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Abstract

Kalogeratos, Argyris, O.

PhD, Computer Science Department, University of Ioannina, Greece. April 2013.

Knowledge Extraction Methods from Document Collections.

Thesis Supervisor: Aristidis Likas.

This thesis studies the problem of document clustering. Given a document collection,

at �rst, preprocessing, and feature extraction take place. As a result, each document is

usually represented using a vector space model where the non-negative dimension weights

describe the signi�cance of the respective term features. The properties of such a feature

space are: i) the high dimensionality that is of the order of thousands of features, and

ii) sparsity which reaches 99%. In this dissertation, methods are studied and developed

for document representation and knowledge extraction regarding the cluster structure of

a dataset.

At �rst, a vector space model is presented which, without supervision, revisits the

traditional assumption about the term independence. A Global Term Context Vector

is computed for each term feature of the collection, which embeds the context in which

a term appears in the documents (term co-occurrences). Next, a semantic matrix is

constructed based on which the document vectors are mapped in a denser feature space

of the same dimensionality. The e�ectiveness of the proposed representation model is

experimentally studied in the context of document clustering.

The second contribution of this work is the k-synthetic prototypes clustering method

that is based on the spherical k-means. Its novelty lays at the introduction of the synthetic

xii



prototypes as cluster representatives. The proposed incremental approach for the compu-

tation of a synthetic prototype uses the K nearest neighbors of the cluster medoid. The

interesting property of this approach is that it favors the representation of the documents

of the dominant class in the cluster. In this way the clustering algorithm manages to

overcome problems caused by bad initializations. In the experimental study, this method

is compared to a series of widely-used document clustering techniques.

In the chapter that follows, incremental clustering algorithms are studied, which add

the k+1 data based on a solution containing k clusters. A general framework for incremen-

tal clustering is presented which applies partial update of the solution when introducing

the k+1 cluster. This framework covers known incremental algorithms, such as bisecting

k-means, global k-means, and various extensions of them. Next, global k-synthetic pro-

totypes algorithm is proposed which is experimentally compared to existing incremental

approaches achieving better clustering results on document collections.

The next chapter concerns the problem of estimating the number of clusters in a

dataset. Dip-dist criterion is proposed which considers each object of a cluster as a

`viewer ' and applies a univariate statistic hypothesis test, the dip-test, to examine uni-

modality in the distribution of the distances between the viewer and the rest of the objects

in cluster. This criterion is incorporated by the incremental dip-means method. The only

assumption of this method is the unimodality of all clusters. Important advantages are:

i) the unimodality test is applied on univariate distance vectors, and ii) it can be di-

rectly applied with kernel-based methods, since only the pairwise distances are involved

in the computations. Experimental results on arti�cial and real datasets indicate the

e�ectiveness of our method and its superiority over analogous approaches.
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PerÐlhyh

Argurhc Kaloger�toc tou Odussèa kai thc Sbetl�nac.

PhD, Tm ma Plhroforik c, Panepist mio IwannÐnwn, AprÐlioc, 2013.

Mèjodoi Exagwg c Gn¸shc apì Sullogèc Eggr�fwn.

Epiblèpontac: AristeÐdhc LÔkac.

H paroÔsa diatrib  asqoleÐtai me to prìblhma thc omadopoÐhshc eggr�fwn (document

clustering). DojeÐshc mÐa sullog c eggr�fwn fusik c gl¸ssac (corpus), katarq n e-

farmìzetai proepexergasÐa kai exagwg  qarakthristik¸n ìrwn (terms). Wc apotèlesma,

k�je eggrafo sun jwc anaparÐstatai me èna dianusmatikì montèlo (vector space model)

ìpou to mh arnhtikì b�roc k�je di�stashc perigr�fei th shmantikìthta tou antÐstoiqou

qarakthristikoÔ ìrou. Oi idiìthtec autoÔ tou q¸rou anapar�stashc eÐnai: a) h polÔ u-

yhl  di�stash thc t�xhc twn qili�dwn qarakthristik¸n, kai b) h araiìthta pou aggÐzei to

99% (high dimensionality and sparsity). Sth diatrib  melet¸ntai kai anaptÔssontai mè-

jodoi anapar�stashc kai exagwg c plhroforÐac sqetik� me th dom  om�dwn sth sullog 

eggr�fwn (cluster structure).

Arqik� proteÐnetai èna montèlo dianusmatik c anapar�stashc eggr�fwn, to opoÐo, dÐ-

qwc epÐbleyh, epanexet�zei thn paradosiak  upìjesh anexarthsÐac twn ìrwn (term inde-

pendence). Gia k�je ìro tou lexikoÔ ex�getai to antÐstoiqo genikeumèno di�nusma sum-

frazomènwn ìrwn (global term context vector) to opoÐo enswmat¸nei th sumfrazìmenh

plhroforÐa gÔrw apì tic emfanÐseic tou ìrou sta èggrafa (sun-emfanÐseic ìrwn). Sth

sunèqeia, kataskeu�zetai ènac shmasiologikìc pÐnakac b�sei tou opoÐou prob�llontai ta

dianÔsmata dedomènwn se ènan puknìtero q¸ro Ðdiac di�stashc. Sto st�dio autì melet -
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jhke h sumbol  tou proteinìmenou montèlou anapar�stashc sthn omadopoÐhsh eggr�fwn.

'Ustera parousi�zetai h mèjodoc omadopoÐhshc eggr�fwn k-sunjetik¸n prwtotÔpwn

(k-synthetic prototypes). H mèjodoc basÐzetai ston sfairikì k-mèswn (spherical k-means)

me thn prwtotupÐa ìti eis�gei touc sunjetikoÔc antipros¸pouc gia tic om�dec. H proteinì-

menh auxhtik  prosèggish gia ton upologismì enìc sunjetikoÔ antipros¸pou qrhsimopoieÐ

ta K antikeÐmena pou brÐskontai eggÔtera sto endi�meso antikeÐmeno mÐac om�dac (medoid).

H endiafèrousa idiìthta aut c thc prosèggishc eÐnai ìti eunoeÐ thn anapar�stash thc kurÐ-

arqhc kl�shc dedomènwn se mÐa om�da epitrèpontac me autì ton trìpo thn apofug  lÔsewn

topik¸n elaqÐstwn lìgw kak c arqikopoÐhshc. Sthn peiramatik  melèth sugkrÐnetai h mè-

jodoc aut  me mÐa seir� apì eurèwc qrhsimopoioÔmenouc algìrijmouc omadopoÐhshc.

Sth sunèqeia, melet¸ntai algìrijmoi auxhtik c omadopoÐhshc (incremental clustering),

oi opoÐoi eis�goun thn k+1 om�da dedomènwn basizìmenoi sth lÔsh k om�dwn. Arqik� pa-

rousi�zetai èna genikì plaÐsio (clustering framework) pou efarmìzei th merik  enhmèrwsh

thc k+1 lÔshc kat� thn eisagwg  mÐac nèac om�dac (partial update). To plaÐsio autì kalÔ-

ptei gnwstoÔc auxhtikoÔc algorÐjmouc, ìpwc o diameristikìc k-mèswn (bisecting k-means),

o genikeumènoc k-mèswn (global k-means), kai di�forec parallagèc touc. ProteÐnetai, de,

o genikeumènoc algìrijmoc k-sunjetik¸n prwtotÔpwn (global k-synthetic prototypes) o

opoÐoc sugkrÐnetai peiramatik� me up�rqousec auxhtikèc proseggÐseic epideiknÔontac ka-

lÔtera apotelèsmata omadopoÐhshc se sullogèc eggr�fwn.

H teleutaÐa enìthta thc diatrib c afor� to prìblhma ektÐmhshc tou arijmoÔ twn

om�dwn se èna sÔnolo dedomènwn. Gia thn prosèggish tou probl matoc proteÐnetai to

krit rio dip-dist to opoÐo jewreÐ k�je antikeÐmeno thc upì exètash om�dac wc 'parathrht '

kai efarmìzei èna statistikì test monotropikìthtac (unimodality dip-test) sthn kata-

nom  twn apost�sewn metaxÔ tou parathrht  kai twn upoloÐpwn antikeimènwn thc om�dac.

Sth sunèqeia, perigr�fetai h auxhtik  mèjodoc dip-mèswn (dip-means) thc opoÐac h mona-

dik  upìjesh eÐnai h monotropikìthta k�je om�dac. Ta pleonekt mata thc proteinìmenhc

prosèggishc eÐnai ìti to statistikì test efarmìzetai se 1D katanomèc, en¸ ja mporoÔse

na qrhsimopoihjeÐ kai se mejìdouc pou basÐzontai ston pÐnaka omoiìthtac (kernel-based

methods), ìpou den apaitoÔntai ta pragmatik� dianÔsmata dedomènwn.
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Chapter 1

Introduction

1.1 Knowledge mining from document collections

1.2 Machine learning for document management

1.3 Thesis contribution

1.1 Knowledge mining from document collections

During the last years the electronic means of communication have acquired a dominant

role in developed societies. The plethora of services provided on the world wide web

(WWW), such as electronic social networks, have made it the primary communication

and entertainment tool for many people. One of the most important changes happened

was that the user is now both content consumer and producer at the same time.

Nowadays, in the era of cloud computing, the data being produced, stored, and pro-

cessed electronically, are massive in volume and present an increasing rate of growth.

Electronic publishing, digital libraries with text articles, e-books, images and videos, e-

mails, broadcast news articles, user blogs, and other conventional websites, are just some

of the activities that need to manage large volumes of data. This data management

burdens users, that have to spend time to organize or search content, and of course the
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computer systems. Either in a local scale or in the large-scale of modern distributed

systems, manual data management and processing are of unbearable economic cost and

sometimes even impossible to be done in reasonable time. On the other hand, naive au-

tomatic methodologies fail to scale to real-life complex problems in terms of accuracy of

results or computational cost. It is clear that, despite the improvement of computer sys-

tems performance, this computing power itself cannot meet the evolving modern needs.

E�cient automatic or semi-automatic methods for content-based document management

tasks, organization, and information retrieval, are of great signi�cance.

Another great challenge where machine learning (ML) and data mining (DM) proce-

dures can contribute to human knowledge and science is encapsulated in the quotation

\data can create new data". Speci�cally, various scienti�c problems can be investigated

by the means of processing large volumes of recorded information relevant to the problem.

In this way, directly or more often after post-processing and external evaluation of the

extracted information, new knowledge may be acquired (e.g. classi�ers, interesting rules,

feature correlations). In the worst scenario, some hints may be obtained to help the setup

of focused further research. Examples are the analysis of human genetic material (DNA,

RNA) for the identi�cation of suspicious genes for various diseases, or the analysis of

hundreds of thousands images from the web to extract visual features for object/scene

recognition tasks. Large datasets have being collected the last decades and, obviously, the

bottleneck towards taking advantage of such data volumes lays at the side of computer

systems and the e�ciency of the methods developed by computer scientists.

Text is the basic format in which information is represented, thus, the processing op-

erations should be able to handle properly this type of data (e.g. transmission, archiving,

indexing, and searching). Organizing and mining information from text data has become

one of the most active scienti�c �elds of ML and DM communities, usually called col-

lectively as text mining (TM). With the term `document ' we refer to the general data

instance which may include information of the following types: text, images, videos, or

any other composite multimedia content. Composite documents with various such data

types is actually the most usual case in web. Computer algorithms cannot use the raw
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format of these documents, hence a representation is required in a standard format such

as the vector space model (VSM) [1, 2] where a vector stores the weight of signi�cance

for each feature of a data object. The extracted text features can be the di�erent words,

or more complex composite features. The bag of words (BOW) is the most traditional

text document representation model, where the set of word-terms is called vocabulary and

forms a vector space (VS).

It must be noted that both images and videos (a sequence of image frames) can also be

represented in a similar way called bag of visual words (BOVW). Here, a visual vocabulary

is constructed by processing low-level visual features (e.g. color, texture, shape) from the

dataset, and the data objects are then mapped in the respective VS [3, 4].

One fundamental di�erence between text and other multimedia content is that text

provides better low level features. Word-terms have speci�c discrete encoding with written

letters and can be directly used to de�ne the feature space of BOW model. Contrary,

it is not that trivial to extract good quality low-level features from images and videos.

Additionally, those features are usually represented in a continuous vector space (e.g.

SIFT features [5]) and a vector quantization is required to transform them into a discrete

feature set that could then be used in BOW model. The quantization is usually performed

by means of clustering the low-level features to form the visual words. The mapping of

features into the visual words can be done using the hard membership to one cluster

or, alternatively, it is possible to introduce ambiguity using soft assignment to clusters

[6]. Nevertheless, the semantic-gap is present, at any case, and multimedia content-based

management faces problems similar to those for text documents when extracting the

high-level semantics [7]. In fact, semantic enrichment and smoothing methods proposed

for video representation have clear origin from text mining, such as the locally weighted

visual BOW [8]. Another important di�erence is that, in contrast to the 1d term sequence

of text, image features have 2d spatial structure that enables the use of spatial feature

matching [9]. By projecting this spatial structure onto a proper direction, visual sentences

can be created [10] and then language modeling is applicable.

Another paradigm of the importance of text processing is that text is the dominant
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format of descriptive metadata. Tagging is a common practice where human assigns a set

of textual terms to a data object, termed as tags or text annotations. Although, in the

digital world, tagging was introduced for text mining and the web search, it is currently

widely-used practice also for other multimedia content in order to help representation

and retrieval. The need to increase the utilization of textual tags, and the need to tackle

problems caused by misuse of tags by authors, have led to the development of various

fully automated tagging methods, or others for tag recommendation to authors [11, 12].

All the above explain why text mining is one the of the most active ML and DM �elds

and the reason why numerous state-of-the-art methods that have been developed for text

are successfully used in other data processing domains. However, the idea of automatic

organization of texts comes from the early '60s. Until the late '80s, the most popular

approach to partition a set of documents into groups was knowledge engineering (KE). A

set of rules in disjunctive normal form (DNF) was used to determine the category of a

document:

if (DNF rule) then (category):

A rule may examine the presence of a term, or the co-occurrence of various terms in the

document, and each class is described by a set of such rules. Domain experts and engineers

were responsible for the creation of the rules of the knowledge base. The main drawback of

this approach is known from the �eld of expert systems and is called knowledge acquisition

bottleneck. More speci�cally, the expert system cannot create new rules automatically,

thus, it does not generalize/adapt to similar problems other than the problem it was

trained on. Any change in its parameters (e.g. addition of categories, or new terms)

requires the domain experts to re-intervene manually and update the ruleset. Moreover,

the knowledge sources can be unreliable since domain experts may provide incomplete or

incorrect information. Finally, the knowledge base is hard to build and very expensive

to maintain. On the other hand, these systems provide interpretable decisions which is a

requirement of high priority in some applications.
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1.2 Machine learning for document management

Considerable research activity has been conducted since the early '90s. Back then, the �rst

steps were made for machine learning techniques [13], [14] which present the advantage

that the speci�cation of the rules is severely limited (e.g. with classi�cation the experts

should classify manually a small set of documents that are examples used for training), or

completely eliminated (using an unsupervised clustering approach). In this dissertation

we focus on unsupervised document representation and clustering.

A fundamental di�erence between ML methods is the existence or absence of supervi-

sion. Supervised learning methods use an auxiliary dataset that contains example objects

of the data categories we need to identify in the unknown data. In contrast, unsupervised

learning methods attempt to discover the underlying group structure of the objects by

directly processing the unknown input data. One should realize that unsupervised learn-

ing is not just the last option for the case where there is no `explanatory ' labeled data

provided by human:

� supervised learning aims to `imitate' the human perception on a problem by discov-

ering the important rules to reproduce the indicated behavior, whereas,

� unsupervised learning aims to capture relations between objects and then to discover

the intrinsic structure of data, imposed by those relations.

In other words, even if we have supervised information, we may still choose to apply

unsupervised learning in order to extract information we are not presently aware. Fur-

thermore, it is interesting to mention that the two approaches can be complementary.

In many applications, unsupervised techniques are used during data preprocessing in or-

der to estimate individual parameters of the problem. This is done independently to

the supervised technique that is �nally applied. Reversely, it is possible to reinforce the

unsupervised learning procedure using a labeled dataset along with the unknown data

(partially labeled dataset). This latter hybrid approach is called semi-supervised learn-

ing. Among the popular supervised learning problems are classi�cation and regression,

while respectively for unsupervised learning, clustering and density estimation.
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A second conceptual di�erence among ML methods is that they may adopt a discrim-

inative learning or, alternatively, a generative learning approach to solve a problem. A

generative model learns the problem and its decision is based on how interpretable is a

case under the di�erent possible scenarios it is trained to handle. A discriminative model

follows a much simpler way: it does not learn the problem itself, but focuses on learning

the di�erences between the possible scenarios in order to discriminate them. This catego-

rization is mostly mentioned in the context of supervised learning, but it applies also in

the unsupervised setting. Recently, those two approaches are being used in combination

to enhance the learning process [15].

Other characteristics may divide the ML techniques further, but vertically to the

aforementioned cases. For example, if they can work with overlapping data categories

(e.g. in classi�cation and clustering), handle outliers or noise, handle categorical data, or

data representations other than vectors, and others.

Unlike other ML problems where data are represented with a small set of features,

even small text datasets carry large vocabularies and certain undesirable e�ects arise due

to the curse of dimensionality [14]. The high dimensional and sparse (HDS) feature space

in combination with linguistic phenomena such as polysemy, homosemy and metaphors,

constitute an adverse setting for clustering methods. When a labeled training dataset is

provided, several statistical options are available for feature selection [16, 17], even in case

of multi-labeled data objects [18]. On the other hand, it is more complicated to select

features in an unsupervised setting, which is usually achieved using heuristics [19{22].

Methods such as latent semantic indexing (LSI) [23], or latent Dirichlet allocation [24]

(LDA), may discover the term correlations but they map the data into a feature space

of much lower dimensionality. Vector space representations of other multimedia content

present similar weaknesses due to the large number of features required to describe the

data.

In general, it is a widely-known issue to have a di�erence between the human under-

standing about a data object, i.e. its actual perceived meaning and the information of

its corresponding representation in a well-de�ned mathematical space which enables com-
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puter processing. This is called as semantic gap and its extend depends on the complexity

of the original data and the e�ciency of the involved representation model. In what con-

cerns documents, the abstract and complex semantics of text and multimedia content is

very di�cult to be encoded by a formal representation, and this is one of the directions

on which there has been a lot of research activity recently. The term semantic gap is also

used to express the di�culty to move from a data representation with low-level features

to another representation of higher semantic level (e.g. concept-based representation for

text or images).

1.2.1 Document classi�cation

In classi�cation, or categorization, the aim is to identify speci�c document categories in

an unknown input dataset. In the simplest case of one category, a single-class classi�er

is trained to determine whether an object belongs to that category. The output decision

can be binary, or probabilistic, also called as hard and soft decision, respectively. It is

straightforward for soft decisions to be produced by a generative classi�er since they are

inherent (e.g. naive Bayes). However, specialized techniques may produce such class

interpretation weights from a discriminative classi�er, e.g. with a calculation that uses

the distance of an object from a separation hyperplane as in support vector machines

(SVM) [25].

Multi-class classi�cation is implemented either using a single classi�er that can handle

more than one categories (e.g. neural networks, decision trees etc), or using multiple

two-class classi�ers that are employed as components of the classi�cation model, each

one responsible for one data category (e.g. one-versus-all SVM). Since there is a rich

literature available for two-class classi�cation, the use of multiple such classi�ers o�ers a

direct generalization, although their combination usually requires careful setup.

Formally, classi�cation is the process where, provided a dataset D={d1,...,dN} con-

sisting of |D|=N objects and a set L={l1,...,lM} with |L|=M prede�ned category labels,

a binary value is assigned to each pair (di, lj). The problem can be formulated as the
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approximation of an unknown mapping function f : D×L→{true,false}, which would

perfectly assign objects to their true categories. This is approximated by the function

implemented by the classi�ers, fc: D×L →{true,false}, which attempts to minimize the

decision disagreement between fc and f . The learning of the approximation function is

conducted using examples provided in a training set Tr={(di, Ki), i=1,...,|NTr|}. The

requirement for a training set makes classi�cation a supervised ML technique.

Many popular classi�ers have been applied to text documents and other multimedia

content, such as support vector machines, neural networks, naive Bayes, linear least square

�t, k-nearest neighbors, inductive logic programming, genetic algorithms, rule-based sys-

tems, and statistical analysis. Extensive comparisons of text classi�cation methods can

be found in [26, 27]. As for regression, the predicted output is not a discrete label but a

set of real numbers. It is less popularly applied in document datasets, however there are

such methodologies in literature [28].

Classi�cation �nds practical application in a wide variety of domains, such as news

�ltering, organization and retrieval, opinion mining, e-mail categorization and Spam �l-

tering. All the aforementioned organization and retrieval problems can be de�ned analo-

gously for other multimedia data types.

1.2.2 Document clustering

Document clustering is an unsupervised learning approach that automatically segregates

similar documents of a corpus into the same group, called cluster, and dissimilar docu-

ments to di�erent clusters. It is employed in both contexts of data analysis [29]:

� in exploratory data analysis where the aim is to discover patterns in the input data

which then would help to formulate hypotheses about the data properties

� in con�rmatory data analysis where the target is to validate empirically a given

hypothesis by analyzing the input data.

This document management approach has become very popular due to the nature of

modern problems. More speci�cally, when the order of the information volume is hundreds

8



of thousands of documents (even millions), with dynamic changes in their thematic groups,

then supervision is particularly disadvantageous and costly in many respects. Computa-

tionally, it is NP-hard to �nd the optimal grouping of data even for 2-dimensional data

[30], or the 2-clustering case [31]. However, there exist e�cient algorithms that approxi-

mate the solution in O(N2) time.

Formally, provided a dataset D with N unlabeled documents, a solution C is seeked

that partitions the dataset into M clusters of similar objects, where C={cj: j=1,...,M}

and cj is the set of objects assigned to j-th cluster (de�nition for hard clustering). The

number of clusters M is usually predetermined and provided as an input parameter to

the clustering algorithm. However it is highly desirable for a method to be able to deter-

mine the number of clusters without external information. Although there are plenty of

e�cient clustering algorithms, �nding the number of clusters is still a problem for which

there exist no general and e�ective approach [32]. Clustering utilizes low-level structural

information, the relations between objects (similarities, or dissimilarity), to infer the

high-level group structure of data. A function that measures the pairwise object rela-

tion is called (dis)similarity function and plays a crucial role in the performance of the

clustering process.

Ideally, each cluster would correspond to one underlying class of objects, whereas it is

worth to note that in complex problems there are more than one `correct ' or `reasonable',

data partitions. Therefore, the extracted cluster structure is not necessarily expected to

coincide with human perception. The positive e�ect of this issue is that clustering may

discover new knowledge about data relationships and structure. On the other hand, the

negative e�ects are mainly three. First, most clustering algorithms conclude a clustering

structure irrespectively to whether an actual structure exists in data. Hence, it is advis-

able, before applying clustering, the data analyst to investigate the `clusterability ' [33{35]

of the dataset in order to decide whether there is interesting cluster structure to be ex-

tracted. Of course this is another di�cult problem that depends on the characteristics

of the clustering algorithm we use. The second di�culty posed by the multiple correct

clusterings is how to de�ne a proper evaluation process for the quality of clustering solu-

9



tions without taking into account the context of each clustering method. In other words,

how can the analyst select a result among various clusterings produced by conceptually

diverse algorithms? Third, it has been shown that it is not easy to de�ne a uni�ed cluste-

ring framework for all methods due to its in principle incompatibility [36]. All the above

indicate that data clustering is an ill-posed problem without sound general theoretical

background. This is a direction on which much research is recently focused.

There is a large number of clustering methodologies with di�erent characteristics [37{

40]. In literature, these algorithms are separated into three broad categories:

� hierarchical clustering, which produce nested groups following a general-to-speci�c

(or top-down) approach. Similarly, it is possible to adopt a speci�c-to-general (or

bottom-up) approach.

� partitional clustering (also non-hierarchical or at) which iteratively improve the

quality of clustering based on some kind of unsupervised clustering evaluation cri-

teria.

� density-based clustering which recognize continuous dense areas in data space as

clusters. These groups may have arbitrary shape.

One could revise the above categorization and introduce incremental clustering. In order

to build a solution withM clusters, incremental methods start with one cluster containing

all data objects (or a given small number of clusters) and incrementally add more clusters

until the desirable number of clusters M is reached. It is essentially di�erent to top-down

hierarchical clustering because in incremental clustering no cluster hierarchy is preserved.

It is possible to de�ne other categorizations of clustering methods, for instance, ac-

cording to whether a method assigns each object in only one or more than one clusters. In

this case, we may distinguish hard and soft clustering, respectively. Also methods may dif-

fer on whether they work with all dataset known in advance (o�ine clustering), or they

assume that documents arrive sequentially (online clustering). Kernel-based clustering

methods require only the pairwise object similarities (kernel matrix ), while typical meth-

ods require the actual data vectors. Finally, for high dimensional data, there are methods
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that discover clusters by determining subspaces of the feature space where clusters are

more clearly observable (subspace clustering) [37, 40].

The most widely-used algorithms for document clustering are those based on popular

general clustering methods, such as k-means [41] and hierarchical agglomerative clustering

[42]. These methods may appropriately modi�ed to adapt to the special needs of high

dimensionality and sparsity of document feature spaces. Finally, subspace clustering

methods and generative topic models have recently shown to perform well.

Some modern information management applications of document clustering are:

� grouping of data to assist storage, caching, indexing and retrieval in large-scale

systems,

� feature space summarization and codebook generation for representing high dimen-

sional multimedia data,

� automatic creation (or enrichment) of ontologies, knowledge bases, or general tax-

onomies of information entities,

� word sense disambiguation,

� recommendation systems,

� visualization and browsing document collections,

� automatic summarization of texts, or groups of texts,

� segmentation of data streams in events/stories/topics,

� automatic metadata generation (tagging).

1.3 Thesis contribution

This dissertation deals with the problem of clustering documents. The main di�erence

of this problem compared to general clustering is the nature of the data need to be

processed. Document data are high dimensional and sparse (HDS) and put additional

di�culties to the already di�cult problem of data clustering. We study the document

clustering problem in various perspectives:
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� the vector representation, where the traditional feature (term) independence in VSM

seems to be an over-simplistic assumption,

� the prototype-based cluster representation and the document clustering algorithm,

� �nally, we revisit one of the most important, however still open, problems of data

clustering: the estimation of the number of clusters.

The organization of the rest of the thesis follows.

In Chapter 2, we provide the important preliminaries and background regarding the

preprocessing, representation and clustering of document collections. We also provide a

detailed presentation of the related state-of-the-art approaches.

In Chapter 3, we present the global term context vector model (GTCVM) for text

document representation [43]. It is an extension to VSM approach that maps document

vectors onto a new feature space based on term similarity, where clustering can achieve

better solutions. The method proceeds as follows: i) it captures local contextual informa-

tion for each term occurrence in the term sequences of documents; ii) the local contexts

for the occurrences of a term are combined to de�ne the global context of that term; iii) a

proper semantic matrix is constructed using the global context of all terms; iv) this matrix

is further used to linearly map traditional VSM (bag of words - BOW) document vectors

onto a `semantically smoothed ' feature space where problems such as text document clu-

stering can be solved more e�ciently. We present an experimental study demonstrating

the improvement of clustering results when the proposed GTCVM representation is used

compared to traditional VSM-based approaches.

In Chapter 4, we investigate the centroid-based cluster representation for HDS data.

We propose the idea of synthetic cluster prototype that is computed by i) �rst selecting

a subset of cluster objects (cluster members), then ii) computing the representative of

these objects and, �nally, iii) selecting important features. Further, we introduce the

MedoidKNN synthetic prototype that favors the representation of the dominant data

class in a cluster. These synthetic cluster prototypes are incorporated into the generic

spherical k-means procedure leading to a robust clustering method called k-synthetic
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prototypes (k-sp) [44]. Comparative experimental evaluation demonstrates the robustness

of the approach especially for small datasets and clusters overlapping in many dimensions

and its superior performance against traditional and subspace clustering methods.

In Chapter 5, we present a framework for incremental prototype-based clustering that

is based on partial updates (PU) on a given solution. A PU is de�ned by the activity state

(active or inactive) of clusters, objects, and their prototypes, indicating whether they

are kept �xed in a certain k-means iteration. Two widely-known incremental clustering

approaches, global k-means and divisive k-means, are revisited and uni�ed according

to this analysis. Focusing on HDS spherical data, we discuss in detail the di�culties

encountered when increasing the order of a current k-clustering solution by adding one

new component. Then, the use of synthetic cluster prototypes is extended for incremental

prototype-based clustering. To this end, we propose the novel global k-synthetic prototypes

(gk-sp) clustering algorithm, which iterates similarly to the global k-means algorithm. The

gk-sp method uses the k-synthetic prototypes method for �ne-tunning the k-solution, and

introduces a partial update scheme to setup the initial k+1 prototypes for the re�ning

phase. Similarly, the bisecting k-sp (bk-sp) and global bisecting k-sp (gbk-sp) are also

proposed. Experiments on well-known and arti�cial datasets illustrate that the proposed

gk-sp method outperforms other competitive incremental and at methods of the k-means

family, in terms of clustering error and external clustering evaluation measures.

In Chapter 6, we deal with the problem of estimating the number of clusters in a

dataset which is a key problem in data clustering. For this purpose, we present dip-

means, a novel robust incremental method to learn the number of data clusters [45].

This method can be used as a wrapper around any iterative clustering algorithm of k-

means family. In contrast to many popular methods which make assumptions about the

underlying cluster distributions, dip-means only assumes a fundamental cluster property:

each cluster to admit a unimodal distribution. The proposed algorithm considers each

cluster member as an individual `viewer ' and applies a univariate statistic hypothesis

test for unimodality, the dip-test, on the distribution of distances between the viewer and

the cluster members. Important advantages are: i) the unimodality test is applied on
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univariate distance vectors, ii) it can be directly applied with kernel-based methods, since

only the pairwise distances are involved in the computations. Experimental results on

arti�cial and real datasets indicate the e�ectiveness of our method and its superiority

over analogous approaches.

Finally, in Chapter 7 we provide an overall review of the results of our research and

indicate interesting directions for future work.
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Chapter 2

Background and Preliminaries

2.1 Characteristics of natural language document collections

2.2 Overview of a document clustering system

2.3 Data preparation

2.6 Clustering

2.1 Characteristics of natural language document collections

Natural languages are complicated codes capable to encode non-trivial information. Hu-

mans use languages to communicate and hereafter, this is the kind of natural language

to which we mainly refer. Every such language evolves in time with respect to syntax,

vocabulary, and word meanings, to meet the communication needs.

Since we mainly refer to text documents, it should be noted that we use the general

terminology of ML along with terminology from text mining. Thus, a document is a data

object, the document vocabulary refers to the set of all the distinct features a document

may have, and the corpus vocabulary to the features extracted from all the dataset which

is document collection (corpus). Next, we describe the basic issues concerning the natural
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language processing (NLP) required to apply of machine learning methods in the case of

documents.

