Amobnrevpéveg Oyerg yio Katataxtipieg Epotioeig pe Avo Oplo Anotedecpdtov: Eneéepyacio
epomoenv, Evuépwon kar Opotdtra

H
AIAAKTOPIKH AIATPIBH

YnoBdiieton otV
optobeica amd v [N'evikn Zovérevon Ewdumg XHvOeong

tov Tunuatog ITAnpoopiknig
E&eractikn Emrponn

and TV

Evtuyio Mraikodon

®G LEPOG TV Y TOYPEDCEDV

yio.Tn AMym
TOV

AIAAKTOPIKOY AONIAQMATOZX XTHN ITAHPO®OPIKH

Iavovdprog 2012

il

Tppeig Zvppovisvtikny Emvtpomn

Baocieradong Mavayidtg, Enikovpog Kadnyntng tov Tunqpoatog [TAnpopopikng
tov [Tavemomuiov loavvivov (emPAénov).

IMitovpd Evayyeiia, Avarinpotpio Kabnyntpia tov Tunupatog IAnpogopiknig
tov [Tavemomuiov loavvivov.

Yedmg Tyorémv, Kabnyntg tov Tunuatog HAexktpordymv Mnyovikdv kou

Mnyovikdv Yroloyiotdv tov EBvikod Metadfiov [Tavemomuiov.

Entapemc E€etaotikn Emtpom

Baocieraong Mavayidtg, Enikovpog Kadnyntng tov Tunqpotog [TAnpopopiknig
tov [Tavemomuiov loavvivov (emPAénov).

Anpoakomoviog Baoilerog, Enikovpoc Kabnynmg tov Tunpatog [TAnpopopikng
tov [Tavemomuiov loavvivov.

Zappog Anéotorog, Enikovpog Kabnynme tov Tunuatog [Minpopopiknig tov
[Moavemompiov lmavvivov.

MMainég Asowvidag, Avarinpotig Kadnyntig tov Tunpatog ITAnpopopikng tov
[Mavemompiov loavvivov.

IIrtovpd Evayyeria, Avarinpotpio Kabnyntpio tov Tunuatog [TAnpogopikng
tov [Tavemomuiov loavvivov (LEAOG TPIEAODS CLUPBOVAEVTIKTG EMLTPOTNG).
Yedmg Tyorémv, Kabnyntg tov Tunuatog HAexktpordymv Mnyovikdv kot
Mnyovikeov Ymohoyiwotov tov Efvikod Metodfrov Ilavemotuiov (pérog
TPHEALOVS GLUPBOVAEVTIKNG EMLTPOTNG).

Toanapag Mavaywwtng, Enikovpog Kabnyntc tov Tunuatog ITAnpopopikng

tov [Mavemompiov loavvivov.

il

ACKNOWLEGMENTS

I would like to express my warmest thanks and gratitude to my advisor Prof. Panos
Vassiliadis for the valuable guidance, advice and encouragement he has offered while
supervising my thesis. For the time and effort he spent on my work throughout all
these years. Collaborating with him has been a pleasant and memorable experience. |
am also very grateful to Prof. Evaggelia Pitoura and Prof. Timos Sellis for acting as
secondary referees for my thesis. Many thanks also to Prof. Vassilios Dimakopoulos,
Prof. Apostolos Zarras, Prof. Leonidas Palios, Prof. Panayiotis Tsaparas for serving in

my thesis committee.

I would also like to express my gratitude to the state scholarship foundation IKY for
the funding provided throughout my studies as well as to Prof. Nikos Mamoulis for
his time and effort spent while collaborating with him and for the funding he provided

while visiting the Hong Kong University.

Last but not least, I would like to thank all people of the DMOD Laboratory that
throughout all these years have provided helpful feedback and turned the countless
hours in the office into a joyful and pleasant experience. Especial thanks to my office-
mate Giorgos Rogkakos for his collaboration while working on the similarity of
multidimensional data points. Finally, I would like to thank my family and parents for

their continuous support and understanding all these years.

This thesis has been supported by the state scholarship foundation IKY.

v

TABLE OF CONTENTS

CHAPTER 1. Introduction
1.1. Terminology and Contribution in a Nutshell
1.2. Thesis Contribution & Outline
CHAPTER 2.View Usability for Answering Top-k Queries Over
Materialized Views
2.1. Background and Related Work
2.1.1. Algorithms for top-k Queries over Relations
2.1.2. Algorithms for top-k Queries over a Relation and Materialized
Views
2.1.3. Related Problems in Different Context
2.1.4. Research Opportunities and Comparison to Related Work
2.2. Adequacy of a Materialized View to Answer a Query for the 2D Case
2.2.1. Problem Formulation
2.2.2. The Case when the View is “Higher” than the Query
2.2.3. Strictness of the Suitability Theorem
2.2.4. Computation of Offsets and Safe Areas
2.2.5. The Case when the View is “Lower” than the Query
2.2.6. Special Cases
2.2.7. Algorithmic Results
2.3. Queries and Views with More than Two Scoring Attributes
2.3.1. Fundamental Results for the n-Dimensional Case
2.3.2. Discussion
2.3.3. Algorithmic Results
2.4. Working with More Than One Views
2.4.1. Safe Area Containment with More than One Views
2.4.2. Working with More than One Views in Parallel
2.5. Experiments
2.5.1. Experimental Method for 2D
2.5.2. Experimental Method for n-D
2.6. Chapter Summary and Findings
CHAPTER 3. Maintenance of Top-k Materialized Views
3.1. Efficient Maintenance of Materialized top-k Views [YYY+03]
3.2. Fine-Tuning of Views to Sustain High Update Rates
3.2.1. Formal Definition of the Problem
3.2.2. Sketch of the Method
3.2.3. Handling of Updates
3.2.4. Computation of the Actual Rates that Affect V
3.2.5. Computation of Kcomp
3.2.6. Fine-Tuning of Keomp

W N =

oo

11
20
22
24
24
27
29
30
31
32
34
35
35
39
40
40
40
42
46
46
50
64
67
71
72
72
74
75
75
78
80

3.2.7. Discussion 81

3.2.8. Example 81
3.3. Generalization of the Problem 84
3.3.1. Formal Definition of the Problem Generalized for More than Two
Attributes 84
3.3.2. Formal Definition of the Problem Generalized for Non-Linear
Monotonic Functions 85
3.4. Multiple View Updates 85
3.4.1. View Nucleation 86
3.4.2. Updates for Nucleated Views 87
3.4.3. Discussion & Summary 93
3.5. Updating Multiple Nucleated Views 94
3.5.1. Representation of Nucleation Relationships as Hierarchy Paths 94
3.6. Experiments 100
3.6.1. Experimental Study of Sustaining High Rate of Deletions 100
3.6.2. Experimental Study for Multiple Views Updates 111
3.7. Chapter Summary and Findings 115
CHAPTER 4.Similarity Measures for Multidimensional Data 117
4.1. Distance Families 121
4.1.1. Distance Functions between two Values 121
4.1.2. Distance Functions between two Cells of Cubes 130
4.1.3. Distance Functions between two OLAP Cubes 134
4.2. Cell Mapping and Categories of Distance Functions according to it 135
4.2.1. Distance Functions that Include Mappings 137
4.2.2. Distance Functions that do not Include Mappings 140
4.3. Experiments 141
4.3.1. User Study for Distances between two Values of Dimensions 141
4.3.2. User Study for Distances between two Cubes 145
4.3.3. Reliability and Validity Considerations 149
4.4. Chapter Summary and Findings 150
CHAPTER 5. Conclusions 153
5.1. Summary of Contributions 153
5.2. Open Problems and Insights for Future Work 156
5.2.1. View selection and caching 156
5.2.2. View caching 157
5.2.3. Combining indexing techniques with materialized views for query
processing of top-k queries in multi dimensional space 158

References 159

Vi

LIST OF TABLES

Table 2.1. Experimental Parameters for 2D.

Table 2.2 Experimental Parameters for Synthetic N-D.

Table 2.3 Absolute Times and Time Savings for Random Data.

Table 2.4 Absolute Times and Time Savings for Correlated Data.

Table 2.5 Absolute Times and Time Savings for Anticorrelated Data.

Table 2.6 Experimental Parameters for Synthetic N-D.

Table 3.1. Experimental Parameters.

Table 3.2. Experimental Parameters.

Table 4.1. Adult Dataset Tables.

Table 4.2. Notation of Distance Functions Used in the Experiment.

Table 4.3. Top Three Most Frequent Distance Functions for Each User Group.

Table 4.4 The Most Frequent Distance Function for Each Set of Scenarios.

Table 4.5. Frequencies of Preferred Distances within Each User Group for
Each Distance Family.

Table 4.6. The Distance Functions Used in the Second User Study.

Table 4.7. Frequency of Chosen as First Distance Function Among All the
Answers.

Table 4.8 User Stability.

Table 4.9 The Winning Functions and the Winner Functions.

47
50
58
59
60
60
101
112
142
143
143
144

145
146

147
147
148

Vil

LIST OF FIGURES

Figure 2.1. Example of Sorted Lists of a Relation’s Attributes.

Figure 2.2. Convex Hulls in 2 Dimensional Space.

Figure 2.3. Vector Representation of Scoring Function and Rank Attributes.

Figure 2.4. Possible Orderings of Tuples #; and #,. (a)Positive Slope of 1,1,
(b)Negative Slope of #,1,.

Figure 2.5. Visual Demonstration of the LPTA Technique for Query
Answering top-k via Views.

Figure 2.6. Answering a Query Q via a View Vy when the View is “Higher”
than the Query.

Figure 2.7. Example of Why a View V is Not Always Reliable for Answering a
Query Q.

Figure 2.8. At Least k Points in the Safe Area of a View V Make it Reliable for
Answering a Query Q.

Figure 2.9. The Case where the View is “Under” the Query.

Figure 2.10. Special Case where V is of the Form sy = y.

Figure 2.11. Special Case where V is of the Form sy = x.

Figure 2.12. All the Safe Area Should Possibly be Exhausted for the
Determination of the top-k Query Tuples.

Figure 2.13. The Two Sub-Regions Defined by Py.

Figure 2.14. Example of Why a View V is Not Always Reliable for Answering
a Query Q.

Figure 2.15. A Query Q with One View on Either of its Sides, Vy for the Upper
Side and Vp for the Lower Side.

Figure 2.16. The Active Zone for the Range sjow, nigh Of Query Q within its Safe
Area over View V.

Figure 2.17. Percentage of Views Used for 100 Queries.

Figure 2.18. Percentage of Views Used for Different Time Spans (Numbers of
Posed Queries).

Figure 2.19. Time Savings from the Usage of Queries for Different Database
Sizes and Requested Results.

Figure 2.20. Detailed Information for the Efficiency of the Method in Time
Savings.

Figure 2.21. Percentage of Queries Answered for Random Data.

Figure 2.22. Percentage of Queries Answered for Correlated Data.

Figure 2.23. Percentage of Queries Answered for Anticorrelated Data.

Figure 2.24. Time Savings from the Usage of Views for Random Data.

Figure 2.25. Time Savings from the Usage of Views for Correlated Data.

Figure 2.26. Time Savings from the Usage of Views for Anticorrelated Data.

Figure 2.27. Percentage of Queries Answered for Real Dataset.

12
13

14
20
27
28
30
31
32
33

35
37

39

42

43
47

48

49

49
52
53
54
55
56
57
62

viii

Figure 2.28. Time Savings of Our Method for Real Dataset.

Figure 3.1. Exponential Probability Distribution.

Figure 3.2. Beta Probability Distribution.

Figure 3.3. Base Relation R.

Figure 3.4. Insertions and Deletions Occurring in Base Relation R.

Figure 3.5. The View V Prior and Subsequent to Updates.

Figure 3.6. Both Views Are of Proportional Equations.

Figure 3.7. Intersection of Two Views Outside the Active Area.

Figure 3.8. Intersection of Two Views Inside the Active Area.

Figure 3.9. Hierarchies for Efficient View Updates.

Figure 3.10. Maximum and Average Misses as a Function of IRl and A.

Figure 3.11. Maximum Misses as a Function of k and D/I.

Figure 3.12. Size of Relation R (IRl) over Time as Insertions and Deletions
Take Place for Workload W, Having a Ratio of Deletion Rate
over Insertion Rate D/I =1.0.

Figure 3.13. Size of Relation R (IRl) over Time as Insertions and Deletions
Take Place for Workload W, Having a Ratio of Deletion Rate
over Insertion Rate D/I = 2.0.

Figure 3.14. Size of Relation R (IRl) over Time as Insertions and Deletions
Take Place for Workload W3 Having a Ratio of Deletion Rate
over Insertion Rate D/I = 0.5.

Figure 3.15. Average Number of Insertions and Deletions that Affect the Top-k
Tuples in the View.

Figure 3.16. Memory Overhead Expressed as the Number of Tuples Stored in
the View.

Figure 3.17. Comparison of k, kcomp, and kcomp With Tuning.

Figure 3.18. Comparison of kcomp With Tuning and [YYY+03].

Figure 3.19. Time to Build the Top-k View (microseconds).

Figure 3.20. Comparison between Naive and Nucleation Method. All Graphs
Show the Time of Applying Updates as a Function of Insertion
Size and IRI.

Figure 4.1. The hierarchy of levels for dimensions Time and Location

Figure 4.2. Values of the Location Dimension.

Figure 4.3. Partial Distances Between Two Values in Different Levels of
Hierarchy.

Figure 4.4. Instances of Cells ¢; and c».

Figure 4.5. Lattice of the Dimension TIME for the Values of Cells of Figure
4.4.

Figure 4.6. Lattice of the Dimension LOCATION for the Values of Cells of
Figure 4.4.

Figure 4.7. Instances of Two Cubes and the Mapping of their Cells.

Figure 4.8. Instances of Cubes CUBE, and CUBE; and the Mapping of the
Cells of the Cube CUBE, to the Cells of the Cube CUBE}.

63
77
78
82
83
84
89
91
92
95
103
104

106

106

106
108
108
109

110
111

114
122
122

128
131

132

132
136

138

X

LIST OF ALGORITHMS

Algorithm 2.1. 2D SafArI Algorithm

Algorithm 2.2. SafArl Algorithm

Algorithm 2.3. Algorithm Compute Query Extent
Algorithm 3.1. Algorithm Create Hierarchy Paths
Algorithm 3.2. Algorithm Maintain View Updates
Algorithm 3.3. Algorithm Check Intersection Point /

34
41
45
96
98
99

ABSTRACT

Eftychia Baikousi.

PhD, Computer Science Department, University of loannina, Greece, January 2012.
Title of Dissertation: Materialized Views for top-k queries: Query Processing, View
Refreshment and Similarity.

Supervisor: Panos Vassiliadis.

Nowadays, there is a huge amount of data available to users. Due to the variety and
great volume of data, retrieving the most important pieces of information, can become
an overwhelming task. In the areas of Information Retrieval and Data Management,
researchers have paid attention to the generic problem of retrieving the top-k similar
objects from a repository according to a users preference query. In the field of Data
Management, this problem is known as top-k querying problem. In the field of
Information Retrieval, in applications such as multimedia retrieval, the problem is
mainly addressed as finding the most similar objects to a given one according to a
similarity metric. The goal of this thesis is to explore and investigate the answering of
top-k queries through the exploitation of materialized top-k views. In addition, we
study the problem of capturing the distance function that best complies with human
perception for finding the similarity between two data collections of multidimensional

points under the form of OLAP cubes.

The top-k querying problem concerns the retrieval of the top-k results of a ranked
query over a database. Specifically, given a relation R (tid, Ai, A»,..., An) and a query
Q over R the desideratum is to retrieve the top-k tuples from R having the k highest
values according to a scoring function f that accompanies Q. In an effort to improve
the performance of the retrieval of top-k tuples from R, we study the problem by
taking into consideration results from previously posed queries that are cached as
materialized views. We study the problem by acquainting a geometric representation

and we provide theoretical guarantees on whether a materialized view is able to

X1

answer a top-k query. We proceed by proposing the SafArl algorithm for deciding the
usability of a materialized view as well as the answer of the top-k query, in case the

view is suitable for the query.

In the presence of updates in the relation over which a set of views is defined, we
provide a method for keeping the top-k materialized views up to date without needing
to re-compute them and provide results in two directions. Firstly, we deal with the
problem of maintaining top-k views in the presence of high deletion rates and provide
a principled method that is independent of the statistical properties of the data and the
characteristics of the update streams. Secondly, we assess the problem of efficiently
maintaining multiple top-k views, where we provide theoretical guarantees for the
nucleation of a view with respect to another view and the reflection of this property to
the management of updates. Further on, we propose an algorithm that maintains a

large number of views, via their appropriate structuring in hierarchies of views.

Apart from finding top-k answers for data in the form of multidimensional points, we
also assess the problem of finding how similar are two collections of data according to
human perception. To put the question a little more precisely, given two sets of points
in a multidimensional hierarchical space, what is the distance between these two
collections? In applications such as multimedia information retrieval and digital
libraries, where contemporary data lead to huge repositories of heterogeneous data
stored in data warehouses, there is a need of similarity search that complements the
traditional exact match search. We address the problem by (a) organizing alternative
distance functions in a taxonomy of functions and (b) experimentally assessing the
effectiveness of each distance function via a user study in order to discover which

distance function is mostly preferred by the users.

Xii

EKTENHX ITEPIAHYH XTA EAAHNIKA

Evtuyio Mraikovon.

PhD, Tpnpo ITAnpogopikng, Iavemommuo loavvivev, lavovdprog 2012.

Titog Awtpipnig:

EmBriénov: Mavayidmg Baciieldong.

Ady® tOov pEYEAAOL OYKOL O£00UEVOV KOl TNG TANOMPOS TANPOPOPI®DY oL Eivol
SlBEa1EG GTOVE XPNOTEG HECH OAIKTVOL KoL Ol LOVO, €ivar avaykaio 1 amod0TIK
AVAKTNON TOV O EVOLLPEPOVIMV KOl TPOTIUNTEDV TANPOPOPLOV. TOGO 6TV TEPLOYN|
™™g Avaktnong Agdopévav 660 kot 610 YOPo TV Bdoswv Asdopévav, ot epeuvntég
Exovv aoyoAnOel pe 1o yevikotepo TpOPANUA TG avakTnong Kot EOpLENG TV K MO
OLOL®V OVTIKEWWEVOVY OO VO GCUVOAO AVTIKEIUEVOV COUP®VA UE TIG TPOTIUNCELS TOV
B€Touv o1 ypnoteg. Zuykekpuéva, 610 YOpo Twv Bdoewv Agdopévav, 1o TpoPAnua
STVTTOVETAL MG 1) AVAKTNON TNG OTAVTNOTG KOTATOKTPLOV EPMTHCEMV LE Ave Oplo
OmOTEAECUATOV. XT0 Y®POo TS Avikmnone Aegdouévov, 10 mPOPANUa Kupimg
OTOVTOTOL ©OC 1 €UPECN TOV MO OUOL®V OVIIKEWEVOV ¢ TPoG £va. OeO0UEVO
AVTIKEIIEVO, OTMG, TAPUSEIYUATOG XAPLY, GE EQAPUOYES AvVAKTNONG OedoUEVOV amd
Baocelg morvpéocwv. O o10)X0¢ TS Tapovoag datpPng ivor 1 peAEn kot n €pgvva
TOL TTPOPANUOTOC TNG AVAKTINONG TOV ATOTEAECUATMOV KOTATOKTNPIOV EPOTCEMV LE
dve O0plo0 amOTEAECUATOV HEGH TNG ¥PNoNg vAomomuévov oyewv. Emmpdcbeta,
HEAETATOL TO TPOPANUA TOV EVIOTICUOD TNG GLVAPTNONG ATOCTUCNG TOV UITOPEL Vo
ypnowonomBel dote va ekppdoet TV avOpdTIVY avTiAnyn yioo v €bpecn NG

OLO1OTNTOS 0O dVO GLAAOYEG OEOOUEVMV GTO TOAVILAGTATO YDPO.

To mpoPAnua ™G omAvInong KATOTOKTAPLOV EPOTACEMYV HE OV Oplo
OTOTEAECUATOV OPOPE TNV OVAKTIOT TOV K OTOTEAECUATMOV LE TNV LYNAITEPT TIUN
COLPMOVO, HE M0 KOTOTOKTAPL €pdTNoN mov tifeton o pio Paomn dedopévmv.
Yvykekpuéva, do0siong pog oxéong R (tid, Ay, Az, ..., Ay) Kol pog epotnong Q mdvo

otV R, 0 61610¢ €lvar 1 avakTomn TV K TAEWO®V ard T o)xéon R TETO1wV OOTE Vo

Xiii

EYOUV TIG K LYNAOTEPES TIWEC COUEMOVO HE o cuvaptnon Pabuordynong mov
ovvodevel TV epdon Q. e o mtpoonadela vor PBEATIOGOVHE TNV amOJ00T TNG
AVAKTNONG TOV K VYNAOTEP®V, MG TTPOG TNV TIUN, TAEIO®V antd TN oyéon R, peletdple
10 TPOPANUO KAVOVTOG YPNOYN TOV OTOTEAECUAT®V 7OV ovokTOnkav amod
TPONYOVUEVEG EPMTINCES KOl TO ONOl0L €YOVHE amobnkedoel pe TV HOPON
vAomomuévey Oyewv. Meletque t0 TPOPANUO LVIOOBETOVTOC MO YEOUETPIKN
AVOTOPACTACT KOl TOopEYOLUE OempnTikEg €YYUNOES Y TO KOTGA 7OGO TO
OOTEAECUATO. TNG VLAOTOMUEVNG OYNG UTOPOLV Vo, TPOoPolv OapKETA (OGTE Vo
aravtnOel N KoTATOKINPLO EPOTNON HE Aved Oplo amotelespdatwv. [Ipoteivovpue tov
SafArl adyopiBuo yio v amdeacn e ¥PNOUOTNTS TG VAOTOUEVNS OYNG Kabmg
KOL Y10l TNV OTAVTNGT| TNG KOTATOKTAPLOS EPATNONG HE Aved OPlO OMOTEAEGUATOV OTOV
n xpnon g oyng eivar kKotdAANAN yoo v dobeica epdnon. O aiydpiBuog
ompiletor oTNV amoKaAOVUEV aopain mepioyn (safe area) Pog VAOTOMUEVIS OYNG,
n omoia opiletar apevoc amd v OYn Kot aPeTEPOL amd pion EpOTNON HE Aved Oplo

OTTOTEAECUATMV.

