Meédodor EEopuine I'vione and Xuhhoyée Evypdpny

H ATAAKTOPIKH ATATPIBH

UTIOBAAAETAL OTNY
optovelon amd Ty [evinr) Yuvérevon Edwrc Xovdeonc

Tou Turuotoc IIinpogopxrc Eéetaotinr Enttponn

ATTO TOV

Apyipn Kahoyepdrto

0¢ PEPOC TV TToypemoewy Yo T Afn Tou

ATAAKTOPIKOT AIMTAQMATOY. XTHN ITAHPOPOPIKH

Arpthoc 2013

Towelhc LuuBouievtint; Emtoon

Apoteldng Adxag, Avarinpothic Kadnyntic tou Tufpatog IIingogopucrc tou Tlove-
motnuiou Iwavvivey (Enprénwy).

Kwvetavtivog Mriéxag, Enixoupog Kadnyntic Tou Turuatog IIinpogopicsc tou Ilo-
vemo truiou Twavvivewy.

Avdpéag - I'edpyrog Ltaguiondtne, Kadnyntic tne Xyoiic Hhextpohdywy Mryovi-

xwv x Mrnyoavixov Troroyiotov tou E.MUIL

Entapeirc E¢etacting Emtpon

Aptoteldng Adxag, Avamhnpothic Kadnyntic tou Tuduatog [inpogopixhc tou lave-
motnuiov lwavvivey (EmPrénwy).

Kwovotavtivog Mriéxag, Enixoupog Kadnyntic Tou Tuduatog IIinpogopixtc tou Ilo-
vemotruiov Iwavvivwy.

Avdpéag - T'edpyiog Lraguiondtng, Kadnyntic e Xyohivic Hhextpordywy Mryovi-
%V xan Mrnyovixayv Troloyiotov tou E.MUILL

Evayyehio IIitoupd, Avamknewtelo Kadnyrteia tou TuAuartoc Iinpogopixtc tou Tlo-
vemotruiou Twavvivwy.

Havaywwtne Toandpog, Enixovpog Kaldnyntrc Tou Turuatog Tinpogopinrc tou Tlo-
vemotruiou Twavvivwy.

Muyohh Balipyidvyne, Kadnyntic tou Turuatog ITingogopixric Tou Owovourxot Tlo-
vemoTriov Adnvoy.

Arnunrerog T'ouvéroviog, Kadnyntic tou Turuotog IIknpogopuxrc xar Tnlemixotve-
viev tou E.KITA.

DEDICATION

I dedicate this work to my family and to Augousta.
I also dedicate it to all people struggling for socially accessible Public Education of high

quality.

Agiepmve Ny gpyacio auty oTNY otxoyéveld pou xat oty AuyodoTa.
Enlong v aglepavew otoug avipwroug mou aywviCovtor yio 1 Anuoota Aweedy TTodeio

WO TE VoL efvan xowwvixd tpocBdoiun xot UYNAAS TOLOTNTIS.

ACKNOWLEDGEMENTS

I thank the advisory committee, Assoc. Prof. Aristidis Likas, Assist. Prof. Konstantinos
Blekas, and Prof. Andreas-Georgios Stafylopatis, for their cooperation and support. I
would also like to thank the rest of the members of the examination comittee, Assoc.
Prof. Evaggelia Pitoura, Assist. Prof. Panayiotis Tsaparas, Prof. Michalis Vazirgiannis,
and Prof. Dimitrios Gunopulos.

I would like to thank especially my advisor Assoc. Prof. Aristidis Likas for his valuable
assistance and contribution to my research during the past years. But most of all, I should
thank the person Mr. Aristidis Likas for being all these years consistent to the academic
values and practices which created a exceptional environment to develop myself. This
was a great lesson and helped me maintaining my determination for the future.

I would also like to thank Dr. Dimitrios Tzikas, Dr. Vasileios Chasanis, and the PhD
candidate Grigorios Tzortzis, from the Department of Computer Science of University of
Ioannina, for doing their best to create a nice environment to work into.

I also thank my very close friends Andreas Vasilakis, Georgios Margaritis, Nikolaos
Papanikos, and Andromachi Hatzieleftheriou, all PhD candidates at the Department of
Computer Science of University of loannina, for the endless but always interesting talks
we had and all the great times we had in [oannina.

Finally, I would like to thank my parents Odysseas and Svetlana, and my brother
Nickolas, for always believing and unconditionally supporting me. I am grateful to my
parents for the additional reason that they were the primary ‘funding source’ that made
possible for me to reach this far with my education. I should especially thank Augousta

for being supportive and full of understanding to me during my work for this thesis.

CONTENTS

List of Figuresix

1 Introduction 1
1.1 Knowledge mining from document collections 1
1.2 Machine learning for document management)

1.2.1 Document classification. Lo 7
1.2.2 Document clustering 8
1.3 Thesis contribution 11

2 Background and Preliminaries 15

2.1 Characteristics of natural language document collections 15
2.1.1 Linguistic phenomena and complex semantics 16
2.1.2 Statistics: High dimensionality and sparsity 17
2.1.3 Dynamics: Power-laws in natural languages 18

2.2 Overview of a document clustering system 20

2.3 Data preparation 21

2.4 Preprocessing 21

2.5 Document Representation 22
2.5.1 The Vector Space Model 23

2.6 Clustering e 26
2.6.1 Algorithms 26
2.6.2 Performance evaluation00 30

3 Improving Document Clustering Using Global Term Context Vectors

3.1 Introduction,

3.2 Extensions to VSM

3.3 Discussion on VSM variations

3.4 Utilizing local contextual information

3.5 A semantic matrix based on global term context vectors

3.6 Clustering experiments

3.7 Conclusions

4 Clustering Using Synthetic Cluster Prototypes

4.1 Introduction

4.2 Background and context oL

4.2.1
4.2.2

Text representation and representation spaces

Text document subspace clustering

4.3 The k-synthetic prototypes clustering method

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

Clustering using centroids and medoids
Synthetic cluster prototypes oo
Definition of parameters
Refining the solution of k-synthetic prototypes
Selecting the k-sp parameters

Implementation and complexity

4.4 Experimental evaluation o000

4.4.1
4.4.2
4.4.3

Clustering methods
Datasets

Experimental results oo

4.5 Conclusions s,

5 A Framework for Incremental Clustering Using Synthetic Cluster Prototypes

5.1 Introduction

5.2 Data clustering as optimization

i

34
34
35
38
41
44
49
o4

25
25
26
26
o8
62
62
63
68
69
71
71
73
73
75
79
90

5.2.1 General formulation 93

5.3 Prototypes and objective functions oo 94
5.4 Flat prototype-based clustering algorithms 96
5.5 Incremental prototype-based clustering algorithms 98
5.5.1 Divisive prototype-based clustering 99
5.5.2 Global k-means Lo 101
5.6 A framework for incremental clustering 104
5.7 Principles for efficient incremental clustering for HDS data 108
5.8 The global k-synthetic prototypes clustering method 110
5.9 Experimental studyo 112
5.9.1 Setup 112
5.9.2 Experimental results 114
5.10 Conclusions 116

Dip-means: An Incremental Clustering Method for Estimating the Number of

Clusters 125
6.1 Introduction L 125
6.2 Dip-dist criterion for cluster structure evaluation 128
6.3 The dip-means algorithm oo 132
6.4 Extending dip-means in kernel space 133
6.5 Experiments 135
6.6 Conclusions 139
Conclusions 141
7.1 Conclusions and future work 0oL 141
7.2 Directions for future worko 144

i

LLIST OF FIGURES

2.1 Statistics from a text dataset with 4000 documents from 8 classes. (a) the
document frequency of terms as a function of their rank (Zipf’s powerlaw),
(c) the respective log-log scale of (a), and c) the increase of vocabulary
as a function of the number of documents considered in a dataset (Heaps’

powerlaw). 19

v

3.1

3.2

A toy example where the sequence (v, va, vo, vo, 11, V3, V3, V1, V1, V1,
Vs, Vo, v3) is considered that uses three different terms vy, vy, v3 (vo-
cabulary length: V=3). The subfigures present LoWBOW curves in the
(V —1)-dimensional simplex for increasing values of the parameter o that
induce more smoothing to the curve. Each point of the curve corresponds
to a local histogram computed at a sequence location. The more a term
affects the local context at a location in the sequence, the more the curve
point (the lowbow histogram related to that location) moves towards the
respective corner of the simplex. For 0=0 local histograms correspond to
simplex corners, thus the curve moves from corner to corner of the simplex.
Two different sampling rates for LoOWBOW representation are illustrated:
sampling at every term location in the sequence (dashed line) which is the
our strategy to collect contextual information for each term, and sampling
every two terms (solid line). d) For o=00, the LoWBOW curve reduces to
a single point that coincides with the BOW histogram of the sequence. In
(d) we present as ‘stars’ the average ltcv histograms for each term (dtcv
histograms) for the three different values of o and «=0.6 for all terms.

As the value of ¢ increases, the dtcv histograms of all terms become more

similar tending to coincide with the BOW representation.

Various weight distributions for the neighboring terms around a reference
term occurring in the middle of a term sequence of length 50. The distri-
butions are obtained by varying the value of parameter « in Eq. 3.8. This
distribution defines the contribution of each term to the context of the spe-

cific reference term. The scale value of the local kernel is set to =5, while

self-weight « is set to 0.05 (left), 0.10 (middle), 0.2 (right).

45

3.3

3.4

4.1

An example of how lfcv histograms are used to summarize the overall
context in which a term appears in the two term sequences of (c) using
Eq. 3.12. a) The term sequences (x-axis) of documents A, B are presented
and the corresponding ltcv are illustrated as grey-scaled columns. Those
vectors are computed at every location in the sequence using a Gaussian
smoothing kernel with o=1 and a=0.6 for all terms. Brighter intensity
at cell ¢, j indicates higher contribution of the term »; to the local con-
text of the term appearing at location j in the sequence. b) The resulting
transposed semantic matrix (S7), where the gray-scaled columns illustrate
the global contextual information for each vocabulary term computed by
averaging the respective local context histograms (Eq. 3.11). ¢) The two
initial term sequences (the stem of each non-trivial term is emphasized).
Assuming the same idf weight for each vocabulary term, the table presents
the BOW vector, the transformed vector d’ using Eq. 3.12 as well as the
effect of semantic smoothing (diff =BOW —d’) on document vectors. The
redistribution of term weights, that results by the proposed mapping, re-
veals is done in such a way that low frequency terms are gaining weight

against the more frequent ones. Note also that the similarity between the

two documents is 0.756 for the BOW model and 0.896 for the GTCVM. . .

The effect of varying the parameter A on the spk-means clustering perfor-

mance for each dataset. Eq. 3.9 is used to determine the term self-weight

a, when computing the [tcv histograms.

The k-sp framework using synthetic prototypes.

vi

46

4.2 A cluster example that combines two data classes. It illustrates the ratio-

nale of using objects around the cluster medoid to favor the representation

of the dominant class A and to enable the reassignment of the objects

of the other class(es) to other clusters. (a) Object-level view of a clus-

ter where the medoid’s nearest neighbors belong mostly to the dominant

class. (b) Feature-level view of a multidimensional cluster that illustrates

the imaginary histogram of the feature frequency for each of the classes.

On the horizontal axis, we suppose an ordering where features that exist

in both class (probably noisy) lay between the two peaks of representative

class features. (¢) The histogram of the cumulative feature frequency over

both classes. The respective distributions are also presented for the medoid

and the MedoidKNN®) cluster prototypes. 67
4.3 The decrease of average similarity between different types of cluster pro-

totypes and the nearest objects around them as the number of neighbors

increase. The datasets consist of objects belonging to a dominant class

and two other classes corresponding to noise. We considered three per-

centages for the objects of the noisy classes: (a) a pure dataset (0%), (b)

25%, and (c) 40%. MedoidK(.6)NN-nincr denotes the reference prototype

constructed non-incrementally using the 60% of the objects of each dataset. 78
4.4 The evolution of the average (Q-index with clustering iterations for 50 ran-

domly initialized runs using the Més) dataset. 80
4.5 Experimental results on four artificial datasets of increasing cluster over-

lap, from AS) to Affl), where the line-plots indicate the solutions of k-sp

method with different parameter values. The respective results for the

refined solutions are also reported. 81
4.6 Experimental results for instances of the RS, and Mg problems with differ-

ent cluster sizes. 82
4.7 Experimental results for instances of the Mg problem with different cluster

sizes, Talks, Miniyy and NGy datasets. 83

vil

0.1
5.2
5.3
0.4
2.5
2.6
2.7
2.8
2.9
5.10
5.11
5.12
5.13
5.14

6.1

Slow incremental clustering versions for RS&S) 118

Fast incremental clustering versions for RSELS). 118
Slow incremental clustering versions for Més). 119
Fast incremental clustering versions for Més) 119
Slow incremental clustering versions for Més). 120
Fast incremental clustering versions for Més) 120
Slow incremental clustering versions for MéM). 121
Fast incremental clustering versions for MéM). 121
Slow incremental clustering versions for Miniyg. 122
Fast incremental clustering versions for the Miniyg. 122
Slow incremental clustering versions for the artificial dataset Af’). 123
Fast incremental clustering versions for the artificial dataset Af’). 123
Slow incremental clustering versions for for the artificial dataset Asq. . . . 124
Fast incremental clustering versions for the artificial dataset Agy. 124
Application of dip-dist criterion on 2d synthetic data with two structures

of 200 datapoints each. The split viewers are denoted in red color. (a) One
Uniform spherical and one elliptic Gaussian structure. (b)(c) The his-
tograms of pairwise distances corresponding to the strongest and weakest
split viewer. (d) The two structures come closer; the split viewers are re-
duced, so does the dip value for the split viewer. (g) The two structures
are no longer distinguishable as the density map in (h) shows one mode.
(i) The Uniform spherical is replaced with a structure generated from a

Student-t distribution. 131

viil

6.2 Clustering results on 2d synthetic unimodal cluster structures with 200
datapoints each (the centroids are marked with ®). (a)(b) Single cluster
structures. (c) Various structure types. Based on the leftmost subfigure, it
contains a Uniform rectangle (green), a sphere with increasing density at its
periphery (light green), two Gaussian structures (black, pink), a Uniform
ellipse (blue), a triangle denser at a corner (yellow), a Student-t (light
blue), and a Uniform arbitrary shape (red). (d)(e) Non-linearly separable

ring clusters (kernel-based clustering with an RBF kernel).

X

LLIST OF TABLES

3.1

3.2

3.3

3.4

3.5

3.6

Characteristics of text document collections. N denotes the number of doc-
uments, V is the size of the global vocabulary and V; the average document

vocabulary, Balance is the ratio of the smallest to the largest class and T

is the average length of the term sequences of documents.

NMI values of the clustering solution for VSM (BOW), GVSM, CVM and

the proposed GTCVM (for several values of o) document representations

using the spk-means algorithm.

Fi-measure values of the spk-means clustering solution for the different

representation methods. o Lo

The p and t values of the statistical significance t-test of the difference
in k-means performance using GTCVM (0=10) and the compared repre-
sentation methods, with respect to the two evaluation measures. Values

of p smaller than the significance level of 0.05 (5%) indicate significant

superiority of GTCVM.

NMI values of the clustering solution for VSM (BOW), GVSM, CVM and

the proposed GTCVM (for several values of ¢) document representations

using the spectral clustering algorithm.

Fi-measure values of the spectral clustering solution for the different rep-

resentation methods.

3.7 The p and ¢ values of the statistical significance t-test of the difference in
spectral clustering performance using GTCVM (0=10) and the compared
representation methods, with respect to the two evaluation measures. Val-
ues of p smaller than the significance level of 0.05 (5%) indicate significant

superiority of GTCVM.

4.1 Datasets used in the experimental evaluation
4.2 The percentage of features retained in the synthetic cluster prototypes for
a cluster containing 300 documents from the first topic of Talks dataset.
The centroid contains all the 4264 non-zero dimensions of the cluster. . . .
4.3 Clustering results on the Més) dataset using k-sp variants.
4.4 The NMI, Purity measures for the refined solutions found for each dataset.
Bold values indicate the best result per column. The underlined t-values
denote the cases where according to the statistical t-test k-sp appears not
to be significantly better (0<t-val<1.999), or appears to be worse than the

compared method (t-val<0). Lo

5.1 Different parameter setups that reduce the generic clustering framework

procedure to popular incremental algorithms.

6.1 Results for synthetic datasets with fixed k*=20 clusters with 200 datapoints
in each cluster.
6.2 Clustering results for real-world data. Bold indicates best values.

6.3 Clustering results for text data. Bold indicates best values.

xi

ABSTRACT

Kalogeratos, Argyris, O.
PhD, Computer Science Department, University of loannina, Greece. April 2013.
Knowledge Extraction Methods from Document Collections.

Thesis Supervisor: Aristidis Likas.

This thesis studies the problem of document clustering. Given a document collection,
at first, preprocessing, and feature extraction take place. As a result, each document is
usually represented using a vector space model where the non-negative dimension weights
describe the significance of the respective term features. The properties of such a feature
space are: i) the high dimensionality that is of the order of thousands of features, and
ii) sparsity which reaches 99%. In this dissertation, methods are studied and developed
for document representation and knowledge extraction regarding the cluster structure of
a dataset.

At first, a vector space model is presented which, without supervision, revisits the
traditional assumption about the term independence. A Global Term Context Vector
is computed for each term feature of the collection, which embeds the context in which
a term appears in the documents (term co-occurrences). Next, a semantic matrix is
constructed based on which the document vectors are mapped in a denser feature space
of the same dimensionality. The effectiveness of the proposed representation model is
experimentally studied in the context of document clustering.

The second contribution of this work is the k-synthetic prototypes clustering method

that is based on the spherical k-means. Its novelty lays at the introduction of the synthetic

xii

prototypes as cluster representatives. The proposed incremental approach for the compu-
tation of a synthetic prototype uses the K nearest neighbors of the cluster medoid. The
interesting property of this approach is that it favors the representation of the documents
of the dominant class in the cluster. In this way the clustering algorithm manages to
overcome problems caused by bad initializations. In the experimental study, this method
is compared to a series of widely-used document clustering techniques.

In the chapter that follows, incremental clustering algorithms are studied, which add
the k+1 data based on a solution containing & clusters. A general framework for incremen-
tal clustering is presented which applies partial update of the solution when introducing
the k+1 cluster. This framework covers known incremental algorithms, such as bisecting
k-means, global k-means, and various extensions of them. Next, global k-synthetic pro-
totypes algorithm is proposed which is experimentally compared to existing incremental
approaches achieving better clustering results on document collections.

The next chapter concerns the problem of estimating the number of clusters in a
dataset. Dip-dist criterion is proposed which considers each object of a cluster as a
‘viewer’ and applies a univariate statistic hypothesis test, the dip-test, to examine uni-
modality in the distribution of the distances between the viewer and the rest of the objects
in cluster. This criterion is incorporated by the incremental dip-means method. The only
assumption of this method is the unimodality of all clusters. Important advantages are:
i) the unimodality test is applied on univariate distance vectors, and ii) it can be di-
rectly applied with kernel-based methods, since only the pairwise distances are involved
in the computations. Experimental results on artificial and real datasets indicate the

effectiveness of our method and its superiority over analogous approaches.

xiii

[TepliAndn

Apyvpne Kahoyepdtog tou Oduccéa xon tng LBeTAdvag.
PhD, TuApa [Iinpogopurc, Ilavemothuo Iwavvivwy, Arpiiiog, 2013.
Médodor E€aywyrc I'voone and Lulhoyés Eyypdpwy.

EmupBiénovrag: Apoteldng Alxag.

H nopotoa ot aoyoheitan ye 1o mpéBinua tne ouadonoinone eyypdgwy (document
clustering). Aodelong plo cukhoyhc eyypdpwy Quowxhc Yhwooac (corpus), xotopyfv e-
papu6leTon mpoeneCepyacion xon eEayWYY| YOLAXTNPIC TIXWY OPWY (terms). Q¢ ATOTEAEGUAL,
x&e eyypapo cuvdwe avorapioToton Pe €va Slavuouatixd uovtého (vector space model)
6ToU To un apYNTIXO Pdpog xdie BidoTacng TEQLYPAPEL TN CNUAVTIXOTNTAU TOU AVTIoTOLY0U
YoaxTNEo ol 6pou. O IBLOTNTEC aUTOU TOU YWEOL avamdpdoTacne efval: o) 7 TOAD U-
A Brdotaon TS TEENG TV YIAEOWY YopaxXTRELo TIXGDY, xot B) 1 apadTnTa mou oy yilel To
99% (high dimensionality and sparsity). Xtn Swtpl) yehetdvton xar avantioccovto ué-
Yodol avamapdotaorg xat e€aywyic TANRowoplag oYETIXNG Ue T1) SoUY| OUddWY GTr) GUANOYT
eyypdpwy (cluster structure).

Apyid mpoteivetan €vor UOVTERO DAVUOUATIXAG AVAUTULUO TACTS EYYRPAPWY, T0 oTolo, di-
Yw¢ eniBiedn, emaveletdlel Ty mapadoctoxt) undleoy avelaptnoluc TwV Gpwyv (term inde-
pendence). T xdde 6po tou Aelxol egdyetan To aVTOTOLYO YEVIXEUUEVO BLAVUCU GUU-
ppalouévewy 6pwv (global term context vector) to omoio EVOWUATWVEL T GUUPEalOUEVT]
TANpogopla Yipw amd T eupavicec Tou Gpou oTa Eyypaga (cuv-pgavicels dpwy). X
OLVEYELL, AKATAOHEVALETOL EVOC ONUACIOAOYIXOE Tivoxag Bdcel Tou omolou TeoPdilovTon Ta

OLVOOUUTA DEDOUEVWY GE EVAY TUXVOTERO YWEO (BLag DIdoTaoNG. 1T0 GTAOO AUTO PEAETY-

Xiv

Ve 1 CUUPBOAT| TOU TEOTEVOUEVOU LOVTEAOU QVITORAC TAOTS GTNV OUAOOTONGT) EYYRAPLY.
"Totepa napouctdletar 1 pédodoc oyadonoinong eYypedpwy k-cuvieTixwy TeeToTITWY
(k-synthetic prototypes). H pédodoc Baocileton otov ooupiné k-yéowv (spherical k-means)
UE TNV TewToTUTA OTL ELOAYEL TOUS GUYIETIX0UC AVTITPOCMOTOUC Yia Ti¢ ouddes. H npotewvo-
HEVT aLENTIXY TPOGEYYLOTN YL TOV UTOAOYIOHO EVOS GUVUETIXO0U AVTITOOCWTOU YPNCUOTOLEL
o K avtixeipeva mou Bpioxoviar eyyitepa 610 evdidueco avtixeiuevo plac ouddag (medoid).
H evoiagpépouca dtoTnTor auTrig TG TROCEYYIONE EiVol OTL EUVOEL TNY AVUTARAG TUCT) TNG XUEL-
apy NG xhAoNG DEDOYEVMY OE Uit Opdda EMITEETOVTAG UE AUTO TOV TEOTO TNY amo@uYY) AOGEWY
TOTIXWY EAAY{OTWY MoYw xoxrc apyxonolnone. Ytny melpapotixs UEAETT cuyxpiveTon 1) Ué-
Yodog auth| ue plo oelpd amd eUPEWS YENOULOTOLOUUEVOUS dAYOpLIUOUS ouadoTolnoTg.

Y1 ouvéyel, ehet@vTon ahyoptiuor auintixic opadoroinong (incremental clustering),
ot onofot elodyouy TNy k-+1 oudda dedopévwy Pactlouevol otr Ao k ouddwy. Apyxd ma-
povatdletan éva yevixo mhaioto (clustering framework) mou eqopudlel tn pepind evnpépwon
e k+1 Mong xotd tny etoaywy plag véag ouddag (partial update). To mhaiow autd xohd-
TTEL YVOO T00C auéNnTinole alyoplipous, OTwe 0 BIUEPLO TIXOS k-PECKY (bisecting k-means),
o yevixeuuévog k-uéonv (global k-means), xou oLdpopeg mapahhayég toug. Ilpotetveton, Oe,
0 yevixeupévog ahybprduoc k-ouvdetixdy tpwtotinwy (global k-synthetic prototypes) o
0T0{0g GUYXPIVETOL TEIRPAPATIXNG PE UTARYO0UOES auEnTixéC TEOCEYYIGES EMOEYIOVTAS XOo-
AOTEQA ATOTEAEGUATA OPADOTOINONG OE GUALOYES EYYRAPWY.

H televtaia evotnra tng drpiric agopd to mpolinua extiunong tou aptduod Ttwyv
ouddwy oe €va oUvolo dedopévwy. Do v mpocéyyion Tou mEoBAfuaToc TeoTefveTH 1O
xprthpto dip-dist To omolo Yewpel xdlde avtixeiyevo tng und eZétaon ouddog we TapaTnenTH
2o EQApUOCEL €VoL OTATIOTIXO TEGT HOVOTROTUIXOTNTOG (unimodality dip-test) OTNV XATA-
VOUY) TV ATOCTACEWY UETAL) TOU TURATNETTY X0t TV UTOAOITWY AVTIXEWEVWY TNG OUAOS.
1n ouvéyela, neptypdpeton 1 avdntixy uédodoc din-yéowy (dip-means) tng onolag 1 povo-
our| unoveon ebvar 1 wovotpomixdtnTa xdde ouddag. Ta TAEOVEXTAPATA TNG TROTEWOUEVTS
TEOGEYYIOTS Efval OTL TO GTATIOTXG TECT Eapuoletar oe 1A xatavoués, evay Yo uropolioe
va yenoworoinvel xau og uedédoug Tou Paciloviar GToV TV OUOLOTNTIG (kernel-based

methods), mou dev anartolvtar o mporyuatixd Staviouata Sedouévov.

XV

CHAPTER 1

INTRODUCTION

1.1 Knowledge mining from document collections
1.2 Machine learning for document management

1.3 Thesis contribution

1.1 Knowledge mining from document collections

During the last years the electronic means of communication have acquired a dominant
role in developed societies. The plethora of services provided on the world wide web
(WWW), such as electronic social networks, have made it the primary communication
and entertainment tool for many people. One of the most important changes happened
was that the user is now both content consumer and producer at the same time.
Nowadays, in the era of cloud computing, the data being produced, stored, and pro-
cessed electronically, are massive in volume and present an increasing rate of growth.
Electronic publishing, digital libraries with text articles, e-books, images and videos, e-
mails, broadcast news articles, user blogs, and other conventional websites, are just some
of the activities that need to manage large volumes of data. This data management

burdens users, that have to spend time to organize or search content, and of course the

computer systems. Either in a local scale or in the large-scale of modern distributed
systems, manual data management and processing are of unbearable economic cost and
sometimes even impossible to be done in reasonable time. On the other hand, naive au-
tomatic methodologies fail to scale to real-life complex problems in terms of accuracy of
results or computational cost. It is clear that, despite the improvement of computer sys-
tems performance, this computing power itself cannot meet the evolving modern needs.
Efficient automatic or semi-automatic methods for content-based document management
tasks, organization, and information retrieval, are of great significance.

Another great challenge where machine learning (ML) and data mining (DM) proce-
dures can contribute to human knowledge and science is encapsulated in the quotation
“data can create new data”. Specifically, various scientific problems can be investigated
by the means of processing large volumes of recorded information relevant to the problem.
In this way, directly or more often after post-processing and external evaluation of the
extracted information, new knowledge may be acquired (e.g. classifiers, interesting rules,
feature correlations). In the worst scenario, some hints may be obtained to help the setup
of focused further research. Examples are the analysis of human genetic material (DNA,
RNA) for the identification of suspicious genes for various diseases, or the analysis of
hundreds of thousands images from the web to extract visual features for object/scene
recognition tasks. Large datasets have being collected the last decades and, obviously, the
bottleneck towards taking advantage of such data volumes lays at the side of computer
systems and the efficiency of the methods developed by computer scientists.

Text is the basic format in which information is represented, thus, the processing op-
erations should be able to handle properly this type of data (e.g. transmission, archiving,
indexing, and searching). Organizing and mining information from text data has become
one of the most active scientific fields of ML and DM communities, usually called col-
lectively as text mining (TM). With the term ‘document’ we refer to the general data
instance which may include information of the following types: text, images, videos, or
any other composite multimedia content. Composite documents with various such data

types is actually the most usual case in web. Computer algorithms cannot use the raw

format of these documents, hence a representation is required in a standard format such
as the vector space model (VSM) [1, 2] where a vector stores the weight of significance
for each feature of a data object. The extracted text features can be the different words,
or more complex composite features. The bag of words (BOW) is the most traditional
text document representation model, where the set of word-terms is called vocabulary and
forms a vector space (VS).

It must be noted that both images and videos (a sequence of image frames) can also be
represented in a similar way called bag of visual words (BOVW). Here, a visual vocabulary
is constructed by processing low-level visual features (e.g. color, texture, shape) from the
dataset, and the data objects are then mapped in the respective VS [3, 4].

One fundamental difference between text and other multimedia content is that text
provides better low level features. Word-terms have specific discrete encoding with written
letters and can be directly used to define the feature space of BOW model. Contrary,
it is not that trivial to extract good quality low-level features from images and videos.
Additionally, those features are usually represented in a continuous vector space (e.g.
SIFT features [5]) and a vector quantization is required to transform them into a discrete
feature set that could then be used in BOW model. The quantization is usually performed
by means of clustering the low-level features to form the visual words. The mapping of
features into the visual words can be done using the hard membership to one cluster
or, alternatively, it is possible to introduce ambiguity using soft assignment to clusters
[6]. Nevertheless, the semantic-gap is present, at any case, and multimedia content-based
management faces problems similar to those for text documents when extracting the
high-level semantics [7]. In fact, semantic enrichment and smoothing methods proposed
for video representation have clear origin from text mining, such as the locally weighted
visual BOW [8]. Another important difference is that, in contrast to the 1d term sequence
of text, image features have 2d spatial structure that enables the use of spatial feature
matching [9]. By projecting this spatial structure onto a proper direction, visual sentences
can be created [10] and then language modeling is applicable.

Another paradigm of the importance of text processing is that text is the dominant

format of descriptive metadata. Tagging is a common practice where human assigns a set
of textual terms to a data object, termed as tags or text annotations. Although, in the
digital world, tagging was introduced for text mining and the web search, it is currently
widely-used practice also for other multimedia content in order to help representation
and retrieval. The need to increase the utilization of textual tags, and the need to tackle
problems caused by misuse of tags by authors, have led to the development of various
fully automated tagging methods, or others for tag recommendation to authors [11, 12].

All the above explain why text mining is one the of the most active ML and DM fields
and the reason why numerous state-of-the-art methods that have been developed for text
are successfully used in other data processing domains. However, the idea of automatic
organization of texts comes from the early ’60s. Until the late '80s, the most popular
approach to partition a set of documents into groups was knowledge engineering (KE). A
set of rules in disjunctive normal form (DNF) was used to determine the category of a
document:

if (DNF rule) then (category).

A rule may examine the presence of a term, or the co-occurrence of various terms in the
document, and each class is described by a set of such rules. Domain experts and engineers
were responsible for the creation of the rules of the knowledge base. The main drawback of
this approach is known from the field of ezpert systems and is called knowledge acquisition
bottleneck. More specifically, the expert system cannot create new rules automatically,
thus, it does not generalize/adapt to similar problems other than the problem it was
trained on. Any change in its parameters (e.g. addition of categories, or new terms)
requires the domain experts to re-intervene manually and update the ruleset. Moreover,
the knowledge sources can be unreliable since domain experts may provide incomplete or
incorrect information. Finally, the knowledge base is hard to build and very expensive
to maintain. On the other hand, these systems provide interpretable decisions which is a

requirement of high priority in some applications.

1.2 Machine learning for document management

Considerable research activity has been conducted since the early ’90s. Back then, the first
steps were made for machine learning techniques [13], [14] which present the advantage
that the specification of the rules is severely limited (e.g. with classification the experts
should classify manually a small set of documents that are examples used for training), or
completely eliminated (using an unsupervised clustering approach). In this dissertation
we focus on unsupervised document representation and clustering.

A fundamental difference between ML methods is the existence or absence of supervi-
sion. Supervised learning methods use an auxiliary dataset that contains example objects
of the data categories we need to identify in the unknown data. In contrast, unsupervised
learning methods attempt to discover the underlying group structure of the objects by
directly processing the unknown input data. One should realize that unsupervised learn-
ing is not just the last option for the case where there is no ‘explanatory’ labeled data
provided by human:

e supervised learning aims to ‘émitate’ the human perception on a problem by discov-

ering the important rules to reproduce the indicated behavior, whereas,

e unsupervised learning aims to capture relations between objects and then to discover

the intrinsic structure of data, imposed by those relations.

In other words, even if we have supervised information, we may still choose to apply
unsupervised learning in order to extract information we are not presently aware. Fur-
thermore, it is interesting to mention that the two approaches can be complementary.
In many applications, unsupervised techniques are used during data preprocessing in or-
der to estimate individual parameters of the problem. This is done independently to
the supervised technique that is finally applied. Reversely, it is possible to reinforce the
unsupervised learning procedure using a labeled dataset along with the unknown data
(partially labeled dataset). This latter hybrid approach is called semi-supervised learn-
ing. Among the popular supervised learning problems are classification and regression,

while respectively for unsupervised learning, clustering and density estimation.

A second conceptual difference among ML methods is that they may adopt a discrim-
inative learning or, alternatively, a generative learning approach to solve a problem. A
generative model learns the problem and its decision is based on how interpretable is a
case under the different possible scenarios it is trained to handle. A discriminative model
follows a much simpler way: it does not learn the problem itself, but focuses on learning
the differences between the possible scenarios in order to discriminate them. This catego-
rization is mostly mentioned in the context of supervised learning, but it applies also in
the unsupervised setting. Recently, those two approaches are being used in combination
to enhance the learning process [15].

Other characteristics may divide the ML techniques further, but vertically to the
aforementioned cases. For example, if they can work with overlapping data categories
(e.g. in classification and clustering), handle outliers or noise, handle categorical data, or
data representations other than vectors, and others.

Unlike other ML problems where data are represented with a small set of features,
even small text datasets carry large vocabularies and certain undesirable effects arise due
to the curse of dimensionality [14]. The high dimensional and sparse (HDS) feature space
in combination with linguistic phenomena such as polysemy, homosemy and metaphors,
constitute an adverse setting for clustering methods. When a labeled training dataset is
provided, several statistical options are available for feature selection [16, 17], even in case
of multi-labeled data objects [18]. On the other hand, it is more complicated to select
features in an unsupervised setting, which is usually achieved using heuristics [19-22].
Methods such as latent semantic indexing (1.ST) [23], or latent Dirichlet allocation [24]
(LDA), may discover the term correlations but they map the data into a feature space
of much lower dimensionality. Vector space representations of other multimedia content
present similar weaknesses due to the large number of features required to describe the
data.

In general, it is a widely-known issue to have a difference between the human under-
standing about a data object, i.e. its actual perceived meaning and the information of

its corresponding representation in a well-defined mathematical space which enables com-

puter processing. This is called as semantic gap and its extend depends on the complexity
of the original data and the efficiency of the involved representation model. In what con-
cerns documents, the abstract and complex semantics of text and multimedia content is
very difficult to be encoded by a formal representation, and this is one of the directions
on which there has been a lot of research activity recently. The term semantic gap is also
used to express the difficulty to move from a data representation with low-level features
to another representation of higher semantic level (e.g. concept-based representation for

text or images).

1.2.1 Document classification

In classification, or categorization, the aim is to identify specific document categories in
an unknown input dataset. In the simplest case of one category, a single-class classifier
is trained to determine whether an object belongs to that category. The output decision
can be binary, or probabilistic, also called as hard and soft decision, respectively. It is
straightforward for soft decisions to be produced by a generative classifier since they are
inherent (e.g. naive Bayes). However, specialized techniques may produce such class
interpretation weights from a discriminative classifier, e.g. with a calculation that uses
the distance of an object from a separation hyperplane as in support vector machines
(SVM) [25].

Multi-class classification is implemented either using a single classifier that can handle
more than one categories (e.g. neural networks, decision trees etc), or using multiple
two-class classifiers that are employed as components of the classification model, each
one responsible for one data category (e.g. one-versus-all SVM). Since there is a rich
literature available for two-class classification, the use of multiple such classifiers offers a
direct generalization, although their combination usually requires careful setup.

Formally, classification is the process where, provided a dataset D={dy,...,dy} con-
sisting of |D|=N objects and a set L={l;,...,[ps} with |L|=M predefined category labels,

a binary value is assigned to each pair (d;, [;). The problem can be formulated as the

approximation of an unknown mapping function f: DxL—{true,false}, which would
perfectly assign objects to their true categories. This is approximated by the function
implemented by the classifiers, f.: DxL —{true, false}, which attempts to minimize the
decision disagreement between f. and f. The learning of the approximation function is
conducted using examples provided in a training set Tr={(d;, K;), i=1,...,|N1|}. The
requirement for a training set makes classification a supervised ML technique.

Many popular classifiers have been applied to text documents and other multimedia
content, such as support vector machines, neural networks, naive Bayes, linear least square
fit, k-nearest neighbors, inductive logic programming, genetic algorithms, rule-based sys-
tems, and statistical analysis. Extensive comparisons of text classification methods can
be found in [26, 27]. As for regression, the predicted output is not a discrete label but a
set of real numbers. It is less popularly applied in document datasets, however there are
such methodologies in literature [28].

Classification finds practical application in a wide variety of domains, such as news
filtering, organization and retrieval, opinion mining, e-mail categorization and Spam fil-
tering. All the aforementioned organization and retrieval problems can be defined analo-

gously for other multimedia data types.

1.2.2 Document clustering

Document clustering is an unsupervised learning approach that automatically segregates

similar documents of a corpus into the same group, called cluster, and dissimilar docu-
ments to different clusters. It is employed in both contexts of data analysis [29]:

e in exploratory data analysis where the aim is to discover patterns in the input data
which then would help to formulate hypotheses about the data properties

e in confirmatory data analysis where the target is to validate empirically a given

hypothesis by analyzing the input data.

This document management approach has become very popular due to the nature of

modern problems. More specifically, when the order of the information volume is hundreds

of thousands of documents (even millions), with dynamic changes in their thematic groups,
then supervision is particularly disadvantageous and costly in many respects. Computa-
tionally, it is NP-hard to find the optimal grouping of data even for 2-dimensional data
[30], or the 2-clustering case [31]. However, there exist efficient algorithms that approxi-
mate the solution in O(N?) time.

Formally, provided a dataset D with N unlabeled documents, a solution C is seeked
that partitions the dataset into M clusters of similar objects, where C={¢;: j=1,...,.M}
and ¢; is the set of objects assigned to j-th cluster (definition for hard clustering). The
number of clusters M is usually predetermined and provided as an input parameter to
the clustering algorithm. However it is highly desirable for a method to be able to deter-
mine the number of clusters without external information. Although there are plenty of
efficient clustering algorithms, finding the number of clusters is still a problem for which
there exist no general and effective approach [32]. Clustering utilizes low-level structural
information, the relations between objects (similarities, or dissimilarity), to infer the
high-level group structure of data. A function that measures the pairwise object rela-
tion is called (dis)similarity function and plays a crucial role in the performance of the
clustering process.