2.1.1 Linguistic phenomena and complex semantics

Three linguistic phenomena can induce severe ambiguity in the automated processing of

text. Polysemy is the phenomenon where a term has di�erent meaning depending on the

context of its appearance in a text. In what concerns data clustering, if there are more

than one groups in the dataset that base their formation on such words, then it would be

di�cult to discriminate those groups. For example, in the �eld of computer science we

may �nd many words, such as `fork ', `pipe', `disk ', `memory ', etc., that have completely

di�erent meaning in a context out of that �eld.

Homonymy is the phenomenon where several terms correspond to an identical con-

cept, generally, or when they appear in a particular context. As an example, the words

`car ', `auto', `vehicle', `automobile', or the words `street ', `avenue', and `highway '. It is

also common to use abbreviations, or acronyms, instead of the original word or phrase

respectively. The generalized problem is that each word corresponds to a concept that is

related with other concepts. All concepts can be thought to form a conceptual hierarchy,

e.g. a `car ' is primarily a `machine', then a `vehicle' and then a `car '. This means that

two terms may have meaning similar to some relative extent, e.g. `car ', `motorbike', `bus '

are all vehicles and means of transport. Another indicative example is that it is very

usual to refer to an object indirectly by mentioning its brand and a system is desirable

to be able to realize that; for example, \riding a Harley Davidson" and \riding a BMW "

means more or less the same thing.

Composite terms refer to the cases where more than one words are combined into a

term that has a special meaning, e.g. `Olympic Games ', `New York ', `city block ', `machine

learning ', etc. It is a very common phenomenon and can be treated mainly using a

list of such terms created manually. Automated techniques also exist; after collecting

information about the probability of two consecutive words to form a composite term
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(e.g. `New York '), then the context of a particular appearance can indicate whether the

composite term should be identi�ed.

All these problems are tackled using methods from the �elds of natural language

processing and computational linguistics. More speci�cally, word sense disambiguation

(WSD) uses clustering to group parts of text in which a term appears. Such a grouping

may reveal the conceptually di�erent uses of a term [46]. However, the number of clusters

is a very critical parameter. Other approaches to tackle the semantic ambiguity of terms

are based on the well-known WordNet knowledge base [47] or Wikipedia [48]. Related

methods can be found in [49{51], respectively. Even the search results obtained from a

search engine can be utilised for the purpose of WSD.

2.1.2 Statistics: High dimensionality and sparsity

Text data are naturally represented using a large number of di�erent words. It may in-

clude standard words that could be met in a dictionary, idiomatisms, composite terms,

etc. A text document can be considered as a sequence of individual word terms structured

in chapters, sections, paragraphs and, at the lowest level, in sentences. The order of mag-

nitude of the vocabulary length of a normal sized document collection (e.g. about 10.000

documents of news groups articles) can be of the order of 10 thousands to 100 thousands

di�erent words (note: when considering all the di�erent raw terms without preprocess-

ing). This implies that any representation of this information would use many di�erent

features, and hence we have a space of high dimensionality. Generally, as dimensionality

increases, the space where data are represented increases exponentially and ML requires

a number of data objects of the respective order to train with. It is well-known that in

high dimensions ML methods encounter certain undesirable e�ects which arise due to the

curse of dimensionality [15].

Moreover, each document does not contain all the di�erent vocabulary terms that are

present in the overall corpus. It has been observed that a document may have less than

1% of the global corpus vocabulary [52] (non-zero vector dimensions). Furthermore, there
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are terms in the corpus vocabulary that do not appear in a given document although

they are relevant to its content. This is due to the fact that each document usually is a

semantically narrow instance of a much more general document class, called topic.

2.1.3 Dynamics: Power-laws in natural languages

Text is not a photograph taken from a natural scenery; it is written by an author aiming

to help readers understand its meaning. The human writing process induces interesting

dynamic characteristics in text and, as a consequence, special statistical properties. It has

been empirically observed that, in a large text, the frequency of a term is a power-law 1

of the frequency-based rank. This is the Zipf 's power-law [53] and implies where, if T is

the length of the text considered as a term sequence, r is the rank of a term (its position

in the ordering), and n(r) the number of term appearances in the sequence, then the

frequency of that term is given by:

f(r) ≈ n(r)

T
: (2.1)

The origin of the power-law is the observation that, in large text, the second most frequent

term has about 1=2 frequency of the most frequent term, the third most common has

about 1=3 the frequency of the most frequent term, etc. However, this does not perfectly

coincide with what is observed in actual data. The small deviations are associated with

how rich is the vocabulary of a language, or the writing style of the author. For this

reason, Zipf's power-law is formulated in a parametric statistical model:

f(r) =
c

r�
⇔ (2.2)

log f(r) = −� log r + log c: (2.3)

1The mathematical relation between two quantities is called power-law if the value of one of the
quantities is a power function of the other quantity.

18



0 1 2 3

x 10
4

0

500

1000

1500

2000
df

term rank

10
0

10
5

10
0

10
5

lo
g(

df
)

log(term rank)

(a)

0 1 2 3

x 10
4

0

500

1000

1500

2000

df

term rank

10
0

10
5

10
0

10
5

lo
g(

df
)

log(term rank)

(b)

0 1000 2000 3000 4000
0

0.5

1

vo
ca

bu
la

ry
 s

iz
e 

(%
)

documents

(c)

Figure 2.1: Statistics from a text dataset with 4000 documents from 8 classes. (a) the
document frequency of terms as a function of their rank (Zipf's powerlaw), (c) the respec-
tive log-log scale of (a), and c) the increase of vocabulary as a function of the number of
documents considered in a dataset (Heaps' powerlaw).

Interestingly, the logarithmic form shows the linear relationship between the frequency of

a term and its rank. The original formulation is obtained if c and � is set to 1.

Another important empirical observation is that the vocabulary growth of a text,

namely the number of distinct terms, is linear to the text length. This is stated by

the Heaps' power-law [54], which is closely connected with Zipf's law and often are met

together in many domains [55, 56]. Particularly, both have been con�rmed in several Indo-

European languages, whereas they do not �t so well in languages like Chinese, Japanese

and Korean that have limited dictionary sizes [57].

Let us denote as Vt the vocabulary length when the length of the term sequence of

a text is t, and the parameter a∈[0,1] is the probability to introduce a new term (not

previously appeared in the text), then the power-law is expressed as follows:

|Vt| = � t� ; � ∈ (0; 1): (2.4)

Again, the parameters a and � help the model to �t into slightly deviated cases.

The aforementioned empirical laws refer to a single long text, however, a collection

with many documents can be considered as such. This consideration is asymptotically

correct since, the topics of the documents can di�er and they are not created by one

continuous writing process. As the dataset size becomes larger, both laws still apply.
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Heaps' law also con�rms that the negative e�ects of the curse of dimensionality are more

intense in small datasets due to the higher relative dimensionality (see Sec. 4.2.1). In

addition, if Nt is the number of documents processed by an information management

system at a time instance t, then from Eq. 2.4 we may express the order of the respective

processed corpus vocabulary [52] and, thus, the respective computational and memory

requirements:

|Vt| = � t� ; � ∈ (0; 1): (2.5)

In Fig. 2.1a and Fig. 2.1b the document frequency distribution of terms is plotted in orig-

inal (long tailed) and log-log scale for a dataset of 4000 documents (stemmed vocabulary,

8 classes), while Fig. 2.1c presents the increase of vocabulary as a function of the number

of the processed documents of the dataset.

2.2 Overview of a document clustering system

Each clustering application can be decomposed into �ve components which depend on

each other according to the following order:

1. the information retrieval procedure (IR) extracts document features from input raw

data which may have arbitrary format (HTML, XML, plain text, etc).

2. the document representation model maps in a data space to enable the processing

by computer algorithms.

3. the pairwise similarity/dissimilarity measure that expresses the degree to which two

data objects have some characteristics in common.

4. the cluster model is the mathematical representation of documents in a cluster (e.g.

a term frequency vector, a probability density function, etc).

5. the clustering algorithm that partitions data objects into clusters relying on all the

above.

The basic background regarding those components is discussed in the following sections

of the chapter.
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2.3 Data preparation

2.4 Preprocessing

In order to apply any clustering algorithm, the raw collection of text documents must be

�rst preprocessed and represented in a suitable feature space. This process usually takes

place o�ine, before the application of any learning algorithm. We should remark that

the design of the preprocessing step depends on the problem we want to solve and on

which semantic level we need to extract information. For example, there are cases where

the syntax, or the sentence structure of the text, play important role. In other cases,

more coarse concepts are required and hence we discard syntax structure and lexical �ne-

details. Document clustering that we deal with, usually works at a coarse semantic level

that is described by unordered term frequencies (see Sec. 2.5), hence belongs to the second

category. Although there are many text preprocessing and preparation software available,

we implemented and used our own preprocessor. The presentation that follows refers to

English language which is the language of the document collections we used.

A parser is responsible to process the raw character stream. In the case where the

input is a structured language, such as HTML, or XML in general, then the initial step

is to extract the informative text parts along with the metadata by parsing the markup

elements. Otherwise, the parser tokenizes the input into individual word tokens in lower

case. Moreover, a set of preprocessing procedures can be applied; some of them are

considered to be traditional, while others are optional and used less often.

Then, stemming is applied, which aims to replace each word by its corresponding

morphological stem. For instance, the words `player ', `playing ', `played ' are all related

with the verb `play ', their stem. Porter's stemming algorithm, that we used, is rule-based

and is the most popular approach for this purpose [58]. There are statistical stemmers

[59], as well. For a recent comparative study for various stemmers see [60]. Stemming

transformation, with the multiple-to-one term mapping, makes each document vocabulary

shorter and more compact. In this way, the length of global corpus vocabulary is also
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reduced and some terms to become more discriminative.

It is a standard approach to eliminate various trivial terms. It has been observed that

the 10 most common words in the English language are about 20-30% of tokens in a text

[61]. Words such as `is ', `the', `to', `for ', `and ', `of ' are present in almost every sentence

of a text and are not characteristic of any topic. A stopword list is used to identify and

discard terms such as `the', `and ', `of ', etc. Using the same �xed list to apply information

retrieval across many di�erent document collections may not be a good choice. There are

stopword lists for various purposes and di�er in terms of their length, and the inclusion

of words that are non-informative under certain context. There are also approaches for

automatic construction of such lists in unlabeled or labeled datasets [62, 63] that can be

also used to enrich a standard �xed stopword list. We used a rather general-purpose list

that contains about 570 terms.

Another list can be used to recognize various composite multiword terms, in order to

treat them as a single feature. Automatic methods are available to achieve this, however

we just merged multiword terms that were separated by a character such as `-' (e.g.

`intra-cluster ' or `state-of-the-art ').

In contrast to the high document frequency (denoted as df) of the stopwords, other

terms which appear in a small number of documents are also candidates for elimination.

This approach is called document frequency thresholding (DFT) [64]. All these terms

have usually very low discriminative power. A cut-o� threshold 1≥df≥5 is often used in

practice. Nevertheless, the removal of these terms does not always increase the e�ciency

of ML methods, in fact what is usually observed is the opposite. However, the drastic

reduction of the vocabulary length compensates for a slight deterioration in accuracy.

2.5 Document Representation

After preprocessing the N documents, the V derived word stems constitute the corpus

term vocabulary, denoted as V={�1; :::; �V }. Thus, the �nite term sequence of T vocabu-
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lary terms of a text document is denoted as:

dseq = 〈dseq(1); :::; dseq(T )〉; with dseq(i) ∈ V : (2.6)

For example, the phrase `The dog chases a cat and a mouse! ', after stemming and elimi-

nation of stopwords, is a sequence dseq=〈dog; chase; cat; mous〉.

2.5.1 The Vector Space Model

Despite the fact that it is reasonable to seek for complex representations for text data,

such as graphs [65{67], the vector space model (VSM) is the most widely-used represen-

tation where each document is represented by a vector of weights corresponding to text

features. According to the typical VSM approach, the bag of words (BOW), a document

is represented by a vector d ∈ RV, where each word term �i of the vocabulary is associated

with a single vector dimension.

The feature weights can be binary, or, more often, computed by a frequency-based

weighting function. The most popular weighting scheme is the normalized tf×idf that

introduces the inverse document frequency as an external weight to enforce the terms

that have discrimination power and appear in a small number of documents [68]. For

the �i vocabulary term, the term frequency is de�ned using the indicator function I(·) as

tf=
∑T

j=1 I(d
seq(j) = �i), and the idfi=log(N=dfi) where N denotes the total number of

documents and dfi denotes the term document frequency of term �i (see Sec. 2.4). Thus,

the normalized tf×idf BOW vector is a mapping of the term sequence dseq de�ned as

follows:

'BOW : dseq → d = h · (tf1 idf1; :::; tfV idfV ) ∈ RV; (2.7)

hL1 =

 |V |∑
i=1

tfi log
N

dfi

−1

and (2.8)

hL2 =

 |V |∑
i=1

tf 2
i log2 N

dfi

−1=2

; (2.9)
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where normalization is performed with respect to L1-norm or L2-norm using Eq. 2.8

(h=hL1) or Eq. 2.9 (h=hL2), respectively.

Vector normalization prevents a bias towards documents with longer term sequences

and the two options have di�erent geometrical properties. In the �rst case, we obtain

a probability vector which is a point on the V -dimensional simplex. The second maps

the data vector on the surface of the positive quadrant of the V -dimensional hypersphere.

Non-negative spherical data is a special case of directional data that contain only positive

feature weights and vector magnitude is not regarded critical for their analysis. The

document collection can then be represented using the N document vectors as rows of the

document-term matrix D, which is a N×V matrix whose rows and columns are indexed

by the documents and the vocabulary terms, respectively.

The advantages of VSM is that it maps data into a well-de�ned multi-dimensional

feature space and avoids the computationally expensive preprocessing required to build

complex representation structures. We should note that the data structures that are used

to achieve e�cient processing on sparse high dimensional vectors are not simple (e.g. hash

tables, or tree structures).

The main criticism against BOW is the assumed term independence, which ignores the

term correlations in natural languages. However, BOW is only an instance of VSM and

there is plenty of research on developing more e�cient VSM variations (see Chapter 3).

Such a simple but quite e�cient method is the generalized vector space model (GVSM)

[69] which represents a document in the similarity space, i.e. d′=dD>.

In a VS there are several alternatives to quantify the semantic (dis)similarity between

document pairs. The Minkowski family of metric functions is de�ned by:

dist(mink)(di; dj) =

[
V∑
q=1

|diq − djq|q
]1=q

∈ [0;∞]; (2.10)

and the four conditions satis�ed by any metric function dist(·) are:

1. dist(di; dj) ≥ 0 non-negativity

2. dist(di; dj) = 0 i� di = dj coincidence
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3. dist(di; dj) = dist(dj; di) symmetry

4. dist(di; dq) ≤ dist(di; dj) + dist(dj; dq) triangle inequality.

The obtained L1-distance function for q=1 is known as City-block distance (among other

names), while Euclidean is the L2-distance derived for q=2 is one of the standard functions

used for document datasets. For multi-dimensional spaces weighted Euclidean versions are

applicable that have the form
√

(di − dj)W (di − dj)>. W is a V×V weight matrix which

can be diagonal, containing a global weight for each feature, or a full matrix. Mahalanobis

distance is of the latter case and uses the inverse covariance matrix, W=Σ−1. It is not

necessary for a distance function to satisfy all the above restrictive conditions in order

to be applicable in a clustering procedure. Recently, Bregman divergences is a family of

distance functions that have been considered in a general clustering framework [70]. These

functions are not necessarily symmetric nor do they satisfy the triangle inequality property

(4), while they have strong connection with various families of exponential distributions.

It can be shown that Euclidean, Mahalanobis, and Kullback{Leibler divergence belong to

this family of functions.

Among the various alternatives, Cosine similarity has shown to be an e�ective measure

[41, 71] for document clustering. It computes the cosine of the angle � between the two

document vectors:

sim(cos)(di; dj) = cos
(
�(di; dj)

)
=

d>i
‖di‖2

· dj
‖dj‖2

∈ [0; 1]: (2.11)

Unit similarity value implies the two documents are described by identical distributions

of term frequencies. In practice, all document vectors are normalized in the preparation

step, thus cosine similarity computation reduces to dot-product d>i dj computation.

This latter measure, especially when applied on non-negative spherical data, deter-

mines the same K-nearest neighbors (KNN) ranking for a reference object with the ranking

determined by Euclidean distance. This means that it is straightforward to use e�cient

KNN search methods which are designed based on Euclidean distance measure. Moreover,

in contrast to Cosine, Euclidean is a metric where triangular inequality holds, and this
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property enables faster KNN search [72, 73].

Other popular choices for text are Tanimoto, extended Jaccard, Dice coe�cient, and

Simple matching coe�cient, all set-theoretic functions and widely-used for binary feature

vectors (BFV) (note: the second and third are quite similar to Cosine since they are

based on dot-product computation). The idea is to measure some kind of information

intersection (overlap) and it can also be extended to arbitrary non-negative weighted

vectors. BFV is useful for representing very small segments of text such as search queries,

or a set of descriptive tags, where the terms frequencies are not important. Moreover,

in very large-scale IR systems, BFV representation along with hashing techniques enable

the e�cient approximation of pairwise object similarities. Such an approach is applied in

[74] for approximate KNN search. Small texts, in general, is a special case of texts where

interesting problems arise concerning their representation and similarity calculations [75].

Similarity and dissimilarity are conceptually complementary to each other. A dis-

tance measure dist(·) ∈ [0,1] can be converted to the corresponding similarity measure by

sim(·)=1−dist(·) ∈ [0,1], or using various other simple calculations. When dist(·) is not

bounded, e.g. dist(eucl) ∈ [0,∞], then a monotonically decreasing function can be used to

convert it in to a similarity value in [0,1]. For this purpose, a kernel function, such as

Gaussian or Laplacian, could also be employed.

2.6 Clustering

2.6.1 Algorithms

Clustering using k-means family of methods

The k-means procedure is a generic clustering approach that assumes a prototype to

represent each cluster and an objective function Φ(C) that evaluates the quality of a

partition C, which is de�ned as the collection of sets cj containing the objects assigned to

the j-th cluster. In order to solve a problem with k clusters, the k prototypes are usually
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initialized by randomly selecting k objects as cluster centroids (Forgy's approach) and

then the algorithm iterates to optimize an objective function (called clustering error):

1. Reassignment step: each object is assigned to the cluster whose prototype is nearest

to the object.

2. Prototype batch update step: given the assignment of objects to clusters, each cluster

prototype is updated in a way that optimizes the objective function.

The k-means algorithm minimizes the sum of squared Euclidean distances between the

objects of the clusters and the centroid prototypes Eq. 2.12, where the centroids are

computed as the arithmetic mean �j = (1=nj)
∑

di∈cj di of the nj objects of that cluster:

ΦSSE(C) =
k∑

j=1

∑
di∈cj

∥∥�j − di∥∥2

2
: (2.12)

It converges to a local minimum of ΦSSE(C) and the quality of the solution depends

strongly on the initial conditions. Its time complexity is O(tNV ), where t is the number

of iterations until convergence. The form of cluster prototypes constitutes a choice that

also a�ects the solution quality. k-medoids is a robust method that represents a cluster

with the medoid object de�ned as the object that has the maximum average similarity to

the objects of its cluster:

mj = arg max
di∈cj

{
1

nj

∑
dq∈cj

sim(di; dq)

}
: (2.13)

In k-medoids, the medoid prototypes are used in Eq. 2.12. Note that in Euclidean space

there is the disadvantage in complexity O(n2
j) required to determine the medoid of a

cluster.

Spherical k-means (spk-means) is a variant of k-means that utilizes the Cosine simi-

larity for the data vectors normalized with respect to L2-norm. The maximized objective

function is the clustering Cohesion (COH). The optimal prototype for a cluster is its nor-

malized centroid uj=sj= ‖sj‖2, where sj=
∑

di∈cj di, and the overall clustering Cohesion
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of a partition C is given by:

ΦCOH(C) =
k∑

j=1

∑
di∈cj

u>j di =
k∑

j=1

u>j sj =
k∑

j=1

s>j sj

‖sj‖2

=
k∑

j=1

‖sj‖2 : (2.14)

A lot of research e�ort has been focused on the careful initialization of this family

of algorithms, due to its importance for the �nal clustering quality [76{80]. Among

the typical object-based seeding techniques is the deterministic Kaufman heuristic (or

k-farthest heuristic) [81] that tries to spread the initial centroids away from each other. It

selects the most centrally located object as the �rst centroid and each additional centroid

is determined to be the object farthest from the objects-centroids already selected. k-

means++ [78], on the other hand, introduces stochasticity: it starts with the uniform

random selection of one object as the �rst centroid, then each additional centroid is

initialized using a weighted probability distribution. Speci�cally, the probability for a

candidate object to be selected as a new centroid is proportional to the squared distance

between the object and its nearest centroid previously selected. In [78] it is shown that this

initialization guarantees an O(logk) approximation to the optimal k-partition. However,

all the above initialization methods select objects as seeds and this may not be e�cient

in the text feature space, since a document usually contains a very small percentage of

the vocabulary terms.

Incremental clustering is a strategy that introduces one cluster each time in an already

formed solution of lower order. In other words, each clustering k-solution is exploited

to initialize the prototypes of the k+1 clustering problem. The advantage is that it

provides a way to search for a good initialization and avoid the naive random restarts

that is ine�cient especially when the number of clusters is large. On the other hand, the

computational burden increases and it is important to use e�cient techniques to reduce

the search space. Popular incremental methods are the bisecting k-means [82, 83] and

global k-means [84]. The former, at each incremental step, selects a cluster according to

an inhomogeneity criterion and then uses 2-means to split that cluster in two parts. The

latter approach, along with the k already computed prototypes, it considers each of the
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N objects of the dataset as the initial prototype of the k+1 cluster. The best clustering

produced from these initializations is the resulting k+1-partition. Incremental clustering

is further studied in Sec. 7.

Other clustering methods

Spectral clustering [85] is based on spectral analysis of the similarity matrix of the dataset.

The basic idea is to project the data in the subspace spanned by the k largest eigenvec-

tors of the Laplacian matrix L, which is computed from the similarity matrix A(N×N)

of pairwise document similarities. The similarity matrix A is computed using the cosine

similarity measure. The Laplacian matrix is computed as L=D−1=2AD−1=2, where D is a

diagonal matrix with Dii=
∑N

j=1Aij the sum of i-th row of similarities. To solve for k clus-

ters, the algorithm proceeds with the construction of a matrix X(N×k)={xi : i=1, : : : , k}

whose columns correspond to the k largest eigenvectors of L. X is then normalized so

that each row has unit length in Euclidean space, let Z(N×k) be the obtained normalized

matrix. Finally, the clustering procedure takes place in the embedding space, i.e. the

rows of Z are clustered using the standard k-means algorithm, assuming that i-th row of

Z represents the i-th document.

Special algorithms have also been developed to deal with HDS feature spaces. The aim

is to �nd clusters in subspaces of data instead of the entire feature space and it is referred

to as subspace clustering Its key characteristic is the simultaneous determination of the

object membership to clusters and the subspace of each cluster. Surveys on subspace

clustering in high dimensional spaces can be found in [37, 40]. Further discussion on this

category of methods is provided in Sec. 4.2.2.

To provide a more complete report on the state-of-the-art of the clustering literature

applied in HDS data spaces, we should mention the e�ective generative probabilistic

topic models, such probabilistic latent semantic indexing [86], latent Dirichlet allocation

[24, 87, 88], Dirichlet compound multinomial [89, 90], and mixture of von Mises-Fisher

distributions [91]. Note that a topic does not actually coincide with a cluster, thus the

probabilistic topic-modeling can be viewed as a representation method the output of which
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can be partitioned using a clustering algorithm.

Clustering re�nement

Clustering re�nement is the post-processing procedure aiming to improve the clusters

produced by a clustering algorithm2. This is applicable to the at, incremental, or hierar-

chical approaches. The re�nement algorithm may be a specialized algorithm that proceeds

with small changes in the clusters, such as single object reassignment [92] or swapping

the cluster memberships for pairs of objects [93]. It is also a practical choice to re�ne

the produced clusters using a clustering method of di�erent characteristics to the initial

one. For instance, it has been proposed to initialize k-means using agglomerative cluste-

ring [42], genetic algorithms [94], [95], and simulated annealing [96], among others. An

alternative approach is the hybridized centroid-medoid heuristic [97] that applies a small

number of k-means iterations and tries to replace a centroid with a medoid belonging in

a set of candidate medoids precomputed o�ine.

2.6.2 Performance evaluation

Cluster validation is the procedure that evaluates the quality of the obtained clustering

results. One may realize that, since there are various di�erent de�nitions about which is

an interesting cluster structure to search for, the objective evaluation of a solution is not

an easy problem [98]. All evaluation measures exhibit some bias towards their underlying

assumptions. We should note that the number of clusters is one of the most important

factors that a�ect an evaluation and it is generally di�cult to compare clusterings with

di�erent number of groups.

The most straightforward evaluation approach is the external validation, where su-

pervised information is used to determine whether the result resembles with human per-

ception for the problem. The required information is a labeled dataset that describes

an intuitively correct solution to the partitioning problem (the so-called ground truth).

2Note that in literature the term `re�nement ' is also used to describe the iterative optimization of an
objective function
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Then, several measures could be utilized to assess the agreement between the labels and

the clustering result. Most of them compute the degree to which objects with the same

cluster label are grouped together, while objects with di�erent cluster labels are assigned

to di�erent groups. There are numerous external evaluation measures. Next we describe

some popular ones that have been used in the experiments of the following chapters.

We de�ne the following notation: C the partition of data objects into k clusters

(clustering solution) c1,: : : ,ck, C
(L) the grouping based on ground truth document la-

bels c
(L)
1 ,: : : ,c

(L)
k (true classes), N the number of documents in a dataset, Ni the size

of c
(L)
i , nj the size of cj, and nij the number of documents belonging to c

(L)
i that are

clustered in cj. Let us further denote the probabilities p(cj)=nj=N , p(c
(L)
i )=n

(L)
i =N , and

p(c
(L)
i ; cj)=nij=N . The [0,1]-normalized mutual information (NMI) measure, as used in

[99], is computed by normalizing the mutual information between C and C(L) wrt the

maximum entropy of clusters H(C(L)), or classes H(C):

NMI(C(L);C) =

∑
ci∈C(L);
cj∈C

p(ci; c
(L)
j ) log2

p(c
(L)
i ; cj)

p(c
(L)
i )p(cj)

max
{
H(C(L)); H(C)

} ∈ [0; 1]: (2.15)

When C and C(L) are independent, the value of NMI equals to zero, while it equals to

one when the two partitions contain identical clusters.

The F1-measure, or simply F , is the harmonic mean of the precision and recall mea-

sures of the solution. Let the precisionij and recallij for each (class i, cluster j) pair, then

the respective F (i; j) is given by:

f(i; j) = 2
precisionij · recallij
precisionij + recallij

; (2.16)

and the �nal F measure is obtained by the weighted average:

F (C(L);C) =
k∑
i=1

p(cj) max{f(i; j)}: (2.17)
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Higher values of F indicate better clustering solutions.

The Purity of a cluster can be interpreted as the classi�cation accuracy by assuming

that all objects of a cluster are assigned to its dominant class. The clustering Purity is

the weighted average of cluster-wise purity:

Purity(C(L);C) =
1

N

k∑
j=1

max
i=1;:::k

{nij} ∈ [0; 1]: (2.18)

In order to compare the ground truth labeling and the grouping produced by clustering,

we also utilized the Variation of Information (VI) metric [100] and the Adjusted Rand

Index (ARI) [101]. Better clustering is indicated by lower values of VI and higher for

ARI. Note that these measures can be extended to cover the case where the number of

data classes is not the same as the number of clusters.

As discussed in Chapter 1, one of the major contributions of clustering in data analysis

is the fact that it can discover the cluster structure in data that human might not be able

to evaluate by themselves (inability to provide labels). But even if we are aware of what

we are looking for, it generally preferable to use unsupervised, called internal evaluation

measures. These measures compute quantities that involve the relations between data

objects themselves. Intuitively, a good clustering solution should present high separation

and high compactness. The �rst, implies that the clusters should be well-separated in the

space, and the second that the objects of each cluster should be close to each other. Thus,

given the pairwise (dis)similarities and the discovered cluster structure, we may compute

quantities that express these fundamental concepts.

Nevertheless, the clustering methods that are based on the optimization of an objective

function provide this value of the objective Φ(C) that can be used as a clustering quality

criterion. The limitation is that, in this way, it is not possible to compare clusterings with

di�erent objective functions, and of course in cases of solutions with di�erent number of

clusters. However, if all the compared algorithms use the same assumptions under which

they seek for a clustering solution, then direct comparison is possible. For example, we

can compare clustering results from k-means, bisecting k-means, and global k-means (with
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same k value), since all of them use in fact the same objective function.
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Chapter 3

Improving Document Clustering Using

Global Term Context Vectors

3.1 Introduction

3.2 Extensions to VSM

3.3 Discussion on VSM variations

3.4 Utilizing local contextual information

3.5 A semantic matrix based on global term context vectors

3.6 Clustering experiments

3.7 Conclusions

3.1 Introduction

In this chapter, we present the global term context vector model (GTCVM) document

representation model [43]. It is an entirely corpus-based extension to the traditional vector

space model and incorporates contextual information for each vocabulary term (feature

dimension). First, the local context for each term occurrence in the term sequences of
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documents is captured and represented in vector space by exploiting the idea of the

locally weighted bag of words (LoWBOW) [102]. Then all the local contexts of a term are

combined to form its global context vector. Global context vectors constitute a semantic

matrix which e�ciently maps the traditional VSM document vectors onto a semantically

richer feature space of same dimensionality to the original.

As indicated by our experimental study, in the new space, superior clustering solutions

are achieved using well-known clustering algorithms such as the spherical k-means [41] or

spectral clustering [85].

3.2 Extensions to VSM

In Sec. 2.5.1 we presented the basics regarding the vector space model (VSM) where

each document is represented by a vector of weights corresponding to text features [1,

2]. Many variations of VSM have been proposed that di�er in what they consider as a

feature, or `term' [103]. The the most common approach is to consider di�erent words as

distinct terms, which is the widely-known the bag of words (BOW) model. This model,

despite having a series of advantages, such as generality and simplicity, it cannot model

e�ciently the rich semantic content of text. An extension is the bag of phrases model

(BOP) [104] that extracts a set of informative phrases or word n-grams (n consecutive

words). Especially for noisy document collections, e.g. containing many spelling errors,

or collections whose language is not known in advance, it is often better to use VSM to

model the distribution of character n-grams in documents. In this chapter, we consider

word features and we refer to them as terms, however, the described procedures can be

directly extended to more complex text features.