EmnAéov, mpoteivovpe o péBodo yio tnv OaThpnorn TG EVNUEPOTNTAS TMOV
vAOTOMUEVOY OYemV HE GV OpPlO0 OTMOTEAECUATOV YOPIG Vo YPEOTEL O
EMOVUTOAOYIGLOG TOVG, OTAV TPOKVTTOVV EVNUEPADGELG GE Lo GYECT TAV®D GTNV Omoia
etvar opiopéveg ot Oyels. To mpdPAnua peretdror Tpog dvo katevbiveels. IpaTov,
avtpetonilovpe 10 TPOPANUa o ovvOnkeg avénuévov puBuolh dlaypapdv Kot
mpoteivovpe pia KoAG opiopévn néBodo aveEApTnIn TOV CTATICTIKAOV 1010THTOV TOV
EYOUV apeVOG To. OESOUEVO KO OPETEPOV, Ol EVNUEPADCELG. AEVTEPOV, EMADOLUE TO
TPOPANUO NG OMOJOTIKNG EVNUEPMOTNG VAOTOMUEVOV OYe®V HE Gved Oplo
AmOTEAECUATOV, OOV TpoTEivovUE BEPNTIKEG EYYUNGEIS YL TOV EYKAEICUO LIOG
oyng amd pwoe GAAN OYn Kot TO OVTIKTLUO OLTAG TNG O10TNTAG OTNV OlUdIKAGio
dlNeNoNg G EVNUEPOTNTOS TOALOTAMV OYE®MV. XVYKEKPUYEVA, TPOTEIVOLUE
OAYOPIOIIKEG TEYVIKEG Yo TNV OlTNPNON NG EVNUEPOTNTAS TOAADV OYEMV

KATOOKELALOVTOG KO KAVOVTOG YPTOT KATAAANA®V 1EPUPYIKAOV SOUDYV TV OYEMV.

Extog ¢ amdvinong epomoenv pe dveo Oplo amoTeEAEGUATOV 0md dedOUEVA TOV
TOALSLAGTATOV YDPOL, EMAVOVUE TO TPOPANUO TNG €VPECNG TNG OUOLOTNTOG OVLO

OVALOY®V JedOUEVOV. ZVYKEKPIUEVA, TO TPOPANUe eviomiletal oty €bpeon g

Xiv

KATOAANANG €KQPOONG TNG OLOLOTNTAG OVO GLAAOYMV OEOOUEVOV GUUPMVO, LE TNV
avOpomvn avtiinyn. Me dhla Aoy aravtape oto €€ng epotuo: Aobéviwv dvo
GLUVOA®V TTOL TEPLEYOVV GNUEID TOV TOAVILAGTATOV EPAPYLKOD YMDPOL, TTOolo. Elval 1
amootoon ovipecso oto dedopéva 0o ovvora; Edikd oe gpapuoyéc Ommg m
avAKTNON TANPOPOPIOV 0md PACGELS 0E00UEVOV VIO TN LOPPT TOAVUECHV KOODS Ko
ymoeokés PiPAModnKes, VIAPYEL EMTAKTIKA M OVAYKN TNG €VPECNG OUOLOTNTOG
J€O0OUEVOV TIOL GLUTANPOVEL TNV TAPOUOOGLOKY EVPECT] TOL OMOAVTO TOLPLOGTOV
OVTIKEWUEVOL G TPOG €va AAAo dedopévo. Idiaitepa og TéTolov €100V EPAPLOYEG, M
@OON TOV OedOUEVOV 00NYEL GE TEPACTIEG GVAAOYEC OEOOUEVAOV OLOPOPETIKOD TUTTOV
To. omoia amodnkevovtal o amodnkeg dedouévmv. Meretape 10 TPOPANUA 6€ VO
dEovec. Tlpmdtov, opyovdvovpe Odpopo €101 CLVOPTNCEDV OTOCTACE®V GE L0
ta&wvopio GUVOPTICEDV. Agvtepov, OTOTLULOVLE TEPALOTIKA mv
OTOTEAECUOTIKOTNTA TNG KAOE oLVAPTNONG OMOCTOONG UECH HIOG TELPOUOTIKNG
HEAETNG LLE TTPOYLLOTIKOVS YPNOTEG DGTE VO OVOKAADWYOLLLE TNV GLVAPTNON OTOGTACTG

TOV TPOTIUATAL KOTA KOPLO AOYO O TOLG YPTOTEC.

CHAPTER 1. INTRODUCTION

1.1 Terminology and Contribution in a Nutshell

1.2 Thesis Contribution & Outline

Due to the vast amount of data and information available to users (especially via the
Web), the problem of retrieving the most important pieces of information can become
an overwhelming task. In the areas of Information Retrieval and Data Management,
researchers have been attracted to the generic problem of retrieving the top-k similar
objects from a repository according to a user’s preference query. In the field of Data
Management, this problem is known as top-k querying problem. In the field of
Information Retrieval (e.g., in applications such as multimedia retrieval), the problem
is mainly addressed as finding the most similar objects to a given one according to a
similarity metric. Consider for example, a database containing data about hotels,
restaurants and attractive places to see in a designated area where travelers arrive at an
airport. When airplanes arrive, several potential sightseers arrive with it, at the same
time a massive number of travelers depart. Assume that travelers are equipped with
wireless devices such as smart phones or tablets and can connect to the airport’s
server. Assume a relation Traveler (t_id, t_age, t_maritalStatus, ...) as well as
relations about the traveler’s profile and travelling history. For a municipal employee
who is assigned to advertise the interesting places to travelers, it is important to find
the top-k attractions according to their profiles. In order to do so, the employee uses
queries with scoring functions over the traveler’s characteristics. For instance, assume
the employee wants to advertise the Christmas Village that the municipal built for the
Christmas Holidays at present. Thus, the employee needs to create a profile for the
new attraction. The profile includes a formula that assigns a score for potential

sightseers according to similarity functions that match the characteristics of the

attraction to the characteristics of the traveler. To speed things up, it is reasonable to
find the top-k travelers in order to send them the related advertisement. In other
words, the employee’s task is reduced to finding the top-k travelers according to the
employee’s scoring function. Due to the departures of the airplanes, the top-k list of
travelers needs to be refreshed so that the remaining possible sightseers are notified.
Therefore, the top-k list of travelers should be maintained when updates occur in the

relation Travelers.

1.1. Terminology and Contribution in a Nutshell

The goal of this thesis is to explore and investigate the answering of top-k queries
through the exploitation of materialized top-k views. To clarify the aforementioned
statement for the non-expert reader, we have to provide informal explanations of the
two terms that define its essence.

® A top-k, or ranking query requests the k highest tuples of a relation R
according to a scoring function over the attributes of the relation.

e In the field of databases the term (relational) view comes in two flavors
[Rous97]. The first category of views comes under the terms plain view,
unmaterialized view, or simply view, and it is actually a query expression in
the form of a macro with no extensional attachments which is executed at run-
time. In simple terms, we can register a query to the database management
system as a view; then, subsequent queries can reuse this query as a data
source. Note that the results of the query are not cached in the system and,
thus, whenever used in another query, a plain view acts as a macro that is
resolved to its original constituents, integrated in the new query and executed
as part of it. If, on the other hand, we wish to speed up the execution of the
subsequent queries, we can register a view as a materialized view. A
materialized view caches the results of the query and therefore, it can acts as a
typical relation in the execution of subsequent queries. At the same time,
whenever updates occur to the relations that are used in the definition of the
materialized view, the latter has to be refreshed with the new data. In both
their families, views are characterized by the duality of coming with (a) a

query expression that defines them (thus they are queries in a sense) and (b) a

set of tuples (the result of the query) that makes them appear as relations, too
(either computed on the fly, or appropriately materialized in the background).
In any case, views are a powerful mechanism, frequently used to make the life
of the developer easier and the execution of the system faster.
In this thesis, we refer to the notion materialized ranking view in order to describe a
materialized view that contains the results of a top-k query. Apart from answering top-
k queries through materialized views, we also study the problem of maintaining top-k
materialized views in the presence of updates in the relation such that the views can
be up to date and useful for the answering of top-k queries. In addition, in order to
express similarity between objects there is the need of discovering the distance
functions that users prefer for computing the similarity of two data collections. In
order to do so we resort to the simplest framework that can be given to a user to work
with and that is OLAP Cubes. Thus, we provide a taxonomy of the distance functions
used for collections of multidimensional data and conduct an extensive user study

analysis in order to reveal the most preferred function by users.

1.2. Thesis Contribution & Outline

The technical contributions of this thesis are organized in three chapters, each solving
one of the three aforementioned problems. In the sequel, we give an overview of the
technical contributions of each chapter; in the final chapter of this thesis, we conclude

our results and present insights for future work.

Answering top-k Queries via Materialized Views

In Chapter 2, we work on the problem of answering top-k queries by making use of
materialized ranked views. We provide theoretical and algorithmic results for the
above problem. Firstly, we adopt a geometric representation of the top-k query
problem and then we conduct a theoretical analysis for providing theoretical
guarantees for the suitability of a materialized view in order to answer a top-k query.
Specifically, we provide theoretical guarantees for the adequacy of a view to answer a
top-k query, along with algorithmic techniques to compute the query via a view when
this is possible. Initially, we study the problem for a top-k query answering in the

2-dimensional space. Following, we generalize the problem for the n dimensional

space. In addition, we explore the problem of answering a query via a combination of
more than one view and show that despite the efficiency of using two views instead of
one for the answering of a query as demonstrated in the related literature, it is
impossible to improve our theoretical guarantees for the answering of a query via a
combination of views. We also discuss the issue of providing partial results for a
query via a materialized view by splitting the range of score into appropriate sub-
ranges. This way, different parts of the query answer can be obtained in parallel, by
distributing their processing to different servers. We demonstrate the efficiency and
effectiveness of our method over a set of extensive experiments over both synthetic
and real datasets. The results of this chapter have previously been published in

[BaVa09].

Maintaining Materialized top-k Views

In Chapter 3, we study the problem of maintaining materialized top-k views and
provide results in two directions. The first direction is towards maintaining top-k
materialized views in the presence of high deletion rates. We propose a principled
method that complements the inefficiency of the state of the art independently of the
statistical properties of the data and the characteristics of the update streams. Our
method consists of the following steps: (a) a computation of the rate that actually
affects the materialized view, (b) a computation of the necessary extension to k in
order to handle the augmented number of deletions that occur and (c) a fine tuning
part that adjusts this value to take the fluctuation of the statistical properties of this
value into consideration. Secondly, we deal with the problem maintaining multiple
top-k views and their efficient maintenance in the presence of updates to their base
relation. To this end, we provide theoretical guarantees for the establishment of the
effect of updates to a certain view, whenever we know that another view has been
updated. We introduce the notion of nucleation (i.e., dominance relationship) between
views and based on this notion we propose a hierarchical structure of the materialized
views. Through the appropriate hierarchical structuring of the views we provide
algorithmic results towards the maintenance of a large number of views. Finally, we
show that our method accurately sustains intervals with high deletion activity in the
workload through our experiments. In addition, we show that our method outperforms

the state-of-the-art, as the computation of the exact number of auxiliary view tuples is

faster than the computation of refill queries as proposed in the related literature. The

results of this chapter have previously been published in [BaVa07], [BaValO].

Similarity Measures for Multidimensional Data

As already mentioned, in Chapter 2 and 3 we deal with the problem of answering top-
k queries from data in the form of points in the multidimensional space. Each top-k
view or query is a collection of such points, ranked according to a scoring function.
However, although we have answered the question “Given a query, can we use a view
to answer it?” we have not answered the question “Given a query and a set of views,
can we find the one that is most similar to it?”. We believe that in the heart of this
problem of view similarity is the answer to the question “How similar are two data
collections?”. In Chapter 4 we study the problem of discovering the distance functions
for computing the similarity of two data collections, according to what real users
actually think. In order to do so, we resort to the simplest framework that can be given
to a user to work with and that is OLAP Cubes and hierarchical multidimensional
spaces. OLAP is preferred for simplicity as it organizes data in dimensions and
measures that are most intuitive to users. We model a collection of data in the form of
a multi-dimensional array called Cube. Specifically, we provide a taxonomy of
distance functions that are applied between two OLAP cubes. We provide an
extensive user study that reveals the distance functions that more close to human
perception. In the first user study analysis we discover, which distance function
between two values of a dimension is best with regard to the user needs. We show
that our findings indicate that the distance function Jycap, Which is expressed as the
length of the path between two values and their common ancestor in the dimension’s
hierarchy is the most preferred by users in our experiments. Moreover, two more
functions are widely chosen by users. These are the highway functions dac that is
expressed with regard to the ancestor x, and Jy pesc that is expressed by selecting the
representative from a descendant. According to this findings, in the second user study
we aim in discovering which distance function (the closest relative or the Hausdorff
distance function) from the category of distance function between two data cubes,
users prefer. Overall, the former function was preferred by the users than the latter;
however the individual scores of the tests indicate that this advantage is rather narrow.

The results of this chapter have previously been published in [BaRV11].

CHAPTER 2. VIEW USABILITY FOR
ANSWERING TOP-K QUERIES OVER
MATERIALIZED VIEWS

2.1 Background and Related Work

2.2 Adequacy of a Materialized View to Answer a Query for the 2D Case
2.3 Queries and Views with More than Two Scoring Attributes

2.4 Working with More Than One Views

2.5 Experiments

2.6 Chapter Summary and Findings

The first problem that we address in this thesis is finding an answer to the question on
how we can decide on the suitability of a materialized ranking view to answer a

ranking query.

Before proceeding, we formally define a top-k or ranking query.
Given a relation R (tid, A}, Ay, ... Ay) and a query Q over R having the form of a
score function f : dom(A)X..xdom(A,,) >R,

Retrieve the top-k tuples from R

Having the k highest values according to the scoring function of Q.

In this Chapter, we first describe the related literature and background. For reasons of
presentation, we start our technical analysis in Section 2.2 with an analysis of the
problem of answering a top-k query through the usage of materialized views for the
2-dimensional case. Specifically, we provide theoretical guarantees for the suitability
of a materialized view in the answering of the query and propose the adequate

algorithm, the 2DSafArl algorithm. In Section 2.3 we generalize the problem and our

findings for the n dimensional case. Then, in Section 2.4 we deal with the problem of
answering top-k queries through the usage of more than one materialized views.
Firstly, we show that the usage of the union of the safe areas of two views do not add
better guarantees for the answering of a query. Secondly, we exploit the problem of
answering a top-k query by parallelizing its process and assigning different parts of
the query’s answer to a different view and then uniting the results. In Section 2.5 we
present the results of our experiments for our proposed methods. Finally, in Section

2.6 we summarize our findings.

2.1. Background and Related Work

In this section, we give an overview of the basic algorithms that answer a top-k query
over a relation R. Firstly we describe the algorithms that provide an answer to a top-k
query. Secondly, we describe the algorithms that make use of materialized views in
order to answer a top-k query. Although, we discuss the related work that pertains to
the problems of this thesis in detail, it is possible that a reader is interested for a more
extensive coverage of the area, outside the bounds of this thesis’ problems; in this
case, we refer the interested reader to a comprehensive survey by Ilyas et. al [IIBS08]

that covers the area of top-k query processing in a broad, yet structured perspective.

2.1.1. Algorithms for top-k Queries over Relations
In this section, we give an overview of the basic algorithms that answer a top-k query

over a relation R.

Fagin’s Algorithm (FA) [Fagi96], [Fagi98]

In 1996, R. Fagin published his seminal paper [Fagi96] in PODS on the topic of
combining fuzzy information from multimedia information systems. The problem that
Fagin attacks is motivated by the area of multimedia databases where a multimedia
information system integrates data that reside in different database systems and posed
queries ask for the k highest objects according to a monotone function over the fuzzy
sets that describe the multimedia object. The problem then is that a user wants to

score the tuples of the relation according to a scoring function (e.g., rank high the

photos with high amounts of blue and low contrast) and keep a fixed amount of them
e.g., the best (top) & tuples, according to their score. The main idea of the algorithm is
that every relation is accompanied by several sorted lists, one for each attribute. For
example, assume a relation R(id, x;, x,) from which we need to retrieve the top-k
tuples under the scoring function Q: min(x;, x,) where for each attribute there is one
sorted list (Figure 2.1). Then the goal of the proposed algorithm is to exploit the lists
in order to speed up the identification of the top-k tuples. Formally, the problem
addressed by Fagin is as follows. Given a relation R (tid, A, A»,..., Apn), from which a
set of sorted lists L={(tid, Ajltid, Aic R} VA; eR is formed and a query scoring
function g(X) such that g(X) is a monotone aggregation function, Fagin’s algorithm

FA retrieves the top-k tuples of R.

Definition 2.1 (Monotone Aggregation Function). A scoring function g(X) is a
monotone aggregation function if for any tuple #(xi, ...,xn) the following hold

1. g(?) is an aggregation function over the attribute values of the tuple ¢ and

2. if for every attribute value x; of tuple t and x’; of tuple t’ such that x; < x’; , then

g(1) < g() (monotone).

R Sorted X; Sorted X,
ID | X, X (a, 0.9) (d, 0.9)
a | 09 [0.85 (b, 0.8) (a, 0.85)
b | 08 07 (c, 0.72) (b, 0.7)

c (0721 0.2
(d, 0.6) (c, 0.2)

d 0.6 0.9

Figure 2.1. Example of Sorted Lists of a Relation’s Attributes.

The FA algorithm consists of a three-step process.

10

e First, do sorted access to each of the m sorted lists, until there are at least k tuples
seen in each of the m lists.

e Secondly, for each tuple X seen, do random accesses to each of the lists to find the
i™ attribute of that tuple, which is x;.

¢ Thirdly, for each X seen, compute its score g(X) =g(xi, x2... Xxy). The output is the
ordered set {(X, g(X) IX € Y} where Y contains the k tuples with the highest scores.

FA is correct when g is a monotone aggregation function. The properties for function
g are important in the sense that they assure that all tuples not seen under sorted

access do not participate in the top-k tuples.

Threshold algorithm (TA) [FaLNO1] [GiiBKOO] [NeRa99]

FA is optimal in high probability sense whereas, the threshold algorithm is instance
optimal. Similarly to FA, TA can be applied over a relation having m attributes. TA is
expressed through a three-step process: First do sorted access in parallel to each of the
m sorted lists. For each tuple X seen under a list, do random accesses to all the other
lists to find the scores x; of X. Compute the score g(X) =g(xi, x3... Xy) of the tuple X
and remember X and its score if it is one of the k highest. Secondly, define the
threshold value 7as g(xi, x2... xm) Where x; is the score of the last tuple seen under
sorted access to each of the lists. Halt when at least k tuples have been seen with score
at least equal to 7. The output is then the ordered set {(X, g(X)| Xe Y} where Y contains
the k tuples that have been seen with the highest grades. TA is correct when g is a

monotone aggregation function.

TA is correct when g is a monotone aggregation function. In addition, [FaLNO1] have
proved that TA is instance optimal. An algorithm B is instance optimal over a class of
algorithms A and a class of legal inputs D to the algorithms when BeA and if for
every A€ A and for every De D, we have cost (B, D) =0 (cost (A, D)), where cost (B,

D) is the middleware cost incurring by running the algorithm B over database D.

11

Variations of the Threshold Algorithm

Apart from TA algorithm, there were a number of variations proposed by researchers.
The NRA algorithm proposed by [FaLNO1] and the LARA algorithm proposed by
[MCYCO06] finds the top-k tuples by conducting only sorted accesses and without
supporting random accesses over the relation R. The top-k tuples are retrieved but
their actual scores may not be reported, since the algorithm retrieves the tuples based
on bounds of their scores. Moreover, [FaLNO1] describe the TAz algorithm that is a
variation the TA algorithm in case sorted accesses are prohibited to all of the sorted
lists. In addition, [FaLNO1] describe the TA-6 algorithm that is an approximation of
the TA algorithm. Specifically, TA-6 finds a 6 approximation of top-k tuples in the
sense that the algorithm’s stopping condition is reached when at least k tuples with
score at least equal to 7/ 6 are retrieved. Finally, [FaLNO1] also describe the CA
(Combined Algorithm) algorithm that allows random accesses but takes into

consideration the cost of a random access relatively to the cost of a sorted access.

2.1.2. Algorithms for top-k Queries over a Relation and Materialized Views

FA and TA are two well-known algorithms that solve the problem of answering top-k
queries over a database with a quite good performance. The research community was
quick to provide additional means for the computation of the top-k tuples of such a
query via the exploitation of indices or/and materialized views. In the setting of
materialized views, results of previous top-k queries are stored in the form of
materialized views. Then, a new top-k query may be answered through materialized
views resulting in better performance than making use only of the base relation from

the database.

The Onion Technique: Indexing for Linear Optimization Queries [CBC++00]

The onion technique [CBC+00] consists of the so called onion indices that involve
layered convex hulls. Specifically, assuming that each tuple is represented as a point
in the N dimensional space, with a dimension representing the values of an attribute,
the onion indices are a set of layered convex hulls of these points (Figure 2.2). These
convex hulls can be used in order to retrieve in a consecutive way the top-1 tuple, top-

2 tuple and so on until all top-k tuples are retrieved. The top-1 tuple is retrieved by

12

exploiting the outmost convex hull, the top-2 tuple is retrieved by exploiting the
remaining points of the outmost convex hull along with the points of the next layered
convex hull and so on, and until all top-k points are retrieved. Since this method
consists of an indexing technique, it provides performance gains. Nevertheless the
main drawback of this technique is the fact that it cannot be used when the top-k
query involves constraints such as predicates on attribute values. Also, the
construction of the convex hulls is time consuming and thus it is not suitable

especially in the presence of updates in the relation.