Ideally, each cluster would correspond to one underlying class of objects, whereas it is
worth to note that in complex problems there are more than one ‘correct’ or ‘reasonable’,
data partitions. Therefore, the extracted cluster structure is not necessarily expected to
coincide with human perception. The positive effect of this issue is that clustering may
discover new knowledge about data relationships and structure. On the other hand, the
negative effects are mainly three. First, most clustering algorithms conclude a clustering
structure irrespectively to whether an actual structure exists in data. Hence, it is advis-
able, before applying clustering, the data analyst to investigate the ‘clusterability’ [33-35)]
of the dataset in order to decide whether there is interesting cluster structure to be ex-
tracted. Of course this is another difficult problem that depends on the characteristics
of the clustering algorithm we use. The second difficulty posed by the multiple correct

clusterings is how to define a proper evaluation process for the quality of clustering solu-

tions without taking into account the context of each clustering method. In other words,
how can the analyst select a result among various clusterings produced by conceptually
diverse algorithms? Third, it has been shown that it is not easy to define a unified cluste-
ring framework for all methods due to its in principle incompatibility [36]. All the above
indicate that data clustering is an ill-posed problem without sound general theoretical
background. This is a direction on which much research is recently focused.

There is a large number of clustering methodologies with different characteristics [37—

40]. In literature, these algorithms are separated into three broad categories:

e hierarchical clustering, which produce nested groups following a general-to-specific
(or top-down) approach. Similarly, it is possible to adopt a specific-to-general (or
bottom-up) approach.

e partitional clustering (also non-hierarchical or flat) which iteratively improve the
quality of clustering based on some kind of unsupervised clustering evaluation cri-
teria.

e density-based clustering which recognize continuous dense areas in data space as

clusters. These groups may have arbitrary shape.

One could revise the above categorization and introduce incremental clustering. In order
to build a solution with M clusters, incremental methods start with one cluster containing
all data objects (or a given small number of clusters) and incrementally add more clusters
until the desirable number of clusters M is reached. It is essentially different to top-down
hierarchical clustering because in incremental clustering no cluster hierarchy is preserved.

It is possible to define other categorizations of clustering methods, for instance, ac-
cording to whether a method assigns each object in only one or more than one clusters. In
this case, we may distinguish hard and soft clustering, respectively. Also methods may dif-
fer on whether they work with all dataset known in advance (offline clustering), or they
assume that documents arrive sequentially (online clustering). Kernel-based clustering
methods require only the pairwise object similarities (kernel matriz), while typical meth-

ods require the actual data vectors. Finally, for high dimensional data, there are methods

10

that discover clusters by determining subspaces of the feature space where clusters are
more clearly observable (subspace clustering) [37, 40].

The most widely-used algorithms for document clustering are those based on popular
general clustering methods, such as k-means [41] and hierarchical agglomerative clustering
[42]. These methods may appropriately modified to adapt to the special needs of high
dimensionality and sparsity of document feature spaces. Finally, subspace clustering
methods and generative topic models have recently shown to perform well.

Some modern information management applications of document clustering are:

e grouping of data to assist storage, caching, indexing and retrieval in large-scale

systems,

e feature space summarization and codebook generation for representing high dimen-

sional multimedia data,

e automatic creation (or enrichment) of ontologies, knowledge bases, or general tax-

onomies of information entities,

e word sense disambiguation,

e recommendation systems,

e visualization and browsing document collections,

e automatic summarization of texts, or groups of texts,

e segmentation of data streams in events/stories/topics,

e automatic metadata generation (tagging).

1.3 Thesis contribution

This dissertation deals with the problem of clustering documents. The main difference
of this problem compared to general clustering is the nature of the data need to be
processed. Document data are high dimensional and sparse (HDS) and put additional
difficulties to the already difficult problem of data clustering. We study the document
clustering problem in various perspectives:

11

e the vector representation, where the traditional feature (term) independence in VSM
seems to be an over-simplistic assumption,

e the prototype-based cluster representation and the document clustering algorithm,

e finally, we revisit one of the most important, however still open, problems of data

clustering: the estimation of the number of clusters.

The organization of the rest of the thesis follows.

In Chapter 2, we provide the important preliminaries and background regarding the
preprocessing, representation and clustering of document collections. We also provide a
detailed presentation of the related state-of-the-art approaches.

In Chapter 3, we present the global term context vector model (GTCVM) for text
document representation [43]. It is an extension to VSM approach that maps document
vectors onto a new feature space based on term similarity, where clustering can achieve
better solutions. The method proceeds as follows: i) it captures local contextual informa-
tion for each term occurrence in the term sequences of documents; ii) the local contexts
for the occurrences of a term are combined to define the global context of that term; iii) a
proper semantic matrix is constructed using the global context of all terms; iv) this matrix
is further used to linearly map traditional VSM (bag of words - BOW) document vectors
onto a ‘semantically smoothed’ feature space where problems such as text document clu-
stering can be solved more efficiently. We present an experimental study demonstrating
the improvement of clustering results when the proposed GTCVM representation is used
compared to traditional VSM-based approaches.

In Chapter 4, we investigate the centroid-based cluster representation for HDS data.
We propose the idea of synthetic cluster prototype that is computed by i) first selecting
a subset of cluster objects (cluster members), then ii) computing the representative of
these objects and, finally, iii) selecting important features. Further, we introduce the
MedoidKNN synthetic prototype that favors the representation of the dominant data
class in a cluster. These synthetic cluster prototypes are incorporated into the generic

spherical k-means procedure leading to a robust clustering method called k-synthetic

12

prototypes (k-sp) [44]. Comparative experimental evaluation demonstrates the robustness
of the approach especially for small datasets and clusters overlapping in many dimensions
and its superior performance against traditional and subspace clustering methods.

In Chapter 5, we present a framework for incremental prototype-based clustering that
is based on partial updates (PU) on a given solution. A PU is defined by the activity state
(active or inactive) of clusters, objects, and their prototypes, indicating whether they
are kept fixed in a certain k-means iteration. Two widely-known incremental clustering
approaches, global k-means and divisive k-means, are revisited and unified according
to this analysis. Focusing on HDS spherical data, we discuss in detail the difficulties
encountered when increasing the order of a current k-clustering solution by adding one
new component. Then, the use of synthetic cluster prototypes is extended for incremental
prototype-based clustering. To this end, we propose the novel global k-synthetic prototypes
(gk-sp) clustering algorithm, which iterates similarly to the global k-means algorithm. The
gk-sp method uses the k-synthetic prototypes method for fine-tunning the k-solution, and
introduces a partial update scheme to setup the initial k+1 prototypes for the refining
phase. Similarly, the bisecting k-sp (bk-sp) and global bisecting k-sp (gbk-sp) are also
proposed. Experiments on well-known and artificial datasets illustrate that the proposed
gk-sp method outperforms other competitive incremental and flat methods of the k-means
family, in terms of clustering error and external clustering evaluation measures.

In Chapter 6, we deal with the problem of estimating the number of clusters in a
dataset which is a key problem in data clustering. For this purpose, we present dip-
means, a novel robust incremental method to learn the number of data clusters [45].
This method can be used as a wrapper around any iterative clustering algorithm of k-
means family. In contrast to many popular methods which make assumptions about the
underlying cluster distributions, dip-means only assumes a fundamental cluster property:
each cluster to admit a unimodal distribution. The proposed algorithm considers each
cluster member as an individual ‘viewer’ and applies a univariate statistic hypothesis
test for unimodality, the dip-test, on the distribution of distances between the viewer and

the cluster members. Important advantages are: i) the unimodality test is applied on

13

univariate distance vectors, ii) it can be directly applied with kernel-based methods, since
only the pairwise distances are involved in the computations. Experimental results on
artificial and real datasets indicate the effectiveness of our method and its superiority
over analogous approaches.

Finally, in Chapter 7 we provide an overall review of the results of our research and

indicate interesting directions for future work.

14

CHAPTER 2

BACKGROUND AND PRELIMINARIES

2.1 Characteristics of natural language document collections
2.2 Overview of a document clustering system
2.3 Data preparation

2.6 Clustering

2.1 Characteristics of natural language document collections

Natural languages are complicated codes capable to encode non-trivial information. Hu-
mans use languages to communicate and hereafter, this is the kind of natural language
to which we mainly refer. Every such language evolves in time with respect to syntax,
vocabulary, and word meanings, to meet the communication needs.

Since we mainly refer to text documents, it should be noted that we use the general
terminology of ML along with terminology from text mining. Thus, a document is a data
object, the document vocabulary refers to the set of all the distinct features a document
may have, and the corpus vocabulary to the features extracted from all the dataset which

is document collection (corpus). Next, we describe the basic issues concerning the natural

15

language processing (NLP) required to apply of machine learning methods in the case of

documents.

2.1.1 Linguistic phenomena and complex semantics

Three linguistic phenomena can induce severe ambiguity in the automated processing of
text. Polysemy is the phenomenon where a term has different meaning depending on the
context of its appearance in a text. In what concerns data clustering, if there are more
than one groups in the dataset that base their formation on such words, then it would be
difficult to discriminate those groups. For example, in the field of computer science we
may find many words, such as ‘fork’, ‘pipe’, ‘disk’, ‘memory’, etc., that have completely
different meaning in a context out of that field.

Homonymy is the phenomenon where several terms correspond to an identical con-
cept, generally, or when they appear in a particular context. As an example, the words
‘car’, ‘auto’, ‘vehicle’, ‘automobile’, or the words ‘street’, ‘avenue’, and ‘highway’. It is
also common to use abbreviations, or acronyms, instead of the original word or phrase
respectively. The generalized problem is that each word corresponds to a concept that is
related with other concepts. All concepts can be thought to form a conceptual hierarchy,
e.g. a ‘car’ is primarily a ‘machine’, then a ‘vehicle’ and then a ‘car’. This means that
two terms may have meaning similar to some relative extent, e.g. ‘car’, ‘motorbike’, ‘bus’
are all vehicles and means of transport. Another indicative example is that it is very
usual to refer to an object indirectly by mentioning its brand and a system is desirable
to be able to realize that; for example, “riding a Harley Davidson” and “riding a BMW?”
means more or less the same thing.

Composite terms refer to the cases where more than one words are combined into a
term that has a special meaning, e.g. ‘Olympic Games’, ‘New York’, ‘city block’, ‘machine
learning’, etc. It is a very common phenomenon and can be treated mainly using a
list of such terms created manually. Automated techniques also exist; after collecting

information about the probability of two consecutive words to form a composite term

16

(e.g. ‘New York’), then the context of a particular appearance can indicate whether the
composite term should be identified.

All these problems are tackled using methods from the fields of natural language
processing and computational linguistics. More specifically, word sense disambiguation
(WSD) uses clustering to group parts of text in which a term appears. Such a grouping
may reveal the conceptually different uses of a term [46]. However, the number of clusters
is a very critical parameter. Other approaches to tackle the semantic ambiguity of terms
are based on the well-known WordNet knowledge base [47] or Wikipedia [48]. Related
methods can be found in [49-51], respectively. Even the search results obtained from a

search engine can be utilised for the purpose of WSD.

2.1.2 Statistics: High dimensionality and sparsity

Text data are naturally represented using a large number of different words. It may in-
clude standard words that could be met in a dictionary, idiomatisms, composite terms,
etc. A text document can be considered as a sequence of individual word terms structured
in chapters, sections, paragraphs and, at the lowest level, in sentences. The order of mag-
nitude of the vocabulary length of a normal sized document collection (e.g. about 10.000
documents of news groups articles) can be of the order of 10 thousands to 100 thousands
different words (note: when considering all the different raw terms without preprocess-
ing). This implies that any representation of this information would use many different
features, and hence we have a space of high dimensionality. Generally, as dimensionality
increases, the space where data are represented increases exponentially and ML requires
a number of data objects of the respective order to train with. It is well-known that in
high dimensions ML methods encounter certain undesirable effects which arise due to the
curse of dimensionality [15].

Moreover, each document does not contain all the different vocabulary terms that are
present in the overall corpus. It has been observed that a document may have less than

1% of the global corpus vocabulary [52] (non-zero vector dimensions). Furthermore, there

17

are terms in the corpus vocabulary that do not appear in a given document although
they are relevant to its content. This is due to the fact that each document usually is a

semantically narrow instance of a much more general document class, called topic.

2.1.3 Dynamics: Power-laws in natural languages

Text is not a photograph taken from a natural scenery; it is written by an author aiming
to help readers understand its meaning. The human writing process induces interesting
dynamic characteristics in text and, as a consequence, special statistical properties. It has
been empirically observed that, in a large text, the frequency of a term is a power-law’
of the frequency-based rank. This is the Zipf’s power-law [53] and implies where, if T' is
the length of the text considered as a term sequence, 7 is the rank of a term (its position
in the ordering), and n(r) the number of term appearances in the sequence, then the
frequency of that term is given by:

f(r) =~ @ (2.1)

The origin of the power-law is the observation that, in large text, the second most frequent
term has about 1/2 frequency of the most frequent term, the third most common has
about 1/3 the frequency of the most frequent term, etc. However, this does not perfectly
coincide with what is observed in actual data. The small deviations are associated with
how rich is the vocabulary of a language, or the writing style of the author. For this

reason, Zipf’s power-law is formulated in a parametric statistical model:

[==>e (2:2)
log f(r) = —Blogr + logec. (2.3)

IThe mathematical relation between two quantities is called power-law if the value of one of the
quantities is a power function of the other quantity.

18

2000 10 1
g
1500 @
< 5

5 1000 = 205
o K]
- >
Qo
500 S
g

ol 10° 0

0 1 2 3 10° 10° 0 1000 2000 3000 4000
term rank % 10° log(term rank) documents

(a) (b) (c)

Figure 2.1: Statistics from a text dataset with 4000 documents from 8 classes. (a) the
document frequency of terms as a function of their rank (Zipf’s powerlaw), (c) the respec-
tive log-log scale of (a), and ¢) the increase of vocabulary as a function of the number of
documents considered in a dataset (Heaps’ powerlaw).

Interestingly, the logarithmic form shows the linear relationship between the frequency of
a term and its rank. The original formulation is obtained if ¢ and f is set to 1.

Another important empirical observation is that the vocabulary growth of a text,
namely the number of distinct terms, is linear to the text length. This is stated by
the Heaps’ power-law [54], which is closely connected with Zipf’s law and often are met
together in many domains [55, 56]. Particularly, both have been confirmed in several Indo-
European languages, whereas they do not fit so well in languages like Chinese, Japanese
and Korean that have limited dictionary sizes [57].

Let us denote as V; the vocabulary length when the length of the term sequence of
a text is ¢, and the parameter a€[0,1] is the probability to introduce a new term (not

previously appeared in the text), then the power-law is expressed as follows:

Vi =at’, ve (1) (2.4)

Again, the parameters a and v help the model to fit into slightly deviated cases.

The aforementioned empirical laws refer to a single long text, however, a collection
with many documents can be considered as such. This consideration is asymptotically
correct since, the topics of the documents can differ and they are not created by one

continuous writing process. As the dataset size becomes larger, both laws still apply.

19

Heaps’ law also confirms that the negative effects of the curse of dimensionality are more
intense in small datasets due to the higher relative dimensionality (see Sec. 4.2.1). In
addition, if N, is the number of documents processed by an information management
system at a time instance ¢, then from Eq. 2.4 we may express the order of the respective
processed corpus vocabulary [52] and, thus, the respective computational and memory
requirements:

Vi =at’, ve (1) (2.5)

In Fig. 2.1a and Fig. 2.1b the document frequency distribution of terms is plotted in orig-
inal (long tailed) and log-log scale for a dataset of 4000 documents (stemmed vocabulary,
8 classes), while Fig. 2.1c presents the increase of vocabulary as a function of the number

of the processed documents of the dataset.

2.2 Overview of a document clustering system

Each clustering application can be decomposed into five components which depend on

each other according to the following order:

1. the information retrieval procedure (IR) extracts document features from input raw
data which may have arbitrary format (HTML, XML, plain text, etc).

2. the document representation model maps in a data space to enable the processing
by computer algorithms.

3. the pairwise similarity/dissimilarity measure that expresses the degree to which two
data objects have some characteristics in common.

4. the cluster model is the mathematical representation of documents in a cluster (e.g.
a term frequency vector, a probability density function, etc).

5. the clustering algorithm that partitions data objects into clusters relying on all the

above.

The basic background regarding those components is discussed in the following sections

of the chapter.

20

2.3 Data preparation

2.4 Preprocessing

In order to apply any clustering algorithm, the raw collection of text documents must be
first preprocessed and represented in a suitable feature space. This process usually takes
place offline, before the application of any learning algorithm. We should remark that
the design of the preprocessing step depends on the problem we want to solve and on
which semantic level we need to extract information. For example, there are cases where
the syntax, or the sentence structure of the text, play important role. In other cases,
more coarse concepts are required and hence we discard syntax structure and lexical fine-
details. Document clustering that we deal with, usually works at a coarse semantic level
that is described by unordered term frequencies (see Sec. 2.5), hence belongs to the second
category. Although there are many text preprocessing and preparation software available,
we implemented and used our own preprocessor. The presentation that follows refers to
English language which is the language of the document collections we used.

A parser is responsible to process the raw character stream. In the case where the
input is a structured language, such as HTML, or XML in general, then the initial step
is to extract the informative text parts along with the metadata by parsing the markup
elements. Otherwise, the parser tokenizes the input into individual word tokens in lower
case. Moreover, a set of preprocessing procedures can be applied; some of them are
considered to be traditional, while others are optional and used less often.

Then, stemming is applied, which aims to replace each word by its corresponding
morphological stem. For instance, the words ‘player’, ‘playing’, ‘played’ are all related
with the verb ‘play’, their stem. Porter’s stemming algorithm, that we used, is rule-based
and is the most popular approach for this purpose [58]. There are statistical stemmers
[59], as well. For a recent comparative study for various stemmers see [60]. Stemming
transformation, with the multiple-to-one term mapping, makes each document vocabulary

shorter and more compact. In this way, the length of global corpus vocabulary is also

21

reduced and some terms to become more discriminative.

It is a standard approach to eliminate various trivial terms. It has been observed that
the 10 most common words in the English language are about 20-30% of tokens in a text
[61]. Words such as ‘is’, ‘the’, ‘to’, ‘for’, ‘and’, ‘of are present in almost every sentence
of a text and are not characteristic of any topic. A stopword list is used to identify and
discard terms such as ‘the’, ‘and’, ‘of’, etc. Using the same fixed list to apply information
retrieval across many different document collections may not be a good choice. There are
stopword lists for various purposes and differ in terms of their length, and the inclusion
of words that are non-informative under certain context. There are also approaches for
automatic construction of such lists in unlabeled or labeled datasets [62, 63] that can be
also used to enrich a standard fixed stopword list. We used a rather general-purpose list
that contains about 570 terms.

Another list can be used to recognize various composite multiword terms, in order to
treat them as a single feature. Automatic methods are available to achieve this, however
we just merged multiword terms that were separated by a character such as ‘-’ (e.g.
“intra-cluster’ or ‘state-of-the-art’).

In contrast to the high document frequency (denoted as df) of the stopwords, other
terms which appear in a small number of documents are also candidates for elimination.
This approach is called document frequency thresholding (DFT) [64]. All these terms
have usually very low discriminative power. A cut-off threshold 1>df>5 is often used in
practice. Nevertheless, the removal of these terms does not always increase the efficiency
of ML methods, in fact what is usually observed is the opposite. However, the drastic

reduction of the vocabulary length compensates for a slight deterioration in accuracy.

2.5 Document Representation

After preprocessing the N documents, the V derived word stems constitute the corpus

term vocabulary, denoted as V={vy, ..., vy }. Thus, the finite term sequence of T" vocabu-

22

lary terms of a text document is denoted as:
d** = (*9(1), ..., d*YT)), with d**I(i) € V. (2.6)

For example, the phrase ‘ The dog chases a cat and a mouse!’, after stemming and elimi-

nation of stopwords, is a sequence d**?=(dog, chase, cat, mous).

2.5.1 The Vector Space Model

Despite the fact that it is reasonable to seek for complex representations for text data,
such as graphs [65-67], the vector space model (VSM) is the most widely-used represen-
tation where each document is represented by a vector of weights corresponding to text
features. According to the typical VSM approach, the bag of words (BOW), a document
is represented by a vector d € RY, where each word term v; of the vocabulary is associated
with a single vector dimension.

The feature weights can be binary, or, more often, computed by a frequency-based
weighting function. The most popular weighting scheme is the normalized tfxidf that
introduces the inverse document frequency as an external weight to enforce the terms
that have discrimination power and appear in a small number of documents [68]. For
the v; vocabulary term, the term frequency is defined using the indicator function I(-) as
tfzzjrzl I(d*U(5) = 1;), and the idf;=log(N/df;) where N denotes the total number of
documents and df; denotes the term document frequency of term v; (see Sec. 2.4). Thus,

the normalized ¢ fxidf BOW vector is a mapping of the term sequence d*? defined as

follows:
YBOW - Y —>d=~h- (tfl idfh ooy tfv dev) S RV, (27)
-1
hy, = % tf;log N and (2.8)
1 i=1 dfi
—1/2
14
N
_ 2 2
hLz - thz IOg d_fz ’ (29)

=1

23

where normalization is performed with respect to Li-norm or Ls-norm using Eq. 2.8
(h=hy,) or Eq. 2.9 (h=hy,), respectively.

Vector normalization prevents a bias towards documents with longer term sequences
and the two options have different geometrical properties. In the first case, we obtain
a probability vector which is a point on the V-dimensional simplex. The second maps
the data vector on the surface of the positive quadrant of the V -dimensional hypersphere.
Non-negative spherical data is a special case of directional data that contain only positive
feature weights and vector magnitude is not regarded critical for their analysis. The
document collection can then be represented using the N document vectors as rows of the
document-term matriz D, which is a N xV matrix whose rows and columns are indexed
by the documents and the vocabulary terms, respectively.

The advantages of VSM is that it maps data into a well-defined multi-dimensional
feature space and avoids the computationally expensive preprocessing required to build
complex representation structures. We should note that the data structures that are used
to achieve efficient processing on sparse high dimensional vectors are not simple (e.g. hash
tables, or tree structures).

The main criticism against BOW is the assumed term independence, which ignores the
term correlations in natural languages. However, BOW is only an instance of VSM and
there is plenty of research on developing more efficient VSM variations (see Chapter 3).
Such a simple but quite efficient method is the generalized vector space model (GVSM)
[69] which represents a document in the similarity space, i.e. d'=dD".

In a VS there are several alternatives to quantify the semantic (dis)similarity between

document pairs. The Minkowski family of metric functions is defined by:

1% 1/q
dist™m®) (d;, d;) = [Z |diy — djq|1 € [0, 0], (2.10)
g=1

and the four conditions satisfied by any metric function dist(-) are:
1. dist(d;,d;) >0 non-negativity

2. dist(d;,d;) = 0iff d; = d; coincidence

24

3. dist(d;, d;) = dist(d;, d;) symmetry
4. dist(d;, d,) < dist(d;, d;) + dist(d;,d,) triangle inequality.
The obtained L;-distance function for ¢g=1 is known as City-block distance (among other

names), while Euclidean is the Lo-distance derived for g=2 is one of the standard functions

used for document datasets. For multi-dimensional spaces weighted Euclidean versions are

applicable that have the form \/(d; — d;)W(d; — d;)7. W is a V' xV weight matrix which
can be diagonal, containing a global weight for each feature, or a full matrix. Mahalanobis
distance is of the latter case and uses the inverse covariance matrix, W=X"1. It is not
necessary for a distance function to satisfy all the above restrictive conditions in order
to be applicable in a clustering procedure. Recently, Bregman divergences is a family of
distance functions that have been considered in a general clustering framework [70]. These
functions are not necessarily symmetric nor do they satisfy the triangle inequality property
(4), while they have strong connection with various families of exponential distributions.
It can be shown that Fuclidean, Mahalanobis, and Kullback—Leibler divergence belong to
this family of functions.

Among the various alternatives, Cosine similarity has shown to be an effective measure
[41, 71] for document clustering. It computes the cosine of the angle § between the two

document vectors:

Sim@“)(di, dj) = cos(@(di, dj)) =

e [0,1]. (2.11)

Unit similarity value implies the two documents are described by identical distributions
of term frequencies. In practice, all document vectors are normalized in the preparation
step, thus cosine similarity computation reduces to dot-product d;d; computation.

This latter measure, especially when applied on non-negative spherical data, deter-
mines the same K-nearest neighbors (KNN) ranking for a reference object with the ranking
determined by Euclidean distance. This means that it is straightforward to use efficient
KNN search methods which are designed based on Euclidean distance measure. Moreover,

in contrast to Cosine, Euclidean is a metric where triangular inequality holds, and this

25

property enables faster KNN search [72, 73].

Other popular choices for text are Tanimoto, extended Jaccard, Dice coefficient, and
Simple matching coefficient, all set-theoretic functions and widely-used for binary feature
vectors (BFV) (note: the second and third are quite similar to Cosine since they are
based on dot-product computation). The idea is to measure some kind of information
intersection (overlap) and it can also be extended to arbitrary non-negative weighted
vectors. BF'V is useful for representing very small segments of text such as search queries,
or a set of descriptive tags, where the terms frequencies are not important. Moreover,
in very large-scale IR systems, BF'V representation along with hashing techniques enable
the efficient approximation of pairwise object similarities. Such an approach is applied in
[74] for approximate KNN search. Small texts, in general, is a special case of texts where
interesting problems arise concerning their representation and similarity calculations [75].

Similarity and dissimilarity are conceptually complementary to each other. A dis-
tance measure dist(-) € [0,1] can be converted to the corresponding similarity measure by
sim(-)=1—dist(-) € [0,1], or using various other simple calculations. When dist(-) is not
bounded, e.g. dist*!) € [0,00], then a monotonically decreasing function can be used to
convert it in to a similarity value in [0,1]. For this purpose, a kernel function, such as

Gaussian or Laplacian, could also be employed.

2.6 Clustering

2.6.1 Algorithms
Clustering using k-means family of methods

The k-means procedure is a generic clustering approach that assumes a prototype to
represent each cluster and an objective function ®(C) that evaluates the quality of a
partition C, which is defined as the collection of sets ¢; containing the objects assigned to

the j-th cluster. In order to solve a problem with £ clusters, the k prototypes are usually

26

initialized by randomly selecting k objects as cluster centroids (Forgy’s approach) and

then the algorithm iterates to optimize an objective function (called clustering error):

1. Reassignment step: each object is assigned to the cluster whose prototype is nearest
to the object.
2. Prototype batch update step: given the assignment of objects to clusters, each cluster

prototype is updated in a way that optimizes the objective function.

The k-means algorithm minimizes the sum of squared Euclidean distances between the
objects of the clusters and the centroid prototypes Eq. 2.12, where the centroids are

computed as the arithmetic mean p; = (1/n;)3 e, di of the n; objects of that cluster:

Boss (C) = 3 > |y — i[5 (2.12)

j=1 diECj

It converges to a local minimum of ®4(C) and the quality of the solution depends
strongly on the initial conditions. Its time complexity is O(¢NV'), where ¢ is the number
of iterations until convergence. The form of cluster prototypes constitutes a choice that
also affects the solution quality. k-medoids is a robust method that represents a cluster
with the medoid object defined as the object that has the maximum average similarity to

the objects of its cluster:

m; = arg max{i > sim(d;, dq)}. (2.13)

diECj nJ quC]‘

In k-medoids, the medoid prototypes are used in Eq. 2.12. Note that in Euclidean space
there is the disadvantage in complexity O(n?) required to determine the medoid of a
cluster.

Spherical k-means (spk-means) is a variant of k-means that utilizes the Cosine simi-
larity for the data vectors normalized with respect to Lo-norm. The maximized objective
function is the clustering Cohesion (COH). The optimal prototype for a cluster is its nor-

malized centroid uj=s;/ ||s;|l,, where s;=3_, . di, and the overall clustering Cohesion

27

of a partition C is given by:

@)= 35 5= T = 3

i= 1d;ec; ||Sj||2

k
=> sl (2.14)
j=1

A ot of research effort has been focused on the careful initialization of this family
of algorithms, due to its importance for the final clustering quality [76-80]. Among
the typical object-based seeding techniques is the deterministic Kaufman heuristic (or
k-farthest heuristic) [81] that tries to spread the initial centroids away from each other. It
selects the most centrally located object as the first centroid and each additional centroid
is determined to be the object farthest from the objects-centroids already selected. k-
means—++ [78], on the other hand, introduces stochasticity: it starts with the uniform
random selection of one object as the first centroid, then each additional centroid is
initialized using a weighted probability distribution. Specifically, the probability for a
candidate object to be selected as a new centroid is proportional to the squared distance
between the object and its nearest centroid previously selected. In [78] it is shown that this
initialization guarantees an O(logk) approximation to the optimal k-partition. However,
all the above initialization methods select objects as seeds and this may not be efficient
in the text feature space, since a document usually contains a very small percentage of
the vocabulary terms.

Incremental clustering is a strategy that introduces one cluster each time in an already
formed solution of lower order. In other words, each clustering k-solution is exploited
to initialize the prototypes of the k41 clustering problem. The advantage is that it
provides a way to search for a good initialization and avoid the naive random restarts
that is inefficient especially when the number of clusters is large. On the other hand, the
computational burden increases and it is important to use efficient techniques to reduce
the search space. Popular incremental methods are the bisecting k-means [82, 83] and
global k-means [84]. The former, at each incremental step, selects a cluster according to
an inhomogeneity criterion and then uses 2-means to split that cluster in two parts. The

latter approach, along with the k£ already computed prototypes, it considers each of the

28

N objects of the dataset as the initial prototype of the k41 cluster. The best clustering
produced from these initializations is the resulting k+1-partition. Incremental clustering

is further studied in Sec. 7.

Other clustering methods

Spectral clustering [85] is based on spectral analysis of the similarity matrix of the dataset.
The basic idea is to project the data in the subspace spanned by the k largest eigenvec-
tors of the Laplacian matrix L, which is computed from the similarity matrix AMV*N)
of pairwise document similarities. The similarity matrix A is computed using the cosine
similarity measure. The Laplacian matrix is computed as L=D"Y2AD~Y2 where D is a
diagonal matrix with Dii:Z?]:lAij the sum of i-th row of similarities. To solve for k£ clus-
ters, the algorithm proceeds with the construction of a matrix X(M*¥={z, :4=1,... k}
whose columns correspond to the k largest eigenvectors of L. X is then normalized so

(Nxk) he the obtained normalized

that each row has unit length in Euclidean space, let Z
matrix. Finally, the clustering procedure takes place in the embedding space, i.e. the
rows of Z are clustered using the standard k-means algorithm, assuming that i-th row of
Z represents the i-th document.

Special algorithms have also been developed to deal with HDS feature spaces. The aim
is to find clusters in subspaces of data instead of the entire feature space and it is referred
to as subspace clustering Its key characteristic is the simultaneous determination of the
object membership to clusters and the subspace of each cluster. Surveys on subspace
clustering in high dimensional spaces can be found in [37, 40]. Further discussion on this
category of methods is provided in Sec. 4.2.2.

To provide a more complete report on the state-of-the-art of the clustering literature
applied in HDS data spaces, we should mention the effective generative probabilistic
topic models, such probabilistic latent semantic indexing [86], latent Dirichlet allocation
[24, 87, 88|, Dirichlet compound multinomial [89, 90|, and mizture of von Mises-Fisher

distributions [91]. Note that a topic does not actually coincide with a cluster, thus the

probabilistic topic-modeling can be viewed as a representation method the output of which

29

can be partitioned using a clustering algorithm.

Clustering refinement

Clustering refinement is the post-processing procedure aiming to improve the clusters
produced by a clustering algorithm?. This is applicable to the flat, incremental, or hierar-
chical approaches. The refinement algorithm may be a specialized algorithm that proceeds
with small changes in the clusters, such as single object reassignment [92] or swapping
the cluster memberships for pairs of objects [93]. Tt is also a practical choice to refine
the produced clusters using a clustering method of different characteristics to the initial
one. For instance, it has been proposed to initialize k-means using agglomerative cluste-
ring [42], genetic algorithms [94], [95], and simulated annealing [96], among others. An
alternative approach is the hybridized centroid-medoid heuristic [97] that applies a small
number of k-means iterations and tries to replace a centroid with a medoid belonging in

a set of candidate medoids precomputed offline.

2.6.2 Performance evaluation

Cluster validation is the procedure that evaluates the quality of the obtained clustering
results. One may realize that, since there are various different definitions about which is
an interesting cluster structure to search for, the objective evaluation of a solution is not
an easy problem [98]. All evaluation measures exhibit some bias towards their underlying
assumptions. We should note that the number of clusters is one of the most important
factors that affect an evaluation and it is generally difficult to compare clusterings with
different number of groups.

The most straightforward evaluation approach is the external validation, where su-
pervised information is used to determine whether the result resembles with human per-
ception for the problem. The required information is a labeled dataset that describes

an intuitively correct solution to the partitioning problem (the so-called ground truth).

2Note that in literature the term ‘refinement’ is also used to describe the iterative optimization of an
objective function

30

Then, several measures could be utilized to assess the agreement between the labels and
the clustering result. Most of them compute the degree to which objects with the same
cluster label are grouped together, while objects with different cluster labels are assigned
to different groups. There are numerous external evaluation measures. Next we describe
some popular ones that have been used in the experiments of the following chapters.

We define the following notation: C the partition of data objects into k clusters

(clustering solution) ci,...,c;, C) the grouping based on ground truth document la-

bels ch),. . 7c,(€L) (true classes), N the number of documents in a dataset, INV; the size

of ¥ Z(-L)

i that are

, nj the size of ¢;, and n;; the number of documents belonging to ¢

clustered in ¢;. Let us further denote the probabilities p(c;)=n,/N, p(cZ(L)):nEL)/N, and

p(ch),cj):nij/N. The [0,1]-normalized mutual information (NMI) measure, as used in

[99], is computed by normalizing the mutual information between C and C*) wrt the

maximum entropy of clusters H(C*)), or classes H(C):

(L)
(L) (e, ¢))
ZCiEC(L)7 p(Ci, Cj) 10g2 &)—]

NMI(C®, Q) = —9<C ple) g q). (2.15)

maX{H(C(L)), H(C)}

When C and C") are independent, the value of NMI equals to zero, while it equals to
one when the two partitions contain identical clusters.

The Fj-measure, or simply F', is the harmonic mean of the precision and recall mea-
sures of the solution. Let the precision;; and recall;; for each (class i, cluster j) pair, then

the respective F'(i,7) is given by:

precision;; - recall;;

,7) =2 2.16
UUE) precision;; + recall;;’ (2.16)
and the final /' measure is obtained by the weighted average:
k
F(C™,C) = plej) max{f(i,j)}. (2.17)
i=1

31

Higher values of F' indicate better clustering solutions.
The Purity of a cluster can be interpreted as the classification accuracy by assuming
that all objects of a cluster are assigned to its dominant class. The clustering Purity is

the weighted average of cluster-wise purity:
1t
; (L) —— g
Purity(CH), Q) = Nz;iglﬁ;;k {ny;} €1[0,1]. (2.18)
J:

In order to compare the ground truth labeling and the grouping produced by clustering,
we also utilized the Variation of Information (VI) metric [100] and the Adjusted Rand
Index (ARI) [101]. Better clustering is indicated by lower values of VI and higher for
ARI. Note that these measures can be extended to cover the case where the number of
data classes is not the same as the number of clusters.

As discussed in Chapter 1, one of the major contributions of clustering in data analysis
is the fact that it can discover the cluster structure in data that human might not be able
to evaluate by themselves (inability to provide labels). But even if we are aware of what
we are looking for, it generally preferable to use unsupervised, called internal evaluation
measures. These measures compute quantities that involve the relations between data
objects themselves. Intuitively, a good clustering solution should present high separation
and high compactness. The first, implies that the clusters should be well-separated in the
space, and the second that the objects of each cluster should be close to each other. Thus,
given the pairwise (dis)similarities and the discovered cluster structure, we may compute
quantities that express these fundamental concepts.

Nevertheless, the clustering methods that are based on the optimization of an objective
function provide this value of the objective ®(C) that can be used as a clustering quality
criterion. The limitation is that, in this way, it is not possible to compare clusterings with
different objective functions, and of course in cases of solutions with different number of
clusters. However, if all the compared algorithms use the same assumptions under which
they seek for a clustering solution, then direct comparison is possible. For example, we

can compare clustering results from k-means, bisecting k-means, and global k-means (with

32

same k value), since all of them use in fact the same objective function.

33

CHAPTER 3

IMPROVING DOCUMENT CLUSTERING USING

GLOBAL TERM CONTEXT VECTORS

3.1 Introduction

3.2 Extensions to VSM

3.3 Discussion on VSM variations

3.4 Utilizing local contextual information

3.5 A semantic matrix based on global term context vectors
3.6 Clustering experiments

3.7 Conclusions

3.1 Introduction

In this chapter, we present the global term context vector model (GTCVM) document
representation model [43]. It is an entirely corpus-based extension to the traditional vector
space model and incorporates contextual information for each vocabulary term (feature

dimension). First, the local contexrt for each term occurrence in the term sequences of

34

documents is captured and represented in vector space by exploiting the idea of the
locally weighted bag of words (LoWBOW) [102]. Then all the local contexts of a term are
combined to form its global context vector. Global context vectors constitute a semantic
matriz which efficiently maps the traditional VSM document vectors onto a semantically
richer feature space of same dimensionality to the original.

As indicated by our experimental study, in the new space, superior clustering solutions
are achieved using well-known clustering algorithms such as the spherical k-means [41] or

spectral clustering [85].

3.2 Extensions to VSM

In Sec. 2.5.1 we presented the basics regarding the vector space model (VSM) where
each document is represented by a vector of weights corresponding to text features [1,
2]. Many variations of VSM have been proposed that differ in what they consider as a
feature, or ‘term’ [103]. The the most common approach is to consider different words as
distinct terms, which is the widely-known the bag of words (BOW) model. This model,
despite having a series of advantages, such as generality and simplicity, it cannot model
efficiently the rich semantic content of text. An extension is the bag of phrases model
(BOP) [104] that extracts a set of informative phrases or word n-grams (n consecutive
words). Especially for noisy document collections, e.g. containing many spelling errors,
or collections whose language is not known in advance, it is often better to use VSM to
model the distribution of character n-grams in documents. In this chapter, we consider
word features and we refer to them as terms, however, the described procedures can be
directly extended to more complex text features.

The disadvantage of considering multiword features, as BOP does, or generally com-
binations of multiple low-level features, is the fact that as phrases become longer they
clearly obtain superior semantic value but, at the same time, they become statistically in-

ferior with respect to single-word representations [105]. A category of methods developed

35

aiming on tackling this difficulty recognize the frequent wordsets (unordered itemsets) in
a document collection [106-108], while the method proposed in [109] exploits the frequent
word subsequences (ordered) that are stored in a generalized suffiz tree (GST) for each
document.