The disadvantage of considering multiword features, as BOP does, or generally com-

binations of multiple low-level features, is the fact that as phrases become longer they

clearly obtain superior semantic value but, at the same time, they become statistically in-

ferior with respect to single-word representations [105]. A category of methods developed

35



aiming on tackling this di�culty recognize the frequent wordsets (unordered itemsets) in

a document collection [106{108], while the method proposed in [109] exploits the frequent

word subsequences (ordered) that are stored in a generalized su�x tree (GST) for each

document.

Modern variations of VSM are used to tackle the di�culties occurring due to high

dimensional and sparse (HDS) feature spaces, by projecting the document vectors onto a

new feature space called concept space. Each concept is represented as a concept vector

of relations between the concept and the vocabulary terms. Generally, this approach of

document mapping can be expressed as:

'VSM : d→ d′ = Sd ∈ RV ′; V ′ ≤ V; (3.1)

where the V ′×V matrix S stores the concept vectors as rows. This projection matrix is

also known as semantic matrix. The Cosine similarity between two normalized document

images in the concept space can be computed as a dot-product:

sim(cos)
sem (d′i; d

′
j) = (Sdi)

>(Sdj) = (hSi Sdi)
>(hSj Sdj) = hSi h

S
j (d>i S

>Sdj); (3.2)

where the scalar normalization coe�cient for each document is hSi =1=‖Sdi‖2. The simi-

larity de�ned in Eq. 3.2 can be interpreted in two ways:

i) as a dot product of the document images (Sdi)
>(Sdj) that both belong to the new

space RV ′ or, alternatively,

ii) as a composite measure that takes into account the pairwise correlations between

the original features expressed by the matrix S>S.

There is a variety of methods proposing alternative ways to de�ne the semantic matrix

though many of them are based on the above linear mapping. The widely-used latent

semantic indexing (LSI) [23] projects the document vectors onto a space spanned by the

eigenvectors corresponding to the V ′ largest eigenvalues of the matrix D>D, where D

is the N×V document-term matrix. The eigenvectors are extracted by the means of
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singular value decomposition (SVD) on matrix D> and they capture the latent semantic

information of the feature space. In this case, each eigenvector is a di�erent concept

vector and V ′ is a user parameter much smaller than V , while there is also a considerable

computational cost to perform the SVD. In concept indexing [110], the concept vectors

are the centroids of a V ′-partition obtained by applying document clustering. In [111],

statistical information such as the covariance matrix is combined with traditional mapping

approaches into latent space (e.g. LSI, PCA) to compose a hybrid vector mapping.

A computationally simpler alternative that utilizes the document-term matrix D as a

semantic matrix is the generalized vector space model (GVSM) [69], i.e. SGVSM=D and

the image of a document is given by d′=Dd. By examining the product Dd ∈ RN×1,

we can conclude that a GVSM projected document vector d′ has lower dimensionality

if N≤V . Moreover, if both d and D are properly normalized, then image vector d′

consists of the N Cosine similarities between the document vector d and the rest of the

N−1 documents in the collection. This observation implies that the GVSM works in the

document similarity space by considering each document as a di�erent concept. On the

other hand, the respective product S>
GVSM

SGVSM=D>D (used in Eq. 3.2) is a V×V term

similarity matrix whose r-th row has the dot-product similarities between term �r and

the rest of the V−1 of vocabulary terms. Note that terms become more similar as their

corresponding normalized frequency distributions into the N documents are more alike.

Based on the GVSM model, it has been proposed to build local semantic matrices for

each cluster during document clustering [112].

A rather di�erent approach proposed in [113] for information retrieval is the context

vector model (CVM) where, instead of a few concise concept vectors, it computes the

context in which each of the V vocabulary terms appears in the dataset, called term

context vector (tcv). This model computes a V×V matrix SCVM containing the term

context vectors as rows. Each tcvi vector aims to capture the V pairwise similarities

of term �i to the rest of the vocabulary terms. Such similarity is computed using a co-

occurrence frequency measure. Each matrix element [SGVSM]ij stores the similarity between
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terms �i and �j computed as:

[SCVM]ij =


1 ; i = j∑N

r=1 tfri tfrj∑N
r=1(tfri

∑V
q=1; q 6=i tfrq)

; i 6= j:
(3.3)

Note that this measure is not symmetric, generally [SCVM]ij 6= [SCVM]ji, due to the denom-

inator that normalizes the pairwise similarity to [0, 1] with respect to the `total amount '

of similarity between term �i and the other vocabulary terms. The rows of matrix SCVM

can be normalized with respect to the Euclidean norm and each document image is then

computed as the centroid of the normalized context vectors of all terms appearing in that

document:

'CVM : d→ d′ =
V∑
i=1

tfi tcvi; (3.4)

where tfi is the frequency of term �i. The motivation for using term context vectors is to

capture the semantic content of a document based on the co-occurrence frequency of terms

in the same document, averaged over the whole corpus. The CVM representation is less

sparse than BOW. Moreover, weights such as idf can be incorporated to the transformed

document vectors computed using Eq. 3.4. In [113] several more complicated weighting

alternatives have been tested in the context of information retrieval that in our text

document clustering experiments did not perform better than the standard idf weights.

In a higher semantic level than term co-occurrences, additional information for vocabu-

lary terms provided by ontologies has also been exploited to compute the term similarities

and to construct a proper semantic matrix. WordNet [47] and Wikipedia [48] have been

used for this purpose in [49, 50] and [51], respectively.

3.3 Discussion on VSM variations

Summarizing the properties of the above mentioned vector-based document representa-

tions, in the traditional BOW approach, the dimensions of the term feature space are
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considered to be independent to each other. Such an assumption is very simplistic, since

there exist semantic relations among terms that are ignored. The VSM-extensions aim

to achieve semantic smoothing, a process that redistributes the term weights of a vector

model, or map data in a new feature space, by taking into account the correlations be-

tween terms. For instance, if the term `child ' appears in a document, then it could be

assumed that the term `kid ' is also related to the speci�c document, or even terms like

`boy ', `girl ', `toy '. The resulting representation model is also a VSM, but the document

vectors become less sparse and the independence of features is mitigated in an indirect

way. The smoothing is usually achieved by a linear mapping of data vectors to a new

feature space using a semantic matrix S. It is convenient to think that the new document

vector d′=Sd contains the dot product similarities between the original BOW vector d

and the rows of the semantic matrix S.

A basic di�erence between the various semantic smoothing methods is related to the

dimension of the new feature space which is determined by the number V ′ of row vectors of

matrix S. In case their number is less than the size V of the vocabulary, such vectors are

called as concept vectors and are usually produced using the LSI method. Each concept

vector has a distribution of weights associated to the V original terms that de�ne their

contribution of to the corresponding concept. Of course the resulting representation of the

smoothed vector d′ is less interpretable than the original and there is always a problem

of determining the proper number of concept vectors.

An alternative approach for semantic smoothing assumes that each row vector of

matrix S is associated with one vocabulary term. Unlike a concept vector that describes

abstract semantics of higher level, here, the elements of each vector describe the relation

of this term to the other terms. Those relations constitute the so called term context, thus

the respective vector is called term context vector. Each element of the mapped vector d′

will contain the dot product similarity between document d and the corresponding term

context vector, i.e. for each term vi the element d′i provides the degree to which the

original document d contains the term vi and its context, instead of just computing its

frequency as happens in the BOW representation. Note also that in BOW representation,

39



a dot product would give zero similarity for two documents that do not have common

terms. On the contrary, the dot product between a document vector and a term context

vector of a term vi that does not appear in that document may give a non-zero similarity.

This happens if the document contains at least one term vj with non-zero weight in the

context of term vi. For this reason, the smoothed representation d′ is usually less sparse

that d and retains their interpretability of dimensions. Moreover, concept-based methods

may be applied on the new representations.

The motivation of our work is to establish the importance of term context vectors and

to de�ne an e�cient way to compute them. The CVM method considers that the term

context is computed based on term co-occurrence frequency at the document-level. It does

not take into account the sequential nature of text and thus ignore the local distance of

terms when computing term context. On the other hand, the proposed GTCVM extends

the previous approach by considering term context at three levels:

i) it uses the notion of local term context vector (ltcv) to model the context around the

location in the text sequence where a term appears. These vectors are computed

using a local smoothing kernel as suggested in the LoWBOW approach [102] which

is described in the next section. The kernel takes into account the distance in which

other terms appear around the sequence location under consideration.

ii) it computes the document term context vector (dtcv) for each term that summarizes

the term context at the document-level.

iii) it computes the �nal global term context vector (gtcv) for each term representing

the overall term context at corpus-level. The gtcv vectors constitute the rows of the

semantic matrix S. Thus the intuition behind GTCVM approach is to capture the

local term context from term sequences and then to construct a representation for

global term context by averaging ltcvs at the document and corpus-level.
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3.4 Utilizing local contextual information

A text document can be considered as a �nite term sequence of its T consecutive terms

denoted as d seq=〈d seq(1); :::; d seq(T )〉 but, except for bag of phrases (BOP), so far in this

chapter the previously mentioned VSM-extensions ignore this property. A category of

methods have been proposed aiming to capture local information directly from the term

sequence of a document. The representation proposed in [114], �rst considers a segmen-

tation of the sequence that is done by dragging a window of n terms along the sequence

and computing the local BOW vectors for each of the overlapping segments. All these

local BOW vectors constitute the document representation called local word bag (LWB).

To compute the similarity between a pair of documents, the authors introduce a variant

of the vg-pyramid matching kernel [115] that maps the two sets of local BOW vectors to

a multi-resolution histogram, and then computes a weighted histogram intersection.

Another approach for text representation presented in [102], is the locally weighted bag

of words (LoWBOW) that preserves local contextual information of text documents by

the e�ective modeling of the text sequential structure. At �rst, a number of L equally

distant locations are de�ned in the term sequence. Each sequence location `i, i=1; :::; L,

is then associated with a local histogram which is a point in the multinomial simplex

PV−1, where V is the number of vocabulary terms. More speci�cally, for (V − 1)≥0, the

PV−1 space is the (V−1)-dimensional subset of RV that contains all probability vectors

(histograms) over V objects (for a discussion on the multinomial simplex see the Appendix

of [102]):

PV−1 =

{
H ∈ RV : Hi ≥ 0; ∀i = 1; :::; V and

V∑
i=1

Hi = 1

}
: (3.5)

Contrary to LWB, in LoWBOW the local histogram is computed using a smoothing

kernel to weight the contribution of terms appearing around the referenced location in

the term sequence, and to assign more importance to closely neighboring terms. Denoting

as H�(d seq(t)) the trivial term histogram of V terms whose probability mass is concentrated
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Figure 3.1: A toy example where the sequence 〈�1; �2; �2; �2; �1; �3; �3; �1; �1; �1;
�2; �2; �3〉 is considered that uses three di�erent terms �1, �2, �3 (vocabulary length:
V=3). The sub�gures present LoWBOW curves in the (V−1)-dimensional simplex for
increasing values of the parameter � that induce more smoothing to the curve. Each
point of the curve corresponds to a local histogram computed at a sequence location.
The more a term a�ects the local context at a location in the sequence, the more the
curve point (the lowbow histogram related to that location) moves towards the respective
corner of the simplex. For �=0 local histograms correspond to simplex corners, thus
the curve moves from corner to corner of the simplex. Two di�erent sampling rates for
LoWBOW representation are illustrated: sampling at every term location in the sequence
(dashed line) which is the our strategy to collect contextual information for each term,
and sampling every two terms (solid line). d) For �=∞, the LoWBOW curve reduces to a
single point that coincides with the BOW histogram of the sequence. In (d) we present as
`stars' the average ltcv histograms for each term (dtcv histograms) for the three di�erent
values of � and �=0:6 for all terms. As the value of � increases, the dtcv histograms of
all terms become more similar tending to coincide with the BOW representation.

only at the term that occurs at the location t in d seq:

[
H�(d seq(t))

]
i

=


1; �i = d seq(t)

0; �i 6= d seq(t)

; i = 1; :::; V; (3.6)
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then the locally smoothed histogram at a location ` in the d seq term sequence is computed

as in [102]:

lowbow(d seq; `) =
T∑
t=1

H�(d seq(t))K`;�(t); (3.7)

where T is the length of d seq. K`;�(t) denotes the weight for location t in sequence given by

a discrete Gaussian weighting kernel function of mean value ` and standard deviation �.

Speci�cally, the weighting function is a Gaussian probability density function restricted

in [1; T ] and renormalized so that
∑T

t=1K`;�(t) = 1. It is easy to verify that the result of

the histogram smoothing of Eq. 3.7 is also a histogram.

It must be noted that for �=0 the lowbow histogram (Eq. 3.7) coincides with the trivial

histogram H�(d seq(`)), where all the probability mass is concentrated at the term at loca-

tion `. As � grows, part of the probability mass is transfered to the terms occurring near

location `. In this way, the lowbow histogram at location ` is enriched with information

about the terms occurring in the neighborhood of `. The smoothing parameter � adjusts

the `locality' of term semantics that is taken into account by the model. Thus, instead

of mining unordered local vectors as in [114], the LoWBOW approach embeds the term

sequence of a document in the PV−1 simplex. The sequence of the L locally smoothed

histograms (denoted as lowbow histograms) form a curve in the (V -1)-dimensional simplex

(denoted as LoWBOW curve). Fig. 3.1 illustrates the LoWBOW curves generated for a

toy example and describes the role of parameter �. In this �gure we aim to illustrate i)

the LoWBOW curve representation, i.e. the curve that corresponds to a sequence of his-

tograms (local context vectors), where each local context vector is computed at a speci�c

location of the sequence and corresponds to a point in the (V -1)-dimensional simplex; ii)

the impact of the smoothing coe�cient � on the computed local context vectors. This �g-

ure illustrates that the increase of smoothing makes the lowbow histograms (points of the

curve) more similar. This can also be veri�ed by observing that as smoothing increases,

the curve becomes more concentrated around a central location of the simplex. For �=∞

all histograms become similar to the BOW representation and the curve reduces to a

single point. On the contrary, for �=0 the histograms correspond to simplex corners.
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A similarity measure between LoWBOW curves has been proposed in [102] that as-

sumes a sequential correspondence between two documents and computes the sum of the

similarities between the L pairs of LoWBOW histograms. Obviously, it is expected for

this similarity measure to underestimate the thematic similarity between documents that

follow di�erent order in the presentation of similar semantic content.

3.5 A semantic matrix based on global term context vectors

In this section we present the global term context vector model (GTCVM) approach

for capturing the semantics of the original term feature space of a document collection.

The method computes the contextual information of each vocabulary term, that is subse-

quently utilized in order to create a semantic matrix. In analogy with CVM, our approach

reduces data sparsity but not dimensionality. The interpretability of the derived vector

dimensions remains as strong as in the BOW model as the value of each dimension of

the mapped vector corresponds to one vocabulary term. Methods that reduce data di-

mensionality could also be applied on the new representations at a subsequent phase.

Compared to CVM, GTCVM generalizes the way the term context is computed by taking

into account the distance between terms in the term sequence of each document. This is

achieved by exploiting the idea of LoWBOW to describe the local contextual information

at a certain location in a term sequence. It must be noted that our method borrows from

the LoWBOW approach only way the local histogram is computed at each location of the

term sequence and does not make use of the LoWBOW curve representation.

More speci�cally, we de�ne the local term context vector (ltcv) as a histogram asso-

ciated with the exact occurrence of term d seq(`) at location ` in a sequence d seq. Hence,

one ltcv vector is computed at every location in the term sequence, i.e. `=1, ...,T . Note

that GTCVM does not preserve any curve representation. This means that we are not

interested in the temporal order of the local term context vectors. The ltcv(d seq; `) is a

modi�ed lowbow(d seq; `) probability vector that represents contextual information around
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Figure 3.2: Various weight distributions for the neighboring terms around a reference term
occurring in the middle of a term sequence of length 50. The distributions are obtained
by varying the value of parameter � in Eq. 3.8. This distribution de�nes the contribution
of each term to the context of the speci�c reference term. The scale value of the local
kernel is set to �=5, while self-weight � is set to 0.05 (left), 0.10 (middle), 0.2 (right).

location `, while adjusting explicitly the self-weight �d seq(`) of the reference term appearing

at location `:

[ltcv(d seq; `)]i =


�d seq(`) ; �i = d seq(`);

(1− �d seq(`)) · idfi · [lowbow(d seq; `)]i∑V
j=1;j 6=i idfj · [lowbow(d seq; `)]j

; �i 6= d seq(`):

(3.8)

The self-weight (0 ≤ �d seq(`) ≤ 1) adjusts the relative importance between contextual

information (computed using the lowbow histogram) and the self-representation of each

term. Fig. 3.2 illustrates an example of how the value of parameter � a�ects the local

term weighting around a reference term in a sequence. When the parameter � of the

Gaussian smoothing kernel is set to zero, or �=1, the ltcv(d seq; `) reduces to a trivial

histogram H�(d(seq)(`)) (see Eq. 3.6). The other extreme is the in�nite � value, where for

small � values all the ltcv computed in a document d become similar to the tf histogram

for that document.

The latter observation is the reason for considering an explicit self-weight in Eq. 3.8,

because a at smoothing kernel obtained for large � value can make a lowbow vector to

have improperly low self-weight for the reference term. For example, if a term appears
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Figure 3.3: An example of how ltcv histograms are used to summarize the overall con-
text in which a term appears in the two term sequences of (c) using Eq. 3.12. a) The
term sequences (x-axis) of documents A, B are presented and the corresponding ltcv are
illustrated as grey-scaled columns. Those vectors are computed at every location in the
sequence using a Gaussian smoothing kernel with �=1 and �=0.6 for all terms. Brighter
intensity at cell i, j indicates higher contribution of the term �i to the local context of
the term appearing at location j in the sequence. b) The resulting transposed semantic
matrix (S>), where the gray-scaled columns illustrate the global contextual information
for each vocabulary term computed by averaging the respective local context histograms
(Eq. 3.11). c) The two initial term sequences (the stem of each non-trivial term is empha-
sized). Assuming the same idf weight for each vocabulary term, the table presents the
BOW vector, the transformed vector d′ using Eq. 3.12 as well as the e�ect of semantic
smoothing (di� =BOW−d′) on document vectors. The redistribution of term weights,
that results by the proposed mapping, reveals is done in such a way that low frequency
terms are gaining weight against the more frequent ones. Note also that the similarity
between the two documents is 0.756 for the BOW model and 0.896 for the GTCVM.
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once in a document, then the lowbow vector with �=∞ at that location would contain

very low weight for that term. Generally, the value of �� determines how much the context

vector of term � should be dominated by the self-weight of term �. In our method we set

this parameter independently for each individual term as a function of its idf� component:

�� = �+ (1− �) ·
(

1− idf�
logN

)
; � ∈ [0; 1]; (3.9)

where � is a lower bound for all a� , �=1,...,V (in our experiments we used �=0.2). The

rationale for the above equation is that for terms with high document frequency (i.e. low

idf�), we assign high �� values that suppress the local context in the respective context

vectors. In other words, the context is considered more important for terms that occur

in fewer documents. In Fig. 3.3a, we present an example illustrating the ltcv vectors of

two term sequences presented in Fig. 3.3c.

We further de�ne the document term context vector (dtcv) as a probability vector

that summarizes the context of a speci�c term at the document-level by averaging the

ltcv histograms corresponding to the occurrences of this term in the document. More

speci�cally, suppose that a term � appears noi;� > 0 times in the term sequence d seqi (i.e.

in the i-th document) which is of length Ti. Then the dtcv of this term � for document i

is computed as:

dtcv(di; �) =
1

no�;i

noi;�∑
j=1

ltcv(d seqi ; `i;�(j)); (3.10)

where `i;�(j) is an integer value in [1; :::; Ti] denoting the location of the j-th occurrence

of � in d seqi .

Next, the global term context vector (gtcv), is de�ned for a vocabulary term � so as

to represent the overall contextual information for all appearances of � in the corpus of

all N term sequences (documents):

gtcv(�) = hgtcv(�)

(
N∑
i=1

tfi;� dtcv(d seqi ; �)

)
: (3.11)

The coe�cient hGTCVM(�) normalizes the vector gtcv(�) with respect to the Euclidean norm,
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and tfi;� is the frequency of the term � in the i-th document. Thus, the gtcv(�) of term

� is computed using a weighted average of the document context vectors dtcv(d seqi ; �)

obtained for each document i in which term � appears. Thus, in contrast to LoWBOW

curve approach which focuses on the sequence of local histograms that describe the writing

structure of a document, our method focuses on the extraction of the global semantic

context of a term by averaging the local contextual information at all the corpus locations

where this term appears.

Finally, the extracted global contextual information is used to construct the V×V

semantic matrix SGTCVM where each row � is the gtcv(�) vector of the corresponding

vocabulary term �. Fig. 3.1d provides an example of illustrating the dtcv(d seqi ; �) vectors

for each document (the points denoted as `stars'). Fig. 3.3b illustrates the �nal gtcv

vectors obtained by averaging the document-level contexts for each vocabulary term.

To map a document using the proposed GTCVM approach, we compute the vector

d′ where each element � is Cosine similarity between the BOW representation d of the

document and the global term context vector gtcv(�):

'GTCVM : d→ d′ = SGTCVM d; d
′ ∈ RV: (3.12)

Note that the transformed document vector d′ is V -dimensional that retains the interpre-

tability, since each dimension still corresponds to a unique vocabulary term. Moreover,

if �=0 and �>0, then Sgtcv d=d. Looking at Eq. 3.2, the product S>gtcv Sgtcv essentially

computes a Term Similarity Matrix where the similarity between two terms is based on

the distribution of term weights in their respective global term context vectors, i.e., on

the similarity of their global context histograms. The table of Fig. 3.3c illustrates the

e�ect of redistribution (compared to BOW) of the term weights (semantic smoothing) in

the transformed document vectors achieved by the proposed mapping.

The procedure of representing the input documents using GTCVM takes place in the

preprocessing phase. Let Ti the length of the i-th document and Vi its vocabulary. Let also

V the size of the whole corpus vocabulary. Then the cost to compute one ltcv vector at a
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location of the term sequence using Eq. 3.8, and to add its Vi non-zero dimensions to the

respective dtcv, is O(Ti+Vi). This is done Ti times and the �nal dtcv of each di�erent term

of the document is added to the respective the gtcv rows. Thus, using proper notation for

the average length Ti and vocabulary length Vi of the documents in a corpus, the cost of

constructing the semantic matrix can be expressed as O(N ·Ti·(Ti+2·Vi)). However, since

Vi≤Ti�V , the overall computational cost of the GTCVM is determined by the O(N ·V 2)

cost of the matrix multiplication of the mapping of Eq. 3.12.

3.6 Clustering experiments

Our experimental setup was based on �ve di�erent datasets: D1-D4 are subsets of the

20-Newsgroups1, while D5 is the mod-apte split [116] version of the Reuters-215782 bench-

mark document collection where the 10 classes with larger number of training examples are

kept. The characteristics of these datasets are presented in Tab. 3.1. The preprocessing

of datasets included the removal of all tags, headers and metadata from the documents,

while applied word stemming and discarded terms appearing in less than �ve documents.

It is worth mentioning how we preprocessed the term sequences of documents. We con-

sidered a dummy term that replaced in the sequences all the low-frequency terms that

were discarded so as to maintain the relative distance between the terms that remained

in each sequence. For similar reasons, two dummy terms were considered at the end of

every sentence denoted by characters as (e.g. `.', `?', `!'). The dummy term is ignored

when constructing the �nal data vectors.

For each dataset, we have considered several data mappings ' and after each mapping

the spherical k-means (spk-means) [41] and spectral clustering (spectral-c) [85] algorithms

(see Sec. 2.6.1) were applied to cluster the mapped documents vectors into the k prede�ned

number of clusters corresponding to the di�erent topics (classes) in a collection. Spk-

means uses the Cosine similarity and maximizes the Cohesion of the clusters C={c1,...,ck}
1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.tar.gz.
2http://www.daviddlewis.com/resources/testcollections/reuters21578/reuters21578.tar.gz
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Table 3.1: Characteristics of text document collections. N denotes the number of docu-
ments, V is the size of the global vocabulary and Vi the average document vocabulary,
Balance is the ratio of the smallest to the largest class and Ti is the average length of the
term sequences of documents.

Name Topics Classes N Balance V Vi Ti

D1 20{NGs: graphics, windows.x, motor, baseball, 6 2000 200/400 4343 48.8 110

space, mideast

D2 20{NGs: atheism, autos, baseball, electronics, 7 3500 500/500 6442 52.6 108

med, mac, motor, politics.misc

D3 20{NGs: atheism, christian, guns, mideast 4 1600 400/400 4080 62 131

D4 20{NGs: forsale, autos, baseball, motor, hockey 5 1250 250/250 4762 44.1 104

D5 Reuters{21578: acq, corn, crude, earn, grain, 10 9979 237/3964 5613 39.1 76

interest, money-fx, ship, trade, wheat

Table 3.2: NMI values of the clustering solution for VSM (BOW), GVSM, CVM and the
proposed GTCVM (for several values of �) document representations using the spk-means
algorithm.

D1 D2 D3 D4 D5

Method � avg best avg10% avg best avg10% avg best avg10% avg best avg10% avg best avg10%

BOW { .722 .821 .594 .748 .829 .638 .537 .548 .379 .625 .779 .505 .552 .562 .535
GTCVM 1 .749 .854 .601 .767 .845 .638 .544 .564 .372 .667 .793 .515 .570 .578 .561

2 .756 .871 .631 .765 .852 .657 .563 .574 .396 .670 .832 .539 .572 .580 .561
5 .773 .881 .687 .777 .864 .662 .577 .602 .400 .688 .851 .539 .589 .633 .578
10 .777 .886 .685 .781 .873 .672 .590 .621 .424 .684 .849 .540 .590 .630 .580
30 .761 .879 .659 .776 .863 .653 .579 .590 .369 .683 .842 .518 .576 .612 .568
inf .760 .862 .631 .772 .862 .639 .574 .586 .366 .681 .840 .521 .576 .610 .566

GVSM { .752 .832 .611 .747 .822 .637 .556 .576 .419 .670 .827 .547 .575 .580 .573
CVM { .750 .841 .612 .754 .851 .659 .547 .604 .400 .672 .824 .541 .578 .581 .575

Table 3.3: F1-measure values of the spk-means clustering solution for the di�erent repre-
sentation methods.

D1 D2 D3 D4 D5

Method � avg best avg10% avg best avg10% avg best avg10% avg best avg10% avg best avg10%

BOW { .779 .920 .685 .780 .901 .645 .703 .706 .570 .735 .918 .558 .675 .697 .646
GTCVM 1 .806 .940 .688 .790 .921 .650 .709 .713 .576 .755 .920 .561 .691 .695 .677

2 .814 .946 .688 .792 .924 .674 .721 .728 .580 .764 .938 .598 .698 .714 .672
5 .828 .953 .722 .817 .929 .665 .736 .737 .597 .773 .948 .611 .712 .751 .681
10 .832 .954 .733 .820 .936 .603 .737 .739 .603 .773 .947 .581 .712 .749 .681
30 .814 .950 .747 .794 .929 .657 .725 .727 .576 .766 .944 .579 .698 .746 .666
inf .813 .942 .689 .792 .926 .651 .722 .728 .576 .765 .944 .581 .698 .744 .666

GVSM { .790 .923 .705 .783 .903 .640 .706 .71 .576 .750 .943 .591 .687 .720 .672
CVM { .765 .941 .672 .790 .930 .672 .708 .725 .576 .751 .934 .604 .685 .716 .669

(Eq. 2.14). Clustering evaluation was based on the supervised measure normalized mutual

information (NMI) and the F1-measure (see Sec. 2.6.2 for details).

Tab. 3.2, 3.3, 3.5, and 3.6 present the results from the experiments conducted for each

collection. Speci�cally, we compared the classic BOW representation, the GVSM, the

proposed GTCVM method (with �=0.2 in Eq. 3.9), that represents the documents as
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Table 3.4: The p and t values of the statistical signi�cance t-test of the di�erence in
k-means performance using GTCVM (�=10) and the compared representation methods,
with respect to the two evaluation measures. Values of p smaller than the signi�cance
level of 0.05 (5%) indicate signi�cant superiority of GTCVM.

GTCVM D1 D2 D3 D4 D5

(�=10) vs p-val t-val p-val t-val p-val t-val p-val t-val p-val t-val

BOWNMI .011·10−6 5.98 .075·10−3 4.05 .025·10−6 5.81 .080·10−8 6.45 .0000 12.8
GVSMNMI .0008 2.68 .081·10−3 4.02 .050·10−3 4.15 .085 1.73 .056·10−5 5.17
CVMNMI .0051 2.83 .0010 3.33 .052·10−4 4.65 .1659 1.39 .077·10−3 4.04

BOWF1
.020·10−5 5.39 .050·10−2 3.54 .046·10−2 3.56 .0010 3.32 .0000 12.8

GVSMF1
.037·10−3 4.22 .0021 3.11 .067·10−2 3.45 .0329 2.15 .0000 9.06

CVMF1 .081·10−3 4.02 .06·10−8 6.50 .0027 3.04 .0314 2.18 .0000 9.31

Table 3.5: NMI values of the clustering solution for VSM (BOW), GVSM, CVM and the
proposed GTCVM (for several values of �) document representations using the spectral
clustering algorithm.

D1 D2 D3 D4 D5

Method � avg best avg10% avg best avg10% avg best avg10% avg best avg10% avg best avg10%

BOW { .753 .761 .750 .781 .788 .737 .569 .585 .555 .718 .780 .631 .558 .559 .506
GTCVM 1 .770 .774 .769 .790 .795 .750 .614 .626 .600 .735 .779 .642 .560 .561 .516

2 .781 .785 .760 .790 .794 .757 .625 .632 .601 .752 .789 .649 .562 .564 .523
5 .794 .804 .790 .833 .853 .763 .639 .640 .619 .768 .827 .669 .579 .600 .557
10 .807 .814 .801 .833 .853 .761 .645 .648 .620 .758 .819 .661 .581 .589 .558
30 .791 .796 .769 .807 .832 .743 .613 .613 .609 .755 .797 .647 .567 .582 .535
inf .774 .782 .767 .794 .794 .722 .619 .619 .610 .749 .793 .637 .560 .568 .530

GVSM { .756 .770 .702 .794 .830 .747 .593 .595 .586 .722 .780 .637 .548 .554 .513
CVM { .761 .768 .751 .801 .823 .760 .605 .606 .590 .728 .794 .642 .557 .566 .519

Table 3.6: F1-measure values of the spectral clustering solution for the di�erent represen-
tation methods.