P & Layer 1
-J'J.n

-® ~__ layer2
»

Figure 2.2. Convex Hulls in 2 Dimensional Space.

Rank Join Indices [TPK++03]
Apart from the Onion indices, the Rank-join indices [TPK+03] is another type of
indices for the retrieval of top-k results. Tsaparas et al. ([TPK+03]) solve the problem

of top-k query answering under the following setting:

Given Two relations R(Aj, Ay, ... Ayn), S(B1, By, ...By) with A} and B; being rank
attributes, from which a new relation R t<ig S (A1, B;) is obtained by joining
R and S over the attributes A,, ...A, and B,, ... By,

Find the top-k tuples from R ><ig S according to a linear scoring function over the

attributes A; and B;.

13

The problem addressed consists of two sub-problems. The first sub-problem is to
prune unnecessary tuples that will not be part of the top-k answer prior to the join
result. The second sub-problem is to index and materialize the remaining tuples in
order to answer any top-k linear query. In order to retrieve the top-k tuples from the
join results there is no need to join all tuples from R with all tuples of S. Thus, the first
sub-problem is to prune the join results. Given a relation R of size n (i.e., IRl = n) and
a relation S, in order to find the top-K tuples of the joined results, we can join each
tuple in R only with the top-K tuples of S. Thus, in the worst case, the join result will
produce n-K tuples instead of IRIxISI. In addition, if a tuple in the joined result is
dominated by at least K tuples then this tuple can be excluded from the joined (n-K)
tuples since this tuple will never be part of any top-k answer with k < K. For a tuple ¢

(s1, 52) in the 2-D space, ¢ is dominated by ¢’ (s’;, s’2) if and only if 5,<s’; and 5,<s",.
In order to retrieve the top-K tuples from R ><g S, the two initial steps are:

a. Find n'K joined tuples, denoted as C and
b. Exclude from C the dominated tuples, i.e., exclude all tuples that are

dominated by at least K tuples from C, this new set is denoted as Dk.

A
Pz : ;
w A
/ﬁ pui
ra . '\\
.'ifl.' ' "\-\._\
.'-":2 ——— ‘ahe[‘._;_‘.-i ______ t
W % :
" |
2 :
‘ l
| .
W, Xi n

Figure 2.3. Vector Representation of Scoring Function and Rank Attributes.

For any linear function f and a value k<K, the top-k tuples of R ><g § in regards to f

can be retrieved by only taking into consideration tuples in the set Dk. So, the second

sub-problem is to manage to index-materialize Dx in order to answer any top-k linear

14

query (with k<K). Assume that any tuple from Dy, is represented as a point in the 2-D
space whose dimensions are the two rank attributes A; and B;. Any linear scoring
function f = w;-x +w;,"y is represented as a vector beginning from the origin of the axes
and ending at the point (w;, w;). The score of a tuple ¢ in regards to a scoring function
fis found by computing the length of the projection of tuple ¢ over the vector f as

shown in Figure 2.3.

The ordering of the tuples in regards to the scoring function of f can be found by
ranking the length of the projections of the tuples over f. The problem is to determine
how the ordering of tuples alters when the scoring function f sweeps the 2-D space.
The 2-D space is swept by using a vector of increasing angle in order to represent any
possible linear scoring function by changing the weight factors of f. Thus, the scores
of a tuple ¢ in regards to any linear scoring function f can be materialized. The
ordering of the tuples from Dy in regards to a scoring function f can be found by
ranking the length of the projections of the tuples over f. The problem is to determine

how the ordering of tuples alters when the scoring function f sweeps the 2-D space.

order: t1,t2 order: 11, £2 a(e2) = ales)
t1 . y L
| P -~
e P
/ order: 2.t1 alet) = ales)
9
) es t2
|:, 91 b
r‘& . ™ .
/
:?“*?
(a) (b)

/

Figure 2.4.Possible Orderings of Tuples ¢, and #,. (a)

Assume two tuples ¢, and #, with #t, being the line segment of the two tuples. In case
the slope of 1,1, is positive (Figure 2.4a), then the ordering between #; and 1, is the
same for all possible scoring functions. In case the slope of #, is negative (Figure

2.4b), then the ordering between #, and ¢, is reversed depending on the position of the

15

vector f. For a vector f being positioned “lower” from the perpendicular line to #,#, and
a vector f” being “upper” from the perpendicular line to 7,7, the ordering of the two

tuples # and #, is reversed for these two vectors.

For each pair of tuples, the separating vector is constructed. The separating vector of
two tuples #; and t, is the vector which is perpendicular to the line segment #,#,. The
set of all separating vectors for the tuples from the set Dk is denoted as V. In addition,
the separating vectors in V are sorted in descending order in regards to the angle of the
separating vector with the X-axis. The scoring function f sweeps the 2-D plane staring
from the X-axis towards the Y-axis. When f meets a separating vector the new
ordering of tuples is computed and materialized. Thus, if there are M separating
vectors, the space is partitioned into M+1 regions. For each region the ordering of
tuples is pre-computed and materialized. Therefore, when a top-k query with a linear
scoring function arises, it is only needed to find the position of f in regards to the
separating sector of the M+1 sectors of space. By determining the separating region,
the answer of the top-k query is already pre-computed. In order to efficiently
determine the separating region in which a new posed top-k query belongs, the
authors propose an index structure. The index structure consists of B-tree index that
contains all M separating vectors along with their top-k set, ordered according to the
vector’s angle in regards to the X-axis. Thus, when a new top-k query arises, the angle
of the scoring function’s vector is used and searched over the B-tree index, where

then the corresponding top-k set is returned.

Prefer [HrKPO1], [HrPa04]

The PREFER system introduced in [HrKPO1], [HrPaO4] answers preference queries
through the usage of materialized views in a pipelined way. PREFER consists of a
pre-processing step, the ViewSelection algorithm and the core algorithm
PipelineResults. In the pre-processing part, PREFER decides which views should be
materialized according to the system’s performance requirements and a given relation.
Thus, firstly PREFER executes the ViewSelection algorithm. Given a
multidimensional space of k dimensions, each normalized in the interval [0, 1] and a
set of views V over this multidimensional space, the ViewSelection algorithm

computes a set of views V’, V'V that maximizes the number of points covered in

16

[0, 11 . Each view contains all tuples from the relation ordered according to each
scoring function. In order to answer a new posed top-k query, the PREFER system
selects the materialized view that best matches the new top-k query. Since every
materialized view contains all tuples of the relation, any one of them could be used
and would definitely provide the answer to the new top-k query. The materialized
view that best matches the new query is the one that will access the less number of

tuples in order to provide the new answer.

The answer of the new query ¢ is retrieved in a pipelined way through the tuples of
the materialized view v. The goal of the PipelineResults algorithm is to rank the tuples
of a relation R(Aj, ...,An) of m attributes, according to a query g. The query g is
characterized by a preference vector. A preference vector is of the form (wj, wy,

...wm) where each coordinate w; denotes the preferred weight of the i-th attribute.
Therefore, the scoring function of g becomes ", w; - A; . Algorithm PipelineResults

employs a views R\(tid, score,) that contains the tuples of R, ranked by another
preference vector v. Assume that the first set of tuples seen from the view v contains /
tuples. In case [> k the answer of the top-k query g can be computed. In case [< k, the
next set of tuples from v are scanned. This procedure is repeated until k tuples have
been seen. For each set of tuples from v, the number of tuples seen is based on the
following property. Assume a top-k query g over a relation R with a scoring function

Fy and a materialized view v with the scoring function F\ that orders the tuples of R.

The I™ tuple from the first set of tuples seen from v is the maximum value of T}),q

such that for every 7in R : Fy(f) < T}, = Fq(t) < Fq (#},) where ¢} is the top tuple in
v. For any next iteration, tuple 7, is replaced with the tuple that has the highest score
in v and has not been seen yet. The maximum value Tvl, q1s called the watermark

value. The watermark value is a score with respect to the ranking function of the
materialized view that determines how deep in the ranked materialized view we
should go in order to output the top result tuple of the query This way, the PREFER
system can answer a top-k query by making use of one materialized view from a set of

views that rank the entire relation R according to different linear scoring functions.

17

Linear Programming Adaptation of the Threshold Algorithm LPTA [DGKTO06]

The LPTA algorithm is an algorithm that combines the results from materialized
ranking views in order to answer a top-k query. Informally, a materialized ranking
view is the materialized results of the tuples of a previously posed top-k query
according to a linear scoring function. In other words, the LPTA algorithm answers a
top-k query by making use of the tuples stored in materialized views Therefore, for
each top-k query LPTA needs to solve two sub-problems: (a) Find the most suitable
materialized views in order to answer the query and (b) retrieve the answer of the

query by exploiting the materialized views chosen from the previous sub-problem.

LPTA is based on the TA algorithm and is applied on a set of materialized views in
order to answer top-k queries. For a relation R containing an attribute A;, a base view
Vi is a materialized view of the form (id, A;) ordered over all the tuples of relation R.
In the sequel we assume a set of materialized views V=(V|, ...V;) that contain the base

views. LPTA is implemented through a two-step procedure.

The first procedure of LPTA is the SelectViews algorithm. Algorithm SelectViews(V,
Q) determines the most efficient subset UCV over a set of materialized views V, in
order to execute a given query Q. The set U is the most efficient subset of V in the
sense that it produces the answer to the top-k query most efficiently among all
possible subsets of V. The SelectViews algorithm is based on a simple greedy heuristic

procedure that selects the subset U that has the cheapest cost.

Secondly, the LPTA algorithm obtains an answer to Q combining all the information
conveyed by the views in U. Each view V(tid, scorey) is a set of pairs of the form
(tuple identifier, score of that tuple) using the view’s scoring function. LPTA starts
with an empty top-k buffer and proceeds in the following four steps.
1. Tt does sorted accesses in parallel to each of the views.
2. For each tuple X read from a view, random accesses are done on relation R in
order to find the scores x; of X.
3. The score #(X) =t(x), x2... xn) of the tuple X in regards to the query Q is
computed and the top-k buffer is updated.
4. The stopping condition is checked.

18

In order to check the stopping condition, a linear program is solved. Assume that the
last tuple read from each view V; has score score; in regards to its scoring function
SF;. The objective function of the linear program is the query’s score function. The
constraints for the linear program are the inequalities SFi< score;. The stopping
condition holds when the solution of the linear program is at least equal to the
minimum value of the top-k buffer. In case the set of views U is equal to the set of

base views then LPTA becomes the TA algorithm.

The key intuition of the LPTA algorithm can be visualized through a geometric

representation.

Assume a relation R(id, X, Y) where without loss of generality the domains of X and Y
are normalized over the interval [0, 1]. Apart from the base views V, and Vy, assume
two materialized views V(id, Score;) and Vy(id, Score;). Scores Score, and Score, are
defined as linear functions over the attributes of the relation R. In addition, assume a
query Q with a linear scoring function as well. The scoring functions of the views and
the query can be depicted as lines. In particular, the line of a linear scoring function of
the form w(a-x + y) = score is depicted as: y = a -x. Since the line is perpendicular to
the scoring function the product of their slopes should be equal to -1. The linear
scoring function is depicted as its perpendicular line for the reason that the score of a
tuple #(id, x, y) in regards to the scoring function can be found by projecting that point
over the corresponding line. In Figure 2.5a we depict a view V,, and a query Q via the
corresponding lines. Assume that the tuple with the k-th largest score according to Q
is denoted as M. In addition, AB denotes the line that passes through M and is
perpendicular to the line Q. Then, the top-k tuples according to Q belong in the region
of the triangle ABR. This is due to the fact that top-k tuples will have a score higher
than the score of the k-th tuple. The only possible points that can have a higher score
than the point M are contained in the triangle ABR.

Assume now we want to answer the query Q by using the tuples stored in the
materialized view V. LPTA performs sorted accesses over the tuples of V. This can be
visualized as sweeping a line perpendicular to the vector of the view towards the point

0(0, 0). The order of tuples read by LPTA through sorted accesses over V is identical

19

to the order of the points met by sweeping the line towards O. This means that the
number of sorted accesses performed through the algorithm is the number of points
that belong in the region of the triangle A;BR for view V, and the number of points

that belong in the region of the triangle AB,R for view V.

In case only V, is available, the stopping condition for the algorithm is reached when
the sweeping line crosses position A;B. This occurs because, the view should
encounter all tuples whose score in respect to Q are at least equal to the score of the
point B. Remember that points M and B have the same score in regards to Q and
therefore, the region below the line A;B does not contain any tuples with score greater
than the score of M. Similarly, in case only view Vy is available, the stopping
condition is reached when the sweeping line crosses position AB;. In case both views
Vi, and V4 are available, the stopping condition is reached when the sweeping lines
intersect in a point that lies on the line AB where in Figure 2.5c¢ is denoted as S. In the
first case, where only V, is used for answering Q, the number of sorted accesses
performed through LPTA is the number of points that belong in the region of the
triangle A1BR. Correspondingly, if only V4 is used, the number of points that belong in

the region of the triangle AB,R is the number of sorted accesses LPTA will perform.

So far, in the above we describe the intuition of the geometric representation of the
LPTA algorithm in order to answer a top-k query through the usage of the tuples
materialized in a view. In the following, we see how the LPTA algorithm chooses the
most suitable materialized views to use in order to answer the top-k query. The best
choice of the set of views that will answer Q depends upon the number of points that
will be accessed, since the points accessed is identical to the number of sorted
accesses LPTA will perform. Assume that the number of tuples visited when only V,
is used (i.e., the number of points that belong in the triangle A;BR) is T;. The number
of tuples visited when only Vjy is used (i.e., the number of points that belong in the
triangle AB,R) is denoted as 7>. The number of tuples visited when both views V, and
V4 are used (i.e., the number of points in the region A;SB,R which is the shaded area
in Figure 2.5¢c) is denoted as 75. Then, V, will be preferred in case 7 is less than T,
and less than T3. Respectively, view V4 will be preferred when 7, is less than 7} and

less than T73. Finally, both views would be preferred in case T3 is less than 7' and 7.

20

if A R(1,1)
R(1,1) \\\ o
0 A=
el A\
\ Va
\ /
\
\
\
B \ P
\ BZ
0(0,0) X 0(0,0) X

(a) The query is lower than the view (a) The query is higher than the view

i A, A\ I R(L1)

0(0,0) X

(c) Two views for the answering of a query

Figure 2.5. Visual Demonstration of the LPTA Technique for Query Answering top-k
via Views.

2.1.3. Related Problems in Different Context

Top-k queries have been extensively studied in research in centralized [ChGr99]
systems and have proved very beneficial for applications such as multimedia retrieval
and digital libraries. The growth of information available to users through internet has
emerged researchers to support top-k queries in different contexts such as distributed
systems and Peer to Peer systems. In addition, in an effort to improve performance
issues researchers have studied the problem of answering top-k queries by making use

of caching techniques.

21

Distributed Environments

Top-k queries have been extensively studied in research in centralized [ChGr99], as
well as distributed environments such as Peer to Peer systems. Due to the growth of
information available and the increased number of users accessing them over the
Web, distributed systems have been proved to be very popular. Therefore, there is an
emergence demand of supporting top-k queries in distributed environments. Most
research has focused on answering top-k queries over a distributed system where data
are partitioned either vertically [MaBG04, ChGM04, GuBK00, MiTWO0S5, CaWa04],
or horizontally [BNSTO05, VDNVO08]. However, the common factor is that the
relational data are distributed over sources and a newly posed query accesses part of
them in order to retrieve the answer. The focus of these works has been the
optimization of response times and scalability. Some techniques use a centralized
node that describes which source contains which partition of data [CaWa04] or
employ indexing techniques of the distribution of the data [MiTWO05]. Other
techniques adopt a model that contains super-peers that cache results of their peers

[VDNVO08], or address a network topology such as HyperCup [BNSTO05].

Caching Techniques

One way of overcoming problems such as network communication overhead and
response times is through the usage of caching techniques. Caching previously posed
queries and their results is an efficient method for dealing with issues of network
overhead either in centralized systems [TrNYO04] or in distributed systems such as
P2P [SGAEO04], where the latter support range queries. The exploitation of the result
set of a previous query for the answering of a subsequent query is frequently
encountered in the research literature (see for example [Koss00] and [GraefO0]) under
the name of query or view caching. Once a query is maintained in main memory for
this purpose, it practically becomes a materialized view. Considering the case of top-k
queries, in [ZhTZO07], the authors describe a system called BRANCA that answers
top-k queries over an acyclic network of servers. The main idea of this system is
based on the rationale of caching the results and information from previously posed
top-k queries in order to make use of them for future ones. Specifically, each server
contains a cache for each of its sub-graphs over the network. The cache retains results

of previously posed top-k queries over the specific sub-graph. This technique results

22

in less communication cost over the network when a new top-k query arrives.
[VDNVO08] propose a system called SPEERTO that supports top-k query processing
in a distributed environment making use of caching techniques through K-skybands.
In this line of work, caching queries and their results is done through materialized
views. The problem of answering queries using materialized views has been studied
extensively for query optimizing, data integration, data warehousing and semantic
data caching in client-server systems as well as top-k querying such as in [DGKTO06]

described earlier.

2.1.4. Research Opportunities and Comparison to Related Work

Related work has extensively dealt with the problem of answering top-k queries under
various contexts [IIBSO8]. To this end, previous efforts have provided various
algorithms for efficiently answering such queries by making use of indexing
techniques or taking into consideration results from previously materialized ranked
views. In addition, top-k queries have been studied under the context of distributed
databases and through caching techniques. However, there are still problems that
remain open in the context of top-k query processing. Following, we highlight a set of
interesting, fundamental problems that remain open in the context of query processing
in the presence of materialized views for top-k queries.

1) Surprisingly, a missing piece in the related literature concerns the
establishment of theoretical guarantees for the suitability of a materialized top-
k view in order to answer a newly posed top-k query, regardless of probability
estimations or statistical properties of the underlying dataset.

2) In a similar vein, another absent piece of theoretical groundwork concerns the
efficient answering of top-k queries from materialized top-k views solely,
without accessing the base relation over which the views are defined.

3) Finally, a theoretical analysis on the appropriate and needed number of
materialized views for the answering of a top-k query is also missing from the

current body of knowledge.

In this Chapter, we study the problem of answering top-k queries by making use of

materialized ranked views in order to provide better performance. To this end we

23

provide a theoretical analysis based on geometric representation of the problem of
whether and when a materialized view can be proved useful for answering such

queries, something that has been missing from related work.

In the related work, the LPTA algorithm dealt with the problem of answering top-k
queries through materialized ranked views. According to the estimation on the score
of the last tuple of the query LPTA decides on the suitability of a materialized view in
regards to the query. Specifically, [DGKT06] have provided the algorithm
SelectViews that selects a suitable set of views according to the query. In order to do
so, they estimate the score of the last tuple (denoted as fopknin) in regards to the query
Q. The estimation is computed through the usage of histograms for the distribution of
the data. The SelectViews algorithm is based on this estimation. Therefore, there is no
theoretically established guarantee that the selected views will be able to answer the
query. To overcome this problem we conduct a theoretical analysis and provide
theoretical guarantees along with the appropriate theorems that state whether and

when a materialized ranking view is suitable for the answering of a top-k query.

In fact, [DGKTO06] provide two variants of how the set of views are selected. In the
first case, views contain all the tuples from relation R ranked according their scoring
function. Since the views contain all the tuples, query Q will definitely be answered
because there will not be any missed tuples that should be contained in the top-k
answer of Q. However, an error in the estimation of fopky,, might lead to a selection
of views that is not the best choice in regards to execution time. In the second case,
views only contain a portion of the tuples from relation R. Actually, they contain the
top-k’ tuples according to their scoring function. An error in the estimation of fopkmin
might cause the inability to answer Q. This is because, there might be tuples not
included in the set of views selected, which however should be part of the top-k
answer of Q. In order to overcome this problem, [DGKTO06] have proposed the set of
selected views to always contain the base views Vy and V. For a query Q over two
attributes namely x and y, Vx is a materialized view of the form (id, x) ordered over all
the tuples of relation R. Similarly, Vy is a materialized view of the form (id, y) ordered
over all the tuples of relation R. Therefore, even if the selected views apart from Vi

and Vy cannot provide an answer to the query Q, then the usage of the base views will

24

guarantee it. In contrast, we propose algorithms that according to the theoretical
establishments we provide, we retrieve the answer to a top-k query from exclusively
the results of a materialized view, when this is possible, without having to scan all the

tuples of the relation R.

Moreover, the LPTA algorithm selects the suitable views (usually more than one) in
order to provide the answer to the top-k query. We theoretically prove that the
theoretical guarantees of more than one views in regards to a top-k query do not offer
further usefulness for answering the query compared to the guarantees of a single
view. Specifically, through these deliberations we overcome the problems of the

related work and provide answers to the remaining open problems.

2.2. Adequacy of a Materialized View to Answer a Query for the 2D Case

In this section, we provide theoretical and algorithmic results for answering top-k
queries using materialized views. For reasons of perception and intuition we initially
examine the problem of answering top-k queries of a relation in the 2-dimensional
space. In the next sections we generalize the problem for the n-dimensional space as
well. We start with our fundamental result and then proceed to investigate why our
basic theorems could prove to be too strict. Finally, we present a simple algorithm for

deciding the usability of a view for a top-k query.

2.2.1. Problem Formulation

Given a relation R (id, X, Y) a materialized view V (id, X, Y, s) over R having the
top-n tuples from R where s = w (ax +y) and w, a being positive parameters
and a query Q over R having the form of a score function sg where sg = wo
(apx +y) and wg, ag being positive parameters,

Retrieve the top-k tuples from R

Having the k highest values according to the scoring function of Q.

Assume a relation R(ID, X, Y) where, without loss of generality, the domains of X and

Y are normalized over the interval [0, 1]. In addition, we assume that the weight

25

factors of the linear scoring function are positive. In case the weight factors are
negative, we can always convert the equivalent scoring function to one with positive
weight factors with suitable transformations. Thus, without loss of generality we
assume the attribute values of a tuple being normalized into the interval [0,1] and the
weight factors of the scoring functions of the query as well as the materialized view
being positive parameters. This way, any tuple of the relation R can be represented as
a point (Figure 2.6). The area that we are interested in is the area that contains all
tuples from R, and we call this area the active area. The active area is formally

defined from the following definition.