Modern variations of VSM are used to tackle the difficulties occurring due to high
dimensional and sparse (HDS) feature spaces, by projecting the document vectors onto a
new feature space called concept space. Each concept is represented as a concept vector
of relations between the concept and the vocabulary terms. Generally, this approach of

document mapping can be expressed as:

Oysu d—d =SdeRY, V' <V, (3.1)

where the V/xV matrix S stores the concept vectors as rows. This projection matrix is
also known as semantic matriz. The Cosine similarity between two normalized document

images in the concept space can be computed as a dot-product:

simie (dj, d) = (Sd;)"(Sd;) = (hi Sdi)" (hjSd;) = hihi(d] STSd;), — (3.2)

where the scalar normalization coefficient for each document is h=1/(|Sd;||2. The simi-

larity defined in Eq. 3.2 can be interpreted in two ways:

i) as a dot product of the document images (Sd;)"(5d;) that both belong to the new
space R" or, alternatively,
ii) as a composite measure that takes into account the pairwise correlations between

the original features expressed by the matrix S'S.

There is a variety of methods proposing alternative ways to define the semantic matrix
though many of them are based on the above linear mapping. The widely-used latent
semantic indezing (LSI) [23] projects the document vectors onto a space spanned by the
eigenvectors corresponding to the V' largest eigenvalues of the matrix D™D, where D

is the VxV document-term matrix. The eigenvectors are extracted by the means of

36

singular value decomposition (SVD) on matrix D" and they capture the latent semantic
information of the feature space. In this case, each eigenvector is a different concept
vector and V" is a user parameter much smaller than V', while there is also a considerable
computational cost to perform the SVD. In concept indexing [110], the concept vectors
are the centroids of a V'-partition obtained by applying document clustering. In [111],
statistical information such as the covariance matrix is combined with traditional mapping
approaches into latent space (e.g. LSI, PCA) to compose a hybrid vector mapping.

A computationally simpler alternative that utilizes the document-term matrix D as a
semantic matrix is the generalized vector space model (GVSM) [69], i.e. Sqvsu=D and
the image of a document is given by d’=Dd. By examining the product Dd € RV,
we can conclude that a GVSM projected document vector d' has lower dimensionality
if N<V. Moreover, if both d and D are properly normalized, then image vector d’
consists of the N Cosine similarities between the document vector d and the rest of the
N—1 documents in the collection. This observation implies that the GVSM works in the
document similarity space by considering each document as a different concept. On the
other hand, the respective product S}yey Sevsu=D'D (used in Eq. 3.2) is a VXV term
stmilarity matriz whose r-th row has the dot-product similarities between term v, and
the rest of the V' —1 of vocabulary terms. Note that terms become more similar as their
corresponding normalized frequency distributions into the N documents are more alike.
Based on the GVSM model, it has been proposed to build local semantic matrices for
each cluster during document clustering [112].

A rather different approach proposed in [113] for information retrieval is the context
vector model (CVM) where, instead of a few concise concept vectors, it computes the
context in which each of the V vocabulary terms appears in the dataset, called term
context vector (tcv). This model computes a V' xV matrix Seyy containing the term
context vectors as rows. Each tcv; vector aims to capture the V pairwise similarities
of term v; to the rest of the vocabulary terms. Such similarity is computed using a co-

occurrence frequency measure. Each matrix element [Sgysylij stores the similarity between

37

terms v; and v; computed as:

[SCVM]ij - ZN—l tfm tfr] . . (33)
N = Vv) 7é J-
Zr:l(tfri Zq:l, q#i tfrq)

Note that this measure is not symmetric, generally [Scyulij # [Scvulji, due to the denom-
inator that normalizes the pairwise similarity to [0, 1] with respect to the ‘total amount’
of similarity between term v; and the other vocabulary terms. The rows of matrix Scyy
can be normalized with respect to the Euclidean norm and each document image is then
computed as the centroid of the normalized context vectors of all terms appearing in that

document:
v

Ooyw 1 d — d = thi tev;, (3.4)

i=1
where tf; is the frequency of term v;. The motivation for using term context vectors is to
capture the semantic content of a document based on the co-occurrence frequency of terms
in the same document, averaged over the whole corpus. The CVM representation is less
sparse than BOW. Moreover, weights such as ¢df can be incorporated to the transformed
document vectors computed using Eq. 3.4. In [113] several more complicated weighting
alternatives have been tested in the context of information retrieval that in our text
document clustering experiments did not perform better than the standard idf weights.
In a higher semantic level than term co-occurrences, additional information for vocabu-
lary terms provided by ontologies has also been exploited to compute the term similarities
and to construct a proper semantic matrix. WordNet [47] and Wikipedia [48] have been

used for this purpose in [49, 50] and [51], respectively.

3.3 Discussion on VSM variations

Summarizing the properties of the above mentioned vector-based document representa-

tions, in the traditional BOW approach, the dimensions of the term feature space are

38

considered to be independent to each other. Such an assumption is very simplistic, since
there exist semantic relations among terms that are ignored. The VSM-extensions aim
to achieve semantic smoothing, a process that redistributes the term weights of a vector
model, or map data in a new feature space, by taking into account the correlations be-
tween terms. For instance, if the term ‘child’ appears in a document, then it could be
assumed that the term ‘kid’ is also related to the specific document, or even terms like
‘boy’, ‘girl’, ‘toy’. The resulting representation model is also a VSM, but the document
vectors become less sparse and the independence of features is mitigated in an indirect
way. The smoothing is usually achieved by a linear mapping of data vectors to a new
feature space using a semantic matrix S. It is convenient to think that the new document
vector d'=Sd contains the dot product similarities between the original BOW vector d
and the rows of the semantic matrix S.

A basic difference between the various semantic smoothing methods is related to the
dimension of the new feature space which is determined by the number V"’ of row vectors of
matrix S. In case their number is less than the size V' of the vocabulary, such vectors are
called as concept vectors and are usually produced using the LSI method. Each concept
vector has a distribution of weights associated to the V' original terms that define their
contribution of to the corresponding concept. Of course the resulting representation of the
smoothed vector d' is less interpretable than the original and there is always a problem
of determining the proper number of concept vectors.

An alternative approach for semantic smoothing assumes that each row vector of
matrix S is associated with one vocabulary term. Unlike a concept vector that describes
abstract semantics of higher level, here, the elements of each vector describe the relation
of this term to the other terms. Those relations constitute the so called term context, thus
the respective vector is called term context vector. Each element of the mapped vector d’
will contain the dot product similarity between document d and the corresponding term
context vector, i.e. for each term v; the element d; provides the degree to which the
original document d contains the term v; and its context, instead of just computing its

frequency as happens in the BOW representation. Note also that in BOW representation,

39

a dot product would give zero similarity for two documents that do not have common
terms. On the contrary, the dot product between a document vector and a term context
vector of a term v; that does not appear in that document may give a non-zero similarity.
This happens if the document contains at least one term v; with non-zero weight in the
context of term v;. For this reason, the smoothed representation d’ is usually less sparse
that d and retains their interpretability of dimensions. Moreover, concept-based methods
may be applied on the new representations.

The motivation of our work is to establish the importance of term context vectors and
to define an efficient way to compute them. The CVM method considers that the term
context is computed based on term co-occurrence frequency at the document-level. It does
not take into account the sequential nature of text and thus ignore the local distance of
terms when computing term context. On the other hand, the proposed GTCVM extends
the previous approach by considering term context at three levels:

i) it uses the notion of local term context vector (ltcv) to model the context around the
location in the text sequence where a term appears. These vectors are computed
using a local smoothing kernel as suggested in the LoWBOW approach [102] which
is described in the next section. The kernel takes into account the distance in which
other terms appear around the sequence location under consideration.

ii) it computes the document term context vector (dtcv) for each term that summarizes
the term context at the document-level.

iii) it computes the final global term context vector (gtcv) for each term representing
the overall term context at corpus-level. The gtcv vectors constitute the rows of the
semantic matrix S. Thus the intuition behind GTCVM approach is to capture the
local term context from term sequences and then to construct a representation for

global term context by averaging ltcvs at the document and corpus-level.

40

3.4 Utilizing local contextual information

A text document can be considered as a finite term sequence of its 7' consecutive terms
denoted as d*9=(d*9(1),...,d**9(T")) but, except for bag of phrases (BOP), so far in this
chapter the previously mentioned VSM-extensions ignore this property. A category of
methods have been proposed aiming to capture local information directly from the term
sequence of a document. The representation proposed in [114], first considers a segmen-
tation of the sequence that is done by dragging a window of n terms along the sequence
and computing the local BOW vectors for each of the overlapping segments. All these
local BOW vectors constitute the document representation called local word bag (LWB).
To compute the similarity between a pair of documents, the authors introduce a variant
of the vg-pyramid matching kernel [115] that maps the two sets of local BOW vectors to
a multi-resolution histogram, and then computes a weighted histogram intersection.

Another approach for text representation presented in [102], is the locally weighted bag
of words (LoOWBOW) that preserves local contextual information of text documents by
the effective modeling of the text sequential structure. At first, a number of L equally
distant locations are defined in the term sequence. Each sequence location /¢;, i=1, ..., L,
is then associated with a local histogram which is a point in the multinomial simplex
Py _1, where V' is the number of vocabulary terms. More specifically, for (V' — 1)>0, the
Py, space is the (V —1)-dimensional subset of RY that contains all probability vectors
(histograms) over V" objects (for a discussion on the multinomial simplex see the Appendix
of [102]):

1%
Py, = {HGRV: H;>0,Vi=1,.,Vand Y H = 1}. (3.5)

i=1

Contrary to LWB, in LoWBOW the local histogram is computed using a smoothing
kernel to weight the contribution of terms appearing around the referenced location in
the term sequence, and to assign more importance to closely neighboring terms. Denoting

as Hy(gsea(ry) the trivial term histogram of V' terms whose probability mass is concentrated

41

sampling at every
term(location)

sampling at every two in the sequence

terms (locations) in

the sequence

start” start-"

(a) o =12 (b) o =2

dteo(vs)
=12
o=2
£ 5=3
* / start
dtcv(i) x end
o=3
nf?§> & @ BOW o=in
TN *
" H
*
s A
Vq dtentv) 7227 7 V2

Figure 3.1: A toy example where the sequence (vy, va, v, Vo, V1, V3, V3, V1, V1, V1,
Vo, Vo, v3) is considered that uses three different terms vy, 1o, v3 (vocabulary length:
V'=3). The subfigures present LoOWBOW curves in the (V' —1)-dimensional simplex for
increasing values of the parameter ¢ that induce more smoothing to the curve. Each
point of the curve corresponds to a local histogram computed at a sequence location.
The more a term affects the local context at a location in the sequence, the more the
curve point (the lowbow histogram related to that location) moves towards the respective
corner of the simplex. For 0=0 local histograms correspond to simplex corners, thus
the curve moves from corner to corner of the simplex. Two different sampling rates for
LoWBOW representation are illustrated: sampling at every term location in the sequence
(dashed line) which is the our strategy to collect contextual information for each term,
and sampling every two terms (solid line). d) For =00, the LoWBOW curve reduces to a
single point that coincides with the BOW histogram of the sequence. In (d) we present as
‘stars’ the average ltcv histograms for each term (dtcv histograms) for the three different
values of 0 and a=0.6 for all terms. As the value of o increases, the dicv histograms of
all terms become more similar tending to coincide with the BOW representation.

only at the term that occurs at the location ¢ in d*:

1, wo=d*it)
[Hs(gseawy], = Li=1,..,V, (3.6)

0, v #d*i(t)

42

then the locally smoothed histogram at a location ¢ in the d**? term sequence is computed
as in [102]:
T

lowbow(d***, £) = " Hiy(gsea (1)) K0 (1), (3.7)

t=1
where T is the length of d**9. K, ,(¢) denotes the weight for location ¢ in sequence given by
a discrete Gaussian weighting kernel function of mean value ¢ and standard deviation o.
Specifically, the weighting function is a Gaussian probability density function restricted
in [1,7] and renormalized so that 3.1 Ky, (t) = 1. It is easy to verify that the result of
the histogram smoothing of Eq. 3.7 is also a histogram.

It must be noted that for 0=0 the lowbow histogram (Eq. 3.7) coincides with the trivial
histogram Hg(gsea(s)), where all the probability mass is concentrated at the term at loca-
tion £. As o grows, part of the probability mass is transfered to the terms occurring near
location /. In this way, the lowbow histogram at location ¢ is enriched with information
about the terms occurring in the neighborhood of ¢. The smoothing parameter o adjusts
the ‘locality’ of term semantics that is taken into account by the model. Thus, instead
of mining unordered local vectors as in [114], the LoOWBOW approach embeds the term
sequence of a document in the Py_; simplex. The sequence of the L locally smoothed
histograms (denoted as lowbow histograms) form a curve in the (V-1)-dimensional simplex
(denoted as LoWBOW curve). Fig. 3.1 illustrates the LoWBOW curves generated for a
toy example and describes the role of parameter o. In this figure we aim to illustrate i)
the LoWBOW curve representation, i.e. the curve that corresponds to a sequence of his-
tograms (local context vectors), where each local context vector is computed at a specific
location of the sequence and corresponds to a point in the (V-1)-dimensional simplex; ii)
the impact of the smoothing coefficient ¢ on the computed local context vectors. This fig-
ure illustrates that the increase of smoothing makes the lowbow histograms (points of the
curve) more similar. This can also be verified by observing that as smoothing increases,
the curve becomes more concentrated around a central location of the simplex. For c=00
all histograms become similar to the BOW representation and the curve reduces to a

single point. On the contrary, for c=0 the histograms correspond to simplex corners.

43

A similarity measure between LoOWBOW curves has been proposed in [102] that as-
sumes a sequential correspondence between two documents and computes the sum of the
similarities between the L pairs of LoWBOW histograms. Obviously, it is expected for
this similarity measure to underestimate the thematic similarity between documents that

follow different order in the presentation of similar semantic content.

3.5 A semantic matrix based on global term context vectors

In this section we present the global term context vector model (GTCVM) approach
for capturing the semantics of the original term feature space of a document collection.
The method computes the contextual information of each vocabulary term, that is subse-
quently utilized in order to create a semantic matrix. In analogy with CVM, our approach
reduces data sparsity but not dimensionality. The interpretability of the derived vector
dimensions remains as strong as in the BOW model as the value of each dimension of
the mapped vector corresponds to one vocabulary term. Methods that reduce data di-
mensionality could also be applied on the new representations at a subsequent phase.
Compared to CVM, GTCVM generalizes the way the term context is computed by taking
into account the distance between terms in the term sequence of each document. This is
achieved by exploiting the idea of LoOWBOW to describe the local contextual information
at a certain location in a term sequence. It must be noted that our method borrows from
the LoWBOW approach only way the local histogram is computed at each location of the
term sequence and does not make use of the LoOWBOW curve representation.

More specifically, we define the local term context vector (ltcv) as a histogram asso-
ciated with the exact occurrence of term d*%(¢) at location £ in a sequence d*9. Hence,
one ltcv vector is computed at every location in the term sequence, i.e. /=1, ...,T. Note
that GTCVM does not preserve any curve representation. This means that we are not
interested in the temporal order of the local term context vectors. The {tcv(d™9, /) is a

modified lowbow(d*, ¢) probability vector that represents contextual information around

44

0.3 0.3 ; ; ; ; ; 0.3

0.25 0.25} 1 0.25}
j=2}
£ 02 0.2} 1 0.2}
ey
2
[
H
g 0.15 0.15} 1 0.15}
g
©
8 o1 0.1t 1 0.1t
—

0.05 0.05} 1 0.05}

0 O 7 O =l
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Term sequence Term sequence Term sequence

Figure 3.2: Various weight distributions for the neighboring terms around a reference term
occurring in the middle of a term sequence of length 50. The distributions are obtained
by varying the value of parameter « in Eq. 3.8. This distribution defines the contribution
of each term to the context of the specific reference term. The scale value of the local
kernel is set to o=5, while self-weight « is set to 0.05 (left), 0.10 (middle), 0.2 (right).

location £, while adjusting explicitly the self-weight cgsea(s) of the reference term appearing

at location /:

adseq(e) ,Vi = dseq(g))
[ltev(d®9,0)], = (3.8)

idf; - [lowbow(d®¢4,£)],)
(1 - O‘dseq(@) ' Z}/=l,j¢i idf; - [lowbow(d®ed,)]’ Vi 7& dseq(@'

The self-weight (0 < agseary < 1) adjusts the relative importance between contextual
information (computed using the lowbow histogram) and the self-representation of each
term. Fig. 3.2 illustrates an example of how the value of parameter « affects the local
term weighting around a reference term in a sequence. When the parameter o of the
Gaussian smoothing kernel is set to zero, or a=1, the ltcv(d*9,¢) reduces to a trivial
histogram Hygeea g (see Eq. 3.6). The other extreme is the infinite o value, where for
small « values all the [tcv computed in a document d become similar to the ¢f histogram
for that document.

The latter observation is the reason for considering an explicit self-weight in Eq. 3.8,
because a flat smoothing kernel obtained for large o value can make a lowbow vector to

have improperly low self-weight for the reference term. For example, if a term appears

45

Local term context histograms (columns) Local term context histograms (columns)
for document A for document B

advanc:
electron:
commun:
help:
conduct:
busi:
interoper:

problem:

Vocabulary terms
Vocabulary terms

applic: v9

profession:v10
product:vll
commerc:vli2

secur:vl3

vli v2 v3 v4 v5 v6 v7 v8 Vv6 V9 vi0 v6 v11l vl v7 v2 v12 v9 vi3 v6 v6 v2 V3
Term sequence (d}*%) Term sequence (&%)

(a)

Averaged term context histograms (columns)

advanc: vl

Term A

electron: v2 "The advanees in electronic communications help in cenducting
commun: v3 business without intereperation problems between business
Term B
help: v4 "Our professional buisiness products advance the
interoperability of electronic commerce applications and security
g conduct: v5 of business-to-business electronic ions "
) busi: v6 Document A Document B
= BOW | d' | differ. || BOW | d' | differ.
S interoper: v7 advanc 01 0079 -0021|| 0077 0077 0000]
_g electron 01 008 -0015 0154 0107 -0.047
S problem: v8 commun 01 0085 -0015| 0077 0076 -0.001
g X help 01 0087 -0013 0026 0026
appllc: v9 conduct 01 0095 -0005 0033 0033
. busi 02 0127 -0073 0231 0140 -0.090
profession:v10 interoper 01 0089 -0011|| 0077 0073 -0.004
problem 01 0098 -0002 0049 0049
product:vil applic 01 0087 -0013|| 0077 0084 0007
profession 0049 0049 0077 0094 0017
commerc:v12 product 0041 0041|| 0077 0083 0006
. commerc 0030 0030 0077 0072 -0005
securvi3 secur 0047 0047|| 0077 o088 0011
vli v2 v3 v4 v5 v6 v7 v8 V9 v10vllvi2vi3
Vocabulary terms
(b) (c)

Figure 3.3: An example of how ltcv histograms are used to summarize the overall con-
text in which a term appears in the two term sequences of (c¢) using Eq. 3.12. a) The
term sequences (x-axis) of documents A, B are presented and the corresponding ltcv are
illustrated as grey-scaled columns. Those vectors are computed at every location in the
sequence using a Gaussian smoothing kernel with =1 and «=0.6 for all terms. Brighter
intensity at cell 7, j indicates higher contribution of the term v; to the local context of
the term appearing at location j in the sequence. b) The resulting transposed semantic
matrix (S"), where the gray-scaled columns illustrate the global contextual information
for each vocabulary term computed by averaging the respective local context histograms
(Eq. 3.11). ¢) The two initial term sequences (the stem of each non-trivial term is empha-
sized). Assuming the same idf weight for each vocabulary term, the table presents the
BOW vector, the transformed vector d’ using Eq. 3.12 as well as the effect of semantic
smoothing (diff =BOW —d') on document vectors. The redistribution of term weights,
that results by the proposed mapping, reveals is done in such a way that low frequency
terms are gaining weight against the more frequent ones. Note also that the similarity
between the two documents is 0.756 for the BOW model and 0.896 for the GTCVM.

46

once in a document, then the lowbow vector with c=o00 at that location would contain
very low weight for that term. Generally, the value of a,, determines how much the context
vector of term v should be dominated by the self-weight of term v. In our method we set
this parameter independently for each individual term as a function of its idf, component:

idf,
logN

oz,,:)\+(1—/\)'(1—) Aeo,1], (3.9)

where A is a lower bound for all a,, v=1,...,V (in our experiments we used A=0.2). The
rationale for the above equation is that for terms with high document frequency (i.e. low
idf,), we assign high «, values that suppress the local context in the respective context
vectors. In other words, the context is considered more important for terms that occur
in fewer documents. In Fig. 3.3a, we present an example illustrating the [tcv vectors of
two term sequences presented in Fig. 3.3c.

We further define the document term context vector (dtcv) as a probability vector
that summarizes the context of a specific term at the document-level by averaging the
ltcv histograms corresponding to the occurrences of this term in the document. More
specifically, suppose that a term v appears no;,, > 0 times in the term sequence d;*? (i.e.
in the i-th document) which is of length 7;. Then the dtcv of this term v for document i
is computed as:

no;i,v

ltev(d5, £,())), (3.10)

dtcv(d;, v) =
noy,; 4
) j—l

where ¢;,(j) is an integer value in [1, ..., T;] denoting the location of the j-th occurrence
of v in d;%

Next, the global term context vector (gtcv), is defined for a vocabulary term v so as
to represent the overall contextual information for all appearances of v in the corpus of

all N term sequences (documents):

N
gtev(v) = hgieo() <Z tfin dtco(d*, V)) (3.11)
i=1

The coefficient Agrevi(y) normalizes the vector gtev(v) with respect to the Euclidean norm,

47

and tf;, is the frequency of the term v in the i-th document. Thus, the gtcv(v) of term
v is computed using a weighted average of the document context vectors dtcv(d; ™, v)
obtained for each document 7 in which term v appears. Thus, in contrast to LoWBOW
curve approach which focuses on the sequence of local histograms that describe the writing
structure of a document, our method focuses on the extraction of the global semantic
context of a term by averaging the local contextual information at all the corpus locations
where this term appears.

Finally, the extracted global contextual information is used to construct the V' xV
semantic matrix Sgrcyvy Where each row v is the gtcv(v) vector of the corresponding
vocabulary term v. Fig. 3.1d provides an example of illustrating the dtcv(d;*, v) vectors
for each document (the points denoted as ‘stars’). Fig. 3.3b illustrates the final gtcv
vectors obtained by averaging the document-level contexts for each vocabulary term.

To map a document using the proposed GTCVM approach, we compute the vector

d" where each element v is Cosine similarity between the BOW representation d of the

document and the global term context vector gtcv(v):

YeTovm - d—d = Serovm d, d e R". (3'12)

Note that the transformed document vector d’ is V-dimensional that retains the interpre-
tability, since each dimension still corresponds to a unique vocabulary term. Moreover,
if 0=0 and a>0, then S, d=d. Looking at Eq. 3.2, the product Sthcv Sgtev essentially
computes a Term Similarity Matrix where the similarity between two terms is based on
the distribution of term weights in their respective global term context vectors, i.e., on
the similarity of their global context histograms. The table of Fig. 3.3c illustrates the
effect of redistribution (compared to BOW) of the term weights (semantic smoothing) in
the transformed document vectors achieved by the proposed mapping.

The procedure of representing the input documents using GTCVM takes place in the
preprocessing phase. Let T; the length of the i-th document and V; its vocabulary. Let also

V' the size of the whole corpus vocabulary. Then the cost to compute one ltcv vector at a

48

location of the term sequence using Eq. 3.8, and to add its V; non-zero dimensions to the
respective dtcv, is O(T;4V;). This is done T; times and the final dtcv of each different term
of the document is added to the respective the gtcv rows. Thus, using proper notation for
the average length 7; and vocabulary length V; of the documents in a corpus, the cost of
constructing the semantic matrix can be expressed as O(N-T;-(T;+2-V;)). However, since
Vi<T;<V, the overall computational cost of the GTCVM is determined by the O(N-V?)

cost of the matrix multiplication of the mapping of Eq. 3.12.

3.6 Clustering experiments

Our experimental setup was based on five different datasets: D;-D, are subsets of the
20-Newsgroups', while Dj is the mod-apte split [116] version of the Reuters-215782 bench-
mark document collection where the 10 classes with larger number of training examples are
kept. The characteristics of these datasets are presented in Tab. 3.1. The preprocessing
of datasets included the removal of all tags, headers and metadata from the documents,
while applied word stemming and discarded terms appearing in less than five documents.
It is worth mentioning how we preprocessed the term sequences of documents. We con-
sidered a dummy term that replaced in the sequences all the low-frequency terms that
were discarded so as to maintain the relative distance between the terms that remained
in each sequence. For similar reasons, two dummy terms were considered at the end of
every sentence denoted by characters as (e.g. ‘., ‘7’ ‘I"). The dummy term is ignored
when constructing the final data vectors.

For each dataset, we have considered several data mappings ¢ and after each mapping
the spherical k-means (spk-means) [41] and spectral clustering (spectral-c) [85] algorithms
(see Sec. 2.6.1) were applied to cluster the mapped documents vectors into the k predefined
number of clusters corresponding to the different topics (classes) in a collection. Spk-

means uses the Cosine similarity and maximizes the Cohesion of the clusters C={cy,...,cx }

Thttp://www.cs.cmu.edu/afs/cs.cmu.edu/project /theo-20/www/data/news20.tar.gz.
http://www.daviddlewis.com /resources/testcollections/reuters21578 /reuters21578.tar.gz

49

Table 3.1: Characteristics of text document collections. N denotes the number of docu-
ments, V is the size of the global vocabulary and V; the average document vocabulary,
Balance is the ratio of the smallest to the largest class and 7} is the average length of the
term sequences of documents.

‘Name Topics ‘Classes N ‘ Balance | 'V ‘ Vi ‘ T;

Dy 20-NGs: graphics, windows.x, motor, baseball, 612000 | 200/400 | 4343 |48.8|110
space, mideast

Do 20—-NGs: atheism, autos, baseball, electronics, 713500 | 500/500 | 6442 | 52.6 | 108
med, mac, motor, politics.misc

D3 20-NGs: atheism, christian, guns, mideast 411600 | 400/400|4080| 62131

Dy 20-NGs: forsale, autos, baseball, motor, hockey 511250 | 250/250|4762 |44.1|104

Ds Reuters—21578: acq, corn, crude, earn, grain, 10 [9979 | 237/3964 | 5613 | 39.1| 76
interest, money-fx, ship, trade, wheat

Table 3.2: NMI values of the clustering solution for VSM (BOW), GVSM, CVM and the
proposed GTCVM (for several values of ¢) document representations using the spk-means

algorithm.
D, Do D3 Dy Ds

Method | ¢ avg best avg gy avg best avg,gy avg best avg|gy avg best avg gy avg best avgigy
BOW - || .722 .821 .594 | .748 .829 .638 | .5b37 548 379 | 625 779 505 | .5b52 .B62 .535
GTCVM 11| .749 .854 .601 | .767 .845 .638 | .544 564 .372 | .667 .793 .515 | .570 .578 .561
2 || 756 .871 .631 | .765 .852 .657 | .563 .574 .396 | .670 .832 .539 | .572 580 .561

5| .773 .881 .687 | .777 .864 .662 | .577 .602 .400 | .688 .851 .539 | .589 .633 .578

10 || .777 .886 .685 | .781 .873 .672 | .590 .621 .424 | 684 .849 .540 | .590 .630 .580

30 || .761 .879 .659 | .776 .863 .653 | .579 .590 .369 | .683 .842 518 | .576 .612 .568

inf || .760 .862 .631 | .772 .862 .639 | .574 586 .366 | .681 .840 .521 | .576 .610 .566

GVSM - || .752 .832 .611 | .747 .822 .637 | .556 .576 419 | .670 .827 .5b47 | .575 .580 .573
CVM - || .750 .841 612 | .754 .851 .659 | .547 .604 400 | .672 .824 .541 | .578 581 .575

Table 3.3: Fi-measure values of the spk-means clustering solution for the different repre-
sentation methods.

D D> D3 Dy Ds

Method | o avg best avgigy avg best avg gy avg best avg)gy avg best avg gy avg best avg gy
BOW - || .779 .920 .685 | .780 .901 .645 | .703 .706 .570 | .735 .918 .558 | .675 .697 .646
GTCVM 11| .806 .940 .688 | .790 .921 .650 | .709 .713 .576 | .755 .920 .561 | .691 .695 .677
2 || .814 946 .688 | .792 924 .674 | .721 .728 .580 | .764 .938 .598 | .698 .714 .672
5| .828 953 .722 | .817 929 .665 | .736 .737 .B97 | .773 .948 611 | .712 .751 .681
10 || .832 .954 .733 | .820 .936 .603 | .737 .739 .603 | .773 .947 581 | .T12 .749 .681
30 || .814 .950 .747 | .794 929 .657 | .725 727 576 | .766 .944 579 | .698 746 .666
inf || .813 942 689 | .792 926 .651 | .722 .728 576 | .765 .944 581 | .698 .744 .666
GVSM - || .790 .923 705 | .783 .903 .640 | .706 .71 576 | 750 943 591 | .687 .720 672
CVM - || .765 .941 672 | .790 .930 .672 | .708 .725 .576 | .751 .934 .604 | .685 .716 .669

(Eq. 2.14). Clustering evaluation was based on the supervised measure normalized mutual

information (NMI) and the F)-measure (see Sec. 2.6.2 for details).

Tab. 3.2, 3.3, 3.5, and 3.6 present the results from the experiments conducted for each

collection. Specifically, we compared the classic BOW representation, the GVSM, the

proposed GTCVM method (with A=0.2 in Eq. 3.9), that represents the documents as

20

Table 3.4: The p and ¢ values of the statistical significance t-test of the difference in
k-means performance using GTCVM (0=10) and the compared representation methods,
with respect to the two evaluation measures. Values of p smaller than the significance
level of 0.05 (5%) indicate significant superiority of GTCVM.

GTCVM D1 D2 D3 D4 D5
(0=10) vs p-val t-val p-val t-val p-val t-val p-val t-val p-val t-val
BOW s .011.10-% 5.98 | .075-10~2 4.05 | .025-10~% 5.81 | .080-10~8 6.45 | .0000 12.8
GVSMuyarr || 0008 2.68 | .081-1072 4.02 | .050-10=2 4.15 | .085 1.73 | .056-10~5 5.17
CVMp i .0051 2.83 | .0010 3.33 | .052:10~% 4.65 | .1659 1.39 | .077-1073 4.04
BOWp, .020-10~% 5.39 | .050-10~2 3.54 | .046-10~2 3.56 | .0010 3.32 | .0000 12.8
GVSMp, .037-1073 4.22 | .0021 3.11 | .067-1072 3.45 | .0329 2.15 | .0000 9.06
CVMp, 0811073 4.02 | .06-10~8 6.50 | .0027 3.04 | .0314 2.18 | .0000 9.31

Table 3.5: NMI values of the clustering solution for VSM (BOW), GVSM, CVM and the
proposed GTCVM (for several values of o) document representations using the spectral
clustering algorithm.

D, D, D3 Dy Ds
Method | ¢ avg best avg gy avg best avg,gy avg best avg|gy avg best avgigy avg best avggg
BOW - || 753 .61 .750 | .781 .788 .737 | .569 .585 .555 | .718 .780 .631 | .558 .559 .506
GTCVM 1|l .770 774 769 | .790 .795 .750 | .614 .626 .600 | .735 .779 .642 | .560 .561 .516
2 || .781 .785 .760 | .790 .794 757 | .625 .632 .601 | .752 .789 .649 | .562 .564 .523
51 .794 .804 .790 | .833 .853 .763 | .639 .640 .619 | .768 .827 .669 | .579 .600 .557
10 || .807 .814 .801 | .833 .853 .761 | .645 .648 .620 | .758 .819 .661 | .581 .589 .558
30 || 791 .796 .769 | .807 .832 .743 | .613 .613 .609 | .755 .797 .647 | .567 .582 .535
inf || 774 782 767 | .794 794 722 | 619 .619 .610 | .749 .793 .637 | .560 .568 .530
GVSM - || 756 770 702 | .794 830 .747 | .593 .595 .586 | .722 .780 .637 | .548 .554 513
CVM —|| 761 768 751 | .801 .823 .760 | .605 .606 .590 | .728 .794 .642 | .557 .566 .519
Table 3.6: Fi-measure values of the spectral clustering solution for the different represen-

tation methods.

D D> D3 Dy Ds

Method | o avg best avg gy avg bestavg,gy avg best avg|gy avg best avg gy avg best avggy
BOW -1/ .801 .811 .780 | .819 .822 .767 | .710 .723 .701 | .808 .911 .697 | .666 .669 .654
GTCVM 1|l .811 .819 .809 | .822 .832 .772 | .729 741 728 | .834 915 .722 | .694 .703 .663
2 || .818 .823 .806 | .837 .841 .779 | .733 .746 .732 | .865 922 .725 | .689 .703 .652
5| .837 .840 .818 | .887 .927 792 | .744 756 .737 | 870 .930 .740 | .716 .727 .647
10 || .840 .842 .826 | .890 .925 .788 | .7Th4 .759 .742 | 865 .929 .736 | .710 .725 .654
30 || .823 .826 .809 | .856 .886 .769 | .726 .735 .725 | .864 .925 .705 | .704 .701 .642
inf || .814 .817 .806 | .826 .832 .734 | .728 .735 .729 | .859 .922 703 | .692 .686 .653
GVSM - || .756 .770 .702 | .826 .901 .780 | .709 .714 724 | .823 916 .705 | .642 .657 .654
CVM - || .761 .768 779 | .831 .897 791 | .725 7256 723 | .825 916 .713 | .673 .678 .654

described in Eq. 3.12 and the CVM as proposed in [113], where document vectors are

computed based on Eq. 3.4 with idf weights. More specifically, for each collection, each

representation method was tested for 100 runs of spk-means (Tab. 3.2, 3.3) and spectral-

¢ (Tab. 3.5, 3.6). To provide fair comparative results, for each document collection all

methods were initialized using the same random document seeds. The average of all runs

(avg), the average of the worst 10% of the clustering solutions (avgio%), and the best

51

Table 3.7: The p and ¢ values of the statistical significance t-test of the difference in
spectral clustering performance using GTCVM (0=10) and the compared representation
methods, with respect to the two evaluation measures. Values of p smaller than the
significance level of 0.05 (5%) indicate significant superiority of GTCVM.

GTCVM [)1 [)2 I)g 1)4 I)5
(0=10) vs p-val t-val p-val t-val | p-val t-val p-val t-val | p-val t-val
BOWnN .0000 27.3 .0000 13.8 .0000 620. 0261074 4.85 .0000 8.03
GVSMnyarr || -0000 16.7 | .0000 7.51 .0000 130. 129-107% 4.99 .0000 12.1
CVMnN T .0000 19.3 .150-1078 6.35 .0000 138. .316-1073 3.67 | .0000 8.83
BOWg, .0000 24.1 .0000 11.4 | .0000 875. 123.107% 4.48 .0000 19.1
GVSMpg, .0000 15.1 .0000 7.53 .0000 410. 113-1072 3.31 .0000 30.7
CVMp, .0000 18.7 | .0000 7.11 .0000 268. 115-1073 3,94 | .0000 14.1
Dataset: D, -—#--NMI —B—F1 Dataset: D, -=¢--NMI —E—F1 Dataset: D -—--NMI —E—F1
0.9 0.9 0.8

0.75
0.85 0.85
I; :.
L 0.7
0.8 \. 0.8 l
—p
- P e 0.65
‘N

- e p
0.75 -t 0.75 e

- ———tay_
. P S
L4 e
0.7 0.7 -~
- ~

.

0.65 0.65 0.5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A A A

Dataset: D, ==+--NMI —E—F1 Dataset: Dy -—+--NMI —E—F1
0.8 0.8

o5 l% 075
07 07 Irdlgh.:._._.i_.\.
w-0—$“~‘

LT kgl

‘—t-o-t-o-g‘
-

0.5 0.5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.4: The effect of varying the parameter A on the spk-means clustering performance
for each dataset. Eq. 3.9 is used to determine the term self-weight «, when computing
the [tcv histograms.

values are reported for each performance measure. The worst 10% concerns the 10% of
the solutions with the lowest Cohesion, while the best clustering solution is that having
the maximum Cohesion in the 100 runs (for spectral-c the sum of squared distances is
considered for this purpose). Moreover, in Fig. 3.4 we present the average clustering
performance of spk-means with respect to the value of A parameter of Eq. 3.9 where,
although not best for all cases, the value 0.2 we used seems to be a reasonable choice for
all the datasets we have considered. Note that similar effect was observed for spectral-c

method.

52

In order to illustrate the statistical significance of the obtained results, the well-known
t-test was applied for each dataset to determine the significance of the performance dif-
ference between our methods and the compared methods. We have considered the case
where 0=10 for the Gaussian kernel for all datasets. Within a confidence interval of 95%
and for the value of degrees of freedom equal to 198 (for two sets of 100 experiments
each), the critical value for ¢ is t,=1.972 (p.=5% for p value). This means that if the
computed t>t., then the null hypothesis is rejected (p>5%, respectively), i.e. our method
is superior, otherwise the null hypothesis is accepted. As it can be observed from the
results of the statistical tests for spk-means presented in Table 3.4, the performance su-
periority of GTCVM is clearly significant in four out of five datasets with respect to all
other methods. For dataset D, the tests indicate that GTCVM, although still better
than BOW, has less significant difference in performance compared to GVSM and CVM.
Table 3.4 provides the respective t-test results for the spectral-c method where, also due
to the lower standard deviation of the results using all document representation methods,
the GTCVM demonstrates significantly better results than the compared representations.

The experimental results indicate that our method outperforms the traditional BOW
approach in all cases, even for small values of smoothing parameter o (e.g. =1 or 2).
This substantiates our rationale that the clustering procedure is assisted by the proposed
semantic smoothing which takes into account the local contextual information associated
with a term occurrence. GTCVM requires moderate values for the parameter o to achieve
better performance. The same is observed for the quality (in terms of NMI or Fy) of
the best solution (i.e. the one with maximum Cohesion) found in the 100 runs, where
moderate values of o (i.e. 0=5 or 10) result in better GTCVM performance. Moreover,
the clustering results for a wide range of values of the smoothing parameter ¢ indicate
that the method is quite robust to the specification of this parameter. GTCVM behaves
similarly to BOW when a low value is set for o, while when this value becomes very high
the discriminative information of the global term context vectors is reduced. This was
demonstrated using spk-means and spectral clustering methods. Among them, the latter

in all cases except from D5 presented better average clustering solutions in terms of both

23

evaluation measures NMI and Fy, while interestingly, spk-means was superior in terms of
the best clustering solutions in most cases (with the exception of D3) despite operating

in a feature space of a much larger size.