D1 D2 D3 D4 D5

Method � avg best avg10% avg best avg10% avg best avg10% avg best avg10% avg best avg10%

BOW { .801 .811 .780 .819 .822 .767 .710 .723 .701 .808 .911 .697 .666 .669 .654
GTCVM 1 .811 .819 .809 .822 .832 .772 .729 .741 .728 .834 .915 .722 .694 .703 .663

2 .818 .823 .806 .837 .841 .779 .733 .746 .732 .865 .922 .725 .689 .703 .652
5 .837 .840 .818 .887 .927 .792 .744 .756 .737 870 .930 .740 .716 .727 .647
10 .840 .842 .826 .890 .925 .788 .754 .759 .742 .865 .929 .736 .710 .725 .654
30 .823 .826 .809 .856 .886 .769 .726 .735 .725 .864 .925 .705 .704 .701 .642
inf .814 .817 .806 .826 .832 .734 .728 .735 .729 .859 .922 .703 .692 .686 .653

GVSM { .756 .770 .702 .826 .901 .780 .709 .714 .724 .823 .916 .705 .642 .657 .654
CVM { .761 .768 .779 .831 .897 .791 .725 .725 .723 .825 .916 .713 .673 .678 .654

described in Eq. 3.12 and the CVM as proposed in [113], where document vectors are

computed based on Eq. 3.4 with idf weights. More speci�cally, for each collection, each

representation method was tested for 100 runs of spk-means (Tab. 3.2, 3.3) and spectral-

c (Tab. 3.5, 3.6). To provide fair comparative results, for each document collection all

methods were initialized using the same random document seeds. The average of all runs

(avg), the average of the worst 10% of the clustering solutions (avg10%), and the best
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Table 3.7: The p and t values of the statistical signi�cance t-test of the di�erence in
spectral clustering performance using GTCVM (�=10) and the compared representation
methods, with respect to the two evaluation measures. Values of p smaller than the
signi�cance level of 0.05 (5%) indicate signi�cant superiority of GTCVM.

GTCVM D1 D2 D3 D4 D5

(�=10) vs p-val t-val p-val t-val p-val t-val p-val t-val p-val t-val

BOWNMI .0000 27.3 .0000 13.8 .0000 620. .026·10−4 4.85 .0000 8.03
GVSMNMI .0000 16.7 .0000 7.51 .0000 130. .129·10−5 4.99 .0000 12.1
CVMNMI .0000 19.3 .150·10−8 6.35 .0000 138. .316·10−3 3.67 .0000 8.83

BOWF1
.0000 24.1 .0000 11.4 .0000 875. .123·10−4 4.48 .0000 19.1

GVSMF1
.0000 15.1 .0000 7.53 .0000 410. .113·10−2 3.31 .0000 30.7

CVMF1 .0000 18.7 .0000 7.11 .0000 268. .115·10−3 3.94 .0000 14.1

Figure 3.4: The e�ect of varying the parameter � on the spk-means clustering performance
for each dataset. Eq. 3.9 is used to determine the term self-weight �� when computing
the ltcv histograms.

values are reported for each performance measure. The worst 10% concerns the 10% of

the solutions with the lowest Cohesion, while the best clustering solution is that having

the maximum Cohesion in the 100 runs (for spectral-c the sum of squared distances is

considered for this purpose). Moreover, in Fig. 3.4 we present the average clustering

performance of spk-means with respect to the value of � parameter of Eq. 3.9 where,

although not best for all cases, the value 0.2 we used seems to be a reasonable choice for

all the datasets we have considered. Note that similar e�ect was observed for spectral-c

method.
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In order to illustrate the statistical signi�cance of the obtained results, the well-known

t-test was applied for each dataset to determine the signi�cance of the performance dif-

ference between our methods and the compared methods. We have considered the case

where �=10 for the Gaussian kernel for all datasets. Within a con�dence interval of 95%

and for the value of degrees of freedom equal to 198 (for two sets of 100 experiments

each), the critical value for t is tc=1.972 (pc=5% for p value). This means that if the

computed t≥tc, then the null hypothesis is rejected (p≥5%, respectively), i.e. our method

is superior, otherwise the null hypothesis is accepted. As it can be observed from the

results of the statistical tests for spk-means presented in Table 3.4, the performance su-

periority of GTCVM is clearly signi�cant in four out of �ve datasets with respect to all

other methods. For dataset D4 the tests indicate that GTCVM, although still better

than BOW, has less signi�cant di�erence in performance compared to GVSM and CVM.

Table 3.4 provides the respective t-test results for the spectral-c method where, also due

to the lower standard deviation of the results using all document representation methods,

the GTCVM demonstrates signi�cantly better results than the compared representations.

The experimental results indicate that our method outperforms the traditional BOW

approach in all cases, even for small values of smoothing parameter � (e.g. �=1 or 2).

This substantiates our rationale that the clustering procedure is assisted by the proposed

semantic smoothing which takes into account the local contextual information associated

with a term occurrence. GTCVM requires moderate values for the parameter � to achieve

better performance. The same is observed for the quality (in terms of NMI or F1) of

the best solution (i.e. the one with maximum Cohesion) found in the 100 runs, where

moderate values of � (i.e. �=5 or 10) result in better GTCVM performance. Moreover,

the clustering results for a wide range of values of the smoothing parameter � indicate

that the method is quite robust to the speci�cation of this parameter. GTCVM behaves

similarly to BOW when a low value is set for �, while when this value becomes very high

the discriminative information of the global term context vectors is reduced. This was

demonstrated using spk-means and spectral clustering methods. Among them, the latter

in all cases except from D5 presented better average clustering solutions in terms of both
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evaluation measures NMI and F1, while interestingly, spk-means was superior in terms of

the best clustering solutions in most cases (with the exception of D3) despite operating

in a feature space of a much larger size.

3.7 Conclusions

We have presented the global term context vector model (GTCVM) document representa-

tion, an extension to the vector space model (VSM) that determines a proper feature space

to project the typical VSM document vector representations. Our approach is entirely

corpus-based and operates in the preprocessing in a sequence of four steps:

i) captures local contextual information associated with each term occurrence in the

term sequences of documents,

ii) summarizes the local context vectors of each term into the respective global term

context vectors,

iii) constructs the semantic matrix for a problem using the global term context vectors,

and �nally

iv) projects documents using the semantic matrix.

The proposed approach achieves semantic smoothing by reducing data sparsity, while

retaining the original dimensionality. The derived representation maintains the initial

interpretability since each dimension is associated with a single vocabulary term.

In the experimental document clustering study, we compared the proposed represen-

tation with the typical VSM, the Generalized-VSM and CVM, using Cosine similarity.

The statistical analysis of the obtained results indicates that assists well-known clustering

algorithms, such as spherical k-means and spectral clustering, to achieve better clustering

solutions compared to other representation methods.
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Chapter 4

Clustering Using Synthetic Cluster

Prototypes

4.1 Introduction

4.2 Background and context

4.3 The k-synthetic prototypes clustering method

4.4 Experimental evaluation

4.5 Conclusions

4.1 Introduction

In this chapter we put forth the idea that, although the centroids are the optimal cluster

prototypes with respect to certain objective functions (e.g. based on Cosine similarity),

their optimality could also become a drawback in high dimensional and sparse (HDS)

feature spaces and in cases of low data quality (e.g. outliers, noise). Especially, as

the number of data objects becomes smaller compared to the complexity of a clustering

problem (i.e. number of clusters, dimensionality), the centroids become less appropriate
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cluster representatives. Text documents constitute a typical example of data where such

an adverse setting is met.

We present the synthetic prototype, a novel type of cluster representative that, given

the object assignment to clusters, is computed in two steps: i) a reference prototype is

constructed for the cluster and then ii) feature selection is applied on it. We propose the

so-called MedoidKNN reference prototype which is based on a subset of K objects of a

cluster that are close to its medoid. This synthetic prototype favors the representation

of the objects of the dominant class in a cluster, i.e. the class to which the majority of

the cluster objects belong. Finally, we modify the generic spk-means iterative procedure

by incorporating synthetic prototypes. This leads to a novel, e�ective and quite simple

clustering method called k-synthetic prototypes (k-sp) [44].

We conducted an extensive evaluation of the k-sp method examining several options for

the synthetic prototypes and comparing it to several traditional clustering methods such

as spherical k-means, agglomerative, spectral clustering and two soft subspace clustering

methods.

4.2 Background and context

4.2.1 Text representation and representation spaces

The properties of the vector space in which text documents are represented are closely

related to the underlying nature of human language. The HDS properties are derived by

i) the very large feature sets that are needed to represent text data, and

ii) the fact that each document is a semantically narrow instance of a much more

general document class.

For example, two authors may express exactly the same ideas using generally di�erent

words or expressions. The text properties have been discussed in detail in Sec. 2.1. This

section focuses on the impact of these properties to the pairwise object (dis)similarities,
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i.e. the low-level information that any clustering algorithm exploits.

In an HDS space, documents of the same class present average pairwise similarity

comparable in magnitude to the similarity between documents from di�erent classes [99,

117]. For instance, let dx, dy, and dz three documents of the same class; it is possible for

dx to share a set of terms with dy and a di�erent set of terms with dz whereas, at the

same time, dy and dz may exhibit no vocabulary intersection. This would be expected

to hold mostly for pairs belonging to di�erent classes. In this context, certain qualitative

issues arise regarding the direct determination of a large number of nearest neighbors to

an object [99, 117]. For example, if an object has non-zero similarity with K objects

in the dataset (or a cluster), then the direct determination of its nearest K ′>K objects

would unavoidably make guesses.

Document clustering di�erentiates from the high dimensional data clustering problems

that seek for a single global subspace of features where there are observable clusters; dif-

ferent document clusters are formed in generally di�erent subspaces. Small text datasets

should be treated as cases of special interest. According to Heaps' power-law [54], the

increase of the corpus vocabulary is sublinear to the number of included documents. In

order to further analyze this issue, we empirically de�ne the relative dimensionality (rd)

of the feature space based on the number of features V , the number of data objects N ,

and the number of clusters k:

rd = log
kV

N
: (4.1)

This quantity may also provide an apriori empirical estimation of the `di�culty ' of the

learning process. Due to the sublinear relation between N and V , rd is expected to

be much larger for small datasets than for larger ones. The large vocabulary diversity

even between documents of the same class, is an additional justi�cation for the di�culty

of clustering small document datasets. Note that, for a �xed k, rd is a monotonically

decreasing function as the size of the dataset increases.

57



4.2.2 Text document subspace clustering

The di�erent topics are usually described by generally di�erent subsets of terms which, in

combination with the high sparsity of the feature space, lead to the hypothesis that the

underlying cluster structure may be better to be sought in subspaces of the original feature

space. The feature selection that is applied in the preprocessing phase actually computes

a single global subspace where data clustering is performed. A more fuzzy feature selection

would assign a global weight to each dimension. Subspace clustering can be thought as to

be an extension to feature selection in the sense that it determines a subspace explicitly

for each cluster during clustering.

In brief and according to [40], the main categorization of subspace clustering methods

is based on the relation between the axes of the subspaces they seek and the axes of

the original feature space. One approach, called generalized subspace clustering, is to

seek for arbitrarily oriented subspaces. Their major di�culty is to deal with the in�nite

search space of the candidate subspaces. A second and more widely-used approach is

constrained to seek for subspaces with axes parallel to the original. The projected subspace

clustering lets no intersection between the dimensions that span the di�erent subspaces

and hence, 2d−1 possible subspaces must be examined. The subcategory that lets di�erent

axis-parallel subspaces to have dimensions in common is called soft projected clustering

and usually di�erent feature weights in [0,1] are assigned for each cluster. The latter

subcategory can be further split based on the searching approach adopted regarding the

feature set a method starts to work with. Top-down approaches start with the full set of

features and iteratively try to determine narrow subspaces for each cluster. On the other

hand, bottom-up approaches start from single dimension subspaces and use a strategy

similar to mining frequent itemset to increase their dimensionality.

Apparently, there are important methodological di�erences in the literature of sub-

space clustering, but a thorough analysis is beyond the scope of this work. In the rest

of this section we will discuss the recent research on top-down soft projected subspace

clustering methods that develop feature weighting mechanisms and incorporate them to
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k-means, and have also been tested on the document clustering problem.

An abstract framework is presented in [118] that, using multiple feature vectors to

represent each data object, is able to integrate the heterogeneous feature spaces in the

k-means algorithm. A convex-k-means algorithm is proposed that is based on a con-

vex objective function constructed as a weighted combination of the distortions of each

individual feature subspace. The algorithm simultaneously minimizes the average within-

cluster dispersion and maximizes the average between-cluster dispersion along all of the

feature spaces. A method that received much attention is clustering on subsets of at-

tributes (COSA) [119]. It is an iterative algorithm that considers a feature weight vector

to each data point, initially containing equal weights for all features. Larger weights are

assigned to features that present small dispersion in a neighborhood around the reference

object, which means that are more important. The next step is to use these weights to

compute some other weights corresponding to each pair of objects that, in turn, update

the distances for the computation of the nearest neighbors. The algorithm stops iterating

when weight vectors corresponding to objects become stable. COSA outputs a pairwise

distance matrix based on a weighted inverse exponential distance and any distance-based

clustering method can produce the �nal clusters. The algorithm requires the user speci�-

cation of the size of neighborhood to consider, a second parameter that controls the fade of

the exponential feature weighting, while the major issue is that all the N×V parameters

should be estimated during the process.

Some other algorithms were then developed that consider one feature weighting vector

for each cluster. Feature weighting k-means (fwk-means) [120] aims to minimize the

following objective function:

Φfwkm(C) =
k∑

j=1

∑
di∈cj

V∑
l=1

wh
jl

[
(�jl − dil)2 + �

]
; (4.2)

subject to
V∑
l=1

wjl = 1; 0 ≤ wjl ≤ 1; j = 1; :::; k; (4.3)
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where �j is the L1-normalized centroid of the j-th cluster and h>1 a parameter that must

be set in advance. The term wh
jl(�jl − dil)2 computes the distance between the centroid

�ji and a document di on the speci�c l-th feature dimension. Initially, the weights are

set to 1/V and the k centroids are set in a random fashion. The optimization is then

performed by iterating the following steps until convergence:

1. Object assignment to their nearest cluster using the computed centroids and the

feature weights.

2. Computation of the cluster centroids using the computed feature weights.

3. Computation of the feature weights for each cluster using the computed cluster

centroids.

Given the cluster centroids and the k feature weighting vectors of the previous iteration,

the optimal weight of the l-th feature for cluster cj is computed by:

wjl =

 V∑
t=1

(∑
di∈cj wjl [(�jl − dil)2 + �]∑
di∈cj wjl [(�jt − dit)2 + �]

)1=(h−1)
−1

; (4.4)

where � is the average dispersion of the vocabulary measured o�ine in a sample of Nsample

data objects. fwk-means adds this value because a feature weight is not computable if

its dispersion in a cluster is zero. If we let mfvl to be the mean feature value of the l-th

feature in the data sample then � is given by:

� =
1

NsampleV

∑
di∈csample

V∑
l=1

(dil −mfvl)2: (4.5)

Locally adaptive clustering (LAC) algorithm presented in [121] is quite similar to

the Entropy weighting k-means (ewk-means) [122]. Both share some ideas with COSA,

whereas the feature weighting vectors are assigned to clusters instead of objects. More-

over, their search strategy is more alike to fwk-means. A modi�ed objective function is

utilized, which is to add the weight entropy ej=
∑V

l=1 wjl logwjl corresponding to each

cluster in order penalize the identi�cation of clusters in subspaces spanned by very few
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features. The objective function of ewk-means is:

Φewkm(C) =
k∑

j=1

∑
di∈cj

V∑
l=1

wjl(�jl − dil)2 +  ej

 ;  ≥ 0 (4.6)

subject to Eq. 4.3 and the value of  controls the focus of the objective function on the

feature weight entropy. The iterative optimization is identical to that of fwk-means and

di�er only on the weight computation:

wjl =
exp(−dispji=)∑V
t=1 exp(−dispjt=)

; (4.7)

where

dispjl =
∑
di∈cj

(�jl − dil)2: (4.8)

COSA and fwk-means require the tuning of the value of the parameter controlling

the size of the subspaces that are sought (the value of  in ewk-means). LAC introduces

an ensemble approach that combines multiple clustering solutions discovered by LAC

using di�erent  values, which produces a superior result than that of the participating

solutions. The feature weights of these methods enable the modeling of more complex

cluster shapes than the spherical of traditional k-means. However, the parameters that

need to be estimated are doubled compared to k-means: 2k×V for the feature weights

and the cluster centroids. This parameter increase unavoidably causes a large increase to

the number of local minima of the search space. Recently, an adaptive weight-adjusting

principle was adopted in [123], which at each step adds a ∆wjl to each wjl weight computed

based on the extend of contribution of the weight to the clustering quality. Finally, in [124]

an algorithm similar to LAC and fwk-means is presented, also allowing the incorporation

of constraints derived from a labeled data subset.
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4.3 The k-synthetic prototypes clustering method

4.3.1 Clustering using centroids and medoids

From an optimization point of view, the normalized centroid is the prototype that max-

imizes cluster's Cohesion Eq. 2.14. However, this optimality may become a drawback in

such a feature space, especially at early clustering iterations where clusters have low ho-

mogeneousity due to random initialization. More speci�cally, there exist two undesirable

phenomena concerning the use of centroids. At a data object level, the self-similarity

phenomenon implies that the similarity of a document with itself becomes the dominant

factor for deciding about its nearest cluster [41, 125]. This is explained by observing the

similarity between a normalized centroid uj of the cluster cj and a member document d:

u>j d =
1∥∥∥∑di∈cj di

∥∥∥
2

(
d>d+

∑
di∈cj
di 6=d

d>di

)
: (4.9)

Due to sparsity, the term d>di=1 can be large in magnitude compared to the sum of

similarities between d and the documents of cj, or the documents of other clusters. In

an extreme case, a document d ∈ cj which has non-zero similarity only with documents

from clusters other than cj, may still determine cj as its nearest cluster, since due to the

self-similarity term it may hold that:

d>d∥∥∥∑di∈cj di

∥∥∥
2

>

∑
di∈cl d

>di∥∥∑
di∈cl di

∥∥
2

(4.10)

Hence, d may remain in an inappropriate cluster. This phenomenon appears more intense

in cases where there is a small number of objects per cluster in combination with high

sparsity.

The second phenomenon is the feature over-aggregation that occurs when computing

a centroid for an impure cluster. Supposing that there is a feature subset f+
j strongly

related to each document class j, and a usually much larger subset f−j containing the

remaining V−|f+
j | terms, then the learning process aims to �nd a cluster prototype, i.e. a
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weight vector in RV , being discriminative for that class. This means that for each cluster

the clustering algorithm should try to determine the |f+
j | representative features for its

dominant class and to estimate their relative weight distribution in the possible presence

of |f−j | irrelevant features that should be assigned with very low weights. The e�ectiveness

of such an algorithm may be greatly a�ected by the level of the relative signi�cance of the

features of f+
j to that of f−j in a cluster at a particular iteration, which can be formally

expressed by the following ratio:

�j =

∑
i∈f+

j
uji∑V

i=1 uji
: (4.11)

Feature over-aggregation appears at the initial iterations where very low �-ratio values are

observed in the clusters of poor quality. This prevents the prototypes from becoming more

class discriminative, since the non-informative features also a�ect the object assignment

to clusters and hence the problem is retained.

Both self-similarity and feature over-aggregation constrain the local search exibility of

the k-means procedure and lead to poor solutions strongly dependent on initial conditions,

where often documents from two or more classes are assigned to the same cluster.

In what concerns the use of medoid as cluster prototype, it does not present the self-

similarity and feature over-aggregation e�ect. However, as mentioned in Sec. 4.2.1, since

each document is a speci�c semantically narrow instance of the more general topics of its

class, it contains a very small fraction of vocabulary terms. Thus it is unlike for a single

document to be a good cluster representative.

4.3.2 Synthetic cluster prototypes

Traditionally, feature selection (in our case term selection) takes place in the prepro-

cessing phase. However, we adopt a dynamic selection scheme implemented in the form

of synthetic cluster prototypes, which are computed by �rst selecting objects and then

features from each cluster (Fig. 4.1). As clustering proceeds we exploit the information

progressively produced in the formed clusters to retain the important features for each
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Figure 4.1: The k-sp framework using synthetic prototypes.

cluster. To compute a synthetic prototype we must de�ne:

i) a reference prototype, an initial representative of the cluster constructed by a subset

of its objects, and

ii) feature selection on prototypes in order to select features from the reference cluster

prototype.

The L2-normalized cluster representative derived by �ltering the features of a reference

prototype is a synthetic prototype. These prototypes are generic, in the sense that they

can be constructed by considering any reference prototype or feature selection scheme.

Omitting the feature selection step is also a viable option, thus a reference prototype

is also a synthetic prototype. In this case feature selection is achieved implicitly since

the reference prototype is computed using a subset of the cluster objects and it may not

contain all the vocabulary terms.

The proposed clustering algorithm is called k-synthetic prototypes (k-sp) and incor-

porates the synthetic prototypes into the spk-means procedure. Note that spk-means is

a special case of k-sp where the cluster centroids are used as reference prototypes and

no feature selection is applied. By using synthetic prototypes the k-sp procedure aims

to discover dynamically a di�erent feature subspace in which each document class can

be better separated but, at the same time as we explain, to mitigate the negative e�ects

of the self-similarity and the feature over-aggregation phenomena. The explicit feature

selection scheme we have considered is the simple thresholding on the feature weights of
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a reference prototype to keep the P most signi�cant features of a cluster (see Sec. 4.3.3).

Contrary to the typical preprocessing feature selection techniques, k-sp does not a�ect

the original data objects and hence, does not constrain future iterations with previous

cluster representations. In a later phase, one could consider much more detail (i.e. more

objects and features) from the clusters to �ne-tune the solution.

A straightforward option for reference prototype is the Centroid(r)1 of a cluster. The

assumption behind this choice is that many of the representative features for the dominant

class in a cluster would have high weights in the respective centroid. Thus, the feature

selection on it would keep the highly descriptive features for this class. Obviously, this

is not true for a cluster containing documents of more than one class none of which is

clearly dominant (Fig. 4.2b).

We proposeMedoidKNN(r), an approach to construct the reference prototypes by com-

puting the centroid of a subset Y of documents assigned to a cluster that are descriptive

of its dominant class. The set Y can be formed by selecting the K documents of the

cluster being the nearest neighbors to the medoid of that cluster, including the medoid

itself. As explained in Section 4.2.1, it would not be very e�cient to directly determine

a large number of nearest neighbors of a medoid using its pairwise similarities, since the

medoid document may contain only a part of the features present in the cluster. This

issue is further discussed on real world examples in Sec. 4.4.3. Therefore, we propose an

incremental procedure to form the set Y that avoids computing a large number of nearest

neighbors directly from the medoid object. Let � be the number of desired steps and �i,

i=1,. . . ,� a sequence of values such that 0<�i<�i+1<...<��=1. Starting with the medoid

Y0={m}, each next subset Yi (for i≥1), is formed by the d�iKe documents nearest to

the centroid of subset Yi−1. For a two-step example with �1=0.2, and �2=1:

i) �rst, the medoid of the cj cluster is determine, then

ii) the d0:2Ke objects in cj are determined that are nearest to the medoid and compute

their centroid rp1, and

1In cases where we need to be more speci�c we denote explicitly with the superscripts (r) and (s) the
reference and the synthetic prototypes, respectively.
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iii) the K objects in cj nearest to rp1 are located, and rp2 is computed which is the

�nal MedoidKNN(r). Notice that for K=nj, the rp coincides with the centroid of

cluster cj, while for K=1 it is the cluster medoid.

Typically, up to three steps (�=3) are su�cient to determine a proper �nal set Y�.

One could argue that the set Y should contain the nearest documents to the cluster

centroid and not to the medoid. As a matter of fact, the medoid is close to centroid in a

homogeneous cluster and the nearest objects to medoid may also be the nearest objects

to the centroid. However, if there are objects of more than one class in a cluster, the

medoid-based construction of Y is more probable to lead to a sharp preference for one

of the overlapping classes (see Fig. 4.2). This argument is strengthened by a usually

holding property called intracluster rNN-consistency : any data object in a cluster and its

r nearest objects in the same cluster will belong to the same class with high probability.

We should remark that intracluster rNN-consistency is expected to be higher than the

rNN-consistency of the whole dataset that can be similarly de�ned [126].

Another advantage of k-sp method is that by ignoring some documents that are far

from the synthetic prototypes, it provides robustness and ensures that possible outlier

and noisy objects will not a�ect any cluster representation (similarly for noisy features).

These objects are not discarded from the dataset. Besides, one object may be ignored as

a noisy-outlier at an iteration when computing a cluster representative, while it could be

later considered as one core object in case it is reassigned to another cluster, or its current

cluster changes dramatically, and the object is now located near the new cluster medoid.

The k-sp exhibits some similarity with the soft subspace clustering methods. The

object selection of the reference prototype de�nes implicitly a feature subspace for a cluster

while the feature selection on it explicitly prunes this subspace. Instead of using a separate

feature weighting mechanism per cluster, which also doubles the parameters need to be

estimated, k-sp uses a heuristic way to directly determine better vector representations

for the clusters. Using object selection it actually tries to favor the representation of the

dominant class in a cluster which implicitly results in subspace cluster representation.
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Figure 4.2: A cluster example that combines two data classes. It illustrates the rationale
of using objects around the cluster medoid to favor the representation of the dominant
class A and to enable the reassignment of the objects of the other class(es) to other
clusters. (a) Object-level view of a cluster where the medoid's nearest neighbors belong
mostly to the dominant class. (b) Feature-level view of a multidimensional cluster that
illustrates the imaginary histogram of the feature frequency for each of the classes. On the
horizontal axis, we suppose an ordering where features that exist in both class (probably
noisy) lay between the two peaks of representative class features. (c) The histogram of
the cumulative feature frequency over both classes. The respective distributions are also
presented for the medoid and the MedoidKNN(r) cluster prototypes.

Another worth mentioning di�erence is that we claim that after having concluded to a set

of synthetic representatives de�ned in certain feature subspaces, then we may take into

account the complete feature space to re�ne the clustering.

Algorithm 1 provides the pseudocode for the k-sp method that incorporates the syn-

thetic prototypes, constructed using Algorithm 2, into the spk-means algorithm. The clu-

stering Cohesion is computed with respect to the synthetic prototypes. It must be noted

that k-sp cannot guarantee the monotonicity of convergence. In the case of Centroid(s), we
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Algorithm 1 k-Synthetic Prototypes Clustering Method

function kSP (k; pobj; pfeat; ref flag)
input: the number of clusters k, two parameters pobj, pfeat (see Algorithm 2), a ag ref flag

that enables re�nement
output: the k clusters and the set of �nal prototypes
let: a partition C, the synthetic cluster prototypes S, and the respective clustering cohesion H

ConstructSP (C; pobj; pfeat) Algorithm 2 for each cluster of the partition C
RefineSolution (C) k-sp using Centroid(s) prototypes (spk-means) initialized by partition C

end let

1: {C; S} ← InitializeClusters ( )
2: H ← Cohesion (C; S)
3: repeat
4: {C(prev); S(prev); H(prev)} ← {C; S; H}
5: C← AssignDocsToClusters ( )
6: S ← ConstructSP (C; pobj; pfeat)
7: H ← Cohesion (C; S)
8: until C ≡ C(prev) orH ≤ H(prev)

9: if H < H(prev) then

10: {C; S; H} ← {C(prev); S(prev); H(prev)}
11: end if

12: if ref flag == TRUE then

13: C← RefineSolution (C)
14: end if

15: return {C; S}

compute the cluster centroid as reference prototype that maximizes the cluster Cohesion

ΦCOH(cj), but this optimality is lost after �ltering its features. Similarly, for MedoidKNN(s)

prototypes, it is not possible to guarantee that cluster Cohesion will increase at all iter-

ations and it is essential for k-sp to monitor the objective function and to terminate the

procedure if a deterioration of the overall Cohesion is observed (the condition H<H(prev)

in Algorithm 1). In this case, the clusters of the previous iteration are considered as the

solution to the problem produced by the main k-sp procedure.

4.3.3 De�nition of parameters

The k-sp parameters for computing the MedoidKNN(s) prototype can be de�ned with

respect to the volume of cluster information, namely the number of cluster members nj

and the distribution of feature weights aggregated in the reference prototype of a cluster.

Two parameters must be speci�ed by the user: pobj; pfeat∈[0, 1]. The number of medoid

neighbors Kj is computed as:

Kj = dpobj nje : (4.12)
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Note that di�erent number of neighbors are considered for each cluster cj, while only

documents with non-zero similarity to rp are selected (this is implemented by the function

NNDocs (c; rp; r) in Algorithm 2). In what concerns the feature selection, an option is

to �nd the Pj=dpfeatV (r)
j e terms of highest frequency in the reference prototype of rpj

that would cost O(V
(r)
j ). Our implementation uses a more e�cient approach which is

to select the highest weighted features (including the idf component) that contain a

fraction pfeat of the total feature weight sum
∑V

i=1 rpji (total information) of the reference

prototype vector rpj. Let y(i), i=1,...,Pj, a function that indexes the selected features

which represent the speci�ed pfeat information fraction, then Pj is described by:

Pj ≤ V
(r)
j :

∑Pj
i=1 rpjy(i)∑V

(r)
j

i=1 rpji

' pfeat: (4.13)

The more uniform the weight distribution of rpj, the more features are selected to repre-

sent the cj cluster. Typically, the cost of this operation is O(V
(r)
j log(V

(r)
j )), due to the

need of weight ordering. However, this can be reduced to O(V
(r)
j +z log z) by splitting the

range of feature weight values of a cluster into several intervals (bins), where only a small

number of features z contained in one bin may be needed to be ordered and then to select

the most informative subset out of them.

4.3.4 Re�ning the solution of k-synthetic prototypes

The robustness of the proposed k-sp method is the result of its ability to overcome adverse

situations in initial clustering iterations and hence to avoid poor locally optimal solutions.

After the termination of the basic procedure of k-sp method, the result may be further

re�ned by considering the centroids of the obtained clusters as the initial prototypes

for a �nal run of k-sp that now coincides with the regular spk-means (this option is

enabled by the ag ref flag in Algorithm 1). This re�nement strategy i) aims to improve

the result of k-sp method by using more detailed information for homogeneous clusters

already produced by the basic k-sp phase, ii) assists in reducing the sensitivity of the

k-sp to parameter de�nition K and P (see Sec. 4.4), and iii) constitutes a straightforward
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Algorithm 2 MedoidKNN Synthetic Prototype Construction

function ConstructSP (c; pobj; pfeat; �; �)
input: a cluster c, a threshold pobj∈[0; 1] that determines the number of documents used for

reference prototype construction, pfeat∈[0; 1] for feature selection on it, the number of
steps �, and a vector � of length � that control the incremental construction (see Sec. 4.3.2)

output: the synthetic prototype MedoidKNN(s) for cluster c

let: nc the number of documents in cluster c, and mc its medoid object
NNDocs (c; rp; r) determines the rNNs to rp vector in cluster c with non-zero similarity
Centroid (Yc) computes the centroid of a set Yc

FSonRP (rp; pfeat) applies feature selection on the reference prototype rp based on the
parameter pfeat and normalizes the �nal prototype to unit length (L2-norm)

end let

1: Yc ← {mc}
2: rp← mc

3: Kc ← dpobj nce
4: if Kc > 1 then

5: do for i=1,. . . ,�
6: Yc ← NNDocs (c; rp; d�iKce)
7: rp← Centroid (Yc)
8: end for

9: end if

10: sp← FSonRP (rp; pfeat)
11: return {sp}

approach to choose the best clustering solution among those obtained for di�erent k-sp

parameter settings by comparing the values of the objective function after the re�nement

step. This procedure is described in the next section.