Definition 2.2 (Active Area). The rectangle defined by the line segments OX, OY,
XR, YR (where O(0,0) X(1,0), Y(0,1), R(1,1)) is the active area that contains all tuples
of a relation a relation R(ID, X, Y) where without loss of generality the domains of X

and Y are normalized over the interval [0, 1].

In addition, assume a top-n materialized view V(ID, X, Y, s), with the score s being
defined as s = w (a-x +y) and w, a being positive parameters. Then, this equation is
characterized by a line y = a™'-x. The score of any tuple in R in regards to the view V
can be found by projecting the point that represents this tuple over the line that
characterizes the view. We define as the border line Ly of the view V, a perpendicular
line over the line y = ¢ 'x that splits the active area into two sub-areas. Observe in
Figure 2.6 the border line Ly that splits the area into two sub-areas from which the one
is actually the area that contains all tuples materialized in the view. Specifically, the
sub-area above the border line Ly contains all top-n tuples of the view and we call this

sub-area the extent of V.

Definition 2.3 (View Border Line Ly). The border line Ly, of a top-n materialized
view V having the scoring function sy=wv(ay-x+y) and t, being the n® tuple of V, is
the line drawn perpendicular to the line that describes the scoring function of V (y =
av'l-x) and passing from the point svy(#,) (with xnv, yny being the points where it meets

the axes X, Y).

26

Definition 2.4 (Extent of V). The area defined above the line Ly towards the point
R(1,1) (within the active area) is the extent of the materialized view that contains the

top-n tuples with respect to V.

Assume also the query Q(UD, X, Y, sqg) with the score sqo being defined as
so=wqlagx+y) and wq, aq being positive parameters. Again, this equation is
characterized by a line y = aQ'I - x. Assume that the extent of V has n tuples and the
query Q requests k < n tuples. The question is whether it is possible to answer Q using
only the tuples materialized in V. Similar to the border line Ly we define the border
line of the query, this time within the extent of V. Specifically, the border line Lg of
the query, as shown in Figure 2.6, splits the active area into two sub-areas such that
the sub-area above the border line Ly contains all those tuples of R with the higher
scores in regards to the query that are also part of the view’s extent. In other words,
the border line Lq depicts a border of the active area such that any point above Lg will

e the query’s answer and simultaneously will be part of the view’s result.

Definition 2.5 (Query Border Line Lg). The border line Lg, for a combination of a
view V and a query Q, is the line drawn perpendicular to the line that describes the
scoring function of the query Q (yq = aQ'l-x) and meets the view’s border line Ly in

one point such that any point of Lq within the active area belongs to the extent of V.

The sub-area above the border line Ly within the extent of V is the area that can be
proved helpful in order to answer a top-k query by exploiting only the tuples
materialized in V. This occurs from the fact that the points belonging above the border
line Lq are all points from the relation that are contained in the materialized view and
will definitely be part of the top-k query’s answer. We refer to this area as the safe

area, shown in Figure 2.6 as the shaded area.

Definition 2.6 (Safe Area). The area defined above the border line Ly towards the
point R(1, 1) within the (active area) is called the safe area of the query Q with respect

to the materialized view V.

27

0(0,0) XNy X

Figure 2.6. Answering a Query Q via a View Vy when the View is “Higher” than the
Query.

We will explore the problem of answering a top-k query Q through the tuples
materialized in a view based on its diagrammatic representation and we will discern
two cases: in the first case, the line of the view is higher than the one of the query, in

the second case, the reverse holds.

2.2.2. The Case when the View is “Higher” than the Query

In this case (Figure. 2.6), we assume that aQ'ls a’ (which means that V is drawn
“higher” than Q in their graphical representation). We will employ the subscript U for
the entire notation concerning view V and refer to it as Vy(ID, X, Y, sy), with the score

sy being defined as sy=wy(ay-x+y).

Let ¢, be the n-th tuple materialized in Vy. Assume that ¢, has a score s(t,). Let Ly:
xnuyNu be the border line of V passing from point s(z,) (with xyu, ynu being the points
where it meets the axes X, Y). The area above the line Ly contains the top-n tuples
with respect to Vy. Now, take the line Lq: xnuyq, which is the border line of Q and
starts at the point xyu. The safe area of Q with respect to V contains points that belong

both to Q and Vy.

28

Lemma 2.1. It is possible that Vy contains more than & tuples but misses the answer

to Q.

Proof. Assume a tuple ¢ of R (Figure 2.7, near the X-axis) that (a) does not belong to
the extent of Vy and (b) should be part of Q’s top-k answer set. In this case, since ¢
does not belong to Vv, it is lower than the line Ly. Assume also tuples ¢, t, placed as
depicted in Figure 2.7. The scores of these tuples are high enough so that they can be
included in the top-n for view Vy (remember that the score of a tuple with respect to a
query/view involves projecting the tuple to the line of the query/view). Still, tuple ¢
has a higher score than all of these tuples with respect to query Q (observe that the
dotted line which starts from ¢ and is perpendicular to Q produces a higher score than
the respective line for #,). Observe that this situation includes the tuple #, which is the

n-th tuple of Vy. Therefore, Vy is insufficient to answer Q. OJ

Wy
Y / R(1,1)
Ya /Q
YNU
Lind]
0(0,0) XNU ¥

Figure 2.7. Example of Why a View V is Not Always Reliable for Answering a Query
0.

Theorem 2.1. Vyy can answer Q if the safe area of Q in regards to Vi contains at least

k points.

Proof. We will prove the theorem by contradiction. Assume a tuple ¢ of R (Figure 2.7)
that (a) does not belong to Vy and (b) should be part of Q’s top-k answer set. In this
case, since ¢ does not belong to Vy, it is lower than the line Ly. Still, Ly is always

lower than Lq, therefore, the projection of ¢ over line Q will also be lower than Lq. If

29

the safe area has more than k points, these k points all have scores (projections to line
Q) higher than ¢, with respect to Q, which cannot be true, since we assume that ¢

belongs to the top-k answer set of Q. O

It is interesting to observe that (a) the inverse of Theorem 2.1 does not always hold,
and (b) how can we decide that a point belongs to the safe area. We discuss these two

aspects in the following sub-sections.

2.2.3. Strictness of the Suitability Theorem

It is not possible to infer the inverse of Theorem 2.1. Even if the safe area does not
contain k tuples it would still be possible to answer Q with tuples that belong to Vy if
a critical area below the line Vi does not contain any tuples. For example, assume the
case where tuple ¢ was not present in R, no tuple belongs to the safe area and the
query Q asked for top-3 tuples. Then tuples #,, 1, ¢, can answer Q since there are not
other tuples below line Ly. Still, the main problem is that we need to refer to R (or to
some sketch of it) to find whether such tuples lying below Ly exist or not. In fact, it is
not even necessary to search the whole area below Ly, but rather a specific subset of
it. In our example, it is sufficient to check whether the area of the triangle (xnuxip1)

contains any tuples or not.

Definition 2.7 (Critical Area). The area in the active region defined by the lines Ly
and the line that produces the lowest possible score for Q from the tuples in V is the

critical area of Q in regards to V.

The following theorem formalizes the conditions under which a view can answer a

query even if it’s safe area is insufficient.

Theorem 2.2. It is possible that Vy can answer Q even if there are less than k tuples in
the safe area. For this to hold, it is necessary that the critical area of Q with respect to

Vu is void of tuples.

30

0(0,0) Xlast X1 XNU X

Figure 2.8. At Least k Points in the Safe Area of a View V Make it Reliable for
Answering a Query Q.

Proof. The point x; is the point that meets the X-axis and belongs to line L; that
corresponds to the tuple in Vy with the lowest score with respect to Q (here, in the
example of Figure 2.8, tuple t;). The point p; is the point where this line meets Ly. In
other words, we need to find the line that produces the lowest score for Q, for all the
tuples in Vy. If the triangle defined by the X-axis, Ly and L; has no points, then the
points within Vy are the ones producing the lowest possible scores for Q. So, if Vy

contains more than k points, it can answer Q. [J

2.2.4. Computation of Offsets and Safe Areas

A technical point has to do with whether a point belongs to the safe area or not. The
line Lq is defined by the equation y= - aq - x + aqg- xnu (easy to check: being
perpendicular to line Q, the product of line Q with the line Ly must be -1; then the
offset can easily be computed by putting y = 0 for Lg). Assume a tuple #,(xy, yb). Tuple

1, belongs to the safe area if y, 2 -ag-xy, + ag-xnu.

Quite similar to the above point is the computation of the point xxy which is needed
for the equation of the line Lg: assume we know the n-th tuple of Vy, #,(xn, yn). Then,

this belongs to the line Ly that is perpendicular to Vy, therefore with an equation of

31

the form y= -ay-x + offset. Since ¢, belongs to this line, offset = y, + ay - x,. For y =0,

we deal with the point xxy and then offset = ay - xnu, 1.€., XNU = aU'l(yn + ay: x,).

If one does not want to go through the computation of Q’s score for all the tuples of
Vu, then another safe criterion would be to use xj,y (Figure 2.8), which is the point of
the X-axis that corresponds to the line that gives the score for yny with respect to Q. In
any case, this property can be used if one is interested in approximate results (in fact,
the smaller the area of the triangle, the higher the possibility that Vy can answer the
query Q). Moreover, sketches of the data distribution in R can also help in deciding

whether the area is empty or not (and to what extent).

2.2.5. The Case when the View is “Lower” than the Query

In this case, we assume that aQ'1 >a' (which means that V is drawn “lower” than Q in
their graphical representation). We will employ the subscript D for all the notation
concerning view V and refer to it as Vp(ID, X, Y, sp), with the score sp being defined

as sp = wp (apx +y).

Y R(1,1)

YND b4
7
\

Line Lp
f Line Lq

\

0(0,0) XNp XQ X

Figure 2.9. The Case where the View is “Under” the Query.

Similarly to the previous case, we can prove that (a) it is possible for view Vp to omit
tuples that should belong to the extent of Q and (b) there is a safe area that can

guarantee that Q can be answered solely by Vp. Again, we will employ the line (xxp

32

ynp) that passes from the n-th point of Vp and gives its score (i.e., it is perpendicular
to the line of Vp). We use point ynp this time and take the line Lq: ynp Xq that is
perpendicular to the line Q. The line L is defined by the equation y = -aq - x + ynp

and a tuple #, (x», y») belongs to the safe area above the line Lq if y, = -aq - xp + ynD.

2.2.6. Special Cases

In the above we have assumed that the scoring functions of the views and the query
are in the form of w(a - x + y)=s. However, the scoring function of a view or a query
can be of the form score s = x or s = y. In this section, we describe these special cases.
(1) Assume a view with a scoring function of the form sy = yy (i.e., the attribute x does
not play any role in the computation of a tuple’s score). In such a case (Figure 2.10),
line Ly is of the form y = y,. In addition, assume a query Q with scoring function
wolaq - x + y)= sq. Assume that the active domains of attributes X and Y are Xe& [Xpin,

Xmax] and Y€ [Ymin, Ymax]- Then, the safe area is above line Lq as usual.

Y,
A
Ymax 0
Line Lg /
14
Ya g — —Yp
Line Ly
0(0,0) xmax ')(

Figure 2.10. Special Case where V is of the Form sy = y.

An even more extreme case is when both the view and the query ignore attribute x in
their scoring function (i.e., both ay = ag = 0). In this case, both V and Q are found
over axis Y. Then, V can answer Q when it contains more tuples than what Q requests.
This is due to the fact that in such a case the scoring function of V is proportional to

the scoring function of Q.

33

J”lllﬂ_\: L ()

Line Ly Line LQ/

T
0] (0.0) Xp Xmax T‘(

Figure 2.11. Special Case where V is of the Form sy = x.

An intriguing situation arises when view V is found over the Y-axis and the query Q is
found over axis X. In other words, the view score sy is defined as sy=y and the query
score is defined as sq = x. In this case, there is no guarantee that V can answer Q.
Assume the case where there exist tuples with very high X values and very low Y
values; then these tuples are the top-k tuples of the query; still due to their low Y
values they are outside the safe area border and not part of the view. Therefore, it is
obligatory to consider the full space as the safe area.

(i1) Assume a view with a scoring function of the form sy = xy (Figure 2.11). In such a
case, the line that is perpendicular to V and passes through the last tuple #,(x,, yn)
materialized, is of the form Ly : x = x,. In addition, assume a query Q with scoring
function wq(aq - x + y)= sq. Assume that the active domains of attributes X and Y are
X€ [Xmin, Xmax] and YE [Ymin, Ymax]. Then, the safe area is above line Lq. Lq is defined
as the line that is perpendicular to Q and passes through the point p (x4, Ymax)-
Similarly to the previous case, we can encounter two extreme sub cases. The first of
these cases concerns the situation where the scoring function of the query has the
same slope with the query. Then, V can answer Q when it contains more tuples than
what Q requests for. This is because in such a case the scoring function of V is
proportional to the scoring function of Q. The second of these cases, concerns the
situation where the scoring function of the query has the parameter ag = 0: again,

there is no guarantee that V can answer Q.

34

2D SafArI Algorithm

Input:

A materialized view V(ID, X, Y, sy)", with its equation s
=w (a - x 4+ vy) and its n tuples,

A Q(ID, X, Y, so)%, sqg =Wy (ag - x +vy), kK < n,

()utput: a decision on whether Q can be answered by V along with
the population of V

Variables: & counter to count how many tuples V has inside the safe
area of Q

Begin.

1. Let t, be the n-th tuple of V, t,(x,,v,)=VIn]

2. If (ot < ath)

3. compute point Xyy: Xyy = a ' (yn + a-xp)

4. define line Ly as y = —-0Ogx + OgXyy

5. }

6. else{

7. compute point Vup: Vo = Va + a-X

8. define line Ly as y = —OgX + Yo

9. }

10. for all tuples of V {

11. compute so(V[i])

12. if (sg(V[i]) belongs above line Ly) counter++ ;

13. }

14. 1if (counter 2 k) return(true);

15. else return(false);

End.

Algorithm 2.1. 2D SafArI Algorithm

2.2.7. Algorithmic Results

Now, we are ready to give the 2D SafArl algorithm (2D Safe Area Illation algorithm)

an algorithm for deciding view suitability in the 2D case (shown as Algorithm 2.1)

that decides whether a 2D query Q can be answered by a 2D view V and populates Q

if the test is positive. As Figure 2.12 indicates, the complexity of the algorithm

depends on the number of tuples stored in the materialized view (i.e., the number of

iterations for the for loop in Algorithm 2.1).

35

o ‘ ‘..‘ P

Line Lp

Line Lq N

-
0(0,0) XND Xq X

Figure 2.12. All the Safe Area Should Possibly be Exhausted for the Determination of
the top-k Query Tuples.

2.3. Queries and Views with More than Two Scoring Attributes

The results of the previous sections can be generalized for an N-dimensional space. In
this section, we will discuss the suitability of views to answer queries when an
arbitrary number of scoring attributes is involved, explore special cases and provide a

simple algorithm to check the suitability of a view to answer a query.

2.3.1. Fundamental Results for the n-Dimensional Case
Assume a relation R(ID, X, X»,..., Xx) where without loss of generality the attributes
X; are within the interval [0,1]. All tuples of R can be represented as points over an

N-dimensional space.

Definition 2.7 (Active Region). The hyper-cube that contains all points of the form
(x1, ..xn) with 0=x;<1 is the active region and contains all tuples of a relation a relation

R(UD, X1, X»,..., Xx).

In addition, assume a materialized view of the form V (ID, X, X»,..., Xn, s) with score

s being defined as s =w (a; - x1 + a2 - X2 +... + xx). In an N-dimensional space, V can

be represented as a line with equations Ly: 2L =*2 = = . The score of any point ¢
a, a

36

from R can be found by projecting this point ¢ over the line Ly. Assume that the extent

of V has n tuples. Let ¢, be the n-th tuple in V with score s,(t,).

Definition 2.8 (HyperPlane Py). The hyper plane Py, with respect to a top-n
materialized view V having the scoring function sy = w (a; - x; + a - xp +... + xx) and

t, being the n™ tuple of V, is the hyper plane drawn perpendicular to the line that

describes the scoring function of V (Ly: 2L =*2 - =,) and passing from the point
a4
sv(tn) (with x1v, xpv, ..., xnv being the points where it meets the axes X, X5, ... Xn

respectively).

Then, the hyper plane Py defined by the equation s = w (a; - x; + a2 - X2 + ...+ XN)
which is perpendicular to line Ly and contains #,, separates the space into two sub-
regions. Let one sub-region denoted as SR,y be the one defined from the hyperplane
Py and towards infinity, whereas the other sub-region SRpig is the one defined from

the hyperplane Py and in the opposite direction towards the beginning of the axes.

Definition 2.9 (Extent of V SR),,). The area defined above the hyper plane Py
towards the point R(1,...,1) (within the active region) is the extent of the materialized

view that contains the top-n tuples with respect to V, denoted as SR)oy.

Figure 2.13 depicts the plane Py in a three-dimensional space and the two sub-regions
that it defines. Observe that the plane Py is denoted as a triangle. This illustrates the
visible part of a plane intersecting all three axes when it is observed from the positive
sub-axes.

Assume also the query Q (ID, X, Xa,..., X, sq) with the score sq being defined as sq

= wq (@19 - X1 + axq - x2 +... + xn). Similarly, O can be represented as a line with

equations Lq .

ayg Ay

=..=xy. In addition, assume that Q requests k < n tuples. The

question is whether it is possible to answer Q using only the tuples materialized in V.

Definition 2.10 (HyperPlane Pg). The hyper plane Pq, with respect to a materialized
view V and a query Q, is the hyper plane perpendicular to the line that describes the

37

scoring function of the query Q (Lq ax—l :ax—2 =..=x,) and meets Py in one point such
10 20

that any point of P within the active region belongs in the sub region SRjy.

Definition 2.11 (Safe Area). The area defined above hyper plane P, towards the
point R(1,...,1) within the active region is called the safe area of the query Q with

respect to the materialized view V.

X

Figure 2.13. The Two Sub-Regions Defined by Py.

Lemma 2.2. It is possible that V contains more than & tuples but misses the answer to

0.

Proof. Assume # is the k-th tuple of Q with score sq(#c). Assume also a tuple #; of R
that (a) does not belong to V and (b) should be part of Q’s top-k answer. Then, the
following inequalities hold for #;: s,(#1) < s\(fn) and sq(t1) = so(fx). Assume also a tuple
t, that belongs in the sub-region defined between the two hyperplanes Py and Py.
Therefore the following inequalities hold for #: s,(t2) 2 sy(fn) and sq(f2) < sq(f) since
hyperplane Pq lies above the hyperplane Py. By combining the four inequalities we
get the following: sy(1) < su(fn) < sy(t2) and so(f2) < so(#) < so(#1). This indicates that
the view contains more than k tuples but there are still other tuples (i.e., ;) not

belonging to the view that are in the top-k tuples of Q. O

38

Theorem 2.3. V can answer Q if the safe area contains at least k points.

Proof. By contradiction. Assume a tuple ¢ of R that (a) does not belong in V and (b) ¢
should be part of Q’s top-k answer set. Similarly with Theorem 2.1, since ¢ does not
belong in V, it lies in the sub-region SRyisn. However, the hyperplane Py is always
below the hyperplane Pq, therefore, the projection of ¢ over line Q will also be lower
than Pq. If the safe area has more than k points, these k points all have scores
(projections to line Lq) higher than #, with respect to O, which cannot be true, since

we assume that ¢ belongs to the top-k answer set of Q. OJ

Much like the case of two dimensions, it is not possible to infer the inverse of the
theorem. Even if the safe area does not contain k tuples it would still be possible to
answer Q with tuples that belong to V if a critical area below the hyperplane Py does

not contain any tuples.

Definition 2.12 (Critical Area). The area in the active region defined by the hyper
planes Py and the hyper plane that is perpendicular to Lo and passes from the point
belonging in V and producing the lowest possible score in regards to the query Q, is

the critical area of Q in regards to V.

Theorem 2.4. It is possible that V can answer Q even if there are less than k tuples in
the safe area. For this to hold, it is necessary that the critical area of Q in regards to

V'is void of tuples.

Proof. Assume #; be a tuple in V and sq(#) is its score in regards to Q. In addition let
this tuple be the one that has the lowest score in regards to Q among all the tuples
from V. Assume Pq; is the hyperplane that is perpendicular to Lg and passes through
point ¢#. If the critical area has no points, then all points within V are the ones
producing the lowest possible scores for Q. As a result, if V contains more than k

points, it can answer Q. [

39

Z“

e

Y
— -1,

X

Figure 2.14. Example of Why a View V is Not Always Reliable for Answering a
Query Q.

2.3.2. Discussion

Similarly to the two dimensional case, a couple of observations can be made at this

point:

e In order to avoid the computation of Q’s score for all the tuples of V, a safe
criterion would be to use fj,. t1asc denotes a virtual point (which means that it does
not necessarily belongs in V or R) of hyperplane Py that produces the lowest score
in respect to Q.

¢ The above criterion can be used if one is interested in approximate results (in fact,
the smaller the critical region, the higher is the possibility that V can answer the
query Q). In addition, sketches of the data distribution in R can also be helpful in
deciding whether the region is empty or not and to what extent.

A second technical point has to do with testing whether a point belongs to the safe

area or not. Assume the last tuple in V is ¢, with score s,(z,) in regards to V. Then the

hyperplane Py is described from the equation w(a; - x; + a2 - x2 + ... + xn)= Sy(tn).