3.7 Conclusions

We have presented the global term context vector model (GTCVM) document representa-
tion, an extension to the vector space model (VSM) that determines a proper feature space
to project the typical VSM document vector representations. Our approach is entirely
corpus-based and operates in the preprocessing in a sequence of four steps:
i) captures local contextual information associated with each term occurrence in the
term sequences of documents,
ii) summarizes the local context vectors of each term into the respective global term
context vectors,
ili) constructs the semantic matrix for a problem using the global term context vectors,
and finally

iv) projects documents using the semantic matrix.

The proposed approach achieves semantic smoothing by reducing data sparsity, while
retaining the original dimensionality. The derived representation maintains the initial
interpretability since each dimension is associated with a single vocabulary term.

In the experimental document clustering study, we compared the proposed represen-
tation with the typical VSM, the Generalized-VSM and CVM, using Cosine similarity.
The statistical analysis of the obtained results indicates that assists well-known clustering
algorithms, such as spherical k-means and spectral clustering, to achieve better clustering

solutions compared to other representation methods.

54

CHAPTER 4

CLUSTERING USING SYNTHETIC CLUSTER

PROTOTYPES

4.1 Introduction

4.2 Background and context

4.3 The k-synthetic prototypes clustering method
4.4 Experimental evaluation

4.5 Conclusions

4.1 Introduction

In this chapter we put forth the idea that, although the centroids are the optimal cluster
prototypes with respect to certain objective functions (e.g. based on Cosine similarity),
their optimality could also become a drawback in high dimensional and sparse (HDS)
feature spaces and in cases of low data quality (e.g. outliers, noise). Especially, as
the number of data objects becomes smaller compared to the complexity of a clustering

problem (i.e. number of clusters, dimensionality), the centroids become less appropriate

95

cluster representatives. Text documents constitute a typical example of data where such
an adverse setting is met.

We present the synthetic prototype, a novel type of cluster representative that, given
the object assignment to clusters, is computed in two steps: i) a reference prototype is
constructed for the cluster and then ii) feature selection is applied on it. We propose the
so-called MedoidKNN reference prototype which is based on a subset of K objects of a
cluster that are close to its medoid. This synthetic prototype favors the representation
of the objects of the dominant class in a cluster, i.e. the class to which the majority of
the cluster objects belong. Finally, we modify the generic spk-means iterative procedure
by incorporating synthetic prototypes. This leads to a novel, effective and quite simple
clustering method called k-synthetic prototypes (k-sp) [44].

We conducted an extensive evaluation of the k-sp method examining several options for
the synthetic prototypes and comparing it to several traditional clustering methods such
as spherical k-means, agglomerative, spectral clustering and two soft subspace clustering

methods.

4.2 Background and context

4.2.1 Text representation and representation spaces

The properties of the vector space in which text documents are represented are closely

related to the underlying nature of human language. The HDS properties are derived by
i) the very large feature sets that are needed to represent text data, and

ii) the fact that each document is a semantically narrow instance of a much more

general document class.

For example, two authors may express exactly the same ideas using generally different
words or expressions. The text properties have been discussed in detail in Sec. 2.1. This

section focuses on the impact of these properties to the pairwise object (dis)similarities,

26

i.e. the low-level information that any clustering algorithm exploits.

In an HDS space, documents of the same class present average pairwise similarity
comparable in magnitude to the similarity between documents from different classes [99,
117]. For instance, let d,, d,, and d, three documents of the same class; it is possible for
d, to share a set of terms with d, and a different set of terms with d, whereas, at the
same time, d, and d, may exhibit no vocabulary intersection. This would be expected
to hold mostly for pairs belonging to different classes. In this context, certain qualitative
issues arise regarding the direct determination of a large number of nearest neighbors to
an object [99, 117]. For example, if an object has non-zero similarity with K objects
in the dataset (or a cluster), then the direct determination of its nearest K'>K objects
would unavoidably make guesses.

Document clustering differentiates from the high dimensional data clustering problems
that seek for a single global subspace of features where there are observable clusters; dif-
ferent document clusters are formed in generally different subspaces. Small text datasets
should be treated as cases of special interest. According to Heaps’ power-law [54], the
increase of the corpus vocabulary is sublinear to the number of included documents. In
order to further analyze this issue, we empirically define the relative dimensionality (rd)
of the feature space based on the number of features V', the number of data objects NV,
and the number of clusters k:

kEV

rd = log N (4.1)

This quantity may also provide an apriori empirical estimation of the ‘difficulty’ of the
learning process. Due to the sublinear relation between N and V, rd is expected to
be much larger for small datasets than for larger ones. The large vocabulary diversity
even between documents of the same class, is an additional justification for the difficulty
of clustering small document datasets. Note that, for a fixed k, rd is a monotonically

decreasing function as the size of the dataset increases.

o7

4.2.2 Text document subspace clustering

The different topics are usually described by generally different subsets of terms which, in
combination with the high sparsity of the feature space, lead to the hypothesis that the
underlying cluster structure may be better to be sought in subspaces of the original feature
space. The feature selection that is applied in the preprocessing phase actually computes
a single global subspace where data clustering is performed. A more fuzzy feature selection
would assign a global weight to each dimension. Subspace clustering can be thought as to
be an extension to feature selection in the sense that it determines a subspace explicitly
for each cluster during clustering.

In brief and according to [40], the main categorization of subspace clustering methods
is based on the relation between the axes of the subspaces they seek and the axes of
the original feature space. One approach, called generalized subspace clustering, is to
seek for arbitrarily oriented subspaces. Their major difficulty is to deal with the infinite
search space of the candidate subspaces. A second and more widely-used approach is
constrained to seek for subspaces with axes parallel to the original. The projected subspace
clustering lets no intersection between the dimensions that span the different subspaces
and hence, 2¢—1 possible subspaces must be examined. The subcategory that lets different
axis-parallel subspaces to have dimensions in common is called soft projected clustering
and usually different feature weights in [0,1] are assigned for each cluster. The latter
subcategory can be further split based on the searching approach adopted regarding the
feature set a method starts to work with. Top-down approaches start with the full set of
features and iteratively try to determine narrow subspaces for each cluster. On the other
hand, bottom-up approaches start from single dimension subspaces and use a strategy
similar to mining frequent itemset to increase their dimensionality.

Apparently, there are important methodological differences in the literature of sub-
space clustering, but a thorough analysis is beyond the scope of this work. In the rest
of this section we will discuss the recent research on top-down soft projected subspace

clustering methods that develop feature weighting mechanisms and incorporate them to

o8

k-means, and have also been tested on the document clustering problem.

An abstract framework is presented in [118] that, using multiple feature vectors to
represent each data object, is able to integrate the heterogeneous feature spaces in the
k-means algorithm. A convezr-k-means algorithm is proposed that is based on a con-
vex objective function constructed as a weighted combination of the distortions of each
individual feature subspace. The algorithm simultaneously minimizes the average within-
cluster dispersion and maximizes the average between-cluster dispersion along all of the
feature spaces. A method that received much attention is clustering on subsets of at-
tributes (COSA) [119]. Tt is an iterative algorithm that considers a feature weight vector
to each data point, initially containing equal weights for all features. Larger weights are
assigned to features that present small dispersion in a neighborhood around the reference
object, which means that are more important. The next step is to use these weights to
compute some other weights corresponding to each pair of objects that, in turn, update
the distances for the computation of the nearest neighbors. The algorithm stops iterating
when weight vectors corresponding to objects become stable. COSA outputs a pairwise
distance matrix based on a weighted inverse exponential distance and any distance-based
clustering method can produce the final clusters. The algorithm requires the user specifi-
cation of the size of neighborhood to consider, a second parameter that controls the fade of
the exponential feature weighting, while the major issue is that all the N xV parameters
should be estimated during the process.

Some other algorithms were then developed that consider one feature weighting vector
for each cluster. Feature weighting k-means (fwk-means) [120] aims to minimize the

following objective function:

(I)fwkm(C) = Z Z Zw;-ll [(Mjl — dﬂ)z + O] , (4.2)

7=1 d,;ECj =1

subject to

v
ijl =1, 0< Wiy <1 7= 17“';k7 (43)
=1

29

where p; is the Li-normalized centroid of the j-th cluster and h>1 a parameter that must
be set in advance. The term w;?l(ujl —dj)? computes the distance between the centroid
5 and a document d; on the specific [-th feature dimension. Initially, the weights are
set to 1/V and the k centroids are set in a random fashion. The optimization is then
performed by iterating the following steps until convergence:

1. Object assignment to their nearest cluster using the computed centroids and the

feature weights.
2. Computation of the cluster centroids using the computed feature weights.

3. Computation of the feature weights for each cluster using the computed cluster

centroids.

Given the cluster centroids and the k feature weighting vectors of the previous iteration,

the optimal weight of the [-th feature for cluster ¢; is computed by:

1/(h-1)] 1

I XV: Zdiecj wir [(p0 — du)2 + 0]
- |

' > diee; Wit [(pge — dit)? + 0]

t=1

(4.4)

where o is the average dispersion of the vocabulary measured offline in a sample of Ngample
data objects. fwk-means adds this value because a feature weight is not computable if
its dispersion in a cluster is zero. If we let m fv; to be the mean feature value of the [-th

feature in the data sample then o is given by:

1%
g — N;l‘/ Z Z(dd — mfvl)Q. (45)

d; ECsample =1

Locally adaptive clustering (LAC) algorithm presented in [121] is quite similar to
the Entropy weighting k-means (ewk-means) [122]. Both share some ideas with COSA,
whereas the feature weighting vectors are assigned to clusters instead of objects. More-
over, their search strategy is more alike to fwk-means. A modified objective function is
utilized, which is to add the weight entropy ejzzlvzl wj logwj; corresponding to each

cluster in order penalize the identification of clusters in subspaces spanned by very few

60

features. The objective function of ewk-means is:

v

(I)ewkm(C) = Z Z Zwﬂ(,ujl — dz’l)2 + v €il, Y >0 (46)

j=1 | diee; I=1

subject to Eq. 4.3 and the value of v controls the focus of the objective function on the
feature weight entropy. The iterative optimization is identical to that of fwk-means and

differ only on the weight computation:

_ eXp(—diSPji/’Y)
S exp(—disp;e/7)

wﬂ

where

dispjl = Z (/vbjl — dil>2- (48)

dicc;

COSA and fwk-means require the tuning of the value of the parameter controlling
the size of the subspaces that are sought (the value of 7y in ewk-means). LAC introduces
an ensemble approach that combines multiple clustering solutions discovered by LAC
using different v values, which produces a superior result than that of the participating
solutions. The feature weights of these methods enable the modeling of more complex
cluster shapes than the spherical of traditional k-means. However, the parameters that
need to be estimated are doubled compared to k-means: 2kxV for the feature weights
and the cluster centroids. This parameter increase unavoidably causes a large increase to
the number of local minima of the search space. Recently, an adaptive weight-adjusting
principle was adopted in [123], which at each step adds a Awj; to each w;; weight computed
based on the extend of contribution of the weight to the clustering quality. Finally, in [124]
an algorithm similar to LAC and fwk-means is presented, also allowing the incorporation

of constraints derived from a labeled data subset.

61

4.3 The k-synthetic prototypes clustering method

4.3.1 Clustering using centroids and medoids

From an optimization point of view, the normalized centroid is the prototype that max-
imizes cluster’s Cohesion Eq. 2.14. However, this optimality may become a drawback in
such a feature space, especially at early clustering iterations where clusters have low ho-
mogeneousity due to random initialization. More specifically, there exist two undesirable
phenomena concerning the use of centroids. At a data object level, the self-similarity
phenomenon implies that the similarity of a document with itself becomes the dominant
factor for deciding about its nearest cluster [41, 125]. This is explained by observing the

similarity between a normalized centroid u; of the cluster ¢; and a member document d:

1
uld = (de + Yy dd) (4.9)
HZd €cj dicc;

di#d

Due to sparsity, the term d'd;=1 can be large in magnitude compared to the sum of
similarities between d and the documents of ¢;, or the documents of other clusters. In
an extreme case, a document d € ¢; which has non-zero similarity only with documents
from clusters other than c;, may still determine ¢; as its nearest cluster, since due to the

self-similarity term it may hold that:

de Zd (9] dT
o Tt

(4.10)

Hence, d may remain in an inappropriate cluster. This phenomenon appears more intense
in cases where there is a small number of objects per cluster in combination with high
sparsity.

The second phenomenon is the feature over-aggregation that occurs when computing
a centroid for an impure cluster. Supposing that there is a feature subset f;r strongly
related to each document class j, and a usually much larger subset f;~ containing the

remaining V—|fj+| terms, then the learning process aims to find a cluster prototype, i.e. a

62

weight vector in RY, being discriminative for that class. This means that for each cluster
the clustering algorithm should try to determine the | fj+| representative features for its
dominant class and to estimate their relative weight distribution in the possible presence
of | fj_| irrelevant features that should be assigned with very low weights. The effectiveness
of such an algorithm may be greatly affected by the level of the relative significance of the
features of f;r to that of f;” in a cluster at a particular iteration, which can be formally

expressed by the following ratio:

Diest Ui

6; = -
Zi:l Uji

(4.11)

Feature over-aggregation appears at the initial iterations where very low d-ratio values are
observed in the clusters of poor quality. This prevents the prototypes from becoming more
class discriminative, since the non-informative features also affect the object assignment
to clusters and hence the problem is retained.

Both self-similarity and feature over-aggregation constrain the local search flexibility of
the k-means procedure and lead to poor solutions strongly dependent on initial conditions,
where often documents from two or more classes are assigned to the same cluster.

In what concerns the use of medoid as cluster prototype, it does not present the self-
similarity and feature over-aggregation effect. However, as mentioned in Sec. 4.2.1, since
each document is a specific semantically narrow instance of the more general topics of its
class, it contains a very small fraction of vocabulary terms. Thus it is unlike for a single

document to be a good cluster representative.

4.3.2 Synthetic cluster prototypes

Traditionally, feature selection (in our case term selection) takes place in the prepro-
cessing phase. However, we adopt a dynamic selection scheme implemented in the form
of synthetic cluster prototypes, which are computed by first selecting objects and then
features from each cluster (Fig. 4.1). As clustering proceeds we exploit the information

progressively produced in the formed clusters to retain the important features for each

63

Preprocessing Phase

Feature Selection

Clustering Phase

‘ Form Clusters ‘

T iterate i

Dynamic Feature Selection
From Clusters
(Synthetic Prototypes)

Figure 4.1: The k-sp framework using synthetic prototypes.

cluster. To compute a synthetic prototype we must define:

i) a reference prototype, an initial representative of the cluster constructed by a subset
of its objects, and
ii) feature selection on prototypes in order to select features from the reference cluster

prototype.

The Ly-normalized cluster representative derived by filtering the features of a reference
prototype is a synthetic prototype. These prototypes are generic, in the sense that they
can be constructed by considering any reference prototype or feature selection scheme.
Omitting the feature selection step is also a viable option, thus a reference prototype
is also a synthetic prototype. In this case feature selection is achieved implicitly since
the reference prototype is computed using a subset of the cluster objects and it may not
contain all the vocabulary terms.

The proposed clustering algorithm is called k-synthetic prototypes (k-sp) and incor-
porates the synthetic prototypes into the spk-means procedure. Note that spk-means is
a special case of k-sp where the cluster centroids are used as reference prototypes and
no feature selection is applied. By using synthetic prototypes the k-sp procedure aims
to discover dynamically a different feature subspace in which each document class can
be better separated but, at the same time as we explain, to mitigate the negative effects
of the self-similarity and the feature over-aggregation phenomena. The explicit feature

selection scheme we have considered is the simple thresholding on the feature weights of

64

a reference prototype to keep the P most significant features of a cluster (see Sec. 4.3.3).
Contrary to the typical preprocessing feature selection techniques, k-sp does not affect
the original data objects and hence, does not constrain future iterations with previous
cluster representations. In a later phase, one could consider much more detail (i.e. more
objects and features) from the clusters to fine-tune the solution.

L of a cluster. The

A straightforward option for reference prototype is the Centroid™
assumption behind this choice is that many of the representative features for the dominant
class in a cluster would have high weights in the respective centroid. Thus, the feature
selection on it would keep the highly descriptive features for this class. Obviously, this
is not true for a cluster containing documents of more than one class none of which is
clearly dominant (Fig. 4.2b).

We propose Medoid KNN) | an approach to construct the reference prototypes by com-
puting the centroid of a subset Y of documents assigned to a cluster that are descriptive
of its dominant class. The set Y can be formed by selecting the K documents of the
cluster being the nearest neighbors to the medoid of that cluster, including the medoid
itself. As explained in Section 4.2.1, it would not be very efficient to directly determine
a large number of nearest neighbors of a medoid using its pairwise similarities, since the
medoid document may contain only a part of the features present in the cluster. This
issue is further discussed on real world examples in Sec. 4.4.3. Therefore, we propose an
incremental procedure to form the set Y that avoids computing a large number of nearest
neighbors directly from the medoid object. Let A be the number of desired steps and j;,
1=1,...,A a sequence of values such that 0<3;<f;;1<...<fy=1. Starting with the medoid
Yo={m}, each next subset Y; (for i>1), is formed by the [5; K] documents nearest to
the centroid of subset Y, ;. For a two-step example with 5,=0.2, and Sy=1:

i) first, the medoid of the ¢; cluster is determine, then

ii) the [0.2K| objects in ¢; are determined that are nearest to the medoid and compute

their centroid rp;, and

'In cases where we need to be more specific we denote explicitly with the superscripts (r) and (s) the
reference and the synthetic prototypes, respectively.

65

iii) the K objects in ¢; nearest to rp; are located, and rp, is computed which is the
final MedoidKNN(). Notice that for K=n,, the rp coincides with the centroid of

cluster ¢;, while for K=1 it is the cluster medoid.

Typically, up to three steps (A=3) are sufficient to determine a proper final set Y.

One could argue that the set Y should contain the nearest documents to the cluster
centroid and not to the medoid. As a matter of fact, the medoid is close to centroid in a
homogeneous cluster and the nearest objects to medoid may also be the nearest objects
to the centroid. However, if there are objects of more than one class in a cluster, the
medoid-based construction of Y is more probable to lead to a sharp preference for one
of the overlapping classes (see Fig. 4.2). This argument is strengthened by a usually
holding property called intracluster r NN-consistency: any data object in a cluster and its
r nearest objects in the same cluster will belong to the same class with high probability.
We should remark that intracluster rNN-consistency is expected to be higher than the
rNN-consistency of the whole dataset that can be similarly defined [126].

Another advantage of k-sp method is that by ignoring some documents that are far
from the synthetic prototypes, it provides robustness and ensures that possible outlier
and noisy objects will not affect any cluster representation (similarly for noisy features).
These objects are not discarded from the dataset. Besides, one object may be ignored as
a noisy-outlier at an iteration when computing a cluster representative, while it could be
later considered as one core object in case it is reassigned to another cluster, or its current
cluster changes dramatically, and the object is now located near the new cluster medoid.

The k-sp exhibits some similarity with the soft subspace clustering methods. The
object selection of the reference prototype defines implicitly a feature subspace for a cluster
while the feature selection on it explicitly prunes this subspace. Instead of using a separate
feature weighting mechanism per cluster, which also doubles the parameters need to be
estimated, k-sp uses a heuristic way to directly determine better vector representations
for the clusters. Using object selection it actually tries to favor the representation of the

dominant class in a cluster which implicitly results in subspace cluster representation.

66

Objects Assigned to a Cluster

Medoid

X Centroid

O Class A objects

O Class B objects

@ Selected objects
around medoid
to represent the
cluster

y Representative features Representative features
of the dominant class A of class B

e ; = Class A
O Class B

Frequency

Cluster Features (terms)

(b)

= Class A

O Class B

= Medoid

m MedoidKNN
(unfiltered)

Prototype

Filtering
Threshold
0 |

Cumulative Frequency

Cluster Features (terms)

(c)

Figure 4.2: A cluster example that combines two data classes. It illustrates the rationale
of using objects around the cluster medoid to favor the representation of the dominant
class A and to enable the reassignment of the objects of the other class(es) to other
clusters. (a) Object-level view of a cluster where the medoid’s nearest neighbors belong
mostly to the dominant class. (b) Feature-level view of a multidimensional cluster that
illustrates the imaginary histogram of the feature frequency for each of the classes. On the
horizontal axis, we suppose an ordering where features that exist in both class (probably
noisy) lay between the two peaks of representative class features. (c¢) The histogram of
the cumulative feature frequency over both classes. The respective distributions are also
presented for the medoid and the MedoidKNN) cluster prototypes.

Another worth mentioning difference is that we claim that after having concluded to a set
of synthetic representatives defined in certain feature subspaces, then we may take into
account the complete feature space to refine the clustering.

Algorithm 1 provides the pseudocode for the k-sp method that incorporates the syn-
thetic prototypes, constructed using Algorithm 2, into the spk-means algorithm. The clu-
stering Cohesion is computed with respect to the synthetic prototypes. It must be noted

that k-sp cannot guarantee the monotonicity of convergence. In the case of Centroid®), we

67

Algorithm 1 k-Synthetic Prototypes Clustering Method

function ESP (K, Pobs Preat, 7€f-flag)
input: the number of clusters k, two parameters pop;, Preas (se€ Algorithm 2), a flag ref_flag
that enables refinement
output: the k clusters and the set of final prototypes
let: a partition C, the synthetic cluster prototypes S, and the respective clustering cohesion H
ConstructSP (C, Pob;, Preas) Algorithm 2 for each cluster of the partition C
RefineSolution (C) k-sp using Centroid(®) prototypes (spk-means) initialized by partition C
end let
{C, S} < InitializeClusters ()
H + Cohesion (C, S)
repeat
{C(prev)’ Sprev) H(prev)} «{C, S, H}
C « AssignDocsToClusters ()
S < ConstructSP (C, Pobjs Preas)
H + Cohesion (C, S)
until ¢ = CP™ or H < HPrev)
if H < H®*) then
10: {C, S, H} < {C@rev) glprev) pr(prev)}
11: end if
12: if ref_flag == TRUE then
13: C < RefineSolution (C)
14: end if
15: return {C, S}

©

compute the cluster centroid as reference prototype that maximizes the cluster Cohesion
®con(cj), but this optimality is lost after filtering its features. Similarly, for Medoid KNN(®)
prototypes, it is not possible to guarantee that cluster Cohesion will increase at all iter-
ations and it is essential for k-sp to monitor the objective function and to terminate the
procedure if a deterioration of the overall Cohesion is observed (the condition H<H ()
in Algorithm 1). In this case, the clusters of the previous iteration are considered as the

solution to the problem produced by the main k-sp procedure.

4.3.3 Definition of parameters

The k-sp parameters for computing the MedoidKNN®) prototype can be defined with
respect to the volume of cluster information, namely the number of cluster members n;
and the distribution of feature weights aggregated in the reference prototype of a cluster.
Two parameters must be specified by the user: p.;, Prar €[0, 1]. The number of medoid

neighbors K is computed as:

Kj = [po; 151 - (4.12)

68

Note that different number of neighbors are considered for each cluster ¢;, while only
documents with non-zero similarity to rp are selected (this is implemented by the function
NNDocs (¢, rp, r) in Algorithm 2). In what concerns the feature selection, an option is
to find the Pj:(pfeatvj(r)1 terms of highest frequency in the reference prototype of rp,
that would cost O(Vj(r)). Our implementation uses a more efficient approach which is
to select the highest weighted features (including the idf component) that contain a
fraction py,, of the total feature weight sum ZYZI rp;i (total information) of the reference
prototype vector rp;. Let y(i), i=1,...,P;, a function that indexes the selected features
which represent the specified pg.,, information fraction, then P; is described by:

Pj
w ~ Drone. (4.13)

> ity TDji

Pj S ‘/}(T) .

The more uniform the weight distribution of 7p;, the more features are selected to repre-
sent the ¢; cluster. Typically, the cost of this operation is O(Vj(r) 1og(Vj(r))), due to the

My log z) by splitting the

need of weight ordering. However, this can be reduced to O(V;
range of feature weight values of a cluster into several intervals (bins), where only a small
number of features z contained in one bin may be needed to be ordered and then to select

the most informative subset out of them.

4.3.4 Refining the solution of k-synthetic prototypes

The robustness of the proposed k-sp method is the result of its ability to overcome adverse
situations in initial clustering iterations and hence to avoid poor locally optimal solutions.
After the termination of the basic procedure of k-sp method, the result may be further
refined by considering the centroids of the obtained clusters as the initial prototypes
for a final run of k-sp that now coincides with the regular spk-means (this option is
enabled by the flag ref_flag in Algorithm 1). This refinement strategy i) aims to improve
the result of k-sp method by using more detailed information for homogeneous clusters
already produced by the basic k-sp phase, ii) assists in reducing the sensitivity of the

k-sp to parameter definition K and P (see Sec. 4.4), and iii) constitutes a straightforward

69

Algorithm 2 MedoidKNN Synthetic Prototype Construction

function ConstructSP (¢, Pobs Preats A, 5)
input: a cluster ¢, a threshold p,,;€[0, 1] that determines the number of documents used for
reference prototype construction, pr..€[0, 1] for feature selection on it, the number of
steps A, and a vector f of length A that control the incremental construction (see Sec. 4.3.2)
output: the synthetic prototype MedoidKNN(®) for cluster ¢
let: n. the number of documents in cluster ¢, and m, its medoid object
NN Docs (¢, rp, 7) determines the rNNs to rp vector in cluster ¢ with non-zero similarity
Centroid (Y.) computes the centroid of a set Y,
FSonRP (rp, pra:) applies feature selection on the reference prototype rp based on the
parameter pr.,. and normalizes the final prototype to unit length (Ly-norm)

end let
Y.+ {m.}
TP M
Kc — |—pobj nc-‘
if K. > 1 then
do for i=1,...,A
Y. < NNDocs (c, rp, [BiK.])
rp < Centroid (Y,)
end for
end if
sp < FSonRP (P, Dreat)
return {sp}

— =

approach to choose the best clustering solution among those obtained for different k-sp
parameter settings by comparing the values of the objective function after the refinement
step. This procedure is described in the next section.

The experimentally observed improvement achieved by refinement supports our basic
assumption that centroids do not provide sufficient flexibility when clusters are not ho-
mogeneous and object reassignments should be encouraged. To tackle this problem one
could try to improve the initialization of an iterative method with specialized object-based
seeding techniques, or using the clusters produced by a clustering method of different
characteristics as the initial partition. Interestingly, the k-sp method is self-refined by
simply using different values for method parameters, since spk-means is a special k-sp
case. The clustering improvement achieved by k-sp refinement phase also confirms that
self-similarity and feature over-aggregation play a crucial negative role mostly due the
clusters’ impurity at the initial iterations of the search procedure. The clusters obtained
by the basic phase of k-sp need only a few refining reassignments, thus the self-similarity
phenomenon is not a very important issue. Moreover, each respective cluster centroid

would have a high d0-ratio (Eq. 4.11) that enables the fine-tuning of its V' feature weights

70

which would lead to an improvement in its class-discrimination.

4.3.5 Selecting the k-sp parameters

An additional advantage of the refinement phase of k-sp, which uses the centroids as
cluster prototypes, is that it enables the direct comparison of the results obtained using
different values for k-sp parameters. The latter is a very important aspect of k-sp, since it
allows the selection of the best setting for parameters p,,; and p.,,. More specifically, the

user could specify two sets of candidate parameter values, the set S

S

for p,,; and the set

Pob;
preas 10T Prear- Then, using the same random initial conditions, k-sp runs several times for
each combination of the two parameter values and by monitoring the average value of the
refined objective function (Eq. 2.14), we can determine which parameter values provide
the best average performance. The procedure can be summarized by the following steps:
1. The sets of values S, . and S, are specified by the user.
2. Run k-sp with refinement (Algorithm 1) several times for each combination of pa-

rameter values p,,; € Sp,,. and Pe.. € S

Pobj Pfeat *

3. Compare the average value of the refined objective function of each set to determine

the best k-sp average performance and the corresponding parameter values.

Furthermore, the above procedure may reveal important information about the dataset
characteristics. As we will see in the experimental section, the observation of better
performance provided by smaller synthetic prototypes may indicate that the data clusters
are overlapping in many dimensions (i.e. vocabulary terms in common), or that there are

a lot of noisy objects/terms.

4.3.6 Implementation and complexity

In the present context, where document vectors and cluster centroids are normalized
with respect to Lo-norm, it is easy to show that the medoid of a cluster is the cluster

object with maximum Cosine similarity (dot product) to the centroid of that cluster. Let

71

W= a,ec; i / szi@j din the normalized centroid of cluster ¢; with respect to Ly-norm,

then Eq. 2.13 can be expressed as:

. — T . — Tor.
m; arg%ﬁ“f{d Zdl} arg%leaéic{d u]}. (4.14)

di€c;

Hence, we can determine the medoids of all clusters with linear cost O(NN) to the size of
the corpus. Thus, both ‘spherical’ version of k-medoids and k-means method have the
same asymptotic cost. It must be noted that it is possible for a cluster to have more than
one ‘medoid’, i.e. objects whose total similarity to the other cluster objects has exactly
the same maximum value. Moreover, those objects are equally distant to the cluster
centroid. None of them can be considered superior to the others, hence, we can randomly
select any of them to construct our synthetic prototype.

Suppose we are given for every object d an ordered list containing the other N—1
objects in descending order with respect to their similarity to d. Then it is possible to
determine the K —1 objects in a cluster that are nearest to its medoid by linearly traversing
the respective list (K—1<N). By taking advantage of the intracluster rNN-consistency
property, we can precompute offline a number of K, (K—1<K,,<N) nearest neighbors
for each document in the dataset. If a list has less than K —1 objects that are assigned
to the same cluster with the medoid object d, we have to necessarily apply greedy search
in cluster to locate the rest nearest neighbors to d, up to the desired K—1. Supposing
that we have set a proper K,, value that eliminates the previously mentioned greedy
search, then the non-incremental (A=1) construction of a MedoidKNN@) prototype costs
O(n;+K,,+KV). This includes the cost: i) to determine the medoid document: O(n;),
ii) to locate medoid’s K —1 nearest neighbors in the cluster: O(K,,), and iii) to compute
the centroid of the K objects: O(KV). The latter is the first step of the incremental
MedoidKNN" construction (A>1). For the steps other than the first we have to seek the
nearest documents to the partial centroid (synthetic prototype) computed so far. For the
j-th cluster, this can be done by computing and then sorting the pairwise similarities

between the ngi) data objects and its synthetic prototype in step ¢, where :=2,...,\. Thus,

72

Table 4.1: Datasets used in the experimental evaluation

Dataset || Source Docs/Topic Classes Docs Class \4 consistency OS CS
Balance 1NN 10NN
Talks 20-NGs: guns, mideast, religion.misc 3 900 1.0 7051 952 .854 98.8 98.2
RSELS) 20-NGs: autos, motorcycles, crypt, 4 800 1.0 3451 .853 .694 98.5 97.2
RS || electronics 1600 1.0 7818 .939 .807 99.3 98.7
Rs{H 3928 980 12708 .963 .872 99.6 99.2
ML) 20-NGs: pe.hardware, autos, baseball, 6 1200 1.0 7154 .885 767 99.3 98.2
MM hockey, electronics, med 3000 1.0 12082 .932 .816 99.6 98.9
M 5891 980 17955 .953 .862 99.7 99.2
ML) 20-NGs: atheism(50,795), hockey(100,989), 8 600 .500 4350 .767 .578 98.9 96.9
MM windows.z(100,959), forsale(100,957), 2000 1.0 9608 .824 .690 99.4 98.4
MéL) electronics(100,975), politics.misc(100,770) 7355 780 20592 912 .783 99.7 99.2
mac.hardware(50,955), graphics(50,955)
NGy 20-NGs: comp. *, rec.*, sci.*, talk. * 4 12000 985 31498 .954 877 99.8 99.6
Minigg 20-NGs: from all of the 20 newsgroups 20 1870 970 10463 666 .494 99.4 97.5
Wapao || WebACE 20 1560 .015 8460 .696 .636 98.6 95.8
Klg WebACE 6 2340 .043 13879 954 .909 99.1 98.1
Revs TREC 5 4069 .043 23220 .878 .834 99.2 98.
A Artificial dataset generator 4 4000 1.0 9401 951 .916 99.7 99.5
AP 4000 1.0 9461 922 .875 99.7 99.5
AP 4000 1.0 9437 849 792 99.6 99.5
A 4000 1.0 9469 .693 .630 99.6 99.3

if a subset of K cluster objects are used to construct the Medoid KNN" for cluster c; at

step i>1, then the construction complexity is O(ny)‘/ + ny)log(ny)) + KOV,

4.4 Experimental evaluation

4.4.1 Clustering methods

To provide a comparison of k-sp performance to other clustering methods, we imple-
mented spk-means, k-medoids, hierarchical agglomerative clustering (HAC), and spectral
clustering. For HAC we have used the average-link cluster merging criterion based on
the Cosine similarity [127]. In addition, we compare k-sp with feature weighting k-means
(fwk-means) [120] and entropy weighting k-means (ewk-means) [122] which, according
to the comparative result in the latter work, performs better than a series of other soft
and hard subspace clustering methods. It is noteworthy that these two methods use the

Euclidean distance measure instead of the Cosine similarity, whereas for normalized doc-

73

ument vectors with respect to the Lo-norm, euclidean and Cosine measures determine the
same proximity ordering between data objects. The parameters h and v, respectively,
were both set to 1.5 for all datasets. This value was used as well in [120] to apply fwk-
means on the 20-Newsgroups dataset that we also use in our experiments. In addition,
in [121] it is also reported ewk-means to perform well on the same dataset with y=1.5.
Besides, it is also illustrated that ewk-means is not sensitive to the setting of v value. Ac-
tually, we conducted a number of preliminary tests for these algorithms using parameter
values within a wide range, but the observed differences in clustering performance was
insignificant.

The spk-means [41] is the baseline approach, the same algorithm is also utilized to
refine the solution produced by HAC and k-medoids. In order to show that in the HDS
feature space marginal clustering improvement should be expected by the careful selection
of objects as initial seeds for spk-means, since as explained single objects are inappropriate
for representing groups of many objects, some spk-means initialization techniques were
also tested:

i) the random clusters where each object is randomly assigned to one cluster,
iii) the effective k-means++ method [92] that try to spread the initial centroids away

from each other.

As for spectral clustering, it is based on spectral analysis of the similarity matrix of the
dataset. We have used the standard algorithm described in [85] (see Sec. 2.6.1).
Generally, the k-sp variants are denoted by the respective synthetic prototypes they
consider, e.g. Centroid-P (pre..), MedoidK(pyy;) NN-P(pe.;)?. The set of values considered
for po,; are: S, ={.90,.80,.60,.40}, and for pr.: Sy, ={.98,.95,.90,.80,.60,.40}. In
all cases, MedoidKNN() has been constructed incrementally in three steps (A=3) with
$1=0.2, 52=0.6, f3=1 (see Sec. 4.3.2). In Tab. 4.2, we provide the percentage of the orig-
inal features retained after computing various synthetic prototypes for a specific cluster
example to provide a notion of the feature selection that is caused by object selection in

a HDS feature space.

2MedoidK (-)NN is also denoted as K(-)NN for brevity

74

Since we are given the ground truth labeling of the documents in all datasets, clu-
stering evaluation is based on the two popular supervised measures normalized mutual
information (NMI) and Purity. Higher values indicate better results (see Sec. 2.6.2 for

details).

4.4.2 Datasets
Real data

In order to conduct controlled experiments with respect to the corpus size, cluster sizes
and overlap, both real and artificial datasets were used (see Tab. 4.1). We constructed a
series of clustering problems from real collections, by first selecting certain topics from a
collection and then by producing different instances of these problems. In particular, we
considered several subsets of the popular 20-Newsgroups® collection using as ground truth
the provided class label of each document. As an example, Més), MéM), MéL) are three
datasets generated from same topics but with increasing cluster sizes: small, medium,
and large that includes all the documents of the selected topics. Miniy? contains 100
documents from each one of the twenty newsgroups, while NGy is a subset containing
all the four largest subjects in collection, namely computer, records, science and talk.
Moreover, we used three datasets from the Cluto package’: Klg and Wapyy are from
the WebACE project and contain web pages from different directories of Yahoo!, Rev5 is
derived from the San Jose Mercury newspaper articles that are distributed as part of the
TREC collection (TIPSTER Vol. 3).

In brief, in the preprocessing of each dataset, we eliminated trivial terms (stopwords),
headers and special tags, we applied Porter’s stemming transformation [58] and document
frequency thresholding (DF) [64] to discard terms that appear in only one document
(dft=1). Thus, all rare terms that have high discriminating power were maintained.

Finally, we used only documents having more than five terms. In Tab. 4.1, we report

3 Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/
4 Available at: http://kdd.ics.uci.edu/databases/20newsgroups/
% Available at: http://www.cs.umn.edu/~karypis/cluto

75

for each dataset the balance of class sizes, the INN and 10NN-consistency (leave one
out classification accuracy), the overall sparsity (OS) of each dataset which is the average
number of zero dimensions that a data vector presents, and the sparsity of each class (CS)
when considering only the vocabulary used by the class members (note that OS > CS).
We also report for the datasets we constructed the number of documents per class that

were used in cases of sensible imbalance of class sizes (Docs/Topic).

Artificial data

In order to construct the artificial text collections we implemented a corpus generator.
To generate a corpus with & clusters, our algorithm assumes that the terms (the feature
space) are partitioned into k+1 disjoint topic vocabulary bags. Each bag B;, i=1,....k
contains the terms related to i-th topic, while an additional bag Bj,; contains general
terms that could be used in the documents of any cluster.

Each text document is considered to be a sequence of terms and each term of a
sequence is generated in two steps: 1) selecting a vocabulary bag, and then 2) selecting
a term from that bag. The correlation between a data cluster and the vocabulary bags
is user-defined in a kx(k+1) matrix W, where each element Wj; is the probability of
selecting the bag B; when producing a term for a document of the j-th cluster. To
sample a term from an already selected bag (step 2) we used the Zanette-Montemurro
stochastic process (ZM) [128] that has been proposed for generating a single long artificial
text that has similar statistical characteristics to real texts, such as the Zipf’s power-
law [53] of term frequencies and the sublinear increase of the vocabulary length as the
text becomes longer. To achieve these goals the ZM process considers a time decreasing
probability controlled by a parameter v of inserting a previously unseen term in the text,
i.e. py=at’"!. Otherwise an already selected term of a bag is reselected with a probability
proportional to the number of times that has already been used in the created sequence.
This property of the process (called ‘memory’) permits high frequencies for some terms,
while the majority of terms present low frequency. In our algorithm, the generation of

documents is conducted in cluster order, i.e. the documents of the first cluster then that

76

Table 4.2: The percentage of features retained in the synthetic cluster prototypes for
a cluster containing 300 documents from the first topic of Talks dataset. The centroid
contains all the 4264 non-zero dimensions of the cluster.