The experimentally observed improvement achieved by re�nement supports our basic

assumption that centroids do not provide su�cient exibility when clusters are not ho-

mogeneous and object reassignments should be encouraged. To tackle this problem one

could try to improve the initialization of an iterative method with specialized object-based

seeding techniques, or using the clusters produced by a clustering method of di�erent

characteristics as the initial partition. Interestingly, the k-sp method is self-re�ned by

simply using di�erent values for method parameters, since spk-means is a special k-sp

case. The clustering improvement achieved by k-sp re�nement phase also con�rms that

self-similarity and feature over-aggregation play a crucial negative role mostly due the

clusters' impurity at the initial iterations of the search procedure. The clusters obtained

by the basic phase of k-sp need only a few re�ning reassignments, thus the self-similarity

phenomenon is not a very important issue. Moreover, each respective cluster centroid

would have a high �-ratio (Eq. 4.11) that enables the �ne-tuning of its V feature weights
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which would lead to an improvement in its class-discrimination.

4.3.5 Selecting the k-sp parameters

An additional advantage of the re�nement phase of k-sp, which uses the centroids as

cluster prototypes, is that it enables the direct comparison of the results obtained using

di�erent values for k-sp parameters. The latter is a very important aspect of k-sp, since it

allows the selection of the best setting for parameters pobj and pfeat. More speci�cally, the

user could specify two sets of candidate parameter values, the set Spobj for pobj and the set

Spfeat for pfeat. Then, using the same random initial conditions, k-sp runs several times for

each combination of the two parameter values and by monitoring the average value of the

re�ned objective function (Eq. 2.14), we can determine which parameter values provide

the best average performance. The procedure can be summarized by the following steps:

1. The sets of values Spobj and Spfeat are speci�ed by the user.

2. Run k-sp with re�nement (Algorithm 1) several times for each combination of pa-

rameter values pobj ∈ Spobj and pfeat ∈ Spfeat .

3. Compare the average value of the re�ned objective function of each set to determine

the best k-sp average performance and the corresponding parameter values.

Furthermore, the above procedure may reveal important information about the dataset

characteristics. As we will see in the experimental section, the observation of better

performance provided by smaller synthetic prototypes may indicate that the data clusters

are overlapping in many dimensions (i.e. vocabulary terms in common), or that there are

a lot of noisy objects/terms.

4.3.6 Implementation and complexity

In the present context, where document vectors and cluster centroids are normalized

with respect to L2-norm, it is easy to show that the medoid of a cluster is the cluster

object with maximum Cosine similarity (dot product) to the centroid of that cluster. Let

71



uj=
∑

di∈cjdi =
∥∥∑

di∈cjdi
∥∥

2
the normalized centroid of cluster cj with respect to L2-norm,

then Eq. 2.13 can be expressed as:

mj = arg max
d∈cj

{
d>
∑
di∈cj

di

}
= arg max

d∈cj

{
d>uj

}
: (4.14)

Hence, we can determine the medoids of all clusters with linear cost O(N) to the size of

the corpus. Thus, both `spherical ' version of k-medoids and k-means method have the

same asymptotic cost. It must be noted that it is possible for a cluster to have more than

one `medoid ', i.e. objects whose total similarity to the other cluster objects has exactly

the same maximum value. Moreover, those objects are equally distant to the cluster

centroid. None of them can be considered superior to the others, hence, we can randomly

select any of them to construct our synthetic prototype.

Suppose we are given for every object d an ordered list containing the other N−1

objects in descending order with respect to their similarity to d. Then it is possible to

determine theK−1 objects in a cluster that are nearest to its medoid by linearly traversing

the respective list (K−1≤N). By taking advantage of the intracluster rNN-consistency

property, we can precompute o�ine a number of Knn (K−1≤Knn≤N) nearest neighbors

for each document in the dataset. If a list has less than K−1 objects that are assigned

to the same cluster with the medoid object d, we have to necessarily apply greedy search

in cluster to locate the rest nearest neighbors to d, up to the desired K−1. Supposing

that we have set a proper Knn value that eliminates the previously mentioned greedy

search, then the non-incremental (�=1) construction of a MedoidKNN(r) prototype costs

O(nj+Knn+KV ). This includes the cost: i) to determine the medoid document: O(nj),

ii) to locate medoid's K−1 nearest neighbors in the cluster: O(Knn), and iii) to compute

the centroid of the K objects: O(KV ). The latter is the �rst step of the incremental

MedoidKNNr construction (�>1). For the steps other than the �rst we have to seek the

nearest documents to the partial centroid (synthetic prototype) computed so far. For the

j-th cluster, this can be done by computing and then sorting the pairwise similarities

between the n
(i)
j data objects and its synthetic prototype in step i, where i=2,...,�. Thus,
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Table 4.1: Datasets used in the experimental evaluation

Dataset Source Docs/Topic Classes Docs Class V consistency OS CS
Balance 1NN 10NN

Talk3 20-NGs: guns, mideast, religion.misc 3 900 1.0 7051 .952 .854 98.8 98.2

RS
(S)
4 20-NGs: autos, motorcycles, crypt, 4 800 1.0 3451 .853 .694 98.5 97.2

RS
(M)
4 electronics 1600 1.0 7818 .939 .807 99.3 98.7

RS
(L)
4 3928 .980 12708 .963 .872 99.6 99.2

M
(S)
6 20-NGs: pc.hardware, autos, baseball, 6 1200 1.0 7154 .885 .767 99.3 98.2

M
(M)
6 hockey, electronics, med 3000 1.0 12082 .932 .816 99.6 98.9

M
(L)
6 5891 .980 17955 .953 .862 99.7 99.2

M
(S)
8 20-NGs: atheism(50,795), hockey(100,989), 8 600 .500 4350 .767 .578 98.9 96.9

M
(M)
8 windows.x(100,959), forsale(100,957), 2000 1.0 9608 .824 .690 99.4 98.4

M
(L)
8 electronics(100,975), politics.misc(100,770) 7355 .780 20592 .912 .783 99.7 99.2

mac.hardware(50,955), graphics(50,955)

NG4 20-NGs: comp.*, rec.*, sci.*, talk.* 4 12000 .985 31498 .954 .877 99.8 99.6

Mini20 20-NGs: from all of the 20 newsgroups 20 1870 .970 10463 .666 .494 99.4 97.5

Wap20 WebACE 20 1560 .015 8460 .696 .636 98.6 95.8

K16 WebACE 6 2340 .043 13879 .954 .909 99.1 98.1

Rev5 TREC 5 4069 .043 23220 .878 .834 99.2 98.

A
(1)
4 Arti�cial dataset generator 4 4000 1.0 9401 .951 .916 99.7 99.5

A
(2)
4 4000 1.0 9461 .922 .875 99.7 99.5

A
(3)
4 4000 1.0 9437 .849 .792 99.6 99.5

A
(4)
4 4000 1.0 9469 .693 .630 99.6 99.3

if a subset of K(i) cluster objects are used to construct the MedoidKNNr for cluster cj at

step i>1, then the construction complexity is O(n
(i)
j V + n

(i)
j log(n

(i)
j ) +K(i)V ).

4.4 Experimental evaluation

4.4.1 Clustering methods

To provide a comparison of k-sp performance to other clustering methods, we imple-

mented spk-means, k-medoids, hierarchical agglomerative clustering (HAC), and spectral

clustering. For HAC we have used the average-link cluster merging criterion based on

the Cosine similarity [127]. In addition, we compare k-sp with feature weighting k-means

(fwk-means) [120] and entropy weighting k-means (ewk-means) [122] which, according

to the comparative result in the latter work, performs better than a series of other soft

and hard subspace clustering methods. It is noteworthy that these two methods use the

Euclidean distance measure instead of the Cosine similarity, whereas for normalized doc-
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ument vectors with respect to the L2-norm, euclidean and Cosine measures determine the

same proximity ordering between data objects. The parameters h and , respectively,

were both set to 1.5 for all datasets. This value was used as well in [120] to apply fwk-

means on the 20-Newsgroups dataset that we also use in our experiments. In addition,

in [121] it is also reported ewk-means to perform well on the same dataset with =1.5.

Besides, it is also illustrated that ewk-means is not sensitive to the setting of  value. Ac-

tually, we conducted a number of preliminary tests for these algorithms using parameter

values within a wide range, but the observed di�erences in clustering performance was

insigni�cant.

The spk-means [41] is the baseline approach, the same algorithm is also utilized to

re�ne the solution produced by HAC and k-medoids. In order to show that in the HDS

feature space marginal clustering improvement should be expected by the careful selection

of objects as initial seeds for spk-means, since as explained single objects are inappropriate

for representing groups of many objects, some spk-means initialization techniques were

also tested:

i) the random clusters where each object is randomly assigned to one cluster,

iii) the e�ective k-means++ method [92] that try to spread the initial centroids away

from each other.

As for spectral clustering, it is based on spectral analysis of the similarity matrix of the

dataset. We have used the standard algorithm described in [85] (see Sec. 2.6.1).

Generally, the k-sp variants are denoted by the respective synthetic prototypes they

consider, e.g. Centroid-P(pfeat), MedoidK(pobj)NN-P(pfeat)
2. The set of values considered

for pobj are: Spobj={.90, .80, .60, .40}, and for pfeat: Spfeat={.98, .95, .90, .80, .60, .40}. In

all cases, MedoidKNN(r) has been constructed incrementally in three steps (�=3) with

�1=0.2, �2=0.6, �3=1 (see Sec. 4.3.2). In Tab. 4.2, we provide the percentage of the orig-

inal features retained after computing various synthetic prototypes for a speci�c cluster

example to provide a notion of the feature selection that is caused by object selection in

a HDS feature space.

2MedoidK(·)NN is also denoted as K(·)NN for brevity
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Since we are given the ground truth labeling of the documents in all datasets, clu-

stering evaluation is based on the two popular supervised measures normalized mutual

information (NMI) and Purity. Higher values indicate better results (see Sec. 2.6.2 for

details).

4.4.2 Datasets

Real data

In order to conduct controlled experiments with respect to the corpus size, cluster sizes

and overlap, both real and arti�cial datasets were used (see Tab. 4.1). We constructed a

series of clustering problems from real collections, by �rst selecting certain topics from a

collection and then by producing di�erent instances of these problems. In particular, we

considered several subsets of the popular 20-Newsgroups3 collection using as ground truth

the provided class label of each document. As an example, M
(S)
6 , M

(M)
6 , M

(L)
6 are three

datasets generated from same topics but with increasing cluster sizes: small, medium,

and large that includes all the documents of the selected topics. Mini20
4 contains 100

documents from each one of the twenty newsgroups, while NG4 is a subset containing

all the four largest subjects in collection, namely computer, records, science and talk.

Moreover, we used three datasets from the Cluto package5: K16 and Wap20 are from

the WebACE project and contain web pages from di�erent directories of Yahoo!, Rev5 is

derived from the San Jose Mercury newspaper articles that are distributed as part of the

TREC collection (TIPSTER Vol. 3).

In brief, in the preprocessing of each dataset, we eliminated trivial terms (stopwords),

headers and special tags, we applied Porter's stemming transformation [58] and document

frequency thresholding (DF) [64] to discard terms that appear in only one document

(dft=1). Thus, all rare terms that have high discriminating power were maintained.

Finally, we used only documents having more than �ve terms. In Tab. 4.1, we report

3Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/
4Available at: http://kdd.ics.uci.edu/databases/20newsgroups/
5Available at: http://www.cs.umn.edu/∼karypis/cluto
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for each dataset the balance of class sizes, the 1NN and 10NN-consistency (leave one

out classi�cation accuracy), the overall sparsity (OS) of each dataset which is the average

number of zero dimensions that a data vector presents, and the sparsity of each class (CS)

when considering only the vocabulary used by the class members (note that OS ≥ CS).

We also report for the datasets we constructed the number of documents per class that

were used in cases of sensible imbalance of class sizes (Docs/Topic).

Arti�cial data

In order to construct the arti�cial text collections we implemented a corpus generator.

To generate a corpus with k clusters, our algorithm assumes that the terms (the feature

space) are partitioned into k+1 disjoint topic vocabulary bags. Each bag Bi, i=1,...,k

contains the terms related to i-th topic, while an additional bag Bk+1 contains general

terms that could be used in the documents of any cluster.

Each text document is considered to be a sequence of terms and each term of a

sequence is generated in two steps: 1) selecting a vocabulary bag, and then 2) selecting

a term from that bag. The correlation between a data cluster and the vocabulary bags

is user-de�ned in a k×(k+1) matrix W , where each element Wji is the probability of

selecting the bag Bi when producing a term for a document of the j-th cluster. To

sample a term from an already selected bag (step 2) we used the Zanette-Montemurro

stochastic process (ZM) [128] that has been proposed for generating a single long arti�cial

text that has similar statistical characteristics to real texts, such as the Zipf's power-

law [53] of term frequencies and the sublinear increase of the vocabulary length as the

text becomes longer. To achieve these goals the ZM process considers a time decreasing

probability controlled by a parameter v of inserting a previously unseen term in the text,

i.e. pt=�tv−1. Otherwise an already selected term of a bag is reselected with a probability

proportional to the number of times that has already been used in the created sequence.

This property of the process (called `memory ') permits high frequencies for some terms,

while the majority of terms present low frequency. In our algorithm, the generation of

documents is conducted in cluster order, i.e. the documents of the �rst cluster then that
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Table 4.2: The percentage of features retained in the synthetic cluster prototypes for
a cluster containing 300 documents from the �rst topic of Talk3 dataset. The centroid
contains all the 4264 non-zero dimensions of the cluster.

Reference pfeat
Prototype 1.0 .98 .95 .90 .80 .60 .40

Centroid 100 84.0 72.5 59.3 42.0 21.5 9.8
Medoid 4.6 { { { { { {
MedoidK(.9)NN 98.0 82.2 71.1 58.0 40.8 20.7 9.4
MedoidK(.8)NN 95.7 80.6 69.5 56.7 39.6 20.0 9.1
MedoidK(.6)NN 89.5 75.8 65.4 53.1 36.7 18.5 8.5
MedoidK(.4)NN 76.7 65.5 56.4 45.8 31.9 16.2 7.3

of the second etc. The memory of the general bag Bk+1 is maintained during the whole

procedure, but the memory of all the other bags is reset when starting the generation of

the documents of a new cluster. Using this strategy, in the documents of each cluster a

(generally) di�erent set of terms from all the bags would present high frequencies.

To demonstrate the superiority of k-sp performance under situations of clusters that

overlap in many dimensions we constructed four arti�cial datasets called A
(i)
4 , i=1,...,4

using the above algorithm. All datasets have four clusters (k=4), each of them containing

1000 documents and �ve topic vocabulary bags were considered with 2000 terms each. The

datasets exhibit increasing cluster overlap (from A
(1)
4 to A

(4)
4 ), by lowering the probabilities

Wii (i=1,...,4) and increasing the probabilities Wij (j 6=i) of selecting a term from the rest

of the bags. The probability matrices W are presented in Fig. 4.5 (the �fth bag contains

the general vocabulary). The length of each document was randomly set by an exponential

distribution with mean value �exp=1/100. The parameter values that we used for the ZM

process are �=0.3 and v=0.9.

Generally, we seek to �nd a clustering solution that maximizes both NMI and Purity to

values close to unit. For each dataset and method we report the values of these indexes.

For the methods depending on initialization we also report the average value of each

index over the runs on a dataset, while we also report (denoted as `best ') the value of each

index (NMI or purity) corresponding to the solution with the highest clustering objective

function ΦCOH among the 50 runs.

Moreover, in order to evaluate a method's behavior during iterations, we introduce
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Figure 4.3: The decrease of average similarity between di�erent types of cluster prototypes
and the nearest objects around them as the number of neighbors increase. The datasets
consist of objects belonging to a dominant class and two other classes corresponding
to noise. We considered three percentages for the objects of the noisy classes: (a) a
pure dataset (0%), (b) 25%, and (c) 40%. MedoidK(.6)NN-nincr denotes the reference
prototype constructed non-incrementally using the 60% of the objects of each dataset.

the Q-index:

Qt = 1− Φ
(t)
ics(C)

Φ
(t−1)
ics (C)

; t > 0; (4.15)

where Φ
(t)
ics(C) is the intracluster similarity measure de�ned as the sum of pairwise Cosine

similarities between objects in the same cluster at iteration t:

Φ
(t)
ics(C) =

k∑
j=1

 2

N (nj − 1)

∑
di∈cj

∑
dr∈cj ; i<j

d>i · dr

 ; (4.16)

where nj the size of cluster cj. Initially, we assume that Q0=0 holds. Higher values of

Q-index indicate greater relative improvement of the clustering quality after one iteration.

Finally, the statistical t-test was applied to estimate the signi�cance of the average

performance di�erence between k-sp and the methods under comparison for each dataset,

except for HAC that is deterministic. Within a con�dence interval of 95% and for the

value of degrees of freedom equal to 2·number of runs−2 we can test if our method is

signi�cantly superior, otherwise the null hypothesis is accepted.
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4.4.3 Experimental results

Robust cluster representation

Our �rst intention in the experiments is to demonstrate the robustness and e�ectiveness

of synthetic prototypes in favoring the representation of the dominant class in a cluster

that contains documents from more than one class. To this end we constructed three sets

of documents from the topics of Talk3 dataset: a) a pure set of 300 documents from the

�rst topic (0% noisy objects), b) the previous set along with 50 documents from each of

the other two topics (25% noisy objects), c) a set of 300, 130, and 70 documents from

each topic (40% noisy objects). In all three cases the medoid of the complete dataset

belongs to the dominant class (i.e. the �rst topic). Fig. 4.3 demonstrates the decrease of

average similarity between di�erent types of cluster prototypes considered for the above

cases and the nearest objects around them as the number of neighbors increase. We

can observe the high average similarity of the medoid with its very close neighbors that

decreases rapidly as we consider wider neighborhoods. This indicates that the medoid

exhibits high intracluster rNN-consistency (see Sec. 4.3.2) and empirically explains why

the medoid-based construction of synthetic prototype is more class-discriminative than the

centroid-based. The result is the higher average similarity to the members of the dominant

class, and the lower similarity values to the documents of other classes (considered as

noisy). Furthermore, the incremental construction of MedoidKNN performs better than

the direct construction based on the K nearest neighbors of the medoid. Tab. 4.2 reports

the percentage of features that have non-zero weights after the implicit (i.e. features

retained in the reference prototype) and explicit (i.e. additional feature selection on

reference prototype) feature selection. We can see the extent to which synthetic prototypes

can summarize the characteristics of the document clusters, as well as that synthetic

prototypes can discover feature subspaces to represent data clusters.

In another experiment we intend to demonstrate the robustness of k-sp under adverse

initial conditions. We considered the M
(S)
6 dataset and examined the case where clusters

are initialized by randomly assigning each document to a cluster. Tab. 4.3 reports the
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Table 4.3: Clustering results on the M
(S)
6 dataset using k-sp variants.

Reference NMI Purity

Prototype pfeat avg: best avg: best t

Centroid 1.0 .480 .564 .630 .751 17.1
Centroid 0.8 .484 .644 .632 .798 16.1
Centroid 0.4 .528 .679 .655 .807 16.3
Medoid 1.0 .286 .424 .504 .648 2.5
MedoidK(.4)NN 1.0 .564 .681 .688 .833 6.9
MedoidK(.8)NN 1.0 .686 .792 .777 .899 13.9

Figure 4.4: The evolution of the averageQ-index with clustering iterations for 50 randomly
initialized runs using the M

(S)
6 dataset.

average and best values of the evaluation measures, and the average number of iterations

until convergence (t) for 50 random restarts without re�nement. Fig. 4.3 illustrates how

the average Q-index value evolves with iterations for each method. An e�cient approach

should maximize the area under its corresponding curve, either by executing many itera-

tions or by making larger improvements in shorter time. Fig. 4.3 indicates the weakness

of centroid representation: it de�nes an optimal cluster representative assuming that all

its documents should stay in that cluster. This constrains to a great extent the represen-

tation exibility and forces the procedure to reach poor locally optimal solutions not far

from the bad initial clusters. As k-sp becomes more selective on the cluster's features, as

in the case of Centroids(r) (e.g. with P(.4)), we observe immediate clustering improvement

in the �rst iterations. However, the main problem remains: the features are selected from

the centroids of impure clusters. Despite the fact that medoids lead to a major initial

improvement related to a sharper preference to represent one class out of many others

in a cluster, subsequently, the procedure converges too early (2.5 iterations on average).

On the other hand, the k-sp with MedoidK(.8)NN is a more balanced choice that com-
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Figure 4.5: Experimental results on four arti�cial datasets of increasing cluster overlap,
from A

(1)
4 to A

(4)
4 , where the line-plots indicate the solutions of k-sp method with di�erent

parameter values. The respective results for the re�ned solutions are also reported.

bines e�ciently the advantages of keeping a compact cluster representation and that of

considering a wider set of objects around medoid for computing cluster representatives.
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Figure 4.6: Experimental results for instances of the RS4 and M6 problems with di�erent
cluster sizes.

Clustering performance results

In this section, we provide experimental results using the procedure described in Sec. 4.3.5

for the datasets of Tab. 4.1 for the two sets of values Spobj and Spfeat mentioned in Sec. 4.4.1.

The results are displayed using the line-plots presented in Fig. 4.5, 4.6, 4.7. The reported

`re�ned ' solutions are obtained by k-sp re�nement phase using centroids as cluster pro-

totypes (see Sec. 4.3.4) on the �nal clusters of each of the 50 runs of basic k-sp. The

bar-graphs in each row of plots present the results for spk-means initialized with the

k-means++ heuristic (Spkm++), k-medoids (Medoid), the re�ned k-medoids (Med-ref),

HAC, re�ned HAC (HAC-ref) using spk-means, and �nally the spectral clustering method.

The results on arti�cial datasets are presented in Fig. 4.5. For a dataset of small

cluster overlap, such as the A
(1)
4 , the performance of k-sp and spectral clustering are
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Figure 4.7: Experimental results for instances of the M8 problem with di�erent cluster
sizes, Talk3, Mini20 and NG4 datasets.

quite similar. However, in a more confused setting, such as the A
(3)
4 and A

(4)
4 datasets

the superiority of k-sp becomes more clear. Moreover, as the overlap between clusters

increases, k-sp performs signi�cantly better than the other methods even with lower values

of pobj parameter (e.g. 0.6 or 0.4) where the best result is closer to the average performance

of the method.

The results on real datasets that are displayed in Fig. 4.6 and 4.7 support as well

the main idea of this paper. In all cases the k-sp method produced much better results

than spk-means. Using MedoidKNN(s) prototypes, the best results for larger datasets

are obtained for the K(.9)NN and K(.8)NN cases. Especially for the experiments where

we considered three instances of the same problem with increasing size of clusters from

small to large (datasets RS4, M6, and M8), it is clear that k-sp using synthetic prototypes
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manages to overcome the issues arising in the case of small datasets where the number of

objects per cluster is not su�cient, such as self-similarity and feature over-aggregation.

The proposed re�nement phase leads to even better results, while reducing the sensitivity

of setting improper values for k-sp parameters. All the experimentally compared clustering

methods performed better when more data objects became available for a speci�c problem,

but the proposed k-sp remained the best among them.

By observing both curves of average and best values of the evaluation measures, we

can realize the trade-o� in setting k-sp parameters. When limiting the size of synthetic

prototypes, k-sp avoids the bad solutions and produces much better clusterings. On the

other hand, as synthetic prototypes discard too much information `detail ' from clusters,

the basic k-sp procedure becomes unable to identify the �ne di�erences between data

classes. This explains the sudden drop of the performance of K(.6) and K(.4) synthetic

prototypes for medium and large datasets (e.g. RS
(M)
4 , RS

(L)
4 , RS

(M)
4 , RS

(L)
4 , M

(M)
6 , M

(L)
6 ,

and M
(L)
8 ) when no re�nement is applied. The information of the formed clusters can be

further exploited by larger synthetic representatives in the re�nement phase (where the

centroids are used). Apparently, when larger synthetic prototypes are used in the main

phase, the contribution of re�nement turns out to be much smaller.

Tab. 4.4 summarizes the best and average performance of each method focusing on

the re�ned solutions of k-sp, HAC, and k-medoids. Regarding k-sp, its re�nement phase

uses the complete feature set and centroids which, as explained in Sec. 4.3.5, enables

the direct comparison of the solutions corresponding to di�erent parameter values. The

supervised evaluation measures that are presented in Tab. 4.4 correspond to the set of

experiments with the maximum average value of the re�ned objective function determined

by the procedure described in Sec. 4.3.5. The k-sp setting that provided this result in

each dataset is indicated near the dataset name. The reported best re�ned k-sp clustering

is the best solution using the latter setting of parameter values, whereas it is possible that

a di�erent parameter setting may have produced a better solution. The column t-val

presents the t-value of the signi�cance t-tests between the best k-sp average performance

and the average performance of the other methods. For two sets of 50 experiments each,
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Table 4.4: The NMI, Purity measures for the re�ned solutions found for each dataset. Bold values indicate the best result per
column. The underlined t-values denote the cases where according to the statistical t-test k-sp appears not to be signi�cantly better
(0<t-val<1.999), or appears to be worse than the compared method (t-val<0).

A
(1)
4 − k-sp: KNN(.90)-P(.98) A

(2)
4 − k-sp: KNN(.90)-P(1.0) A

(3)
4 − k-sp: KNN(.80)-P(.98) A

(4)
4 − k-sp: KNN(.60)-P(.98)

NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .901 .914 .968 .978 .866 .880 .960 .968 .756 .774 .916 .930 .433 .527 .740 .816
Centroid-P(.6) .803 .846 06.46 .917 .958 03.49 .714 .801 07.25 .866 .941 05.10 .483 .665 11.84 .730 .886 08.89 .056 .193 25.05 .376 .518 24.29
spk-means .785 .832 07.51 .909 .950 11.66 .674 .775 09.12 .847 .928 06.48 .394 .626 16.00 .668 .868 12.07 .042 .176 26.34 .357 .512 25.94
spk-means++ .768 .843 07.81 .894 .955 04.55 .692 .779 08.63 .860 .933 05.77 .416 .624 13.98 .691 .862 10.37 .038 .157 27.05 .350 .491 27.19
Medoid-ref .784 .843 08.08 .911 .955 04.11 .699 .769 08.97 .868 .930 05.86 .423 .628 14.52 .690 .865 10.72 .055 .176 24.96 .373 .512 24.18
fwk-means .051 .262 80.48 .366 .574 58.60 .289 .160 97.58 .334 .311 81.48 .016 .032 99.83 .314 .360 81.96 .006 .007 30.38 .286 .290 34.75
ewk-means .131 .302 43.50 .400 .460 34.62 .073 .274 63.02 .372 .540 45.02 .032 .003 57.87 .336 .266 64.44 .009 .006 30.10 .296 .283 33.50
HAC-ref .851 .936 .802 .936 .450 .659 .156 .418
Spectral .850 .869 04.86 .942 .965 02.15 .849 .869 02.05 .941 .965 02.47 .738 .763 02.41 .891 .926 02.55 .021 .021 29.01 .230 .305 32.84
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Table 4.4 (continued): The NMI, Purity measures for the re�ned solutions found for each dataset. Bold values indicate the best result
per column. The underlined t-values denote the cases where according to the statistical t-test k-sp appears not to be signi�cantly
better (0<t-val<1.999), or appears to be worse than the compared method (t-val<0).

RS
(S)
4 − k-sp: KNN(.80)-P(.95) RS

(M)
4 − k-sp: KNN(.80)-P(1.0) RS

(L)
4 − k-sp: KNN(.90)-P(.80) Talk3 − k-sp: KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .529 .689 .760 .875 .738 .773 .900 .926 .771 .798 .916 .935 .587 .762 .816 .935
Centroid-P(.6) .277 .383 14.92 .565 .695 11.65 .625 .737 06.65 .813 .910 05.12 .691 .786 05.23 .851 .931 04.12 .431 .657 05.78 .728 .900 04.23
spk-means .226 .307 17.97 .532 .605 13.78 .598 .706 07.93 .798 .892 05.80 .677 .766 07.18 .838 .921 04.79 .401 .540 06.97 .715 .875 04.88
spk-means++ .209 .343 18.35 .508 .623 15.08 .606 .723 08.11 .801 .899 05.97 .700 .778 04.54 .864 .926 03.36 .400 .588 06.68 .717 .823 04.54
Medoid-ref .285 .427 15.59 .550 .675 13.77 .535 .682 12.91 .730 .876 10.88 .468 .617 04.58 .751 .916 03.34
fwk-means .095 .153 27.86 .420 .493 21.57 .116 .196 53.89 .448 .548 37.55 .140 .257 56.67 .470 .610 39.73 .082 .119 24.20 .510 .551 17.77
ewk-means .134 .219 24.34 .457 .498 18.86 .219 .357 39.59 .519 .619 29.64 .248 .020 23.85 .499 .288 21.76 .174 .197 17.52 .589 .689 11.90
HAC-ref .022 .285 .533 .680 .489 .492 .480 .734
Spectral .453 .413 04.99 .647 .628 07.91 .725 .740 01.19 .896 .913 00.34 .747 .754 02.77 .911 .919 00.53 .504 .533 04.18 .785 .790 02.05

M
(S)
6 − k-sp: KNN(.80)-P(.95) M

(M)
6 − k-sp: KNN(.90)-P(1.0) M

(L)
6 − k-sp: KNN(.90)-P(.98) Wap20 − k-sp: KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .711 .798 .808 .904 .741 .807 .835 .907 .761 .799 .861 .905 .592 622 .658 .696
Centroid-P(.6) .552 .657 13.12 .670 .814 09.57 .667 .768 05.86 .755 .880 04.97 .693 .780 06.36 .773 .893 06.31 .556 .574 07.56 .621 .637 06.38
spk-means .510 .644 17.05 .647 .803 11.56 .648 .741 07.36 .742 .870 12.87 .689 .782 06.85 .769 .895 06.74 .538 .544 11.35 .609 .624 08.48
spk-means++ .509 .673 15.85 .641 .831 11.34 .647 .750 07.77 .743 .876 06.12 .698 .785 06.27 .783 .899 05.92 .545 .547 11.15 .616 .609 08.00
Medoid-ref .527 .622 14.30 .648 .759 10.55 .660 .751 06.28 .753 .876 05.00 .701 .784 05.86 .781 .887 06.17 .548 .576 11.08 .628 .643 06.06
fwk-means .133 .186 54.59 .372 .443 37.00 .148 .188 53.78 .390 .440 36.52 .160 .241 75.31 .398 .484 51.23 .369 .357 45.34 .486 .487 31.71
ewk-means .245 .313 49.58 .456 .475 33.78 .323 .295 40.21 .470 .377 29.86 .352 .097 54.27 .461 .271 39.68 .439 .433 09.37 .531 .535 08.52
HAC-ref .489 .492 .647 .648 .709 .793 .527 .573
Spectral .652 .659 06.76 .726 .754 07.03 .662 .649 08.33 .754 .729 06.34 .690 .720 09.37 .771 .821 08.52 .596 .602 -1.21 .664 .665 -1.43
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Table 4.4 (continued): The NMI, Purity measures for the re�ned solutions found for each dataset.