Without loss of generality assume that the hyperplanes Pg and Py intersect with the X;

axis, where i € {1,..., N}, in point xjy (O, ..., Xjv,...,0). Since xjv belongs in Py its

coordinates are x;y (0,..., sy(ty)- (w'ai)'l,. ..0) where all are equal to zero except the i-th
coordinate. Similarly, it could be any other axis Xi. The hyperplane Pq is defined by
the equation wq (aiq - X1 + axq - X2 +... + xn) = s@. Consequently, sq can be computed

by taking into consideration that x;y belongs in Pq as well. Thus, sq is equal to wq -

40

sv(tn) '(w-ai)'1 and the hyperplane Pq is defined from the equation a;q - x1+ axq-x2+ ...
+ xn = Sy(tn) (w'ai)'l. Assume a tuple , (x1p, X2b, -.. , XNb). Tuple #, belongs to the safe

. -1
area lfobZ -a1Q Xip - a2Q-° X2b - R Sv(tn) . -(w'ai) .

2.3.3. Algorithmic Results
Now, we are ready to give the SafArl algorithm (Algorithm 2.2) that decides whether

O can be answered by V and populates Q if the test is positive.
The computation of where the hyperplanes Pg and Py first meet on one of the n axis
and thus the safe area for n-dimensions is computed by solving a linear problem with
the usage of the simplex method. Therefore, the value sq that determines the
hyperplane Pq is computed through the solution of the following linear problem: The
objective function is to maximize wq (aiq - X1 + d2q - X2 +... + xx) under the constraints
st.w(ap - xi+axy-xo+ ... +an8) < sy(tn)
0<x;<l1,forallie {1,...,N}
Again, remember that we assume that the materialized view is memory resident, so

we do not need to resort to unnecessary 1/O’s.

2.4. Working with More Than One Views

In this section we deal with the problem of answering top-k queries through the usage
of more than one materialized views. Firstly, we show that the usage of two
materialized views and specifically the union of the safe areas of two views do not
add better guarantees for the answering of a query. Secondly, we exploit the problem
of answering a top-k query by parallelizing its process and assigning different parts of

the query’s answer to a different view and then uniting the results.

2.4.1. Safe Area Containment with More than One Views

[DGKTO06] have proved that a query can be answered either by a single view, or by a
combination of two views whose lines lie on different sides of the query’s line.
Assume now that for a given query Q, we do not have a single view that can answer

the query, but, there exist two views Vy and Vp that lie on different sides of the

41

query’s line. Is it possible to use these two views to answer Q without referring to the

relation R?

SafArl Algorithm

Input: A materialized view V (ID, X;, X5, .., Xy, s)%, with its
equation s = w (a; * X; + a; + X, + .. + Xy¢) and its n tuples,
A Q (ID, X1, Xy, Xn, 5005, 80 = Wy (@19 © X1 + @z *© Xy + .. +

xy), k < n,

Output: A decision on whether Q can be answered by V along with
the population of V

Variables: a counter to count how many tuples V has inside the safe

area of Q

Begin
1. Let t, be the n-th tuple of V, t.(xy,X5,..,Xy)=V[n].
2. Define hyper-plane P,
Solve linear problem:
max Sgq

s.t. sy < sy(ty)

3. for all tuples of V {

4. Compute sqo(VI[i])

5. if (sq(V[i]) belongs above hyper-plane P,) counter++ ;
6. }

7. if (counter 2 k) return(true);

8.

Else return(false);

End

Algorithm 2.2 SafArl Algorithm

A query Q is encompassed by two preexisting, materialized views V; and V5. Ly; and
Ly, denote the lines that represent the two views. In addition, assume P; and P,
denote the hyperplanes that are perpendicular to Ly; and Ly, and pass from the last
point contained in V; and V, respectively. The hyperplanes Pg; and Pg, are
perpendicular to the line Ly of the query and assume that Pg; meets Py in X; axis
whereas Pq, meets P, in X axis, with i#j. The sub-region above Pq; towards infinity
characterizes the safe area for V;. Similarly, the sub-region above Py, towards infinity

characterizes the safe area for V5. For reasons of intuition we illustrate in Figure 2.15

42

a query Q encompassed by two materialized views in the 2D space. A query Q is
encompassed by two preexisting, materialized views Vy and Vp, the first on the upper
and the second on the lower side of Q. Figure 2.15 also depicts the lines Ly and Lp,
which are perpendicular to the respective views and signify their last stored tuple.
These lines are also used to draw the lines Lqou and Lgp which are perpendicular to Q

and characterize the safe areas for Vy and Vp respectively.

Theorem 2.5. Assume two views encompassing a query Q, none of which is safe to
be used for answering the query by itself. It is impossible to safely guarantee the

answering of the query by the combined usage of the two safe areas of the views.

Proof. Since the border lines Ly and Lgp are both perpendicular to Q, the safe area of
one view is encompassed in the safe area of the other view. Since neither view is safe
for the answering of the query, it follows that the union of their safe areas is
insufficient, too. [

L R(LL)
You N\ Line LQU Q

. X Line Lqp
AV

/ Ip

Line L,
)3\/ Line Ly
NNy
Ny o

Ay
0(0,0) MWD Xgp ANv X

Figure 2.15. A Query Q with One View on Either of its Sides, Vy for the Upper Side
and Vp for the Lower Side.

2.4.2. Working with More than One Views in Parallel

The above negative result produces an interesting useful side effect. Assume the case
where several materialized views are available; still, instead of being centrally stored,
the different views are distributed among different servers. A mediator receives

queries and it is responsible for assigning queries to views (or R) to be answered. It is

43

reasonable to assume that the mediator has some global knowledge for each view’s
equation, number of materialized tuples and value of the last tuple. We will also
assume that the maximum and minimum values of the active domain of attributes X
and Y of relation R are known to the mediator, too. Assume now that a query arrives
and we want to parallelize its processing. Is it possible to assign a different part of the

query to a different view and then unite the results?

In this section, we will first show that it is feasible to assign a subset of the query
answer to a certain view. Since we have knowledge of the active domains of attributes
X and Y, we can estimate the maximum and minimum scores with respect to the query
Q. We will show that it is possible to split the range of values for the score and assign

a sub-range of scores to specific views.

Figure 2.16. The Active Zone for the Range siow, nigh Of Query Q within its Safe Area
over View V.

Theorem 2.6. Assume a materialized view V (with a line Vi : y =ay™ - x) and a query
Q (withaline Q:y= aQ'l - x) over the same relation R. Assume also that V' is safe to
answer Q and we are interested in computing only a subset of Q, say Q’, that includes
the tuples whose score falls within the range [Siow, Shigh] (With Siow < Shigh and sy, and
Shigh the distances of the respective points from the beginning of the axis, with both
these points found in the safe area and belonging to line Q). Q° can be computed

solely from V, by including in its result set all the tuples that belong to the area

44

surrounded by the lines L; and L;, which we call search area, and is defined as

follows: Ly : y =-aq - X + Siow - yJag+1, Lh 1y =-aq - X + Shigh - yag +1.

Proof. Clearly, all tuples belonging to the above area also belong to the safe area of Q
over R. To compute the lines L; and Ly, we need to locate the coordinates of the points
with distance siw and spin from the beginning of the axes. For point pn (xp, yn)
corresponding to Spigh, We know that (i) y, = aQ'1 - xp and (i) xhz + yh2 = shz. This way
we can compute the coordinates for the point p, (x, yn) and respectively, for the point
pi1 (x1, y1). Then, we need to compute the equations for lines L; and Ly. The equation of
both lines is of the form y = -aq - x + offset, with offset being unknown (remember that
the two lines are parallel to the line L that bounds the safe area). To compute the
offset for each line, we need to place the appropriate point in the equation (e.g., for
point py (xp, yn) We have y, = -aq - xn + offset) and solve the system of equations that
also comprises the equation of line Q. The solution gives the equations of the

theorem. O

Observe that it is indifferent whether V is on the upper or lower side of Q, since we

have carefully selected the scores siow and spign to be within the safe area.

Having proved the bounds of the search area, we are ready to come up with an
algorithm for identifying the tuples of V that belong to the search area. Observe
Figure 2.16. We need to identify tuples that have a score with respect to V’s scoring
function within the range [viow, Vhign]. Unfortunately, we cannot solely rely on the
score bounds of Vigw, Vhign for this purpose, since it is possible that V contains tuples

outside the safe area of Q whose score (with respect to V) falls within the range [viow,

Vhighl-

Lemma 2.3. Given the values siow, Shign for the scores of the query Q, the range of
scores for tuples belonging to V, that are candidate for being part of Q’s extent too,

are:

ag+1 5 ag+1 >
Viow = Slow "7 "y dy +1, Vhigh = Shigh +— ay +1

45

Algorithm Compute Query Extent

Input: A materialized view V(ID,X,Y,sy)”, with its equation s =
w(o-x+y) and its n tuples (sorted over sy), a Q(ID,X,Y,S@k,
Sg = Wo(Oyx+y), k < n,

()utput: the computation of Q via the tuples of V

Begin

1. Compute vi,, and Vyigy

2. Locate the first(last) tuple with score vy, (Vihign) Vvia binary
search

3. do{

4. Get the next tuple t

5. Test the conditions

St € [Vlowr th_th ’

[2
Yo 2 —ag * Xe *tSiow 4Gpt+1,

2
Yo 2 —ag * Xt +Snign * 44 +1

If t passes all tests
Compute t’s score for Q

Add t (sorted over sy) to Q’s extent

O 0 J O

} until the last (first) tuple with score vuign (View) 1s found

End.

Algorithm 2.3. Algorithm Compute Query Extent

Proof. The point py (x4, yn) falls on the intersection of two lines, Vy and Ly. Also xhz +
th = vhz. By solving the system of three equations we can compute the score vpigh. We

can compute Vo similarly. [0

Theorem 2.7. A tuple p; (x, y;) that belongs to V with score s; (with respect to V),
qualifies for an answer to Q (with a score aq - x; + y,) if it fulfils the following three
conditions:

St € [Viow, Vhign] With this range computed via the above lemma,

Ve -aq - X +Siow * yJag +1,
Yt -aQ - Xi +Shigh © yJag +1

46

Proof. Obvious. O

If Vis not sorted over the score of its tuples, then there is no alternative than scanning
all its tuples and testing the above conditions. If V is sorted on its score, nevertheless,
the algorithm for computing the answer to Q by using the tuples of V is

straightforward.

2.5. Experiments

In this section, we report on the experimental assessment of the usage of materialized
views to answer top-k queries. We have conducted two sets of experiments. The first
set focuses on the algorithm for the 2 dimensional space, whereas the second set of
experiments involves the n dimensional space.

Our experimental study has been conducted towards assuring the following two goals:

1. Effectiveness. The first desideratum of the experimental study has been the
verification of the hypothesis that the proposed theoretical results can actually
be used for answering a newly posed top-k query through the exclusive usage
of a materialized view.

2. Efficiency. The second desideratum of the experimental study has been the
testing of the hypothesis that the answering of top-k queries via materialized
views can indeed improve the performance of query answering at a significant
factor.

We have implemented our view usability method and use the only method that can
guarantee view usability correctness (i.e., TA) as an opponent. We do not use
auxiliary structures in our experiments (e.g., sketches of the non-covered area of a

materialized view, or any other indexes).

2.5.1. Experimental Method for 2D
In this set of experiments, all tests involve a relation R(tid,X,Y). All the queries were

fully answered and then used as materialized views for the subsequent queries.

47

Effectiveness, k<=0.1|R|

36,00%

35,00%

34,00% A

33,00%

32,00% A

31,00%

%queries ans. by views

30,00%

29,00%

10000

50000

100000

IR

Figure 2.17. Percentage of Views Used for 100 Queries.

We have generated random data sets of different sizes. We generate a sequence of
queries with random coefficients and result size (k). Each query’s result is cached as a
materialized view; so, every query tests all its previous queries as candidates. The
important parameters that we have experimented with are: (a) the relation size IRI, (b)
the number of queries asked IQI (practically testing how the method works as time
passes and more views get to be materialized) and, (c) the range of the requested

tuples k as compared to the underlying database size |IRI/k. The values that we have

worked are listed in Table 2.1.

For this set of experiments we have used a server with 1GB memory and a Core 2

CPU at 2.13 GHz. All the implementations were made using BerkeleyDB and its C

APL

Table 2.1. Experimental Parameters for 2D.

Size of source table R (tuples) | IRl 1x10%, 5x10%, 1x10°
Size of mat. view (tuples) k |10, 50, 100, 500, 1000
Number of queries asked QI {100, 1000

48

Effectiveness, k<=0.001*|R|
45,00%

40,00%
% 35,00% 1
i 30,00% | Im100 views
= 2500% - 01000 views
é 20,00% -
£ 15.00%
% 10,00% -
® 5,00% -

0,00% ,

10000 50000 IR|

Figure 2.18. Percentage of Views Used for Different Time Spans (Numbers of Posed
Queries).

Effectiveness

The effectiveness of the method is depicted in Figure 2.17 and 2.18. Figure 2.17
shows that the effectiveness of the method is quite stable and ranges around 30%-35%
for different data sizes. It is also interesting to observe Figure 2.18, where we use
different time spans and different ranges for k to observe the behavior of our method.
This is practically achieved by issuing a larger number of queries (i.e., 1000 instead of

100 queries).

The first observation when comparing the two figures concerns the difference in
efficiency as we vary the maximum value of k that the queries can take. Observe the
dark bars of the two figures, both depicting what happens when 100 queries were
issued (so, the only difference is the R/k factor). In Figure 2.17, the queries are large
in size and can request up to 1% of the relation as a result. Frequently, it was the case
that a large view that was materialized early in the query series would serve as the
answering source for subsequent queries. A second observation from Figure 2.18,
concerns the effectiveness of the method over time. So, in Figure 2.18, we see what
happens as time passes (1000 queries), and we can observe that the effectiveness of
the method rises significantly after a while (again to the height of 35%-40%), even for

small k’s.

49

Efficiency, 100 queries

30,00%
25,00%
20,00% +—
15,00% +—

10,00% -
° O R/k=100
5,00% -
0.00% OR/k=1000
) o T T

-5.00% 10000 50000 100000
-10,00%
-15,00% -
-20,00%

%gains from views

IR|

Figure 2.19. Time Savings from the Usage of Queries for Different Database Sizes
and Requested Results.

R k | D/k |% views| Total time | Total Total %0
used |without views|time via| opponent [improved
(sec’s) views time
10000 | 100 | 100 35 0.35 0.006 0.09 24.28
10000 | 10 |1000 7 0.07 0.00001 0.0007 0.99
50000 | 500 | 100 32 4.32 0.39 1.06 15.39
50000 | 50 [1000| 10 1.06 0.0001 0.07 6.82
100000 {1000 | 100 31 12.03 4.59 2.45 -17.79
100000 100 {1000| 11 2.68 0.003 0.26 9.66

Figure 2.20. Detailed Information for the Efficiency of the Method in Time Savings.

Efficiency

The efficiency of the method over random data is depicted in Figure 2.19. We vary
two parameters, the relation size, and the maximum possible number that k can take,
and we assess the improvement in time when comparing our method with the
opponent. The detailed numbers (including total query times) are shown in Figure

2.20.

50

Interestingly, the time savings present a conflicting case. As the number of stored
results rises (dark bars, concerning large k’s, up to 1% of the relation size) the savings
drop from a 25% improvement to a decrease of 18%. This is clearly due to the size of
used memory. As more results are collected in main memory there are two problems:
(a) memory allocation becomes slow (in fact, we frequently brought our gnu compiler
to its limits) and (ii) it is possible that a certain view will be able to answer several
queries due to a very large k and a usable slope. Exhausting the safe area for this view
might prove too slow for queries with a large k& (remember that we can be ascertained
for the correct result only once we have reached the safe area border). Thus, a caching
problem has to be solved based on the grounds of this observation. In any case, if one
considers realistic BI scenarios, a top-k query returning 1% is extremely too large; so
this is a case in the limit of this technology. On the other hand, the efficiency
increases consistently for more reasonable k’s of size 0.1%. As the memory allocation
is not a problem for this setting, the improvements start from a negligible 1% for
small relations and rise up to 24% for a large relation. This is clearly due to the fact
that views with appropriate slopes can significantly speed-up the whole process as

compared to their full evaluation.

2.5.2. Experimental Method for n-D

The second set of experiments involves the testing of the algorithm for the n
dimensional space. In this set of experiments we have made use of synthetic as well as
real data sets. All synthetic experiments involve a relation R(tid, X, ... X,) of various
distributions and dimensionality. For this set of experiments we have used a Core 2
CPU at 2.53 GHz with 3.12GB memory. All the implementations were made using
BerkeleyDB and its C API.

Table 2.2 Experimental Parameters for Synthetic N-D.

Data Distribution Distr Random, Correlated, Anticorrelated
Data dimensionality D 2,3,4,5,6,7,8
Max size of top-k tuples | Max_k | 25, 100

51

Synthetic Data Sets

The synthetic datasets are of three optional distributions: Random, Correlated and
Anticorrelated. Random datasets are generated such that the attributes of the tuples
are independent of each other following a uniform distribution. The Correlated and
Anticorrelated datasets are generated as described in [BoKSO1]. In the correlated
datasets the attribute values of the tuples are positive correlated, whereas in the
anticorrelated datasets, one attribute value is large and the remaining attribute values
are small. The datasets are of dimensionality d that varies from 2 to 8. We generate
views and queries with random coefficients and result size (k). The weights of the
scoring function of the views and the queries all add to 1. The important parameters
that we have experimented with are: (a) the distribution of the relation (Distr), (b) the
dimensionality d of the relation and, (c) the maximum number of the requested tuples
(max_k). The size of the relation is 1 million records, the number of views
materialized is set to be 100 and the queries requested are 1000. The parameters for

this set of experiments are listed in Table 2.2.

The effectiveness of the method is depicted in Figures 2.21, 2.22 and 2.23. In these
figures we present the percentage of queries that were answered by our method over
the set of 100 prematerialized views. For all the figures the (a) part depicts the
percentage of queries answered when both views and queries request top-k tuples,
where k is randomly generated with maximum value 100, and the (b) part depicts the
percentage of queries answered by our method when views and queries request top-k
tuples with maximum value of k being 25. For the random and anticorrelated dataset
we observe that the percentage of queries answered decreases as the dimensionality of
the dataset increases. In the correlated dataset the percentage of queries answered by
our method seems rather constant and independent of the dimensionality and almost
100%. In addition, when comparing figures (a) and (b) in each distribution dataset we
observe that the percentage of queries answered when the dimensionality increases is

similar and rather regardless of the max_ k value.

52

90
80
70 1—f-=
60 o
50 | —
40 || [
30 i
ol I
10

% queries ans. by views

2D 3D 4D 5D 6D 7D 8D

Dimensions

(a)Percentage of queries answered with max_k 100

80
70 -
60
50
40 -
30
20 -
10

% queries ans. by views

M
W

@ [77 771
2D 3D 4D 5D 6D 7D 8D

Dimensions

(b) Percentage of queries answered with max_k 25

Figure 2.21. Percentage of Queries Answered for Random Data.

The efficiency of the method is depicted in Figures 2.24, 2.25, 2.26. We vary again
the distribution, the dimensionality and the maximum possible number that k can take,
and we assess the improvement in time when comparing our method with the
opponent. Specifically, we measure the percentage time improvements of our method
when compared to the opponent. The detailed numbers (including total query times)
are depicted in Tables 2.3, 2.4 and 2.5 for the distributions Random, Correlated and
Anticorrelated respectively. By observing Figure 2.24 and 2.26 we can see that the
time savings for these datasets decrease while the dimensionality increases. On the
contrary, in Figure 2.25 we can observe that the time savings of our method seem to
increase when the dimensionality increases. However, in Figure 2.25 (b) the time

savings for 2, 3, and 4 dimensions when max k is 25 are negative showing that the

53

opponent outperforms our method. In conjunction with Table 2.4 we can observe that
for the correlated data the opponent as well as our method needs a small amount of
time to compute the results. For the same parameters (i.e., d, max_k) but for random
and anticorrelated data the time needed by the opponent (see Table 2.3 and 2.5) in

comparison to the correlated data is much greater.

80 i R S0 S 5 e SR .

O RS o S S] SRR

40

20 i S] R R o SEH

% queries ans. by views

0

2D 3D 4D 5D 6D 7D 8D

Dimensions

(a) Percentage of queries answered with max_k 100

.92 % 9% 9 Y7
7 7 7 7 7
R
0 0 0
5% 5 % 7 7 %

(b) Percentage of queries answered with max_k 25

Figure 2.22. Percentage of Queries Answered for Correlated Data.

90
S 80—y

S 704 i
Z604{ |

é 50 i
:

© 40 +—F .ol

»w | e
£ 30 St e

S 20 ol

T I T . Rl |09 R
2 109 [l R

Dimensions

(a) Percentage of queries answered with max_k 100

100

80 -

60 -

40 |

20 A

% queries ans. by views

A

A\

MO
: TS
AN
: S

n
O

3D 8D

Dimensions

(b) Percentage of queries answered with max_k 25

Figure 2.23. Percentage of Queries Answered for Anticorrelated Data.

[©2 BN
o O
|

50

% gains from views

2D 3D 4D 5D 6D 7D 8D

Dimensions

(a) Time savings from the usage of views with max_k 100

70
60
50
40 -
30 A
20 A
10

0
10 2D 3D

% gains from views

MNAN

7
2 v .
4D 5D

6D 7D 8D

Dimensions

(b) Time savings from the usage of views with max_k 25

Figure 2.24. Time Savings from the Usage of Views for Random Data.

56

80
70

60
50

40 -

30
20 A

% gains from views

10

2D

3D

4D

5D 6D

Dimensions

7D

8D

(a) Time savings from the usage of views with max_k 100

100

50

0

-50 1

-100 +

% gains from views

-150

5D 6D

-200

Dimensions

(b) Time savings from the usage of views with max_k 25

Figure 2.25. Time Savings from the Usage of Views for Correlated Data.

57

90
80
i

20 | 2%0%%"%

% gains from views

2D 5D 6D 8D

Dimensions

(a) Time savings from the usage of views with max_k 100

90
80
70
60
50

7
%
R
_

20 -
10
0

% gains from views

D v w

4D 5D 6D

Dimensions

(b) Time savings from the usage of views with max_k 25

Figure 2.26. Time Savings from the Usage of Views for Anticorrelated Data.

