes on Toggles is to
set the ith bit to 1; all other bits remain unchanged.

Fix any k # i, k € {1,...,n}. Since the [th Add is executed by p;, it follows that
Ji= jli_l. By the induction hypothesis, T'oggles[k] = jf;l mod 2 = ji mod 2, as needed.

The case where ji mod 2 = 0 is symmetric.

The following is an immediate consequence of Lemma [5.17}
Corollary 5.1. For each j, 0 < j < m;, the following claims hold:

1. Toggles[i] = j mod 2 at Q’;

2. Togglesli] has the same value between Q' _; and Q5.

Lemma 5.18. Consider any execution 7r§, 7 >0, of function Attempt by some thread p;.

S.applied[i] is equal to v = [j/2] mod 2 just after the end of .

Proof. Assume, by the way of contradiction, that S.applied[i] # v at the end of 7r; Since
S.applied|i] is a binary variable, it follows that S.applied[i] = 1 — v at the end of 7). By
Lemma there are at least two successful SC instructions in the execution interval
of 7T; It follows that the last successful SC instruction executed in 7r§- writes 1 — v into
S.applied[i]. Let SC, be this SC instruction, let LL, be its matching LL instruction, let
p. be the thread that executes LL, and SC,, and let T, be the read instruction of line 12
executed by p, between LL, and SC,. Lemma [5.16| implies that there are at least two
successful SC instructions in the execution interval of 7r; Since SC, is a successful SC
instruction, it follows that all LL,, T, and SC, are executed in the execution interval
of 7%. By the definition of 7%, it follows that m} is executed by the request 7“eqiU s2-

j
Corollary implies that Toggles|i] = [j/2] mod 2 between Qi[j /91 and before the end

95

i i
req;_q req;

Toj—3 Toj—2 Toj—1 o4

Q; Cl CJ’: time
Figure 5.10: An example of an execution of L-Sim.

of ﬂ; Since T, is executed after Q’[/2] and before the end of ﬂé, it follows that 7}, returns
v =[j/2] mod 2 for the ith component. The pseudocode (lines 12 and 45) implies that
SC, writes v = [j/2] mod 2 # 1 — v at S.applied|i], which is a contradiction.

For the rest of the proof we introduce the following notation. Let Cj be the initial
configuration. At Cy, S.applied|i] is equal to false. Lemma implies that just after
mi, S.applied|[i] is equal to true. Let C} be the first configuration between Cjy and the end
of i at which S.applied[i] is equal to true. Lemma implies that just after the end
of m, S.applied[i] is equal to false. Let C% be the first configuration after C such that
S.applied[i] is equal to false. Obviously, C% precedes the end of 7. Consider any request
req;, j > 1. Lemma implies that just after 75; ,, S.applied[i] is equal to [(j —2)/2]
mod 2 = (j — 1) mod 2, while just after 75; ,, S.applied[i] is equal to [(2j — 1)/2]
mod 2 =j mod 2 # (j — 1) mod 2. Let C’Ji» be the first configuration between the end
of mj; , and the end of mj; | such that S.applied|i] is equal to j mod 2. Lemma m
implies that just after w5, ,, S.applied[i] is equal to (j — 1) mod 2. Let C? be the first
configuration after the end of mj; , such that S.applied]i] is equal to j mod 2. Obviously,
C’; precedes the end of W%j_l. Figure illustrates the above notation.

Since the value of S.applied[i] can change only by the execution of SC instructions on
S, it follows that just before C | a successful SC on S is executed. Let SC be this SC
instruction and let LL} be its matching LL instruction. Let T} be the read of Toggles
that is executed between LL% and SC} by the same thread.

Lemma 5.19. Consider any j, 0 < j < m;, it holds that T]’ s executed after Q; and

reads j mod 2 in Toggles|i].

Proof. Assume, by the way of contradiction, that T} is executed before Q. Let 7, be the
Attempt that executes TJZ
Assume first that j = 1. Then, by its definition, SC? (which is executed by , after

T}) writes to S — applied|[i] a value equal to [j/2] mod 2; the code (lines 12, 16) implies

96

that, in this case, T} reads 1 in Toggles[i|. Corollary implies that Toggles|i] = 0
between Cy and @}. Thus, T} could not read 1 in T'oggles|i], which is a contradiction.
Assume now that j > 1. By our assumption that T is executed before @3, it follows
that LL;'»7 which is executed before T]?', precedes Q; In case that TJZ follows Q;_l, Corollary
implies that T; reads (7 — 1) mod 2 # j mod 2 in Toggles|i]. By the pseudocode
(lines 12, 16 and 45), it follows that m, writes the value (7 — 1) mod 2 into S.applied]i].
By its definition, SC’; stores j mod 2 into S.applied[i], which is a contradiction. Thus, T;
is executed before Q%_,. By its definition, 7}, 4 starts its execution after Q%_, and finishes
its execution before C’; Lemma implies that at least two successful SC instructions
are executed in the execution interval of 75; 5. Recall that LL! precedes T} and therefore
also the beginning of Wéj_3, while by definition S C’; follows the end of Wéj_g. It follows

that SCJZj is not a successful SC instruction, which is a contraction.

We next prove that the value of S.applied[i] remains the same between SC}_; and
SCs.
Lemma 5.20. Consider any j, 0 < j < m;. At each configuration C' between C]’:_l and
C?, it holds that S.applied[i] = (j — 1) mod 2.

Proof. Assume, by the way of contradiction, that there is at least one configuration be-
tween C?_, and C} such that S — applied[i] is equal to some value v, # (j —1) mod 2.
Let C, be the first of these configurations. Since only SC instructions of line 45 write on
base object S, it follows that there is a successful SC instruction, let it be SC,, executed
just before C, that stores v, at S.applied[i]. Let m, be the Attempt that executes SC,
and let T}, be the read instruction that 7, executes on line 12 of the pseudocode. By the
definition of C}_; and Q_,, it is implied that C}_, follows Q’_, and precedes Q. Corol-
lary [5.1) implies that T'oggles[i] = (j —1) mod 2 # v, in any configuration between Q}_,
and Q; Since SC,, writes v, into S.applied[i], the pseudocode (lines 12 and 45) imply that
T, precedes Q;_l. It follows that LL, precedes);_1, since LL, precedes T,. Therefore
LL, precedes C;_;. This implies that there is a successful SC instruction, which is SC}_l,

between LL, and SC,. Thus, SC, is a failed SC instruction, which is a contradiction.

By Lemma and the pseudocode (line 15), it follows that S.papplied|i] = 1 — (j
mod 2) at C. Denote by é; be the first configuration after C? such that a successful SC

instruction is executed.

97

Lemma 5.21. Ci_, precedes C and follows C!_,.

Proof. By the definition of é]i'—p it is implied that é}_l follows C’;_l. Lemma implies
that C} follows Q. By its definition, @ follows my;_». By Lemma [5.18} it follows that
C;;l precedes the end of my;_35. Thus, 7T§3;2 begins its execution after C’;;l and ends its
execution before C’; By Lemma m, there are at least two successful SC instructions in
the execution interval of 73, ,. Since, C?_, is the first successful SC just after Ci_,, it

follows that C_, precedes the end of m5;_,. Therefore, Ci_, precedes C%. &

Lemma 5.22. S.papplied[i] = S.applied|i] in any configuration between Ci_, and C% (C!

is not included).

Proof. By Lemma , it follows that S.applied[i] = (j—1) mod 2 between C?_, and C.
Assume by the way of contradiction that there at least one configuration between C’;fl
and C} such that S.papplied[i] # (j —1) mod 2 and let C, be the first of them. Let SC,
be the SC instruction executed just before C, and let LL, be its matching LL instruction.
Since, SC, is a successful SC instruction, LL, follows C’jfl. By Lemma |5.20} it follows
that S.applied[i] = (j—1) mod 2 between C;_; and C}. Thus, LL, reads (j —1) mod 2)
in S.applied[i]. The pseudocode (lines 11 and 15) implies that the SC instruction at CN’;

stores a value equal to (5 — 1) mod 2 into S.papplied[i], which is a contradiction. 1
By Lemma[5.22 and by the pseudocode (line 15), the following observation is derived.
Observation 5.2. S.papplied[i| = 1 — S.applied[i] at C;.

The following observation is an immediate derivation of the definition of C’; and Ob-

servation 5.2

Observation 5.3. S.papplied[i] = 1 — S.applied[i] in any configuration between C'J’: and

C’;, C~’j’ 1s not included.

We say that an request req by some thread p; is applied on the simulated object if
(1) the Read instruction on T'oggles (line 12), executed by some request req’ (that might
be req or any other request), includes p; in the set of threads it returns, (2) procedure
Attempt, executed by req’ reads in Announceli], the request type written there by p; for

req and considers it as the new request type for p;, (3) Attempt by req’ calls apply for

98

req (lines 19 - 37), and the execution of the SC at line 45 (let it be SC,.) on S succeeds.
When these conditions are satisfied, we sometimes also say that req’ applies req on the
simulated object or that SC, applies req on the simulated object. We next prove that

each request req is applied on the simulated object exactly once.
Lemma 5.23. Request req;. is applied to the simulated object at configuration Céj_l.

Proof. Let pp, be the Attempt that executes the successful SC instruction (let it be SC},
this SC instruction) just before C~’j’ Let LLj be the matching LL of SC},. Since, SC}, is a
successful SC instruction, it is implied that LLj; follows sz Observation implies that
LL, reads for S.applied[i] a value different from that stored in S.papplied|i]. Therefore,
the if statement of line 18 returns true. Thus, a request for thread p; is applied at é; Let
req’ be this request and assume, by the way of contradiction, that req’ # req?. Lemma
implies that 7, executes its read T}, on Toggles after Q§ By the pseudocode (lines 12,
19), 7, reads Announceli] after Tj,, thus the reading of Announceli] by m, is executed
between Q; and C’; Since T@gj- writes its request to Announceli] before Q;, the reading of
Announceli] by 7, returns Teq;-. Thus, 7, applies req§ as the request of p; in the simulated

object. 1

The following corollary is an immediate consequence of Lemma [5.22 Observation [5.3]
Lemma and of the definition of C']”

Corollary 5.2. Each request req is applied exactly once.

We are now ready to assign linearization points. Let a be any execution. For each
i€ {1,..,n} and j > 1, we place the linearization point of req at C’]’, ties are broken by

the order imposed by identifiers of threads.
Lemma 5.24. Fach request req;- 18 linearized within its execution interval.

Proof. Lemma implies that Q; precedes C’; Thus Q; precedes C’; Since C~’JZ is the
first sucessfull SC on S after C’; and (by its definition and by Lemma D C; precedes
the end of m5; ,, C~’J’ precedes the end of mj;. Thus, é; is in the execution interval of reg}.

Thus, req; is executed in its execution interval. &

In order to prove consistency, we introduce the following notation. Denote by SC;

the [-th successful SC' instruction on base object S. Obviously, between SC;_; and S,

99

[> 1 base object S is not modified. Let it; be some iteration of for loop of line 9
executed by some thread p;. Let SV,.(it;) be the sequence of base objects read by the LL
instructions of line 32 by it;. Denote by [SV,.(it;)| the number of elements of SV, (it;).
For each 1 < j < |SV,.(it;)|, denote by SV7(it;) the prefix of SV,(it;) containing the
g first elements of SV, (it;), i.e. SVI(it;) = (svl(it;),. .., svi(it;)), where svi(it;) is the
jth LL instruction performed by it; on some base object r. Let SV(it;) = X be the
empty sequence. Let V,(it;) be the sequence of insertions in directory D (lines 33-34)
by it;. Denote by |V, (it;)| the number of elements of V,.(it;). Obviously, it holds that
|SV,.(it;)| = |V,(it;)|. For each 1 < j < |V,.(it;)], denote by vi(it;) the prefix of V,(it;)
containing j first elements of V. (it;), i.e. VJ(it;) = (vl(it;),...,vi(it;)), where v;(it;)
is the jth value inserted to directory D. Let V°(it;) = X be the empty sequence. Let
SV, (it;) be the sequence of shared base objects accessed by it; while executing lines 41-42.
Denote by |SV,,(it;)| the number of elements of SV,,(it;). For each 1 < j < |SV,(it;)],
denote by SV(it;) the prefix of SV, (it;) that contains the j last elements of SV, (it;), i.e.
SVI(it;) = (svws (it;), . . ., svw;(it;)), where svw;(it;) is the jth operation (lines 41-42) by
it;. Let SV2(it;) = X be the empty sequence. Let SV, (it;) be the sequence of shared base
objects allocations during it; iteration (lines 20-26). Denote by |SV,(it;)| the number of
elements of SV, (it;). For each 1 < j < |SV,(it;)], denote by SV (it;) the prefix of SV, (it;)
that contains the j first elements of SV, (it;), i.e. SVI(it;) = (svay(it;),. .., sva;(it;)),
where sva;(it;) is the jth base object allocation by it;.

Let SV, (it;) be the sequence of allocations/reads/writes that it; performs nf base
objects in lines 20-43 of the pseudocode. Denote by |SV,., (it;)| the number of elements of
SVarw(it;). Obviously, it holds that | SV, (it;)| = |SVa(it;)| + | SV, (it;)| + |SVi(it;)|. For
each 1 < j < SV, (it;)|, denote by SV

arw

(it;) the prefix of SV, (it;) that contains the
j first elements of sequence SV, (it;) (i.e. SVI (it;) = (svarw(it;),. .., svarw;(it;)))

where svarw;(it;) is the jth base object allocations/reads/writes of base objects performed

Lemma 5.25. Let [> 0 be any integer such that S.applied[i] # S.papplied[i] at configu-
ration Cy_1. Let req} be the value of Announceli] at C,_1. In any configuration between

Ci—1 and Cy, it holds that Announceli] = req}.

100

Proof. Assume, by the way of contradiction, that there is at least one configuration be-
tween C;_; and Cj, such that Announceli] = req;'./ #* reqé. Let C' be the first of these
configurations. The pseudocode (line 1) implies that p; is the only thread that modifies
base object Announceli]. Thus, p; starts the execution of a new request reqé, at C', and
it holds that j/ = j + 1. Since the write on Announceli] by p; is executed between C)_;
and Cy, it is implied that either C7,, = C; or C%,, follows Cj. Since the end of req] pre-
cedes C, it follows that either C~’; = ()1 or é’; precedes C;_;. Lemma implies that
S.applied[i] = S.papplied in any configuration between C‘; and C%,, (C7,, is excluded).

Thus, it holds that S.applied[i] = S.papplied in any configuration between C;_; and Cj,
which is contracts our claim that S.applied|i] # S.papplied[i] at C;_1. ¥

By the pseudocode (lines 9, 38 and 45) the following observation holds.

Observation 5.4. For each j > 0, it holds that S.seq = j — 1 in every configuration

between C;_1 and Cj.
By lines 32, 39-42 and 45 of the pseudocode the following observation is derived.

Observation 5.5. Let it; be an iteration executed by p; such that the execution of the SC
instruction SC; on line 45 is successful. Let r be the base object accessed by svw,(it;),

1 < j < |SV,(it;)|. There is at least one successful SC on 1 instruction between SC;_4
and SCj.

Lemma 5.26. Let r be any shared base object other than S. For any l > 0, the following

claims are true:
1. At most one successful SC instruction is executed on r between C;_1 and Cj.

2. In case that a successful SC instruction SC., is executed on r, it holds that r.seq <[

Just before SCy, and r.seq =1 just after SC,.

3. Let it; be some iteration of the loop of line 9 executed by a thread p; that executes at
least one successful SC instruction SC, on r. If LL, is the LL instruction of line 11

executed by it;, then LL, is executed after C;_y.

4. Let it;, ity be two iterations of the for loop of line 9 executed by threads p; and

pir respectively, such that that both it;, ity execute their LL instructions of line 11

101

somewhere between Ci—y and Cy, 1 > 0, and |SV(it;)| > |SVarw (iti)|. If both it;,
ity execute line 39, just before Cy it holds that SV, (it;) = SV (ity).

Proof. We prove the claims by induction on /.

Induction hypothesis. Fix any [> 1 and assume that the claims hold for [

Induction step. We prove that the claims hold for [+ 1. We first prove Claim 1.
Let SC’ be the first of the successful SC instruction on r between C;_; and C;. We prove
that r.seq = [just after the execution of SC’. Assume by the way of contradiction that
r.seq = I' # j. Let it), be the iteration of line 11 executed by some thread p, that executes
SC'. Let LL' be the matching LL instruction of SC”. Since it; executes successfully line 42
of the pseudocode, the pseudocode (lines 38 and 42) implies that the VL instruction of
line 38 returns true. Since LL’ is executed by it; before this VL instruction, it follows
that LL' precedes SC}. Thus, the VL instruction of line 38 is executed before SCj/. Let
ity be the iteration of the loop of line 11 at which SCjs is executed and let py be the
thread that executes SCj. Obviously, LLj; has been executed between Cp_; and Cy.
Since LL' is also executed between Cp_; and Cy, the induction hypothesis (Claim 2.ii)
implies that SV,,(it,) = SV, (it,). Thus, it, has also executed an SC instruction on r. By
Observation [5.5] there is a successful SC instruction on r between SCy_; and SCp. Let
SC, be this instruction. By induction hypothesis (claim 1), it follows that r.seq = j" just
after the execution of SC,. Since SC" is a successful SC instruction, LL’ follows SC,. By
the pseudocode (lines 41-42), it follows that SC” is not executed, which is a contradiction.
Therefore r.seq = j just after the execution of SC,.. We now prove that there is no other
successful SC instruction between SC’ and C; on r. Assume by the way of contradiction
that at least one successful SC instruction takes place between SC’ and C;. Let SC” be
the first of these instructions. Since, SC” is a successful SC instruction, it follows that
its matching LL instruction LL” follows SC’. By the pseudocode (lines 41-42), it follows
that SC” is not executed since r.seq = S.seq, which is a contradiction.

Claim 2 is proved by following similar arguments to those of Claim 1.

We now prove Claim 3. Assume by the way of contradiction that LL, is executed
between SCj;_; and SCj, j° < j. Let p; be the thread that executes SCj on some
iteration it;. By Claim 1 and by Claim 2, it follows that r.seq < j’ just before SC};. Thus

SC, is not executed, which is a contradiction. Thus, Claim 3 holds.

102

We now prove Claim 4. It is enough to prove that svarwy (it;) = svarwy (ity), for any
' < |SViarw(it;)|. we prove this claim by induction on the number I’ < |SV,,.,| of elements
of SV(it;). Induction hypothesis. Fix any I’ > 1 and assume that the claims hold for
' —1.

Induction step. We prove that the claim holds for I’. Distinguish the following cases.

1. In case that svarwy(it;) = sva;(it;),j7 < |SV,(it;)|, the induction hypothesis, the
fact that both it; and it;; simulate the same deterministic object and the pseudocode

(lines 20-27) imply this.

2. In case that svarwy(it;) = svw;(it;),j < |[SV,(it;)|, the claim is an immediate
implication of the induction hypothesis and the fact that both it; and it; simulate

the same deterministic object.

3. In case that svarwy(it;) = svr;(it;),j < |SV,(it;)|, the induction hypothesis and
the fact that both it; and ity simulate the same deterministic object imply that
svarwy (it;) = svr;(it;) = svr;(ity) = svarwy(ity). Claims 1 and 2 and the pseu-

docode (lines 39-43) imply that V' (it;) = V¥ (ity). Thus, the claim holds. ®

Let a be any execution of the algorithm. Denote by «;, the prefix of a which ends at
SC; and let C; be the first configuration following SC;. Let ag be the empty execution.

Denote by [; the linearization order of the requests in «;.

Lemma 5.27. For each i > 0, (1) object’s state is consistent at C;, and (2) «; is consis-

tent.

Proof. We prove the claim by induction on .

Base case (i=0): The claim holds trivially; we remark that «; is empty in this case.
Induction hypothesis: Fix any ¢ > 0 and assume that the claim holds for ¢ — 1.
Induction step: We prove that the claim holds for ¢. By the induction hypothesis,
it holds that: (1) object’s state is consistent at C;_;, and (2) «;_; is consistent with
linearization [;_;. Let req be the request that executes SC;. If req applies no request on
the simulated object, the claim holds by induction hypothesis. Thus, assume that req
applies 7 > 0 requests on the simulated object. Denote by req, ..., req; the sequence of

these requests ordered with respect to the identifiers of the threads that initiate them.