Reference Preat

Prototype 1.0 \ .98 \ .95 \ .90 \ .80 \ .60 \.40
Centroid 100 84.0 72.5 59.3 42.0 21.5 9.8
Medoid 4.6 - - - - - -
MedoidK(.9)NN || 98.0 82.2 71.1 58.0 40.8 20.7 9.4
MedoidK(.8)NN || 95.7 80.6 69.5 56.7 39.6 20.0 9.1
MedoidK(.6)NN || 89.5 75.8 65.4 53.1 36.7 18.5 8.5
MedoidK(.4)NN || 76.7 65.5 56.4 45.8 319 16.2 7.3

of the second etc. The memory of the general bag By, is maintained during the whole
procedure, but the memory of all the other bags is reset when starting the generation of
the documents of a new cluster. Using this strategy, in the documents of each cluster a
(generally) different set of terms from all the bags would present high frequencies.

To demonstrate the superiority of k-sp performance under situations of clusters that
overlap in many dimensions we constructed four artificial datasets called Aff), i=1,...4
using the above algorithm. All datasets have four clusters (k=4), each of them containing
1000 documents and five topic vocabulary bags were considered with 2000 terms each. The
datasets exhibit increasing cluster overlap (from Afll) to Af)), by lowering the probabilities
Wi (i=1,...,4) and increasing the probabilities W;; (j#) of selecting a term from the rest
of the bags. The probability matrices W are presented in Fig. 4.5 (the fifth bag contains
the general vocabulary). The length of each document was randomly set by an exponential
distribution with mean value A.;,=1/100. The parameter values that we used for the ZM
process are a=0.3 and v=0.9.

Generally, we seek to find a clustering solution that maximizes both NMI and Purity to
values close to unit. For each dataset and method we report the values of these indexes.
For the methods depending on initialization we also report the average value of each
index over the runs on a dataset, while we also report (denoted as ‘best’) the value of each
index (NMI or purity) corresponding to the solution with the highest clustering objective
function .,y among the 50 runs.

Moreover, in order to evaluate a method’s behavior during iterations, we introduce

7

5 Pure dataset .5 Objects of dominant class (75%) Objects of noisy classes (25%) .5 Objects of dominant class (60%) r Objects of noisy classes (40%)

Centroid

-+ Medoid
Ar = = MedoidK(.6)NN-ninc 4 Ar
. — — — MedoidK(.6)NN

average similarity to prototype
average similarity to prototype
average similarity to prototype

1 1 RN
~ ~
~.
0 0 : o S
1 50 100 150 200 250 300 1 50 100 150 200 250 300 1 50 100 150 200 250 300 1 50 100 150 200 250 300 1 50 100 150 200 250 300
objects nearest to prototype objects nearest to prototype objects nearest to prototype

Figure 4.3: The decrease of average similarity between different types of cluster prototypes
and the nearest objects around them as the number of neighbors increase. The datasets
consist of objects belonging to a dominant class and two other classes corresponding
to noise. We considered three percentages for the objects of the noisy classes: (a) a
pure dataset (0%), (b) 25%, and (c) 40%. MedoidK(.6)NN-nincr denotes the reference
prototype constructed non-incrementally using the 60% of the objects of each dataset.

the Q-index:
o (C
Qi—1- 2@ 4oy (4.15)
@ZCS (C)
where CIDZ(CZ(C) is the intracluster similarity measure defined as the sum of pairwise Cosine

similarities between objects in the same cluster at iteration ¢:

(@) =) |+ Z S 44, (4.16)

j=1 d €cj dr€cy, 1<

where n; the size of cluster ¢;. Initially, we assume that ()o=0 holds. Higher values of
(J-index indicate greater relative improvement of the clustering quality after one iteration.

Finally, the statistical t-test was applied to estimate the significance of the average
performance difference between k-sp and the methods under comparison for each dataset,
except for HAC that is deterministic. Within a confidence interval of 95% and for the
value of degrees of freedom equal to 2-number_of runs—2 we can test if our method is

significantly superior, otherwise the null hypothesis is accepted.

78

4.4.3 Experimental results
Robust cluster representation

Our first intention in the experiments is to demonstrate the robustness and effectiveness
of synthetic prototypes in favoring the representation of the dominant class in a cluster
that contains documents from more than one class. To this end we constructed three sets
of documents from the topics of Talks dataset: a) a pure set of 300 documents from the
first topic (0% noisy objects), b) the previous set along with 50 documents from each of
the other two topics (25% noisy objects), ¢) a set of 300, 130, and 70 documents from
each topic (40% noisy objects). In all three cases the medoid of the complete dataset
belongs to the dominant class (i.e. the first topic). Fig. 4.3 demonstrates the decrease of
average similarity between different types of cluster prototypes considered for the above
cases and the nearest objects around them as the number of neighbors increase. We
can observe the high average similarity of the medoid with its very close neighbors that
decreases rapidly as we consider wider neighborhoods. This indicates that the medoid
exhibits high intracluster "NN-consistency (see Sec. 4.3.2) and empirically explains why
the medoid-based construction of synthetic prototype is more class-discriminative than the
centroid-based. The result is the higher average similarity to the members of the dominant
class, and the lower similarity values to the documents of other classes (considered as
noisy). Furthermore, the incremental construction of MedoidKNN performs better than
the direct construction based on the K nearest neighbors of the medoid. Tab. 4.2 reports
the percentage of features that have non-zero weights after the implicit (i.e. features
retained in the reference prototype) and explicit (i.e. additional feature selection on
reference prototype) feature selection. We can see the extent to which synthetic prototypes
can summarize the characteristics of the document clusters, as well as that synthetic
prototypes can discover feature subspaces to represent data clusters.

In another experiment we intend to demonstrate the robustness of k-sp under adverse
initial conditions. We considered the Més) dataset and examined the case where clusters

are initialized by randomly assigning each document to a cluster. Tab. 4.3 reports the

79

Table 4.3: Clustering results on the Més) dataset using k-sp variants.

Reference NMI Purity

Prototype Preat || QVG. best | avg. best | t
Centroid 1.0 || .480 .564|.630 .751|17.1
Centroid 0.8 || .484 .644 | .632 .798 | 16.1
Centroid 0.4 || .528 .679|.655 .807 | 16.3
Medoid 1.0 || .286 .424|.504 .648 | 2.5
MedoidK(.4)NN 1.0 || .564 .681 | .688 .833 | 6.9
MedoidK(.8)NN 1.0 || .686 .792 |.777 .899 | 13.9

Q . - . .
03 t Centroid A Medoid

—Centroid-P(.8)) ——MedoidK(.8)NN
—Centroid-P(.4) I‘. —MedoidK(.4)NN

.02

=N I/\

0o [ASSSEEENE_—

iteration (t) iteration (t)
Figure 4.4: The evolution of the average ()-index with clustering iterations for 50 randomly
O . (S)
initialized runs using the My’ dataset.

average and best values of the evaluation measures, and the average number of iterations
until convergence (¢) for 50 random restarts without refinement. Fig. 4.3 illustrates how
the average (J-index value evolves with iterations for each method. An efficient approach
should maximize the area under its corresponding curve, either by executing many itera-
tions or by making larger improvements in shorter time. Fig. 4.3 indicates the weakness
of centroid representation: it defines an optimal cluster representative assuming that all
its documents should stay in that cluster. This constrains to a great extent the represen-
tation flexibility and forces the procedure to reach poor locally optimal solutions not far
from the bad initial clusters. As k-sp becomes more selective on the cluster’s features, as
in the case of Centroids™ (e.g. with P(.4)), we observe immediate clustering improvement
in the first iterations. However, the main problem remains: the features are selected from
the centroids of impure clusters. Despite the fact that medoids lead to a major initial
improvement related to a sharper preference to represent one class out of many others
in a cluster, subsequently, the procedure converges too early (2.5 iterations on average).

On the other hand, the k-sp with MedoidK(.8)NN is a more balanced choice that com-

80

-o-Average NMI -a-Best NMI B Average NMI
-o-Average refined NMI =Best refined NMI OBest NMI

Vocabulary Bags 4
1 2 3 &4 5
» 1[0.65 0.04 0.02 0.04 0.25 2
4 .
g 2| 0.13 0.65 0.04 0.02 0.16
2 3| 001 008 0.63 0.12 0.16 il
(=] 0 T T T T
4| 0.08 0.02 0.08 0.66 0.16] b Iy roY=) Zo o050 Zo o005 Z50000 AN =
$55883285383285538328553302855901 528 0 £
[e Yo o Yo o Yo o T ol Qg
o < ™4 < < 2= T &
A,(1-4000 (NMI)
1
-8
(5
Vocabulary Bags 4
1 2 3 4 5
« 1| 0.60 0.05 0.01 0.04 0.30 2
o .
g 2| 014 0.60 0.05 0.01 0.20]
5 3| 0.0L 0.09 0.57 0.14 0.19 0 il
2| 010 0.01 0.09 0.60 0.20 55558 Z 53555 Z56555 256555 256555 =
$55559255555255555259559259550: T 828 E
R o Yo o Yo o Y o Q¢
3 M4 M M M4 2= T4
A2-4000 (NMI)
1
-8
6
Vocabulary Bags 4
12 3 4 5
w 1049 0.06 0.02 0.06 0.37 >
4 .
g 2| 0.18 0.50 0.06 0.02 0.24
L_=.l 3|0.02 012 0.46 0.17 0.23 0
4| 012 0.02 0.12 049 0.25 S G555 Z S B555 Z 58555 Z56555! Z56555 o =
285R0832895832805802800802800831 S S TE
FTEaan 23TQ8
==z T §

Vocabulary Bags 4

1 2 3 4 5
0.33 0.08 0.01 0.08 0.50
0.25 0.33 0.08 0.01 0.33
0.01 0.15 0.30 0.23 0.31]
0.17 0.01 0.17 0.33 0.34]

Clusters
oW o e

HAC-ref =—=
Spectral fi

A,4-4000 (NMI)

Figure 4.5: Experimental results on four artificial datasets of increasing cluster overlap,
from Afll) to Affl), where the line-plots indicate the solutions of k-sp method with different
parameter values. The respective results for the refined solutions are also reported.

bines efficiently the advantages of keeping a compact cluster representation and that of

considering a wider set of objects around medoid for computing cluster representatives.

81

-o-Average NMI -a-Best NMI M Average NMI -o-Average NMI 0-Best NMI H Average NMI
->-Average refined NMI -=Best refined NMI OBest NMI -o-Average refined NMI =Best refined NM| OBest NMI

$88839285388288853285588288888 1 3EQ L E $88889285588288888285538288388 1 3 ¥ 9

f) Taiasa®anaracaaaaataaaaafs gt g 8) Tarsa®asaaacaaaaavaaanafey T 2 4

O X < X & =s I 0‘; O < X & == T &
RS,©-400 (NMI) Mg(*-1200 (NMI)

2 Z 4 4 Zz +TEO% T = Zz Z =z z F T e s =
8855852555552592202055002009221 3298 T 2558852855552555502505002093381 390
S EiAAOAAAAA P AAlalOiAAAaTATAAl E 8 T Q3 S AR AAiOAAAALClAlal CAal Al tAAAaL s 8T Q3
o X X X &%= T § o < X < X 5== &

4 4

2 H Hil - 2 L

0 0
La——" LA e G CEEEBGEEE o o - = Lap—— e T e LA e . oo e =
£§953852553552555202555522395001 382 PE £83889555585259555259550259500 L S P9 R E
gE’EIEEEﬂE’IEE’ESIE’EEE’E"QEIEIIiEE’EKE’E 23T §(> 2 SEaaaa IIEKE’@EE’EIE&IIEIIiEE’EEEE 23T 9 2
Y X X ¥ &2= T & [3) N < < 223 £§&

RS,1-3928 (NMI) M,(--5930 (NMI)

Figure 4.6: Experimental results for instances of the RS, and Mg problems with different
cluster sizes.

Clustering performance results

In this section, we provide experimental results using the procedure described in Sec. 4.3.5

for the datasets of Tab. 4.1 for the two sets of values Spobj and S mentioned in Sec. 4.4.1.

Preat
The results are displayed using the line-plots presented in Fig. 4.5, 4.6, 4.7. The reported
‘refined’ solutions are obtained by k-sp refinement phase using centroids as cluster pro-
totypes (see Sec. 4.3.4) on the final clusters of each of the 50 runs of basic k-sp. The
bar-graphs in each row of plots present the results for spk-means initialized with the
k-means++ heuristic (Spkm++), k-medoids (Medoid), the refined k-medoids (Med-ref),
HAC, refined HAC (HAC-ref) using spk-means, and finally the spectral clustering method.

The results on artificial datasets are presented in Fig. 4.5. For a dataset of small

cluster overlap, such as the Afll), the performance of k-sp and spectral clustering are

82

-o-Average NMI 0-Best NMI H Average NMI -o-Average NMI -a-Best NMI H Average NMI
-o-Average refined NMI -=Best refined NMI OBest NMI -o-Average refined NMI =Best refined NM| OBest NMI

0 0
PGP AP S e AP AP - e — coccooa 2 e e LA AP — e —
$85585255555255520255530259530 - 3295 E 3558852553552555202555202595301 S8 Q0
Eriaiaoaanaacasacaonsaaaiavaanaass g T Q8 Eraiiaoaanascasacaonraaaavaanasss g T Q3
o X X < X 2= T & o < < < g== £ &
Mg©-600 (NMI) Talks (NMI)
1 1
8 8
6 6
4 4
2 2
0 - " v - 0 -
LS. Z coaaa Z oaaa Z ooaaa: B — e — coaooa: e AP AP e o e =
$855892585555255550259550250930: T2 E 355885255555255520259530259530 1 3298
S EiAAOAAAAA P AAlalOiAAAaTATAAl E 8 T Q §_ S AN AAiA il QAAiAlSAAAaE E 85T Qe
o X X M4 M4 &2 T & o 4 X 4 < &= T &
M,(®-1200 (NMI) Miniy,-1987 (NMI)
1 1
8 8
6 6 og-o-ooo
A 3.
—o—0—0—o-g” Q, —— o
©0+:0+-00-0-q, a
4 4 ‘0000 Omg
2 H 2
0 0
[P LA LA LA LA, B e = P LA LA z eeaae LA o =
$85889255522255520255520255530 - 2828 38338925533525852325553325885801 388 T
C AR AACAAAlal A iaailCiaaaaaaaasss gt Q8 EIlAAiOAAiiaRialaiCliaioataaiaas sy T Qe
o X X X X (%E = T & O X X < X (;-)-E = T &
MgD-7355 (NMI) NG,-12000 (NMI)

Figure 4.7: Experimental results for instances of the Mg problem with different cluster
sizes, Talks, Miniyy and NG, datasets.

quite similar. However, in a more confused setting, such as the Af) and Affl) datasets
the superiority of k-sp becomes more clear. Moreover, as the overlap between clusters
increases, k-sp performs significantly better than the other methods even with lower values
of p.y,; parameter (e.g. 0.6 or 0.4) where the best result is closer to the average performance
of the method.

The results on real datasets that are displayed in Fig. 4.6 and 4.7 support as well
the main idea of this paper. In all cases the k-sp method produced much better results
than spk-means. Using MedoidKNN®) prototypes, the best results for larger datasets
are obtained for the K(.9)NN and K(.8)NN cases. Especially for the experiments where
we considered three instances of the same problem with increasing size of clusters from

small to large (datasets RSy, Mg, and Mg), it is clear that k-sp using synthetic prototypes

83

manages to overcome the issues arising in the case of small datasets where the number of
objects per cluster is not sufficient, such as self-similarity and feature over-aggregation.
The proposed refinement phase leads to even better results, while reducing the sensitivity
of setting improper values for k-sp parameters. All the experimentally compared clustering
methods performed better when more data objects became available for a specific problem,
but the proposed k-sp remained the best among them.

By observing both curves of average and best values of the evaluation measures, we
can realize the trade-off in setting k-sp parameters. When limiting the size of synthetic
prototypes, k-sp avoids the bad solutions and produces much better clusterings. On the
other hand, as synthetic prototypes discard too much information ‘detail’ from clusters,
the basic k-sp procedure becomes unable to identify the fine differences between data
classes. This explains the sudden drop of the performance of K(.6) and K(.4) synthetic
prototypes for medium and large datasets (e.g. RS;M), RS;L), RSELM), RSELL), MéM), MéL),
and MéL)) when no refinement is applied. The information of the formed clusters can be
further exploited by larger synthetic representatives in the refinement phase (where the
centroids are used). Apparently, when larger synthetic prototypes are used in the main
phase, the contribution of refinement turns out to be much smaller.

Tab. 4.4 summarizes the best and average performance of each method focusing on
the refined solutions of k-sp, HAC, and k-medoids. Regarding k-sp, its refinement phase
uses the complete feature set and centroids which, as explained in Sec. 4.3.5, enables
the direct comparison of the solutions corresponding to different parameter values. The
supervised evaluation measures that are presented in Tab. 4.4 correspond to the set of
experiments with the maximum average value of the refined objective function determined
by the procedure described in Sec. 4.3.5. The k-sp setting that provided this result in
each dataset is indicated near the dataset name. The reported best refined k-sp clustering
is the best solution using the latter setting of parameter values, whereas it is possible that
a different parameter setting may have produced a better solution. The column t-val
presents the t-value of the significance t-tests between the best k-sp average performance

and the average performance of the other methods. For two sets of 50 experiments each,

84

g8

Table 4.4: The NMI, Purity measures for the refined solutions found for each dataset.
column. The underlined ¢-values denote the cases where according to the statistical t-test k-sp appears not to be significantly better

(0<t-val<1.999), or appears to be worse than the compared method (¢-val<0).

Bold values indicate the best result per

A" — k-sp: KNN(.90)-P(.98) | AP — k-sp: KNN(.90)-P(1.0) | A — k-sp: KNN(.80)-P(.98) | A(Y — k-sp: KNN(.60)-P(.98)
NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val
k-sp .901 914 .968 .978 .866 .880 .960 .968 756 .774 .916 .930 433 .527 .740 .816
Centroid-P(.6) || .803 .846 06.46 .917 .958 03.49 | .714 .801 07.25 .866 .941 05.10 | .483 .665 11.84 .730 .886 08.89 | .056 .193 25.05 .376 .518 24.29
spk-means .785 .832 07.51 .909 .950 11.66 | .674 .775 09.12 .847 .928 06.48 | .394 .626 16.00 .668 .868 12.07 | .042 .176 26.34 .357 .512 25.94
spk-means+-+ 768 .843 07.81 .894 .955 04.55 | .692 .779 08.63 .860 .933 05.77 | 416 .624 13.98 .691 .862 10.37 | .038 .157 27.05 .350 .491 27.19
Medoid-ref .784 .843 08.08 .911 .955 04.11 | .699 .769 08.97 .868 .930 05.86 | .423 .628 14.52 .690 .865 10.72 | .055 .176 24.96 .373 .512 24.18
fwk-means .061 .262 80.48 .366 .574 58.60 | .289 .160 97.58 .334 .311 81.48 | .016 .032 99.83 .314 .360 81.96 | .006 .007 30.38 .286 .290 34.75
ewk-means .131 .302 43.50 .400 .460 34.62 | .073 .274 63.02 .372 .540 45.02 | .032 .003 57.87 .336 .266 64.44 | .009 .006 30.10 .296 .283 33.50
HAC-ref .851 .936 .802 .936 450 .659 .156 418
Spectral .850 .869 04.86 .942 .965 02.15 | .849 .869 02.05 .941 .965 02.47 | .738 .763 02.41 .891 .926 02.55 | .021 .021 29.01 .230 .305 32.84

Table 4.4 (continued): The NMI, Purity measures for the refined solutions found for each dataset. Bold values indicate the best result
per column. The underlined ¢-values denote the cases where according to the statistical t-test k-sp appears not to be significantly
better (0<t-val<1.999), or appears to be worse than the compared method (¢-val<0).

98

RS'Y) — k-sp: KNN(.80)-P(.95) [RS{") — k-sp: KNN(.80)-P(1.0)| RS{") — k-sp: KNN(.90)-P(.80) | Talk; — k-sp: KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val

k-sp .529 .689 .760 .875 738 773 .900 .926 771,798 .916 .935 587 .762 .816 .935
Centroid-P(.6) || .277 .383 14.92 .565 .695 11.65 | .625 .737 06.65 .813 .910 05.12 | .691 .786 05.23 .851 .931 04.12 | .431 .657 05.78 .728 .900 04.23
spk-means 226 .307 17.97 .532 .605 13.78 | .598 .706 07.93 .798 .892 05.80 | .677 .766 07.18 .838 .921 04.79 | .401 .540 06.97 .715 .875 04.88
spk-means+-+ 209 .343 18.35 .508 .623 15.08 | .606 .723 08.11 .801 .899 05.97 | .700 .778 04.54 .864 .926 03.36 | .400 .588 06.68 .717 .823 04.54

Medoid-ref 285 427 15.59 550 .675 13.77 | .535 .682 12.91 .730 .876 10.88 | .468 .617 04.58 .751 .916 03.34

fwk-means .095 .153 27.86 .420 .493 21.57 | .116 .196 53.89 .448 .548 37.55 | .140 .257 56.67 .470 .610 39.73 | .082 .119 24.20 .510 .551 17.77
ewk-means 134 219 24.34 457 498 18.86 | .219 .357 39.59 519 .619 29.64 | .248 .020 23.85 .499 .288 21.76 | .174 .197 17.52 .589 .689 11.90

HAC-ref .022 .285 533 .680 .489 492 .480 734
Spectral 453 413 04.99 .647 .628 07.91 | .725 .740 01.19 .896 .913 00.34 | .747 .754 02.77 .911 .919 00.53 | .504 .533 04.18 .785 .790 02.05
MY — k-sp: KNN(.80)-P(.95) | M{") — k-sp: KNN(.90)-P(1.0) | M{") — k-sp: KNN(.90)-P(.98) [Wapsy — k-sp: KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val

k-sp 711 .798 .808 .904 .741 .807 .835 .907 761 .799 .861 .905 592 622 .658 .696
Centroid-P(.6) || .552 .657 13.12 .670 .814 09.57 | .667 .768 05.86 .755 .880 04.97 | .693 .780 06.36 .773 .893 06.31 | .556 .574 07.56 .621 .637 06.38
spk-means 510 .644 17.05 .647 .803 11.56 | .648 .741 07.36 .742 .870 12.87 | .689 .782 06.85 .769 .895 06.74 | .538 .544 11.35 .609 .624 08.48
spk-means+-+ .509 .673 15.85 .641 .831 11.34 | .647 .750 07.77 743 .876 06.12 | .698 .785 06.27 .783 .899 05.92 | .545 .547 11.15 .616 .609 08.00
Medoid-ref 527 .622 14.30 .648 .759 10.55 | .660 .751 06.28 .753 .876 05.00 | .701 .784 05.86 .781 .887 06.17 | .548 .576 11.08 .628 .643 06.06
fwk-means 133 186 54.59 .372 .443 37.00 | .148 .188 53.78 .390 .440 36.52 | .160 .241 75.31 .398 .484 51.23 | .369 .357 45.34 .486 .487 31.71
ewk-means 245 313 49.58 456 475 33.78 | .323 .295 40.21 .470 .377 29.86 | .352 .097 54.27 461 .271 39.68 | .439 .433 09.37 .531 .535 08.52

HAC-ref .489 492 647 .648 .709 .793 527 573
Spectral 6562 .659 06.76 .726 .754 07.03 | .662 .649 08.33 .754 .729 06.34 | .690 .720 09.37 .771 .821 08.52 | .596 .602-1.21 .664 .665 -1.43

L8

Table 4.4 (continued): The NMI, Purity measures for the refined solutions found for each dataset.

M{?) — k-sp: KNN(.60)-P(.98)

M) — k-sp: KNN(.90)-P(1.0)

M{" — k-sp: KNN(.90)-P(.98)

Revs — k-sp: KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val
k-sp .615 .642 706 .738 .692 .796 786 .904 .786 .839 854 .928 B77 .676 767 .833
Centroid-P(.6) || .331 .459 28.81 .511 .582 19.59 | .610 .709 08.92 .704 .839 07.45 | .734 .828 05.22 .795 .919 04.44 | .542 .659 02.67 .745 .828 02.26
spk-means 275 367 33.20 .473 .528 23.71 | .578 .667 12.14 .688 .812 08.88 | .733 .826 05.33 .791 .919 04.74 | .535 .651 02.41 .733 .822 02.31
spk-means++ 261 .361 40.56 .450 .537 30.60 | .517 .619 20.07 .610 .735 15.66 | .622 .661 31.82 .711 .751 20.85 | .540 .663 02.42 .739 .819 02.18
Medoid-ref 332 445 27.61 .510 .635 18.99 | .565 .697 14.13 .668 .833 10.45 | .733 .817 05.75 .788 .911 05.14 | .526 .653 03.00 .717 .819 03.33

fwk-means
ewk-means
HAC-ref
Spectral

152 197 56.08 .360 .400 39.85
188 .288 49.45 .400 .442 35.13
.302 .335

145 195 59.75 .340 .420 40.94
281 279 42.86 .418 .388 32.34
607 .640

156 .246 72.02 .353 .473 45.20
316 .279 53.99 418 .364 36.85
664 .706

234 .367 20.82 .566 .700 15.16
278 .078 05.57 .561 .388 02.27
.237 515

.615 .620 00.00

.645 .650 08.86 | .733 .733 -5.48

.817 .818 -3.24 | .741 .774 05.57

.832 .886 02.26 | .406 .411 14.46

.664

671 11.95

NG4 — k-sp: KNN(.90)-P(1.0)

Miniyp — k-sp: KNN(.80)-P(.90)

K1s — k-sp: KNN(.90)-P(1.0)

NMI Purity NMI Purity NMI Purity
Method avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val | avg best t-val ‘ avg best t-val
k-sp .547 .607 734 .799 557 59T .546 .603 701 .802 .834 .897
Centroid-P(.6) || .510 .561 02.62 .702 .751 02.31 | .459 .501 12.59 442 484 18.73 | .690 .785 01.00 .837 .887 00.37
spk-means 507 548 02.73 .699 .748 02.45 | .420 .454 30.07 418 455 22.24 | 675 .725 02.52 .831 .838 01.59
spk-means+-+ .506 .568 02.70 .696 .755 02.69 | .422 .451 30.81 425 .446 21.99 | .680 .770 02.09 .833 .883 01.30
Medoid-ref 1492 568 03.66 .694 .756 03.00 | .431 .484 28.47 424 484 20.94 | .685 .767 01.59 .829 .885 01.90

fwk-means
ewk-means
HAC-ref
Spectral

081 .152 42.94 412 .494 28.20

.063 .001 27.76 .316 .253 24.93
375 .591

492 497 05.43 .711 .714 02.48

.081 .152 91.60 412 494 64.11
.286 .312 08.78 314 .308 46.82
444 .348
.566 .573 -04.04 .522 .539 04.66

303 .454 28.07 .715 .756 13.18
417 537 16.36 .762 .827 08.00
.582 .860
.741 .763 -5.16 .847 .860 -1.87

the critical t-value is t.=1.999 (p.=5% for p value). This means that if the computed
t-value>t., then the null hypothesis is rejected (p>5%, respectively), i.e. our method
is superior, otherwise the null hypothesis is accepted indicating a marginal improvement
achieved by k-sp. If the t-value is negative, k-sp performs worse than the compared
method. In Tab. 4.4 the t-values < 1.999 are underlined.

According to the significance t-tests, k-sp is clearly superior to the baseline methods
such as spk-means, spk-means initialized with the k-means++ technique, k-medoids and
HAC as well as their refined solutions using spk-means, and the soft subspace clustering
methods fwk-means, ewk-means. Compared to spectral clustering k-sp is superior in most
datasets, in terms of both NMI and Purity. Spectral clustering seems to be clearly superior
only for datasets MéM) and Klg. It is also worth mentioning that the computational
complexity of spectral clustering is O(N?) which is significantly higher than that of k-sp.
It must be also emphasized that for all datasets the best solutions were provided by the

k-sp method.

Discussion

As a general conclusion about the experimental study, it turns out that the refined k-sp
approach using medoidKNN with p,,;=.9 or .8 seems to be the best method exhibiting su-
perior clustering performance as well as robustness in the case of small, or noisy datasets
where the clusters overlap in many dimensions. High values of pg,. (e.g. .98 or .95) may
also help in some cases. However, we explained in Sec. 4.3.5 that the user specifies only
S

the two sets of parameter values S and the best result can then be identified

Pobj? “Pfeat’

automatically by examining the values of the objective function of the refined k-sp clus-
terings. We should also remark that k-sp’s feature selection on reference prototypes can
efficiently summarize to a great extent the characteristics of the document clusters, since
in most cases its application does not deteriorate the clustering performance. When p,,;
value is kept fixed and small number of features is considered (e.g. pr..=.6 that is expected
to be about 20% of cluster’s features, see Tab. 4.2) then, in most cases, the quality of the

clusters produced using MedoidK(pobj)NN(s) is comparable to the respective results of the

88

respective unfiltered reference prototypes. As for the Centroid®), it is the k-sp variant
that mostly profits by the prototype filtering. These findings indicate the straightforward
applicability of k-sp method to corpus summarization problems or offline term selection.
In both artificial and real document datasets neither the sophisticated k-means+-+
initialization, nor the refined k-medoids helped the spk-means to discover much better
clusterings. There are also cases where these methods perform equally or worse than
typical spk-means. For the refined k-medoids the reason for this observation is explained
in Sec. 4.3.1 and is related to the inability of any data object to represent a large group
of objects in HDS feature space. Thus, spk-means is seeded in a little better way than
Forgy’s random selection. The fact that spk-means++ and the refined k-medoids perform
similarly implies that the probability introduced by the former in order to select objects
that are far from each other may not reflect their respective semantic distance, since it
does not take into account the special properties of text feature space, such as sparsity.
An interesting remark is that the soft subspace clustering methods tested, fwk-means
and ewk-means, did not manage to provide satisfactory solutions. In Sec. 4.2.2 and
Sec. 4.3.1, we reported as one of their disadvantages the fact that, by introducing explicit
feature weights per cluster, the parameters to be estimated are doubled. This becomes
more problematic for the very high dimensional datasets used in our experiments. It is
worth mentioning that in the experiments in [120] and [121] at most 2000 features were
used to represent the documents of datasets containing 2000 to 15905 objects. Apparently,
this experimental setting focuses on high dimensional data but of lower scale. The very
large-scale of dimensionality in our experiments seems to reveal their weakness regarding
the number of parameters they use. In most cases, ewk-means presented better results to
that of fwk-means with respect to the average evaluation measures. At the same time for
many datasets, e.g. Af), Af:l), and RS;L), the best clustering of ewk-means is evaluated to
be of lower quality than the average clustering found by the algorithm. This observation
indicates that the feature weight entropy term e; introduced in Eq. 4.6 may dominate the
value of the objective function. We tried to lower down the 7y value without observing any

improvement. This implies that the feature weight entropy may not always capture the

89

quality of a cluster, whereas numerical issues may also arise for the entropy computation

in a HDS feature space.

4.5 Conclusions

We have proposed the k-synthetic prototypes (k-sp) clustering method that incorporates
the synthetic prototypes into the spherical k-means (spk-means) procedure for docu-
ment clustering. Through the computation of synthetic prototypes (such as Medoid KNN)
cluster-based dynamic feature selection is achieved that favors the representation of the
dominant class of a cluster and enables the reassignment of the improperly clustered docu-
ments to other clusters. The proposed method is general, simple and effective and includes
spherical k-means as a special case. As indicated by extensive experimental results using
several datasets, the method provides robust clustering performance especially in cases of
small datasets, or noisy clusters that overlap in many dimensions, and compares favor-
ably against spk-means (with Forgy’s and k-means++ initialization), k-medoids, HAC,
spectral clustering, and the subspace clustering methods fwk-means and ewk-means. It
is remarkable that in the HDS feature spaces of the datasets we used, state of the art
soft subspace clustering methods did not manage to achieve better solutions even than
baseline methods such as spk-means.

The proposed k-sp approach exhibits similarity to subspace clustering methods, since
the introduced synthetic prototypes define different subspaces in which data classes are
more distinguishable. Therefore, one could argue that k-sp in high dimensional and sparse
spaces is also a subspace clustering method. To clarify the differences, we remark that
many of the subspace clustering methods [120-122] construct each cluster prototype by
explicitly computing weights for each dimension using all cluster objects. On the other
hand, k-sp first applies object selection to construct a reference prototype (resulting in
implicit feature selection), and then proceeds with optional explicit feature selection on

the reference prototype. Moreover, the motivation of k-sp is to address the self-similarity

90

and feature over-aggregation phenomena that are very intense in the HDS feature spaces.
We have also shown that the solutions obtained from the basic k-sp phase can be refined
by the refinement k-sp phase using the whole feature set, which is in contrast with the

traditional idea of subspace clustering.

91

CHAPTER 5

A FRAMEWORK FOR INCREMENTAL
CLUSTERING USING SYNTHETIC CLUSTER

PROTOTYPES

5.1 Introduction

5.2 Data clustering as optimization

5.3 Prototypes and objective functions

5.4 Flat prototype-based clustering algorithms

5.5 Incremental prototype-based clustering algorithms

5.6 A framework for incremental clustering

5.7 Principles for efficient incremental clustering for HDS data
5.8 The global k-synthetic prototypes clustering method

5.9 Experimental study

5.10 Conclusions

92

5.1 Introduction

In this chapter we present a framework for incremental prototype-based clustering that
is based on partial updates on a given solution. In a partial update phase only a subset
of the cluster prototypes, clusters, and data objects participate in the clustering process.
Two widely known incremental clustering approaches, global k-means and divisive k-
means, are revisited and unified according to this analysis. Focusing on HDS spherical
data, we discuss in detail the problem of increasing the order of a current k-clustering
solution by adding one new component. The idea of synthetic cluster prototypes presented
in the previous chapter is exploited for incremental prototype-based clustering. To this
end, we propose the global k-synthetic prototypes (gk-sp) clustering algorithm, which is
a modification of the global k-means algorithm for HDS data. The gk-sp method uses
the k-synthetic prototypes method for fine-tunning the k-solution and introduces a partial
update scheme to setup the initializing k+1 prototypes for the refining phase. Similarly,
the global bisecting k-sp (gbk-sp) method is also proposed based on bisecting k-means
which, additionally to the traditional bisecting k-means, tries all splits in all clusters.
Experiments on real and artificial document datasets illustrate that the proposed gk-
sp method outperforms other competitive incremental and flat methods of the k-means

family, in terms of clustering error and external clustering evaluation measures.

5.2 Data clustering as optimization

5.2.1 General formulation

Formally, hard clustering aims to partition the input dataset of N vectors X={z;},,
2;=(&i1, . .., 7iq) €R?, in k disjoint sets of similar objects C={c¢;}¥_, called clusters, where
c; is a set that includes all objects assigned to j-th cluster. Typically, clustering methods
try to describe the data by training a data model ©F = {6, };?:1 consisting of k components,

one for each cluster. Tt can be a probabilistic model (generative), or a representation

93

model consisting of a set of prototypes in the feature space. The model complexity refers
to the number of parameters that are ‘learned’ and describes the computational effort
and memory space required by the clustering procedure. In general, an identical model
0; is employed for each individual component, while the number & may differ from the
number of underlying data classes denoted as k. Thus, the overall model complexity can
be expressed as:

complexity(OF) = k complexity(h). (5.1)

Assuming a decided number of parameters for each component, the model complexity is
then solely determined by the number of clusters k and referred to as model order.

The clustering problem can be formulated as an optimization problem; more specifi-
cally as a minimization of a given objective function ®(©*|X) that measures the clustering
error:

OF = arg min ®(60F|X). (5.2)
01 een 0

The notations ®(6%|X) and ®(C) describe the same objective: ©F can be derived from C
which contains the partition of data objects, and vise-versa, while in most situations all

data objects in X are involved in the computations.

5.3 Prototypes and objective functions

Without loss of generality, in this paper we primarily refer to prototype-based clustering
methods. The arithmetic mean is a widely-used prototype is, also center or centroid, of
the n; cluster members: Mj:nijzmeq x;. When robustness to noise is a key requirement,
the medoid object can be used instead which minimizes the sum of distances from all

objects in a cluster: m; = argmin g,cc, {> dist(z;, z4) }, where dist(-,) is a distance

TqEC;
measure between two vectors in feature space.
In both cases, the components of the training model 0;=(6,1,...,0;4), j=1, ..., k, are

d-dimensional vectors and the overall complexity of such representation is k£ d. Moreover,

94

the respective objective function that is minimized is the distortion error, or clustering

error:
k k

OOF) = 0(0;) =D Y w dist(6),), (5.3)

j=1 j=11i=1

subject to
k
> wi=1,
j=1

where w;; are the object assignment variables that depend on ©F. Especially for hard
clustering, it is w;;=1 iff z; is assigned to cluster ¢;. If the sum of squared Euclidean
distances (SSE) is used between the objects of the clusters and their respective prototypes,
dist (6, 2)=]||0—x]|3, the resulting Py is called squared Euclidean error or distortion (see
Sec. 2.6.1).

When the 1 — Cosine is considered as distance function and if we use the centroid!

0;=0,/6;]]2, then the respective clustering objective is the complementary of Cohesion

(CC):

k N

écc(ék) :N—ZZ Wij é;l‘z (54)

j=1i=1
This reduces to N—Zle 5], where Sj:zxiGCj T

It must be noted that the hard clustering problem may also be reformulated in terms

of non-convex, non-smooth optimization [129, 130]:

N

D(OF) = Z,nlnnkdist(ej,m (5.5)
i:lj: yeersy

Instead of a sum of all individual cluster errors ®(6;) as in Eq. 5.3, this function considers
a sum of minima functions of the representation error of each data object which makes it
non-smooth (not differentiable everywhere). Eq. 5.5 is the continuous analog of Eq. 5.3,
hence, they are equivalent in the sense that one’s local minimizer is also a minimizer for
the other as well as they both have the same global minimizers.

In the previous chapter, the synthetic cluster prototypes (sp) have been proposed for

!The term centroid may imply the mean or the Ly-normalized mean depending on the context, and
similarly for the notations #, ©® when denoting prototypes.

95

Algorithm 3 — The generic k-means clustering algorithm

input: dataset X, the number of clusters k

1. Initialize prototypes: usually at random, or using more complex procedures.

2. Assignments update: each object is assigned to the cluster represented by the closest prototype to
that object

3. Prototypes update: the prototypes are recomputed

4. Stopping criterion: if (important) changes in prototypes are observed then goto step 2.
output: (the prototypes ©%, and the partition C*)

representing clusters of spherical data, such as text documents. As already mentioned
in Chapter 4, centroid and medoid constitute special cases of sp. Moreover, considering
8;=sp; in Eq. 5.3 or Eq. 5.4, we get a general expression of the objective function that

describes the representation quality of sp.