58

Table 2.3 Absolute Times and Time Savings for Random Data.

d (Max_k|% Q| Total |Total time Total Total time of %0
answ| opponent | of our |opponenttime| our method |improved
ered| time method | for queries | for queries

(sec’s) (sec’s) | answered via | answered via
views views

21 100 |77.8] 109.31 40.47 79.78 5.77 62.97

21 25 |734] 59.62 25.01 41.98 3.17 58.03

31 100 [51.3] 674.93 397.52 304.63 5.13 41.10

31 25 |[51.2] 393.97 235.62 177.98 3.62 40.19

4| 100 | 28 | 1872.74 | 1453.43 456.89 3.97 22.39

4| 25 |24.7]| 1337.10 | 1095.07 285.36 4.06 18.10

51 100 |12.2] 3630.21 | 3319.41 360.97 2.75 8.56

51 25 11 | 2822.67 | 2620.57 254.23 2.94 7.15

6| 100 | 9.5 | 5364.30 | 5013.96 405.73 1.52 6.53

6| 25 6 | 4108.59 | 3994.96 168.48 2.01 2.76

71 100 |24 | 9121.94 | 9052.71 128.86 0.96 0.75

71 25 4.3 | 744447 | 7457.33 56.11 2.35 -0.17

8| 100 | 1.4 |12610.82 | 12569.41 101.83 0.65 0.32

8| 25 4.1 | 10353.91 | 10407.03 8.93 2.68 -0.51

59

Table 2.4 Absolute Times and Time Savings for Correlated Data.

d [Max_k| % Q| Total Total Total Total time of ¥/
answe|opponent| time of lopponent time| our method | improved
red time our for queries | for queries
(sec’s) | method |answered via | answered via
(sec’s) views views
2| 100 |97.8 1.73 1.68 1.65 1.60 2.96
21 25 100 0.47 1.15 0.47 1.15 -140.73
3| 100 | 97.7 2.45 1.96 2.33 1.71 19.88
31 25 100 0.69 1.22 0.69 1.22 -74.76
41 100 | 94.8 3.01 2.36 2.69 1.67 21.64
41 25 100 0.81 1.25 0.81 1.25 -52.86
51 100 |99.2 3.83 1.88 3.77 1.78 50.92
51 25 100 1.26 1.25 1.26 1.25 0.48
6| 100 | 87.8 4.66 4.29 3.56 1.63 791
6| 25 100 1.36 1.31 1.36 1.31 3.48
7 100 | 96.1 5.29 2.68 4.87 1.82 49.16
71 25 100 1.64 1.34 1.64 1.34 18.42
8| 100 | 99.9 6.56 2.03 6.55 2.01 69.01
8| 25 100 2.53 1.40 2.53 1.40 44.67

60

Table 2.5 Absolute Times and Time Savings for Anticorrelated Data.

d max_k| % Q Total Total time Total Total time of| % improved
answe| opponent of our |opponent time| our method
red | time (sec’s) | method for queries | for queries
(sec’s) answered via [answered via
views views
2| 100 | 85.5 7056.78 1518.47 5545.90 3.82 78.48
21 25 [90.2 | 6823.17 1161.88 5672.06 7.33 82.97
31 25 |66.1 | 12532.81 6580.70 5974.25 8.27 47.49
41 25 | 427 | 15939.83 11366.84 4608.92 5.84 28.68
51 100 | 32,5 | 18807.73 14632.41 4217.97 5.02 22.20
51 25 |29.2] 18299.33 14907.86 3437.27 6.73 18.53
6| 100 | 24.7 | 22298.06 19158.12 3184.52 4.30 14.08
6 25 |327 | 21914.17 17612.97 4344.64 6.08 19.62
71 100 | 22.2 | 26247.56 23073.72 3218.96 5.24 12.09
71 25 | 204 | 26138.95 23645.24 2545.39 5.22 9.54
8| 100 | 85.5 7056.78 1518.47 5545.90 3.82 78.48
8| 25]190.2 | 6823.17 1161.88 5672.06 7.33 82.97

.Table 2.6 Experimental Parameters for Synthetic N-D.
Number of mat. Views VI 100, 500
Number of queries QI 100, 1000
Max size of top-k tuples | max_k | 25, 50, 100

Real Data Sets

To demonstrate the usefulness of our methods, we ran our algorithm on a real data set,
Household data set, which is publicly available from the ipums (http://
www.ipums.org) and has been frequently used in the related literature. This dataset
contains about 4 million tuples with 5 attributes. Again, we generate views and
queries with random coefficients and result size (k) where weight factors all add to 1.
The important parameters that we have experimented with are: (a) the number of

materialized views VI, (b) the number of queries asked IQl, (c) the maximum number

61

of the requested tuples max_k. The parameters for this set of experiments are listed in

Table 2.6

In Figure 2.27 we can see the percentage of queries answered by our method for (a)
1000 queries over 100 views, (b) 100 queries over 100 views and (c¢) 1000 queries
over 500 views. We can observe that in all three sets the percentage of queries
answered are above 35%. In addition, in Figures 2.27 (a) and (b) which demonstrate
the percentage of queries over 100 views, we see that the percentages of queries
answered are similar for each max_k. In the third figure, where the number of views is
greater (i.e., 500) we see that the percentage of queries answered are higher and above
60%, something reasonable due to the greater possibility of a query being answered

from a greater set of possible views.

In Figure 2.28 we observe the time savings of our method over the opponent for the
three sets of experiments: (a) 1000 queries over 100 views, (b) 100 queries over 100
views and (c) 1000 queries over 500 views. Again, Figure 2.28 presents the time
savings for the three max_k values for the real dataset. We can observe that the time
savings mainly are around 20%. The time savings of the third figure are quite smaller
something that can be explained due to the greater number of possible views. This is
reasonable since there are more views that should be checked until we can conclude

whether a query can be answered by a view.

62

()]
N

A O
© O
I

% queries ans. by views
N
(2]

44
42
40
25 50 100
max k

(a) Percentage of 1000 queries answered over 100 views

0 60
(]

2 50
2 40
@

£ 30
3 20
S 101
(o n

X 0

25 50 100
max k

(b) Percentage of 100 queries answered over 100 views

(2]
o @
@ o

[o)]

N

(&)}
|

% queries ans. by views

25 50

max k

(c) Percentage of 1000 queries answered over 500 views

Figure 2.27 Percentage of Queries Answered for Real Dataset.

63

% gains from views

(a) Time savings for 1000 queries over 100 views

25

% gains from views

25 50 100

max k

(b) Time savings for 100 queries over 100 views

20

15

10

% gains from views

50

max k

(c) Time savings for 1000 queries over 500 views

Figure 2.28 Time Savings of Our Method for Real Dataset.

64

2.6. Chapter Summary and Findings

In this Chapter we have provided theoretical guarantees of the suitability of a
materialized ranked view for the answering of a top-k query. To this end, we have
introduced the notion of safe area of a query in regards to a view and provided the
respective suitability theorem. In addition, we have proved that the theorem is strict in
the sense that it cannot be inversed. In other words, we have proved that even if the
safe area is not eligible for answering a top—k query, still the view may be suitable for
answering a query and described this through the notion of the critical area.
According to these theoretical establishments for the case of 2-D spaces as well as for
the case of multidimensional spaces, we have provided algorithmic results for the
answering of a top-k query through the usage of a materialized view, namely the 2D
SafAri algorithm and the SafArl algorithm. Moreover, we have theoretically proved
that the safe areas of a query in regards to more than one views do not offer further
usefulness for answering the query compared to the safe area of a single view. We
have also discussed the issue of providing partial results for a query via a materialized
view by splitting the range of score into appropriate sub-ranges and provided the
Compute Query Extent Algorithm. This way, different parts of the query answer can

be obtained in parallel, by distributing their processing to different servers.

We have tested our methods for their efficiency and effectiveness through a set of
experiments over synthetic as well as real datasets. The first set of experiments
concerned the 2D SafArl Algorithm, where the effectiveness of the method proved to
be quite stable and ranged around 30-35%. The efficiency of our method is shown to
increase consistently for reasonable k’s of size 0.1% of the dataset size and rise up to
24% for large relations. The second set of experiments concerned the N-D case. The
effectiveness of our method was counted as the percentage of queries answered from
a set of materialized views. For the synthetic datasets, the effectiveness of the method
seemed to be affected by the dimensionality for the random and anticorrelated
datasets whereas for the correlated datasets the effectiveness was rather constant
around 100%. The effectiveness of our method was also tested over a real dataset and
proved to be above 35% in all scenarios and increased significantly when the number
of materialized views increased. The efficiency of our method showed again an

influence from the dimensionality, where for the random and anticorrelated datasets

65

the efficiency decreased while the dimensionality was increased. However, for the
correlated datasets the efficiency increased when the dimensionality was increased.
As for the efficiency of our method over the real dataset, this appeared to be around

20% in terms of time savings over the state of the art.

66

67

CHAPTER 3. MAINTENANCE OF TOP-K
MATERIALIZED VIEWS

3.1 Efficient Maintenance of Materialized top-k Views [YYY+03]
3.2 Fine-Tuning of Views to Sustain High Update Rates

3.3 Generalization of the Problem

3.4 Multiple View Updates

3.5 Updating Multiple Nucleated Views

3.6 Experiments

3.7 Chapter Summary and Findings

View materialization is typically used for increasing the efficiency of query
answering. However, this speed-up comes at a price. Remember that in our view
maintenance setting, results of previous top-k queries are stored in the form of
materialized views. Then, a new top-k query may be answered through materialized
views resulting in better performance than making use only of the base relation from
the database. As typically happens with materialized views, though, when the source
relation is updated, we need to refresh the contents of all the materialized views in

order to reflect the most recent data.

Before proceeding, we present a motivating example to contextualize our discussion.
Consider a database containing data about stores, products and customers visiting a
shopping center near the metro station. When a train arrives, several potential
customers arrive with it, at the same time though, there is a massive departure of
existing potential customers due to the train’s departure. We assume a pervasive

environment, where customers are equipped with wireless devices and connect to the

68

shopping center’s server as they enter the building. Assume a relation Customer (c_id,
c_name, c_age, c_income) as well as accompanying relations with the customer’s
profile, sales history, etc. For a salesman that needs to send the appropriate
advertisements, it is important to know which customers are the top-k ones according
to their characteristics. To achieve this, salesmen use queries that have scoring
functions over customer data. For example, assume a salesman wants to advertise a
new gadget about mobile phones. The salesman needs to create a profile for the new
product, or register the product in an existing profile. The profile includes a formula
that assigns a score for a potential customer according to several distance functions
and matching of the gadget’s and the customer’s characteristics. To speed up things, it
is reasonable to search for the top-k customers in order to send them the
advertisement. When a train departs, many customers leave the shopping center; still,
the top-k list of candidates per product must be maintained so that the remaining
possibly interested clients are notified. Consequently, the top-k customer lists should

be maintained when updates occur in the relation of customers.

The two main problems that pertain to the maintenance of materialized views are (a)
the correct and efficient maintenance of a single view when updates occur to the base
relation, and (b) the generalization of the maintenance problem for a large number of
materialized views. Remember that, given a relation R (tid, A;, As,..., Am) and a query
Q over R retrieve the top-k tuples from R having the k highest values according to a
scoring function f that accompanies Q. Typically, fis a monotone ranking function of

the form: f: dom(A)) X...x dom(An) — 9.

Maintaining a single top-k materialized view. Concerning the problem of
maintaining a single view, the first —and only- attempt that we are aware of is
[YYY+03]. To sustain the update rate at the source relation without having to fully re-
compute the materialized views, [YYY+03] maintain k., tuples (instead of the
necessary k) and perform refill queries whenever the contents of the materialized
views fall below the threshold of k tuples. Yet, the approach of [YYY+03] suffers
from the following problems: (a) the method is theoretically guaranteed to work well
only when insertions and deletions are of the same probability (in fact, the authors

deal with updates in their experiments), (b) there is no quality-of-service guarantee

69

when deletions are more probable than insertions. In this chapter, we compensate for
these shortcomings by providing a method that is able to provide quality guarantees
when the deletion rate is higher than the insertion rate. The case is not so rare if one
considers that the number of persons logged in a web server or a portal presents
anticipated high peaks and valleys at specific time points or dates. The first
contribution of our work is to deal with these phenomena efficiently. The solution to
the problem is not obvious for the following reasons. First, even if the value
distributions of the attributes that participate in the computation of the score are
known individually, it is not possible to compute the distribution of their linear
combination, i.e., the score (unless they are stable probabilities — e.g., Normal,
Cauchy). Second, even if we extend k with extra tuples to sustain the incoming stream
of updates that eventually affects the top-k materialized view, the extra tuples increase
the possibility that an incoming source update might affect the view, thus resulting in
the need to recursively compute this extension. Finally, we need to accommodate
statistical fluctuations from the expected values. To resolve all the above, we provide
a principled method that operates independently of the statistical properties of the data
and the characteristics of the update streams. The method comprises the following
steps: (a) a computation of the rate that actually affects the materialized view, (b) a
computation of the necessary extension to k in order to handle the augmented number
of deletions that occur and (c) a fine tuning part that adjusts this value to take the

fluctuation of the statistical properties of this value into consideration.

Maintaining a set of top-k materialized views. The problem of maintaining multiple
materialized views is quite important. Its most prominent occurrence has to do with
the situation where incoming queries are cached and treated as materialized views to
efficiently support the answering of subsequent queries. The problem is hard if we
assume that we need all the materialized views to be refreshed every time the source
relation undergoes a change. A first workaround concerns the typical warehouse
solution of collecting individual updates to larger batches that can be processed much
more efficiently than treating each update one tuple at a time. Still, even in this
setting, we would like to avoid visiting every view for every tuple. Two extra
problems that occur are (a) it is not sufficient to simply include the appropriate tuples

in the extent of a materialized view, but we need to compute their score and position

70

them appropriately in this extent (so, the sharing of tuples between views does not
relieve us a lot from the overheads) and (b) we cannot solve the problem by sorting
the tuples by their value over a single attribute, since the scoring function takes
several attributes into consideration. A possibility that opens is to be able to prune
data from the batch when we can infer that they need not be checked against a certain
view. So, we develop mathematical guarantees that can decide whenever the current
contents of a view need to be updated from a certain batch of modifications, when we
know that another view has been affected by this same batch. We assume that the
tuples in the extent of our views include (a) the tuple identifier of the tuple in the base
relation, (b) the scoring attributes (needed for the management of updates) and (c) its
score in the view. In our method, we introduce the idea of nucleation between views,
which is quite similar to inclusion: a view V; nucleates another view V|, whenever all
tuples of the former belong to the extent of the latter, with the exception of their
scores. The decision for this kind of inclusion is not straightforward; to avoid
checking all the extents of two views we employ a geometric representation of the
score function and the tuples of the two views and decide on the nucleation on the
basis of this representation. Then, we structure views in a set of hierarchies, where
each ancestor view nucleates its descendants. Updates can be pruned from a
hierarchy, or a part of it, when a certain view in the hierarchy is unaffected from a
modification; in this case, all its ancestor views avoid the test, too. At the same time,
nucleation hierarchies come with a price: they are instance dependent and thus they

need to be rechecked after the modifications of the view extents take place.

Chapter Roadmap. In this Chapter we address the problem of efficiently maintaining
top-k materialized views. In Section 3.1 we describe the state-of-the-art work. In
Section 3.2 we propose a method for the fine-tuning of a materialized view for the 2
dimensional case. In Section 3.3 we generalize the problem for the n dimensional
space and for non-linear scoring functions. In Section 3.4 we describe the problem of
updating multiple views and insert the notion of nucleation relationships between
views. In Section 3.5 we provide an algorithm that updates multiple views by
constructing a hierarchy structure based on the nucleation relationships of the views.

In Section 3.6 we report on the experimental assessment of the estimation of the

71

essential view size in order to sustain a high rate of updates. Finally, in Section 3.7 we

summarize our findings.

3.1. Efficient Maintenance of Materialized top-k Views [YYY+03]

[YYY+03] deal with the following problem: Given a base table R (id, val) where val
is the score of the tuple according to a scoring function and a materialized view V (id,
val) containing the top-k tuples from R according to their values, compute a k., that
is adjusted at runtime such that a refill query, that re-computes the view V from
scratch for the missing part, is rarely needed. Assume an update of the form <id, val>
occurs and let valy the tuple with the lowest value in V. Then the update can be
classified as ignorable, neutral, good or bad. Ignorable is an update when its id is not
in V and val<val and thus there is no effect in V. A neutral update occurs when its id
is in V and val>valy. Then the tuple id is updated with value val. An update is
categorized as good update when its id is not in V and val>val;. Then this tuple is
inserted in V and &’ is increased by one. If k£’ exceeds k., then the lowest tuple in V is
deleted. A bad update describes an update whose id is in V and val<val.. The tuple id
is then deleted from V and k’ is decreased by one. If k&’ drops below k, a refill
operation is performed. A refill operation queries the base table R and returns all
tuples ranked between k and k.. [YYY+03] formulated the problem through a
random walk model. The values of k&’ between two refill operations are represented
through a 1- dimensional random walk model. The points are represented as {0, ..., n}
where 0 denotes the starting point (k,4)and n (k. — k +1) the absorbing point at
which a refill operation is needed. Assume that the random walk is currently in
position i and a bad update moves the random walk to position i+/ with probability p;,
whereas a good update moves the random walk to position i-/ with probability g;. In
any other case the update is ignorable or neutral with probability / - p; - ¢;. The
problem is focused on analyzing the number of steps needed for the random walk
model to go from O to n. In other words the analysis is conducted in order to find the

probabilistic properties of the refill interval Z.

According to the assumptions that each step is independent of all previous choices

and the probabilities of bad and good updates remain constant as updates occur in the

72

view (po=p;=...=pn.;=p and qp=q;=...=q,.;1=q) the following occur. When p=¢ then
1
—+

if n=N? gthe refill integral Z 1is greater than N with high probability

being Pr/Z>N]>1—-4e™" s 2 for any positive constante. When p<g, if

n=cin N the refill integral Z 1is greater than N with high probability
being Pr[Z > N]>1-0(1), for constant ¢ big enough depending only on p and g.

When p>q, then, if n = N the refill integral Z is on the order of n. An adaptive
algorithm chooses k., at runtime without need to know the probabilities of good and
bad updates. The algorithm is trying to keep the refill interval Z around the value
Zo=Crefit/ Cupaae (Where C,q 18 the observed cost of a refill query and C,paue 1s the
observed cost of a base table update). The algorithm counts the number of base table
updates occurred from the last refill operation. If the updates are less than Zy /a then
kmax 1s increased whereas if the number of updates is greater than aZy then k., is

decreased, where a is a constant parameter.

3.2. Fine-Tuning of Views to Sustain High Update Rates

In this section we present our method for the fine tuning of materialized views defined
over a relation that goes through updates in high rates. First, we formally define the
problem. Second, we sketch our method and then, we move on to further detail the

individual steps of the method.

3.2.1. Formal Definition of the Problem

The formal definition of the problem is:

Given a base relation R (ID, X, Y) that originally contains N tuples, a
materialized view V that contains top-k tuples of the form (id, val) where
val is the score according to a function f(x, y)= ax + b-y and a, b are
constant parameters, the update ratios Aj,s, Ager and Aypq for insertions,
deletions and updates respectively over the base relation R,,

Compute keomp that is of the form keomp = k +4k

Such that the view will contain at least k tuples, k < kcomp, With probability p, after a

period T.

73

Assume a base relation R (ID, X, Y), that contains N tuples a materialized view V that
contains top-k tuples of the form (id, val) where val is the score according to a
function f(x, y)= a-x + b-y and a, b are constant parameters. Assume that the last tuple
in the view has value vali. Given the aforementioned update rates, insertions,

deletions and updates occur in the base relation R with probabilities Pins, PpeL and

AINS

Pypp respectively. These probabilities are expressed as: Py, = _
Ans + Aper + Aypp

A DEL A UPD

P, = and P =
DEL
UPD
Ans T Apgr + Aypp

Ans +Aper + Aypp

In the rest of our deliberations, updates are treated as combinations of deletions and
insertions. This is a quite reasonable treatment, since we are mainly interested in the
statistical properties of the rates of these actions and not in their hidden semantics. A

simple method for the conversion of the involved rates is given in Section 3.2.2.

Our problem is to find a keomp that will guarantee that the view will be maintained
when insertions and deletions will occur in R. In order to do so, we must estimate the
number of insertions and deletions that might affect the view. In other words, we need
to compute the probability of the view being affected by a tuple inserted in R or
deleted from R.

Assume that a new tuple z (id, x, y) is inserted in R. The probability of this tuple

affecting the view is p (z > valy). Hence, the probability of a new tuple to be inserted

in R and affect the view Vis p¥’ which is expressed as: p =p (z> valy) - pins. The
probability of a tuple to be deleted from R and affect the view V is pf}Z which occurs

as PZZ =p (z>valy) - pgel.

A problem that occurs with the maintenance of kcomp tuples at the view side is that

keomp 1ncurs extra maintenance overheads, since the tuples of Ak can suffer updates
too. Thus, we need to compute p’ and p% for the case where keomp tuples are

maintained. Therefore, the view V will contain kcomp tuples instead of k. Assume that

74

the last tuple of the view containing kcomp tuples is valicomp. Consequently, the

probability of a new tuple z to affect the view V is p(z>valicomp) Whereas the
probability of a new tuple to be inserted in R and affect the view occurs as: pfﬁ{f =
p(z>valeomp) - Pins- Respectively the probability of a tuple z to be deleted from R and

affect the view V can be expressed as: pf}Z = p(>valicomp) * Pdel-

3.2.2. Sketch of the Method

The proposed method is focused around three main steps: first, we compute the
percentage of the incoming source updates that affect a top-k materialized view;
second, we compute a safe value for the additional view tuples that we need in order
to sustain high deletion rates; third, we fine tune this value with a safety range of

values. Specifically, the three main steps are:

1. Given Ans, Aper and Aypp, we can compute Aips and Agel, pins and pge, and

finally, p and p as well as A% and A7 .

ins
Aws, ApeL and Aypp denote the ratios of insertions deletions and updates that

occur in the base table R. piys and pge; denote the probabilities of an insertion
and deletion occurring on the base table R respectively. pff and pf}Z denote
the probabilities of insertions and deletions that affect the view V respectively.