103

Notice that req performs LL; after C;_; since otherwise SC; would not be successful.
By the induction hypothesis, object’s is consistent at C;_;. Lemmal5.26]and Corollary [5.2]
imply that all threads that are trying to apply a set of requests between C;_; and C; do
the following (1) apply the same set of requests with the same order, (2) all read the same
consistent state of the object, (3) write the same set of base objects with the same values
(although only one write succeeds), and (4) none of req,...,req; have been applied in
the past.

Given that regq, ...,req; are executed by req sequentially, the one after the other in
the order mentioned above, it is a straightforward induction to prove that (1) for each
f, 0 < f <7, request reqy returns a consistent response; moreover, S — st is consistent
and once line 14 has been executed by req for all these requests. Therefore, S — st is
consistent after the execution of req’s successful SC. This concludes the proof of the claim.

Theorem 5.6. L-Sim is a linearizable, wait-free implementation of a universal object.

The number of shared memory accesses performed by L-Sim is O(kW).

5.5 SimStack: A wait-free implementation of a shared stack

In this section, we present a wait-free implementation of a stack based on P-Sim, which

is called SimStack (Algorithm . Performance evaluation of SimStack, is also provided.

5.5.1 Algorithm description

In SimStack, the stack is implemented as a linked list of nodes; a pointer top points to
the topmost element of this list. P-Sim is employed to atomically manipulate top. Thus,
the state st of the simulated object stores just this pointer and not the entire stack state.
This is accomplished by defining State to be a pointer to a struct of type node (line 2).

When a thread initiates a PUSH or a POP request, it allocates a struct of type Request,
initiates it appropriately, and simply calls P-Sim with this struct as a parameter. The

pseudo-code for the sequential operations, push and pop, is also presented in Algorithm [13]
Theorem 5.7. SimStack s a linearizable wait-free implementation of a concurrent stack.

104

5.5.2 Performance Evaluation

We compare the experimental performance of SimStack with that of state-of-the-art
concurrent stack implementations, like the lock free stack implementation presented by
Treiber in [58], the elimination back-off stack [35], a stack implementation based on CLH
spin lock [23, 47], and a linked stack implementation based on flat-combining [33, 34]. We
remark that the implementation based on flat-combining uses the same pseudo-code for
PusH and Pop, i.e. that presented in Algorithm [13]

Our experiment is of the same nature as that performed by Michael and Scott for

queues in [50]. More specifically, 107 pairs of a PUSH and a POP, in total, were executed

1 typedef struct {
Data data;
Node *next;
} Node;

2 typedef struct {
Node *top;
} State;

void PusH(ArgVal arg, ThreadId i){ // Code for PusH
3 PSIMAPPLYOP(<push, arg>, i);

}

Node *Pop(Threadld i){ // Code for Pop
Node *ret;

4 ret = PSIMAPPLYOP(<pop, 1>, i);
5 return ret;

}

void push(State *pst, ArgVal arg){
nd = allocate a new node; // Allocate a new node
nd—data = arg; // Write node’s information
nd—next = pst—top; // top—next points to the top of stack
pst—top = nd;

}

Node *pop(State *pst){
Node *ret;

© 0 g

10 ret = pst—top; // Compute the return value for thread p;
11 if (pst—top # 1)

12 pst—top=pst—top—next; // Pop a node from the list

13 return ret;

Algorithm 13: Implementation of POP and PUSH for SimStack.

105

[e)]

| —e—simstack —— lock-free Stack
FC-linked stack —#— spin locks stack
—<—elimination

(%)
L

IN
1

N
L

throughput (millions requests per sec)
= w

o

1 4 8 12 16 20 24 28 32 64 96
of threads

Figure 5.11: Performance of SimStack.

as the number of threads n increases. The average throughput was measured; the results
are illustrated in Figure Again, for each value of n, the experiments have been
performed 10 times and averages have been taken. As in previous experiments for P-Sim,
we have simulated a random workload by executing a random number of (at most 512)
iterations of a dummy loop after the completion of each request. To reduce the overheads
for the memory allocation of the stack nodes, we use the Hoard memory allocator [18] to
allocate an entire pool of nodes (instead of allocating one node each time); when all the
elements of a pool have been used, we ask for the allocation of a new pool of nodes.

As shown in Figure [5.11] all algorithms scale well up to 4 threads but SimStack out-
performs all other implementations for n > 12. More specifically, SimStack is up to 2.94
times faster than the lock-free stack, up to 2.58 times faster than the spin-lock based
stack, up to 2.57 times faster than the elimination back-off stack, and up to 1.35 times
faster than flat-combining.

Similarly to the experiment of the Fetch&Multiply object (Figure , CLH spin
locks achieve almost constant throughput for different values of n. The lock-free imple-
mentation suffers from increased contention, so its performance degrades as n increases.
As expected, the elimination backoff stack achieves much better performance than the
lock-free implementation and the spin-lock based implementations in most cases. Sim-
Stack and flat-combining significantly outperform the other stack implementations. For

small numbers of n, flat-combining performs a little better than SimStack, but for n > 12,

106

SimStack exhibits better performance than flat-combining (for similar reasons to those

presented in Section [5.3)).

5.6 SimQueue: A wait-free implementation of a shared queue

In this section, we present a wait-free implementation of a queue based on P-Sim, which
is called SimQueue (Algorithms [14] and [15]). Performance evaluation of SimQueue, is also
provided.

5.6.1 Algorithm description

Designing a queue implementation using P-Sim is not as simple as implementing a stack,
basically because an efficient such implementation should allow the enqueuers and the
dequeuers to run independently. To achieve this, we employ two instances of a slightly
modified version of P-Sim (Algorithms|[14]{16)), one for the enqueuers, called Eng-PSim, and
one for the dequeuers, called Deg-PSim. The queue is linked using a next pointer field in
each node. We denote by EngS and DeqsS the variable S in each of the instances of P-Sim
for the enqueuers and the dequeuers, respectively (lines 3-4). Pointer DeqS — st.head
points to the first element of the simulated queue. The queue initially contains a dummy
node; the dummy node is always the first node of the queue. This allows the dequeuers
to work independently of the enqueuers. Specifically, the dequeuers manipulate the head
of the queue which is never updated by any enqueuer. Thus, DeqState is a struct which
contains just a pointer to the head of the queue.

Whenever a thread p performs an enqueue request, it helps only other active enqueuers
(ignoring currently active dequeuers). Thread p creates a local queue of nodes, one for
each enqueuer it helps. If the SC of line 35 by p is successful, a pointer to the first element
of p’s local queue and a pointer to its last element are stored in EnqgS — st. These
pointers are EngS — st.first and EngS — st.last. Moreover, the previous value of
EngS — st.last is stored in EngS — st.tail. Thus, EngState is a struct containing these
three pointers.

We remark that at configuration C' resulting from the execution of the successful

SC by p, the simulated queue is supposed to contain not only the elements of the list

107

typedef struct {

Data data;
Node *next;
} Node;
1 typedef struct { // Implementation of State for enqueuers
Node *tail; // pointer to previous value of queue’s tail
Node *first; // pointer to the first element of the newly enqueued nodes
Node *last; // pointer to the last element of the newly enqueued nodes
} EngState;
2 typedef struct { // Implementation of State for dequeuers
Node *head; // pointer to the head of the queue
} DeqState;

// Initially, EngS points to a struct with value ((ndp, L, L),0,(L, ..., L)),
// where ndy is the dummy node that is initially placed in the queue
3 shared StRec *EngS;
// Initially, DeqS points to a struct with value ({(ndy, L, 1),0,(L,..., L))
4 shared StRec *DeqS;

void ENQUEUE(ArgVal arg, ThreadId i){ // Code for ENQUEUE
5 Eng-PSim(<enqueue, arg>, i); // Call an instance of P-Sim for enqueuers

Node *DEQUEUE(ThreadId i){ // Code for DEQUEUE
6 Node *ret = Deq-PSim(<dequeue, L >, i); // Call an instance of P-Sim for dequeuers
7 return ret;

}

void enqueue(EngState *pst, ArgVal arg) {
Node *new_node;

8 new_node = allocate a new struct Node;

9 new_node—data = arg;

10 new_node—next = L;

11 if (pst—first == L) pst—first = new_node;
12 else pst—last—next = new_node;

13 pst—last = new_node;

}

Node *dequeue(DeqState *pst) {
Node *ret = L;
14 ret = pst—head—next;
15 if (ret I= 1)
16 pst—head = ret;
17 return ret;

}

Algorithm 14: Data structures for SimQueue, the implementation of ENQUEUE and DE-
QUEUE in SimQueue, and the implementations (enqueue and dequeue) of the sequential
versions of enqueue and dequeue.

108

void Attempt(Threadld i) { // Code for Attempt
boolean ltoggles|[1..n]; // ltoggles is implemented as an integer
StRec *ls_ptr;
boolean dFlag;

18 for j=1 to 2 do{

19 Is_ptr = LL(S); // read the pointer stored in S
20 Pool[i][index;] = *1s_ptr; // Create a copy of current state
21 if (VL(S) == 0)
22 continue;
23 ltoggles = Toggles; // Read the vector of toggles
24 if (Announce[i].func==enqueue) EngLinkQueue(&Poolli][index;].st);
25 dFlag = true;
26 for 1=1 to n do {
// If p; has a request that is not applied yet
27 if(ltoggles[l] # Poolli][index;].applied[l]) {
28 if (Announceli].func== dequeue) {
29 if (dFlag == true) dFlag = DeqLinkQueue(Pool[i][indez;].st);
30 if (dFlag == true) {
// Apply the request and compute return value
31 apply Announcell] on Poolli][index;].st
and store the return value into Poolli][indez;].rvals[l];
32 } else store L to Poolli][index;].rvals[l];
} else {
// Apply the request and compute return value
33 apply Announce[l] on Poolli][index;].st
and store the return value into Pool[i][index;].rvals[l];
}
34 Pool[i][index;].applied[l] = ltoggles[l];
}
35 if(SC(S, &Poolli][index;])) // Try to change the contents of S
36 index;=(index; +1) mod 2; // If success, p; uses the next struct
37 BackoffCalculate();
¥
}

Algorithm 15: Pseudocode for the Attempt in SimQueue.

addressed by DeqS — st.head, but also the elements that are stored in p’s local queue
(addressed by EngS — st.first), in the order they are met in these two lists with the
first element being that pointed to by DeqS — st.head. This is so, despite the fact that
at C, EngS — st.tail — next does not point to the node pointed to by EngS — st.start.
However, an update on EngS — st.tail — next to point to this node must occur before
the application of the next set of simulated requests. To achieve this, the enqueuers call
EngLinkQueue, where they try to update (with the CAS of line 39) the next field of the
node pointed to by EngS — st.tail to point to EngS — st.start (connecting in this way

the two parts that store the state of the simulated queue).

109

void EngLinkQueue(State *pst) {
38 if (pst—first # 1) {

39 CAS(pst—tail—next, L, pst—first);
40 pst—tail = pst—last;
41 pst—first = L;
42 pst—last = L;
¥
}

boolean DeqLinkQueue(State *pst) {
StRec *tmpS;
Node *first, *tail;

43 if (pst — head — next == 1) {

44 tmpS = LL(EngS); // EngsS is the variable S of P-Sim’s instance for enqueuers
45 tail = tmpS—rst.tail;
46 first = tmpS—rst.first;
47 if (VL(EngS))
48 if (first # 1) CAS(tail—next, L, first);
¥

49 if (pst — head — next == 1) return false;
50 else return true;

}

Algorithm 16: Pseudocode for EnqLinkQueue and DegqLinkQueue in SimQueue.

A dequeue helps only active dequeuers. To ensure consistency, each dequeue request
also executes a CAS (line 48 of DeqLinkQueue) to link the two parts of the simulated queue
in a way similar to what enqueue requests do (line 39). The pseudocode for SimQueue
appears in Algorithms [I4{I6] Notice that ENQUEUE simply calls Eng-PSim with param-
eters a pointer to enqueue, which is a function containing the enqueue sequential imple-
mentation, its argument, and the thread id. Similarly, DEQUEUE calls Deq-PSim with
parameters a pointer to dequeue, which is a function containing the dequeue sequential

implementation, and the thread id.

5.6.2 Correctness proof

Let « be any execution of SimQueue. Denote by SC,,, m > 0, the mth successful SC
instruction on EngS executed in «, denote by LL,, its matching LL, let p; be the thread
that executes SC,,, and let [s; , be the element of Pool used by p; during the instance
of Attempt that executes SC,,. Denote by), the configuration that results from the
execution of SC,,. Let tail,,, first,,, and last,, be the values of EnqS — st.tail, EngS —

st.first, and EngS — st.last, respectively, at C,,. Let taily be a pointer to the dummy

110

node ndy that is initially placed in the queue, and let firsty and lasty be L. Obviously,
between SC,, and SC,, .1, £ngS is not modified. Denote by CAS,, the mth successful CAS
executed in a.

We remark that the proof of P-Sim up to Lemma which states that each request
is applied exactly once, does not depend on the state of the object. Since EnqLinkQueue
does not access Toggles or the applied field of EngS, it follows that each ENQUEUE
request req in « is applied exactly once. Let req’ be the ENQUEUE request that applies
req. By definition and by the pseudocode (line 33), it follows that req’ calls enqueue for
req. We call node allocated for req in « the node that is allocated by this instance of
enqueue.

As in the correctness proof of P-Sim, we linearize each ENQUEUE at the point that the
successful SC of the Attempt of the request that applies the ENQUEUE is executed; ties
are broken by the order imposed by threads’ identifiers.

Denote by «,, the prefix of a which ends at SC,,. Let ay be the empty execution.
Denote by E,, the sequence of the ENQUEUE requests applied up until C,,, in the order
defined by their linearization points; let Fy = A, i.e. Ej is the empty sequence. Denote
by E,, — E,,_1 the suffix of F,, that does not contain any of the instances of ENQUEUE

in Em—l-

Lemma 5.28. No thread executes lines 39-42 and lines 44-48 of the code between Cy and
Ch.

Proof. Fix any request req (ENQUEUE or DEQUEUE) that is initiated between Cj and
C, and let req’ be the request that applies req; denote by p; the thread that initiates
req’. Let ls; be the Pool element used by p; during the execution of the Attempt of
req’. By initialization, ls; — st.tail stores a pointer to the dummy node at Cy; moreover,
ls; — st.first = 1L and ls; — st.last = 1L at Cj.

Assume first that req is an ENQUEUE request. By the pseudocode, thread p; calls
EngLinkQueue before executing the for loop of line 26. Since ls; — first can change only
if p; calls enqueue and this occurs only in the body of the for loop of line 26, it follows

that the condition of line 38 of EnqLinkQueue is evaluated by p; to false. Therefore, p;

does not execute lines 39-42 between Cy and C.

111

Assume now that req is a DEQUEUE request. By initialization, ls; — st.head stores a
pointer to the dummy node at Cjy; moreover, the next field of this dummy node is equal to
L. Since head changes only by executing line 16, it is a straightforward induction to show
that each time the if statement of line 15 is executed between Cy and (', its condition is
evaluated to false. It follows that the condition of line 48 of DeqLinkQueue is evaluated
to false. Therefore, lines 44-48 of DeqLinkQueue are not executed by p; between Cy and
Ci. 1

Lemma 5.29. Fiz any index m > 0. The following claims hold for C,,:

1. Ifm > 1, CAS,,_1 is the only successful CAS executed between SC,,_1 and SC,,; CAS,, 1

1s performed on tail,,_; — next and writes the value first,,_1 there.

2. Let ndy,...,nd,, be the nodes that are traversed, in order, if, at C,,, the next
pointers are followed starting from node ndy. Then, for each j, 1 < j < gy, nd; is
the node allocated in o« for the ENQUEUE that corresponds to the jth ENQUEUE in

E,,_1; moreover, tail,, points to nd,, at C,,.

3. Let nd’l,...,nd’fm be the nodes that are traversed, in order, if, at C,,, the next
pointers are followed starting from the node pointed to by first,,. Then, f,, > 0
and for each j, 1 < j < fn, nd; is the node allocated in « for the ENQUEUE that
corresponds to the jth ENQUEUE in E,, — E,,_1, and nd’fm s the node pointed to by

last,,.

Proof. We prove the claim by induction on m.
Induction Base (m = 1). Claim (1) holds trivially. We continue to prove claim (2).
By the pseudocode and by Lemma it follows that the value of ls;, — st.tail does not
change until SC;. Recall that, initially, ls;, — st.tail points to the dummy node. Since
each thread works on distinct elements of the Pool array, it follows that [s;, — st.tail
points to the dummy node at C;. So, tail; points to ndy at C. Moreover, Lemma [5.28
and the pseudocode (lines 8-10, 39, and 48) imply that the next field of the dummy node
points to L at C, thus ¢; = 0. This concludes the proof of claim (2).

We finally prove claim (3). Recall that ls;, — st.first = L and ls;, — st.last = L
at Cy. Lemma implies that the values of ls;, — st.first and ls;; — st.last do not

112

change by executing lines 41 and 42 of EnqLinkQueue. Thus, claim (3) is implied by the
correctness of P-Sim.

Induction hypothesis. Fix any index m > 1 and assume that the claim holds for every
0<m <m.

Induction step. We prove the claim for m.

We start by proving claim (1). We first prove that p; executes the CAS of line 39
during the execution of EngLinkQueue. By induction hypothesis (claim (3)), fn—1 > 0,
so first,,_1 # L at C,,_1. By the definition of C,, 1 and C,,, EngS is not modified
between C,,_; and C,,. Since SC,, is a successful SC instruction, it follows that p;
executes LL,, between C,, 1 and C,,. By the pseudocode (lines 19 and 20), it follows
that at the configuration C that results from the execution of line 21 by p; , it holds
that ls;, — st.first = first,_1, ls;, — st.tail = tail,,— and ls;, — st.last = last,,_1;
moreover, the value of ls; — st.first does not change between C' and the execution of
line 38 of EnqLinkQueue by p; . Thus, the condition of the if statement of line 38 is
evaluated to true and p; , executes the CAS of line 39 (which we denote by CAS’ in the rest
of the proof).

We next argue that CAS’ is executed on tail,,_; — next. Recall that ls; — tail =
tail,,—1 at C. By the pseudocode, it follows that between C' and the execution of line 39
of EnqLinkQueue by p; , the value of ls; — st.tail does not change. Thus, by the
pseudocode (lines 19), it follows that CAS’ is executed on tail,,—1 — next.

By the induction hypothesis (claim (2)), it follows that tail,,—1 — next = L at C,_1.
If CAS' fails, it follows that at least one successful CAS is executed on tail,,_y — next
between C,,_; and the execution of CAS’; let CAS, be the first such CAS.

We next argue that CAS, = CAS,,_; by proving that each CAS on any variable other
than tail,,_1 — next which is executed between C,,_; and the execution of CAS, fails. Let
CAS, # CAS, be any CAS that is executed between C,,_; and the execution of CAS,. By
the pseudocode (lines 19-21, and 44-47), it follows that CAS, is executed on tail; for some
j, 1 <7 < m. Notice that once the next field of a node changes to a value which is not L,
then it never becomes | again (since the structures of type Node are not recycled). This,
and induction hypothesis (claims (1), (2), and (3)) imply that for each j, 1 < j < m,
tail; points to a distinct node; moreover, if j < m — 1, tail; — next # L after Cj1;. So,

for each j, 1 < j < m —1, tail; — next # L after C,,_;. It follows that CAS, is not

113

successful. Thus, CAS, = CAS,,,_;. Therefore, CAS,,_; is executed on tail,,_; — next and
writes the value first,, 1 there. Once tail,, 1 — next changes to a non-_L value, no other
CAS on it can succeed. Recall that the same is true for all other CAS instructions that are
executed on variables other than tail,,_; — next. This concludes the proof of claim (1).