M
(S)
8 − k-sp: KNN(.60)-P(.98) M

(M)
8 − k-sp: KNN(.90)-P(1.0) M

(L)
8 − k-sp: KNN(.90)-P(.98) Rev5 − k-sp: KNN(.80)-P(1.0)

NMI Purity NMI Purity NMI Purity NMI Purity
Method avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .615 .642 .706 .738 .692 .796 .786 .904 .786 .839 .854 .928 .577 .676 .767 .833
Centroid-P(.6) .331 .459 28.81 .511 .582 19.59 .610 .709 08.92 .704 .839 07.45 .734 .828 05.22 .795 .919 04.44 .542 .659 02.67 .745 .828 02.26
spk-means .275 .367 33.20 .473 .528 23.71 .578 .667 12.14 .688 .812 08.88 .733 .826 05.33 .791 .919 04.74 .535 .651 02.41 .733 .822 02.31
spk-means++ .261 .361 40.56 .450 .537 30.60 .517 .619 20.07 .610 .735 15.66 .622 .661 31.82 .711 .751 20.85 .540 .663 02.42 .739 .819 02.18
Medoid-ref .332 .445 27.61 .510 .635 18.99 .565 .697 14.13 .668 .833 10.45 .733 .817 05.75 .788 .911 05.14 .526 .653 03.00 .717 .819 03.33
fwk-means .152 .197 56.08 .360 .400 39.85 .145 .195 59.75 .340 .420 40.94 .156 .246 72.02 .353 .473 45.20 .234 .367 20.82 .566 .700 15.16
ewk-means .188 .288 49.45 .400 .442 35.13 .281 .279 42.86 .418 .388 32.34 .316 .279 53.99 .418 .364 36.85 .278 .078 05.57 .561 .388 02.27
HAC-ref .302 .335 .607 .640 .664 .706 .237 .515
Spectral .615 .620 00.00 .645 .650 08.86 .733 .733 -5.48 .817 .818 -3.24 .741 .774 05.57 .832 .886 02.26 .406 .411 14.46 .664 .671 11.95

NG4 − k-sp: KNN(.90)-P(1.0) Mini20 − k-sp: KNN(.80)-P(.90) K16 − k-sp: KNN(.90)-P(1.0)
NMI Purity NMI Purity NMI Purity

Method avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val avg best t-val

k-sp .547 .607 .734 .799 .557 .597 .546 .603 .701 .802 .834 .897
Centroid-P(.6) .510 .561 02.62 .702 .751 02.31 .459 .501 12.59 .442 .484 18.73 .690 .785 01.00 .837 .887 00.37
spk-means .507 .548 02.73 .699 .748 02.45 .420 .454 30.07 .418 .455 22.24 .675 .725 02.52 .831 .838 01.59
spk-means++ .506 .568 02.70 .696 .755 02.69 .422 .451 30.81 .425 .446 21.99 .680 .770 02.09 .833 .883 01.30
Medoid-ref .492 .568 03.66 .694 .756 03.00 .431 .484 28.47 .424 .484 20.94 .685 .767 01.59 .829 .885 01.90
fwk-means .081 .152 42.94 .412 .494 28.20 .081 .152 91.60 .412 .494 64.11 .303 .454 28.07 .715 .756 13.18
ewk-means .063 .001 27.76 .316 .253 24.93 .286 .312 08.78 .314 .308 46.82 .417 .537 16.36 .762 .827 08.00
HAC-ref .375 .591 .444 .348 .582 .860
Spectral .492 .497 05.43 .711 .714 02.48 .566 .573 -04.04 .522 .539 04.66 .741 .763 -5.16 .847 .860 -1.87
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the critical t-value is tc=1.999 (pc=5% for p value). This means that if the computed

t-value≥tc, then the null hypothesis is rejected (p≥5%, respectively), i.e. our method

is superior, otherwise the null hypothesis is accepted indicating a marginal improvement

achieved by k-sp. If the t-value is negative, k-sp performs worse than the compared

method. In Tab. 4.4 the t-values ≤ 1.999 are underlined.

According to the signi�cance t-tests, k-sp is clearly superior to the baseline methods

such as spk-means, spk-means initialized with the k-means++ technique, k-medoids and

HAC as well as their re�ned solutions using spk-means, and the soft subspace clustering

methods fwk-means, ewk-means. Compared to spectral clustering k-sp is superior in most

datasets, in terms of both NMI and Purity. Spectral clustering seems to be clearly superior

only for datasets M
(M)
8 and K16. It is also worth mentioning that the computational

complexity of spectral clustering is O(N3) which is signi�cantly higher than that of k-sp.

It must be also emphasized that for all datasets the best solutions were provided by the

k-sp method.

Discussion

As a general conclusion about the experimental study, it turns out that the re�ned k-sp

approach using medoidKNN with pobj=.9 or :8 seems to be the best method exhibiting su-

perior clustering performance as well as robustness in the case of small, or noisy datasets

where the clusters overlap in many dimensions. High values of pfeat (e.g. .98 or .95) may

also help in some cases. However, we explained in Sec. 4.3.5 that the user speci�es only

the two sets of parameter values Spobj , Spfeat , and the best result can then be identi�ed

automatically by examining the values of the objective function of the re�ned k-sp clus-

terings. We should also remark that k-sp's feature selection on reference prototypes can

e�ciently summarize to a great extent the characteristics of the document clusters, since

in most cases its application does not deteriorate the clustering performance. When pobj

value is kept �xed and small number of features is considered (e.g. pfeat=.6 that is expected

to be about 20% of cluster's features, see Tab. 4.2) then, in most cases, the quality of the

clusters produced using MedoidK(pobj)NN
(s) is comparable to the respective results of the
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respective un�ltered reference prototypes. As for the Centroid(s), it is the k-sp variant

that mostly pro�ts by the prototype �ltering. These �ndings indicate the straightforward

applicability of k-sp method to corpus summarization problems or o�ine term selection.

In both arti�cial and real document datasets neither the sophisticated k-means++

initialization, nor the re�ned k-medoids helped the spk-means to discover much better

clusterings. There are also cases where these methods perform equally or worse than

typical spk-means. For the re�ned k-medoids the reason for this observation is explained

in Sec. 4.3.1 and is related to the inability of any data object to represent a large group

of objects in HDS feature space. Thus, spk-means is seeded in a little better way than

Forgy's random selection. The fact that spk-means++ and the re�ned k-medoids perform

similarly implies that the probability introduced by the former in order to select objects

that are far from each other may not reect their respective semantic distance, since it

does not take into account the special properties of text feature space, such as sparsity.

An interesting remark is that the soft subspace clustering methods tested, fwk-means

and ewk-means, did not manage to provide satisfactory solutions. In Sec. 4.2.2 and

Sec. 4.3.1, we reported as one of their disadvantages the fact that, by introducing explicit

feature weights per cluster, the parameters to be estimated are doubled. This becomes

more problematic for the very high dimensional datasets used in our experiments. It is

worth mentioning that in the experiments in [120] and [121] at most 2000 features were

used to represent the documents of datasets containing 2000 to 15905 objects. Apparently,

this experimental setting focuses on high dimensional data but of lower scale. The very

large-scale of dimensionality in our experiments seems to reveal their weakness regarding

the number of parameters they use. In most cases, ewk-means presented better results to

that of fwk-means with respect to the average evaluation measures. At the same time for

many datasets, e.g. A
(3)
4 , A

(4)
4 , and RS

(L)
4 , the best clustering of ewk-means is evaluated to

be of lower quality than the average clustering found by the algorithm. This observation

indicates that the feature weight entropy term ej introduced in Eq. 4.6 may dominate the

value of the objective function. We tried to lower down the  value without observing any

improvement. This implies that the feature weight entropy may not always capture the
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quality of a cluster, whereas numerical issues may also arise for the entropy computation

in a HDS feature space.

4.5 Conclusions

We have proposed the k-synthetic prototypes (k-sp) clustering method that incorporates

the synthetic prototypes into the spherical k-means (spk-means) procedure for docu-

ment clustering. Through the computation of synthetic prototypes (such as MedoidKNN)

cluster-based dynamic feature selection is achieved that favors the representation of the

dominant class of a cluster and enables the reassignment of the improperly clustered docu-

ments to other clusters. The proposed method is general, simple and e�ective and includes

spherical k-means as a special case. As indicated by extensive experimental results using

several datasets, the method provides robust clustering performance especially in cases of

small datasets, or noisy clusters that overlap in many dimensions, and compares favor-

ably against spk-means (with Forgy's and k-means++ initialization), k-medoids, HAC,

spectral clustering, and the subspace clustering methods fwk-means and ewk-means. It

is remarkable that in the HDS feature spaces of the datasets we used, state of the art

soft subspace clustering methods did not manage to achieve better solutions even than

baseline methods such as spk-means.

The proposed k-sp approach exhibits similarity to subspace clustering methods, since

the introduced synthetic prototypes de�ne di�erent subspaces in which data classes are

more distinguishable. Therefore, one could argue that k-sp in high dimensional and sparse

spaces is also a subspace clustering method. To clarify the di�erences, we remark that

many of the subspace clustering methods [120{122] construct each cluster prototype by

explicitly computing weights for each dimension using all cluster objects. On the other

hand, k-sp �rst applies object selection to construct a reference prototype (resulting in

implicit feature selection), and then proceeds with optional explicit feature selection on

the reference prototype. Moreover, the motivation of k-sp is to address the self-similarity
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and feature over-aggregation phenomena that are very intense in the HDS feature spaces.

We have also shown that the solutions obtained from the basic k-sp phase can be re�ned

by the re�nement k-sp phase using the whole feature set, which is in contrast with the

traditional idea of subspace clustering.
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5.1 Introduction

In this chapter we present a framework for incremental prototype-based clustering that

is based on partial updates on a given solution. In a partial update phase only a subset

of the cluster prototypes, clusters, and data objects participate in the clustering process.

Two widely known incremental clustering approaches, global k-means and divisive k-

means, are revisited and uni�ed according to this analysis. Focusing on HDS spherical

data, we discuss in detail the problem of increasing the order of a current k-clustering

solution by adding one new component. The idea of synthetic cluster prototypes presented

in the previous chapter is exploited for incremental prototype-based clustering. To this

end, we propose the global k-synthetic prototypes (gk-sp) clustering algorithm, which is

a modi�cation of the global k-means algorithm for HDS data. The gk-sp method uses

the k-synthetic prototypes method for �ne-tunning the k-solution and introduces a partial

update scheme to setup the initializing k+1 prototypes for the re�ning phase. Similarly,

the global bisecting k-sp (gbk-sp) method is also proposed based on bisecting k-means

which, additionally to the traditional bisecting k-means, tries all splits in all clusters.

Experiments on real and arti�cial document datasets illustrate that the proposed gk-

sp method outperforms other competitive incremental and at methods of the k-means

family, in terms of clustering error and external clustering evaluation measures.

5.2 Data clustering as optimization

5.2.1 General formulation

Formally, hard clustering aims to partition the input dataset of N vectors X={xi}Ni=1,

xi=(xi1; : : : ; xid)
>∈Rd, in k disjoint sets of similar objects C={cj}kj=1 called clusters, where

cj is a set that includes all objects assigned to j-th cluster. Typically, clustering methods

try to describe the data by training a data model Θk = {�j}kj=1 consisting of k components,

one for each cluster. It can be a probabilistic model (generative), or a representation
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model consisting of a set of prototypes in the feature space. The model complexity refers

to the number of parameters that are `learned ' and describes the computational e�ort

and memory space required by the clustering procedure. In general, an identical model

�j is employed for each individual component, while the number k may di�er from the

number of underlying data classes denoted as �. Thus, the overall model complexity can

be expressed as:

complexity(Θk) = k complexity(�): (5.1)

Assuming a decided number of parameters for each component, the model complexity is

then solely determined by the number of clusters k and referred to as model order.

The clustering problem can be formulated as an optimization problem; more speci�-

cally as a minimization of a given objective function Φ(Θk|X) that measures the clustering

error:

Θ̂k = arg min
�1;:::;�k

Φ(Θk|X): (5.2)

The notations Φ(Θk|X) and Φ(C) describe the same objective: Θk can be derived from C

which contains the partition of data objects, and vise-versa, while in most situations all

data objects in X are involved in the computations.

5.3 Prototypes and objective functions

Without loss of generality, in this paper we primarily refer to prototype-based clustering

methods. The arithmetic mean is a widely-used prototype is, also center or centroid, of

the nj cluster members: �j=
1
nj

∑
xi∈cj xi. When robustness to noise is a key requirement,

the medoid object can be used instead which minimizes the sum of distances from all

objects in a cluster: mj = arg min xi∈cj
{∑

xq∈cj dist(xi; xq)
}
, where dist(·; ·) is a distance

measure between two vectors in feature space.

In both cases, the components of the training model �j=(�j1; : : : ; �jd), j=1, : : : , k, are

d-dimensional vectors and the overall complexity of such representation is k d. Moreover,
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the respective objective function that is minimized is the distortion error, or clustering

error :

Φ(Θk) =
k∑

j=1

Φ(�j) =
k∑

j=1

N∑
i=1

wij dist(�j; xi); (5.3)

subject to
k∑

j=1

wij = 1;

where wij are the object assignment variables that depend on Θk. Especially for hard

clustering, it is wij=1 i� xi is assigned to cluster cj. If the sum of squared Euclidean

distances (SSE) is used between the objects of the clusters and their respective prototypes,

dist(�; x)=‖�−x‖2
2, the resulting ΦSSE is called squared Euclidean error or distortion (see

Sec. 2.6.1).

When the 1 − Cosine is considered as distance function and if we use the centroid1

�̄j=�j=‖�j‖2, then the respective clustering objective is the complementary of Cohesion

(CC):

ΦCC(Θ̄k) =N−
k∑

j=1

N∑
i=1

wij �̄
>
j xi: (5.4)

This reduces toN−
∑k

j=1 ‖sj‖2, where sj=
∑

xi∈cj xi.

It must be noted that the hard clustering problem may also be reformulated in terms

of non-convex, non-smooth optimization [129, 130]:

Φ(Θk) =
N∑
i=1

min
j=1;:::;k

dist(�j; xi): (5.5)

Instead of a sum of all individual cluster errors Φ(�j) as in Eq. 5.3, this function considers

a sum of minima functions of the representation error of each data object which makes it

non-smooth (not di�erentiable everywhere). Eq. 5.5 is the continuous analog of Eq. 5.3,

hence, they are equivalent in the sense that one's local minimizer is also a minimizer for

the other as well as they both have the same global minimizers.

In the previous chapter, the synthetic cluster prototypes (sp) have been proposed for

1The term centroid may imply the mean or the L2-normalized mean depending on the context, and
similarly for the notations �, Θ when denoting prototypes.
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Algorithm 3 { The generic k-means clustering algorithm

input: dataset X, the number of clusters k
1. Initialize prototypes: usually at random, or using more complex procedures.
2. Assignments update: each object is assigned to the cluster represented by the closest prototype to
that object

3. Prototypes update: the prototypes are recomputed
4. Stopping criterion: if (important) changes in prototypes are observed then goto step 2.
output: (the prototypes Θk, and the partition Ck)

representing clusters of spherical data, such as text documents. As already mentioned

in Chapter 4, centroid and medoid constitute special cases of sp. Moreover, considering

�j=spj in Eq. 5.3 or Eq. 5.4, we get a general expression of the objective function that

describes the representation quality of sp.

5.4 Flat prototype-based clustering algorithms

k-means and k-medoids are at clustering algorithms which originally minimize the sum

of squared Euclidean distances between the objects of the clusters and their respective

prototypes, denoted as ΦSSE (Eq. 5.3). Spherical k-means (spk-means) [41] is a modi-

�cation designed for spherical data where it has been shown to be more e�ective than

original k-means version. Spk-means uses L2-normalized centroid prototypes and min-

imizes ΦCC (Eq. 5.4). The number of clusters k is provided in advance. The generic

k-means clustering procedure presented in Algorithm 3 improves iteratively the solution.

This procedure performs in a gradient descend fashion wrt the minimization of the

objective function [131] since both update steps are optimal: i) the assignment step follows

the nearest neighbor rule and ii) the prototype used is the arithmetic mean, or the medoid

respectively for k-medoids, of the cluster members which are the optimal representatives

under the respective constraints. In this way, the iterative reduction of the representation

error for each data object is achieved. From an optimization point of view, the partitional

clustering approach is formulated by Eq. 5.2 with the additional remark that it seeks for

all components �1; : : : ; �k simultaneously until convergence.

The competition between prototypes for representing the data results in a locally
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optimal solution where the prototypes are set at positions with high data density. How-

ever, the quality of the �nal solution depends heavily on the initial prototypes. Common

de�ciencies are the data under-representation where no prototype is assigned to every

underlying data class. At the same time, another data class may be over-represented by

more than one prototype representing di�erent subsets of its objects.

The problem of trapping into poor local solutions is tackled with the careful selection

of the initial prototypes (see Sec. 2.6.1). The most simple initialization approach is the

random selection of k objects from the dataset (Forgy's approach). However there exist

more e�cient options [80] and some of them have linear complexity cost to the number

of data O(N). Initialization using density estimation, with kd-tree for low-dimensional

feature spaces [132] or based on neighborhoods around objects [133, 134], have also been

proposed. In addition, other clustering methods may also be used in order to produce

an initial partition that is further re�ned by k-means. Such examples are agglomerative

clustering [42], genetic algorithms [94, 95], and simulated annealing [96].

Improving the convergence monitoring of k-sp. The k-synthetic prototypes cluste-

ring method (k-sp), which has been presented in Chapter 4, incorporates the synthetic

prototypes as cluster representatives in the above iterative local search strategy. The

algorithm mainly uses two parameters for object and feature �ltering (pobj; pfeat), however

without loss of generality, we use only object �ltering herein. The sp construction reduces

the representation error in clusters during iterations, whereas it does not guarantee the

monotonic convergence. In Sec. 4.3 we used monitoring of the overall clustering error

to stop the procedure when an increase occurs. Here we propose a relaxed monitoring

mechanism which lets k-sp to continue iterating, when error increase is observed, for a

number of deteriorating steps (ds) seeking for a state that has lower error than the best

found so far. If during the ds steps no improvement is achieved, the algorithm rolls back

to the best solution found and terminates. If, however, a better solution is found, then

the algorithm proceeds from that point on, and resets the counter of the deterioration

steps (ds iterations will be permitted in case another error deterioration will be observed).
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Algorithm 4 { An abstract incremental clustering procedure

input: dataset X, a partition Ckinit of kinit clusters, and the desired number of clusters �
1. Initialize with model Θkinit computed for the input data partition Ckinit and set k=kinit
2. Improve model structure by increasing the number of components (incremental step)
3. Improve model parameters using a clustering algorithm for k clusters (�ne-tuning step)
4. Stopping criterion: if k 6=� then goto step 2
output: (Θ�; C�)

The main consideration of this modi�ed strategy is that a temporary deterioration of the

clustering may avoid a bad local optimum and lead to some better area of the search

space. Notably, this search approach resembles, in some sense, to discrete optimization

algorithms such as simulated annealing that uses the concept of `temperature' for proba-

bilistic decisions. The proposed mechanism is simpler to that approach, but in both cases

the roles of control parameters ds and temperature are similar. In addition, they provide

a way to avoid trapping in oscillation between solutions. In empirical experiments ds=5

was shown to be a good setup value.

After termination, the re�nement step of k-sp takes place where the cluster centroids

are updated to further improve the clustering result. In fact the improvement of this

step may empirically con�rm the rationale behind k-sp: once the important `coarse'

information has been extracted, �ne-grained details can be used to improve clustering

(e.g. objects far from prototypes, or features without much discriminating power).

5.5 Incremental prototype-based clustering algorithms

Incremental clustering starts with kinit given clusters and works in a top-down manner

until the desirable �>kinit clusters have been formed. This is outlined in Algorithm 4.

If kinit=1 then Ckinit=X containing all data objects. Nevertheless, it is implied that the

initial model is computed for the provided partition Ckinit that could have been produced

by a di�erent clustering procedure. Incremental strategy has higher computational cost

comparing to at clustering, but important advantages as well:

i) it reduces the de�ciencies of at clustering that tries to locate good starting pro-
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totypes for all clusters at once, which is ine�cient especially in the case where the

number of clusters is large,

ii) is able to extract the cluster structure information of the dataset in di�erent re�ning

levels, and

iii) is convenient to be combined with cluster-based criteria that enable the estimation of

the optimal number of clusters (for example the methods [32, 45, 135{137] discussed

in Chapter 6).

This quite generic methodology is the backbone of popular incremental algorithms that

we present in what follows.

5.5.1 Divisive prototype-based clustering

In the incremental step of divisive prototype-based clustering (DPC) [83], one of the

model components, let �s, is selected based on a criterion (e.g. cluster variance, or size,

etc.) and is replaced by two new components �s1 , �s2 . The new components aim to better

represent the objects that were previously represented solely by �s. Following an abstract

notation, if Θ̂k−1 is the locally optimal solution already computed, then the �ne-tunning

of �s1 , �s2 which is carried out in the bisection (split) step of cs is:

Θk = arg min
�s1 ; �s2

Φ(Θ̂k−1\�s; �s1 ; �s2 | Xs) (5.6)

=

{
Θ̂k−1\�s; arg min

�s1 ; �s2

Φ(�s1 ; �s2 | Xs)

}
; (5.7)

where Θ̂k−1\�s is the set-theoretic subtraction of �s from Θ̂k−1, and Xs={xi :xi∈cs} is

the subset of data objects assigned to the selected cluster which is split. Notably, the

resulting solution of Eq. 5.7 is not locally optimal as a whole, for all k components.

Intuitively, this implies that an application of k-means on that partition would gener-

ally update those components and clusters. Contrary, Θ̂k−1 is optimal, which implies

that a re�nement has already been applied on all components. Furthermore, the factor
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[arg min �s1 ; �s2
Φ(�s1 ; �s2 | Xcs)] denotes the local search involving the two components

and the objects of cluster cs. Usually, 2-means is used to split a cluster, starting from two

adequately diverse positions in cluster. More speci�cally, given that �s1 is seeded by an

arbitrary data object chosen at random from the cluster, then �s2 can be obtained with

one of the following approaches:

1) select randomly,

2) use of the previous cluster prototype, i.e. �s2=�s,

3) �nd a position at opposite direction with respect to the current prototype,

�s2 =


�s − (�s1 − �s); for Euclidean distance

2 (�s1⊥�̄s) − �s1 ; for Cosine similarity

(5.8)

where  (�s1⊥�̄s) = �̄s [1 + (�s2 − �̄s) �̄
>
s ] the intersection of the perpendicular vector

from �s1 onto the normalized �̄s.

A number of trials may be required to determine a good split. The �rst approach is the

most naive, while the third one is expected to speed up 2-means convergence. However, the

result of (3) would be quite similar to that of setting �s2 to be the previous prototype �s,

because both points would lay on the same direction in space wrt �s2 . Another interesting

remark, especially for HDS data, is that even though �s1 might be seeded with a sparse

data vector, however, the initialization cases (2) and (3) do compute a non-sparse �s2 .

Alternatively, principal direction divisive partitioning (PDDP) [82] tries to split a

cluster along the direction of higher data variance. Originally, it was proposed as a

deterministic procedure which splits according to the positions of objects wrt the line

perpendicular to the principal direction of the cluster, which also passes by the cluster

mean (i.e. the sign of the projection). However, it is easy to realize that this could be

used in a non-deterministic way as well: i) consider the object projections on the principal

direction and then ii) follow one of the aforementioned approaches (2) or (3). This would

avoid the arbitrary choice of the mean as cluster split point. In [138] k-means was used as

a steering procedure aiming to re�ne the 2-clustering of PDDP split. Other works have
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proposed to consider projection directions other than the principal, while in [139] the

distribution of the data projections on the principal direction is further studied in order

to determine a good cluster split.

5.5.2 Global k-means

In the incremental step, gk-means algorithm [84] only adds one component to the pre-

existing Θ̂k−1. Speci�cally, it makes N trials to add the new component, where, in each

of the trials, the component is initialized at a position coinciding with a di�erent object

seed2. Let xi be the object seed in a trial, then the re�nement consists of a typical k-means

run on all clusters:

Θ̂k = arg min
�1;:::;�k

Φ(Θ̂k−1; �k =xi | X): (5.9)

Among the N solutions corresponding to di�erent seeds, that one with minimum objective

function value is kept as the optimal k-clustering. For the k=1 case, the algorithm

uses the arithmetic mean of the dataset. Global k-medoids is similar and only di�ers

in an additional constraint that is considered: the prototypes to be cluster medoids. The

drawback of gk-means is the heavy computational cost, since N runs of k-means (or

k-medoids, respectively) are required to add one new cluster.

A variation that reduces the computational burden of gk-means exhaustive search is

the fast global k-means (fgk-means) [84]. It introduces an estimation of the improvement

in clustering error which is computed for all object seeds, but without involving any

prototype re-computation. Given the solution Θ̂k−1 and the respective clustering error

value Φ(Θ̂k−1), then an upper bound of the error Φ(Θ̂k) is computed for each seed such

that:

Φ(Θ̂k(xi)) ≤ Φ(Θ̂k−1)− bk−1
i ; (5.10)

where Θ̂k(xi) is the local optimum discovered when {Θ̂k−1; �k=xi} was set as initial con-
2`Seed ' is a more general term and may refer to any starting position in Rd, including those points

coinciding with a data object which are called object seeds.
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Algorithm 5 { Find the starting state for k-th cluster prototype (mfgk-means)

input: dataset X, the locally optimal prototypes Θ̂k−1=�1,: : : ,�k−1
1. Seed initialization: for each object seed xi, let �k(xi)=xi
2. Prototype computation: �nd ck=S(xi) (see Eq. 5.13) and recompute �k(xi)=Centroid(ck)
3. Find the best case: �k=arg min i=1;:::;N �k(�k(xi))
4. Fine-tuning : repeat until no change occurs in cluster ck

a. ck=S(�k)
b. �k=Centroid(ck)

output: �k

ditions. Formally, for k>1, the quantity bk−1
i is computed as:

bk−1
i =

N∑
q=1

max

{
0; �k−1

q − dist(xq; xi)

}
; (5.11)

where �k−1
q =minj{dist(�̂k−1

j ; xq)} denotes the distance between xq and its nearest proto-

type. The object with maximum bi is expected to provide the largest decrease in error

and, thus, is selected to seed the k-th cluster prototype.

Another perspective to this approach is to reformulate Eq.5.11 as an optimization of

an auxiliary objective function, in the spirit of Eq. 5.5 but with components �1, : : : , �k−1

at �xed positions [140] and constrained �k to be a data object:

�k(�k) =
N∑
q=1

min

{
�k−1
q ; dist(�k; xq)

}
; (5.12)

subject to �k ∈ X:

The modi�ed fast global k-means (mfgk-means) [140] is a more e�cient alternative

compared to fast gk-means, with the disadvantage of increased computational cost. The

di�erence lies in the way the starting point of the new cluster prototype is determined.

All objects are tested as seeds at each incremental step, but an intermediate procedure

has been included which computes the �nal initial state for the added component. This

approach aims to minimize the auxiliary objective of Eq. 5.12 without putting constraints

on the input, hence �k∈Rd. Given an arbitrary point y∈Rd, let us denote the set of objects

that are nearest to y than to the prototypes of the clusters to which they are currently
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assigned:

S(y) =

{
xq : dist(xq; y) < min

j=1;:::;k
dist(xq; �j)

}
: (5.13)

The respective algorithm to �nd the starting state of k-th component is presented in

Algorithm 5. Thinking in terms of the k-means procedure, it is clear that fgk-means

�rst lets the objects move to ck and then computes only once the new value of the

objective function (step 2 of Algorithm 4). Mfgk-means proceeds further and recomputes

the prototype �k by taking into account the newcomer objects (step 3 of Algorithm 4).

Next, the best case is further re�ned by updating only the prototype of the new cluster.

At the end of this procedure, all objects are assigned to the cluster whose prototype is the

nearest to them and, since the centroid �k is the optimal representative for the objects in

ck, the returned �k is a local minimizer of �k de�ned in Eq. 5.12.

If short running time is not the primary concern, we propose a straightforward alter-

ation denoted as mgk-means (i.e. not fast) that could lead to a better starting point by

just inverting the order of steps 3 and 4 in Algorithm 5. This approach selects the best

starting point after re�ning all �k(xi) produced in step 2 of Algorithm 5. To the best of

our knowledge, this modi�cation has not been proposed in the related literature. Note

that this can also contribute in the experimental evaluation of the algorithms seeking for

a good starting position for the new component, because all starting states are re�ned.

The speed up of global k-means procedure and its variations may be achieved by:

1) the improvement of the computation of the starting point, given an object seed.

This could also lead to faster re�nement of all k components that follows.

2) the utilization of early stopping criteria that would identify the non-interesting

candidates during their examination in the clustering procedure. Since all variations

start from an object seed, we could focus on those seeds that seem more promising

to drastically reduce the clustering error.

3) the pruning of the candidates set. Similarly to the previous case, this could discard

candidates that lay at non-interesting areas of the data space (e.g. close to existing

components). Random pruning is also an option, although a naive one.
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4) the introduction of r>1 components at each incremental step. In practice, this is

prohibitive to be applied in a greedy fashion because the object combinations to be

tested would be
(
N
r

)
= N !

r! (N−r)! .

The variations discussed so far belong to the categories (1) and (2). There have been

proposed other modi�cations of mfgk-means that mainly aim to reduce the required com-

putational resources by adopting the directions (3) and (4) of the above. In [141] the

projection of data in the eigenspace is proposed, which enables the e�cient identi�cation

of the nearest neighbors of an object without storing the whole similarity matrix. More-

over, an algorithm is presented that introduces multiple new components in each step. On

the other hand, the approach of [142] reduces the computational complexity by examining

only a subset of object seeds laying at di�erent areas of the dataset. This is achieved by

considering a �nite set of weights U={�i}ji=1, �i∈R+, and by altering Eq. 5.13 to:

S�i(y) =

{
xq : �i dist(xq; y) < min

j=1;:::;k
dist(xq; �j)

}
: (5.14)

Similarly, Eq. 5.12 is rewritten to consider the weight �i that forces the minimization to

focus on di�erent parts of the dataset (although that, according to the above de�nition,

these parts are nested). For instance, for a small �i value the examined seeds would

be objects near the existing prototypes. The best solution found using the di�erent �i

weights is the �nal starting point for the k-th component.