These probabilities are expressed as a function of keomp. A7/ and A2 denote

ns

the ratios of insertions and deletions occurring in the view V in the period of
operations 7. Updates are treated as a combination of deletions and insertions
thus A, and Aqe denote the ratios of insertions and deletions including those

occurring from updates.

2. Compute kcomp as a function of A4 /13’2 .

keomp denotes the number of tuples that the view V should initially contain,
such that after a period of operations 7, V will contain at least k tuples.
3. Fine-tune kcomp by using the variance of the probability that a deletion and

insertion action affects the materialized view.

75

3.2.3. Handling of Updates

Given Amns, ApeL and Aupp and treating updates as a combination of deletions and
insertions, the ratios Ai,s and Age can be computed through the following equations:
Ains = number of insertions including those from updates / T

Agel = number of deletions including those from updates / T

Ams = number of insertions / T

ApgL. = number of deletions /T

Aypp = number of updates /T

Therefore, Ains=Ans+Aupp » Ade=Aper+Aupp. In addition, pis and pge can be

ﬂ‘ins

expressed through the wusage of vratios as p,,=——-— and
ﬂ‘ins + /ldel
A
Ddel =¢respectively.
ﬂ“ins + ﬂ’del

3.2.4. Computation of the Actual Rates that Affect V
The problem now is to compute the probabilities pi/ and p% that affect the view V.

These probabilities can be computed as pf;f = Dins' P (2 > valxcomp) and pf,‘fj, = Pdel *

p(z> valieomp) Tespectively. Actually, pff is the number of insertions affecting the
view V divided by the number of insertions and deletions occurring on the base table
R and p*¥ is the number of deletions affecting the view V divided by the number of

insertions and deletions occurring on the base table R. Now the problem is focused

upon finding the probability p(z>valy).

In order to compute the above probability we will use the Empirical Cumulative
Distribution Function Fy(x) (ECDF). Instead of using of a particular parametric
cumulative distribution function, we will use ECDF which is a non parametric
cumulative distribution function that adapts itself to the data. ECDF returns the values
of a function F(x) such that F,(x) represents the proportion of observations in a

sample less than or equal to x. Fy(x) assigns the probability 1/n to each of n

76

observations in the sample. In other words F,(x) estimates the true population
proportion F(x). ECDF is formally defined as follows [Triv02]:

Let X;, X», ..., X, be independent, identically distributed random variables and let
xX1<x2<...<x, denote the values of the order statistics of the sample. Then the empirical

distribution function F;,(x) is defined by the following formula:

0, x<x;
i
Fux) = P X < Xx<Xiy
1, xn<x.

The alternative definition of F(x) is:

number _of _values _in _the _sample _that _are _< x

F,(x)=
n

Assume that the base relation R contains N tuples and the view V should contain kcomp
tuples. If we order these tuples according to their values then there are N-kcomp tuples
in R with value less than the value of kcomp. The following theorem implies that when
the sample size n is large, F,(x) is quite likely to be close to F(x) over the entire real

line.

Theorem 3.1 Glivenko-Cantelli Theorem [DeSc02]:

Let F(x) denote the density function of the distribution from which the random sample
X1, Xo,..., X, was drawn. For each given number x (-oo<x<oo) the probability that any
particular observation X; will be less than or equal to x is F(x). Therefore, it follows
from the law of large numbers that asn — oo, the proportion F,(x) of observations in
the sample that are less than or equal to x will converge to F(x) uniformly over all

values of x. LetD,= sup |F,(x)-F(x)Il, the Glivenko-Cantelli theorem states

—co< x<00

that D, ——0.0

Therefore, the probability of a tuple z affecting the view V can be expressed as:

7

p(Z>Valkcomp) =1- p(ZSlekcomp)= 1 ‘FN(kcomp)
-k k Eq 3.1

(Vo) =1~ P = =
PRa=Vificomp N N

As a more general example, consider a base relation R where the score of its tuples
according to a function follow an exponential distribution in the interval [0, 2] and
that a view V requires the top-k tuples of R according to their score value. In Figure
3.1 the probability distribution function of an exponential distribution is illustrated. In
addition, assume that the top-k tuples are the 20% of the relation R and thus the
vertical line top-k shown in Figure 3.1 denotes the values of the tuples that participate
in the top-k view. Thus, the values in the view are greater or equal to 0.3. Assume a
new tuple 7 following the same exponential distribution being inserted in R. For the

new tuple ¢ the probability of its value participating in the top-k ones is again 20%.

1.2
14 top-k
—
0.8 4
=3
& 0.6 -
>
4]
0.4
(]
0.2 80%
2020
0 T
0 2

Figure 3.1. Exponential Probability Distribution.

Again, consider a similar situation where a view contains the top-k tuples from a base
relation R according to a scoring function. Assume that the score values of R this time
follow a beta distribution in the interval [0, 1] with parameters given as 5 and 2.
Figure 3.2 illustrates the probability distribution function of such a distribution.
Similar to the previous example, the vertical line illustrated as top-k in Figure 3.2
denotes that the view contains 20% of R’s tuples where the values participating in the

view are greater or equal to 1.7. Assume a new tuple denoted as ¢ being inserted in R.

78

The new tuple ¢ will again follow the same beta distribution and the probability of ¢

having a value greater than 0.8 is 20%.

2

— Beta (5, 2) top-k
1.8 4 -

1.6 4
1.4 4
1.2 4
14

Beta(x)

0.8 A
0.8 A

041 80% 20%
0.2 4

]

Figure 3.2. Beta Probability Distribution.

Therefore, A and EZJZ are computed through the following equations:

A0 = p . (Jins + Age) and A% = p - (Ains + Adgel).

According to equation 3.1, A% and A% can be expressed as:

ns

/ﬁthr]g = Pins p(Z > Valkcomp) '(/Lns + ldel)

. k
aff _ .. _comp .
Z’ins = Pins N (ﬂqns + ﬂdel) Eq 3.2

and
Z’Z]Zl = Pdel P(Z > Valkcomp) '(ﬂdns + ﬂfdel)

k

aff _ com, .
ﬂdel = Pdel Np '(/Lns + ﬂdel) Eq 33

3.2.5. Computation of Kcomp

The last step of the method is to compute kcomp, such that it will guarantee that the
view will contain at least k tuples, k < keomp, With probability p, after a period of
operation 7. In other words compute a kcomp that is of the form kcomp = kK + Ak. In
general, when the ratio of insertions Ay, is greater than that of deletions Ag it is clear

that V will be maintained. The problem arises when the opposite occurs, i.e., when the

79

ratio of deletions is greater than that of insertions. In such a case it is vital to compute
a value for keomp that can guarantee that V will contain at least k tuples after a period

of operations.

Let us denote the frequency of deletions that affect the view V as A%, . In a period of

time 7, in order to keep the view maintained the following inequality should
T f

hold: k,,,,, — 40 - T2k .

Thus, in case both insertions and deletions occur in a period of time 7, in order to

keep the view maintained for kcomp the following inequality should hold kcomp = k +

ins

(/IZZ — 20T, Clearly, to minimize memory consumption, we need to take the

minimum possible k¢omp and thus treat the above inequality as the equation kcomp = k +

(A0 — 0).T.

ins

Therefore, by replacing A% and A% from equations 3.2 and 3.3 the following

mns

equality occurs:

kcnm
kcomp: k+ (pdel _pins) '(lins + ﬂdel) . Tp T =

kcnm .
kcomp: k+ (ﬂdel - ﬂfins) : Tp -T Eq 34

Thus, by solving the above equation according to kcomp We obtain:
. N Eq 3.5
N +(Aiyg = Agey)*T

mns

kcomp =

Equation 3.5 has a meaning when N + (Ains — Agel) - T> 0. This states that the size of
the base relation R will not fall below 0, after updates occur in a period of operations
T. At the same time, when Aiys — Agel < O (i.€., the case we are particularly interested

in), then the fraction is greater than 1 and thus, kcomp > k.

80

3.2.6. Fine-Tuning of kcomp

Although we now have a formula to compute the value of kcomp, Wwe have expressed
the probability of a new tuple z(id, x, y) affecting the top-kcomp tuples of the view as
p(z>valcomp). Assume that a new tuple z is inserted in R. The probability of this tuple
to affect the view is p(z>valicomp) Whereas, the probability of this tuple not to affect
the view is 1- p(z>valicomp). The above can be expressed as a Bernoulli experiment
with two possible events. These are (a) the new tuple being inserted in V with
probability of success p(z>valicomp) and, (b) the exact opposite where the new tuple is
not inserted in V with probability 1- p(z>valicomp). When the ratio of insertions
occurring in the base relation R are Ay, a Bernoulli experiment is occurring Ai,s times
where the probability of success is p(z>valicomp) and the number of successes follow a
Binomial distribution. The probability of having Yj,s affected insertions in the view
follow a Binomial distribution of the form Binomial (Ains, p(z>valicomp)). The variance
of the above distribution can be expressed as:

Var(Yins) = Ains p(2>Valicomp) - (1- p(2>Valicomp))-

The above formula indicates that insertions expected to affect the view may vary by
Var(Yins). Correspondingly, if there are A4 deletions occurring in the base relation R,
then the variance of these deletions expected to affect the view is

Var(Yge)) = Adgel - p(z>Valkeomp) - (1- p(z>valkeomp)). This occurs as the variance of the
Binomial distribution B(Age, p(z>Valkeomp)), Which is similar to the one used for

insertions.

Therefore in the worst case, in order to guarantee that the view will contain at least k

tuples with confidence 95%, where k < kcomp, €quation 3.4 becomes as stated below:

kcom
kcomp =k+ (ﬂdel - /L'ns) : Np T+2- Var(Ydel) +2 Var(Yins) Eq 3.6

The confidence rate of 95% occurs from statistical properties concerning the variance
factor appearing in equation 3.6. In case another confidence percentage is needed,

equation 3.6 can be adjusted according to typical statistical methods [DeSc02].

81

3.2.7. Discussion

The problem of maintaining a view when updates occur in a base relation R, mainly
lies in the problem of estimating the number of updates that will affect the view.
Statisticians have contributed in this by providing equations that compute the value of
a probability of the form p(z>valicomp). However, the equation of such a probability
depends on the distribution that the variable z follows. In our context, the variable z is
a linear combination of the form a-x + b-y where x and y are values from the attributes
X and Y of the base relation. Even if the distributions that X and Y follow are known,
the distribution of the score Z cannot be computed unless X and Y follow a stable
distribution. A stable distribution (e.g., Normal, Cauchy) has the property of stability.
This property states that if a number of independent identically distributed (iid)
random variables have a stable distribution, then a linear combination of these
variables will have the same distribution. Therefore, the distribution of the variable Z
can only be known in few cases. However, even if the distribution of the score was
known, the probability p(z>valicomp) could be computed only with respect to the valy
instead of the value valycomp. This is because the valicomp could not been know in
advance. Therefore, an iterative procedure would be needed. This occurs from the fact
that we could compute the effect top-k tuples could have but not the effect the extra

tuples would arise. Thus, a recursive procedure would be required.

3.2.8. Example

As an example, consider the base relation R (ID, X, Y) initially containing N tuples
with N=20 where attributes X and Y follow a uniform distribution over the interval [0,
100]. In addition, consider a materialized view V that contains the top-3 tuples (k=3)
of the form (id, val) where val=3-x+7-y is the score according to a function f(x, y)=a-x
+ b-y and a=3, b=7. The base relation R and the initial state of V are shown in Figure
3.3. Finally, the update ratios are A;p=5, Agei=15 and A,pq=0. We will compute keomp
such that the view would contain kcomp tuples instead of k in order to be kept
maintained when insertions, deletions and updates will occur in the base relation R.

Moreover, let the period of operations occurring set as 7=1.

82

According to the method of Section 3.2.3, the ratios Ai,s and Age are 5 and 15
respectively. Therefore, pin=0.25 and p4.=0.75. The probability p(z= valicomp) can be
calculated according to the following:

p(z=valkeomp) = Fn (valkcomp)

P(z=valicomp) = (number of elements in score sample< valycomp) / N

p(Z>Valkcomp) = kcomp/ 20

In consequence, the probabilities pf,‘{? and pjg can be calculated as:

comp comp

p;]zc = Pins 'p(ZZVCllkcomp) =0.25- 7 and pZZ = Pdel 'p(szalkcomp) =0.75 - T .

R A\

id X Y id Z

1 56 |41 10 {929
2 58 |62 15 | 847
3 15 |97 4 836
4 78 186

5 69 |10

6 9% |60

7 12 43

8 74 |76

9 26 |71

10 95 192

11 34 |51

12 27 136

13 19 |25

14 68 |81

15 91 |82

16 84 |65

17 41 159

18 37 |37

19 23 |17

20 47 |27

Figure 3.3. Base Relation R.

Given the previous probabilities, the effective update ratios for the view V are then:

ns

. . k.
A0 = p Qs + Aget) = 0.25 -—‘2"8”’ (5+15)

83

4 aff kcom
ﬂdJZl = de “(Ains + Ager) = 0.75 -2_01’.(5 +15)

The above equations state that if 5 insertions will occur in the base relation R,

AT will affect the view and if 15 deletions occur then A% will affect the view

ns

respectively. To be more specific the ceiling function is applied on A% and A% .

ns

Therefore, for keomp the following inequality holds:

keomp =k + (20 20) . T = keomp 2 6

del ~ ins
where actually kcomp = 6. Thus, keomp should be 6 in order to keep the view maintained
after insertions, deletions and updates will occur in the base relation R. Suppose that
insertions and deletions, shown in Figure 3.4, occur in the base relation R. The view V
contains initially top-6 tuples and after updates the view will contain top-3 tuples.
These are shown in Figure 3.5 where the dark shading denotes the initial top-3 tuples

of V whereas the light shading denotes the extra top-3 tuples in order to have top-kcomp

tuples.

insertions deletions

Id X |Y |id X |Y

21 251331 56 |41

22 18 |64 |2 58 |62

23 97 |83 |3 15 |97

24 31 |50 |4 78 | 86

25 53 18215 69 |10
7 12 |43
8 74 |76
10 95 |92
11 34 |51
12 27 |36
13 19 |25
15 91 |82
16 84 |65
17 41 |59
20 47 | 27

Figure 3.4. Insertions and Deletions Occurring in Base Relation R.

84

\Y% \Y%
id |Z id | Z

10 | 929 | Deleted 23| 872
23 | 872 | Inserted 14 | 771
15 | 847 | Deleted 251733
4 836 | Deleted
14 | 771
8 754 | Deleted
25 | 733 | Inserted
3 724 | Deleted

Figure 3.5. The View V Prior and Subsequent to Updates.

3.3. Generalization of the Problem

In this section we provide two generalization of the above problem. The first
generalization concerns a relation R that contains more than two attributes and the
scoring function is of linear form whereas the second generalization concerns the
problem when the scoring function is not obligatory linear but is a monotone function.
Assume that the relation is of the form R (ID, X;, X5, ..., X,) and the scoring function
of the view includes all the attributes X; or a number of them. The problem then can

be generalized as:

3.3.1. Formal Definition of the Problem Generalized for More than Two Attributes

Given a base relation R (ID, X, X>, ..., X,) that originally contains N tuples, a
materialized view V that contains top-k tuples of the form (id, val) where
val is the score according to a function f(x;, X3 ...X,)=a;x; +
axx»+...+a,x, and a;, a, ...a, are constant parameters, the update ratios
Aing, Ager and Aypq for insertions, deletions and updates respectively over
the base relation R,

Compute keomp that is of the form keomp = k +A4k

Such that the view will contain at least k tuples, k < kcomp, with probability p, after a

period T.

The solution to the problem is similar to the previous three-step method which leads

to the computation of equation 3.5. This is because the computation of kcomp from

85

equation 3.5 is independent of the attributes that participate in the scoring function of

V.

3.3.2. Formal Definition of the Problem Generalized for Non-Linear Monotonic

Functions

Given a base relation R (ID, X;, X>, ..., X,) that originally contains N tuples, a
materialized view V that contains top-k tuples of the form (id, val) where
val is the score according to a monotone function f(x;, xz, ...,Xy), the
update ratios Ains, Age and Ayyq for insertions, deletions and updates
respectively over the base relation R,

Compute keomp that is of the form keomp = k +4k

Such that the view will contain at least k tuples, k < komp, with probability p, after a

period T.

In general, the scoring function of the view can be any monotonic function and not
compulsory a linear function. The monotonic property is important in order to make
use of the ECDF distribution function. Remember that ECDF returns the values of a
function F(x) such that Fy(x) represents the proportion of observations in a sample
less than or equal to x. Therefore, it is necessary that the values among a sample have
an order. In other words, for the setting of our problem, the values of the sample are

the tuples and their score according to the scoring function of V.

3.4. Multiple View Updates

So far, our deliberations have been focused on the fine tuning of the size of a
materialized view in order to sustain high update rates. The next step in our
investigation of the field of top-k materialized view refreshment is to consider the
case where more than one views need to be materialized. We will split the overall

problem in two parts:

The first problem that we consider concerns the dominance of a view over another

and how this reflects to the view refreshment problem. In other words, we investigate

86

whether we can efficiently infer when the updates over a view directly affect the
materialized contents of another view. Formally, assume a relation R(ID, X, Y,...) and
two materialized views V (ID, X, Y, s1) and V,(ID, X, Y, s,) that contain k; and k»
tuples respectively. The score s; of V; is defined as s;= a;-x +b;-y and the score s, of
V, is defined as s,=a,-x + b,y and ay, as, by, b, are positive parameters. Assume that
updates occur at the relation R, and one of the views is affected by them (i.e., its
extent has to be updated). Then, the question that arises is whether it is possible to
know a-priori if the impact of these updates deterministically results in the necessity
to update the other view too. We provide guarantees for this case via a geometrical
representation of the views and their scoring equations and we can safely determine

the effect of an update on a view on the basis of its effect on another view.

The second problem that we consider involves the design of an efficient structure for
a large set of top-k materialized views in order to speed up their maintenance. The
constructed structure is based on the abovementioned dominance relationship among
the views. We introduce hierarchies for the views and test batches of updates over the
bottom of the hierarchies. If the updates affect the bottom view, its immediate
ancestors are candidates for being affected by the updates; otherwise, we can surely
alleviate them from the burden of being tested against the update under examination.
Obviously, the same pattern recursively propagates throughout all the hierarchy as

long as a member of the hierarchy is affected.

The structure of this section is as follows. First, we start with preliminary ideas
coming from the related literature and subsequently, we expand these results to
discuss the case of view dominance. The third part of the section involves the

discussion of view maintenance for large sets of views.

3.4.1. View Nucleation

Assume a relation R(ID, X, Y,...) and a materialized view V (ID, X, Y, s1) that contains
k tuples, scored via s which is defined as s = wyx +wy'y = w- (a-x +y). Both a;, and b,
are positive numbers). To simplify notation, we will often denote the view as V(a, k).

Assume now a relation R(ID, X, Y,...) and two materialized views V(ID, X, Y, s1) and

87

Vo(ID, X, Y, s») that contain k; and k, tuples respectively, with the score s; of V)
defined as s;= a;-x +b;-y and the score s, of V, defined as s,=a,-x + by-y. All ay, a, by,
b, are positive numbers. Assume now that updates occur to the base relation and they
must be propagated to the views. In a typical relational situation with SPJ queries, we
would say that a view V; is contained within view V,, if the extent (i.e., the
materialized tuples) of view V) is always a subset of the extent of view V,. In our
case, due to the fact that the scores of the materialized tuples are different, we slightly
tweak the terminology and instead of the °‘containment’ terms we employ a

terminology around the notion of ‘nucleus’.

Definition 3.1 (Nucleation Relationship of two Views). Assume a relation R(ID, X,
Y,...) and two materialized views Vi(a 1, k1) and Vy(as, k2). A view V, nucleates a
view V| if for each tuple #(z.id,t.x,t.y,...) € R that belongs to the extent of V, as a tuple
K(tid,t.x,t.y,s (1)) € V, (i.e., with a score s,(7)), a respective tuple #(t.id,t.x,t.y,s1(t))

obligatorily belongs to the extent of V;. We denote this nucleation as V, C V).

Definition 3.2 (Nucleus equivalent Views). Two views Vi(a 1, k1) and V,(a,, k) are

nucleus equivalent if both V, nucleates V; and V| nucleates V,.

Clearly, the main idea behind nucleation is that despite the difference in scores, the
‘nucleus’ of a tuple (i.e., the tuple identifier and the scoring attributes) are the same in

the respective materialized tuples.

3.4.2. Updates for Nucleated Views

Can we efficiently decide when a view V; is nucleated by another view V,? In this
subsection, we will deal with this problem based on an analysis conducted via a
geometric representation. Specifically, assume the views V| and V, defined as V,(ID,
X, Y, s1) and Vo(ID, X, Y, s») that contain k; and k, tuples respectively, with the score
s1 of V| defined as s;= a;-x +b;-y and the score s, of V, defined as s»=a>-x + by-y.
These two views are characterized by the lines y:byal'l-x and y= bz-az'l-x
respectively. There are two cases depending on the scoring functions of V; and V,

and, consequently, on the slopes of their characteristic lines. The first case is trivial in

88

the sense that the two views are practically characterized by the same line. The second
case concerns the typical situation when the lines of the two views are different. In the

sequel, we discuss these cases in more detail.

Casel: 4L-%

1 b2
In this situation, the equation of V| is proportional to the equation of V,. Without loss
of generality assume that the equation of V; is s;= a;-x +b;-y and the equation of V; is
so= A (a;x +b;-y) where A€ R". Then, the line that characterizes both views is y=

1
bi-a;” -x. There are two sub-cases in this situation.

Case 1.1: ki=k,. In addition, assume that both views contain the same number of
tuples, i.e., kj=k,. In this case, any update affecting V; will definitely affect V, and
vice versa. The only difference between the results of the two views will be the score
of their tuples. Obviously, if V| contains a tuple ¢ with score s;(¢) then the same tuple

will belong in V, but with score s2(f)= A 51(7).