We continue to prove claim (2). Recall that p; executes the CAS of line 39 of
EngLinkQueue, and therefore it also executes lines 40-42 of EnqLinkQueue. Let C’ be the
configuration that results when p; , finishes the execution of EnqLinkQueue. Since [s;,,
points to one of the Pool elements owned by p; (so no other thread can change ls;,),
the pseudocode (lines 19-20) implies that ls;,, — st.tail = last,,_1, ls;,, — st.first = L,
and [s;, — st.last = L, at C’; moreover, the value of ls; — st.tail does not change
from C’ to C,,. By the pseudocode (lines 39, 48) it follows that last,,_; — next does
not change from C,,_; to C,,. Thus, ls;, — st.tail — next = L at C,,. Notice that
tail,, =ls;, — st.tail at Cp,. Claim (2) now follows by induction hypothesis (claims (1),
(2), and (3)) and by the way linearization points are assigned to the ENQUEUE requests.

We finally prove (3). Recall that ls;,, — st.first = L, and ls;,, — st.last = L, at C".
By definition, C" precedes the execution of the for loop of line 26 by p; . It follows that
claim (3) can be derived by the correctness of P-Sim and by the way linearization points

are assigned to ENQUEUE requests. 1

We continue to study the behavior of the dequeuers. We first describe how to assign
linearization points to each instance of DEQUEUE executed in a.

Recall that DeqS — st.head initially points to ndy, i.e. to the initial dummy node.
Lemma [5.29] implies that, for each m, at C,, the nodes which can be reached by fol-
lowing next pointers, starting from the initial dummy node, contain the same values, in
order, as those of the queue that would result if the ENQUEUE requests in F,,_; were
applied sequentially to a queue that initially contains only a dummy node initialized in
the same way as ndy. Moreover, the pseudocode of Attempt is different than that of
P-Sim in the following: (1) for each DEQUEUE that is simulated locally by any thread,
DegLinkQueue may be called, and (2) if for some DEQUEUE request req, the execution of
DeqLinkQueue returns false, then the response value for it and for all DEQUEUE requests

that are simulated by the same Attempt after req are set to L.

114

We say that a dequeue request req initiated by some thread p; is applied if there is
some request req’ (that might be req or some other request) for which all the following
conditions hold: (1) the last Read on Toggles that is executed by req’ returns a value for
its 4th bit which is different from the value returned by the last Read on DeqS — applied]i]
(line 20) executed by the Attempt of req’, (2) req is recorded in Announce[i] when the
last read of Toggles is executed by the Attempt of req, and (3) the execution of the SC
of line 35 on DeqS by the Attempt of req’ succeeds. When these conditions hold, we
sometimes say that req’ applies req.

Since the new version of Attempt handles T'oggles and the applied field of DeqS in
the same way as the Attempt of P-Sim, it can be proved, by using the same arguments as
those presented for P-Sim up until Lemma [5.15] that each instance of DEQUEUE in « is
applied exactly once.

Fix any request req’ such that req’ applies a bunch of DEQUEUE requests all of which
return values different from 1. We linearize the bunch of requests applied by req’ at the
point that the successful SC (line 35) is executed by req’; ties are broken by the order
imposed by threads’ identifiers.

Fix any request req’ such that req’ applies a set A of DEQUEUE requests that return
L and possibly some other DEQUEUE requests that have a non L response. Let req be
the DEQUEUE request from A that has been initiated by the thread with the smallest
identifier; let p; be this thread. Denote by DL(Q the instance of DeqLinkQueue that is
executed during the ith iteration of the last execution of the for loop of line 26 performed
by the instance of Attempt executed by req’; the definition of req and the pseudocode
imply that DeqLinkQueue is indeed called during the ¢th iteration of this for loop, so DLQ
is well-defined. We linearize all the DEQUEUE requests applied by req’ (independently
of whether they return a value equal to L or not) at the point that line 43 of DLQ is
executed by req’; ties are broken by the order imposed by threads’ identifiers.

In order to prove consistency, we introduce the following notation. Denote by SC. ,
m > 0, the mth successful SC instruction in v and let LL] = be its matching LL; notice that
SC), may be an SC on either EngS or on DeqS. Obviously, between SC;, and SC; .,
neither EngS nor DeqS is modified. Denote by «,,, the prefix of a which ends at SC/,
and let C] be the configuration that results from the execution of SC); let C|, = Cj. Let

115

g be the empty execution. Denote by L,, the sequence of the requests in «,, in the order
defined by their linearization points; let Ly = A, i.e. Lg is the empty sequence.

Let EngS,, and DeqS,, be the values of variables EngS and DeqS, respectively, at C,,.
Let H), = nd, ...nd,,, be the sequence of nodes that are traversed, in order, if, at C,,, we
follow the next pointers, starting from the node pointed to by DeqsS,, — st.head, up until
we reach a node whose next field is equal to NULL; nodes ndy, . ..,nd,,, are the reachable
nodes from the node pointed to by DeqS,, — st.head at Cy,. Let Hy, = nd;...nd}; be
the sequence of nodes that are traversed, in order, if, at C,,, we follow the next pointers
starting from the node pointed to by first,, up until we reach a node whose next field
is equal to NULL; nodes ndy, ...,nd; are the reachable nodes from the node pointed to
by first,, at C,,. If at C,,, EngS,, — st.tail — next points to EnqS,, — st.first, then
let H,, be the sequence of values, in order, contained in the nodes in H/ (notice that in
this case H/ is a suffix of H/); otherwise, let H,, be the sequence of values, in order,
contained in the nodes in H] - H/!.

Let @, be the queue that is created if the requests in L,, are applied sequentially on
a queue that initially contains a dummy node initialized in the same way as the initial
dummy node in a. Let S,, be the sequence of values, in order, contained in the nodes
of Q. Let Hy and Sy be sequences containing only one value each, that of the initial

dummy node.

Lemma 5.30. For each m > 0, the following claims hold: (1) H,, = S,,, and L, is a

linearization order for ay,.

Proof. By induction on m.

Base Case. The claims hold trivially for m = 0.

Induction Hypothesis. Let m > 0, and assume that the claims hold for m — 1.

Induction Step. We prove that the claims hold for m. Suppose that L,, 1 — L,, contains

ENQUEUE requests only. Then, SC/ is a successful SC on EngS. In this case, the claims

hold by induction hypothesis, Lemma [5.29] and the fact that ENQUEUE returns ack.
Assume next that L,, 1 — L, contains a set D of DEQUEUE requests. Let SC), be the

first successful SC on DeqS after C] _,. Notice that d > m. Let req; be the DEQUEUE

request that executes SC), let p; be the thread that initiated reqq, and let sy be the

element of Pool used by py during the instance of Attempt that executes SC.

116

Assume first that all DEQUEUE requests in D return a value other than L. Then, by
the way linearization points are assigned, it follows that d = m. In this case, the induction
hypothesis, Lemma [5.29] and the correctness of P-Sim, imply that the claims hold.

Assume finally that some requests applied by reqg return L. We first argue that all
DEQUEUE requests in D are applied by regy. Assume, by contradiction, that there is at
least one DEQUEUE request reqy # reqg that applies some of the DEQUEUE requests in
D. By definition of SC/;, reqs applies its SC which we denote by SC,, after SC,. However,
by the pseudocode (lines 19, 29, and 35) and by the way that linearization points are
assigned, it follows that reqy executes the LL that matches SC/, before SC, and therefore
before SC),. Thus, SC), cannot be successful. This contradicts the assumption that reqys
applies some of the DEQUEUE requests in D. Therefore, all DEQUEUE requests in D are
applied by regq,.

Let req be the DEQUEUE request among those that return L in D that has been
initiated by the thread with the smallest identifier; let p; be this thread. Denote by
DLQ the instance of DeqLinkQueue that has been executed during the ith iteration of
the last execution of the for loop of line 26 performed by the instance of Attempt of reqy;
the definition of ¢ and the pseudocode imply that DeqLinkQueue is indeed called during
the ith iteration of this for loop, so DLQ is well-defined. Let C, C’, and C” be the
configurations just before the execution of lines 43, 48, and 49, respectively, of DL(Q by
reqq. By the way linearization points are assigned, C' precedes the execution of SC/ .

Denote by h; the value of ls4.st.head after the (i — 1)st iteration of the for loop of
line 26 has been executed by reqy. The induction hypothesis, Lemma[5.29] the correctness
of P-Sim, and the pseudocode, imply that after the execution of the first (i — 1) iterations
of the for loop of line 26 by regqy (i.e. after those iterations that cope with DEQUEUE
requests that return a value not equal to L), the claims hold. Since the request that is
processed during the ith iteration is req which returns L, the pseudocode (lines 43-49,
and 14-16) implies that ls4.st.head is equal to h; at C.

Let SC. be the last successful SC on EngS preceding SC? . If there is no such SC, then
all DEQUEUE requests in D return L and are linearized before the first ENQUEUE request
is linearized. This and the induction hypothesis imply that the claims hold.

So, assume that SC. is well defined. Suppose that SC. writes the value EngS, in

EngS. Since C occurs between SC/, ; and SC|,, it follows that SC. precedes C. We

m?

117

first argue that at least one successful CAS is executed between SC, and C’. Assume,
by contradiction, that this is not the case. Since the response value for req is L, the
pseudocode (lines 43, 49, 25, 28 -30, and 14-16) implies that DLQ returns false. Since py
is the only thread updating ls; and ls4.st.head — next = L at C”, the pseudocode implies
that [sg4.st.head — next = L at C'. Thus, DL(Q evaluates the condition of the if statement
of line 43 to true. Since no successful CAS is executed after SC., Lemma [5.29] implies that
EngS — st.tail — next = 1 and EngS — st.first # L at each configuration between
SC. and C’. Since the LL of line 44 comes after C', DLQ reads the value for EngS written
by SC4. Thus, the condition of the if statement of line 48 is evaluated to true and the CAS
of line 48 is executed by DL(Q) and it is successful. This contradicts our assumption that
no successful CAS is executed on between the execution of SC. and C’. Thus, there is at
least one successful CAS that is executed between the execution of SC, and C’. We remark
that this CAS is executed on EngS. — st.tail — next. Notice that once a successful CAS
is executed on EngS, — st.tail — next, no other CAS on it can succeed. Thus, there is
exactly one successful CAS on it between SC, and C’. Denote by CAS, this successful CAS.

We argue that CAS. is executed before C. Assume, by contradiction, that CAS, is
executed between C' and C’. Recall that the condition of the if statement of line 43
executed by DL() is evaluated to true. Recall that [s;.st.head is equal to h; at C.
Lemma [5.29|implies that only EngS, — st.tail — next and EngS. — st.last — next can
be equal to L at C'. Since CAS, occurs after C', the induction hypothesis, the pseudocode,
and Lemma [5.29|imply that [s;.st.head # EngS. — st.last at C. Therefore, [sy.st.head =
EnqgS, — st.tail at C. Lemma [5.29] implies that CAS. changes EngS. — st.tail —
next to point to EnqS. — st.first. Recall that EngS. — st.first # L. Thus, in all
configurations between the execution of CAS, and C”| it holds that ls,.st.head — next #
L. Tt follows that the condition of the if statement of line 49 is evaluated to false by
DLQ, so DLQ) returns true. This contradicts the fact that the response for req is L. It
follows that CAS, is executed before the execution of line 43 by DL(Q. Then, Lemma [5.29
imply that [s4.st.head = EnqS. — st.last at C. Recall that we argued that the claims
hold until C.

We conclude that the sequential queue which is formed by applying sequentially all
the requests in L,,_ 1, in order, as well as those requests applied by req; up until req

(excluding req), in the order of thread ids, is empty (i.e. contains only the dummy node).

118

(o]

—&—SimQueue
FCQueue
two locks queue (CLH)

—&— MS-Queue

~

)]

2]
1

I
1

w
1

ﬁ

throughput (millions requests per sec)
[

o

1 4 8 12 16 20 24 28 32 64 96
of threads

Figure 5.12: Performance of SimQueue.

Thus, linearizing req and all other requests applied by req, after req at C' does not violate
the claims.

We remark that if there are ENQUEUE requests in L,, — L,,_1 as well, they are all
linearized after the DEQUEUE requests in D because of the way that linearization points
are assigned. Given that the DEQUEUE requests in D return a consistent response, the
induction hypothesis, Lemma and the fact that ENQUEUE returns ack imply that
the consideration of these ENQUEUE requests does not violate the claims.

This concludes the proof of the induction step and thus also the proof of the lemma.

Theorem 5.8. SimQueue is a linearizable wait-free implementation of a concurrent queue.

5.6.3 Performance evaluation

We now experimentally compare the performance of SimQueue with that of state-of-the-
art concurrent queue implementations, like the lock-based implementation using two CLH
locks by Michael and Scott [50], the lock-free algorithm (MSQueue) presented in [50], and
the queue implementation using flat-combining (FCQueue) presented in [33, 34]. Similarly
to the experiment performed in [50], 107 pairs of an enqueue and a dequeue were executed
as the number of threads n increases. The average throughput of each algorithm was
measured and the results are illustrated in Figure [5.12] As in previous experiments, we

simulate a random workload after the completion of each request.

119

As shown in Figure [5.12] SimQueue significantly outperforms all other implementa-
tions for n > 4. More specifically, SimQueue is up to 3.6 times faster than the lock-free
implementation, up to 2.25 times faster than the spin-lock based implementation, and up
to 1.5 times faster than flat-combining.

Similarly to the experiment of Figure the queue implementation based on CLH
spin locks outperforms the lock-free algorithm. We remark that the queue implementa-
tion based on CLH locks performs much better than the CLH lock-based stack imple-
mentation, since in the queue implementation there are two CLH locks (one handling
enqueues and one handling dequeues) that are employed; this leads to increased par-
allelism. Flat-combining outperforms all queue implementations other than SimQueue.
However, SimQueue achieves much better performance than flat-combining for almost
any number of threads. In addition to the points discussed for the performance of P-Sim
and flat-combining in Section [5.3] this is due to the fact that SimQueue uses two instances
of P-Sim, thus achieving increased parallelism by having enqueuers and dequeuers run

concurrently.

120

CHAPTER 6

HicHLY-EFFICIENT BLOCKING

SYNCHRONIZATION ALGORITHMS

CC-Synch: An efficient synchronization algorithm for the CC model
H-Synch: A hierarchical synchronization approach based on CC-Synch
DSM-Synch: An efficient synchronization algorithm for the DSM model
Performance evaluation of CC-Synch, DSM-Synch and H-Synch

Highly-efficient blocking data structures

6.1 CC-Synch: An efficient synchronization algorithm for the CC

model

In this section, we present the CC-Synch synchronization algorithm. The time complexity
of CC-Synch is O(h+t) RMRs, where h is an upper bound of the requests that a combiner
may serve and t is the size of the shared memory data that the combiner should access
in order to serve these h requests. The amortized time complexity is O(d), where d is
the average number of RMRs required to serve a single request. The space overhead of

CC-Synch is O(n).

121

6.1.1 Algorithm description

CC-Synch (Algorithm maintains a list which contains, in addition to a dummy node
which is always the last node of the list, one node for each thread that has initiated an
active request. Each thread first announces its request by recording it in the last node of
the list (i.e. in the current dummy node) and by inserting a new node as the last node
of the list (which will comprise the new dummy node). We say that a node is assigned
to the thread that has written the request recorded in it; i.e. each thread is assigned the
previous node to the node that it inserts.

The thread that is assigned the head node of the list plays the role of the combiner,
so it is the only thread that is allowed to access the shared data. The combiner starts by
serving its own request. Other threads that have announced requests perform spinning on
the locked field of their assigned node. The combiner does not give up the lock when it
completes the execution of its request; it rather continues accessing the next elements of
the list, it serves the requests announced in these nodes, and sets the locked field of these
nodes to false to stop the threads that have been assigned these nodes from spinning.
It also changes their completed field to true to identify that their requests have been
completed.

The combiner completes its execution when it serves either all requests in the list
or a pre-specified number A of such requests. In the later case, the combiner identifies
the thread, which owns the next to the last node that the combiner helps, as the new
combiner; this is done by changing the locked field of this node to false while leaving its
completed field equal to false.

We now give a more detailed description of CC-Synch. Pointer Tail is a Swap object
which initially points to a dummy node. Whenever thread p; wants to announce a request
req, it executes a Swap operation to T'ail (line 5) in order to read the pointer to the dummy
node pointed to by Tail and update T'ail to point to its node (i.e. to the node pointed
to by p;’s local variable nezt;). Once this has been performed, p; has been assigned the
node that was previously pointed to by Ta:l, so it announces its request by recording req
in the req field of this node (line 6) and then it sets the next field of this node to point to
the new dummy node (line 7). After that, p; starts spinning on field locked of its assigned

node until this field becomes false. When p; reads false in locked, either its request has

122

00 O Uik Wi

10
11
12
13
14
15

16
17
18

19
20

struct Node {
Request req;
RetVal ret;
boolean wait;
boolean completed;
Node *next;

%

// Tail initially points to a dummy node
// with value (L, L false, false, null)
shared Node *Tail;

// The following variable is private to each thread p;; it is a pointer to a
// struct of type Node; it initially points to a struct with

// initial value (L, L true, true, null)

private Node *node;;

RetVal CC-Synch(Request req) { // Pseudocode for thread p;
Node *nextNode, *tmpNode, *tmpNodeNext;
int counter = 0;
node; — wait = true;
node; — next = null;
node; — completed = false;
nextNode = node;;

node; = Swap(T'ail, node;); // curNode is assigned to p;

node; — req = req; // p; announces its request

node; — next = nextNode;

while (node; — wait == true) // pi spins until it is unlocked
nop;

if (node; — completed==true) // if p;’s req is already applied
return node; — ret; // p; returns its return value

tmpNode = node;; // otherwise p; is the combiner

while (tmpNode — next # null AND counter < h){
counter = counter + 1;
tmpNodeNext=tmpNode—next;
apply tmpNode—req to object’s state

and store the return value to tmpNode—ret;

tmpNode—completed = true; // tmpNode’s req is applied
tmpNode—wait = false; // unlock the spinning thread
tmpNode = tmpNodeNext; // and proceed to the next node

}

tmpNode—wait = false; // unlock next node’s owner
return node; —ret;

Algorithm 17: Pseudocode for CC-Synch.

123

been executed by the combiner or p;’s record is the first in the list and therefore it owns
the lock. In the former case, p; simply returns (line 10), whereas in the later, p; becomes
the combiner.

We remark that the list could grow forever while the combiner thread p traverses it
since a thread may add a node at the end of the list more than once after its request has
been served by p. In order to prevent p from traversing a continuously growing list, an
upper bound A (lines 12 and 13) on the number of requests that p may serve is employed;
once p serves h requests, it identifies the thread that has been assigned the next node
of the list as the new combiner, and returns. Our experiments show that the choice of
h does not significantly impact the performance of the algorithm. Specifically, setting
h to a value equal to cn, where ¢ > 0 is a small constant, is a good choice in terms of

performance.

6.1.2 Time and space complexity

By the pseudocode (Algorithm , it follows that each thread returns either on line 10
or on line 20. In case that p; returns on line 10, it follows that p; executes a constant
number of RMRs. Assume now that p; returns on line 20. By the pseudocode (lines 12
and 13), p; executes at most h iterations of the while loop (lines 13-18). Lines 14-18
contribute just a constant number of RMRs, and line 14 is a local request. Thus, p;
executes O(h +t) RMRs, where ¢ is the size of the shared memory data that they should
be accessed in order to serve these h requests, where we have assumed that the cache size
of p;’s processor is greater than ¢t. Notice that the amortized time complexity is O(d),
where d is the average number of RMRs required to serve a single request. We remark
that in most cases, d equals a small constant. The space overhead of CC-Synch is O(n),

since each thread maintains a struct of type Node.

6.1.3 Required memory barriers

When implementing CC-Synch, memory barriers may need to be inserted in the code
to ensure its correct execution. In architectures that implement either the TSO (Total
Store Order) or the PO (Process Order) consistency model, we need to insert just one store

memory barrier. These memory consistency models are very common and they are used in

124

many contemporary multiprocessors, among which those that we used for our experiments.
The first model is implemented on SPARC machines of version v8 and newer [59], while
the second is implemented on AMDG64 [I] and on Intel64 [22] architectures. SPARC
processors support weaker consistency memory models as well, but they are rarely used,
and the T'SO model is the default option for the Solaris operating system [48]. Both of
these consistency models do not reorder two read operations, and the same holds for two
store operations [48]. However, a read can be reordered with an older store only in case
that the read and the store instructions access different memory locations [48]. Thus, for
the correct execution of lines 6-7 and lines 17-18, no store barrier is needed. Similarly, no
load barrier is needed for lines 9 and 10. A store memory barrier is inserted just before
the return instruction of line 21. In cases where a weaker memory model is considered,
additional memory barriers may have to be inserted; however, this is not the case in the

architectures we employed for our experiments.