5.6 A framework for incremental clustering

This section presents a framework for incremental prototype-based clustering. The pro-

posed framework is generic and exploits the idea of partial updates described next.

De�nition 1 { Partial update (PU): A partial update is a local search clustering

procedure which starts from a solution (Θk;Ck) and is constrained to perform at most t

iterations involving the following three subsets of entities:
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Algorithm 6 { The incremental clustering framework

input: dataset X, a partition Ckinit of kinit clusters, the number of desired clusters �
1. Initialization with model Θkinit computed for the input data partition Ckinit and set k=kinit.
2. Incremental step: the model complexity is increased (k=k+1) and a proper initialization is deter-
mined for the new component(s):

Θk;INC =
{

Θ̂k−1\θk({); θk(+)

}
; (5.15)

where θk({)⊆Θ̂k−1 a set of components to be removed from the provided previous (k-1)-solution, and

θk(+) the set of components to be introduced, each one initialized at a starting position of interest.
3. Partial updates: a series of m−1 successive intermediate steps, where each PUi is seeking for a good
starting state for the next PUi+1, based on the solution of the previous PUi−1 and by performing
at most t iterations. Let PU0→Θk;0=Θk;INC (the output of step 1), then the general expression for
each PUi, i=1,...,m−1, is:

Θk;i = arg min
�j∈@k;iact

Φ(Θk;i−1|Xk;i
act) (5.16)

=

{
Θk;i−1\@k;iact ; arg min

�j∈@k;iact

Φ(@k;iact |Xk;i
act)

}
; subject to Ckact; (5.17)

where @k;iact⊆Θk;i the active components, Xk;i
act the objects that are let to change cluster assignment,

and Ckact the active clusters. PUi should be less constrained comparing to any PUj , j<i, wrt the
number of active components, clusters, and data objects.

4. Full update (FU): k-clustering re�nement is used as FU which can also be considered as PUm with no

constraints (Ck;mact =Ck;m−1, @k;mact =Θk;m−1, and Xk;m
act =X). It �nds a locally optimal solution starting

from the output of the last PUm−1, Θk;m−1, and by updating all k clusters and their prototypes:

Θ̂k = arg min
�1;:::;�k

Φ(Θk;m−1|X): (5.18)

5. Stopping criterion: if k 6=� then goto step 2.
output: (Θ�;C�)

i) the active clusters Ck
act
⊆Ck that compete to each other to gain new object members.

The rest Ck\Ck
act

clusters may only lose or take back objects they had prior to PU.

ii) the active objects Xk
act⊆X that are let to move to and among the active clusters, or

return back to the cluster they were assigned before PU.

iii) the active components @k
act
⊆Θk corresponding to a subset of active clusters and they

are updated when the respective cluster changes.

Let us �rst de�ne a function J(·) that returns the cluster(s) related to the input

parameter, thus, J(xi; xq) would return the clusters to which these objects are assigned,

J(ci) would return the index of the cluster i and the same for J(�i). Some remarks follow,

regarding the PU de�nition:

� If the similarity of all objects to the cluster they belong has been stored before
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the PU, then the only prototypes that are involved in calculations of similarities

to objects are those corresponding to the active clusters that aim to attract new

objects, i.e. J(Ck
act
). Otherwise, the involving prototypes will be those corresponding

to the clusters indexed by J(Xk
act)⊇Ckact.

� Generally J(@k
act
)⊆Ck

act
holds, which means that the prototypes of some of the com-

peting clusters might be adaptive to the changes in object members, while others

might be static. A cluster c will not participate in the update procedure at all, only

if J(c)=∈Ck
act

and c=∈J(Xk
act).

� The resulting PU solution is also locally non-optimal in the sense that a k-means

run would further update both clusters and prototypes.

Algorithm 6 provides the formulation of the framework which summarizes e�ectively

the popular incremental clustering algorithms and most of their variations mentioned in

Sec. 5.5. The initialization is identical to that discussed for Algorithm 4. The incremental

step is speci�ed by the two sets θk
({)
; θk

(+)
and the initialization of the introduced compo-

nents in set θk
(+)
. By de�nition, a PU is speci�ed by the respective sets Ck

act
, Xk

act, and @
k
act

that can be computed based on the provided partition and the respective prototypes that

should be partially updated.

Table 5.1 presents the parameter setup that reduces the generic framework procedure to

each of the incremental algorithms discussed earlier in Sec. 5.5. The �rst row refers to DPC

that in the incremental step removes the �s component and adds two new components,

�s1 , �s2 . Those two are seeded using objects belonging to the cluster that is split, i.e.

xi∈cs. Then in the PU step, it is noted that it applies only PU1 where the only updated

prototypes are the two newly introduced �s1 , �s2 , and that the clusters that are changing

their members are those corresponding to the updated prototypes. Finally, the data

objects that participate in the PU are the members that initially belong to cs that is

split. The second row is the DPC initialization where only one component is added while

the existing prototype is used to perform the cluster split. Next we have the gk-means

variations, which do let all the objects of X to be reassigned among the clusters. As
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Table 5.1: Di�erent parameter setups that reduce the generic clustering framework pro-
cedure to popular incremental algorithms.

Incremental step Partial update step

Algorithm θk({) θk(+) init θk(+) PU @kact Ckact Xk
act t

DPC �s {�s1 ; �s2} xi,xq∈cs PU1 {�s1 ; �s2} {cs1 ; cs2} X∩cs max

DPC (�s2 =�c) ∅ �s1 xi∈cs PU1 {�s1 ; �s2=�s} {cs1 ; cs2} X∩cs max

gk-means ∅ �k xi∈X FU Θk Ck X max

fgk-means ∅ �k xi∈X PU1 ∅ ck X 1

mgk-means ∅ �k xi∈X PU1 �k ck X max

mfgk-means ∅ �k xi∈X PU1 �k ck X 1

PU2 �k ck X max

gk-sp ∅ �k xi∈X FU Θk Ck X max

fgk-sp ∅ �k xi∈X PU1 ∅ ck X 1

gk-sp-mPU ∅ �k xi∈X PU1 {�j : �j∼xi} {cj : �j∼xi} X max

fgk-sp-mPU ∅ �k xi∈X PU1 �k {cj : �j∼xi} X 1

PU2 {�j : �j∼xi} {cj : �j∼xi} X max

(1) t=max implies no constraint on the number of iterations; the PU terminates upon convergence.
(2) {�j : �j∼xi} denotes the set of prototypes that have similarity with the object seed xi to some
required extend. Respectively for active clusters {cj : �j∼xi}.

indicated, the original algorithm applies directly the full update (FU), i.e. unconstrained

PU where all clusters are competitive and all prototypes are updated (FU is applied by

all algorithms but we mention it only for the methods that do not use a constrained PU).

For fgk-means the constraint of t=1 iteration is noted for the PU step. However, this

is not an direct constraint but rather because its PU does not permit the update of any

prototype, and therefore only one iteration is possible. On the contrary, t=1 constitutes

an explicit constraint of mfgk-means. The last four lines refer to the proposed global

k-synthetic prototypes clustering method that is discussed in Sec. 5.8 that follows.

For clarity of presentation, not all algorithms have been included in the table because

they are similar to those mentioned. PDDP-based algorithms work with data projection

instead of the original space, while in all other aspects would use the same parameters as

DPC. Regarding the global k-means variations [141] and [142], they use careful selection

of the seeds of θk
(+)

from a subset of X without focusing on any cluster. Besides, the

adopted PU approach is the same with that of mfgk-means. As for the variations that

introduce r new components at each step [141], they can be directly derived by setting

θk
(+)
={�k; :::; �k+r}.
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5.7 Principles for e�cient incremental clustering for HDS data

The design of an e�ective incremental clustering algorithm for HDS feature spaces can be

based on the proposed framework of Sec. 5.6. The parameter setup and the local search

of the PU step should take into account the special properties of such spaces.

Self-similarity and feature over-aggregation. It has already been reported that these

two phenomena a�ect negatively the at prototype-based clustering procedure (speci�-

cally, centroids or medoids, see also Sec. 4.3.1). The �rst implies that there is a ten-

dency for an object to remain in the cluster where it already belongs to, because the

self-similarity may dominate the nearest cluster prototype calculation. The second phe-

nomenon implies that, due to the large number of dimensions, the prototypes encounter

di�culties in becoming specialized in one data class when the initialization provides im-

pure clusters. In contrast, they aggregate information (non-zero weighted features) from

many classes. Both phenomena play more important role when the clusters become

smaller in size, which is the case in incremental clustering as k grows. In the at clu-

stering case, it has been shown that such phenomena can be addressed to a satisfactory

extend using the synthetic prototypes approach for cluster representation.

Unfair prototype competition. Prototype-based clustering is a competitive learning

process where the prototypes compete with each other for representing the data. In what

concerns incremental clustering in HDS space, where a new component is added to a

model of lower order, a special problem emerges at the beginning of a PU regarding the

`unfairness ' of the competition between the already formed k−1 components, and the

new one. This is due to the large di�erence in sparsity between the object seed, and the

existing prototypes that have aggregated a lot of information from their clusters. Self-

similarity makes more di�cult for arbitrary objects to join the new cluster. Additionally,

since a single sparse vector object (or a very small set of objects) is usually inappropriate

to represent a data group (see Sec. 4.3.1), it is reasonable to be also inappropriate to

attract a coherent group of objects from the other clusters, if chosen to seed the new

prototype. Note that, as k grows incrementally, the formed clusters become smaller and
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less impure. Consequently, the respective prototypes over�t to current partition and make

more di�cult for the new cluster to drastically change the solution found so far.

Intuitively, an approach that would mitigate this unfair prototype competition problem

should try to reduce the information imbalance between the formed prototypes �i, i=1,

...k−1 and the new one �k. And this could be achieved by:

1) a reduction of the representation quality/accuracy of the formed prototypes for their

clusters which could increase its sparsity, and/or

2) an enrichment of the new starting point �k which would necessarily decrease the

sparsity of the considered object seed.

To the best of our knowledge, it is the �rst time such analysis and discussion is provided

in the context of prototype-based incremental clustering and, thus, the related approaches

of literature do not tackle the above issues. Only the initialization case (1) of DPC (see

Sec. 5.5.1) seems to avoid such problems: initially, two object seeds fairly compete to

split one cluster. Next, the two �ne-tuned centroids, which are much less sparse than

the object seeds, are used in re�nement of all clusters. In initialization cases (2) and (3),

�s1 is an object seed but the computed �s2 is much less sparse. In fact, �s2 is always as

sparse as the cluster centroid �s used for its computation. As for gk-means, it lets a sparse

object seed to compete directly with the k-1 cluster prototypes, which has the previously

discussed disadvantages.

On the other hand, mgk-means is the only algorithm that enhances the competitiveness

of the new prototype �k, even though indirectly. While updating �k in the PU step, the rest

of prototypes do not adapt to represent better the remaining members of their clusters

and hence the probability to lose more members during next PU iterations increases.

However we should note that this is not an intentional property of the method, because

mgk-means has not been designed for HDS data spaces that we discuss here. Therefore,

the aim of its PU is rather to speed up the original gk-means algorithm.
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Algorithm 7 { Initialization and modi�ed partial update of the fgksp-mPU method.

input: dataset X, the locally optimal Θ̂k−1=�1,: : : ,�k−1, the k-sp parameters pobj; pfeat; �; �; ds
1. Seed initialization: for each object seed xi, let �k(xi)=xi
2. Reduction of old prototypes: for each cluster j=1, ..., k−1, �j=ConstructSP (ck; pobj; pfeat; �; �)
3. New prototype computation: �nd ck=S(xi) (see Eq. 5.13) and let J(S(xi)) the set of clus-
ters to which the objects of S(xi) previously belonged according to Θ̂k−1, then recompute
�k(xi)=ConstructSP (cj ; pobj; pfeat; �;�)

4. Fine-tunning with mPU : apply ksp(X, k, pobj; pfeat; �; �; ds) with active prototypes
@kact={�j : j∈J(S(xi))}, active clusters Ckact={cj : j∈J(S(xi))}, all objects active Xk

act=X, and
the initial prototypes found in steps 2, 3

5. Find the best case: where the mPU of step 4 has provided the solution of lower clustering error
output: @kact

5.8 The global k-synthetic prototypes clustering method

In this section, we present a method for incremental prototype-based clustering specially

designed for HDS data. The method is called global k-synthetic prototypes (gk-sp). The

basic gk-sp and the fast version fgk-sp apply the same incremental steps to those of gk-

means and fgk-means, respectively, as mentioned in Tab. 5.1: it introduces one component

each time which is initially seeded with a data object. The novelty lays i) in a mechanism

that helps the new prototype become a strong attractor for the data objects, and ii) an

improved PU procedure which updates prototypes close to the considered object seed.

These are designed in respect to the remarks and conclusion of the Sec. 5.7

The primary aim of this PU is to reduce the information imbalance between the formed

prototypes and the newly introduced one. We propose a novel reduction-enrichment

mechanism (REM) for this purpose that reduces the already formed prototypes Θ̂k−1

while, at the same time, enriches the newly introduced prototype �k to help it become a

strong attractor. This is achieved:

1) using the synthetic prototypes (sp) that constitute a reduced representation (more

sparse) comparing to the respective cluster centroids provided in Θ̂k−1,

2) by constructing a larger sp for the new cluster ck:

Kj =


dpobj nje ; j ≤ k − 1

min

{
nj; max

{
dpobj nje ; max

q=1;:::;k−1
Kq

}}
; j = k:

(5.19)
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The above formula implies that as long as the new cluster is smaller than the largest

of the other clusters, then practically the centroid will be computed as prototype.

Note that this special treatment is recalled in case we observe:

dpobj nje ≥ max
q=1;:::;k−1

Kq: (5.20)

After that point, the computation will be based on the upper branch of Eq. 5.19.

In addition, we propose the improved gksp-mPU version that employs a more sophisti-

cated PU approach. The modi�ed partial update (mPU) considers as active all the clusters

from which the new cluster detaches objects at the �rst iteration. Furthermore, all data

objects are considered to be active and can move among the active clusters or return back

to their initial cluster. Formally, we set @k
act
={�j: j∈J(S(xi))}, Ckact={cj: j∈J(S(xi))}, and

Xk
act
=X. In this way, the competition is set among the clusters that are close to the new

seed. The intuition is to help the prototypes make more drastic changes to the solution

so far. It is remarkable that an inactive prototype implies that it will not adapt to the

changes of object members and eventually will become `outdated ' to some extend. Con-

sequently, this will permit easier departures from the cluster to an active clusters around

the seed.

This approach is a better trade-o� between computational cost and e�ectiveness, than

the other PUs. The respective fast gksp-mPU version (fgksp-mPU) proceeds for all object

seeds up to the PU step of Algorithm 6 but applies the FU only on the best solution found

by PUm−1 in each case. This procedure is described in Algorithm 7.
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5.9 Experimental study

5.9.1 Setup

In the experimental evaluation we compare some of the well-known incremental algo-

rithms, such as gk-means [84], the fast modi�ed gk-means [140] (fmgkm) and the divisive

k-means, with those algorithms derived by the proposed framework. In particular, in this

chapter we have proposed the global k-sp (gksp), the global bisecting k-means (gbkm),

and the modi�ed gk-means (mgkm) (which is the slow version of fmgkm proposed in

[140]). We did not include the experimental results for the traditional bisecting k-means

(bkm); instead we used the proposed gbkm that examines the division of every cluster

in order to select the best split, and thus performs better. To setup a fair testbed, the

divisive algorithms initialize the two new prototypes by selecting one random data object

from the cluster that is split, and the previous centroid of that cluster.

Moreover we have tested the respective fast versions of all the slow clustering methods

we considered (they are denoted with an `f' as initial letter, e.g. fgbkm). The di�erence

lays on the fact that a fast version �rst computes the result of the partial updates (PUs:

PUj, j=1,...,m-1) for all initializations (the di�erent object seeds) and then performs the

update of the full model (FU). Contrary, the slow versions apply FU for all the objects,

right after the PUs, and select the best solution out of them as the Θ̂k.

The use of synthetic prototypes (sps) was also proposed in this chapter to be incor-

porated into the incremental prototype-based clustering methods (these variations are

denoted with the su�x `sp', e.g. gbksp). The parameters of the sp construction are set to

be the same as in the experimental setup of Chapter 4, however we have �xed the value of

pobj parameter to 80% of the cluster objects. Moreover we used the slightly altered k-sp

version that permits some error deterioration steps (we set ds=5, see Chapter 5.4).

Note that all the sp-based variations employ the reduction-enrichment mechanism

(REM) presented in Sec. 5.8. This mechanism helps the new prototype to be more

competitive to the prototypes of the already formed clusters in order to attract data

objects. The gksp-mPU is a proposed variation that uses the modi�ed partial update
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(mpU). The main idea of mPU is to �rst set a competition between the new prototype

and the prototypes that are close to it. After convergence a FU is applied. Note also that

in this case all objects of the dataset can move to the active clusters according to the

mPU de�nition. The intuition is to help the prototypes make more drastic changes to the

solution so far. It must be noted that the inactivity of a prototype implies that it does

not adapt to changes of the object members of its cluster. This behavior will eventually

make the prototype `outdated ' to some extent, and hence will permit cluster objects to

easier move to other clusters.

Most of the datasets on which we tested the algorithms have been also used in Chap-

ter 4: the arti�cial dataset A
(3)
4 , and the real datasets RS

(S)
4 , M

(S)
6 , M

(M)
6 , M

(S)
8 and Mini20.

More speci�cally, in this study we used small and medium-sized datasets. The only new

is the arti�cial dataset A30, which was created as A
(3)
4 with the process presented in

Sec. 4.4.2. The notation we follow for the dataset names is the same to Chapter 4: the

subscript denotes the number of clusters and the superscript denotes (if any) a general

characterization whether the dataset is (S)mall, or (M)edium regarding the number of the

contained objects. We tried to cluster the small datasets in the whole range from 2 up to

3k number of clusters, while for the larger datasets we applied clustering from 1 up to k

clusters.

Internal and external clustering evaluation has been conducted. Our primary consider-

ation is that data clustering problem is formulated as an optimization procedure, therefor

we have used minimum attained value of the objective function as the main measure for

method comparison. The same vector representations (BOW) of the documents are given

as input to the algorithms, and all of them employ the complementary of clustering Co-

hesion (CC) Eq. 5.4 as objective error function. In order to demonstrate the reduction of

error as more clusters are added into the solution, we normalize the error values wrt the

error of the single cluster case where all data object are in one cluster:

Φ̄(Θ̂k) =
ΦCC(Θ̂k)

ΦCC(Θ̂1)
∈ [0; 1]: (5.21)
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For the external evaluation we used the normalized mutual information (NMI) that mea-

sures with a value in [0, 1] the agreement between the achieved clustering and the provided

ground truth labeling of the datasets. Lower values of Φ̄(Θ̂k) and higher values of NMI

indicate a better clustering result. We should note here that both internal and external

evaluation are useful for the experimental study. However, internal and external measures

may not always agree about which of two clustering solutions are better. For example

we may achieve a decrease of the objective error value but at the same time observe a

lower NMI value. This might happen because the object labeling has been created by

humans and may not reect the underlying properties of the feature space in which the

data vectors are represented. From the optimization point of view, and given the data

representations, the algorithm which is more e�cient in minimizing the objective value

for a dataset should generally be considered as the best method.

5.9.2 Experimental results

At the end of this chapter, we provide for each dataset two �gures with graphic plots

that demonstrate the behavior and performance of the compared clustering methods: the

�rst for the slow incremental clustering methods and the second for their respective fast

versions (e.g. Fig. 5.1 and Fig. 5.2, respectively, refer to dataset RS
(S)
4 ). Each �gure

presents: i) plots illustrating the the size of each cluster (y-axis) as lines of the same color

wrt the number of clusters k (x-axis), and ii) the plots of the cluster evaluation measures

(e.g. Fig. 5.1b) as the number of clusters increases3. These values correspond to the

solution with the minimum objective value found in each incremental step.

One key observation concerns the signi�cant inuence of the small number of objects

in a dataset (size of dataset) on the performance of the clustering algorithms. For small

datasets the algorithms demonstrate higher performance variation and, it can be observed

more clearly the e�ectiveness of the proposed methodologies that help the newly added

cluster to gain more objects. The plots of the size of clusters provide empirical evidence

3The legend shown in the lower right corner of a �gure refers to the evaluation measures only. The
colors of the left side of each �gure have been arbitrarily selected, however, each color indicates the
relative number of members of a particular cluster
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about the unfair competition between prototypes that we have discussed in this chapter.

For example, see Fig. 5.3 and Fig. 5.4 for M
(S)
8 , and Fig. 5.5 and Fig. 5.6 for M

(S)
6 . Speaking

about Fig. 5.3, we can see that gkm �nds a clustering for k=2 that splits the dataset with

80%-20% ratio (the red line). This is fair enough as a �rst step, since the eight data classes

we seek are almost of the same size. Then the third cluster (green line) comes up at the

third incremental step and takes another part of about 20% of the data. However, all the

clusters that are introduced in the solution after that moment fail to attract a signi�cant

number of data objects and to form interesting clusters. The initial cluster that is the

largest continues to lose objects towards the new cluster as k grows, but even up to the

end of the experiment it retains over 20% of the data even though 23 other clusters were

competing to each other.

The clusters formed in the initial incremental steps may not let the new clusters

added later become part of the clustering solution. It is natural for such a behavior to

be more intense when we attempt to partition a dataset in more clusters than the groups

of the underlying structure. There, we could assume that the structure of the data is

strong and cannot be easily split into small pieces (clusters). The most characteristic

such case is the arti�cial dataset A
(2)
4 (see Fig. 5.13 and Fig. 5.14), where the centroid-

based algorithms initially �nd four large clusters, but then they fail to seek further for

homogeneous subclusters. In the larger datasets the methods seem to behave di�erently

in the sense that there is more `action' and the clusters compete more strongly to each

other (for instance see Fig. 5.7, Fig. 5.8). But it is also clear that the phenomenon

we talk about is still present in every instance of our experiments. We can see in the

latter case that the clusters are separated in two groups: those that compete to each

other and the rest of them that contain probably a small set of closely related objects

without being able to attract new data. Another example is Mini20 (see Fig. 5.9 and

Fig. 5.10) which contains 20 clusters with 2000 data objects in total, but it is clear that,

in a analogous extend, the �rst two clusters have a strong advantage in the clustering

competition. Fig. 5.14 and Fig. 5.13 provide the only example where the centroid-based

approaches create competitive clusters and prototypes during all incremental steps. The
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respective evaluation measures indicate that again the proposed approaches achieve better

clusterings and the di�erence in quality seems to increase with the number of clusters.

All the previous observations hold in both the fast and slow incremental clustering

approaches. Also in both slow and fast variations, in real or arti�cial HDS data, the

incorporation of synthetic prototypes had a positive impact. The methods are among the

most competitive optimizers. Among them, in most cases the gksp-mPU and fgksp-mPU

seem to be one of the best choices.

In what concerns the reduction-enrichment mechanism (REM), this experimental

study provides empirical evidence supporting the claims of our analysis, the clustering

methodologies, and the optimization heuristics proposed in this chapter. In addition, the

experiments also indicated directions to improve the proposed techniques. For instance,

the REM mechanism, and in particular the approach to enrich the new cluster in order to

become competitive, in most cases was helpful to �nd a good solution in adverse settings

where even the synthetic prototypes seem not to help the gksp to e�ectively discover new

clusters (e.g. in Fig. 5.12 and Fig. 5.12). On the other hand if we observe the left part

of the �gures, there are cases where the new cluster enjoys a `sudden popularity ' when it

is introduced and right after it returns to deprecation. This provocation might be neces-

sary to achieve a drastic change in the competition between the clusters and prototypes,

however it is clear that issues arise regarding the stability of this approach. One possible

direction that this issue should be investigated is to consider the median of the cluster

sizes as the limit after which we cancel the favoring of the new cluster. Alternatively, the

enrichment may be de�ned to have larger duration in time, since in the present approaches

it is applied only when the cluster is introduced to the solution.

5.10 Conclusions

In this chapter we have presented a framework for prototype-based incremental k-means

clustering that is based on partial updates on a given solution. In a partial update phase
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only a subset of the cluster prototypes, clusters, and data objects participate in the

clustering process. According to our provided analysis we have also revisited and uni�ed

two widely known incremental clustering approaches: the global k-means and divisive

k-means. In this chapter we focused on HDS spherical data and discussed the problem

of increasing the order of a current k-clustering solution by adding one new component.

We proposed the incorporation of synthetic cluster prototypes presented in the previous

chapter into incremental prototype-based clustering. Accordingly, we proposed the global

k-synthetic prototypes (gk-sp) clustering algorithm, which is a modi�cation of the global k-

means algorithm for HDS data. The gk-sp method uses the k-synthetic prototypes method

for �ne-tunning the k-solution and introduces a partial update scheme to initialize the k+1

prototypes for the re�ning phase. Experiments on real and arti�cial document datasets

illustrate that the proposed gk-sp method outperforms other incremental methods of the

k-means family.
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Figure 5.1: Slow incremental clustering versions for RS
(S)
4 .
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Figure 5.2: Fast incremental clustering versions for RS
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4 .
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Figure 5.3: Slow incremental clustering versions for M
(S)
8 .
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Figure 5.4: Fast incremental clustering versions for M
(S)
8 .
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Figure 5.5: Slow incremental clustering versions for M
(S)
6 .
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Figure 5.6: Fast incremental clustering versions for M
(S)
6 .
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Figure 5.7: Slow incremental clustering versions for M
(M)
6 .
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Figure 5.8: Fast incremental clustering versions for M
(M)
6 .
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Figure 5.9: Slow incremental clustering versions for Mini20.
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Figure 5.10: Fast incremental clustering versions for the Mini20.
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Figure 5.11: Slow incremental clustering versions for the arti�cial dataset A
(3)
4 .
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Figure 5.12: Fast incremental clustering versions for the arti�cial dataset A
(3)
4 .
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Figure 5.13: Slow incremental clustering versions for for the arti�cial dataset A30.
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Figure 5.14: Fast incremental clustering versions for the arti�cial dataset A30.
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Chapter 6

Dip-means: An Incremental Clustering

Method for Estimating the Number of

Clusters

6.1 Introduction

6.2 Dip-dist criterion for cluster structure evaluation

6.3 The dip-means algorithm

6.4 Extending dip-means in kernel space

6.5 Experiments

6.6 Conclusions

6.1 Introduction

There are various algorithms that can �nd reasonable clusterings. Most clustering meth-

ods consider the number of clusters k as a required input, and then they apply an optimiza-

tion procedure to adjust the parameters of the assumed cluster model. As a consequence,
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in exploratory analysis, where the data characteristics are not known in advance, an ap-

propriate k value must be chosen. This is a rather di�cult problem, but at the same time

very fundamental in order to apply data clustering in practice.

Several algorithms have been proposed to determine a proper k value, most of which

wrap around an iterative model-based clustering framework, such as the k-means or the

more general expectation-maximization (EM). In a top-down (incremental) strategy they

start with one cluster and proceed to splitting as long as a certain criterion is satis�ed. At

each phase, they evaluate the clustering produced with a �xed k and they decide whether

to increase the number of clusters as follows:

Repeat until no changes occur in the model structure

1. Improve model parameters by running a conventional clustering algorithm for a

�xed k value.

2. Improve model structure, usually through cluster splitting.

One of the �rst attempts in extending k-means in this direction was x-means [143]

which uses a regularization penalty based on model's complexity. To this end, Bayesian

information criterion (BIC) [144] was used, and among many models the one with highest

BIC is selected. This criterion works well only in cases where there are plenty of data and

well-separated spherical clusters. Alternative selection criteria have also been examined

in literature [136].

G-means [145] is another extension to k-means that uses a statistical test for the hy-

pothesis that each cluster has been generated from Gaussian distribution. Since statistical

tests become weaker in high dimensions, the algorithm �rst projects the datapoints of a

cluster on an axis of high variance and then applies Anderson-Darling statistic with a

�xed signi�cance level �. Clusters that are not accepted are split repeatedly until the

entire assumed mixture of Gaussians is discovered. Projected g-means (pg-means) [146]

again assumes that the dataset has been generated from a Gaussian mixture, but it tests

the overall model at once and not each cluster separately. Pg-means bases on the EM

algorithm. Using a series of random linear projections, it constructs a one-dimensional

projection of the dataset and the learned model and then tests the model �tness in the
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projected space with Kolmogorov-Smirnov (KS) test [147]. The advantage of this method

is the ability to discover Gaussian clusters of various scales and di�erent covariances, that

may overlap. Bayesian k-means [148] introduces maximization-expectation (ME) to learn

a mixture model by maximizing over hidden variables (datapoint assignments to clusters)

and computing expectation over random model parameters (centers and covariances).

If the data come from a mixture of Gaussian components, this method can be used to

�nd the correct number of clusters and is competitive to the aforementioned approaches.

Other alternatives have also been proposed, such as gap statistic [149], self-tuning spectral

clustering [150], data spectroscopic clustering [151], and stability-based model validation

[152{154], however they are not closely related to the proposed method.

The work in this chapter is primarily motivated by the non generality of the ap-

proaches in [145] and [146], as they make Gausssianity assumptions about the underlying

data distribution. As a consequence, they tend to over�t for clusters that are uniformly

distributed, or have a non-Gaussian unimodal distribution. Additional limitations are

that they are designed to handle numerical vectors only and require the data in the

original dataspace. The contribution of our work is two-fold. Firstly, we propose a sta-

tistical test for unimodality, called dip-dist, to be applied into a data subset in order to

determine if it contains a single or multiple cluster structures. Thus, we make a more

general assumption about what is an acceptable cluster. Moreover, the test involves pair-

wise distances or similarities and not the original data vectors. Secondly, we propose the

dip-means incremental clustering method [45] which is a wrapper around k-means. We

experimentally show that dip-means is able to cope with datasets containing clusters of

arbitrary density distributions. This is tested using arti�cial dataset, while we also use

real-wold data such as images from handwritten digits and objects, and text document.

The object images and the text data represented in a very high dimensional and sparse

space, where additional challenges arise for any statistic test. Moreover, it can be easily

extended in kernel space by using the kernel k-means [155] and modifying appropriately

the cluster splitting procedure.
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6.2 Dip-dist criterion for cluster structure evaluation

In cluster analysis, the detection of multiple cluster structures in a dataset requires as-

sumptions about what the clusters we seek look like. The assumptions about the presence

of certain data characteristics along with the tests employed for veri�cation, considerably

inuence the performance of various methods. It is highly desirable for the assumptions

to be general in order not to restrict the applicability of the method to certain types of

clusters only (e.g. Gaussian). Moreover, it is of great value for a method to be able to

verify the assumed cluster hypothesis with well designed statistical hypothesis tests that

are theoretically sound, in contrast to various alternative ad hoc criteria.