5.4 Flat prototype-based clustering algorithms

k-means and k-medoids are flat clustering algorithms which originally minimize the sum
of squared Euclidean distances between the objects of the clusters and their respective
prototypes, denoted as Pgsp (Eq. 5.3). Spherical k-means (spk-means) [41] is a modi-
fication designed for spherical data where it has been shown to be more effective than
original k-means version. Spk-means uses Lo-normalized centroid prototypes and min-
imizes ®cc (Eq. 5.4). The number of clusters k is provided in advance. The generic
k-means clustering procedure presented in Algorithm 3 improves iteratively the solution.

This procedure performs in a gradient descend fashion wrt the minimization of the
objective function [131] since both update steps are optimal: i) the assignment step follows
the nearest neighbor rule and ii) the prototype used is the arithmetic mean, or the medoid
respectively for k-medoids, of the cluster members which are the optimal representatives
under the respective constraints. In this way, the iterative reduction of the representation
error for each data object is achieved. From an optimization point of view, the partitional
clustering approach is formulated by Eq. 5.2 with the additional remark that it seeks for
all components 64, ..., 60, simultaneously until convergence.

The competition between prototypes for representing the data results in a locally

96

optimal solution where the prototypes are set at positions with high data density. How-
ever, the quality of the final solution depends heavily on the initial prototypes. Common
deficiencies are the data under-representation where no prototype is assigned to every
underlying data class. At the same time, another data class may be over-represented by
more than one prototype representing different subsets of its objects.

The problem of trapping into poor local solutions is tackled with the careful selection
of the initial prototypes (see Sec. 2.6.1). The most simple initialization approach is the
random selection of k£ objects from the dataset (Forgy’s approach). However there exist
more efficient options [80] and some of them have linear complexity cost to the number
of data O(N). Initialization using density estimation, with kd-tree for low-dimensional
feature spaces [132] or based on neighborhoods around objects [133, 134], have also been
proposed. In addition, other clustering methods may also be used in order to produce
an initial partition that is further refined by k-means. Such examples are agglomerative

clustering [42], genetic algorithms [94, 95|, and simulated annealing [96].

Improving the convergence monitoring of k-sp. The k-synthetic prototypes cluste-
ring method (k-sp), which has been presented in Chapter 4, incorporates the synthetic
prototypes as cluster representatives in the above iterative local search strategy. The
algorithm mainly uses two parameters for object and feature filtering (pob;, Preat), however
without loss of generality, we use only object filtering herein. The sp construction reduces
the representation error in clusters during iterations, whereas it does not guarantee the
monotonic convergence. In Sec. 4.3 we used monitoring of the overall clustering error
to stop the procedure when an increase occurs. Here we propose a relaxed monitoring
mechanism which lets k-sp to continue iterating, when error increase is observed, for a
number of deteriorating steps (ds) seeking for a state that has lower error than the best
found so far. If during the ds steps no improvement is achieved, the algorithm rolls back
to the best solution found and terminates. If, however, a better solution is found, then
the algorithm proceeds from that point on, and resets the counter of the deterioration

steps (ds iterations will be permitted in case another error deterioration will be observed).

97

Algorithm 4 — An abstract incremental clustering procedure

input: dataset X, a partition CFinit of k;.;, clusters, and the desired number of clusters &
1. Initialize with model @Finit computed for the input data partition CFinit and set k=k;;,
2. Improve model structure by increasing the number of components (incremental step)
3. Improve model parameters using a clustering algorithm for k clusters (fine-tuning step)
4. Stopping criterion: if k#k then goto step 2

output: (0", C")

The main consideration of this modified strategy is that a temporary deterioration of the
clustering may avoid a bad local optimum and lead to some better area of the search
space. Notably, this search approach resembles, in some sense, to discrete optimization
algorithms such as simulated annealing that uses the concept of ‘temperature’ for proba-
bilistic decisions. The proposed mechanism is simpler to that approach, but in both cases
the roles of control parameters ds and temperature are similar. In addition, they provide
a way to avoid trapping in oscillation between solutions. In empirical experiments ds=5
was shown to be a good setup value.

After termination, the refinement step of k-sp takes place where the cluster centroids
are updated to further improve the clustering result. In fact the improvement of this
step may empirically confirm the rationale behind k-sp: once the important ‘coarse’
information has been extracted, fine-grained details can be used to improve clustering

(e.g. objects far from prototypes, or features without much discriminating power).

5.5 Incremental prototype-based clustering algorithms

Incremental clustering starts with k,,;, given clusters and works in a top-down manner
until the desirable x>k, clusters have been formed. This is outlined in Algorithm 4.
If k,.,=1 then Ckrit=X containing all data objects. Nevertheless, it is implied that the
initial model is computed for the provided partition C¥it that could have been produced
by a different clustering procedure. Incremental strategy has higher computational cost

comparing to flat clustering, but important advantages as well:

i) it reduces the deficiencies of flat clustering that tries to locate good starting pro-

98

totypes for all clusters at once, which is inefficient especially in the case where the
number of clusters is large,

ii) is able to extract the cluster structure information of the dataset in different refining
levels, and

iii) is convenient to be combined with cluster-based criteria that enable the estimation of
the optimal number of clusters (for example the methods [32, 45, 135-137] discussed

in Chapter 6).

This quite generic methodology is the backbone of popular incremental algorithms that

we present in what follows.

5.5.1 Divisive prototype-based clustering

In the incremental step of divisive prototype-based clustering (DPC) [83], one of the
model components, let 0, is selected based on a criterion (e.g. cluster variance, or size,
etc.) and is replaced by two new components 0, 05,. The new components aim to better
represent the objects that were previously represented solely by #,. Following an abstract
notation, if ©%1 is the locally optimal solution already computed, then the fine-tunning

of O, 65, which is carried out in the bisection (split) step of ¢; is:

©F = arg min ®(6F1\0,, 0,,,0,, | X,) (5.6)
05, bs,
= {@k_l\ﬁs, arg min ®(0;,, 0, | Xs)}, (5.7)
s19 052

where ék—l\es is the set-theoretic subtraction of 6, from (:)’“_1, and Xy={z;:z;€c;} is
the subset of data objects assigned to the selected cluster which is split. Notably, the
resulting solution of Eq. 5.7 is not locally optimal as a whole, for all £ components.
Intuitively, this implies that an application of k-means on that partition would gener-
ally update those components and clusters. Contrary, Ok 1 is optimal, which implies

that a refinement has already been applied on all components. Furthermore, the factor

99

largmin g, 4, P(0s,,0s, | X,)] denotes the local search involving the two components
and the objects of cluster ¢;. Usually, 2-means is used to split a cluster, starting from two
adequately diverse positions in cluster. More specifically, given that 0,, is seeded by an
arbitrary data object chosen at random from the cluster, then ,, can be obtained with
one of the following approaches:

1) select randomly,

2) use of the previous cluster prototype, i.e. 05,=6;,

3) find a position at opposite direction with respect to the current prototype,

0s — (05, —), for Euclidean distance
bs, = (5.8)

29, 16,) — bs,, for Cosine similarity

where 1, 1g,)=0s[1 + (65, — f,)0]] the intersection of the perpendicular vector

from 6,, onto the normalized 6.

A number of trials may be required to determine a good split. The first approach is the
most naive, while the third one is expected to speed up 2-means convergence. However, the
result of (3) would be quite similar to that of setting f;, to be the previous prototype 6,
because both points would lay on the same direction in space wrt f,,. Another interesting
remark, especially for HDS data, is that even though 6, might be seeded with a sparse
data vector, however, the initialization cases (2) and (3) do compute a non-sparse f,,.

Alternatively, principal direction divisive partitioning (PDDP) [82] tries to split a
cluster along the direction of higher data variance. Originally, it was proposed as a
deterministic procedure which splits according to the positions of objects wrt the line
perpendicular to the principal direction of the cluster, which also passes by the cluster
mean (i.e. the sign of the projection). However, it is easy to realize that this could be
used in a non-deterministic way as well: i) consider the object projections on the principal
direction and then ii) follow one of the aforementioned approaches (2) or (3). This would
avoid the arbitrary choice of the mean as cluster split point. In [138] k-means was used as

a steering procedure aiming to refine the 2-clustering of PDDP split. Other works have

100

proposed to consider projection directions other than the principal, while in [139] the
distribution of the data projections on the principal direction is further studied in order

to determine a good cluster split.

5.5.2 Global k-means

In the incremental step, gk-means algorithm [84] only adds one component to the pre-
existing Ok 1, Specifically, it makes N trials to add the new component, where, in each
of the trials, the component is initialized at a position coinciding with a different object
seed®. Let z; be the object seed in a trial, then the refinement consists of a typical k-means

run on all clusters:

OF = argmin ®(OF !, A, =1, | X). (5.9)
01,...,0

Among the N solutions corresponding to different seeds, that one with minimum objective
function value is kept as the optimal k-clustering. For the k=1 case, the algorithm
uses the arithmetic mean of the dataset. Global k-medoids is similar and only differs
in an additional constraint that is considered: the prototypes to be cluster medoids. The
drawback of gk-means is the heavy computational cost, since N runs of k-means (or
k-medoids, respectively) are required to add one new cluster.

A variation that reduces the computational burden of gk-means exhaustive search is
the fast global k-means (fgk-means) [84]. Tt introduces an estimation of the improvement
in clustering error which is computed for all object seeds, but without involving any
prototype re-computation. Given the solution ©%1 and the respective clustering error
value ®(©%~1), then an upper bound of the error ®(6%) is computed for each seed such
that:

(O (1)) < B(OF 1) — b, (5.10)

1

where ©F(z;) is the local optimum discovered when {©#~ f,=z;} was set as initial con-

2¢Seed’ is a more general term and may refer to any starting position in R?, including those points
coinciding with a data object which are called object seeds.

101

Algorithm 5 — Find the starting state for k-th cluster prototype (mfgk-means)

input: dataset X, the locally optimal prototypes ©*~1=6;,... 6;_1
1. Seed initialization: for each object seed z;, let 6y (z;)=x;
2. Prototype computation: find c;=S(x;) (see Eq. 5.13) and recompute 6y, (x;)=Centroid(cy)
3. Find the best case: Op=argmin ;1 n ¢*(0x(z;))
4. Fine-tuning: repeat until no change occurs in cluster ¢
a. Ck:S(ek)
b. §,=Centroid(ci)
output: 6

ditions. Formally, for £>1, the quantity bf‘l is computed as:

N
bt = Zmax{(), ont— dist(xq,xi)}, (5.11)
q=1

where 65*1:minj{dist(é§_17xq)} denotes the distance between z, and its nearest proto-
type. The object with maximum b; is expected to provide the largest decrease in error

and, thus, is selected to seed the k-th cluster prototype.
Another perspective to this approach is to reformulate Eq.5.11 as an optimization of
an auxiliary objective function, in the spirit of Eq. 5.5 but with components 6y, ..., 0,1

at fixed positions [140] and constrained 6 to be a data object:

o*(0y) = Zmin{ai;—l,dist(ek,xq)}, (5.12)

q=1
subject to 0 € X.

The modified fast global k-means (mfgk-means) [140] is a more efficient alternative
compared to fast gk-means, with the disadvantage of increased computational cost. The
difference lies in the way the starting point of the new cluster prototype is determined.
All objects are tested as seeds at each incremental step, but an intermediate procedure
has been included which computes the final initial state for the added component. This
approach aims to minimize the auxiliary objective of Eq. 5.12 without putting constraints
on the input, hence §,ER?. Given an arbitrary point y€R?, let us denote the set of objects

that are nearest to y than to the prototypes of the clusters to which they are currently

102

assigned:

S(y) = {xq s dist(zg,y) < jfrlnn dist(zg, 9]')} . (5.13)
The respective algorithm to find the starting state of k-th component is presented in
Algorithm 5. Thinking in terms of the k-means procedure, it is clear that fgk-means
first lets the objects move to ¢, and then computes only once the new value of the
objective function (step 2 of Algorithm 4). Mfgk-means proceeds further and recomputes
the prototype 6y by taking into account the newcomer objects (step 3 of Algorithm 4).
Next, the best case is further refined by updating only the prototype of the new cluster.
At the end of this procedure, all objects are assigned to the cluster whose prototype is the
nearest to them and, since the centroid 6 is the optimal representative for the objects in
¢k, the returned), is a local minimizer of ¢* defined in Eq. 5.12.

If short running time is not the primary concern, we propose a straightforward alter-
ation denoted as mgk-means (i.e. not fast) that could lead to a better starting point by
just inverting the order of steps 3 and 4 in Algorithm 5. This approach selects the best
starting point after refining all 0 (x;) produced in step 2 of Algorithm 5. To the best of
our knowledge, this modification has not been proposed in the related literature. Note
that this can also contribute in the experimental evaluation of the algorithms seeking for
a good starting position for the new component, because all starting states are refined.

The speed up of global k-means procedure and its variations may be achieved by:

1) the improvement of the computation of the starting point, given an object seed.
This could also lead to faster refinement of all £ components that follows.

2) the utilization of early stopping criteria that would identify the non-interesting
candidates during their examination in the clustering procedure. Since all variations
start from an object seed, we could focus on those seeds that seem more promising
to drastically reduce the clustering error.

3) the pruning of the candidates set. Similarly to the previous case, this could discard
candidates that lay at non-interesting areas of the data space (e.g. close to existing

components). Random pruning is also an option, although a naive one.

103

4) the introduction of r>1 components at each incremental step. In practice, this is
prohibitive to be applied in a greedy fashion because the object combinations to be

tested would be (f)zﬁim

The variations discussed so far belong to the categories (1) and (2). There have been
proposed other modifications of mfgk-means that mainly aim to reduce the required com-
putational resources by adopting the directions (3) and (4) of the above. In [141] the
projection of data in the eigenspace is proposed, which enables the efficient identification
of the nearest neighbors of an object without storing the whole similarity matrix. More-
over, an algorithm is presented that introduces multiple new components in each step. On
the other hand, the approach of [142] reduces the computational complexity by examining
only a subset of object seeds laying at different areas of the dataset. This is achieved by

considering a finite set of weights U={v;}/_,, v;€R*, and by altering Eq. 5.13 to:

7=1,....k

SYi(y) = {xq rvpdist(zg,y) < min dist(xq,ej)} : (5.14)

Similarly, Eq. 5.12 is rewritten to consider the weight v; that forces the minimization to
focus on different parts of the dataset (although that, according to the above definition,
these parts are nested). For instance, for a small v; value the examined seeds would
be objects near the existing prototypes. The best solution found using the different v;

weights is the final starting point for the k-th component.

5.6 A framework for incremental clustering

This section presents a framework for incremental prototype-based clustering. The pro-

posed framework is generic and exploits the idea of partial updates described next.

Definition 1 — Partial update (PU): A partial update is a local search clustering
procedure which starts from a solution (OF, Ck) and s constrained to perform at most t

iterations involving the following three subsets of entities:

104

Algorithm 6 — The incremental clustering framework

input: dataset X, a partition Ckinit of ;. clusters, the number of desired clusters &

1. Initialization with model ©Finit computed for the input data partition C¥nit and set k=Fkin;.

2. Incremental step: the model complexity is increased (k=k+1) and a proper initialization is deter-
mined for the new component(s):

ore — for-het | of,, }, (5.15)

where Géﬂ)gék’l a set of components to be removed from the provided previous (k-1)-solution, and

Séﬁr) the set of components to be introduced, each one initialized at a starting position of interest.
3. Partial updates: a series of m—1 successive intermediate steps, where each PU; is seeking for a good
starting state for the next PU; 1, based on the solution of the previous PU;_; and by performing
at most t iterations. Let PUy—©%0=0%NC (the output of step 1), then the general expression for
each PU;, i=1,...m—1, is:
O = arg min d(OF 1| Xk (5.16)

o act
K
0; Eaact

act act?

k,i—1\ qk,i : kyi
= @ \aact) arg mu_l (I>(aact
95 Eak’l

act

X’“)} , subject to C* (5.17)

where 8fg€§®k7i the active components, X%

.1 the objects that are let to change cluster assignment,
and CF the active clusters. PU; should be less constrained comparing to any PUj, j<i, wrt the
number of active components, clusters, and data objects.

4. Full update (FU): k-clustering refinement is used as FU which can also be considered as PU,,, with no
constraints (Cfc’:n:Ck’mfl, ok m—_@km=1 and X*m_X), It finds a locally optimal solution starting

from the output of the last PU,,_;, ©%™~1 and by updating all k clusters and their prototypes:

oF = aorgmairlé(@k’m*HX). (5.18)
1yeeesVe

5. Stopping criterion: if k#k then goto step 2.
output: (0% C")

i) the active clusters C¥,CC¥ that compete to each other to gain new object members.

The rest C’“\Cffct clusters may only lose or take back objects they had prior to PU.

k

act CX that are let to move to and among the active clusters, or

ii) the active objects X
return back to the cluster they were assigned before PU.

iii) the active components O COF corresponding to a subset of active clusters and they

are updated when the respective cluster changes.]

Let us first define a function J(-) that returns the cluster(s) related to the input
parameter, thus, J(z;, z,) would return the clusters to which these objects are assigned,
J(¢;) would return the index of the cluster ¢ and the same for J(6;). Some remarks follow,
regarding the PU definition:

e If the similarity of all objects to the cluster they belong has been stored before

105

the PU, then the only prototypes that are involved in calculations of similarities
to objects are those corresponding to the active clusters that aim to attract new
objects, i.e. J(CE.). Otherwise, the involving prototypes will be those corresponding
to the clusters indexed by J(X%,)DCF

act”

o Generally J(0%)CCk

act

holds, which means that the prototypes of some of the com-
peting clusters might be adaptive to the changes in object members, while others
might be static. A cluster ¢ will not participate in the update procedure at all, only
if J(c)¢CF, and c¢J(XF).

e The resulting PU solution is also locally non-optimal in the sense that a k-means

run would further update both clusters and prototypes.

Algorithm 6 provides the formulation of the framework which summarizes effectively
the popular incremental clustering algorithms and most of their variations mentioned in
Sec. 5.5. The initialization is identical to that discussed for Algorithm 4. The incremental

step is specified by the two sets 0¥, 0% and the initialization of the introduced compo-

=) ()

nents in set 6F, . By definition, a PU is specified by the respective sets C¥ , Xk and oF,

that can be computed based on the provided partition and the respective prototypes that

should be partially updated.

Table 5.1 presents the parameter setup that reduces the generic framework procedure to
each of the incremental algorithms discussed earlier in Sec. 5.5. The first row refers to DPC
that in the incremental step removes the 6, component and adds two new components,
0s,, 05, Those two are seeded using objects belonging to the cluster that is split, i.e.
x;€cs. Then in the PU step, it is noted that it applies only PU; where the only updated
prototypes are the two newly introduced 0y, , f,,, and that the clusters that are changing
their members are those corresponding to the updated prototypes. Finally, the data
objects that participate in the PU are the members that initially belong to ¢, that is
split. The second row is the DPC initialization where only one component is added while
the existing prototype is used to perform the cluster split. Next we have the gk-means

variations, which do let all the objects of X to be reassigned among the clusters. As

106

Table 5.1: Different parameter setups that reduce the generic clustering framework pro-
cedure to popular incremental algorithms.

‘ Incremental step ‘ Partial update step
Algorithm | 6% 6F,, it 6, | PU ok, ck. Xk, t
DPC | 6y {0s,,0s,} zixqccs | PU; {0s,,65,} {cs;,¢s,} XNcg max
DPC (0s,=6,) 0 05, zi€cs | PUL {0s,,05,=05} {csy,¢s,} XNecs max
gk-means | () 05 r;€X | FU ok Ck X max
fgk-means 0 0y, z;€X | PU; 0 Ch X 1
mgk-means | () 0y r;€X | PUy 0 Ck X max
mfgk-means 0 0y, 2;€X | PU; 0% Ch X 1
PU2 Hk Ck X max
gk-sp| 0 0 z;eX | FU oF CF X max
fgk-sp 0 0, 2;€X | PU; 0 Ch X 1
gk-sp-mPU | 0 Ok z;eX | PUL {0 O~} {cj: O~a;} X max
fgk—sp—mPU 1] 0y 2, €X | PUy 0 {Cj: ijxz-} X 1
PU2 {Hj: ele’Z'} {Cj: ejN:L‘Z‘} X max

(1) t=max implies no constraint on the number of iterations; the PU terminates upon convergence.
) {0;: 0;~z;} denotes the set of prototypes that have similarity with the object seed z; to some
required extend. Respectively for active clusters {c;: §;~x;}.

indicated, the original algorithm applies directly the full update (FU), i.e. unconstrained
PU where all clusters are competitive and all prototypes are updated (FU is applied by
all algorithms but we mention it only for the methods that do not use a constrained PU).
For fgk-means the constraint of t=1 iteration is noted for the PU step. However, this
is not an direct constraint but rather because its PU does not permit the update of any
prototype, and therefore only one iteration is possible. On the contrary, t=1 constitutes
an explicit constraint of mfgk-means. The last four lines refer to the proposed global
k-synthetic prototypes clustering method that is discussed in Sec. 5.8 that follows.

For clarity of presentation, not all algorithms have been included in the table because
they are similar to those mentioned. PDDP-based algorithms work with data projection
instead of the original space, while in all other aspects would use the same parameters as
DPC. Regarding the global k-means variations [141] and [142], they use careful selection

of the seeds of 0F

() from a subset of X without focusing on any cluster. Besides, the

adopted PU approach is the same with that of mfgk-means. As for the variations that

introduce r new components at each step [141], they can be directly derived by setting

eﬁ_):{Gk, ceey ek_;,_r}.

107

5.7 Principles for efficient incremental clustering for HDS data

The design of an effective incremental clustering algorithm for HDS feature spaces can be
based on the proposed framework of Sec. 5.6. The parameter setup and the local search

of the PU step should take into account the special properties of such spaces.

Self-similarity and feature over-aggregation. It has already been reported that these
two phenomena affect negatively the flat prototype-based clustering procedure (specifi-
cally, centroids or medoids, see also Sec. 4.3.1). The first implies that there is a ten-
dency for an object to remain in the cluster where it already belongs to, because the
self-similarity may dominate the nearest cluster prototype calculation. The second phe-
nomenon implies that, due to the large number of dimensions, the prototypes encounter
difficulties in becoming specialized in one data class when the initialization provides im-
pure clusters. In contrast, they aggregate information (non-zero weighted features) from
many classes. Both phenomena play more important role when the clusters become
smaller in size, which is the case in incremental clustering as £ grows. In the flat clu-
stering case, it has been shown that such phenomena can be addressed to a satisfactory

extend using the synthetic prototypes approach for cluster representation.

Unfair prototype competition. Prototype-based clustering is a competitive learning
process where the prototypes compete with each other for representing the data. In what
concerns incremental clustering in HDS space, where a new component is added to a
model of lower order, a special problem emerges at the beginning of a PU regarding the
‘unfairness’ of the competition between the already formed k—1 components, and the
new one. This is due to the large difference in sparsity between the object seed, and the
existing prototypes that have aggregated a lot of information from their clusters. Self-
similarity makes more difficult for arbitrary objects to join the new cluster. Additionally,
since a single sparse vector object (or a very small set of objects) is usually inappropriate
to represent a data group (see Sec. 4.3.1), it is reasonable to be also inappropriate to
attract a coherent group of objects from the other clusters, if chosen to seed the new

prototype. Note that, as k grows incrementally, the formed clusters become smaller and

108

less impure. Consequently, the respective prototypes overfit to current partition and make

more difficult for the new cluster to drastically change the solution found so far.

Intuitively, an approach that would mitigate this unfair prototype competition problem
should try to reduce the information imbalance between the formed prototypes 6;, =1,
...k—1 and the new one ;. And this could be achieved by:

1) a reduction of the representation quality /accuracy of the formed prototypes for their
clusters which could increase its sparsity, and/or
2) an enrichment of the new starting point #; which would necessarily decrease the

sparsity of the considered object seed.

To the best of our knowledge, it is the first time such analysis and discussion is provided
in the context of prototype-based incremental clustering and, thus, the related approaches
of literature do not tackle the above issues. Only the initialization case (1) of DPC (see
Sec. 5.5.1) seems to avoid such problems: initially, two object seeds fairly compete to
split one cluster. Next, the two fine-tuned centroids, which are much less sparse than
the object seeds, are used in refinement of all clusters. In initialization cases (2) and (3),
fs, is an object seed but the computed 6,, is much less sparse. In fact, 6, is always as
sparse as the cluster centroid 6, used for its computation. As for gk-means, it lets a sparse
object seed to compete directly with the k-1 cluster prototypes, which has the previously
discussed disadvantages.

On the other hand, mgk-means is the only algorithm that enhances the competitiveness
of the new prototype 0, even though indirectly. While updating 8, in the PU step, the rest
of prototypes do not adapt to represent better the remaining members of their clusters
and hence the probability to lose more members during next PU iterations increases.
However we should note that this is not an intentional property of the method, because
mgk-means has not been designed for HDS data spaces that we discuss here. Therefore,

the aim of its PU is rather to speed up the original gk-means algorithm.

109

Algorithm 7 — Initialization and modified partial update of the fgksp-mPU method.

input: dataset X, the locally optimal é)’Hzel,. ..,01—1, the k-sp parameters pobj, Preat, A, B, ds

1. Seed initialization: for each object seed z;, let 0y (x;)=x;

2. Reduction of old prototypes: for each cluster j=1, ..., k—1, §;=ConstructSP (ck, Pobj, Preat, A)

3. New prototype computation: find cy=S(z;) (see Eq. 5.13) and let J(S(z;)) the set of clus-
ters to which the objects of S(z;) previously belonged according to ©*~1 then recompute
0 (x;)=ConstructSP (c;j, Pobj, Preat, x,0)

4. Fine-tunning with mPU: apply ksp(X,k,pobj, Dreat, A, B, ds) with active prototypes
ok ={0;: j€J(S(x;))}, active clusters C¥ ={c;: jeJ(S(z;))}, all objects active X* =X, and
the initial prototypes found in steps 2, 3

5. Find the best case: where the mPU of step 4 has provided the solution of lower clustering error
output: 9%,

5.8 The global k-synthetic prototypes clustering method

In this section, we present a method for incremental prototype-based clustering specially
designed for HDS data. The method is called global k-synthetic prototypes (gk-sp). The
basic gk-sp and the fast version fgk-sp apply the same incremental steps to those of gk-
means and fgk-means, respectively, as mentioned in Tab. 5.1: it introduces one component
each time which is initially seeded with a data object. The novelty lays i) in a mechanism
that helps the new prototype become a strong attractor for the data objects, and ii) an
improved PU procedure which updates prototypes close to the considered object seed.
These are designed in respect to the remarks and conclusion of the Sec. 5.7

The primary aim of this PU is to reduce the information imbalance between the formed
prototypes and the newly introduced one. We propose a novel reduction-enrichment
mechanism (REM) for this purpose that reduces the already formed prototypes k-1
while, at the same time, enriches the newly introduced prototype 0y to help it become a
strong attractor. This is achieved:

1) using the synthetic prototypes (sp) that constitute a reduced representation (more

sparse) comparing to the respective cluster centroids provided in (:)’“*1,

2) by constructing a larger sp for the new cluster ¢:

[pobj nj—l 3] <k-1

(5.19)
min{nj, max{(pobj nj|, max Kq}} .J=k.

g=1,....,k—1

K; =

110

The above formula implies that as long as the new cluster is smaller than the largest
of the other clusters, then practically the centroid will be computed as prototype.

Note that this special treatment is recalled in case we observe:

[pobj nj—| > q:{ﬂfﬁ]gil Kq- (5.20)

After that point, the computation will be based on the upper branch of Eq. 5.19.

In addition, we propose the improved gksp-mPU version that employs a more sophisti-
cated PU approach. The modified partial update (mPU) considers as active all the clusters
from which the new cluster detaches objects at the first iteration. Furthermore, all data
objects are considered to be active and can move among the active clusters or return back

={0;: j€I(S(@:)}, CLi={c;: j€I(S(x:))}, and

act

to their initial cluster. Formally, we set 9*

act

Xk =X. In this way, the competition is set among the clusters that are close to the new
seed. The intuition is to help the prototypes make more drastic changes to the solution
so far. It is remarkable that an inactive prototype implies that it will not adapt to the
changes of object members and eventually will become ‘outdated’ to some extend. Con-
sequently, this will permit easier departures from the cluster to an active clusters around
the seed.

This approach is a better trade-off between computational cost and effectiveness, than
the other PUs. The respective fast gksp-mPU version (fgksp-mPU) proceeds for all object
seeds up to the PU step of Algorithm 6 but applies the FU only on the best solution found

by PU,,_; in each case. This procedure is described in Algorithm 7.

111

5.9 Experimental study

5.9.1 Setup

In the experimental evaluation we compare some of the well-known incremental algo-
rithms, such as gk-means [84], the fast modified gk-means [140] (fmgkm) and the divisive
k-means, with those algorithms derived by the proposed framework. In particular, in this
chapter we have proposed the global k-sp (gksp), the global bisecting k-means (gbkm),
and the modified gk-means (mgkm) (which is the slow version of fmgkm proposed in
[140]). We did not include the experimental results for the traditional bisecting k-means
(bkm); instead we used the proposed gbkm that examines the division of every cluster
in order to select the best split, and thus performs better. To setup a fair testbed, the
divisive algorithms initialize the two new prototypes by selecting one random data object
from the cluster that is split, and the previous centroid of that cluster.

Moreover we have tested the respective fast versions of all the slow clustering methods
we considered (they are denoted with an ‘f” as initial letter, e.g. fgbkm). The difference
lays on the fact that a fast version first computes the result of the partial updates (PUs:
PUj, j=1,...,m-1) for all initializations (the different object seeds) and then performs the
update of the full model (FU). Contrary, the slow versions apply FU for all the objects,
right after the PUs, and select the best solution out of them as the OF.

The use of synthetic prototypes (sps) was also proposed in this chapter to be incor-
porated into the incremental prototype-based clustering methods (these variations are
denoted with the suffix ‘sp’, e.g. gbksp). The parameters of the sp construction are set to
be the same as in the experimental setup of Chapter 4, however we have fixed the value of
Pobj Parameter to 80% of the cluster objects. Moreover we used the slightly altered k-sp
version that permits some error deterioration steps (we set ds=b, see Chapter 5.4).

Note that all the sp-based variations employ the reduction-enrichment mechanism
(REM) presented in Sec. 5.8. This mechanism helps the new prototype to be more
competitive to the prototypes of the already formed clusters in order to attract data

objects. The gksp-mPU is a proposed variation that uses the modified partial update

112

(mpU). The main idea of mPU is to first set a competition between the new prototype
and the prototypes that are close to it. After convergence a FU is applied. Note also that
in this case all objects of the dataset can move to the active clusters according to the
mPU definition. The intuition is to help the prototypes make more drastic changes to the
solution so far. It must be noted that the inactivity of a prototype implies that it does
not adapt to changes of the object members of its cluster. This behavior will eventually
make the prototype ‘outdated’ to some extent, and hence will permit cluster objects to
easier move to other clusters.

Most of the datasets on which we tested the algorithms have been also used in Chap-
ter 4: the artificial dataset Af), and the real datasets RSELS), Més), MéM), Més) and Miniy.
More specifically, in this study we used small and medium-sized datasets. The only new
is the artificial dataset Agp, which was created as Af) with the process presented in
Sec. 4.4.2. The notation we follow for the dataset names is the same to Chapter 4: the
subscript denotes the number of clusters and the superscript denotes (if any) a general
characterization whether the dataset is (S)mall, or (M)edium regarding the number of the
contained objects. We tried to cluster the small datasets in the whole range from 2 up to
3k number of clusters, while for the larger datasets we applied clustering from 1 up to &
clusters.

Internal and external clustering evaluation has been conducted. Our primary consider-
ation is that data clustering problem is formulated as an optimization procedure, therefor
we have used minimum attained value of the objective function as the main measure for
method comparison. The same vector representations (BOW) of the documents are given
as input to the algorithms, and all of them employ the complementary of clustering Co-
hesion (CC) Eq. 5.4 as objective error function. In order to demonstrate the reduction of
error as more clusters are added into the solution, we normalize the error values wrt the

error of the single cluster case where all data object are in one cluster:

e [0,1]. (5.21)

113

For the external evaluation we used the normalized mutual information (NMI) that mea-
sures with a value in [0, 1] the agreement between the achieved clustering and the provided
ground truth labeling of the datasets. Lower values of é(@k) and higher values of NMI
indicate a better clustering result. We should note here that both internal and external
evaluation are useful for the experimental study. However, internal and external measures
may not always agree about which of two clustering solutions are better. For example
we may achieve a decrease of the objective error value but at the same time observe a
lower NMI value. This might happen because the object labeling has been created by
humans and may not reflect the underlying properties of the feature space in which the
data vectors are represented. From the optimization point of view, and given the data
representations, the algorithm which is more efficient in minimizing the objective value

for a dataset should generally be considered as the best method.

5.9.2 Experimental results

At the end of this chapter, we provide for each dataset two figures with graphic plots
that demonstrate the behavior and performance of the compared clustering methods: the
first for the slow incremental clustering methods and the second for their respective fast
versions (e.g. Fig. 5.1 and Fig. 5.2, respectively, refer to dataset RSELS)). Each figure
presents: i) plots illustrating the the size of each cluster (y-axis) as lines of the same color
wrt the number of clusters k (x-axis), and ii) the plots of the cluster evaluation measures
(e.g. Fig. 5.1b) as the number of clusters increases®. These values correspond to the
solution with the minimum objective value found in each incremental step.

One key observation concerns the significant influence of the small number of objects
in a dataset (size of dataset) on the performance of the clustering algorithms. For small
datasets the algorithms demonstrate higher performance variation and, it can be observed
more clearly the effectiveness of the proposed methodologies that help the newly added

cluster to gain more objects. The plots of the size of clusters provide empirical evidence

3The legend shown in the lower right corner of a figure refers to the evaluation measures only. The
colors of the left side of each figure have been arbitrarily selected, however, each color indicates the
relative number of members of a particular cluster

114

about the unfair competition between prototypes that we have discussed in this chapter.
For example, see Fig. 5.3 and Fig. 5.4 for Més), and Fig. 5.5 and Fig. 5.6 for Més). Speaking
about Fig. 5.3, we can see that gkm finds a clustering for k=2 that splits the dataset with
80%-20% ratio (the red line). This is fair enough as a first step, since the eight data classes
we seek are almost of the same size. Then the third cluster (green line) comes up at the
third incremental step and takes another part of about 20% of the data. However, all the
clusters that are introduced in the solution after that moment fail to attract a significant
number of data objects and to form interesting clusters. The initial cluster that is the
largest continues to lose objects towards the new cluster as k grows, but even up to the
end of the experiment it retains over 20% of the data even though 23 other clusters were
competing to each other.

The clusters formed in the initial incremental steps may not let the new clusters
added later become part of the clustering solution. It is natural for such a behavior to
be more intense when we attempt to partition a dataset in more clusters than the groups
of the underlying structure. There, we could assume that the structure of the data is
strong and cannot be easily split into small pieces (clusters). The most characteristic
such case is the artificial dataset Af) (see Fig. 5.13 and Fig. 5.14), where the centroid-
based algorithms initially find four large clusters, but then they fail to seek further for
homogeneous subclusters. In the larger datasets the methods seem to behave differently
in the sense that there is more ‘action’ and the clusters compete more strongly to each
other (for instance see Fig. 5.7, Fig. 5.8). But it is also clear that the phenomenon
we talk about is still present in every instance of our experiments. We can see in the
latter case that the clusters are separated in two groups: those that compete to each
other and the rest of them that contain probably a small set of closely related objects
without being able to attract new data. Another example is Miniyy (see Fig. 5.9 and
Fig. 5.10) which contains 20 clusters with 2000 data objects in total, but it is clear that,
in a analogous extend, the first two clusters have a strong advantage in the clustering
competition. Fig. 5.14 and Fig. 5.13 provide the only example where the centroid-based

approaches create competitive clusters and prototypes during all incremental steps. The

115

respective evaluation measures indicate that again the proposed approaches achieve better
clusterings and the difference in quality seems to increase with the number of clusters.

All the previous observations hold in both the fast and slow incremental clustering
approaches. Also in both slow and fast variations, in real or artificial HDS data, the
incorporation of synthetic prototypes had a positive impact. The methods are among the
most competitive optimizers. Among them, in most cases the gksp-mPU and fgksp-mPU
seem to be one of the best choices.

In what concerns the reduction-enrichment mechanism (REM), this experimental
study provides empirical evidence supporting the claims of our analysis, the clustering
methodologies, and the optimization heuristics proposed in this chapter. In addition, the
experiments also indicated directions to improve the proposed techniques. For instance,
the REM mechanism, and in particular the approach to enrich the new cluster in order to
become competitive, in most cases was helpful to find a good solution in adverse settings
where even the synthetic prototypes seem not to help the gksp to effectively discover new
clusters (e.g. in Fig. 5.12 and Fig. 5.12). On the other hand if we observe the left part
of the figures, there are cases where the new cluster enjoys a ‘sudden popularity’ when it
is introduced and right after it returns to deprecation. This provocation might be neces-
sary to achieve a drastic change in the competition between the clusters and prototypes,
however it is clear that issues arise regarding the stability of this approach. One possible
direction that this issue should be investigated is to consider the median of the cluster
sizes as the limit after which we cancel the favoring of the new cluster. Alternatively, the
enrichment may be defined to have larger duration in time, since in the present approaches

it is applied only when the cluster is introduced to the solution.

5.10 Conclusions

In this chapter we have presented a framework for prototype-based incremental k-means

clustering that is based on partial updates on a given solution. In a partial update phase

116

only a subset of the cluster prototypes, clusters, and data objects participate in the
clustering process. According to our provided analysis we have also revisited and unified
two widely known incremental clustering approaches: the global k-means and divisive
k-means. In this chapter we focused on HDS spherical data and discussed the problem
of increasing the order of a current k-clustering solution by adding one new component.
We proposed the incorporation of synthetic cluster prototypes presented in the previous
chapter into incremental prototype-based clustering. Accordingly, we proposed the global
k-synthetic prototypes (gk-sp) clustering algorithm, which is a modification of the global k-
means algorithm for HDS data. The gk-sp method uses the k-synthetic prototypes method
for fine-tunning the k-solution and introduces a partial update scheme to initialize the k+1
prototypes for the refining phase. Experiments on real and artificial document datasets
illustrate that the proposed gk-sp method outperforms other incremental methods of the

k-means family.

117

[4 5 10 12
= gkm

= gbkm

= mgkm

— gksp

= gbksp
gksp—-mPU

\ |

4] 5 10 12

k
(b) Evaluation measures

Figure 5.1: Slow incremental clustering versions for RS;S).

17 gkm gbkm mgkm
0.8
0.6
=
0.4
0.2 — =
M= W e
17 gksp gbksp gksp-mPU
0.8
0.6
<
0.4
) ZZZ@
2 45 10 12 2 45 10 12 2 45 10 12
k k k
(a) Cluster sizes
11 fgkm fgbkm fmgkm
0.8
0.6 \\
E
0.4
0.2 -
N Vi e ST R i ———]
11 fgksp fgbksp fgksp-mPU
0.8
0.6
E
0.4
0.2
N /] = /\
2 45 10 12 2 45 10 12 2 45 10 12
k k k

(a) Cluster sizes

0.65 1 TSN
0.6 N\
0.55 1
= 051
=
“0.45]
0.4 1
0.35 1
0.3 1
2 [4 5 10 12
0.96 { — fgkm
— fgbkm
0.94 1 = fmgkm
- fgksp
@ fgksp—-mPU
& 09
0.88 1
0.86 1 N
2 [4] 5 10 12

k
(b) Evaluation measures

Figure 5.2: Fast incremental clustering versions for RS&S).