6.1.4 Correctness proof

In this section, we present the correctness proof of CC-Synch. Let a be any execution.
Consider any configuration C' in «. Let Tail(C) be the value of Tail at C. For each
i, 1 < i < n, denote by node;(C) the value of variable node; at C. Denote by C~ the
configuration just preceding C' and let Cj be the initial configuration. The notation of
this proof is summarized in Table [6.1]

We start by proving the following lemma which states that at each configuration C,

node; points to a distinct node other than T'ail(C).

Lemma 6.1. For any configuration C', the following claims hold:
1. for each i, Tail(C) # node;(C);
2. for each i, j, i # j, node;(C) # node;(C').

Proof. We prove the lemma by induction on C'

Base case (C' = (p). Recall that T'ail(Cy) points to a dummy node. Also, for each
i, 1 < i < n, node;(Cy) points to a distinct node (allocated for thread p;) other than that
pointed to by T'ail(Cy). Thus, the claim holds.

125

Induction hypothesis. Let C' # Cy be any configuration in « and assume that the
claim holds at configuration C'~.

Induction step. We now prove that the claim holds for C'. Denote by s the step
taken at C~ (that results in C') and let p,; be the thread that executes s. If s is not the
execution of a Swap operation (line 5), the claim holds at C' by the induction hypothesis
since neither T'ail no any of the node; variables, 1 < i < n, change their values from C~
to C. Thus, assume that s is the execution of a Swap operation (line 5).

Then, by the pseudocode we get the following: (1) node;(C) = Tail(C~) and (2)
Tail(C) = node;(C™).

By the induction hypothesis, for each i, 1 < i < n, (1) Tail(C~) # node;(C~) and
(2) for each [, 1 <1 < n, | # i, node;(C~) # node;(C~). Since s is a step of thread p;,
node;(C) = node;(C~), for each i, 1 <7 < n, i # j.

From the above, we get that (1) Tail(C) = node;(C~) # node;(C~) = node;(C), for
each i, 1 <i < n, i # j; also, Tail(C') = node;(C~) # Tail(C~) = node;(C). Thus, for
each i, 1 <1i < n, Tail(C) # node;(C), as needed by Claim 1.

By the induction hypothesis, for each 7,1, 1 <1i,l < n, i # [and 7,] # 7, it holds that
node;(C) = node;(C~) # node,(C~) = node;(C). Moreover, node;(C) = Tail(C™) #
node;(C~) = node;(C), for each i, 1 <7 <n, i # j. This concludes the proof of Claim 2.

We next prove that as long as a thread p; is executing an instance of CC-Synch, no
other thread can write the next field of the node pointed to by node;; notice that node;
may not point to the same node during the course of the execution of an instance of

CC-Synch by p;.

Lemma 6.2. Consider any instance A of CC-Synch ezecuted by some thread p;. Let Cy
and C; be the first and the last configurations, respectively, of the execution of A. Then,
for each configuration C, Cy < C' < Cj, no thread p;, 1 < j < n, j # 1, writes into

node;(C) — next.

Proof. Assume that there is a configuration C,, between C; and C; at which a thread
pj, J # 1, changes node; — next. By the pseudocode, it follows that p; executes either

line 2 or line 7 at C,, and therefore p; writes node;(C,,) at Cy,. Lemma implies that

126

Notation \ Description

Q@ Any execution of CC-Synch

C Any configuration in «

Cy The initial configuration of «

C~ The configuration just preceding C

Tail(C) | The value of Tail at configuration C'

Di The thread which its id is equal to 4, i € {1,...,n}
node;(C) | The value of node; at configuration C'

m The number of Swap operations executed in «
S The /th Swap in execution «

A The instance of CC-Synch that executes S|

Di, The thread that executes .S;

C The configuration just after S

nd; The value returned by .5;

Table 6.1: Notation used in the proof of CC-Synch.

node;(Cy,) # node;(C,). Thus, p; does not change node; at C,,, which is a contradiction.

We next prove that the next field of variable T'ail is always equal to L.
Lemma 6.3. In any configuration C of «, it holds that Tail(C') — next = L.

Proof. Assume, by the way of contradiction, that there is a configuration at which the
next field of Tail is not equal to L. Denote by C,, the first such configuration. By the
pseudocode, it follows that the step applied at C,, must be the execution of one of the
lines 2, 5, or 7. Lemma implies that for each ¢, 1 < i < n, Tail(C,) # node;(Cy)).
Thus, s cannot be the execution of line 2 or line 7. So, it must be that s is the execution of
a Swap of line 5; let p; be the thread that executes this Swap. By the pseudocode (lines 2
and 5), T'ail(C,) = node;(C,) and p; sets the next field of node; to L by executing
line 2 of its current instance of CC-Synch. By Lemma and the pseudocode (lines 2-5),
it follows that node; — next does not change after it is set to L and until C,;. Thus,
Tail(Cy) — next = node;(C,;) — next = L, which contradicts our assumption that

Tail(Cy) — next = L. 1

Let m > 0, be the number of Swap operations that are executed in o] Denote by S,
0 <1 < 'm, the lth Swap operation executed in «, let A; be the instance of CC-Synch that
executes S, let p;, be the thread that executes A;, and denote by nd; the return value
of S;. Let C; be the configuration just after the execution of S; and let Q9 = Cy be the

initial configuration.

*We remark that m may be oo if « is an infinite execution.

127

Lemma 6.4. The following claims hold:

1. for each l, 0 <1 < m, and for each configuration C' such that C follows C; and A,

1s active at C', it holds that either nd; — next = 1 or nd; — next = nd;, at C;

2. if m s finite, at each configuration C following C,,, it holds that either nd,, —

next = L or nd,, — next = Tail(C).

Proof. Fix any [>> 1. If m is finite, [is chosen so that [< m. By the pseudocode
(line 5), it follows that nd; = T'ail(C;"). By Lemma , Tail(C;) — next = L; since it
is a Swap that is executed at C;” and nd; = T'ail(C;"), it follows that nd; — next = L at
C.

By the pseudocode (line 5), if follows that nd; = node;, (C;) = node;,(C); it also follows
that Tail(C;) = node;, (C}"). Lemma implies that no thread other than p;, can change
node;, — next between C; and C. By the pseudocode, it is only through the execution of
line 7 that p;, changes node;, — next. Thus, if p; has not executed line 7, it holds that
nd; — next = L at C' (and the claim follows). Assume now that p;, executed line 7 in
A; at some configuration C”. By the pseudocode (lines 14-18), node;, — next is set to be
equal to node;, (C;") = Tail(C)) at C".

By the pseudocode, it follows that nd;;1 = T'ail(C;). Thus, if | < m, node;, — next =
Tail(Cy) = ndiy, at C'. Lemma implies that no thread can change node;, — next
between C” and C. Thus, nd; — next = nd;+1 at C, as needed by Claim 1.

We continue to consider the case that | = m. Recall that node;,, — next is set
to be equal to Tail(Cy,) at C’'. Since no Swap operation is executed from C,, to C,

Tail(C) = Tail(Cy,). Thus, at C, node;,, — next = T'ail(C), as needed by Claim 2. 1

Consider a thread p; that executes an instance A of CC-Synch at some configuration
C'. We say that p; is the combiner at C'if there is a configuration C” in A such that: (1) C"
precedes C, and (2) it holds that node;(C") — wait = false and node;(C") — completed =
false. Let C be the first such configuration in A. We also say that p; is a combiner from
C until (and including) the execution of line 19 in A (we show below that a combiner
always returns on line 20).

We say that an instance A of CC-Synch visits a node nd, if A executes line 11 or 18 and

sets its tmpNode variable to point to nd; if A is executed by thread p;, we sometimes say

128

that p; visits nd (if A visits nd). If A visits a node nd, then there is an execution fragment
starting from the configuration at which A executes line 11 (or 18) to set tmpNode to
point to nd until the configuration that A executes line 18 for the next time (or until A
executes line 19 if this was the last time that line 18 was executed by A or if line 18 was

not executed by A).
Lemma 6.5. In each configuration C,
1. exactly one of the following conditions (i or ii) holds:

(i) Tail(C) points to a node nd such that nd — completed = false and nd — wait =
false, there is no combiner at C' and there is no thread poised to execute any of

lines 11-19.

(ii) Tail(C) points to a node nd such that nd — completed = false and nd —
wait = true, there is exactly one combiner at C' and only the combiner is

poised to execute any of lines 11-19.
2. if there is a combiner p; at C, the following claims hold:

(i) p; is poised to execute one of the lines 6-19 at C' and it is not poised to execute

line 10 at C;
(ii) no thread other than p; executes lines 11-19 at C;

(iii) suppose that p; is poised to execute one of the lines 11-19 at C, let k be the
number of nodes that have been visited by p; until C, denote by nd), 1 <1 <k,
the lth such node, and let 5 be the execution fragment at which p; is visiting nd;;
then, for eachl, 1 <1 <k and for each configuration C" in B, if nd) # Tail(C")
there is one active thread p; such that node,(C") = nd;, and either p; = p; or p,

executes one of the lines 6-10 at C';

(iv) if C is the configuration just after p; has executed line 19 of the pseudocode and
k is the number of nodes that have been visited by p; until C', then the following
hold: if nd), # Tail(C™), then py is the unique combiner in the system at C,

otherwise there is no combiner in the system at C.

129

3. if lines 16-17 have been executed m times in total until C', then for eachl, 1 <1 < m,
lines 15-17 for the lth time were executed by a combiner that had its tmpNode

variable equal to nd;.

Proof. We prove the claim by induction on C.

Base Case (C' = (Cj). No node is active at C so there is no combiner at Cy. Moreover,
Tail(Cy) points to a dummy node which has its completed and wait fields equal to false,
since no Swap operation has been executed at Cjy. Thus, Claim 1 holds. Claim 2 trivially
holds, since there is no combiner ar Cy. Furthermore, Claim 3 holds, since no thread has
executed lines 15-17.

Induction Hypothesis. Let C' be any reachable configuration and assume that the
claim holds in all configurations that precede C'.

Induction Step. We prove that the claim holds at C'. The induction step is proved by
a case analysis on the step s that is applied from C~ to get C. Let p; be the thread that

executes s.

1. s is the execution of any of the lines 1, 2 and 4.

In case s is the execution of line 1, Lemma [6.1] implies that node;(C~) # Tail(C™).
Thus, Claim 1.i holds by induction hypothesis. The rest of the claims also hold by
the induction hypothesis.

In case s is the execution of either line 2 or line 4, the claims hold by the induction

hypothesis.

2. s is the execution of line 3.

Lemma [6.1]implies that node;(C) # Tail(C). Thus, Claim 1 holds by the induction
hypothesis. To prove Claim 2, it suffices to argue that p; does not become the
combiner by executing s. Let C'; be the configuration at which p; executes line 1 of
the pseudocode. Assume by the way of contradiction that node;(C) — wait = false
in some configuration C,, between C; and C. By the pseudocode (lines 1 and 2),
node; does not change value between Cy and C' by p;. Since node;(C) — wait =
false, there must be a thread that writes node; — wait = false between C; and C.

Let p,, be a thread that does so. By the pseudocode, it follows that p,, must execute

130

either line 17 or line 19 at C,,. Since p,, is active at C,,, Claim 1.i does not hold
at Cy, and by the induction hypothesis (for C,,) it follows that Claim 1.ii must hold
at C,. Moreover, the induction hypothesis (Claim 2.ii) implies that p,, must be
the combiner at C,,. However then, the induction hypothesis (Claim 2.iii) implies
that p; should be a thread executing lines 6-10 at C,,. This is a contradiction since
p; executes line 3 at C,,. We conclude that p; is not a combiner at C, which is a

contradiction.

. s is the execution of line 5.

By the pseudocode (line 5), it follows that node;(C) = T'ail(C~) and Tail(C) =
node;(C~). Let C; be the configuration at which p; executes line 1. By the pseu-
docode, it follows that the value of the node; variable does not change from the
configuration C until C~ by thread p;. We start by proving that no thread other
than p; can change the fields node; — wait and node; — completed from C; to C~.
Assume, by the way of contradiction, that there is some configuration C,, following
(1 and preceding C'~ at which some thread p,, # p; changes one of the next or
completed fields of the node pointed to by node;. Lemma and the pseudocode
imply that this may happen only if p,, executes any of lines 16, 17, or 19 at C,
(with its tmpNode variable equal to node;); since p,, is active at C,, Claim 1.i does
not hold at Cy,. Thus, by the induction hypothesis (for C,) it follows that Claim
1.ii must hold at C,. Thus, there is a combiner at C',. The induction hypothesis
(Claim 2.ii) implies that p,, must be the combiner at C,,. However then, the induc-
tion hypothesis (Claim 2.iii) implies that p; should be a thread executing lines 6-10
at C. This is a contradiction since p; is poised to execute line 5 at C\,. Thus, no
thread other than p; writes node;(C~) — wait and node;j(C~) — completed from

C1 to C7, so node;(C~) — wait = true and node;(C~) — completed = false.

We now prove that Claim 1 holds. By the induction hypothesis (Claim 1), one
of the following conditions hold at C~: (Claim 1.i) T'ail(C~) points to a node nd
such that nd — completed = false and nd — wait = false, there is no combiner at
C~, and no active thread is executing any of the lines 6-19 at C~, or (Claim 1.ii)
Tail(C~) points to a node nd such that nd — completed = false and nd — wait =

true, and there is exactly one combiner at C~.

131

e Assume first that (1.i) is true at C~. Since T'ail(C~) — completed = false,
Tail(C~) — wait = false, and node;(C') = Tail(C™), it follows that p; is a
combiner at C. Recall that there was no combiner at C~, so p; is the only
combiner in the system at C. Moreover, p; is poised to execute line 6 at
C' (as needed by 2.i). Recall that no active thread is executing any of the
lines 11-19 at C~, so no thread other than the combiner is executing these
lines at C' (as needed by 2.i). Recall that node;(C~) — wait = true and
node;(C~) — completed = false. Since Tail(C) = node;(C~), it follows that
Tail(C) — wait = true and Tail(C) — completed = false (as needed by 1).

e Assume now that condition (1.ii) is true at C~. Since T'ail(C~) points to
a node nd such that nd — completed = false and nd — wait = true, and
node;(C) = Tail(C™), it follows that p; is not a combiner at C; notice that p;
could not be a combiner at C~ since by induction hypothesis (Claim 2.i), the
combiner is poised to execute one of the lines 6- 18 at C~ (whereas p; is poised
to execute line 5 at C7).

Recall that node;(C~) — wait = true and node;(C~) — completed = false.
Since Tail(C) = node;(C~), it follows that Tail(C) — wait = true and

Tail(C) — completed = false. This completes the proof of Claim 1.
The rest of the claims in each case, hold by the induction hypothesis.

4. If s is the execution of any of the lines 6-8, the claim holds trivially by induction

hypothesis and Lemma [6.1]

5. If s is the execution of line 9. We distinguish the following two cases.

e Assume first that p; is the combiner at C'~. It suffices to argue that p; is not
poised to execute line 10 at C' (as needed by Claim 2.i). By definition, there
is some configuration C” that precedes C' (and occurs during the course of the
execution of the current instance of CC-Synch by p;) at which node;(C") —
wait = false and node;(C") — completed = false. By the pseudocode, the
wait or completed field of node; can change only if some thread p,, executes
one of the lines 1, 3, 16, 17, or 19 after C”. Lemmal6.1]implies that the wait or

completed field of node; cannot change by threads other than p; that execute

132

line 1 or line 3. Moreover, the induction hypothesis (Claims 1 and 2.ii) implies
that no thread other than p; can change the wait or completed fields of node;
by executing lines 16, 17, or 19. Thus, no thread other than p; can change
these fields of node; from C” to C~. It follows that p; evaluates the condition
of line 9 to false and therefore, it is not poised to execute line 10 at C' (as

needed by 2.1).

e Assume now that p; is not a combiner at C~. Let C5 be the configuration at
which p; executed its Swap instruction of line 5. Obviously, C5 precedes C'~.
This and the fact that p; is not a combiner at C'~ implies that p; was not a
combiner at configuration Cs. Since node;(Cs) = T'ail(Cy), it follows that one
of the wait, completed fields pointed to by Tail(Cy) was equal to true. Since
C5 precedes C, the induction hypothesis (Claim 1) implies that T'ail(Cy) —
wait = true and Tail(Cy) — completed = false. Thus, node;(C5) — wait =
true. Since p; executes line 9 at C~, it must be that there is some configuration
Cy preceding C'~ at which p; evaluates the condition of the while statement
of line 8 to true. It follows that there must be a configuration between C5 and
(s, at which node; — wait becomes equal to false. By the pseudocode and
by Lemma [6.1] it follows that the only way for this to happen, is if a thread
executes line 17 just before that configuration (with its tmpNode variable equal
to node;). By the induction hypothesis (Claims 1 and 2.ii), this thread (let it be
Pm # pj) should be a combiner. By the pseudocode, it follows that p,, executes
line 16 just before executing line 17; let C” be the configuration at which this
occurs. The execution of line 16 by p,, results in changing node; — completed
to true. By the induction hypothesis (Claim 2.ii), p; should execute one of
the lines 6-10 at C"”. By the pseudocode, it follows that p; does not change
node; — completed to false from C” to C~. Also, Lemma imply that no
thread other than p; may change node; — completed to false between C" and
C~ by executing line 3. Thus, node; — completed = true at C'~. Therefore,
p; evaluates the condition of the if statement of line 9 to true and is poised

to execute line 10 (and return) at its next step.

The rest of the claims in each case, hold by the induction hypothesis.

133

6. s is the execution of line 11.

By the induction hypothesis (Claims 1 and 2), it follows that it is only the combiner
p; that can be poised to execute line 11 at C'~; thus, p; = p; and p; has not executed
any iteration of the while loop (lines 12-18) yet. By the pseudocode (line 11) it
follows that the node assigned to tmpNode is equal to node;. Thus, Claim 2.iii
holds. The rest of the claims hold by the induction hypothesis.

7. s is the execution of one of the lines 12-15. In this case the claim holds by induction

hypothesis.

8. s is the execution of line 16. It is enough to prove that Claim 3 holds at C'. Suppose
that this is the kth time, k£ > 1, that p; executes line 16 during A; and assume that
line 16 has been executed m times in total until C'. By the induction hypothesis
(Claim 2.iii) there is a thread py such that node,(C~) = ndj, and either p, = p; or

pr is executing one of the lines 6-10 at C~.

e Assume first that £ = 1. Let C5 be the configuration resulted when p; executes

line 5. By the induction hypothesis (Claim 2.i), p; cannot be a combiner before

Cs.

— Assume first that p; is not a combiner at Cs.
Since p; is active at all configurations between C5 and C', by the induction
hypothesis (Claim 1), it follows that there is always some combiner in
the system between C; and C. Assume that p; became the combiner
at some configuration C” preceding C', and let p; be the thread that was
the combiner at C'7; let A; be the instance of CC-Synch executed by
p; at C'~. Since p; becomes the combiner after p;, and p; is executing
line 16 for the last time at C, it follows that the (m — 1)st time that
lines 15-17 were executed was the last time that p; executed those lines
during A;. Suppose that p; visits k', k" > 1 nodes. Let nd}, be the last
node visited by A;. The induction hypothesis (Claim 2.iv) implies that
ndj, = node;(C") (since p; is the unique combiner in the system right
after p;). The pseudocode (lines 11-14) imply that nd} = node;(C"™) #

node;(C'~); thus, ¥ > 1. By the pseudocode, p; becomes a combiner

134

when p; executes line 19 (i.e. at configuration C’). By the pseudocode,
node;(C") = nd}, = nd),_; — next. We distinguish the following two
cases. In case that py_; = p;, the induction hypothesis (Claim 3), implies
that nd),_, = nd,,_;. Pseudocode (lines 14, 18 and 19) implies that nd}, =
ndj,_, — next = nd,,—; — next and ndj, = node;(C) # L, it follows that
nd,—1 — next # L. Thus, Lemma implies that node;(C) = nd] =
nd,—1 — next = nd,,, as needed (by Claim 3). In case that pp_; #
pj, by the induction hypothesis (Claims 2.iii), there is some thread pj_y
such that at each configuration C' in Sy _1, pw_1 was executing one of the
lines 6-10 at C' and nodey_1(C) = ndy,_,; specifically, p—1 was active at
configuration C'4 at which line 14 was executed by p; during S —1. Also, by
the induction hypothesis (Claim 3), it follows that nd}, _, = nd,,—1. Since
ndy, = nd;,_; = next = nd,,—1 — next and nd;, = node; # L, it follows
that nd,,_1 — next # 1. Thus, Lemma implies that node;(C) =
nd, = nd,,—1 — next = nd,,, as needed (by Claim 3).