We propose the novel dip-dist criterion for evaluating the cluster structure of a dataset

that is based on testing the empirical density distribution of the data for unimodality.

The unimodality assumption implies that the empirical density of an acceptable cluster

should have a single mode; a region where the density becomes maximum, while non-

increasing density is observed when moving away from the mode. There are no other

underlying assumptions about the shape of a cluster and the distribution that generated

the empirically observed unimodal property. Under this assumption, it is possible to

identify clusters generated by various unimodal distributions, such as Gaussian, Student-

t, etc. The Uniform distribution can also be identi�ed, since it is an extreme single mode

case where the mode covers all the region with non-zero density.

A convenient issue is that unimodality can be veri�ed using powerful statistical hy-

pothesis tests (especially for one-dimensional data), such as Silverman's method which

uses �xed-width kernel density estimates [156] or the widely-used Hartigan's dip statistic

[157]. As the dimensionality of the data increases, the tests require a su�cient number

of data points in order to be reliable. Thus, although the data may be of arbitrary di-

mensionality, it is important to apply unimodality tests on one-dimensional data values.

Furthermore, it would be desirable, if the test could also be applied in cases where the

distance (or similarity) matrix is given and not the original datapoints.

To meet the above requirements we propose the dip-dist criterion for determining uni-
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modality in a set of datapoints using only their pairwise distances (or similarities). More

speci�cally, if we con-sider an arbitrary datapoint as a viewer and form a vector whose

components are the distances of the viewer from all the datapoints, then the distribution

of the values in this distance vector could reveal information about the cluster structure.

In presence of a single cluster, the distribution of distances is expected to be unimodal. In

the case of two distinct clusters, the distribution of distances should exhibit two distinct

modes, with each mode containing the distances to the datapoints of each cluster. Conse-

quently, a unimodality test on the distribution of the values of the distance vector would

provide indication about the unimodality of the cluster structure. However, there is a

dependence of the results on the selected viewer. Intuitively, viewers at the boundaries

of the set are expected to form distance vectors whose density modes are more distinct

in case of more than one clusters. To tackle the viewer selection problem, we consider all

the datapoints of the set as individual viewers and perform the unimodality test on the

distance vector of each viewer. If there exist viewers that reject unimodality (called split

viewers), we conclude that the examined cluster includes multiple cluster structures.

For testing unimodality we use Hartigans' dip test [157]. A function F (t) is unimodal

with mode the region sm={(tL; tU) : tL ≤ tU} if it is convex in sL=(−∞; tL], constant in

[tL, tU ], and concave in sU=[tU ;∞). This implies the non-increasing probability density

behavior when moving away from the mode. For bounded input functions F , G, let

�(F;G)=maxt |F (t) − G(t)|, and let U be the class of all unimodal distributions. Then

the dip statistic of a distribution function F is given by:

dip(F ) = min
G∈U

�(F;G): (6.1)

In other words, the dip statistic computes the minimum among the maximum deviations

observed between the cdf F and the cdfs from the class of unimodal distributions. A nice

property of dip is that, if Fn is a sample distribution of n observations from F , then

limn→∞dip(Fn)=dip(F ). In [157] it is argued that the class of uniform distributions U is

the most appropriate for the null hypothesis, since its dip values are stochastically larger
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than other unimodal distributions, such as those having exponentially decreasing tails.

Given a vector of observations f={fi : fi ∈ R}ni=1, then the algorithm for performing

the dip test [157] is applied on the respective empirical cdf Fn(t)= 1
n

∑
n I(fi ≤ t). It

examines the n(n-1)=2 possible modal intervals [tL; tU ] between the sorted n individual

observations. For all these combinations it computes in O(n) time the respective greatest

convex minorant and the least concave majorant curves in (mintFn; tL) and (tU ;maxtFn),

respectively. Fortunately, for a given Fn, the complexity of one dip computation is O(n)

[157]. The computation of the p-value for a unimodality test uses bootstrap samples

and expresses the probability of dip(Fn) being less than the dip value of a cdf U r
n of n

observations sampled from the U[0,1] Uniform distribution:

P =
# [dip(Fn) ≤ dip(U r

n)]

b
; r = 1; :::; b: (6.2)

The null hypothesis H0 that Fn is unimodal, is accepted at signi�cance level � if p-

value > �, otherwise H0 is rejected in favor of the alternative hypothesis H1 which suggests

multimodality.

Let a dataset X={xi : xi ∈ Rd}Ni=1 then, in the present context, the dip test can be

applied on any subset c, e.g. a data cluster, and more speci�cally on the ecdf Fn(xi)(t) of

the distances between a reference viewer xi of c and the n members of the set:

F (xi)
n (t) =

1

n

∑
xj∈c

{Dist(xi; xj) ≤ t}: (6.3)

We call the viewers that identify multimodality and vote for the set to split as split viewers.

The dip-dist computation for a set c with n datapoint members is summarized as follows:

1. Compute U r
n and the respective dip(U r

n), r=1; :::; b, for the Uniform sample distri-

butions.

2. Compute F (xi)
n and dip(F (xi)

n ), i=1; :::; n, for datapoint viewers using the sorted

matrix Dist.

3. Estimate the p-values P(xi), i=1; :::; n, based on Eq. 6.2 using a signi�cance level �
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Figure 6.1: Application of dip-dist criterion on 2d synthetic data with two structures
of 200 datapoints each. The split viewers are denoted in red color. (a) One Uniform
spherical and one elliptic Gaussian structure. (b)(c) The histograms of pairwise distances
corresponding to the strongest and weakest split viewer. (d) The two structures come
closer; the split viewers are reduced, so does the dip value for the split viewer. (g) The two
structures are no longer distinguishable as the density map in (h) shows one mode. (i) The
Uniform spherical is replaced with a structure generated from a Student-t distribution.

and compute the percentage of viewers identifying multimodality.

Since the ascending ordering of the rows of Dist, required for computing F (xi)
n , can

be done once during o�ine preprocessing, and that the same b samples of Uniform dis-

tribution can be used for testing all viewers, the dip-dist computation for a set with n

datapoints has O(bn log n+ n2) complexity.

Fig. 6.1 illustrates an example of applying the dip-dist criterion on synthetic data. We

generated a Uniform spherical and a Gaussian elliptic structure, and then constructed

three di�erent two-dimensional datasets by decreasing the distance between them. The

dip test parameters are set �=0 and b=1000. The histograms in each row indicate the
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result of the dip test. As the structures come closer, the number of viewers that ob-

serve multimodality decreases. Eventually, the structures form a unimodal distribution

(Fig. 6.1(g)), which may be visually veri�ed from the presented density map. The fourth

dataset of Fig. 6.1(j) was created by including a structure generated by a Student-t dis-

tribution centered at the same location where the sphere is located in Fig. 6.1(g). The

respective density map shows clearly two modes, evidence that justi�es why the dip-dist

criterion determines multimodality with 24% of the viewers suggesting the split. More

generally, if the percentage of split viewers is greater than a small threshold, e.g. 1%, we

may decide that the cluster is multimodal.

6.3 The dip-means algorithm

Dip-means is an incremental clustering algorithm that combines three individual compo-

nents. The �rst is a local search clustering technique that takes as input a model of k

clusters and optimizes the model parameters. For this purpose k-means is used where the

cluster models are their centroids. The second, and most important, decides whether a

data subset contains multiple cluster structures using the dip-dist presented in Sec. 6.2.

The third component is a divisive procedure (bisecting) that, given a data subset, per-

forms the splitting into two clusters and provides the two centers.

Dip-means methodology takes as input the dataset X and two parameters for the

dip-dist criterion: the signi�cance level � and the percentage threshold vthd of cluster

members that should be split viewers to decide for a division (Algorithm 8). For the

sake of generality, we assume that dip-means may start from any initial partition with

kinit≥1 clusters. In each iteration, all k clusters are examined for unimodality, the set of

split viewers vj is found, and the respective cluster cj is characterized as split candidate

if |vj|=nj≥vthd. In this case, a non-zero score value is assigned to each cluster being a

split candidate, while zero score is assigned to clusters that do not have su�cient split

viewers. Various alternatives can be employed in order to compute a score for a split
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candidate based on the percentage of split viewers, or even the size of clusters. In our

implementation scorej of a split candidate cluster cj is computed as the average value of

the dip statistic of its split viewers:

scorej =


1
|vj |
∑

xi∈vj dip(F
(xi));

|vj |
nj
≥ vthd

0 ; otherwise:

(6.4)

In order to avoid the overestimation of the real number of clusters, only the candidate with

maximum score is split in each iteration. A cluster is split into two clusters using a 2-means

local search approach starting from a pair of su�ciently diverse centroids mL, mR inside

the cluster and concerning only the datapoints of that cluster. We use a simple way to set

up the initial centroids {mL;mR} ← {x; �−(x−�)}, where x a cluster member selected

at random and m the cluster centroid. In this way mL, mR lay at equal distances from

m, though in opposite directions. The 2-means procedure can be repeated starting from

di�erent �L, �R initializations in order to discover a good split. A computationally more

expensive alternative could be the deterministic principal direction divisive partitioning

(PDDP) [82] that splits the cluster based on the principal component. We re�ne the

solution at the end of each iteration using k-means, which �ne-tunes the model of k+1

clusters. The procedure terminates when no split candidates are identi�ed among the

already formed clusters.

6.4 Extending dip-means in kernel space

The proposed dip-dist criterion uses only the pairwise distances, or similarities, between

datapoints and not the vector representations themselves. This enables its application

in kernel space Φ, provided a kernel matrix K with the N ×N pairwise datapoint inner

products, Kij=�(xi)
T�(xj). Algorithm 8 can be modi�ed appropriately for this purpose.

More speci�cally, kernel dip-means uses kernel k-means [155] as local search technique,
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Algorithm 8 Dip-means (X, kinit, �, vthd)

input: dataset X={xi}Ni=1, the initial number of clusters kinit, a statistic signi�cance level � for
the unimodality test, percentage vthd of split viewers required for a cluster to be considered as a split
candidate.
output: the sets of cluster members C={cj}kj=1, the models M={�j}kj=1 with the centroid of each
cj set.
let: score=unimodalityTest(c, �, vthd) returns a score value for the cluster c,

{C, M}=kmeans(X, k) the k-means clustering,
{C, M}=kmeans(X, M) when initialized with model M ,
{mL;mR}=splitCluster(c) that splits a cluster c and returns two centers �L; �R.

1: k ← kinit
2: {C, M} ← kmeans(X, k)
3: do while changes in cluster number occur
4: for j=1,. . . ,k % for each cluster j

5: scorej ← unimodalityTest(cj , �, vthd) % compute the score for unimodality test

6: end for

7: if maxj(scorej) > 0 % there exist split candidates

8: target ← argmaxj (scorej) % index of cluster to be split

9: {�L; �R} ← splitCluster(ctarget)
10: M ← {M -�target; �L; �R} % replace the old centroid with the two new ones

11: {C, M} ← kmeans(X, M) % re�ne solution

12: end if

13: end do

14: return {C, M}

which also implies that centroids cannot be computed in kernel space, thus each cluster

is now described explicitly by the set of its members cj.

In this case, since the transformed data vectors �(x) are not available, the cluster

splitting procedure could be seeded by two arbitrary cluster members. However, we

propose a more e�cient approach. As discussed in Sec. 6.2, the distribution of pairwise

distances between a reference viewer and the members of a cluster reveals information

about the multimodality of data distribution in the original space. This implies that

a split of the cluster members based on their distance to a reference viewer constitutes

a reasonable split in the original space, as well. To this end, we may use 2-means to

split the elements of the one-dimensional similarity vector. We consider as reference split

viewer the cluster member with the maximum dip value. Here, 2-means is seeded using

two values located at opposite positions with respect to the distribution's mean. After

convergence, the resulting two-way partition of the datapoints, derived by the partition

of the corresponding similarity values to the selected reference split viewer, initializes a

local search with kernel 2-means.
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(a) Single structure generated by a Student-t distribution
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(c) Eight clusters of various density and shape
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(d) Two Uniform ring structures
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(e) Three Uniform ring structures

Figure 6.2: Clustering results on 2d synthetic unimodal cluster structures with 200 data-
points each (the centroids are marked with ⊗). (a)(b) Single cluster structures. (c) Various
structure types. Based on the leftmost sub�gure, it contains a Uniform rectangle (green),
a sphere with increasing density at its periphery (light green), two Gaussian structures
(black, pink), a Uniform ellipse (blue), a triangle denser at a corner (yellow), a Student-
t (light blue), and a Uniform arbitrary shape (red). (d)(e) Non-linearly separable ring
clusters (kernel-based clustering with an RBF kernel).

6.5 Experiments

In our evaluation we compare the proposed dip-means method with x-means [143], g-

means [145] and pg-means [146] that are closely related to present work. In all compared
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Table 6.1: Results for synthetic datasets with �xed k∗=20 clusters with 200 datapoints
in each cluster.

Case 1, d=4 Case 1, d=16 Case 1, d=32
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 20.0±0.0 1.00±0.0 0.00±0.0 20.0±0.0 1.00±0.0 0.00±0.0 20.0±0.0 1.00±0.0 0.00±0.0
x-means 7.3±9.3 0.30±0.5 2.07±1.3 28.6±7.8 0.88±0.1 0.27±0.2 31.3±5.6 0.84±0.1 0.36±0.2
g-means 20.3±0.5 0.99±0.0 0.01±0.0 20.3±0.5 0.99±0.0 0.01±0.0 20.5±0.6 0.99±0.0 0.02±0.0
pg-means 19.2±2.5 0.90±0.1 0.16±0.2 19.0±0.9 0.95±0.1 0.07±0.1 3.2±5.1 0.09±0.2 2.62±0.9

Case 2, d=4 Case 2, d=16 Case 2, d=32
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 20.0±0.0 0.99±0.0 0.05±0.0 20.0±0.0 0.99±0.0 0.02±0.0 20.0±0.0 0.99±0.0 0.01±0.0
x-means 24.8±39. 0.26±0.4 2.26±1.1 80.1±15. 0.75±0.1 0.75±0.2 71.6±14. 0.75±0.1 0.66±0.2
g-means 79.2±22. 0.77±0.1 0.70±0.2 105.9±30. 0.83±0.1 0.66±0.2 133.6±42. 0.83±0.1 0.72±0.2
pg-means 14.2±4.7 0.67±0.2 0.65±0.5 10.4±3.4 0.30±0.2 1.26±0.5 4.0±1.5 0.06±0.1 2.40±0.2

methods we use the same incremental cluster split and local searching strategy as adopted

in Algorithm 8 that starts with a single cluster (kinit=1) and:

i) at each iteration one cluster is selected for a bisecting split,

ii) 10 split trials are performed with 2-means initialized with the simple technique

described in Sec. 6.3, and the split with lower clustering error (the sum of squared

di�erences between cluster centers and their assigned datapoints) is kept,

iii) the re�nement is applied after each iteration on all k+1 clusters.

Hence, only the statistical test that decides whether to stop splitting di�ers in each case.

Exception is the pg-means method that uses EM for local search and does not rely on

cluster splitting to add a new cluster. We use the method exactly as presented in [146].

For the kernel-based experiments we use the necessary modi�cations described at the

end of Sec. 6.3 and compare with kernel k-means [155]. The parameters of the dip-dist

criterion are set as �=0 for signi�cance level of dip test and b=1000 for the number of

bootstraps. We consider as split candidates the clusters having at least vthd=1% split

viewers. These values were �xed in all experiments. For both g-means and pg-means we

set the signi�cance level �=0.001, while we use 12 random projections for the latter. In

order to compare the ground truth labeling and the grouping produced by clustering, we

utilize the variation of information (VI) metric [100] and the adjusted rand index (ARI)

[101]. Better clustering is indicated by lower values of VI and higher for ARI.
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We �rst provide clustering results for synthetic 2d datasets in Fig. 6.2 (ke denotes

the estimated number of clusters). In Fig. 6.2(a)(b) we provide two indicative exam-

ples of single cluster structures. X-means decides correctly for the structure generated

from Student-t distribution, but over�ts in the Uniform rectangle case, while the other

two methods over�t in both cases. In the multicluster dataset of Fig. 6.2(c) dip-means

successfully discovers all clusters, in contrast to the other methods that signi�cantly over-

estimate. To test the kernel dip-means extension, we created two 2d synthetic dataset

containing two and three Uniform ring structures and we used an RBF kernel to construct

the kernel matrix K. It is clear that x-means, g-means, and pg-means are not applicable

in this case. Thus we present in Fig. 6.2(d)(e) the results using kernel dip-means and also

the best solution from 50 randomly initialized runs of kernel k-means with the true num-

ber of clusters. As we may observe, dip-means estimates the true number of clusters and

�nds the optimal grouping of datapoints in both cases, whereas kernel k-means fails in

the three ring case. Furthermore, we created synthetic datasets with true number k∗=20

clusters, with 200 datapoints each, in d=4, 16, 32 dimensions with low separation [158].

Two cases were considered:

1. Gaussian mixtures of varying eccentricity, and

2. datasets with various cluster structures, i.e. Gaussian (40%), Student-t (20%), Uni-

form ellipses (20%) or Uniform rectangles (20%). For each case and dimensions, we

generated 30 datasets to test the methods.

As the results in Tab. 6.1 indicate, dip-means provides excellent clustering performance

in all cases and estimates accurately the true number of clusters. Moreover, it performs

remarkably better than the other methods, especially for the datasets of Case 2.

Real-world datasets were also used, where the provided class labels were considered as

ground truth. Handwritten Pendigits (UCI) [101] contains 16 dimensional vectors, each

one representing a digit from 0-9 written by a human subject. The data provide a training

PDtr and a testing set PDte with 7494 and 3498 instances, respectively. We also consider

two subsets that contain the digits {0; 2; 4} (PD3tr and PD3te) and {3; 6; 8; 9} (PD4tr

and PD4te). We do not apply any preprocessing. Coil-100 is the second dataset [159],
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Table 6.2: Clustering results for real-world data. Bold indicates best values.

PD3te (k
∗=3) PD4te (k

∗=4) PD10te (k
∗=10)

Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 0.879 0.332 4 0.626 0.545 7 0.343 1.587

x-means 155 0.031 3.792 194 0.039 3.723 515 0.041 3.825

g-means 21 0.226 1.800 36 0.209 2.049 73 0.295 1.961

pg-means 4 0.835 0.359 10 0.576 0.954 13 0.447 1.660

PD3tr (k
∗=3) PD4tr (k

∗=4) PD10tr (k
∗=10)

Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 0.963 0.116 4 0.522 0.841 9 0.435 1.452

x-means 288 0.018 4.378 381 0.020 4.372 942 0.024 4.387

g-means 52 0.106 2.641 58 0.143 2.464 149 0.160 2.605

pg-means 5 0.655 0.740 8 0.439 1.320 14 0.494 1.504

Coil3 (k∗=3) Coil4 (k∗=4) Coil5 (k∗=5)
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 1.000 0.000 5 0.912 0.173 4 0.772 0.308

x-means 8 0.499 0.899 11 0.499 0.951 15 0.601 0.907

g-means 7 0.669 0.650 12 0.502 0.977 18 0.434 1.204

which contains 72 images taken from di�erent angles for each one of the 100 included

objects. We used tree subsets Coil3, Coil4, Coil5, with images from 3, 4 and 5 objects,

respectively1. SIFT descriptors [5] are �rst extracted from the greyscale images that are

�nally represented by the bag of visual words model using 1000 visual words.

We also considered three subsets of text document data taken from the 20-Newsgroups

collection2. All datasets have 200 document vectors per included category. Each document

is encoded using the bag of words representation. In particular, TD1 contains documents

from each of the �rst three categories of the collection with 4271 term features. TD2

contains documents from categories 6, 7, 11, 13, and 19 with 5492 features and, �nally,

TD3 includes TD2 while additionally contains documents from the categories 1, 2 that

altogether have 8280 term features.

As reported in Tab. 6.2, dip-means correctly discovers the number of clusters for the

subsets of Pendigits, while providing a reasonable underestimation ke near the optimal for

the full datasets PD10tr and PD10te. Apart from the excessive over�tting of x-means and

g-means, pg-means seems to concludes in overestimated ke. In the high dimensional and

1These objects are also included in the Coil20 subset [160].
2Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 6.3: Clustering results for text data. Bold indicates best values.

TD1 (k∗=3) TD2 (k∗=5) TD3 (k∗=8)
Methods ke ARI VI ke ARI VI ke ARI VI

dip-means 3 0.464 0.793 4 0.561 0.670 6 0.333 1.184

x-means 1 0.000 1.099 2 0.192 1.972 3 0.249 1.384

pg-means 1 0.000 1.099 10 0.271 2.243 − − −

sparse space of the considered Coil subsets, x-means and g-means provide more reasonable

ke estimations, but still overestimations. An explanation for this behavior is that they

discover smaller groups of similar images, i.e. images taken from close angles to the same

object, but fail to unify the subclusters at higher level. Note also that we did not manage

to test pg-means in Coil-100 subsets, since covariance matrices were not positive de�nite.

In what concerns text data, the experimental results are reported in Tab. 6.3. We did

not include results for g-means that over�tted in all cases and required too much running

time to terminate. In fact, in all cases g-means stopped due to the empirical stopping

criterion that we set in order to stop splitting very small clusters. Dip-means seems to

provide better estimates for the number of clusters, however, in two cases it provided an

underestimation and only for the smaller of the datasets it gave a correct estimation. We

should note that, these are high dimensional and sparse datasets, and we provided them

as input to the methods without any projection (dimensionality reduction) that could

possibly make clearer the cluster structure. Pg-means failed for the last dataset, since

the covariance matrices were not positive de�nite. The superiority of dip-means is also

indicated by the reported values for ARI and VI measures.

6.6 Conclusions

We have presented a novel approach for testing whether multiple cluster structures are

present in a set of data objects (e.g. a data cluster). The proposed dip-dist criterion checks

for unimodality of the empirical data density distribution, thus it is much more general
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compared to alternatives that test for Gaussianity. Dip-dist uses a statistical hypothesis

test, namely Hartigans' dip test, in order to verify unimodality. If a data object of the

set is considered as a viewer, then the dip test can be applied on the one-dimensional

distance (or similarity) vector with components the distances between the viewer and the

members of the same set. We exploit the idea that the observation of multimodality in

the distribution of distances indicates multimodality of the original data distribution. By

considering all the data objects of the set as individual viewers and by combining the

respective results of the test, the presence of multiple cluster structures in the set can be

determined.

We have also proposed a new incremental clustering algorithm called dip-means, that

incorporates dip-dist criterion in order to decide for cluster splitting. The procedure starts

with one cluster, it iteratively splits the cluster indicated by dip-dist as more probable

to contain multiple cluster structures, and terminates when no new cluster split is sug-

gested. By taking advantage of the fact that dip-dist utilizes only information about the

distances between data objects, we have modi�ed appropriately the main algorithm to

propose kernel dip-means which can be applied in kernel space.

The proposed method is fast, easy to implement, and works very well under a �xed

parameter setting. The reported clustering results indicate that dip-means can provide

reasonable estimates of the number of clusters, and produce meaningful clusterings in

both dataset types in a variety of arti�cial and real datasets.
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Chapter 7

Conclusions

7.1 Conclusions and future work

7.2 Directions for future work

7.1 Conclusions and future work

In this thesis we have studied and developed machine learning and data mining methods

for extracting knowledge from document collections. More speci�cally, we focused on the

problem of document clustering, which is an unsupervised approach for the extraction of

information regarding the cluster structure of a dataset. The motivation of this disser-

tation was to design novel and e�cient methodologies for document representation and

clustering that take into account the particular characteristics of tet documents.

First, in Chapter 2 an extensive discussion has been included on the special properties

of the natural languages and the ways that text documents are transformed and repre-

sented as feature vectors. Such feature spaces are characterized by the high dimensionality

and sparsity (HDS) which in turn impose di�culties when typical clustering methods are

applied.

In Chapter 3 we revisited the oversimplistic term independence assumption that is

considered in most vector space models (VSM) used for document representation. Specif-
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ically, we presented an extension to VSM approach for text document representation called

global term context vector model (GTCVM). The main contribution of the method is that

it proposes a way to compute the similarity between two term features based on the local

context in which those terms appear in the term sequences of documents. In this way, the

bag of words (BOW) document vectors were mapped onto a new feature space spanned by

term similarity vectors. The method proceeds as follows: i) it captures local contextual

information for each term occurrence in the term sequences of documents; ii) the local

contexts for the occurrences of a term are combined to de�ne the global context of that

term; iii) using the global context of all terms a proper semantic matrix is constructed;

iv) this matrix is further used to linearly map traditional BOW document vectors onto

a `semantically smoothed ' feature space. In the experimental study, we employed this

vector mapping to verify the impact of the smoothed feature space in the text document

clustering problem using standard algorithms such as k-means and spectral clustering.

The results demonstrated the improvement of clustering solutions when the proposed

GTCVM representation was used compared to traditional VSM-based approaches like

BOW, or other techniques that also try to exploit the contextual information of terms to

de�ne dependencies between them.

In Chapter 4, we investigated the centroid-based cluster representation for HDS data.

Synthetic cluster prototypes were proposed for representing a cluster of HDS vectors, such

as document representations. This novel prototype is computed by i) �rst selecting a sub-

set of the objects in the cluster, then ii) computing the representative of these objects and,

�nally, iii) selecting important features. We also proposed the MedoidKNN synthetic pro-

totype that favors the representation of the dominant class in a cluster. In the proposed

robust clustering method called k-synthetic prototypes (k-sp), we incorporated the afore-

mentioned cluster prototypes. This algorithm extends the spherical k-means algorithm.

We also discussed the k-sp property of searching a proper subspace for each cluster. This

property derives from the fact that a set of HDS vectors is necessarily described by an

equal or larger number of non-zero dimensions compared to any of its subsets. In this

sense, the proposed method exhibits some similar characteristics to subspace clustering.
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This approach was experimentally tested against various widely-used clustering methods

such as spherical k-means (using a series of initialization schemes), spectral cluster, and

subspace clustering algorithms. The clustering results indicated the robustness of k-sp,

especially for small datasets and clusters overlapping in many dimensions, while superior

performance was observed to that of the compared clustering approaches.

In Chapter 5, we studied the document clustering problem using the incremental

approach to build the �nal partition and the respective representatives. This approach

begins from a small number of clusters and, at each incremental step, it introduces one

new cluster in the solution computed so far until a desired number of clusters have been

formed. Our �rst contribution in this chapter was to provide a detailed presentation

of the related signi�cant advances, and then to present a framework for prototype-based

incremental clustering. Our framework introduces the idea of partial updates (PU) on a

given solution. A partial update is de�ned by the activity state (active or inactive) of

subsets of clusters, prototypes, and data objects. An active entity could participate in the

iterations of the clustering procedure. For instance, an active data object may move among

the active clusters that compete to each other in order to attract more objects. Moreover,

an active prototype may be updated when the members of its cluster are modi�ed during

iterations, however, an active cluster does not always have an active prototype. We

have shown that several known prototype-based incremental clustering approaches can be

considerer as special cases of the proposed framework which o�ers a good summarization

of such approaches. Next, we stressed the `unfair prototype competition' problem, which

implies that the new prototype which is introduced at each incremental step is di�cult to

be competitive to the already formed prototypes. To address this issue, which is due to

the HDS property of the data, we proposed a reduction-enrichment mechanism (REM)

aiming to make more sparse the formed cluster prototypes and, at the same time, help

the new prototype to become a strong attractor for the active objects. These new ideas

have been incorporated in the incremental global k-synthetic prototypes (gksp) clustering

method with good results.

In Chapter 6, we considered a key problem in data clustering: the estimation of the
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number of clusters in a dataset. To this end, we presented dip-means, a novel robust

incremental method that learns the number of data clusters. The only assumption of

dip-means is the fundamental cluster property that each cluster should admit a unimodal

distribution. This is much more general than the assumptions made by other methods,

such as the Gaussianity assumption. Dip-means employs the novel dip-test which is a

univariate statistic hypothesis test for unimodality. This test is applied on the distances

between an object of the cluster, considered as `viewer ', and the cluster members. If there

exist some viewers that give evidence for multimodality according to the dip-test, then

the cluster is considered multimodal and should be further split. From the statistical

and computational point of view, it is important that the unimodality test is applied on

univariate distance vectors, and that if the similarity matrix is provided, then the actual

data vectors are not necessarily required. These characteristics make dip-test applicable

in combination with many standard incremental, or kernel-based methods since only the

pairwise distances are involved in the computations. We experimentally compared dip-

means with several other methods and the results indicated that dip-means provides better

estimations of the number of clusters, especially for non-Gaussian data.

7.2 Directions for future work

For the document representation problem, a possible research direction is to investigate

the potential of combining the local and global term contextual information in order to

build compact concept vectors and hence to e�ciently project the transformed document

vectors in feature spaces of lower dimensionality. We also intend to perform a system-

atic study for procedures that could e�ciently compute a di�erent parameter value for

each individual vocabulary term which, in term, could improve the global term context

vectors. Additionally, document-term co-clustering is another interesting problem where

term similarities may apply. Finally, we aim at examining the proposed representation

for document classi�cation.
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Regarding the k-sp method, a direction for future work is to develop techniques for

the automated speci�cation of pobj. Alternatively, we could extend the feature selection

procedure to a continuous weighting scheme, instead of the current binary weighting. It

is interesting to investigate the possibility of developing a gradual adjustment of the k-sp

parameters aiming to achieve a gradual change of the prototype behavior from medoid-

like to centroid-like. This would also eliminate the separate re�nement phase. Moreover,

the proposed method could be tested in other related problems, such as term selection

for cluster summarization, organization of noisy document collections, online document

clustering, and semi-supervised document clustering.

In what concerns incremental prototype-based document clustering, it is possible to

further exploit the proposed framework in order to develop more e�cient clustering meth-

ods based on the presented design principles. The global k-sp could also take advantage

of any future improvement of the original k-sp algorithm. Worth to note that it is of great

value to investigate ways to reduce the computational cost of such incremental clustering

approaches so that they become applicable in large-scale problems.

Dip-means is a very promising methodology for estimating the number of clusters of

a dataset that deserves further study and investigation. Further study could be done

concerning how to adjust the values of the parameter used in the dip-test. The proposed

method for unimodality cluster testing could also be used as a validation technique in

cluster analysis problems. Moreover, apart from testing dip-dist in real-world applications,

there are several ways to improve the implementation details, especially in the kernel-based

version. We also plan to test its e�ectiveness in other settings such as online clustering of

stream data.

As an overall remark we believe that there is also clear potential to combine the

methods developed and presented in this thesis. For instance, dip-test could be used to

examine the characteristics of a cluster in order to adjust properly its synthetic prototype.

Such combinations could be an important direction for further study.
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