118

e T~
0.6 /V" =
~—
0.51
1ygkm gbkm mgkm —
=
08 “ 0.4
0.6
- 0.31
0.4
g 2 5 8] 10 15 20 24
0 e - — M r———
= gkm
1ygksp gbksp 0.95 1 — gbkm
= mgkm
08 = gksp
g 0.9 1 —gbksp
@ gksp—-mPU
=
0.85 1
S
o e _ : 081 ~
25810 15 2024 25810 15 2024 25810 15 2024
k k k 2 5 [8 10 15 20 24
k
(a) Cluster sizes (b) Evaluation measures
(%)

Figure 5.3: Slow incremental clustering versions for Mg™’.

0.7 1
0.6 1
057
11fgkm fgbkm fmgkm b=
Z,
08 0.41
0.6 0.31
Y
TS 2 5 [8] 10 15 20 24
0 llm _fgkm
- 0.95 — fgbkm
gese = fmgkm
0.8 - fgksp
09 — fgbksp
0.6 @ fgksp—-mPU
= (=]
0.4 0.85 1
02
ol] 0.8 \
2580 15 2024 25810 15 2024 25 810 15 2024
2 k k 2 5 [8 10 15 20 24
k
(a) Cluster sizes (b) Evaluation measures

Figure 5.4: Fast incremental clustering versions for Més).

119

0.81 /\/\
- ‘,~‘-/
0.7 /
1ygkm gbkm mgkm — 0.6
=
08 Z /
0.5
0.6
s 0.41
0.4
0.2 /FE 2 5 [6] 10 15 18
0 Ve [Vot e
0.96 - — gkm
1) gksp gksp-mPU ’ = gbkm
0.941 — mgkm
08 = gksp
~ 0.92 — gbksp
— 06 @ gksp—-mPU
= =
0.4 0.9
0.88 1
0.2
o > =) >) ,,g 0.86 1
2 56 10 1518 2 56 10 1518 2 56 10 1518 —
k k k 2 5 [6] 10 15 18
(a) Cluster sizes (b) Evaluation measures
. . . . S
Figure 5.5: Slow incremental clustering versions for Mé),
0.8 /\/\
~— N
0.7
—~ 0.6
11fgkm fgbkm fmgkm =
4
0.8 0.51
- 0.6 0.41
04
02 2 5 [6] 10 15 18
17— ‘;% _l/ﬁ — fgkm
0.96 1
11fgksp fgbksp fgksp-mPU — fgbkm
0.94 = fmgkm
0.8 — fgksp
~ 0.921 — fgbksp
@ fgksp—-mPU
= 0.9
T» 0.88 1
=
= [0.86
2 5 10 1518 2 56 10 1518 T T T T T T T]
k K 2 5 [6] 10 15 18

(a) Cluster sizes

k
(b) Evaluation measures
()

Figure 5.6: Fast incremental clustering versions for Mg™’.

120

] ———
0.8 M
0.7
1ygkm gbkm mgkm — 0.6
=
0.8 “
059 |
06
< 044/
04 J
|/
02 2 5 [é] ' 10 15 18
= == ——
ol [z U [Vel v
= gkm
11 gksp gksp-mPU 0.961 = gbkm
—— mgkm
0.8 0.941 - gksp
— = gbksp
& gksp—-mPU
& 0.92
| 0.9
‘%
0 v | — L pestd, 0.88 1
2 5 10 1518 2 5 10 1518 2 56 10 1518 —
k k K 2 5 [6] 10 15 18
(a) Cluster sizes (b) Evaluation measures
. . . . M
Figure 5.7: Slow incremental clustering versions for Mé),
0.65 1
0.6 1
0.55 1
17 gkm gbkm mgkm E 0.5
Z
08 0.45 1
0.4 1
06
. 0.351
04 031
02 — 2 4 5 10 12
M= W= e 0.96 1 — gkm
N = gbkm
gksp gbksp gksp-mPU 0.94 - = mgkm
0.8 = gksp
0921 = gbksp
Z
0.6 @ gksp—-mPU
5 = 09
04
0.88 1
0.2
/\ 0.86 1 ‘
o L[11] 71Z
2 45 1012 2 45 1012 2 45 10 12 — . 3
k k k 2 [4 5 10 12

(a) Cluster sizes

Figure 5.8: Fast incremental clustering versions for M

121

k
(b) Evaluation measures
(v)

0.551

0.5
0.45 4
1ygkm gbkm mgkm
— 0.41
=
08 Z 0.351
06 0.3

Jeil

0.25{ /
0.4 0.2
0.2
2
— —
O‘Eajﬁ

I1I5I - I[2IO]

- gkm

= gbkm

= mgkm

— gksp

= gbksp
gksp—-mPU

1gk bk ksp-mPU
gksp gbksp gksp-m 0.96 1
0.8
0.94 1
0.6 ;:
5 & 0.92
0.4
0.9 1
0.2
= - 0.88 1
o - =
25 10 15 20 25 10 15 20 2 5 10 15 20
k k k 2

(a) Cluster sizes

k
(b) Evaluation measures

Figure 5.9: Slow incremental clustering versions for Miniyg.

051 P
11fgkm fgbkm fmgkm E 0.41
Z /
0.8
0.3 1
0.6
= 021
0.4
02 2 5 10 15 [20]
e [z =
0 - = — fgkm
11fgksp fgbksp fgksp-mPU 0.96 1 — fgbkm
= fmgkm
0.8 0.94 - - fgksp
—~ - fgbksp
% ‘L 0.921 fgksp-mPU
o4
0.9 1
0.2
0.88 1
0 |
25 10 15 20 25 10 15 20 2 5 10 15 20
k k k 2 5 10 15 [20]

(a) Cluster sizes

K
(b) Evaluation measures

Figure 5.10: Fast incremental clustering versions for the Miniy.

122

gbkm

0.8

0.6

Jei]

0.4

0.2

17 gksp gbksp
0.8

0.6

leil

0.4

0.2

10 12 2 45
k k

2 45 10 12

(a) Cluster sizes

mgkm

2 45

gksp—-mPU

10 12
k

[4 5 10 12
= gkm

= gbkm

= mgkm

— gksp

= gbksp
gksp—-mPU

4] 5 10 12

k
(b) Evaluation measures

Figure 5.11: Slow incremental clustering versions for the artificial dataset Af’).

[

fgkm fgbkm
0.8

0.6

Jei]

0.4

0.2

[

fgksp fgbksp
0.8

0.6

Jeil

0.4

0.2

fmgkm

fgksp—-mPU

2 45 10 12 2 45

k k

10 12

(a) Cluster sizes

2

45

k

10 12

0.75 1

/M

10 12
= fgkm

— fgbkm

= fmgkm

- fgksp

— fgbksp
fgksp—-mPU

4 5 10 12

k
(b) Evaluation measures

Figure 5.12: Fast incremental clustering versions for the artificial dataset Af).

123

0.8 1
0.7 1
11gkm gbkm mgkm . 0.61
=
0.8 Z 0.5 1
06 0.4 1 ’
< 0.31
0.4
0.2 1
o2f{ %" . 1 mrrTmr oo e e
2 5 10 15 20 25 [30]
0 —]
0.981 — gkm
= gbkm
= mgkm
= gksp
= gbksp

gksp—-mPU

gbksp gksp-mPU
<® <" 0.92 1
N\

0
25 1015202530 25 1015202530 25 1015202530
k k 2 5 10 15 20 25 [30]

K
(a) Cluster sizes (b) Evaluation measures

Figure 5.13: Slow incremental clustering versions for for the artificial dataset Ajs.

——
-
0.8 1 =
0.7 1
061 F
1fgkm fgbkm fmgkm =
Z 0.5 1
0.8
0.4 1
06
E 03 4
0.4 s
02 ‘ 2 5 10 15 20 25 [30]
0 0.981 — fgkm
fgbksp fgksp-mPU 0.96 1 = fgbkm
= fmgkm
0.94 1 — fgksp
= fgbksp
D 0-921 fgksp-mPU
=2

0.9
0.881
N 0.86 1

. .
25 1015202530 25 1015202530 251015202%3%0 = FPFTTTTTTTTrrrTTrrTrT T T T T T T
: k 2 5 10 15 20 25 [30]

k
(a) Cluster sizes (b) Evaluation measures
Figure 5.14: Fast incremental clustering versions for the artificial dataset Agp.

124

CHAPTER 6

DIP-MEANS: AN INCREMENTAL CLUSTERING
METHOD FOR ESTIMATINCG THE NUMBER OF

CLUSTERS

6.1 Introduction

6.2 Dip-dist criterion for cluster structure evaluation
6.3 The dip-means algorithm

6.4 Extending dip-means in kernel space

6.5 Experiments

6.6 Conclusions

6.1 Introduction

There are various algorithms that can find reasonable clusterings. Most clustering meth-
ods consider the number of clusters k as a required input, and then they apply an optimiza-

tion procedure to adjust the parameters of the assumed cluster model. As a consequence,

125

in exploratory analysis, where the data characteristics are not known in advance, an ap-
propriate k£ value must be chosen. This is a rather difficult problem, but at the same time
very fundamental in order to apply data clustering in practice.

Several algorithms have been proposed to determine a proper k£ value, most of which
wrap around an iterative model-based clustering framework, such as the k-means or the
more general ezpectation-mazimization (EM). In a top-down (incremental) strategy they
start with one cluster and proceed to splitting as long as a certain criterion is satisfied. At
each phase, they evaluate the clustering produced with a fixed £ and they decide whether
to increase the number of clusters as follows:

Repeat until no changes occur in the model structure

1. Improve model parameters by running a conventional clustering algorithm for a
fixed £ value.

2. Improve model structure, usually through cluster splitting.

One of the first attempts in extending k-means in this direction was x-means [143]
which uses a regularization penalty based on model’s complexity. To this end, Bayesian
information criterion (BIC) [144] was used, and among many models the one with highest
BIC is selected. This criterion works well only in cases where there are plenty of data and
well-separated spherical clusters. Alternative selection criteria have also been examined
in literature [136].

G-means [145] is another extension to k-means that uses a statistical test for the hy-
pothesis that each cluster has been generated from Gaussian distribution. Since statistical
tests become weaker in high dimensions, the algorithm first projects the datapoints of a
cluster on an axis of high variance and then applies Anderson-Darling statistic with a
fixed significance level a. Clusters that are not accepted are split repeatedly until the
entire assumed mixture of Gaussians is discovered. Projected g-means (pg-means) [146]
again assumes that the dataset has been generated from a Gaussian mixture, but it tests
the overall model at once and not each cluster separately. Pg-means bases on the EM
algorithm. Using a series of random linear projections, it constructs a one-dimensional

projection of the dataset and the learned model and then tests the model fitness in the

126

projected space with Kolmogorov-Smirnov (KS) test [147]. The advantage of this method
is the ability to discover Gaussian clusters of various scales and different covariances, that
may overlap. Bayesian k-means [148] introduces mazimization-expectation (ME) to learn
a mixture model by maximizing over hidden variables (datapoint assignments to clusters)
and computing expectation over random model parameters (centers and covariances).
If the data come from a mixture of Gaussian components, this method can be used to
find the correct number of clusters and is competitive to the aforementioned approaches.
Other alternatives have also been proposed, such as gap statistic [149], self-tuning spectral
clustering [150], data spectroscopic clustering [151], and stability-based model validation
[152-154], however they are not closely related to the proposed method.

The work in this chapter is primarily motivated by the non generality of the ap-
proaches in [145] and [146], as they make Gausssianity assumptions about the underlying
data distribution. As a consequence, they tend to overfit for clusters that are uniformly
distributed, or have a non-Gaussian unimodal distribution. Additional limitations are
that they are designed to handle numerical vectors only and require the data in the
original dataspace. The contribution of our work is two-fold. Firstly, we propose a sta-
tistical test for unimodality, called dip-dist, to be applied into a data subset in order to
determine if it contains a single or multiple cluster structures. Thus, we make a more
general assumption about what is an acceptable cluster. Moreover, the test involves pair-
wise distances or similarities and not the original data vectors. Secondly, we propose the
dip-means incremental clustering method [45] which is a wrapper around k-means. We
experimentally show that dip-means is able to cope with datasets containing clusters of
arbitrary density distributions. This is tested using artificial dataset, while we also use
real-wold data such as images from handwritten digits and objects, and text document.
The object images and the text data represented in a very high dimensional and sparse
space, where additional challenges arise for any statistic test. Moreover, it can be easily
extended in kernel space by using the kernel k-means [155] and modifying appropriately

the cluster splitting procedure.

127

6.2 Dip-dist criterion for cluster structure evaluation

In cluster analysis, the detection of multiple cluster structures in a dataset requires as-
sumptions about what the clusters we seek look like. The assumptions about the presence
of certain data characteristics along with the tests employed for verification, considerably
influence the performance of various methods. It is highly desirable for the assumptions
to be general in order not to restrict the applicability of the method to certain types of
clusters only (e.g. Gaussian). Moreover, it is of great value for a method to be able to
verify the assumed cluster hypothesis with well designed statistical hypothesis tests that
are theoretically sound, in contrast to various alternative ad hoc criteria.

We propose the novel dip-dist criterion for evaluating the cluster structure of a dataset
that is based on testing the empirical density distribution of the data for unimodality.
The unimodality assumption implies that the empirical density of an acceptable cluster
should have a single mode; a region where the density becomes maximum, while non-
increasing density is observed when moving away from the mode. There are no other
underlying assumptions about the shape of a cluster and the distribution that generated
the empirically observed unimodal property. Under this assumption, it is possible to
identify clusters generated by various unimodal distributions, such as Gaussian, Student-
t, etc. The Uniform distribution can also be identified, since it is an extreme single mode
case where the mode covers all the region with non-zero density.

A convenient issue is that unimodality can be verified using powerful statistical hy-
pothesis tests (especially for one-dimensional data), such as Silverman’s method which
uses fixed-width kernel density estimates [156] or the widely-used Hartigan’s dip statistic
[157]. As the dimensionality of the data increases, the tests require a sufficient number
of data points in order to be reliable. Thus, although the data may be of arbitrary di-
mensionality, it is important to apply unimodality tests on one-dimensional data values.
Furthermore, it would be desirable, if the test could also be applied in cases where the
distance (or similarity) matrix is given and not the original datapoints.

To meet the above requirements we propose the dip-dist criterion for determining uni-

128

modality in a set of datapoints using only their pairwise distances (or similarities). More
specifically, if we con-sider an arbitrary datapoint as a viewer and form a vector whose
components are the distances of the viewer from all the datapoints, then the distribution
of the values in this distance vector could reveal information about the cluster structure.
In presence of a single cluster, the distribution of distances is expected to be unimodal. In
the case of two distinct clusters, the distribution of distances should exhibit two distinct
modes, with each mode containing the distances to the datapoints of each cluster. Conse-
quently, a unimodality test on the distribution of the values of the distance vector would
provide indication about the unimodality of the cluster structure. However, there is a
dependence of the results on the selected viewer. Intuitively, viewers at the boundaries
of the set are expected to form distance vectors whose density modes are more distinct
in case of more than one clusters. To tackle the viewer selection problem, we consider all
the datapoints of the set as individual viewers and perform the unimodality test on the
distance vector of each viewer. If there exist viewers that reject unimodality (called split
viewers), we conclude that the examined cluster includes multiple cluster structures.
For testing unimodality we use Hartigans’ dip test [157]. A function F'(¢) is unimodal
with mode the region s,,={(t;,ty): t; < ty} if it is convex in s;=(—00,t;], constant in
[tr, ty], and concave in sy=[ty, 00). This implies the non-increasing probability density
behavior when moving away from the mode. For bounded input functions £, G, let
p(F,G)=max; |F(t) — G(t)|, and let U be the class of all unimodal distributions. Then

the dip statistic of a distribution function F'is given by:
dip(F) = win p(F, G). (6.1)

In other words, the dip statistic computes the minimum among the maximum deviations
observed between the cdf F' and the cdfs from the class of unimodal distributions. A nice
property of dip is that, if F), is a sample distribution of n observations from F', then
limp_oodip(F,)=dip(F). In [157] it is argued that the class of uniform distributions U is

the most appropriate for the null hypothesis, since its dip values are stochastically larger

129

than other unimodal distributions, such as those having exponentially decreasing tails.
Given a vector of observations f={f;: f; € R}i21, then the algorithm for performing
the dip test [157] is applied on the respective empirical cdf F,(£)=2>" I(f; < t). It
examines the n(n-1)/2 possible modal intervals [¢1,t;] between the sorted n individual
observations. For all these combinations it computes in O(n) time the respective greatest
convex minorant and the least concave majorant curves in (min,F,,, t;) and (ty, mazx,Fy,),
respectively. Fortunately, for a given F,,, the complexity of one dip computation is O(n)
[157]. The computation of the p-value for a unimodality test uses bootstrap samples
and expresses the probability of dip(F,) being less than the dip value of a cdf Uy, of n

observations sampled from the U[0,1] Uniform distribution:

p_7 [dép(F”bg dipU)l 1 (6.2)

The null hypothesis Hy that £, is unimodal, is accepted at significance level « if p-
value > a, otherwise Hy is rejected in favor of the alternative hypothesis H; which suggests
multimodality.

Let a dataset X={z;:z; € Rd}f\;l then, in the present context, the dip test can be
applied on any subset ¢, e.g. a data cluster, and more specifically on the ecdf F,) (t) of

the distances between a reference viewer x; of ¢ and the n members of the set:

F#) (1) = % Z{Dist(xi,xj) < t}. (6.3)

TjEC

We call the viewers that identify multimodality and vote for the set to split as split viewers.

The dip-dist computation for a set ¢ with n datapoint members is summarized as follows:
1. Compute Uy, and the respective dip(Uy,), r=1, ..., b, for the Uniform sample distri-
butions.
2. Compute F&) and dip(Fﬁfi)), i=1,...,n, for datapoint viewers using the sorted
matrix Dist.

3. Estimate the p-values P =1, ..., n, based on Eq. 6.2 using a significance level o

130

xno split xsplit 71% ©max dip Bmin dip

x
X X x
X o
6 X
B
B s
B QR %
4 gxyéé@%%w“%
Rl %5 Aok
PRI
2 o o I
0

(a) dataset 1

xno split x split 24% ©maxdip Bmin dip

.06

best split viewer: p=0.00, dip=0.1097

distance

frequency

0 0.2 0.4 0.6 0.8 1

(b) strongest split viewer

best split viewer: p=0.00, dip=0.0776
distance

.06

.05

.04

.03

.01

.06

worst split viewer: p=0.00, dip=0.0335
distance

frequency

.02

0 0.2 0.4 0.6 0.8 1
(c) weakest split viewer

worst split viewer: p=0.00, dip=0.0335
distance

frequency
frequency

0 0.2 0.4 0.6 0.8 1 12 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(d) dataset 2 (e) strongest split viewer (f) weakest split viewer

X no split xno split x split 24% Omaxdip Bmin dip

0 0.2 04 06 08 1 1 0 0.2 04 0.6 0.8 1

(g) dataset 3 (h) density plot (i) dataset 4 (j) density plot

Figure 6.1: Application of dip-dist criterion on 2d synthetic data with two structures
of 200 datapoints each. The split viewers are denoted in red color. (a) One Uniform
spherical and one elliptic Gaussian structure. (b)(c) The histograms of pairwise distances
corresponding to the strongest and weakest split viewer. (d) The two structures come
closer; the split viewers are reduced, so does the dip value for the split viewer. (g) The two
structures are no longer distinguishable as the density map in (h) shows one mode. (i) The
Uniform spherical is replaced with a structure generated from a Student-t distribution.

and compute the percentage of viewers identifying multimodality.

Since the ascending ordering of the rows of Dist, required for computing F,(fi), can
be done once during offline preprocessing, and that the same b samples of Uniform dis-
tribution can be used for testing all viewers, the dip-dist computation for a set with n
datapoints has O(bnlogn + n?) complexity.

Fig. 6.1 illustrates an example of applying the dip-dist criterion on synthetic data. We
generated a Uniform spherical and a Gaussian elliptic structure, and then constructed
three different two-dimensional datasets by decreasing the distance between them. The

dip test parameters are set =0 and b=1000. The histograms in each row indicate the

131

result of the dip test. As the structures come closer, the number of viewers that ob-
serve multimodality decreases. Eventually, the structures form a unimodal distribution
(Fig. 6.1(g)), which may be visually verified from the presented density map. The fourth
dataset of Fig. 6.1(j) was created by including a structure generated by a Student-t dis-
tribution centered at the same location where the sphere is located in Fig. 6.1(g). The
respective density map shows clearly two modes, evidence that justifies why the dip-dist
criterion determines multimodality with 24% of the viewers suggesting the split. More
generally, if the percentage of split viewers is greater than a small threshold, e.g. 1%, we

may decide that the cluster is multimodal.

6.3 The dip-means algorithm

Dip-means is an incremental clustering algorithm that combines three individual compo-
nents. The first is a local search clustering technique that takes as input a model of k
clusters and optimizes the model parameters. For this purpose k-means is used where the
cluster models are their centroids. The second, and most important, decides whether a
data subset contains multiple cluster structures using the dip-dist presented in Sec. 6.2.
The third component is a divisive procedure (bisecting) that, given a data subset, per-
forms the splitting into two clusters and provides the two centers.

Dip-means methodology takes as input the dataset X and two parameters for the
dip-dist criterion: the significance level o and the percentage threshold v,y of cluster
members that should be split viewers to decide for a division (Algorithm 8). For the
sake of generality, we assume that dip-means may start from any initial partition with
kinit>>1 clusters. In each iteration, all k clusters are examined for unimodality, the set of
split viewers v; is found, and the respective cluster ¢; is characterized as split candidate
if |v;|/n;>vimq. In this case, a non-zero score value is assigned to each cluster being a
split candidate, while zero score is assigned to clusters that do not have sufficient split

viewers. Various alternatives can be employed in order to compute a score for a split

132

candidate based on the percentage of split viewers, or even the size of clusters. In our
implementation score; of a split candidate cluster ¢; is computed as the average value of

the dip statistic of its split viewers:

ﬁ Zl‘ievj dlp(F(ml)% %]Ll Z Vithd
SCOTGJ‘ = (64)

0 , otherwise.

In order to avoid the overestimation of the real number of clusters, only the candidate with
maximum score is split in each iteration. A cluster is split into two clusters using a 2-means
local search approach starting from a pair of sufficiently diverse centroids my,, mg inside
the cluster and concerning only the datapoints of that cluster. We use a simple way to set
up the initial centroids {my,mg} + {x, p—(x—pn)}, where z a cluster member selected
at random and m the cluster centroid. In this way my, mg lay at equal distances from
m, though in opposite directions. The 2-means procedure can be repeated starting from
different p;,, pr initializations in order to discover a good split. A computationally more
expensive alternative could be the deterministic principal direction divisive partitioning
(PDDP) [82] that splits the cluster based on the principal component. We refine the
solution at the end of each iteration using k-means, which fine-tunes the model of k41
clusters. The procedure terminates when no split candidates are identified among the

already formed clusters.

6.4 Extending dip-means in kernel space

The proposed dip-dist criterion uses only the pairwise distances, or similarities, between
datapoints and not the vector representations themselves. This enables its application
in kernel space ®, provided a kernel matrix K with the NV x N pairwise datapoint inner
products, K;;j=¢(z;)"¢(z;). Algorithm 8 can be modified appropriately for this purpose.

More specifically, kernel dip-means uses kernel k-means [155] as local search technique,

133

Algorithm 8 Dip-means (X, kjnit, @, ving)

input: dataset X={z;}}¥,, the initial number of clusters k;,;;, a statistic significance level « for
the unimodality test, percentage vy of split viewers required for a cluster to be considered as a split

candidate.
output: the sets of cluster members C={c;}*_,, the models M={yu;}_, with the centroid of each
¢y set.

let: score=unimodalityTest(c, a, vy4) returns a score value for the cluster ¢,
{C, M }=kmeans(X, k) the k-means clustering,
{C, M}=kmeans(X, M) when initialized with model M,
{mr,mp}=splitCluster(c) that splits a cluster ¢ and returns two centers pr,, pg-

1: k<« kinit

2: {C, M} < kmeans(X, k)

3: do while changes in cluster number occur

4: for j=1,... .k % for each cluster j

5: score;j < unimodalityTest(c;, a, vipg) % compute the score for unimodality test
6: end for

7 if max;(score;) >0 % there exist split candidates

8: target < argmax; (score;) % index of cluster to be split

9: {pr,pr} < splitCluster(ciorget)
10: M < {M-pisarget, e, LR} % replace the old centroid with the two new ones
11: {C, M} + kmeans(X, M) % refine solution
12: end if
13: end do

14: return {C, M}

which also implies that centroids cannot be computed in kernel space, thus each cluster
is now described explicitly by the set of its members ¢;.

In this case, since the transformed data vectors ¢(x) are not available, the cluster
splitting procedure could be seeded by two arbitrary cluster members. However, we
propose a more efficient approach. As discussed in Sec. 6.2, the distribution of pairwise
distances between a reference viewer and the members of a cluster reveals information
about the multimodality of data distribution in the original space. This implies that
a split of the cluster members based on their distance to a reference viewer constitutes
a reasonable split in the original space, as well. To this end, we may use 2-means to
split the elements of the one-dimensional similarity vector. We consider as reference split
viewer the cluster member with the maximum dip value. Here, 2-means is seeded using
two values located at opposite positions with respect to the distribution’s mean. After
convergence, the resulting two-way partition of the datapoints, derived by the partition
of the corresponding similarity values to the selected reference split viewer, initializes a

local search with kernel 2-means.

134

.87 dip-means: k®=1 87 x-means: k® =1 .87 g-means: kK° = 10 .87 pg-means: k° = 4
% no split x X x X x ®><
X X X ®
6 6 6 6
%,
x

. o X x

41" x RS x4t 0 B @»;@XJX@ © a4t x x
oo X %%
o o
2 2 2 x X 2
0 0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8

(a) Single structure generated by a Student-t distribution

.87 dip-means: k®=1 87 x-means: k® =2 .87 g-means: k°=2 .87 pg-means: k° =2
X no split
X X
6 x %X 6 ¥ X s ¥ X 6 ¥ %
o x %?(ng >()(xx X x XG;?(X X >2<XXX X QX X >(><>o< X X &X%X >(Xxx X X
Fox ’>§2<>§><< 3¢ XX:%X&X o ’i‘xx X X %:Xg‘; oo B ok g X:&ggxx Foxx xxx><>><< 3¢ %X:yggwx
BRI R BTN R MO o w O DALY - E
4 X BN g%%Q xR 4 oo R % Xy XX 4 Ko R SHC K X XX R 4 X PR i%%§<xxx>n<x
RS X R xR X WA R N RO S 0K X
#* B Xxx x W Fx Xxx XK Kk x w B Xxx XK K x w B Xoxox o XK % x
X xx % x X e X X% %S wx X X% x
LI 8% S 5 x s B % M g I N
2] xgX 21 g 21 xxn® 21 x g%
0 0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

(b) Single Uniform rectangle structure

87 x-means: k® = %@9‘« .87 g-means: K :é3
R, 6 (2]

 l

o

4 4 4
2 2 2
0 0 0
0 0 0
(c) Eight clusters of various density and shape
87 kernel dip-means: k° = 2 87 kernelk-means: k =2 .87 kernel dip-means: k° = 3 87 kernelk-means: k=3
XX Hopy
Py
6 6 6 Ed H 6 i
s X b % 13
» § X
4 4 4 4
%5‘ i i
2 2 2 K I 2
% F %
%i"
0 0 0 HoRRHEX 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2
(d) Two Uniform ring structures (e) Three Uniform ring structures

Figure 6.2: Clustering results on 2d synthetic unimodal cluster structures with 200 data-
points each (the centroids are marked with ®). (a)(b) Single cluster structures. (c¢) Various
structure types. Based on the leftmost subfigure, it contains a Uniform rectangle (green),
a sphere with increasing density at its periphery (light green), two Gaussian structures
(black, pink), a Uniform ellipse (blue), a triangle denser at a corner (yellow), a Student-
t (light blue), and a Uniform arbitrary shape (red). (d)(e) Non-linearly separable ring
clusters (kernel-based clustering with an RBF kernel).

6.5 Experiments

In our evaluation we compare the proposed dip-means method with x-means [143], g-

means [145] and pg-means [146] that are closely related to present work. In all compared

135

Table 6.1: Results for synthetic datasets with fixed £*=20 clusters with 200 datapoints
in each cluster.

Case 1, d=4 Case 1, d=16 Case 1, d=32
Methods k€ ARI VI k¢ ARI VI k¢ ARI VI
dip-means | 20.0+0.0 1.004+0.0 0.00+£0.0| 20.0£0.0 1.00+0.0 0.00£0.0| 20.04+0.0 1.00+0.0 0.0040.0
X-means 7.3+9.3 0.30+0.5 2.07+1.3| 28.64+7.8 0.88+0.1 0.27+0.2| 31.3+5.6 0.84+0.1 0.36+0.2
g-means |20.3+0.5 0.99+0.0 0.01+0.0| 20.34+0.5 0.99+0.0 0.01+0.0| 20.5+0.6 0.994+0.0 0.02+0.0
pg-means |19.2+2.5 0.904+0.1 0.16+0.2| 19.0+0.9 0.95+0.1 0.074+0.1| 3.24+5.1 0.09+0.2 2.624+0.9

Case 2, d=4 Case 2, d=16 Case 2, d=32
Methods k° ARI VI k¢ ARI VI k¢ ARI VI
dip-means|20.0£0.0 0.99+0.0 0.05+0.0| 20.0£0.0 0.99£0.0 0.02+0.0| 20.0+0.0 0.994+0.0 0.01+£0.0
x-means |24.8439. 0.26+0.4 2.26+1.1| 80.1+15. 0.754+0.1 0.75+0.2| 71.6+£14. 0.75+0.1 0.66+0.2
g-means |79.2+22. 0.774+0.1 0.70+0.2 |105.9+£30. 0.83+0.1 0.66+0.2 |133.64+42. 0.83+0.1 0.724+0.2
pg-means |14.2+4.7 0.67+0.2 0.65+0.5| 10.4+3.4 0.30+0.2 1.26+0.5| 4.04+1.5 0.06+0.1 2.404+0.2

methods we use the same incremental cluster split and local searching strategy as adopted
in Algorithm 8 that starts with a single cluster (k;,;;=1) and:
i) at each iteration one cluster is selected for a bisecting split,
ii) 10 split trials are performed with 2-means initialized with the simple technique
described in Sec. 6.3, and the split with lower clustering error (the sum of squared
differences between cluster centers and their assigned datapoints) is kept,

iii) the refinement is applied after each iteration on all k+1 clusters.

Hence, only the statistical test that decides whether to stop splitting differs in each case.
Exception is the pg-means method that uses EM for local search and does not rely on
cluster splitting to add a new cluster. We use the method exactly as presented in [146].
For the kernel-based experiments we use the necessary modifications described at the
end of Sec. 6.3 and compare with kernel k-means [155]. The parameters of the dip-dist
criterion are set as a=0 for significance level of dip test and b=1000 for the number of
bootstraps. We consider as split candidates the clusters having at least vy,q=1% split
viewers. These values were fixed in all experiments. For both g-means and pg-means we
set the significance level a=0.001, while we use 12 random projections for the latter. In
order to compare the ground truth labeling and the grouping produced by clustering, we
utilize the wvariation of information (VI) metric [100] and the adjusted rand index (ARI)

[101]. Better clustering is indicated by lower values of VI and higher for ARI.

136

We first provide clustering results for synthetic 2d datasets in Fig. 6.2 (k° denotes
the estimated number of clusters). In Fig. 6.2(a)(b) we provide two indicative exam-
ples of single cluster structures. X-means decides correctly for the structure generated
from Student-t distribution, but overfits in the Uniform rectangle case, while the other
two methods overfit in both cases. In the multicluster dataset of Fig. 6.2(c) dip-means
successfully discovers all clusters, in contrast to the other methods that significantly over-
estimate. To test the kernel dip-means extension, we created two 2d synthetic dataset
containing two and three Uniform ring structures and we used an RBF kernel to construct
the kernel matrix K. It is clear that x-means, g-means, and pg-means are not applicable
in this case. Thus we present in Fig. 6.2(d)(e) the results using kernel dip-means and also
the best solution from 50 randomly initialized runs of kernel k-means with the true num-
ber of clusters. As we may observe, dip-means estimates the true number of clusters and
finds the optimal grouping of datapoints in both cases, whereas kernel k-means fails in
the three ring case. Furthermore, we created synthetic datasets with true number k*=20
clusters, with 200 datapoints each, in d=4, 16, 32 dimensions with low separation [158].

Two cases were considered:

1. Gaussian mixtures of varying eccentricity, and
2. datasets with various cluster structures, i.e. Gaussian (40%), Student-t (20%), Uni-
form ellipses (20%) or Uniform rectangles (20%). For each case and dimensions, we

generated 30 datasets to test the methods.

As the results in Tab. 6.1 indicate, dip-means provides excellent clustering performance
in all cases and estimates accurately the true number of clusters. Moreover, it performs
remarkably better than the other methods, especially for the datasets of Case 2.
Real-world datasets were also used, where the provided class labels were considered as
ground truth. Handwritten Pendigits (UCI) [101] contains 16 dimensional vectors, each
one representing a digit from 0-9 written by a human subject. The data provide a training
PDy,. and a testing set PD,, with 7494 and 3498 instances, respectively. We also consider
two subsets that contain the digits {0,2,4} (PD3,, and PD3;.) and {3,6,8,9} (PD4,,

and PD4;,). We do not apply any preprocessing. Coil-100 is the second dataset [159],

137

Table 6.2: Clustering results for real-world data. Bold indicates best values.

PD3; (k*=3) PD4,. (k*=4) PD10;, (k*=10)
Methods k¢ ARI VI | k* ARI VI | k* ARI VI
dip-means | 3 0.879 0.332| 4 0.626 0.545| 7 0.343 1.587
x-means | 155 0.031 3.792 | 194 0.039 3.723 | 515 0.041 3.825
gmeans | 21 0226 1.800 | 36 0.209 2.049 | 73 0.295 1.961
pg-means | 4 0.835 0.359 | 10 0576 0954 | 13 0.447 1.660
PD3,, (k*=3) PD4,, (k*=4) PD10,, (k*=10)
Methods k° ARI VI | k* ARI VI | k* ARI VI
dip-means | 3 0.963 0.116 | 4 0.522 0.841| 9 0435 1.452
x-means | 288 0.018 4.378 |381 0.020 4.372 | 942 0.024 4.387
g-means | 52 0.106 2.641 | 58 0.143 2464 | 149 0.160 2.605
pg-means | 5 0.655 0740 | 8 0439 1320 | 14 0.494 1.504

Coil3 (k*=3) Coild (k*=4) Coil5 (k*=5)
Methods k¢ ARI VI | k* ARI VI | k* ARI VI
dip-means | 3 1.000 0.000| 5 0.912 0.173| 4 0.772 0.308
X-means 8 0499 0.899 | 11 0.499 0.951 | 15 0.601 0.907
g-means 7 0.669 0.650 | 12 0.502 0.977 | 18 0.434 1.204

which contains 72 images taken from different angles for each one of the 100 included
objects. We used tree subsets Coil3, Coil4, Coil5, with images from 3, 4 and 5 objects,
respectively!. STFT descriptors [5] are first extracted from the greyscale images that are
finally represented by the bag of visual words model using 1000 visual words.

We also considered three subsets of text document data taken from the 20-Newsgroups
collection?. All datasets have 200 document vectors per included category. Each document
is encoded using the bag of words representation. In particular, TD; contains documents
from each of the first three categories of the collection with 4271 term features. TD,
contains documents from categories 6, 7, 11, 13, and 19 with 5492 features and, finally,
TDs3 includes TDy while additionally contains documents from the categories 1, 2 that
altogether have 8280 term features.

As reported in Tab. 6.2, dip-means correctly discovers the number of clusters for the
subsets of Pendigits, while providing a reasonable underestimation k¢ near the optimal for
the full datasets PD10,,. and PD10,. Apart from the excessive overfitting of x-means and

g-means, pg-means seems to concludes in overestimated £°. In the high dimensional and

!These objects are also included in the Coil20 subset [160].
2 Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/

138

Table 6.3: Clustering results for text data. Bold indicates best values.

TD; (k*=3) TDy (k*=5) TD3 (k*=8)
Methods k¢ ARI VI | k¢ ARI VI | k¢ ARI VI
dip-means | 3 0.464 0.793 | 4 0.561 0.670| 6 0.333 1.184
X-means 1 0000 1.099 | 2 0.192 1972 | 3 0249 1384
pg-means 1 0.000 1.099 |10 0.271 2.243 | — — —

sparse space of the considered Coil subsets, x-means and g-means provide more reasonable
k¢ estimations, but still overestimations. An explanation for this behavior is that they
discover smaller groups of similar images, i.e. images taken from close angles to the same
object, but fail to unify the subclusters at higher level. Note also that we did not manage
to test pg-means in Coil-100 subsets, since covariance matrices were not positive definite.

In what concerns text data, the experimental results are reported in Tab. 6.3. We did
not include results for g-means that overfitted in all cases and required too much running
time to terminate. In fact, in all cases g-means stopped due to the empirical stopping
criterion that we set in order to stop splitting very small clusters. Dip-means seems to
provide better estimates for the number of clusters, however, in two cases it provided an
underestimation and only for the smaller of the datasets it gave a correct estimation. We
should note that, these are high dimensional and sparse datasets, and we provided them
as input to the methods without any projection (dimensionality reduction) that could
possibly make clearer the cluster structure. Pg-means failed for the last dataset, since
the covariance matrices were not positive definite. The superiority of dip-means is also

indicated by the reported values for ARI and VI measures.

6.6 Conclusions

We have presented a novel approach for testing whether multiple cluster structures are
present in a set of data objects (e.g. a data cluster). The proposed dip-dist criterion checks

for unimodality of the empirical data density distribution, thus it is much more general

139

compared to alternatives that test for Gaussianity. Dip-dist uses a statistical hypothesis
test, namely Hartigans’ dip test, in order to verify unimodality. If a data object of the
set is considered as a wviewer, then the dip test can be applied on the one-dimensional
distance (or similarity) vector with components the distances between the viewer and the
members of the same set. We exploit the idea that the observation of multimodality in
the distribution of distances indicates multimodality of the original data distribution. By
considering all the data objects of the set as individual viewers and by combining the
respective results of the test, the presence of multiple cluster structures in the set can be
determined.