Assume now that p; is a combiner at Cs. Thus, node;(C5) — wait =

false and node;(Cs) — completed = false. Since node;(Cs) = T'ail(Cy), it

—

follows that T'ail(C5) — wait = false and Tail(Cy) — completed = false.
By the induction hypothesis (Claim 1), it follows that there is no combiner
at (5 and no active thread is executing any of the lines 11-19 at C5". Let
C’ be the last configuration preceding C; at which there was a combiner
pe in the system; let A, be the instance of CC-Synch executed by p. at C".
Notice that p. has executed line 19 in A. just before configuration C’. By
the induction hypothesis (Claim 2.iv), it follows that there is no combiner
in the system at C’. By definition of p., there is no combiner in the
system between C' and C5 . We first prove that there no Swap operation
is executed between C” and Cy . Assume by the way of contradiction that
at least one Swap is executed between C” and C5 . Let s be the first such
Swap and let C” be the configuration just after the execution of s. Assume
that s is executed by some thread ps. Since there is no combiner between
C" and Cj, induction hypothesis (Claim 1.i) implies that Tail(C'™) —
completed=false and Tail(C'~) — wait=false. The pseudocode (line 5)

135

and the definition of combiner implies that nodes(C") — completed=false
and nodes(C") — wait=false. Therefore, ps is a combiner at C”, which is a
contradiction. Thus, the Swap instruction executed by p; at C; is the first
Swap instruction executed between C” and C5 . Assume that p. visited &’
nodes in A.; and denote by nd},_, and nd,, the last two nodes visited by
pe in A.. Induction hypothesis (Claim 3) implies that nd}, _; = nd,,—;.
It is enough to prove that ndj, = Tail(C) = nd; = nd],. Induction
hypothesis (Claim 1.i) implies that Tail(C'~) — completed =false and
Tail(C'™) — wait =true. Induction hypothesis (Claim 1.ii) also implies
that Tail(C") — completed =false and Tail(C") — wait =false. Since p,
executes line 19 at node ndj, at C’, it follows that nd), = T'ail(C"). Since
there is no Swap executed between C’ and C5 other than that of p; at Cs, it
follows that Tail(C") = Tail(C5). Lemmal6.1]implies that Tail(C5) = nd}.
Thus, nd;, = Tail(Cs) = nd} = nd,,, as needed.

e Assume now that £ > 1. By the pseudocode, nd),_; — next (in A; instance)
cannot be equal to L since otherwise the kth (and the (k — 1)th) iteration
of the while loop would not be executed by p;. By the induction hypothesis
(Claims 2.iii), either py_; = p; or there is some thread py_; # p; such that
at each configuration C’ in 5,_1, pr—1 was executing one of the lines 6-10 at
C". By the induction hypothesis (Claim 3), it follows that nd),_, = nd,,—1. By
the pseudocode, it follows that nd), = nd,_, — next = nd,,_1 — next. Since
ndy, # L, it follows that nd,,_; — next # L. Thus, Lemma implies that

ndj, = nd,,—1 — next = nd,,, as needed (by Claim 3).

9. s is the execution of line 17.

Assume that line 17 is executed for the kth time, £ > 1. Recall that it is only the
combiner that can be poised to execute line 16 at C~. By the induction hypothesis
(Claim 2.iii) there is a thread py such that node,(C~) = ndj,, and either p, = p; or
pr is executing one of the lines 6-10 at C'~. Lemma implies that Tail(C™) #
node(C~). Since Tail(C) = Tail(C~) and nodeg(C) = node(C~), it follows that
Tail(C) # noder(C™). Since s changes either the wait field of nodey(C~), Claim 1
holds by induction hypothesis. The rest of the claims hold by induction hypothesis.

136

10. s is the execution of line 18.

It is enough to argue that Claim 2.iii holds after the execution of s. The rest
of claims hold by induction hypothesis. Assume that the execution of s by p;
identifies the kth node visited by p;, k > 1 (notice that the first node visited by p;
is identified by executing line 11 and not line 18; thus, & > 1). If nd), = Tail(C),
Claim 2.ii holds (by induction hypothesis for each | < k). Thus, assume that
ndj, # Tail(C). Denote by S; the Swap operation executed by p; in req and denote
by Sy the Swap operation executed by pi. We first prove that S; precedes Sg.
By the pseudocode, nd)_; — next = nd) cannot be equal to L since otherwise
the (k — 1)th iteration of the while, where the kth node to be visited by p; is
identified (this occurs when p; executes line 18 of that iteration), would not be
executed. By the induction hypothesis (Claim 2.iii), either py_; = p; or there is
some thread p,_; such that at each configuration C” in By_1, pr_1 was executing
one of the lines 6-10 at C’ and nodey_1(C") = ndi_1. In case that py_; = p;, the
pseudocode implies that nd; — next = nd). Lemma implies that the Swap
operation S executed by p; precedes the execution of the Swap operation S; by pg.
In case that py_1 # p;, (Claim 2.iii) implies that p,_; was active at configuration
C14 at which line 14 was executed by p; during Sx_1. The pseudocode implies that
nd,_, — next = nodey_1(C14) — next. Since we have assumed that nd), # Tail(C),
it follows that node;,_1(C14) — next # L. Thus, Lemma [6.4] implies that there is a
thread pj, that has executed line 5 before C4 such that node(C') = nd),; moreover,
Lemma implies that the Swap operation Sy_; executed by py_; precedes the
execution of the Swap operation Sy by px. By the pseudocode, p; executes lines 15-
17 for itself during the first iteration of the while loop of lines 12-18, i.e. before
executing it for py_1. Since p; executes lines 15-17 later on for p;_;, the induction
hypothesis (Claims 2.iii and 3) implies that S; has occurred before Si_;. It follows
that S; has occurred before S;.

We continue to prove that py is active at C~. Assume, by the way of contradiction,
that the instance Ay of CC-Synch executed by py is not active at C~. Recall that
pr executed Sy after S;. Thus, p; was active while executing one of the lines 6-18

when S, was executed; let C) be the configuration just after the execution of Sj.

137

11.

Apparently, Cy precedes C. Since p; is active between C; and C, by the induction
hypothesis (Claim 1), it follows that there is always some combiner in the system
in all configurations between C (which results by applying S1) and C. Thus, there
is some combiner in all configurations between C, and C. By induction hypothesis
(Claim 1.ii), Tail(C,) — wait = true and T'ail(C,) — completed = false. By the
pseudocode, nodey(Cy) = Tail(C,), so node,(Cy) — completed = false. By the
pseudocode, the completed field of node;, must be equal to true when pj terminates.
By the pseudocode, this can happen only if there is some thread p;, that executes
lines 15-17 with tmpNode = nodey at some configuration before C'. Suppose that
lines 15-17 have been executed h’' times in total until the configuration that py
executed line 17 with tmpNode = nodey. Since S; is performed before Sy, the
induction hypothesis (Claim 3) implies that lines 17-19 have been executed for p;
before being executed for p, (assume that this has happened the h”th time that
lines 15-17 were executed). By the induction hypothesis (Claim 3), node; = ndy.
However, by the pseudocode, it follows that lines 15-17 are executed for node; by
p; during the execution of the first iteration of the while loop of lines 12-18; let this
be the Ath time that lines 15-17 are executed. Since p; has not visited node;, before

C, it follows that h > h”, which contradicts the induction hypothesis (Claim 3).

Thus, py is still active at C'~. By the induction hypothesis (Claim 2.ii), no thread
other than the combiner p; executes lines 11-20 at C~. Thus, p; executes one of
the lines 6-10 at C'~. Since it is thread p; that executes s, p, executes one of the

lines 6-10 at C'. This completes the proof of Claim 2.iii.

s is the execution of line 19. Recall that it is only the combiner that can be poised

to execute this line at C'~. Assume that p; visits k nodes during the execution of

A;.

o If nd;, # Tail(C™), the induction hypothesis (Claim 2.iii) implies that nd) =
nodey(C~) for some thread py that is poised to execute one of the lines 6-10
at C~. By the induction hypothesis (Claim 3), nodey is visited for the first
time since Ay was initialized. This and Lemma imply that node(C~) —
completed = false. Since s changes nodey(C~) — wait to false it follows that

pr is a combiner at C. Since p; was the unique combiner in the system at C'~

138

and by definition, it is not a combiner anymore after the execution of line 19,
it follows that the unique combiner in the system at C' is pg, as needed by
Claim 2.iv. Moreover, Lemma implies that T'ail(C~) # nodex(C™), so
Tail(C) = Tail(C™). Since p; is a combiner at C~, the induction hypothesis
(Claim 1) implies that T'ail(C~) — wait = true and T'ail(C~) — completed =
false. Thus, T'ail(C) — wait = true and Tail(C') — completed = false. So,

Claim 1 follows. The rest of claims hold by induction hypothesis.

e We first prove that T'ail(C') — completed = false and T'ail(C) — completed =
false. Assume now that nd), = T'ail(C~). By the induction hypothesis (Claim
3), nodey is visited for the first time since Ay was initialized. This and
Lemma imply that nodey(C~) — completed = Tail(C~) — completed =
false. The pseudocode (line 19) implies that tmpNode, — wait = nd), —
wait = Tail(C™) — wait = false at C'. We now prove that no thread is poised
to execute any of lines 11-19 at C. Induction hypothesis (Claim 1.i), there is
no thread other than p; poised to execute any of lines 11-19 at C'~. Since p;
executes line 19 just before C', it follows that no thread is poised to execute
any of lines 11-19 at C'. We finally prove that there is no combiner at C'.
Assume, by the way of contradiction that there is a combiner p. at C' that ex-
ecutes some instance A, of CC-Synch. By combiner’s definition, it follows that
there is a configuration C” preceding C' such that node.(C’') — wait =false and
node.(C") — completed =false. Lemma [6.1| implies that node.(C) # Tail(C).
It follows that C’ precedes C~. Thus, p. is also a combiner at C~. Induction
hypothesis (Claim 1.ii) implies that the only combiner at C'~ is p;, which is a

contradiction. So, Claim 1 follows.

The rest of the claims in each case hold by the induction hypothesis. 1

Let nd; be the node of the list that is assigned to p; for req;. Thread p; completes
the execution of CC-Synch for reg; either on line 10 or on line 20. Assume first, that p;
returns on line 10. Lemma (Claim 2.iii) implies that a combiner thread p; has served
req; before the execution of line 10 by p;. Therefore, p; has executed line 15 for nd; at
some iteration [> 1 of its while loop (lines 12-18). Request reg; is linearized just before

the execution of this instance of line 15 by p;. Assume now that p; returns on line 20.

139

Lemma (Claim 2.iii) implies that p; serves its request on its own when it executes
line 15 at the first iteration of its while loop (lines 12-18). In this case, reg; is linearized
just before the execution of line 15 of the first iteration of p;,”’As while loop. Obviously,
in both cases the linearization point of reg; is within its execution interval. Consistency
is immediately implied by Claims 2.iii and 3 of Lemma Thus, the following theorem
holds.

Theorem 6.1. CC-Synch is a linearizable synchronization algorithm.

6.2 H-Synch: A hierarchical synchronization algorithm based on

CC-Synch

We now discuss how we can modify CC-Synch to get an hierarchical approach of it, called
H-Synch. We consider a system of m processors which are partitioned into C' clusters;
each cluster consists of m/C processors. In such a system, communication among the
processors of the same cluster is performed much faster than among processors residing
in different clusters. A characteristic example of such a system is the Niagara 2 machine,
in which we have executed some of the experiments in Section

In H-Synch, the threads use C' instances of CC-Synch one per cluster (Algorithm .
Each instance of CC-Synch is used, as described in Section [6.1], to identify at each point
in time, the combiner thread of each cluster and the list of announced requests of the
threads that are executed at processors of the cluster. In addition to the C' instances of
CC-Synch, a queue lock L [23] 47] is used; L is accessed only by the combiner threads
of the clusters. The CLH lock [23, 47] is a good choice for implementing L in systems
where the intra-cluster communication is achieved with a cache coherent (CC) protocol,
whereas the MCS lock [49] is expected to be a better choice in other systems.

Whenever a thread ¢ has a newly activated request, it calls H-Synch. If ¢ does not
become the combiner of its cluster, it waits until its request has been served by a com-
biner of the cluster. Otherwise, before ¢ starts serving requests, it executes an acquire
operation on L (line 13) in order to ensure that it is the only combiner (among those

of the different clusters) that has access to the shared data. A combiner ¢ serves only

140

requests initiated by threads that are running on its local cluster. By doing so, intra-
cluster communication is kept low. After finishing its work as a combiner, ¢ releases L
(line 21), so that a combiner of some other cluster can acquire L and have access to the
shared data. In cases that the communication between clusters is performed through a
more complex interconnection network (for instance, one that has an hierarchical struc-
ture), H-Synch can be easily modified to exploit the characteristics of the communication

hierarchy by using more levels of queue locks (one queue lock per communication level).

// Assume that thread p; runs at some processor of cluster ¢;
shared Node *Tail[1..C] = { (L, L,false, false,null) };

// Lis a CLH [23, [47] or MCS [49] queue lock
shared QueueLock L;

// The following variable is private to each thread p;; it is a pointer to a
// struct of type Node with initial value (L, L false, false, null)
private Node *node; = {(null, L, | false, false)};

RetVal H-Synch(Request req) { / /Pseudocode for thread p;
Node *nd, *cur, *next_node, *ndnext;
int counter = 0;

1 next_node = node;; // pi uses a (possibly recycled) node
2 next_node — next = ; // pi initializes the fields of this node
3 next_node — locked = true;
4 next_node — completed = false;
5 cur = Swap(Tail[¢;], next_node);
6 cur — req = req; // pi announces its request
7 cur — next = next_node;
8 node; = cur; // reuse this node in future request
9 while (cur — locked == true) // pi spins until its request

nop; // is applied or until is unlocked
10 if (cur — completed == true) // if p;’s request is already applied
11 return cur — ret; // pi returns its return value
12 nd = cur;
13 lock(L); // acquire the lock
14 while (nd — next # null AND counter < h) {
15 counter = counter + 1;
16 ndnext = nd—next;
17 apply nd—req to object’s state and store the return value to nd—ret;
18 nd — completed = true // nd’s request is applied
19 nd — locked = false; // pi unlocks the spinning thread
20 nd = ndnext; // and proceeds to the next node

}

21 unlock(L); // release the lock
22 nd — locked = false; // unlocks the next node’s owner
23 return cur — ret; // thread returns

Algorithm 18: Pseudocode for H-Synch.

141

H-Synch ensures that requests initiated by threads of the same cluster are served in FIFO
order and that the combiners acquire the global lock in FIFO order but, apparently, it
does not globally ensure the FIFO property.

6.3 DSM-Synch: An efficient synchronization algorithm for the
DSM model

In this section, we present DSM-Synch (Algorithm which performs O(hd) RMRs in
the DSM model, where h is an upper bound on the number of requests that a combiner
may serve and d is the maximum number of RMRs required to serve a single request. The

space overhead of DSM-Synch is O(n).

6.3.1 Algorithm description

DSM-Synch maintains a list of announced requests which is updated in a manner similar
to that of CC-Synch (and which also implements the lock). In contrast to CC-Synch, the
list is initially empty and its last node is a valid (not dummy) node. Each thread p
maintains two list nodes; p announces each request it wants to perform in one of these
nodes, it inserts this node at the end of the list by using Swap, and if its record is not the
first in the list, it performs spinning on the wait field of its node. If p’s node is the first
in the list, p becomes the combiner and serves up to h requests of the list in FIFO order.
A thread that appends a node in the list updates the next field of the previous node to
point to the inserted node. The combiner serves requests recorded in list nodes up to the
second last element of the list (see condition of the if statement of line 19). It does so
to avoid arriving to a node where its next field has not yet been updated although this
node is not the last node in the list any more. Thus, a combiner will execute lines 22-25
only if its node is the only node in the list. In this way, a combiner performs a bounded
number of RMRs (whereas spinning on the last node of the list on line 25 would cause an
unbounded number of RMRs).

We explain now why it is not enough to have each thread p; using just one node. Let’s

assume that p; has a single node that it reuses each time it initiates a new request. Let

142

g be a combiner thread that serves p;’s request. Assume that there is a thread p; whose
assigned node is the next node of p;’s node in the list. Assume also that there is no other
active request and thus p;’s node is the last node in the list. After serving p;’s request, g
sees that less than two nodes are left in the list and stops the execution of its while loop
(lines 19-20). Suppose that ¢ stalls before executing line 26 of the pseudocode (pointer
nd points to the node assigned to p;). Assume now that p; wants to immediately apply
a new operation. Thus, p; initializes its node again and inserts it at the end of the list
by executing a Swap instruction on 7T'ail. Then, g continues by executing line 26 of the

pseudocode and makes an invalid memory reference.

6.3.2 Time and Space complexity

DSM-Synch performs O(hd) RMRs when executing the while loop of line 14. The only
extra piece of code that may cause DSM-Synch to perform more RMRs is that consisting
of lines 22-25. However, as explained above a thread p executes these code lines only
when the node it inserts is the single node of the list. So, if these lines are executed, p’s

local variable called nd is equal to node;, and therefore spinning on p — next on line 25

is local. The space overhead of DSM-Synch is O(n).

6.3.3 Required memory barriers

Similarly to CC-Synch, memory barriers may need to be inserted in the code of DSM-Synch
to ensure its correct execution in architectures that implement either the TSO (Total Store
Order) or the PO (Process Order) consistency model. Remind that both of TSO an PO
consistency models do not reorder two read operations, and the same holds for two store
operations [48]. Remind also that a read can be reordered with an older store only in case
that the read and the store instructions access different memory locations [48]. Thus, for
the correct execution of lines 3-6 and lines 17-18, no store barrier is needed. Similarly, no
load barrier is needed for lines 9 and 10. A store memory barrier is inserted just before

the return instruction of line 12.

143

= © 00 O Uik Wi

12

13
14
15
16
17
18
19
20
21

22
23
24
25

26
27

struct LockNode {
Request req;
RetVal ret;
boolean wait, completed;
LockNode *next;

b
shared LockNode *Tail = null;

// The following variables are private to each thread p;
private LockNode MyNodes;[0..1] = {(L, L, false, false, null }};

private int toggle; = 0;

RetVal DSM-Synch(Request req) {
LockNode *nd, *node;, *MyPred;
int counter = 0;

toggle; = 1 - toggle;;

node;= MyNodes;[toggle;];

node;—wait = true;

node;—completed = false;

node;—next = null;

node;—req = req;

MyPred = Swap(Tail, node;);

if (MyPred # null) {
MyPred—next = node;;

while(node; —wait == true)
nop;
if(node;—completed == true)

return node;—ret;
}
nd = node;;
while(true) {
counter++;
apply nd—req and store the re
nd—completed = true;
nd—wait = false;

// pseudocode for thread p;

// pi toggles its toggle variable
// pi chooses to use one of its nodes
// p; initializes the node

// pi announces its request

// pi inserts node; in the list

// if a node already exists in the list
// fix next of previous node

// perform spinning

// if combiner has applied p;’s req

// pi is the combiner

turn value to nd—ret;
// announce that nd— req is applied
// unlock the spinning thread

if (nd—next == null or nd—next—next == null or counter > h)

break;
nd = nd—next;

}

if (nd—next == null) {
if(CAS(Tail, nd, null)==true)
return node; —ret;
while (nd—next == null)

nop;
}

nd—next—wait = false;
return node;—ret;

Algorithm 19

// pi helped h threads or fewer than 2 nodes are in list
// proceed to the next node

// pi’s req is the single record in list
// try to set Tail to null

// some thread is appending a node
// wait until it finishes its operation

// A new combiner is identified

: Pseudocode for DSM-Synch.