We have also proposed a new incremental clustering algorithm called dip-means, that
incorporates dip-dist criterion in order to decide for cluster splitting. The procedure starts
with one cluster, it iteratively splits the cluster indicated by dip-dist as more probable
to contain multiple cluster structures, and terminates when no new cluster split is sug-
gested. By taking advantage of the fact that dip-dist utilizes only information about the
distances between data objects, we have modified appropriately the main algorithm to
propose kernel dip-means which can be applied in kernel space.

The proposed method is fast, easy to implement, and works very well under a fixed
parameter setting. The reported clustering results indicate that dip-means can provide
reasonable estimates of the number of clusters, and produce meaningful clusterings in

both dataset types in a variety of artificial and real datasets.

140

CHAPTER 7

CONCLUSIONS

7.1 Conclusions and future work

7.2 Directions for future work

7.1 Conclusions and future work

In this thesis we have studied and developed machine learning and data mining methods
for extracting knowledge from document collections. More specifically, we focused on the
problem of document clustering, which is an unsupervised approach for the extraction of
information regarding the cluster structure of a dataset. The motivation of this disser-
tation was to design novel and efficient methodologies for document representation and
clustering that take into account the particular characteristics of tet documents.

First, in Chapter 2 an extensive discussion has been included on the special properties
of the natural languages and the ways that text documents are transformed and repre-
sented as feature vectors. Such feature spaces are characterized by the high dimensionality
and sparsity (HDS) which in turn impose difficulties when typical clustering methods are
applied.

In Chapter 3 we revisited the oversimplistic term independence assumption that is

considered in most vector space models (VSM) used for document representation. Specif-

141

ically, we presented an extension to VSM approach for text document representation called
global term context vector model (GTCVM). The main contribution of the method is that
it proposes a way to compute the similarity between two term features based on the local
context in which those terms appear in the term sequences of documents. In this way, the
bag of words (BOW) document vectors were mapped onto a new feature space spanned by
term similarity vectors. The method proceeds as follows: i) it captures local contextual
information for each term occurrence in the term sequences of documents; ii) the local
contexts for the occurrences of a term are combined to define the global context of that
term; iii) using the global context of all terms a proper semantic matrix is constructed;
iv) this matrix is further used to linearly map traditional BOW document vectors onto
a ‘semantically smoothed’ feature space. In the experimental study, we employed this
vector mapping to verify the impact of the smoothed feature space in the text document
clustering problem using standard algorithms such as k-means and spectral clustering.
The results demonstrated the improvement of clustering solutions when the proposed
GTCVM representation was used compared to traditional VSM-based approaches like
BOW, or other techniques that also try to exploit the contextual information of terms to
define dependencies between them.

In Chapter 4, we investigated the centroid-based cluster representation for HDS data.
Synthetic cluster prototypes were proposed for representing a cluster of HDS vectors, such
as document representations. This novel prototype is computed by i) first selecting a sub-
set of the objects in the cluster, then ii) computing the representative of these objects and,
finally, iii) selecting important features. We also proposed the Medoid KNN synthetic pro-
totype that favors the representation of the dominant class in a cluster. In the proposed
robust clustering method called k-synthetic prototypes (k-sp), we incorporated the afore-
mentioned cluster prototypes. This algorithm extends the spherical k-means algorithm.
We also discussed the k-sp property of searching a proper subspace for each cluster. This
property derives from the fact that a set of HDS vectors is necessarily described by an
equal or larger number of non-zero dimensions compared to any of its subsets. In this

sense, the proposed method exhibits some similar characteristics to subspace clustering.

142

This approach was experimentally tested against various widely-used clustering methods
such as spherical k-means (using a series of initialization schemes), spectral cluster, and
subspace clustering algorithms. The clustering results indicated the robustness of k-sp,
especially for small datasets and clusters overlapping in many dimensions, while superior
performance was observed to that of the compared clustering approaches.

In Chapter 5, we studied the document clustering problem using the incremental
approach to build the final partition and the respective representatives. This approach
begins from a small number of clusters and, at each incremental step, it introduces one
new cluster in the solution computed so far until a desired number of clusters have been
formed. Our first contribution in this chapter was to provide a detailed presentation
of the related significant advances, and then to present a framework for prototype-based
incremental clustering. Our framework introduces the idea of partial updates (PU) on a
given solution. A partial update is defined by the activity state (active or inactive) of
subsets of clusters, prototypes, and data objects. An active entity could participate in the
iterations of the clustering procedure. For instance, an active data object may move among
the active clusters that compete to each other in order to attract more objects. Moreover,
an active prototype may be updated when the members of its cluster are modified during
iterations, however, an active cluster does not always have an active prototype. We
have shown that several known prototype-based incremental clustering approaches can be
considerer as special cases of the proposed framework which offers a good summarization
of such approaches. Next, we stressed the ‘unfair prototype competition’ problem, which
implies that the new prototype which is introduced at each incremental step is difficult to
be competitive to the already formed prototypes. To address this issue, which is due to
the HDS property of the data, we proposed a reduction-enrichment mechanism (REM)
aiming to make more sparse the formed cluster prototypes and, at the same time, help
the new prototype to become a strong attractor for the active objects. These new ideas
have been incorporated in the incremental global k-synthetic prototypes (gksp) clustering
method with good results.

In Chapter 6, we considered a key problem in data clustering: the estimation of the

143

number of clusters in a dataset. To this end, we presented dip-means, a novel robust
incremental method that learns the number of data clusters. The only assumption of
dip-means is the fundamental cluster property that each cluster should admit a unimodal
distribution. This is much more general than the assumptions made by other methods,
such as the Gaussianity assumption. Dip-means employs the novel dip-test which is a
univariate statistic hypothesis test for unimodality. This test is applied on the distances
between an object of the cluster, considered as ‘viewer’, and the cluster members. If there
exist some viewers that give evidence for multimodality according to the dip-test, then
the cluster is considered multimodal and should be further split. From the statistical
and computational point of view, it is important that the unimodality test is applied on
univariate distance vectors, and that if the similarity matrix is provided, then the actual
data vectors are not necessarily required. These characteristics make dip-test applicable
in combination with many standard incremental, or kernel-based methods since only the
pairwise distances are involved in the computations. We experimentally compared dip-
means with several other methods and the results indicated that dip-means provides better

estimations of the number of clusters, especially for non-Gaussian data.

7.2 Directions for future work

For the document representation problem, a possible research direction is to investigate
the potential of combining the local and global term contextual information in order to
build compact concept vectors and hence to efficiently project the transformed document
vectors in feature spaces of lower dimensionality. We also intend to perform a system-
atic study for procedures that could efficiently compute a different parameter value for
each individual vocabulary term which, in term, could improve the global term context
vectors. Additionally, document-term co-clustering is another interesting problem where
term similarities may apply. Finally, we aim at examining the proposed representation

for document classification.

144

Regarding the k-sp method, a direction for future work is to develop techniques for
the automated specification of p,,;. Alternatively, we could extend the feature selection
procedure to a continuous weighting scheme, instead of the current binary weighting. It
is interesting to investigate the possibility of developing a gradual adjustment of the k-sp
parameters aiming to achieve a gradual change of the prototype behavior from medoid-
like to centroid-like. This would also eliminate the separate refinement phase. Moreover,
the proposed method could be tested in other related problems, such as term selection
for cluster summarization, organization of noisy document collections, online document
clustering, and semi-supervised document clustering.

In what concerns incremental prototype-based document clustering, it is possible to
further exploit the proposed framework in order to develop more efficient clustering meth-
ods based on the presented design principles. The global k-sp could also take advantage
of any future improvement of the original k-sp algorithm. Worth to note that it is of great
value to investigate ways to reduce the computational cost of such incremental clustering
approaches so that they become applicable in large-scale problems.

Dip-means is a very promising methodology for estimating the number of clusters of
a dataset that deserves further study and investigation. Further study could be done
concerning how to adjust the values of the parameter used in the dip-test. The proposed
method for unimodality cluster testing could also be used as a validation technique in
cluster analysis problems. Moreover, apart from testing dip-dist in real-world applications,
there are several ways to improve the implementation details, especially in the kernel-based
version. We also plan to test its effectiveness in other settings such as online clustering of
stream data.

As an overall remark we believe that there is also clear potential to combine the
methods developed and presented in this thesis. For instance, dip-test could be used to
examine the characteristics of a cluster in order to adjust properly its synthetic prototype.

Such combinations could be an important direction for further study.

145

BIBLIOGRAPHY

[1]

G. Salton, A. Wong, C. Yang, A vector space model for automatic indexing, Com-

munications of the ACM 18 (11) (1975) 613-620.

G. Salton, Automatic text processing: the transformation, analysis, and retrieval of

information by computer, Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1989.

F. Jurie, B. Triggs, Creating efficient codebooks for visual recognition, in: Proceed-
ings of the 10th IEEE International Conference on Computer Vision, Vol. 1 of ICCV,
IEEE Computer Society, Washington, DC, USA, 2005, pp. 604-610.

A. Mikulik, M. Perdoch, O. Chum, J. Matas, Learning a fine vocabulary, in: Proceed-
ings of the 11th European Conference on Computer Vision Conference on Computer

Vision: Part I1I, ECCV, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 1-14.

D. G. Lowe, Distinctive image features from scale-invariant keypoints, International

Journal of Computer Vision 60 (2) (2004) 91-110.

J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, J.-M. Geusebroek, Visual
word ambiguity, IEEE Transactions on Pattern Analysis and Machine Intelligence

32 (7) (2010) 1271-1283.

M. S. Lew, N. Sebe, C. Djeraba, R. Jain, Content-based multimedia information
retrieval: State of the art and challenges, ACM Transactions on Multimedia Com-

puting, Communications and Applications 2 (1) (2006) 1-19.

146

8]

[10]

[11]

[12]

[13]

[14]

[15]

V. Chasanis, A. Kalogeratos, A. Likas, Movie segmentation into scenes and chapters
using locally weighted bag of visual words, in: Proceedings of the ACM International

Conference on Image and Video Retrieval, CIVR, 2009, pp. 35:1-35:7.

S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching
for recognizing natural scene categories, in: Proceedings of the 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Vol. 2 of CVPR,
IEEE Computer Society, Washington, DC, USA, 2006, pp. 2169-2178.

P. Tirilly, V. Claveau, P. Gros, Language modeling for bag-of-visual words image
categorization, in: Proceedings of the 2008 International Conference on Content-
based Image and Video Retrieval, CIVR, ACM, New York, NY, USA, 2008, pp.
249-258.

J. Illig, A. Hotho, R. Jaschke, G. Stumme, A comparison of content-based tag
recommendations in folksonomy systems, in: Proceedings of the 1st International
Conference on Knowledge Processing and Data Analysis, KONT /KPP, Springer-
Verlag, Berlin, Heidelberg, 2011, pp. 136-149.

Y.-T. Lu, S.-I. Yu, T.-C. Chang, J. Y.-j. Hsu, A content-based method to enhance
tag recommendation, in: Proceedings of the 21st International joint Conference on
Artifical Intelligence, IJCAI, Morgan Kaufmann, San Francisco, CA, USA, 2009,
pp. 2064-2069.

T. M. Mitchell, Machine Learning, 1st Edition, McGraw-Hill, New York, NY, USA,
1997.

C. M. Bishop, Pattern recognition and machine learning (Information science and

statistics), 1st Edition, Springer, 2007.

C. M. Bishop, J. Lasserre, Generative or discriminative? getting the best of both

worlds, Bayesian Statistics 8 (2007) 3-24.

147

[16] Y. Yang, J. O. Pedersen, A comparative study on feature selection in text catego-
rization, in: Proceedings of the 14th International Conference on Machine Learning,

ICML, 1997, pp. 412-420.

[17] N. M. Wanas, D. A. Said, N. H. Hegazy, N. M. Darwish, A study of local and
global thresholding techniques in text categorization, in: Proceedings of the 5th
Australasian Conference on Data Mining and Analystics, Vol. 61 of AusDM, 2006,

pp- 91-101.

[18] Y. Zhang, Z.-H. Zhou, Multilabel dimensionality reduction via dependence maxi-

mization, ACM Transactions Knowledge Discovery from Data 4 (2010) 14:1-14:21.

[19] P. Mitra, C. A. Murthy, S. K. Pal, Unsupervised feature selection using feature
similarity, IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (3)
(2002) 301-312.

[20] N. Wiratunga, R. Lothian, S. Massie, Unsupervised feature selection for text data,
in: Proceedings of the 8th European Conference on Case-Based Reasoning, ECBR,
2006, pp. 340-354.

[21] Q. Wu, Y. Ye, M. Ng, H. Su, J. Huang, Exploiting word cluster information for
unsupervised feature selection, in: Proceedings of the 11th Pacific Rim International

Conference on Artificial Intelligence, PRICAI, 2010, pp. 292-303.

[22] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in:
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2010, pp. 333-342.

[23] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, R. Harshman, Indexing by latent
semantic analysis, Journal of the American Society for Information Science 41 (1990)

391-407.

[24] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent Dirichlet allocation, Journal of Machine
Learning Research 3 (2003) 993-1022.

148

[25] 1. Steinwart, Support vector machines, Springer, New York, 2008.

[26] Y. Yang, X. Liu, A re-examination of text categorization methods, in: Proceed-
ings of the 22nd Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR, 1999, pp. 42-49.

[27] C. C. Aggarwal, C. Zhai, A survey of text classification algorithms, in: C. C. Ag-

garwal, C. Zhai (Eds.), Mining Text Data, Springer, 2012, pp. 163-222.

[28] A. Genkin, D. D. Lewis, D. Madigan, Large-scale bayesian logistic regression for

text categorization, Technometrics 49 (3) (2007) 291-304.

[29] J. W. Tukey, We need both exploratory and confirmatory, The American Statistician
34 (1) (1980) 23-25.

[30] M. Mahajan, P. Nimbhorkar, K. Varadarajan, The planar k-means problem is np-

hard, Theoretical Computer Science 442 (2012) 13-21.

[31] D. Aloise, A. Deshpande, P. Hansen, P. Popat, Np-hardness of euclidean sum-of-

squares clustering, Machine Learning 75 (2) (2009) 245-248.

[32] B. Mirkin, Choosing the number of clusters, Data Mining and Knowledge Discovery
1 (3) (2011) 252-260.

[33] N. Srebeo, G. Shakhnarovich, S. Roweis, When is clsutering hard?, in: PASCAL

Workshop on Statistics and Optimization of Clustering, 2005.

[34] M. Ackerman, S. Ben-David, Clusterability: A theoretical study, Journal of Machine

Learning Research - Proceedings Track 5 (2009) 1-8.

[35] U. von Luxburg, R. C. Williamson, I. Guyon, Clustering: Science or art?, Journal

of Machine Learning Research - Proceedings Track 27 (2012) 65-80.

[36] J. M. Kleinberg, An impossibility theorem for clustering, in: Proceedings of the
16th Annual Conference on Neural Information Processing Systems, NIPS, 2002,
pp- 446-453.

149

[37] L. Parsons, E. Haque, H. Liu, Subspace clustering for high dimensional data: a
review, ACM SIGKDD Explorations Newsletter 6 (1) (2004) 90-105.

[38] R. Xu, D. Wunsch, II, Survey of clustering algorithms, Transaction on Neural Net-
works 16 (3) (2005) 645-678.

[39] P. Berkhin, A survey of clustering data mining techniques, in: J. Kogan, C. Nicholas,
M. Teboulle (Eds.), Grouping Multidimensional Data, Springer, Berlin, Heidelberg,
2006, pp. 25-T71.

[40] H.-P. Kriegel, P. Kroger, A. Zimek, Clustering high-dimensional data: A survey
on subspace clustering, pattern-based clustering, and correlation clustering, ACM

Transactions Knowledge Discovery from Data 3 (1) (2009) 1-58.

[41] 1. Dhillon, D. Modha, Concept decompositions for large sparse text data using
clustering, Machine Learning 42 (1) (2001) 143-175.

[42] Y. Zhao, G. Karypis, U. Fayyad, Hierarchical clustering algorithms for document
datasets, Data Mining and Knowledge Discovery 10 (2) (2005) 141-168.

[43] A. Kalogeratos, A. Likas, Text document clustering using global term context vec-

tors, Knowledge and Information Systems 31 (3) (2012) 455-474.

[44] A. Kalogeratos, A. Likas, Document clustering using synthetic cluster prototypes,
Data and Knowledge Engineering 70 (3) (2011) 284-306.

[45] A. Kalogeratos, A. Likas, Dip-means: an incremental clustering method for estimat-
ing the number of clusters, in: Proceedings of the 26th Annual Conference on Neural

Information Processing Systems, NIPS, 2012.

[46] A. Purandare, T. Pedersen, Discriminating among word meanings by identifying
similar contexts, in: Proceedings of the 19th National Conference on Artificial In-

telligence, San Jose, CA, USA, 2004, pp. 964-965.

150

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

G. Miller, R. Beckwith, C. Fellbaum, D. Gross, K. Miller, Wordnet: An on-line

lexical database, International Journal of Lexicography 3 (1990) 235-244.
Wikipedia, Wikipedia, the free encyclopedia (2004).

J. Jing, L. Zhou, M. Ng, Z. Huang, Ontology-based distance measure for text clu-
stering, in: Proceedings SIAM SDM Workshop on Text Mining, 2006.

C. Chen, F. Tseng, T. Liang, An integration of fuzzy association rules and wordnet

for document clustering, Knowledge and Information Systems 28 (3) (2010) 687-708.

P. Wang, C. Domeniconi, Building semantic kernels for text classification using
wikipedia, in: Proceeding of the 14th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD, 2008, pp. 713-721.

I. Dhillon, Y. Guan, J. Fan, Efficient clustering of very large document collections,
in: V. Grossman, C. Kamath, R. Namburu (Eds.), Data Mining for Scientific and

Engineering Applications, Kluwer, 2001, pp. 357-381.

G. Zipf, The psycho-biology of language, an introduction to dynamic philology, MIT
Press, Cambridge, MA, USA, 1936.

H. Heaps, Information Retrieval: Computational and Theoretical Aspects, Academic

Press, Inc., Orlando, FL, USA, 1978.

L. Lu, Z.-K. Zhang, T. Zhou, Zipf’s law leads to heaps’ law: Analyzing their relation
in finite-size systems, PLoS ONE 5 (12) (2010) e14139.

I. I. Eliazar, M. H. Cohen, Power-law connections: From zipf to heaps and beyond,

Annals of Physics 332 (0) (2012) 56-74.

L. Lu, Z.-K. Zhang, T. Zhou, Deviation of zipf’s and heaps’ laws in human languages

with limited dictionary sizes, in: Scientific Reports, 2013. doi:10.1038/srep01082.

151

[58]

[59]

[60]

[61]

[62]

[65]

[66]

M. Porter, An algorithm for suffix stripping, in: K. Jones, P. Willett (Eds.), Readings
in Information Retrieval, Morgan Kaufmann, San Francisco, CA, USA, 1997, pp.
313-316.

R. Krovetz, Viewing morphology as an inference process, in: Proceedings of the
16th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval, SIGIR, ACM, New York, NY, USA, 1993, pp. 191-202.

D. Sharma, Stemming algorithms: A comparative study and their analysis, Inter-

national Journal of Applied Information Systems 4 (3) (2012) 7-12.

W. N. Francis, H. Kucera, A. W. Mackie, Frequency analysis of english usage:

Lexicon and grammar, Journal of the Dictionary Society of North America.

R. Lo, B. He, I. Ounis, Automatically building a stopword list for an information
retrieval system, in: Proceedings of the 5th Dutch-Belgium Retrieval Workshop,
2005, pp. 964-965.

M. Makrehchi, M. S. Kamel, Automatic extraction of domain-specific stopwords
from labeled documents, in: Proceedings of the 30th European Conference on In-

formation Retrieval Research, ECIR, 2008, pp. 222-233.

D. D. Lewis, Feature selection and feature extraction for text categorization, in:
Proceedings of the Workshop on Speech and Natural Language, HLT, Association

for Computational Linguistics, Stroudsburg, PA, USA, 1992, pp. 212-217.

A. Schenker, H. Last, M. amd Bunke, A. Kandel, Clustering of web documents
using a graph model, in: A. Antonacopoulos, J. Hu (Eds.), Web Document Analysis:

Challenges and Opportunities, World Scientific Publishing Company, 2003, pp. 3
18.

K. M. Hammouda, M. S. Kamel, Efficient phrase-based document indexing for
web document clustering, IEEE Transactions on Knowledge and Data Engineer-

ing 16 (10) (2004) 1279-1296.

152

[67]

[68]

[69]

[70]

[71]

[74]

[75]

A. Kalogeratos, A. Likas, A significance-based graph model for clustering web doc-
uments, in: Proceedings of the 4th Helenic Conference on Advances in Artificial

Intelligence, SETN, 2006, pp. 516-519.

C. Manning, P. Raghavan, H. Schutze, Introduction to Information Retrieval, Cam-

bridge University Press, Cambridge, MA, USA, 2008.

S. Wong, W. Ziarko, P. Wong, Generalized vector spaces model in information
retrieval, in: Proceedings of the 8th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR, ACM, New York,

NY, USA, 1985, pp. 18-25.

A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh, Clustering with bregman diver-
gences, Journal of Machine Learning Research 6 (2005) 1705-1749.

J. Ghosh, A. Strehl, Similarity-based text clustering: A comparative study, in: J. Ko-
gan, C. Nicholas, M. Teboulle (Eds.), Grouping Multidimensional Data, Springer,
Berlin, Heidelberg, 2006, pp. 73-97.

X. Wang, A fast exact k-nearest neighbors algorithm for high dimensional search
using k-means clustering and triangle inequality, in: Proceedings of the 2011 Inter-

national Joint Conference on Neural Networks, IJCNN, 2011, pp. 1293-1299.

M. Kryszkiewicz, Determining cosine similarity neighborhoods by means of the eu-
clidean distance, in: A. Skowron, Z. Suraj (Eds.), Rough Sets and Intelligent Sys-
tems, Vol. 43 of Intelligent Systems Reference Library, Springer, Berlin, Heidelberg,
2013, pp. 323-345.

A. Andoni, P. Indyk, Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions, Communications of the ACM 51 (1) (2008) 117-122.

D. Metzler, S. Dumais, C. Meek, Similarity measures for short segments of text, in:
Proceedings of the 29th European Conference on Information Retrieval Research,

ECIR, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 16-27.

153

[76]

[77]

78]

[83]

[84]

[85]

P. Bradley, U. Fayyad, Refining initial points for k-means clustering, in: Proceedings

of the 15th International Conference on Machine Learning, ICML, 1998, pp. 91-99.

J. M. Pena, J. A. Lozano, P. Larranaga, An empirical comparison of four initializa-
tion methods for the k-means algorithm, Pattern Recognition Letters 20 (10) (1999)

1027-1040.

D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in: Pro-
ceedings of the 18th Annual ACM-SIAM Symposium on Discrete algorithms, SODA,
2007, pp. 1027-1035.

R. Maitra, Initializing partition-optimization algorithms, IEEE/ACM Transactions

on Computational Biology and Bioinformatics 6 (1) (2009) 144-157.

M. E. Celebi, H. A. Kingravi, P. A. Vela, A comparative study of efficient initial-
ization methods for the k-means clustering algorithm, Expert Systems with Appli-

cations 40 (1) (2013) 200-210.

L. Kaufman, P. J. Rousseeuw, Finding groups in data: An introduction to cluster

analysis, John Wiley, 1990.

D. Boley, Principal direction divisive partitioning, Data Mining and Knowledge

Discovery 2 (4) (1998) 325-344.

S. M. Savaresi, D. L. Boley, A comparative analysis on the bisecting k-means and

the pddp clustering algorithms, Intelligent Data Analysis 8 (4) (2004) 345-362.

A. Likas, N. Vlassis, J. J. Verbeek, The global k-means clustering algorithm, Pattern
Recognition 36 (2) (2003) 451-461.

A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an algorithm,
in: Proceedings of the 15th Annual Conference on Neural Information Processing

Systems, Vol. 14 of NIPS, 2001, pp. 849-864.

154

[36]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

T. Hofmann, Probabilistic latent semantic indexing, in: Proceedings of the 22nd
Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR, ACM, New York, NY, USA, 1999, pp. 50-57.

D. M. Blei, T. L. Griffiths, M. 1. Jordan, J. B. Tenenbaum, Hierarchical topic mod-
els and the nested chinese restaurant process, in: Proceedings of the 18th Annual

Conference on Neural Information Processing Systems, NIPS, MIT Press, 2004.

A. Perotte, N. Bartlett, N. Elhadad, F. Wood, Hierarchically supervised latent
Dirichlet allocation, in: Proceedings of the 26th Annual Conference on Neural In-

formation Processing Systems, NIPS, 2012.

R. E. Madsen, D. Kauchak, C. Elkan, Modeling word burstiness using the Dirich-
let distribution, in: Proceedings of the 22nd International Conference on Machine

Learning, ICML, ACM, New York, NY, USA, 2005, pp. 545-552.

C. Elkan, Clustering documents with an exponential-family approximation of the
Dirichlet compound multinomial distribution, in: Proceedings of the 23rd Interna-
tional Conference on Machine Learning, ICML, ACM, New York, NY, USA, 2006,
pp. 289-296.

J. Reisinger, A. Waters, B. Silverthorn, R. J. Mooney, Spherical topic models, in:
Proceedings of the 27th International Conference on Machine Learning, ICML,; 2010,

pp. 903-910.

I[. Dhillon, Y.Guan, J. Kogan, Refining clusters in high-dimensional text data, in:
Proceedings of the Workshop on Clustering High Dimensional Data and Tts Appli-
cations at the 2nd STAM International Conference on Data Mining, ICDMTL, 2002,
pp. 71-78.

T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, A. Wu, A local
search approximation algorithm for k-means clustering, Computational Geometry:

Theory and Applications 28 (2-3) (2004) 89-112.

155

[94]

[97]

[100]

[101]

[102]

[103]

W. Kwedlo, P. Iwanowicz, Using genetic algorithm for selection of initial cluster
centers for the k-means method, in: Proceedings of the 10th International Conference
on Artifical Intelligence and Soft Computing, Part 1T, ICAISC (2), 2010, pp. 165—
172.

B. Al-shboul, S. hyon Myaeng, Initializing k-means using genetic algorithms (2009).

G. T. Perim, E. D. Wandekokem, F. M. Varejao, k-means initialization meth-
ods for improving clustering by simulated annealing, in: Proceedings of the 11th
Ibero-American Conference on Artificial Intelligence, IBERAMIA, Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 133-142.

N. Grira, M. E. Houle, Best of both: a hybridized centroid-medoid clustering heuris-
tic, in: Proceedings of the 24th International Conference on Machine Learning,

ICML, ACM, New York, NY, USA, 2007, pp. 313-320.

M. Halkidi, Y. Batistakis, M. Vazirgiannis, On clustering validation techniques,

Journal of Intelligent Information Systems 17 (2-3) (2001) 107-145.

D. Cai, X. He, J. Han, Document clustering using locality preserving indexing, [EEE

Transactions on Knowledge and Data Engineering 17 (12) (2005) 1624-1637.

M. Meila, Comparing clusterings—an information based distance, Journal of Mul-

tivariate Analysis 98 (5) (2007) 873-895.

L. Hubert, P. Arabie, Comparing partitions, Journal of Classification 2 (1985) 193~
218.

G. Lebanon, Y. Mao, J. Dillon, The locally weighted bag of words framework for
document representation, Journal of Machine Learning Research 8 (2007) 2405

2441.

M. Keikha, N. Razavian, F. Oroumchian, H. Razi, Document representation and
quality of text: An analysis, in: M. Berry, M. Castellanos (Eds.), Survey of Text
Mining II, Springer, London, UK, 2008, pp. 219-232.

156

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

D. Mladenic, Machine learning on non-homogeneous, distributed text data., Ph.D.

thesis, University of Ljubljana, Faculty of Computer and Information Science (1998).

D. Lewis, An evaluation of phrasal and clustered representations on a text cat-
egorization task, in: Proceedings of the 15th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR, 1992,

pp- 37-50.

F. Beil, M. Ester, X. Xu, Frequent term-based text clustering, in: Proceedings of
the 8th ACM SIGKDD International Conference on Knowledge discovery and data
mining, KDD, 2002, pp. 436-442.

B. Fung, K. Wang, M. Ester, Hierarchical document clustering using frequent item-
sets, in: Proceedings of the 3rd SIAM International Conference on Data Mining,

SDM, 2003, pp. 59-70.

W. Zhang, T. Yoshida, X. Tang, Q. Wang, Text clustering using frequent itemsets,
Knowledge-Based Systems 23 (5).

Y. Li, S. Chung, J. Holt, Text document clustering based on frequent word meaning

sequences, Data and Knowledge Engineering 64 (1) (2008) 381-404.

G. Karypis, E. Han, Concept indexing: a fast dimensionality reduction algorithm
with applications to document retrieval and categorization, Tech. Rep. TR-00-0016,

University of Minnesota (2000).

A. Farahat, M. Kamel, Statistical semantics for enchancing document clustering,

Knowledge and Information Systems 28 (2) (2010) 365-393.

L. AlSumait, C. Domeniconi, Text clustering with local semantic kernels, in:
M. Berry, M. Castellanos (Eds.), Survey of Text Mining II, Springer, London, UK,
2008, pp. 219-232.

157

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

H. Billhardt, D. Borrajo, V. Maojo, A context vector model for information retrieval,
Journal of the American Society for Information Science and Technology 53 (3)

(2002) 236-249.

W. Pu, N. Liu, S. Yan, J. Yan, K. Xie, Z. Chen, Local word bag model for text
categorization, in: Proceedings of the 2007 7th IEEE International Conference on

Data Mining, ICDM, 2007, pp. 625-630.

K. Grauman, T. Darrell, The pyramid match kernel: Efficient learning with sets of
features, Journal of Machine Learning Research 8 (2007) 725-760.

C. Apté, F. Damerau, S. M. Weiss, Towards language independent automated learn-
ing of text categorization models, in: Proceedings of the 17th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR, 1994, pp. 23-30.

K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is "nearest neighbor”
meaningful?, in: Proceedings of the 7th International Conference on Database The-

ory, ICDT, 1999, pp. 217-235.

D. S. Modha, W. S. Spangler, Feature weighting in k-means clustering, Machine
Learning 52 (3) (2003) 217-237.

J. Friedman, J. Meulman, Clustering objects on subsets of attributes, Journal of

the Royal Statistical Society 66 (2004) 815-849.

L. Jing, M. K. Ng, J. Xu, J. Z. Huang, Subspace clustering of text documents
with feature weighting k-means algorithm, in: Proceedings of the 9th Pacific-Asia
Conference on Advances in Knowledge Discovery and Data Mining, PAKDD, 2005,
pp- 802-812.

C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-Razgan, D. Papadopoulos,
Locally adaptive metrics for clustering high dimensional data, Data Mining and

Knowledge Discovery 14 (1) (2007) 63-97.

158

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

L. Jing, M. K. Ng, J. Z. Huang, An entropy weighting k-means algorithm for sub-
space clustering of high-dimensional sparse data, IEEE Transactions on Knowledge

and Data Engineering 19 (8) (2007) 1026-1041.

C.-Y. Tsai, C.-C. Chiu, Developing a feature weight self-adjustment mechanism for
a k-means clustering algorithm, Computational Statistics and Data Analysis 52 (10)

(2008) 4658-4672.

H. Cheng, K. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings

VLDB International Conference on Very Large Data Bases, 2008, pp. 90—101.

I. S. Dhillon, Y. Guan, J. Kogan, Iterative clustering of high dimensional text data
augmented by local search, in: Proceedings of the 2002 IEEE International Confer-

ence on Data Mining, 2002, pp. 131-138.

C. Ding, X. He, K-nearest-neighbor consistency in data clustering: incorporating lo-
cal information into global optimization, in: Proceedings of the 2004 ACM Sympo-
sium on Applied Computing, SAC, ACM, New York, NY, USA, 2004, pp. 584-5809.

M. Steinbach, G. Karypis, V. Kumar, A comparison of document clustering tech-
niques, in: Proceedings of the Workshop on Text Mining at the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2000, pp. 20—
23.

D. H. Zanette, M. A. Montemurro, Dynamics of text generation with realistic zipf’s

distribution, Journal of Quantitative Linguistics 12 (1) (2005) 29-40.

H. H. Bock, On some significance tests in cluster analysis, Journal of Classification

2 (1985) 77-108.

H. Bock, Clustering and neural networks, in: Proceedings of the 6th Conference of
the International Federation of Classification Societies on Advances in Data Science

and Classification, IFCS, 1998, pp. 265-278.

159

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

K. L. Du, Clustering: A neural network approach, Neural Networks 23 (1) (2010)
89-107.

S. J. Redmond, C. Heneghan, A method for initialising the k-means clustering al-

gorithm using kd-trees, Pattern Recognition Letters 28 (8) (2007) 965-973.

F. Cao, J. Liang, G. Jiang, An initialization method for the k-means algorithm using
neighborhood model, Computers and Mathematics with Applications 58 (3) (2009)

474-483.

S.S. Khan, A. Ahmad, Cluster center initialization algorithm for k-means clustering,

Pattern Recognition Letters 25 (11) (2004) 1293-1302.

G. Milligan, M. Cooper, An examination of procedures for determining the number

of clusters in a data set, Psychometrika 50 (1985) 159-179.

X. Hu, L. Xu, A comparative study of several cluster number selection criteria, in:
Proceedings of the 4th International Conference on Intelligent Data Engineering

and Automated Learning, IDEAL, 2003, pp. 195-202.

M. M.-T. Chiang, B. Mirkin, Intelligent choice of the number of clusters in k-means
clustering: An experimental study with different cluster spreads, Journal of Classi-

fication 27 (1) (2010) 3-40.

D. Zeimpekis, E. Gallopoulos, principal direction divisive partitioning with kernels
and k-means steering, in: M. Berry, M. Castellanos (Eds.), Survey of Text Mining
IT, Springer, London, UK, 2008, pp. 45-64.

S. K. Tasoulis, D. K. Tasoulis, V. P. Plagianakos, Enhancing principal direction

divisive clustering, Pattern Recognition 43 (10) (2010) 3391-3411.

A. M. Bagirov, Modified global k-means algorithm for minimum sum-of-squares

clustering problems, Pattern Recognition 41 (10) (2008) 3192-3199.

160

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

J. Z. C. Lai, T.-J. Huang, Fast global k-means clustering using cluster membership

and inequality, Pattern Recognition 43 (5) (2010) 1954-1963.

A. M. Bagirov, J. Ugon, D. Webb, Fast modified global k-means algorithm for

incremental cluster construction, Pattern Recognition 44 (4) (2011) 866-876.

D. Pelleg, A. W. Moore, X-means: Extending k-means with efficient estimation of
the number of clusters, in: Proceedings of the 17th International Conference on

Machine Learning, ICML, 2000, pp. 727-734.

R. Kass, L. Wasserman, A reference bayesian test for nested hypotheses and its
relationship to the schwarz criterion, Journal of the American Statistical Association

(1995) 928-934.

G. Hamerly, C. Elkan, Learning the k in k-means, in: Proceedings of the 17th Annual

Conference on Neural Information Processing Systems, 2003.

Y. Feng, G. Hamerly, Pg-means: learning the number of clusters in data, in: Pro-
ceedings of the 20th Annual Conference on Neural Information Processing Systems,

2006, pp. 393-400.

F. J. Massey, The Kolmogorov-Smirnov test for goodness of fit, Journal of the

American Statistical Association 46 (253) (1951) 68-78.

K. Kurihara, M. Welling, Bayesian k-means as a “maximization-expectation” algo-

rithm, Neural Computation 21 (4) (2009) 1145-1172.

R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data
set via the gap statistic, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 63 (2) (2001) 411-423.

C. Yang, X. Zhang, L. Jiao, G. Wang, Self-tuning semi-supervised spectral cluste-
ring, in: Proceedings of the International Conference on Computational Intelligence

and Security, Vol. 1 of CIS, 2008, pp. 1-5.

161

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

T. Shi, M. Belkin, B. Yu, Data spectroscopy: Eigenspaces of convolution operators
and clustering, The Annals of Statistics 37 (6B) (2009) 3960—-3984.

E. Levine, E. Domany, Resampling method for unsupervised estimation of cluster

validity, Neural Computation 13 (11) (2001) 2573-2593.

T. Lange, V. Roth, M. L. Braun, J. M. Buhmann, Stability-based validation of

clustering solutions, Neural Computation 16 (6) (2004) 1299-1323.

R. Tibshirani, G. Walther, Cluster validation by prediction strength, Journal of

Computational and Graphical Statistics 14 (3) (2005) 511-528.

I. S. Dhillon, Y. Guan, B. Kulis, Kernel k-means: spectral clustering and normal-
ized cuts, in: Proceedings of the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD, ACM, New York, NY, USA, 2004,
pp. 551-556.

B. W. Silverman, Using kernel density estimates to investigate multimodality, Jour-

nal of the Royal Statistical Society. Series B (Methodological) 43 (1) (1981) 97-99.

P. H. J.A. Hartigan, The dip test of unimodality, The Annals of Statistics 13 (1)
(1985) 70-84.

J. J. Verbeek, N. Vlassis, B. Krose, Efficient greedy learning of (Gaussian mixture
models, Neural Computation 15 (2) (2003) 469-485.

S. N. S.A. Nene, H. Murase, Columbia object image library (coil-100), Tech. Rep.
CUCS-006-96, Columbia University (February 1996).

S. N. S.A. Nene, H. Murase, Columbia object image library (coil-100), Tech. Rep.
CUCS-005-96, Columbia University (February 1996).

162

AUTHOR'S PUBLICATIONS

1. A. Kalogeratos and A. Likas, Dip-means: an incremental clustering method for
estimating the number of clusters, Advances in Neural Information Processing Sys-
tems (NIPS), (2012).

2. A. Kalogeratos and A. Likas, Text Document Clustering Using Global Term Con-
text Vectors, Knowledge and Information Systems (KAIS), Springer, 31:3 (2012)
455-474.

3. A. Kalogeratos and A. Likas, Document clustering using synthetic cluster proto-
types, Data and Knowledge Engineering, 70:3 (2011) 284-306.

4. V. Chasanis, A. Kalogeratos and A. Likas, Movie Segmentation into Scenes and
Chapters Using Locally Weighted Bag of Visual Words, ACM International Confer-
ence on Image and Video Retrieval (CIVR09) (2009).

5. A. Kalogeratos and A. Likas, A Significance-Based Graph Model for Clustering
Web Documents, G. Antoniou et al. (Eds.): SETN06, LNAI 3955, Springer Verlag
(2006).

SHORT CURRICULUM VITAE

Argyris Kalogeratos was born in Patras, Greece, in 1982. He received the B.Sc in Computer
Science in 2005 and the M.Sc. in Computer Science (Technologies and Applications) in
2007, from the Department of Computer Science, University of loannina, Greece. Since
the end of 2007 he has been a Ph.D. candidate in the same Department. He has been
involved in a research project and has published 2 papers in peer-review scientific journals
and 3 papers in refereed conference proceedings. His research interests are in the areas of

machine learning and data mining.