144

Notation \ Description

e Any execution of DSM-Synch

C Any configuration in «

Cy The initial configuration of «

C~ The configuration just preceding C

Tail(C) | The value of base object Tail at configuration C
Di The thread which its id is equal to 4, i € {1,...,n}
node;(C) | The value of node; at configuration C'

m The number of Swap operations executed in «

S The /th Swap in execution «

A The instance of DSM-Synch that executes 5;

Di, The thread that executes S; operation

C The configuration just after S

nd; The value returned by .5;

Table 6.2: Notation used in the proof of DSM-Synch.

6.3.4 Correctness proof

In this section, we present the correctness proof of DSM-Synch. Let a be any execution.
Consider any configuration C' in «. Let Tail(C) be the value of Tail at C. For each
i, 1 < i < n, denote by node;(C) the value of variable node; at C. Denote by C~ the
configuration just preceding C' and let Cj be the initial configuration. The notation of
this proof is summarized in Table [6.2]

Let m > 0, be the number of Swap operations that are executed in oﬂ Denote by 5,
0 <1 < m, the lth Swap operation executed in «, let A; be the instance of DSM-Synch
that executes S, let p;, be the thread that executes A;, and denote by nd; the return value
of S;. Let C; be the configuration just after the execution of S; and let Qg = Cy be the
initial configuration.

Consider a thread p; that executes an instance A of DSM-Synch at some configuration
C'. In case that the Swap instruction of line 7 in A returns L, denote by C the first con-
figuration just after the execution of line 7; in case that there is at least one configuration
C" in A such that either node;(C") — wait = false and node;(C") — completed = false,
denote by C} the first of these configurations. We say that p; is a combiner at C if C is
well defined and C' follows C; p; is a combiner from C until it executes either line 24 or
line 27 in A (we show below that a combiner always returns either on line 24 or line 27).

We say that an instance A of DSM-Synch visits a node nd, if A executes line 13
or 21 and sets its tmpNode variable to point to nd; if A is executed by thread p;, we

tWe remark that m may be oo if a is an infinite execution.

145

sometimes say that p; visits nd (if A visits nd). If A visits a node nd, then there is an
execution fragment starting from the configuration at which A executes line 13 (or 21) to
set tmpNode to point to nd until the configuration that A executes line 21 for the next
time (or until A executes line 26 if this was the last time that line 21 was executed by A
or if line 21 was not executed by A).

The following observation is an immediate consequence of the pseudocode (lines 7,8

and 9).

Observation 6.1. Let A; be any instance of CC-Synch executed by some thread p; and
Si, 1> 1 be the Swap instruction executed by A;. Let node; be the value written by A; on
some base object node, — next while executing line 9 of the pseudocode. S;_; is executed

by some thread pj that writes node, to T'ail.
The pseudocode (lines 1, 2 and 7) implies the following observation.

Observation 6.2. Let A; and A} be two consecutive instances executed by some thread p;;
let node; and node’; be the values written while line 7 is executed by A; and A’ respectively.

It holds that node; # node;.
Lemma 6.6. In each configuration C,
1. exactly one of the following conditions (i or i) holds:

(i) Tail(C) = L, there is no combiner at C' and there is no thread poised to execute

any of lines 13-23 and 25-26.
(ii) Tail(C) # L and there is exactly one combiner at C.
2. if there is a combiner p; at C, the following claims hold:
(i) pi is poised to execute one of the lines 8-23 or one of the lines 25-26 at C' and
it is not poised to execute line 12 at C'.

(ii) No thread other than p; executes lines 13-23 and lines 25-26 at C.

(iii) Suppose that p; is poised to execute one of the lines 13-26 at C, let k be the
number of nodes that have been visited by p; until C, denote by nd;, 1 <1 <k,
the lth such node, and let 3 be the execution fragment at which p; is visiting nd;;

then, for eachl, 1 <1 <k and for each configuration C" in B, if nd) # Tail(C")

146

there is one active thread p; such that node,(C") = nd;, and either p; = p; or p,

executes one of the lines 8-12.

(iv) assume that C is the configuration just after p; has executed line 26 of the
pseudocode; if nd), # Tail(C™), then py is the unique combiner in the system

at C otherwise there is no combiner in the system at C.

3. if lines 17-18 have been executed m times in total until C', then for eachl, 1 <1 < m,
lines 16-18 for the lth time were executed by a combiner that had its tmpNode

variable equal to nd;.

4. let p; be the thread that executes the S,,,m > 0 instruction; for each l, 0 <1 < m,
and for each configuration C' such that C follows C; and A; is active at C, it holds
that either nd; — next = 1L or nd; — next = nd;1 at C; if m s finite, at each
configuration C' following C,,, it holds that either nd,, — next = L or nd,, —

next = Tail(C).

Proof. We prove the claim by induction on C.

Base Case (C' = (). No thread is active at Cj so there is no combiner at Cy. Moreover,
Tail = 1 at Cy. Thus, the Claim 1 holds. Claim 2 obviously holds, since there is not any
combiner ar Cy. Furthermore, Claim 3 holds, since no thread has executed lines 16-18.
Induction Hypothesis. Let C' be any reachable configuration and assume that the
claim holds in all configurations that precede C.

Induction Step. We prove that the claim holds for C'. This is proved by a case analysis
on the step s that is applied from C~ to get C, let p; be the thread that executes s.

1. In case that s is the execution of any of s is the execution any of lines 1-3 and 5-6,

the claims hold by the induction hypothesis.

2. s is the execution of line 4.

It suffices to argue that p; does not become the combiner by executing s. Let Cy be
the configuration at which p; executes line 4 of the pseudocode. Assume by the way
of contradiction that node;(C) — wait = false in some configuration C,, between
Cs and C. By the pseudocode (lines 3 and 4), node; — wait does not change

value between C3 and C' by p;. Since node;(C') — wait = true, there must be a

147

thread that writes node; — wait = false between C3 and C'. Let p,, be a thread
that does so. By the pseudocode, it follows that p,, must execute either line 18 or
line 26 at C,,. Since p,, is active at C,, Claim 1.i does not hold at (', and by the
induction hypothesis (for C,,) it follows that Claim 1.ii must hold at C,,. Moreover,
the induction hypothesis (Claim 2.ii) implies that p,, must be the combiner at C,,.
However then, the induction hypothesis (Claim 2.iii) implies that p; should be a
thread executing lines 8-12 at C,,. This is a contradiction since p; executes any of

line 4 at C,. We conclude that p; is not a combiner at C, which is a contradiction.

. s 1s the execution of line 7.

We first prove that Claim 1 holds. By the induction hypothesis (Claim 1), one of the
following conditions hold at C'~: (Claim 1.i) T'ail(C') = L, there is no combiner at
C~ and there is no thread poised to execute any of lines 13-23 and 25-26 or (Claim
1.ii) Tail(C~) points to a node nd # L and there is exactly one combiner at C~.

e Assume first that (1.i) is true at C~. Since T'ail(C~) = L, the Swap instruction
of line 7 returns a value equal to L and thus, it follows that p; is a combiner
at C. Since condition (1.i) guarantees that there was no combiner at C'~, p; is

the only combiner in the system at C'.

e Assume now that condition (1.ii) is true at C~. Since Tail(C~) # L and
node;(C') = Tail(C™), it follows that p; is not a combiner at C'; notice that p;
could not be a combiner at C'~ since the combiner is poised to execute some

of the lines 8-26 at C'~ (whereas p; is poised to execute line 7 at C7).
The rest of the claims in each case, hold by the induction hypothesis.

. If s is the execution of any of the lines 8 or 10, the claim holds by induction hy-
pothesis.

. s 1s the execution of line 9.

It suffices to prove that Claim 4 holds. Let node, be the value of MyPred of p;
at C'. Observation implies that there is some thread p; that executes the S;_;
instruction and uses node, as parameter in S;_;. Assume that p;; executes its S;_y

instruction in some instance A, of CC-Synch. The pseudocode (line 9) implies that

148

p; writes a value equal to node; at node, — next at C. Let Cs be the configuration
after the execution of line 5 by p;;. We first prove that p; executes at most one
Swap instruction between S;_; and C. Assume by the way of contradiction that p;
executes two or more Swap instructions between S;_; and C. Let Sy (Su2) be the
first (second) of these Swap instructions. Assume that S, is executed by some A,
instance of CC-Synch. By the definition of A, it follows that finishes its operation
before the execution of S,o an thus before configuration C~. Furthermore, the
definitions of A, Ay and A; imply that A; executes its Swap instruction before
Swi and a combiner executes lines 16-18 for servicing A; after the execution of
lines 16-18 for servicing A,,;. This contradicts the induction hypothesis (Claim 3).

Thus, at most one Swap instruction is executed between S;_; and C by pj.

In case that node,(C~) — next = L, the claim holds trivially since p; writes
node; = nd; to node, — next = nd;—; — next. The claim also trivially holds in
case that node, — next = node; at C'"~. We now prove that at configuration C'~, it
holds that either node, — next = L or node, — next = node;. Assume, by the way
of contradiction, that at configuration C'~, it holds that node, — next = node,,,
where node,, # node; and node,, # L. Let p, be the thread that writes node,,
into node, — next at some configuration C,, between C5 and C~. Let S, be the
Swap instruction of line 7 executed by p,,. Observation implies that p; executes
the Sp_; instruction that writes node, at Tail. Since, p, # pj;, it follows that
Sh—1 # Sj_1. Observation and the fact that at most one Swap instruction is
executed between C;_; and C~ by pj, imply that Sj,_; precedes S;_;. Therefore,

Sh, is executed between Sp,_; and S;_;.

6. If s is the execution of line 11, we distinguish the following two cases.

e Assume first that p; is the combiner at C~. It suffices to argue that p; is
not poised to execute line 12 at C' (as needed by Claim 2.i). By definition,
there is some configuration C” that precedes C' (and occurs during the course
of the execution of the current instance of DSM-Synch by p;) at which either
node;(C") — wait = false and node;(C") — completed = false or the Swap
instruction (notice that p; is not the combiner due to a returned L of line 7,

since in a such a case the line 11 could not be executed). By the pseudocode,

149

the wait or completed field of node; can change if a thread p,, executes one
of the lines 3, 4, 17, 18, or 26 after C”. Pseudocode (lines 1-3) implies that
the wait or completed field of node; cannot change when threads other than p;
execute any of the lines 3 or 4. Moreover, the induction hypothesis (Claims 1
and 2.ii) implies that no thread other than p; can change the wait or completed
fields of node; by executing lines 17, 18, or 26. Thus, no thread other than p;
can change these fields of node; from C” to C~. It follows that p; evaluates the
condition of line 11 to false and therefore, it is not poised to execute line 12 at

C' (as needed by 2.i).

e Assume now that p; is not a combiner at C~. It suffices to argue that p; is
poised to execute line 12 at C' (as needed by Claim 2.i). Assume by the way of
contradiction that p; is not poised to execute line 12. Since p; executes line 11
at C™, it must be that there is some configuration Cg preceding C'~ at which
p; evaluates the condition of the while statement of line 10 to true. Since p;
is not the combiner, it follows that node;() — completed = true at C1y. Since
p; evaluates the if condition of line 11 to false, it follows that there is a config-
uration, let it be C,,, between Cjy and C' at which node;(C,,) — complete =
false. The pseudocode (lines 4 and 17) implies that only p; writes a value
equal to false on node; — completed by executing line 4 of the pseudocode.
The pseudocode (lines 10-11) implies that p; does not perform any Write op-
eration at Cy,. Thus, p; evaluates the if condition of line 11 to true, which is a

contradiction.

The rest of the claims in each case, hold by the induction hypothesis.

. s 1s the execution of line 13.

By induction hypothesis (Claims 1 and 2), it follows that only the combiner p; can
be poised to execute line 13 at C7; thus, p; = p;, and p; has not executed any
iteration of the while loop (lines 14-21) yet. By the pseudocode (line 13) it follows
that the node assigned to nd is equal to node;. Thus, Claim 2.iii holds. The rest of
the claims hold by the induction hypothesis.

150

8. In case that s is the execution of any of the lines 14-16, the claims hold by induction

hypothesis.

9. s is the execution of line 17. Suppose that this is the kth time, £ > 1, that p;

executes line 17 during A; and assume that line 17 has been executed m times in

total until C'. By the induction hypothesis (Claim 2.iii) there is a thread pj such

that nodey,(C~) = ndy, and either py = p; or py is executing one of the lines 6-12 at

c.

e Assume first that £ = 1. Let C7 be the configuration resulted when p; executes

line 7. By the induction hypothesis (Claim 2.i), p; cannot be a combiner before

C.

— Assume first that p; is not the combiner at C%.

Since p; is active at all configurations between C; and C, by the induction
hypothesis (Claim 1), it follows that there is always some combiner in
the system between C; and C. Assume that p; became the combiner at
some configuration C’ preceding C', and let p; be the thread that was the
combiner at C'; let A; be the instance of DSM-Synch executed by p; at
C'~. Since p; becomes the combiner after p; and p; is executing line 17 for
the last time at C, it follows that the (m — 1)st time that lines 16-18 were
executed was the last time that p; executed those lines during A;. Suppose
that p; visits &', k" > 1 nodes. Let nd;, be the last node visited by A;.
The induction hypothesis (Claim 2.iv) implies that nd;, = node;(C") (since
pi is the unique combiner in the system right after p;). The pseudocode
(lines 13-21) imply that nd; = node;(C'~) # node;(C'~); thus, k' > 1.
By the pseudocode, p; becomes a combiner when p; executes line 26 (i.e.
at configuration C’). By the pseudocode, node;(C’') = nd,, = ndj,_, —
next. We distinguish the following two cases. In case that py_1 = p;, the
induction hypothesis (Claim 3), implies that nd}, ; = nd,,—1. Pseudocode
(lines 21 and 26) implies that nd), = nd,,_, — next = nd,,_; — next
and ndj, = node;(C') # L, it follows that nd,,_1 — next # L. Thus,
Claim 4 implies that node;(C) = nd|, = nd,,—1 — next = nd,,, as needed

(by Claim 3). In case that py_; # p;, by the induction hypothesis (Claims

151

2.iii), there is some thread py_; such that at each configuration Cin Brr—1,
prw—1 was executing one of the lines 8-12 at C' and nodek/,l(é) =ndj,_q;
specifically, pp_1 was active at configuration Cy; at which line 21 was
executed by p; during f—;. Also, by the induction hypothesis (Claim 3),
it follows that nd,_, = nd,,—1. Since nd,, = nd,_, — next = nd,,—1 —
next and nd;, = node; # L, it follows that nd,,—; — next # L. Thus,
Claim 4 implies that node;(C) = nd| = nd,,—1 — next = nd,,, as needed
(by Claim 3).

Assume now that p; is a combiner at C7. It follows that the Swap instruc-
tion of line 7 returns L to p;. By the induction hypothesis (Claim 1), it
follows that there is no combiner at C’; and no active thread is executing
any of the lines 8-27 at C';. Let C” be the last configuration preceding C7
at which there was a combiner p. in the system; let A, be the instance of
DSM-Synch executed by p. at C’. Notice that p. has executed line 26 in A,
just before configuration C’. By the induction hypothesis (Claim 2.iv), it
follows that there is no combiner in the system at C’. By definition of p,,
there is no combiner in the system between C’ and C; . By the induction
hypothesis (Claim 2.iv), it follows that there is no combiner in the system
at C'. By definition of p., there is no combiner in the system between C’
and C7 . We first prove that there no Swap operation is executed between
C" and C; . Assume by the way of contradiction that at least one Swap is
executed between C” and C; . Let s be the first such Swap and let C” be
the configuration just after the execution of s. Assume that s is executed
by some thread ps. Since there is no combiner between C” and C' ', induc-
tion hypothesis (Claim 1.i) implies that T'ail(C"”) # L. Therefore, there
is a combiner at C”. This contradicts our assumption that there is no
combiner between C” and C7 . Thus, the Swap instruction executed by p;
at C- is the first Swap instruction executed between C’" and C; . Assume
that p. visited k' nodes in A.; and denote by nd), the last node visited
by p. in A.. By the pseudocode (lines 19-20), it follows that ndy # L;
Obviously, the (m — 1)th time that lines 17-18 were executed was for node

ndy. By the induction hypothesis (Claim 3), ndy = nd,,_1, as needed.

152

10.

11.

12.

e Assume now that £ > 1. By the pseudocode, ndj, (in A; instance) cannot be
equal to L since otherwise the kth iteration of the while loop would not be
executed by p; (see lines 19-20 of pseudocode). By the induction hypothesis
(Claims 2.iii), either py_; = p; or there is some thread py_; # p; such that
at each configuration C’" in By_1, pr—1 was executing one of the lines 6-12 at
C". By the induction hypothesis (Claim 3), it follows that nd),_, = nd,,—1. By
the pseudocode, it follows that nd) = nd,_, — next = nd,,_y — next. Since
nd, # L, it follows that nd,,—1 — next # L. Thus, Claim 4 implies that

ndj, = nd,,—1 — next = nd,, as needed (by Claim 3).

s is the execution either of line 18.

Assume that either line 18 is executed for the kth time, £ > 1. Remind that it is
only the combiner that can be poised to execute this line of code at C~. By the
induction hypothesis (Claim 2.iii) there is a thread py such that nodey(C~) = ndj,
and either py = p; or p; is executing one of the lines 8-12 at C'~. Since s changes
either the completed or the wait field of nodex(C~), Claim 1 holds by induction

hypothesis. The rest of the claims hold by induction hypothesis.
In case that s is the execution either of line 19 or line 20, the claims hold trivially.

s is the execution of line 21.

It is enough to argue that Claim 2.iii holds after the execution of s. The rest of
claims hold by induction hypothesis. Assume that the execution of s by p; identifies
the kth node visited by p;, k£ > 1 (notice that the first node visited by p; is identified
by executing line 13 and not line 21; thus, £ > 1). If nd}, = L, Claim 2.iii holds (by
induction hypothesis for each [< k). Thus, assume that ndj, # L. Denote by S; the
Swap operation executed by p; in req and denote by Si the Swap operation executed
by pr. We first prove that S; precedes Si. By the pseudocode, nd)_, — next = ndj,
cannot be equal to L since otherwise the (k — 1)th iteration of the while, where the
kth node to be visited by p; is identified (this occurs when p; executes line 21 of that
iteration), would not be executed. By the induction hypothesis (Claim 2.iii), either
pr—1 = p; or there is some thread p,_; such that at each configuration C” in By_1,

pr—1 was executing one of the lines 6-12 at C" and nodey_1(C") = ndj_;. In case that

153

Pk—1 = Di, the pseudocode implies that nd; — next = nd),. Claim 4 implies that the
Swap operation S; executed by p; precedes the execution of the Swap operation S; by
pr- In case that py_1 # p;, (Claim 2.iii) implies that py_; was active at configuration
(U5 at which line 21 was executed by p; during §;_1. The pseudocode implies that
ndj,_, — next = nodey_1(Ca1) — next. Since we have assumed that nd), # L, it
follows that nodey_1(Cy1) — next # L. Thus, Claim 4 implies that there is a thread
pr that has executed line 7 before Cy; such that node(C) = ndj; moreover, Claim 4
implies that the Swap operation S;_; executed by p,_; precedes the execution of
the Swap operation Sy by pi. By the pseudocode, p; executes lines 16-18 for itself
during the first iteration of the while loop of lines 14-21, i.e. before executing it
for py_1. Since p; executes lines 16-18 later on for p;_;, the induction hypothesis
(Claims 2.iii and 3) implies that S; has occurred before Si_;. It follows that S; has

occurred before Sj..

We continue to prove that p; is active at C~. Assume, by the way of contradiction,
that the instance Aj of CC-Synch executed by py is not active at C~. Recall that
pr. executed Sy after S;. Thus, p; was active while executing one of the lines 6-21
when S) was executed; let C} be the configuration just after the execution of Sj.
Apparently, C} precedes C. Since p; is active between C and C, by the induction
hypothesis (Claim 1), it follows that there is always some combiner in the system
in all configurations between C; (which results by applying S;) and C. Thus, there
is some combiner in all configurations between), and C. By the pseudocode,
the completed field of node, must be equal to true when p, terminates. By the
pseudocode, this can happen only if there is some thread pj that executes lines 16-
18 with tmpNode = node;, at some configuration before C. Suppose that lines 16-18
have been executed A’ times in total until the configuration that p, executed line 18
with tmpNode = nodey. Since S; is performed before Sy, the induction hypothesis
(Claim 3) implies that lines 18-26 have been executed for p; before being executed
for py, (assume that this has happened the h”th time that lines 16-18 were executed).
By the induction hypothesis (Claim 3), node; = ndy,». However, by the pseudocode,
it follows that lines 16-18 are executed for node; by p; during the execution of the

first iteration of the while loop of lines 14-21; let this be the Ath time that lines 16-18

154

are executed. Since p; has not visited node;, before C, it follows that A > h”, which

contradicts the induction hypothesis (Claim 3).

Thus, py is still active at C~. By the induction hypothesis (Claim 2.ii), no thread
other than the combiner p; executes lines 13-27 at C~. Thus, p; executes one of
the lines 6-12 at C'~. Since it is thread p; that executes s, p, executes one of the

lines 6-12 at C'. This completes the proof of Claim 2.iii.
13. In case that s is the execution of line 22 claims hold trivially.

14. s is the execution of line 23.

In case that the CAS instruction of line 23 fails, Tail(C') # L and line 24 is not
executed by p;. Thus, Claim 1.i holds. In case that the CAS instruction of line 23
succeeds, a value equal to L is set and p;, which is the unique combiner, is poised

to execute line 24. Thus, Claim 1 holds.
15. In case that s is the execution of line 25 claims hold trivially.

16. s is the execution of line 26. Recall that it is only the combiner that can be poised
to execute this line of code at C~. Assume that p; visits the (k — 1)th node at the
execution of line 22. The pseudocode (lines 22-25) implies that nd), = nd,_, —
next # L at C. Induction hypothesis (Claim 2.iii) implies that nd), = node;(C™)
for some thread p, that is poised to execute one of the lines 8-12 at C~. By the
induction hypothesis (Claim 3), nodey is visited for the first time since A; was
initialized. This implies that nodey(C~) — completed = false. Since s changes
node,(C~) — wait to false it follows that py is a combiner at C. Since p; was the
unique combiner in the system at C'~ and it is not a combiner anymore after the
execution of line 26, it follows that the unique combiner in the system at C'is pg, as
needed by Claim 2.iv. Moreover, induction hypothesis implies that T'ail(C~) # L,
as needed by Claim 1. The rest of the claims in each case hold by the induction
hypothesis. 1

Let nd; be the node of the list that is assigned to p; for req;. Thread p; completes
the execution of DSM-Synch for reg; in any of lines 12, 24 and line 27. Assume first,
that p; returns on line 12. Lemma (Claim 2.iii) implies that a combiner thread p; has

155

served regq; before the execution of line 12 by p;. Therefore, p; has executed line 16 for
nd; at some iteration [> 1 of its while loop (lines 14-21). Request reg; is linearized just
before the execution of this instance of line 16 by p;. Assume now that p; returns either
on line 27 or on line 24. Lemma (Claim 2.iii) implies that p; serves its request on its
own when it executes line 16 at the first iteration of its while loop (lines 14-21). In this
case, req; is linearized just before the execution of line 16 of the first iteration of p;’As
while loop. Obviously, in both cases the linearization point of reg; is within its execution
interval. Consistency is immediately implied by Claims 2.iii and 3 of Lemma [6.6, Thus,
the following theorem holds.

Theorem 6.2. DSM-Synch is a linearizable synchronization algorithm.

6.4 Performance evaluation of CC-Synch, DSM-Synch and H-Synch

We evaluated CC-Synch and DSM-Synch in two different multiprocessor machine archi-
tectures. The first is a 32-core machine consisting of four AMD Opteron 6134 processors
(Magny Cours). Each processor consists of 2 dies and each die contains 4 processing cores.
Communication among the cores of the same die is achieved with a fast 1.3 cache. Dies
communicate with Hyper-Transport links which create a complex topology that resembles
a hypercube [21]. The second machine is a 128-way Sun consisting of 2 UltraSPARC-T2
processors (Niagara 2). Each processor consists of 8 processing cores, each of which is able
to handle 8 threads. Communication among the cores of the same processor is achieved
with a fast L2 cache. All experiments on the Magny Cours machine were performed us-
ing the gce 4.3.4 compiler, while experiments on the Niagara 2 machine were performed
using gce 4.5.1. In order to avoid bottlenecks in memory allocation, the Hoard memory
allocator [I8] was used. The operating system running on the Magny Cours machine was
Linux with kernel 2.6.18, while the operating system running on the Niagara 2 machine
was Solaris 10.

Thread binding is employed for the following reason. Assume that the number of
threads is smaller than the number of cores and suppose that two threads are running.
The scheduler may decide to run them either on different processors (chips) or within

the same chip. In the first case the communication cost is an order of magnitude more

156

—>¢—CC-Synch —¥—DSM-Synch

3 | —&—P-Sim OyamaAlg
Flat-Combining —@—Lock-Free
—&— CLH CAS-Synch

A

throughput (millions operations per sec)

1 4 8 12 #oftlhieads 20 24 28 32

Figure 6.1: Average throughput of CC-Synch and DSM-Synch on the Magny Cours machine
while simulating a Fetch&Multiply object.

than in the second. Thus, if thread binding is not used, a significant uncertainty factor is
introduced which may lead to an unreliable experiment. We observed that this was a usual
phenomenon. So, on the Magny Cours machine, the ¢-th thread was bound to the i-th
core of the machine; we first exploited multi-core, then multi-chip and then multi-socket
configuration. On the Niagara 2 machine, we follow a slightly different scheduling similar
to that used in [24] in order to better explore the performance properties of hierarchical
algorithms. More specifically, we split threads into two groups, one for each socket.

In order to evaluate CC-Synch and DSM-Synch, we compare their performance with
that of state-of-the-art synchronization algorithms. Specifically, they are compared with
P-Sim (the wait-free universal construction presented in [2§]), flat-combining [33] [34],
the CLH spin-lock [23] 47]|ﬂ, OyamaAlg [52], and a simple lock-free implementation. The
lock-free implementation was implemented using a CAS object. Specifically, whenever a
thread wants to apply a Fetch&Multiply, it repeatedly executes CAS until it succeeds; a
backoff scheme is employed to increase the scalability of this implementation. Since the
Niagara 2 machine does not support Add which is employed by P-Sim and is necessary,
as shown in [2§], for its good performance, no experiment was performed for P-Sim on
the Niagara 2 machine. We also evaluated a variation of CC-Synch (called CAS-Synch),
in which Swap is simulated with a CAS object in a lock-free manner. This allows us to

explore the performance advantages of Swap over CAS.

tAs expected for cache-coherent NUMA architectures, we experimentally saw that MCS [49] spin
locks have slightly worse performance than CLH locks in both machines, so we present experimental
results for CLH locks.

157

On the Niagara 2 machine, H-Synch, the hierarchical NUMA lock (called FCMCS be-
low) presented in [24] , and the hierarchical lock called C-BO-MCS presented in [25] were
also evaluated. On the Magny Cours machine, experiments show no performance ben-
efit when using any of the hierarchical algorithms. This is rational to the fact that the
machine consists of many but very small clusters of cores. Thus, we have not included
any performance measurements for the hierarchical algorithms on the Magny Cours ma-
chine. All algorithms were carefully optimized and for those that use backoff schemes,
we performed a large number of experiments in order to choose the best backoff pa-
rameters. We used the flat-combining implementation that was provided by its inven-
tors [33, B4] and we choose its parameters very carefully in order to achieve the best
performance. We further optimized the code of flat-combining to run faster than its
original version [33 B4] on the Magny Cours machine. We used the latest version of
P-Sim code (version 0.8) [45], 28]. The source code of our implementations is provided at
http://code.google.com/p/sim-universal-construction/.

The first experiment we performed is a synthetic benchmark (Figures , where
a simple Fetch&Multiply object is simulated. We measure the average throughput
(Fetch&Multiply per second) that each synchronization algorithm achieves when it exe-
cutes 107 Fetch&Multiply operations (i.e. always the same amount of work), for different
values of n; each thread executes 107 /n Fetch&Multiply. Specifically, the horizontal axis
of Figures [6.1] represents the number of threads n, while the vertical axis displays the
throughput (in millions of operations per second) that each synchronization algorithm
has performed. For each value of n, the experiment has been performed 10 times and
averages have been calculated. A random number of dummy loop iterations (up to 64)
have been inserted between the execution of two Fetch&Multiply by the same thread;
specifically, in each iteration a volatile counter is increased. In this way, we simulate a
random work load large enough to avoid unrealistically low cache miss ratios and long
runs (but not too big to reduce contention). Figure studies the performance behavior
of our algorithms for different values of the random work.

In the experiments performed on the Magny Cours machine (Figure , CC-Synch
outperforms all other synchronization algorithms. Specifically, CC-Synch achieves up to
1.54 higher throughput than flat-combining and outperforms P-Sim by a factor of up to
1.52. The lock free implementation of Fetch&Multiply is slightly slower than P-Sim and

158

http://code.google.com/p/sim-universal-construction/

-
IS
J

—&—H-Synch
—>¢—CC-Synch
——DSM-Synch
—&— FC-MCS
Flat-Combining
OyamaAlg
—8— Lock-Free
—4—CLH
—+—C-BO-MCS

[N
N
1

=
o
I

oo
1

throughput (millions operations per sec)

L 4 8 16 32 48 e 80 o6 112 128

of threads
Figure 6.2: Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara 2
machine while simulating a Fetch&Multiply object.
flat-combining. Also, CC-Synch is up to 2.7 times faster than OyamaAlg [52]. DSM-Synch
performs also very well; its performance is close to that of CC-Synch, despite the fact
that it is designed for machines following the DSM model. Figure [6.1] also shows that
simulating Swap using CAS (in a lock-free way) induces a serious performance penalty;
specifically, CAS-Synch is two times slower than CC-Synch.

Similarly to the experiments performed on the Magny Cours machine, CC-Synch out-
performs all algorithms other than H-Synch and C-BO-MCS on the Niagara 2 machine
(Figure . More specifically, CC-Synch outperforms flat-combining by a factor of up to
1.4. It is noticeable that even CC-Synch itself (not its hierarchical version) outperforms
FCMCS [24] by a factor of up to 1.65, despite the fact that FCMCS exploits the hierarchi-
cal characteristics of communication in the machine. In contrast to FCMCS, C-BO-MCS
slightly outperforms CC-Synch in case of 32 — 112 threads, exploiting its hierarchical char-
acteristics in the Niagara 2 machine. However, C-BO-MCS is vastly outperformed by
H-Synch. The relatively small performance gap between flat-combing and FCMCS may
seem surprising at first; however, this result is rational to the fact that FCMCS causes more
cache misses when accessing the shared data. Specifically, in FCMCS, combining is not
used in applying the requests, so each request may be applied by a different thread; thus,
each time a thread accesses the shared data cache misses may occur. This is avoided when
combining is employed in serving the requests, as done by the other studied combining-
based synchronization algorithms. DSM-Synch exposes almost the same performance to

CC-Synch on the Niagara 2 machine. H-Synch which is the hierarchical version of CC-

159

~
]

—&—H-Synch —>—CC-Synch
—¥— DSM-Synch Flat-Combining
OyamaAlg —&— Lock-Free

[=)]
L

(%)
L

IS
1

w
1

N
L

throughput (millions operations per sec)
=
1

o

256 384 512 768 1024
of threads

Figure 6.3: Average throughput of CC-Synch, DSM-Synch and H-Synch on the Niagara 2
machine for n > 128 (over-subscribing) while simulating a Fetch&Multiply object.
Synch outperforms FCMCS by a factor of up to 2.65 and flat-combining itself by a factor
of up to 3.0. CC-Synch is up to 2.55 times faster than OyamaAlg [52], while H-Synch is
more than 6 times faster. The performance of CAS-Synch is not illustrated in Figure [6.2
since CAS-Synch results in very poor performance on the Niagara 2 machine.

As shown in Figure [6.1], on the Magny Cours machine, all algorithms perform faster
in case n = 1 than for larger values of n. On the contrary, Figure [6.2] shows that, on the
Niagara 2 machine, the performance of all algorithms is always better for larger values
of n. The Magny Cours machine implements atomic instructions (CAS, Swap, etc.) in
the private L1 cache which is very fast. This and the fact that the local workload is
small (up to 64) are the reasons for the very high performance that the Magny Cours
machine achieves in case of n = 1. In contrast, a Niagara 2 processor implements atomic
instructions in the shared L2 cache which is slower (Niagara 2 processor is optimized for
contented workloads, i.e. in case of n > 1).

In Figure (6.3 we study the performance of each implementation on the Niagara 2
machine for n > 128, i.e. when n is larger than the number of threads that the machine
is able to handle simultaneously; thus, the machine is over-subscribed. We do not include
any measurement from FCMCS and CLH locks since in this experiment they do not
achieve good performance. As illustrated in Figure [6.3] H-Synch, CC-Synch and DSM-
Synch achieve better performance than any other synchronization algorithm for any value

of n.

160

——Sim

50 flat combining

40 -+

30 -

average combining degree

10 -

1 4 8 12 16 20 24 28 32 64 96
of threads

Figure 6.4: Average degree of combining of CC-Synch, DSM-Synch and H-Synch while
simulating a Fetch&Multiply object.

Figures - aim at investigating the reasons for the good performance of CC-
Synch and DSM-Synch. More specifically, from Figure [6.5] it follows that on the Magny
Cours machine, P-Sim and flat-combining execute slightly more (up to 10% more) atomic
instructions than CC-Synch and OyamaAlg [52]. The experiments showed that to achieve
the best performance for the lock-free algorithm, the back-off should not be too high. By
appropriately choosing the back-off to get the best performance, it turned out that the
average number of CAS performed by each instance of the algorithm is two which is bigger
than the average number of atomic instructions executed by each instance of CC-Synch
and DSM-Synch. Thus, the lock-free algorithm has a performance disadvantage compared
to these algorithms.

Figure[6.4]displays the average degree of combining, i.e. the average number of requests
that are executed by a combiner. It shows that CC-Synch and DSM-Synch achieve better
degree of combining which is almost 3 times more than that of P-Sim and ﬂat—combiningﬁ.
Our efforts to increase the average degree of combining for flat-combining by carefully
tuning its parameters (i.e. by increasing the combining rounds or by changing the polling
level), revealed that when the combining degree was increased the average throughput
was decreased. On the contrary, P-Sim operates in a way that it can help as much threads
as the system’s point contention (i.e. as the maximum number of threads that can be

simultaneously active at any point in time which might be equal to n).

$In Figure we have not included results for OyamaAlg since the variance of the combining degree
in this algorithm was too high to get a realistic view. This is due to the fact that a combiner thread in
this algorithm may be enforced to help an unbounded number of operations.

161

4.5 4 ——P-Sim flat-combining
—o— lock-free —A—spin locks
CAS-Sim OyamaAlg

e
re
[3
14

average atomic instructions per request

L 4 8 1 16 20 24 28 2 6 9%

of threads
Figure 6.5: Average number of atomic instructions (CAS, Swap and Add) that CC-
Synch, DSM-Synch and H-Synch execute on the Niagara 2 machine while simulating a
Fetch&Multiply object.

In the experiment of Figure we studied the behavior of the competing algorithms
for different amounts of random work. This experiment was executed on the Magny
Cours machine; the number of threads was fixed to 32. Figure shows that for a wide
range of values for random work (64 — 2048), most algorithms have a small difference
in the exhibited throughput. This shows that the communication cost is the dominant
factor, whereas the time invested to execute the local random work does not play any
significant role. An exception is the lock-free algorithm, which, in case the random work
is equal to zero, has unrealistically high performance. This is due to the fact that, in
this case, a thread could uninterruptedly execute thousands of Fetch&Multiply before
some other thread starts its execution. This phenomenon (called long runs) has been
also discussed in [28, [50] as an unrealistic workload. Figure shows that by slightly
increasing the random work, the performance of the lock-free algorithm rapidly decreases.
The same phenomenon, although in a smaller scale, was also noticed for flat-combining.
Similarly to the lock-free implementation, flat-combining has high throughput for very
small amounts of random work, although its performance vastly decreases when the ran-
dom work is slightly increased. In cases that the number of iterations is 2048 or more,
the time needed to execute this loop becomes the dominant performance factor, i.e. ex-
ecuting the loop becomes more expensive than executing the algorithm for applying a

FetchAndMultiply instruction. Thus, the performance of all algorithms starts to decrease

162

—>¢—CC-Synch —#—DSM-Synch
——P-Sim OyamaAlg
Flat-Combining —@—Lock-Free

10 A

e

throughput (millions operations per sec)

0 32 64 128 256 512 1024 2048 4096 8192
random work (32 threads, Magny Cours machine)

Figure 6.6: Average throughput of CC-Synch, DSM-Synch and H-Synch for different values
of random work.

’ Algorithm \ cache misses \ cpu cycles spent in memory stalls ‘
CC-Synch 4.1 2747
Sim 4.9 6328
flat-combining 5.8 6501

Table 6.3: Cache misses and memory stalls per operation for n = 16 of CC-Synch, P-Sim
and flat-combining.

and the performance gap between them becomes insignificant. We remark that the scale
of the horizontal axis of Figure is logarithmic.

Table shows some measurements from performance counters. We observed that
the extra cache misses incurred by P-Sim and flat-combining was caused due to the num-
ber of failed CAS instructions; this number becomes worse if these algorithms are not
properly tuned. Since failed CAS instructions cause cache misses and branch mispredic-
tions, we conclude that a combining algorithm that avoids them has a serious performance

advantage.

6.5 Highly-efficient blocking data structures

We further investigate the performance of CC-Synch, DSM-Synch and H-Synch by imple-
menting common concurrent data structures (i.e. shared stacks and queues). We compare
the performance of these implementations with state-of-the-art shared stack and queue

implementations. Specifically, the shared stack implementation based on CC-Synch, called

163

CC-Stack, was evaluated against SimStack [28], the lock-free stack implementation pre-
sented by Treiber in [58], a stack implementation based on CLH spin locks [23, 47], and a
linked stack implementation based on flat-combining [33, [34] (called FCStack). Both CC-
Stack and FCStack eliminate pairs of push and pop whenever possible; the performance of
elimination [35] has been studied in [28] and [34] where experiments show that elimination
is outperformed by SimStack and FCStack. We also implemented a shared stack based on
H-Synch and FCMCS [24] and evaluated their performance on the Niagara 2 machine.

The experiment we perform is similar to that performed by Michael and Scott for
queues in [50]. We measure the average throughput (operations per second) that each
algorithm achieves (every thread executes 107/n pairs of ENQUEUE and DEQUEUE op-
erations) for different values of n. Again, the experiments have been performed several
times and averages have been taken; we have simulated a random workload by executing
a random number of iterations (up to 64) of a dummy loop after each operation.

As it is shown in Figure [6.7, on the Magny Cours machine, CC-Stack performs up to
1.68 times faster than FCStack, and up to 1.59 times faster than SimStack. The stack
implementation based on the CLH spin lock had much lower performance. The stack
implementation based on DSM-Synch, called DSM-Stack, performs slightly worse than
CC-Synch but it is much better than all other algorithms. On the Niagara 2 machine, the
shared stack based on CC-Synch performs 1.4 times faster than FCStack (Figure . The
stack implementation based on DSM-Synch performs worse than CC-Stack but it is again

better than all other algorithms. It is noticeable that the stack implementations based

wv
)

—»—CC-Stack —¥— DSM-Stack
—e— SimStack FC-Stack
—&— CLH-Stack —@— Lock-Free

~
1

w
1

N
1

[y
1

throughput (millions operations per sec)

o

1 4 8 12 16 20 24 28 32
of threads

Figure 6.7: Average throughput of CC-Stack and DSM-Stack on the Magny Cours machine.

164

—o— H-Stack

g | ——CC-Stack

—¥— DSM-Stack

7 4 —e—FCMCS-Stack
FC-Stack

—&— Lock-Free

—a— CLH-Stack

¢
¢
<

¢
*

throughput (millions operationss per sec)

1 4 8 16 32 48 64 80 96 112 128
of threads

Figure 6.8: Average throughput of CC-Stack, DSM-Stack and H-Stack the Niagara 2
machine.
] —o—SimQueue FC-Queue

—&—Two-locks Queue —¢—CC-Queue
5 41 —¥—DSM-Queue —e— MS-Queue

throughput (millions operations per sec)

1 4 8 12 16 20 24 28 32
of threads

Figure 6.9: Average throughput of CC-Queue and DSM-Queue on the Magny Cours ma-
chine.

on CC-Synch and DSM-Synch outperform by a factor of up to 1.49 the shared stack based
on FCMCS of [24]. The stack implementation based on H-Synch significantly outperforms
all other implementations, being up to 2.0 times faster than FCStack and up to 2.1 times
faster than the stack based on FCMCS [24].

We also implement and experimentally analyze shared queues based on CC-Synch,
DSM-Synch and H-Synch, which are called CC-Queue, DSM-Queue and H-Queue, respec-
tively. Specifically, the two-locks queue implementation presented in [50] is enhanced by
replacing the ordinary locks with instances of CC-Synch, DSM-Synch and H-Synch, re-
spectively. These implementations are compared (Figures with SimQueue [28],
the lock free queue implementation and the two-locks implementation presented in [50],

and the queue implementation based on flat-combining [33] 34] (called FCQueue). On the

165

[N
N
)

—&o— H-Queue
—¢—CC-Queue
—#—DSM-Queue
—&— FCMCS-Queue
FC-Queue
—&—Two-locks Queue
—&— MS-Queue

[y
o
1

©o
1

[<)]
1

I
L

N
1

throughput (millions operations per sec)

o

1 4 8 16 32 48 64 80 96 112 128
of threads

Figure 6.10: Average throughput of CC-Queue, DSM-Queue and H-Queue on the Niagara
2 machine.

Niagara 2 machine, we additionally implemented and evaluated a two-locks queue variant
using FCMCS [24]. The queue experiment was similar to that for stacks.

As illustrated in Figure [6.9] on the Magny Cours machine, SimQueue exhibits better
performance than any algorithm other than CC-Queue and DSM-Queue, as expected based
on results in [28]. CC-Queue performs up to 2.53 times faster than FCQueue (Figure
and 2.1 times faster than SimQueue. DSM-Queue performs slightly worse than CC-Queue
but better than all other algorithms. On the Niagara 2 machine (Figure , FCQueue
performs better than all algorithms other than CC-Queue, DSM-Queue and H-Queue (recall
that SimQueue has not been implemented in this machine since Add instructions are not
included in its instruction set). CC-Queue performs up to 1.8 times faster than FCQueue
and up to 1.55 times faster than the queue based on [24]. The queue implementation
based on H-Synch greatly outperforms all other candidates by being up to 2.25 times
faster than the queue implementation based on FCMCS [24]. It is also noticeable that the
performance gap between FCQueue and the two-locks queue is smaller on the Niagara 2
machine. This is due to the fact that the CLH locks perform very well in this machine
and the parallel use of two different locks (one for enqueues and one for dequeues) gives
a performance boost in the two-locks algorithm. Again, DSM-Queue performs slightly
worse than CC-Queue but better than all other algorithms except from H-Queue on the

Niagara 2 machine.

166

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this dissertation the RedBlue, Sim and Synch families of synchronization algorithms are
presented.

The RedBlue algorithms are adaptive synchronization algorithms using Read/Write
and LL/SC base objects. The RedBlue synchronization algorithms achieve better step
complexity than all previously presented algorithms. F-RedBlue which is the first al-
gorithm of the RedBlue synchronization algorithms, matches the Q(logn) lower bound
presented by Jaynati in [41].

The Sim synchronization algorithms achieve better step complexity by using other base
objects than LL/SC or CAS. More specifically, Sim achieves constant step complexity by
using Add additionally to LL/SC and Read/Write base objects. It is noticeable that P-Sim,
which is a practical version of Sim outperforms the state-of-the-art synchronization algo-
rithms and ensures stronger progress guarantees. P-Sim also shows that the architectures
that support Add base objects have significant performance benefits.

The Synch synchronization algorithms are blocking implementations of the combin-
ing technique. Synch synchronization algorithms achieve much better performance than
all other synchronization algorithms, while having nice complexity features. H-Synch is
an hierarchical version of CC-Synch that provides improved performance in hierarchical
systems.

The universal synchronization algorithm presented by Chuong, Ellen and Ramachan-

dran in [20], is transaction friendly. Making a transaction-friendly version of L-Sim is left

167

as future work; however, we believe that this can be easily achieved by applying similar
techniques to those in [20]. The experimental analysis of L-Sim is also left as future work.

Since one of the goals of Sim is wait-freedom, each active thread executes all pending
requests; this might be inefficient in terms of energy consumption. In contrast, in CC-
Synch and in flat-combining, threads perform spinning until their requests have been
executed (which seems to be less expensive in terms of resource usage). Measuring energy
consumption is an interesting but not an easy task since several parameters (e.g., the time
required to perform the computation, the resource usage, the way the thread library is
implemented, etc.) should be considered. So, we leave this as future work.

In [§], Agathos, Kallimanis and Dimakopoulos present a highly efficient implementa-
tion of OpenMP tasks [51] for the OMPi OpenMP/C compiler [26]. This OpenMP tasking
environment uses a work-stealing queue implementation based on CC-Synch. In synthetic
benchmarks, OMPi achieves up to a 5 times better performance than other OpenMP task
implementations, while for task-based real-world applications it achieves up to 87% better
performance comparing to other OpenMP compilers [8]. We expect that the synchroniza-
tion algorithms of the Synch and Sim families will be used in other practical applications
as well.

Similarly to flat-combining [34], Sim and Synch synchronization algorithms have the
same applicability limitations. Efficient implementations of data structures like search
trees, where m lookups can be executed in parallel by performing just a logarithmic
number of shared memory accesses each, are expected to outperform Sim/Synch(since
these synchronization algorithms perform each request sequentially like most previous
universal constructions [20], 27, 34), 36, 37]). This limitation could be overcome by using
multiple instances of them, as it is done in our queue implementation of Section and
the queue implementation of Section [6.5] For more complicated data structures, this will

be part of our future work.

168

BIBLIOGRAPHY

1]

[6]

[7]

Advanced Micro Devices. AMDG64 Architecture Programmer’s Manual Volume 2:
System Programming, June 2010.

Yehuda Afek, Hagit Attiya, Arie Fouren, Gideon Stupp, and Dan Touitou. Long-lived
renaming made adaptive. In Proceedings of the 18th ACM Symposium on Principles
of Distributed Computing, pages 91-103, 1990.

Yehuda Afek, Pazi Boxer, and Dan Touitou. Bounds on the shared memory require-
ments for long-lived & adaptive objects. In Proceedings of the 19th ACM Symposium
on Principles of Distributed Computing, pages 81-89, 2000.

Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast. In Proceedings
of the 27th ACM Symposium on Theory of Computing, pages 538547, 1995.

Yehuda Afek, Michael Merritt, and Gadi Taubenfeld. The power of multi-objects.
Information and Computation, 153:213-222, 1999.

Yehuda Afek, Michael Merritt, Gadi Taubenfeld, and Dan Touitou. Disentangling
Multi-object Operations. In Proceedings of the 16th ACM Symposium on Principles
of Distributed Computing, pages 262-272, 1997.

Yehuda Afek, Gideon Stupp, and Dan Touitou. Long-lived Adaptive Collect with
Applications. In Proceedings of the 40th Symposium on Foundations of Computer
Science, pages 262-272, 1999.

Spiros N. Agathos, Nikolaos D. Kallimanis, and Vassilios V. Dimakopoulos. Speeding
up OpenMP tasking. In Euro-Par 2012 Parallel Processing, pages 650—661. Springer,
2012.

169

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[18]

Gene Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities. In AFIPS Conference Proceedings, pages 483-485, 1967.

James H. Anderson and Mark Moir. Universal constructions for multi-object op-
erations. In Proceedings of the 14th ACM Symposium on Principles of Distributed
Computing, pages 184-193, 1995.

James H. Anderson and Mark Moir. Universal Constructions for Large Objects. IEEE
Transactions on Parallel and Distributed Systems, 10(12):1317-1332, dec 1999.

James Aspnes and Maurice Herlihy. Fast, Randomized Consensus Using Shared

Memory. 11(2):441-461, September 1990.

Hagit Attiya and Arie Fouren. Adaptive and Efficient Wait-Free Algorithms for
Lattice Agreement and Renaming. SIAM Journal on Computing, 31(2):642-664,
2001.

Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. Journal of
the ACM (JACM), 50:444-468, July 2003.

Hagit Attiya, Rachid Guerraoui, and Eric Ruppert. Partial snapshot objects. In
Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 336-343, 2008.

Hagit Attiya, Nancy Lynch, and Nir Shavit. Are Wait-free Algorithms Fast? Journal
of the ACM (JACM), 41(4):725-763, July 1994.

Greg Barnes. A method for implementing lock-free shared data structures. In Pro-
ceedings of the 5th ACM Symposium on Parallel Algorithms and Architectures, pages
261-270, 1993.

Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson.
Hoard: A Scalable Memory Allocator for Multithreaded Applications. In Proceed-
ings of the 9th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 117-128, 2000.

170

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Tushar Deepak Chandra, Prasad Jayanti, and King Tan. A polylog time wait-free
construction for closed objects. In Proceedings of the 17th ACM Symposium on
Principles of Distributed Computing, pages 287-296, 1998.

Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal construction
for wait-free transaction friendly data structures. In Proceedings of the 22nd Annual

ACM Symposium on Parallel Algorithms and Architectures, pages 335-344, 2010.

Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill
Hughes. Blade Computing with the AMD Opteron Processor (Magny-Cours). Hot
chips 21, August 2009.

Intel Corporation. Intel(R) 64 and IA-32 Architectures Software Developer’s Manual
Volume 3A: System Programming Guide, Partl, January 2011.

Travis S. Craig. Building FIFO and priority-queueing spin locks from atomic swap.
Technical Report TR 93-02-02, Department of Computer Science, University of Wash-

ington, February 1993.

Dave Dice, Virendra J. Marathe, and Nir Shavit. Flat-Combining NUMA Locks.
In Proceedings of the 23nd Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 65-74, 2011.

Dave Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting: A General Tech-
nique for Designing NUMA Locks. In Proceedings of the 17th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, 2012.

Vassilios V' Dimakopoulos, Elias Leontiadis, and George Tzoumas. A portable ¢
compiler for openmp v. 2.0. In Proceedings of the European Workshop on OpenMP
(EWOMP’A03), Aachen, Germany, 2003.

Panagiota Fatourou and Nikolaos D. Kallimanis. The RedBlue Adaptive Universal
Constractions. In Proceedings of the 23rd International Symposium on Distributed

Computing, pages 127-141, 2009.

171

28]

[29]

[30]

[35]

[36]

Panagiota Fatourou and Nikolaos D. Kallimanis. A Highly-Efficient Wait-Free Uni-
versal Construction. In Proceedings of the 23nd Annual ACM Symposium on Parallel
Algorithms and Architectures, pages 325-334, 2011.

Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the Combining Syn-
chronization Technique. In Proceedings of the 17th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, 2012.

James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchronization
primitives for large-scale cache-coherent multiprocessors. In Proceedings of the Third
International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 6475, April 1989.

Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry
Rudolph, and Marc Snir. The NYU Ultracomputer - Designing an MIMD Shared
Memory Parallel Computer. IEEE Trans. Computers, 32(2):175-189, 1983.

Rajiv Gupta and Charles R. Hill. A scalable implementation of barrier synchro-
nization using an adaptive combining tree. In Proceedings of the Third International
Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS III), pages 54-63, 1989.

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. The Code for Flat-

Combining. http://github.com/mit-carbon/Flat-Combining.

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. In Proceedings of the 22nd Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 355364, 2010.

Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack al-
gorithm. In Proceedings of the 16th ACM Symposium on Parallel Algorithms and
Architectures, pages 206215, 2004.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems (TOPLAS), 13:124-149, jan 1991.

172

[37]

[38]

[39]

[40]

[41]

[42]

Maurice Herlihy. A methodology for implementing highly concurrent data objects.
ACM Transactions on Programming Languages and Systems (TOPLAS), 15(5):745—
770, nov 1993.

Maurice Herlihy, Victor Luchangco, and Mark Moir. Space and Time Adaptive Non-
blocking Algorithms. FElectronic Notes in Theoretical Computer Science, 78, 2003.

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition

for concurrent objects. ACM Transactions on Programming Languages and Systems

(TOPLAS), 12:463-492, 1990.

Damien Imbs and Michel Raynal. Help When Needed, But No More: Efficient
Read/Write Partial Snapshot. In Proceedings of the 23rd International Symposium
on Distributed Computing, pages 142—-156. Springer, 2009.

Prasad Jayanti. A lower bound on the local time complexity of universal construc-
tions. In Proceedings of the 17th ACM Symposium on Principles of Distributed Com-
puting, pages 183-192, 1998.

Prasad Jayanti. A time complexity lower bound for randomized implementations of
some shared objects. In Proceedings of the 17th ACM Symposium on Principles of
Distributed Computing, pages 201-210, 1998.

Prasad Jayanti. F-arrays: implementation and applications. In Proceedings of the

21th ACM Symposium on Principles of Distributed Computing, pages 270-279, 2002.

Prasad Jayanti and Srdjan Petrovic. Efficient Wait-Free Implementation of Multi-
word LL/SC Variables. In Proceedings of the 25th IEEE International Conference
on Distributed Computing Systems, pages 59—68, 2005.

Nikolaos D. Kallimanis and Panagiota Fatourou. The Code for Sim Universal Con-

struction. http://code.google.com/p/sim-universal-construction/.

Victor Luchangco, Daniel Nussbaum, and Nir Shavit. A Hierarchical CLH Queue
Lock. In Proceedings of the 12th International Euro-Par Conference, pages 801-810,
2006.

173

[47]

[48]

[49]

[50]

[51]

[52]

[53]

Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue Locks on Cache
Coherent Multiprocessors. In Proceedings of the 8th International Parallel Processing

Symposium, pages 165-171, 1994.

Paul E. McKenney. Memory Barriers: a Hardware View for Software Hackers, June

2010.

John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchro-
nization on Shared-Memory Multiprocessors. ACM Transactions on Computer Sys-

tems, 9(1):21-65, 1991.

Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-Blocking
and Blocking Concurrent Queue Algorithms. In Proceedings of the 15th ACM Sym-
posium on Principles of Distributed Computing, pages 267-275, 1996.

ARB OpenMP. Openmp application program interface, v. 3.1, 2008.

Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Executing parallel pro-
grams with synchronization bottlenecks efficiently. In Proceedings of International
Workshop on Parallel and Distributed Computing for Symbolic and Irreqular Appli-
cations (PDSIA "99), pages 182-204, 1999.

Zoran Radovic and Erik Hagersten. Hierarchical Backoff Locks for Nonuniform Com-
munication Architectures. In Proceedings of the 9th IEEE International Symposium

on High-Performance Computer Architecture, pages 241-252, 2003.

Ori Shalev and Nir Shavit. Predictive log-synchronization. In FuroSys, pages 305—
315, 2006.

Nir Shavit and Asaph Zemach. Diffracting Trees. ACM Transactions on Computer
Systems, 14(4):385-428, 1996.

Nir Shavit and Asaph Zemach. Combining Funnels: A Dynamic Approach to Software
Combining. Journal of Parallel and Distributed Computing, 60(11):1355-1387, 2000.

Gadi Taubenfeld. Synchronization Algorithms and Concurrent Programming. Pren-

tice Hall, Inc., Upper Saddle River, NJ, USA, 2006.

174

[58] R. K. Treiber. Systems programming: Coping with parallelism. Technical Report R.J
5118, IBM Almaden Research Center, April 1986.

[59] David L. Weaver and Tom Germond. The SPARC Architecture Manual, Version 9,
1994.

[60] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing Hot-
Spot Addressing in Large-Scale Multiprocessors. IEEE Transactions on Computers,
36(4):388-395, 1987.

175

AUTHOR’S PUBLICATIONS

1. Panagiota Fatourou and Nikolaos D. Kallimanis, ” A Highly-Effcient Wait-Free Im-
plementation of a Universal Object”, Theory of Computing Systems (TOCS). Spe-
cial issue of SPAA 2011. In press.

2. Spiros N. Agathos. Nikolaos D. Kallimanis and Vassilios V. Dimakopoulos, ” Speed-
ing Up OpenMP Tasking”, In proceedings of the International European Confer-
ence on Parallel and Distributed Computing (Euro-Par 2012), pp. 650-661, Rhodes,
Greece, August 2012.

3. Panagiota Fatourou and Nikolaos D. Kallimanis, ”Revisiting the Combining Syn-
chronization Technique”, In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP 2012), pp. 257-266,
New Orleans, LA, USA, February, 2012.

4. Panagiota Fatourou and Nikolaos D. Kallimanis, ” A Highly-Efficient Wait-Free Uni-
versal Construction”, In Proceedings of the 23rd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA 2011), pp. 325-334, San Jose, California,
USA, June 2011. Invited to Theory of Computing Systems as special issue
of SPAA 2011.

5. Panagiota Fatourou and Nikolaos D. Kallimanis, ” The RedBlue Adaptive Universal
Constructions”, In Proceedings of the 23rd International Symposium on Distributed

Computing (DISC 2009), pp. 127-141, Elche/Elx, Spain, September 2009.

6. Panagiota Fatourou and Nikolaos D. Kallimanis, " Time-Optimal, Space-Efficient
Single-Scanner Snapshots & Efficient Multi-Scanner Snapshots using CAS” | In Pro-
ceedings of the 26th Annual ACM SIGACT-SIGOPS Symposium on Principles of

Distributed Computing (PODC 2007), pp. 33-42, Portland, Oregon, USA, August
2007.

. Panagiota Fatourou and Nikolaos D. Kallimanis, Single-Scanner Multi-Writer Snap-
shot Implementations are Fast!”, In Proceedings of the 25th Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC 2006), pp.
228-237, Denver, Colorado, USA, July 2006.

177

SHORT VITA

Nikolaos Kallimanis was born in Amalias, Greece in 1983. He received his PhD in 2013
from the Department of Computer Science at the University of loannina. He entered with
the 3rd best grade (after participating in the national exams) among the students that
entered at the Department of Computer Science of University of loannina in 2001 and he
obtained his Degree in 2005. He also obtained his MSc in 2007 from the same department.
During his undergraduate and postgraduate studies he received scholarships and awards.
Specifically, he received a scholarship and the best student award during the 3rd year
of his undergraduate studies from Greek State Scholarship Foundation (IKY). His PhD
studies were supported by a scholarship from Empirikion Foundation.

His research interests focus on theoretical and practical aspects on parallel and dis-
tributed computing, with emphasis in the design and analysis of concurrent data struc-
tures. He has published papers in top tier conferences in the domain of distributed and

parallel computing, such as ACM PODC, ACM SPAA, ACM PPoPP and DISC.

	Introduction
	Related Work
	Model
	General
	Pseudocode conventions

	Adaptive Wait-Free Synchronization Algorithms
	The F-RedBlue algorithm
	Algorithm description
	Correctness proof

	Modified version of F-RedBlue that uses small base objects
	Adaptive synchronization algorithms for large objects

	Practical Wait-Free Synchronization Algorithms
	The Sim algorithm
	Algorithm description
	Correctness proof
	An efficient implementation of collect
	Space and step complexity
	Derived lower bounds

	P-Sim: A practical version of Sim
	Algorithm description
	Correctness proof
	Space and step complexity
	Making P-Sim adaptive

	Performance evaluation of P-Sim
	L-Sim: A synchronization algorithm for large objects
	Algorithm description
	Correctness proof

	SimStack: A wait-free implementation of a shared stack
	Algorithm description
	Performance Evaluation

	SimQueue: A wait-free implementation of a shared queue
	Algorithm description
	Correctness proof
	Performance evaluation

	Highly-Efficient Blocking Synchronization Algorithms
	CC-Synch: An efficient synchronization algorithm for the CC model
	Algorithm description
	Time and space complexity
	Required memory barriers
	Correctness proof

	H-Synch: A hierarchical synchronization algorithm based on CC-Synch
	DSM-Synch: An efficient synchronization algorithm for the DSM model
	Algorithm description
	Time and Space complexity
	Required memory barriers
	Correctness proof

	Performance evaluation of CC-Synch, DSM-Synch and H-Synch
	Highly-efficient blocking data structures

	Conclusions and Future Work