Lemma 3.1. If the equation of a view V; is proportional to the equation of a view V,
with the same extent size k of materialized tuples, then they both contain the exact

same tuples (i.e., they are nucleus equivalent) with the same ordering.

Proof. Assume that the equation of V is s;= a;-x +b;-y and the equation of V, is s,= 4
(a1-x +b1-y) where Ac R*. In addition, assume #(xy, yi) is the last tuple in V;. Then for
any tuple #(x;, y;) from V), obviously by definition s;(¢) = s,(#). In other words, a;-x;
+b1-y 2 ay-xx +b1-yw. Multiplying this inequality with the proportion A, we get 4 (a;-x;
+b1-y) 2 A (a1-xx +b1-y«). This states that s,(f) > s,(#) for every tuple ¢ from V.
However, the last inequality is the definition of the top-k tuples of V,. Therefore, any
tuple in V; will be in V, as well. In addition, if for two tuples #; and #, from V; we
know that s1(#;) > 51(¢;) then by multiplying the inequality with the parameter 4 we get

s2(t1) = s2(f2). This proves that tuples ¢#; and f, appear with the same ordering in V, as

well. O

89

Corollary 3.1. If the equation of a view V| is proportional to the equation of a view
V, with the same extent size k of materialized tuples, whenever V; is affected by an

update, V, will be affected as well and vice versa.

Proof. Assume a tuple #(x;, y;) being updated (inserted or deleted) in R and ¢ affects V;
with score s1(7). This means that s,(¢) = a;-x; +b1-y, and s1(f) = 51(#x), where # is the last
tuple materialized in V. Multiplying the above inequality by the parameter 4 we get
A-s1(f) = A-s1(f) which can be written as s,(7) = so(#). From the above lemma # is also
the last materialized tuple in V,. Therefore, tuple ¢ has a higher score than # for V, as

well. Therefore, tuple will also affect V,. 00

Y,
h V:
N\ \ 2
\ \ 4 Vi
\ \lene LV]
N\
L] 1
\ \
\ \
/AN N
\ \
\ \
Line LVQJ'\ \ \ \
AN \ >
0(0,0) X

Figure 3.6. Both Views Are of Proportional Equations.

Case 1.2: ki< k. Consider now the case where the equations of the two views V; and
V, are still proportional, but k;< k, (which means that V| contains less tuples than V5).
In this case, V| nucleates V, and any update affecting V; will definitely affect V, as

well.

Corollary 3.2. If the equation of a view V/(a, k) is proportional to the equation of a

view Vs(a, k) and ki< ko, V; nucleates V5.

90

Proof. According to the above lemma as shown in Figure 3.6, the top-k; tuples are
exactly the same for both views. The inverse however, does not always hold. This is
because an update occurring in V, might be affecting the tuples that are ranked below
k; and thus, the k; tuples of V; will not suffer any change. Obviously, if an update

occurring in V; affects the top-k; tuples then it will affect V; as well. O

Case 2: & ;tﬁ
bl b2

In this situation, the equations of the two views are completely different. In this case,
since the equations of the two views are not proportional, the only piece of
information that can be used in order to conduct a conclusion with respect to the
nucleation of the two views is the position of the last tuple of each view. Again,
assume two views Vi(ID, X, Y, s;) and V,o(ID, X, Y, s;) with k; and k; tuples
respectively where score s; is defined as s,= a;-x +b;-y and s, is defined as s,=a,-x +
b,-y. The lines that characterize the two views are V;: y=b1-a1'1-x and V;: y= bz-az'l-x
respectively (see Figure 3.7 or Figure 3.8). Let #; be the last tuple materialized in V,
with score s;(#c;) and L; be the line which is vertical to the line of V| and passes from
point #;. The area above the line L; contains the top-k; tuples with respect to V;. Now,
take the line L, which is vertical to V, and passes through the point #,, where #, is
the last tuple materialized in V,. The area above line L, contains points that belong to

V5. In addition, let I denote the point where L; and L, intersect.

The position of the intersection point / is critical in regards to the knowledge of
whether updates affecting one view will affect the other view or not. Assume that the
active domains of attributes X and Y are X€ [Xmin, Xmax] and YE [Vmin, Ymax]. We will
employ the term active area to refer to the region in which any tuple from relation R
belongs. This is constrained within a rectangle defined by the points (Xmin, Ymin) and
(xmax> Ymax)- Checking whether point / lies inside the active area or not can be easily
done when the last tuple of each view is known. Line L; is expressed as: aj-x
+b1-y=s1(tc1). Similarly, line L, is expressed as: apx +by-y=s,(tk»). Therefore, the
coordinates of point I(xj, yr) can be found by solving the linear system of L; and L,.

Specifically,

91

xi=(ar-by— aryby)" - (by- 51(t1) - bi-sx(ty2)) and

yi=(arby—ayb))" - (a1-s2(tia) - arsi(tr)).

Depending on the position of where point / lies we have the following cases:

Case 2.1: point I intersects outside of the active area. Point / lies outside of the
active area if at least one of its coordinates xj, y; does not belong in the active domains
of X and Y respectively. In fact, in case point / lies outside the active area (see Figure
3.7), then all tuples materialized in one view are also materialized in the other view as
well. This situation indicates that whenever an update occurs in V>, this will definitely

affect V; as well. The inverse however is not always true.

In Figure 3.7, tuples of V, also belong in V; and V, nucleates V;. In other words, V; is
a subset of V; in the sense that any tuple in V, will be part of V; but with a different

ranking and score.

0(0,0) N \\f
I

Figure 3.7. Intersection of Two Views Outside the Active Area.

Case 2.2: Point I intersects inside the active area. Point / lies inside the active area
if both of its coordinates xj, y; belong in the active domains of X and Y respectively. In
case point / lies within the active area, there is no clear guarantee of the way the views
are affected when updates occur. However, there is a sub-area which we refer to as
safe area, where both views will be affected in the same way. Observe Figure 3.8,

where the safe area is the convex defined by the points y,, I, x;, R. This area contains

92

points that both belong in V; and V,. If an update occurs within this safe area then if

one view is affected then obviously the other view will be affected.

Iy|
Y, / R

2

Safe area

M

0(0,0) % A X

Figure 3.8. Intersection of Two Views Inside the Active Area.

On the other hand, there are two critical areas where an update might occur and affect
one view but not the other. These two critical areas are the two triangles tr;: y;y,/ and
try: x1xp1. Assume the relation R is updated with a tuple ¢ that falls within the triangle
tr;. This means that either ¢ is inserted in R and its representation lies within ¢ry, or ¢
belonging in r; is deleted from R. Then, ¢ will affect V;, but will leave V, unaffected.
Similarly, if tuple ¢ falls within the triangle tr,, then V, will suffer changes whereas V;

will remain unchanged.

Case 2.3: Special Case. Assume two views Vi(aj, ki) and V,(a,, k;) as the ones
depicted in Figure 3.8, where point / is within the active area. The safe area of these
two views is the convex defined by the points: y», I, x;, R. The main observation that
can be made is that the tuples in the safe area are common and therefore, the two
views share the same set of top-k tuples, k < kj,k; (although, possibly with different
ordering for each view, since each point in the safe area has a different score for each
of the two views). The areas outside the safe area contain k;-k and k,-k tuples for each

view, respectively.

93

In addition, assume now that both (i) k;=k, and (ii) the two critical regions tr;: y;y,/
and try: x1xpl are void of tuples. In such a case when an update occurs, a conclusion
can be conducted depending on the type of the update (i.e., insertion or deletion):

If the update is a deletion and affects one of the views, then it will definitely affect the

other view.

However, if an insertion occurs and affects one of the views, then depending on the
position of the insertion the other view might be or not affected. This depends on

whether the insertion lies within the safe area or in one of the non-common triangles.

3.4.3. Discussion & Summary
It is important to stress that the nucleation relationship of the two views is typically
dependent on the specific instances (expect for special cases) and has to be re-

evaluated each time that updates occur.

Whenever an update occurs that affects at least one of the views, the position of its
respective line (L; and/or L,) is altered. In fact, when an insertion occurs in at least
one of the views, the position of its respective line is moved towards the upper right
part of the active area (or, infinity, if one chooses to think without active areas).
Similarly, when a deletion occurs in a view, its respective line is moved towards the
beginning of the axes. Therefore, lines L; and/or L, should be recomputed after every
update affects at least one of the views. Consequently, point / should be recomputed.
This might also cause the change from the situation where [is outside the active area

to the situation where [is inside the active area and vice versa.

Combining the above cases the following theorem occurs (the proof is obvious by

referring to the lemmas and discussions of this section).

Theorem3.2. Assume two views V; (ID, X, Y, s1) and V, (ID, X, Y, s,) that contain k;
and k; tuples and have their scores defined as sy =a;- x+b;-yand s,=a-x + by -y,

respectively. In addition, without loss of generality, assume for the slopes of the lines

94

L, and L, that % < Z—Z. When updates occur in the relation R and the view V is
1 2

affected, then, the view V, will be affected if one of the following holds:

The scoring function of V; is proportional to the scoring function of V, and k <k,

The intersection point / of L; and L, lies outside the active area, and L, is above L;
The intersection point / lies inside the active area, critical areas tr; and tr, are void of
tuples and updates are only deletions.

The intersection point / lies inside the active area, critical areas tr; and tr, are void of

tuples and insertions occur only within the safe area. O

3.5. Updating Multiple Nucleated Views

Assume a relation R(ID, X, Y,...) containing initially » tuples. In addition, assume that
our user requirements allow us to structure the updates that occur in R in a batch way,
with AR", AR denoting the insertions and deletions of a batch respectively. Assume a
set of m materialized views V = {Vi(ID, X, Y, s;) | 1 <i < m} where each view V;
contains k; tuples with score s; defined as s;= a;-x +b;-y. When updates occur in R, the
set of views V should be maintained appropriately. In a naive manner, AR" and AR’
would be checked over each view of the set V. However, if there are nucleation
relationships among them, the update process can be done more efficiently. In this
section we describe an algorithm that updates a set of views by taking advantage of

the nucleation relationships among them.

3.5.1. Representation of Nucleation Relationships as Hierarchy Paths

Assume that there exist several nucleation relationships among the set of views V.
Taking into consideration the nucleation between views, we can construct a number
of hierarchy paths among them. Each hierarchy path will contain the views that are
related-connected by nucleation relationships. As a simple example, assume that V;
nucleates V, and V, nucleates Vi. This can be depicted as a hierarchy shown in Figure
3.9 where the nucleation relationship is represented as an ancestor-descendant
relationship (i.e., the fact that V; nucleates V; is depicted as V; being the ancestor of

V»). In other words, when a view V; is an ancestor of a view Vjin a hierarchy path, all

95

tuple ids of V; are also contained in the materialized tuples of V; at this specific point
in time (i.e., for the current extents of the two views). Following the same example,
the hierarchy path H; from Figure 3.9 indicates that all the tuples materialized in V,
are also materialized in V, and all tuples materialized in V, are materialized in Vs.
Since, tuples materialized in V; are also in V; and all tuples from V, are materialized
in V3, by induction, all tuples in V; are also part of the materialized tuples in V3 as
well. Therefore, when an update affects a view that is part of a hierarchy path, then all
its descendants will be affected by this update. On the other hand, if an update is not
affecting the lowest view from a hierarchy path, then it will definitely not affect any
of its ancestors. According to this, we propose a procedure for updating a number of
views based on their nucleation. We need to stress that the relationships are instance-
dependent, i.e., they depend on the contents of the views at any time point and they
need to be re-evaluated after each update occurs. Also, this explains why we
structure our discussion around batches of updates (as opposed to individual
modifications). From the theoretical point of view, individual modifications are a
special case of batch updates; at the same, tuple-at-a-time updates can be an overkill

when compared to the processing of batches.

4 Vy

Vs Vs
£ Ve V7
Hierarchy path Hierarchy path

H1 H2

Figure 3.9. Hierarchies for Efficient View Updates.

Before proceeding to the algorithms that update the views of a set V" we need to
construct the algorithm that creates the hierarchy paths. Firstly, we describe the

algorithm that constructs the hierarchy paths among the views from set V.

96

Algorithm Create Hierarchy Paths

Input: A set of views V= {V.(ID, X, Y, s;) | 1 < i < m},
Output: 2 set of hierarchy paths H = {H; | 1 < 3§ < 1}
Begin

1. H = {H; | Hy=V;} //every view forms a hierarchy path

2. For every Hy of H {

3. Begin from root Vj of Hjy {

4.

For every H;, # Hy of H {

5. Begin from root V; of H; {

6. CI=CheckInerstectionPointI (Vy4, Vi)
7. if (CI = true){

8. Remove Hy, H; from H

9. Hy = Merge { Hj, H; }

10. Add Hy in H

11. }

12. Vi = Vi_; //move alevel down the path H,
13. } until CI = true

14. }

15. Vj = V3.1 //move alevel down the path H;

l6. } until CI = true

17. 1}

18. Return(H)
End.

Algorithm 3.1 Algorithm Create Hierarchy Paths

Algorithms. How can we create a number of hierarchy paths according to the
nucleation relationships for a set of m views 1?7 Let the set of hierarchy paths be
denoted as A= {H;| 1 <j <1} where [< m. Each hierarchy path Hj is a partial order
(denoted as <) among the views. Consider the hierarchy path H; denoted in Figure
3.9. Then, for views V|, V,, and V3, partial orders are defined as: V; < V, < V3. The
algorithm Create Hierarchy paths initially treats each view of the set 1 as a hierarchy
path of its own. Then, in an iterative manner it checks among views of hierarchy paths
nucleation relationships exist. In case there is a partial order between a view of a
hierarchy path and a view of another hierarchy path, the two hierarchy paths are

merged into a new hierarchy path. The algorithm proceeds until all nucleation

97

relationships are considered. For each two hierarchy paths, the algorithm iteratively
checks the views from one hierarchy path with the views of the other hierarchy path

starting from the root and proceeding top-down until it finds a nucleation relationship.

Now, once the hierarchy paths have been constructed, we can update the views by
taking into consideration the fact that any update not affecting a lower view in a
hierarchy path will not affect any of its ancestors. In fact, the algorithm works in a
bottom up way for every hierarchy path constructed. Initially, we check if the updated
tuples AR" and AR of R, affect the lowest views from each hierarchy path. Then, the
set of AR" tuples are split into two sets: (i) Ignorable set and (ii) Affected set. The
Ignorable set contains all the tuples from AR" that do not affect the view, where the
Affected set contains all the rest. In the next step, the algorithm proceeds by checking
which updates affect the immediate ancestor of the previous view. However, there is
no need to check every update from set AR". Instead, only updates contained in the
Affected set are checked. Similarly to the previous step, the Affected set is now split
into two new sets (1) Ignorable and (i1) Affected. The same procedure is conducted for
the set AR’, where in each step the set of possible updates are split into (i) Ignorable
set and (i1) Affected set. This procedure is repeated for every hierarchy path, until the
root of the path is reached. In addition, every time a view V is checked and the sets of
Ignorable and Affected tuples are created, V is updated in regards to the Affected set of
tuples.

Notice that in the Create Hierarchy Paths algorithm, if a view does not participate in
any hierarchy path, then it creates a hierarchy path of its own. Therefore, there will
not be any views not updated. In other words, in the worst case where no view
nucleates another one, the algorithm is simplified to the naive algorithm where every

view is checked and maintained.

98

Algorithm Maintain View Updates

Input: Hierarchy paths H ,AR+ tuples inserted in R and AR- tuples

deleted from R,

()utput: maintain views
Begin
1. Let V; be the lowest view in a hierarchy path
2. For all hierarchy paths Hj {
3. For all V; in Hj{
4. Vo=V,
5. Aff' = AR'
6. Aff~ = AR
7. Ign® = {}
8. Ign = {}
9. do{
10. For all tuples t* in Aff* {
11. if (t* not affects V) {
12. Ign® = Ign" U {t"}
13. }
14. }
15. For all tuples t~ in Aff" {
16. if (t~ not affects V) {
17. Ign” = Ign U {t7}
18. }
19. }
20. Aff" = Aff" - Ign”
21. Aff" = Aff" - Ign®
22. Update V with tuples in Aff" and Aff~
23. V = parent (V) //set the view V to be its immediate ancestor from hierarchy
path
24. } until the root of the hierarchy path is reached
25. }
26. }
End.

Algorithm 3.2. Algorithm Maintain View Updates

99

After each batch of updates has been checked and performed over the views, the
hierarchy paths must be reconstructed. This is due to the fact that when updates occur
in views then their relative positions and therefore, nucleation relationships are
altered. In other words, before a new batch of updates is processed, the hierarchy
paths should be appropriately reconstructed. To this end, we execute algorithm Create

Hierarchy Paths.

Algorithm Check Intersection Point I

Input: Two materialized views V,(ID, X, Y, s;)*, with s; = a; - x
+ b; -y and V,(ID, X, Y, sz)k2, with s, = a, - x + b, - y and

maximum and minimum values of attributes X and Y in R,

Output: the position of the intersection point of V; and V,
Begin
1. Let ty; be the last tuple of Vi, tyi (Xe1,Vr1)=S1(ty1)
2. Let ty, be the last tuple of V,, tis(Xya, Vr2)=S2(ty1)
3. %= (ar-by=aybi) 7 (byrsy (tyr) —bi-s; (tyz))
4. yr=(aiby—ayb:) ' (ai-s, (tyz) —azsi (tr1)) //compute coordinates for point I
5. 1f (Xpin S X1 S Xpax and Ypin £ Y1 S Yooy {
6. return(false);
7. }
8. else {
9. d; = dist(0(0,0), Vi);
10. d, = dist (0(0,0), V,);
11. if (dp < dp){
12. return(V; nucleates V,);
13. }
14. else {
15. return(V, nucleates V;);
16. }
17. return (true);
18. }
End

Algorithm 3.3. Algorithm Check Intersection Point /

100

3.6. Experiments

In this section, we report on the experimental assessment of (a) the estimation of the
essential view size in order to sustain a high rate of updates and (b) updating multiple
views by making use of the nucleation relationship among them. We start with
presenting the experimental methodology and discuss our findings over the first set of
experiments and then continue by describing the experimental methodology and

results over the second set of experiments

3.6.1. Experimental Study of Sustaining High Rate of Deletions

Throughout this section we describe the experimental methodology and conclusions
over the proposed method of sustaining a materialized view in the presence of high
deletion rates. Our experimental study has been conducted towards assuring the
following two goals:

— Effectiveness. The first desideratum of the experimental study has been the
verification of the fact that the proposed method can accurately sustain
intervals with high deletion activity in the workload. In other words, the
experimental goal was to verify that a top-k materialized view contains at least
k items, in at least 95% of the cases.

— Efficiency. The second desideratum of the experimental study has been the
establishment of the fact that the computation of the exact number of auxiliary
view tuples is faster than the computation of refill queries as proposed in the
related literature. As well as the number of auxiliary view tuples is less than

the number proposed in [YYY+03].

To achieve the first goal we have estimated kcomp Via two methods: (a) without the fine
tuning that uses the rates’ variances (i.e., through equation 3.5) and (b) with this fine
tuning (i.e., through equation 3.6). For both methods, we have computed the number

of tuples that were deleted from the view, below the threshold of k.

In the context of the second goal, we have measured three metrics: (a) the memory
overhead for kcomp and kcomp With tuning, measured as the number of extra tuples that

we need to keep in the view, (b) the time overhead for computing kcomp and kcomp With

101

tuning as compared to the necessary time to compute the refill queries of [YYY+03]
and (c) the time needed to compute the equation for kcomp. Again, we have evaluated

these metrics using both the aforementioned methods.

In all our experiments we have used one relation R(RID, X, Y) and one view V(RID,
score) with a formula score = 3X+7Y. The parameters that we have tested for their
effect over the aforementioned measures are: (a) the number of relation tuples, (b) the
number of materialized top-k results, (c) the fraction of the delete rate, over the
insertion rate and (d) the percentage of the update stream over the relation size. We
have not altered the time window 7 in our experiments; nevertheless, this is
equivalent to varying the last parameter (denoted as A), which measures the amount of
modifications that take place as a percentage of the size of R. In other words, it is
equivalent to increase the modifications number instead of reducing the window size.

We have tested the method over data whose attributes X and Y followed the Gaussian
(with mean x=50 and variance o=10 for both X, Y), negative exponential (with a=1.5
for X and a=2.0 for Y) and Zipf distributions (with a=2.1 for both X, Y). The notation
for the parameters and the specific values that we have used are listed in Table 3.1.

All the experiments were conducted on a 2.8 GHz Pentium4 PC with 1 GB of

memory
Table 3.1. Experimental Parameters.
Size of source table R (tuples) IRI | 1x10°, 5x10°, 1x10°, 2x10°
Size of mat. view (tuples) k |5, 10, 100, 1000
Size of update stream A | 1/1000, 1/100

(pct over IRI)

Deletion rate over insertion rate (ratio) |D/I[1.0, 1.5, 2.0

Effectiveness of the Method
The effectiveness of the method is demonstrated in Figure 3.10 and Figure 3.11. We
present results organized by the data distribution of the attributes and compare two

methods for computing Kcomp, (a) the method including the fine-tuning part and (b) the

102

method simply based on equation 3.5. We have conducted the full range of

combinations of the values listed in Table 3.1.

In Figure 3.10, we fix D/I to 1.5 and k to 1000 (the largest possible value) and vary
the size of R (in the X-axis) and the update stream size (in different lines in the
Figure). Each experiment has been conducted 5 times. We measure both the average
and the maximum number of misses. In Figure 3.11 we report only the maximum
number of misses, as it appears to be in analogy with the average in almost all the
cases, and we vary k and D/I, while keeping R fixed to 1M rows and A to 1%. The

findings are as follows:

The fine tuning method gives 0 losses, and thus describes the bold line lying on top of

the X-axis in Figure 3.10 and 3.11.

If the fine tuning was not included, misses would have been encountered. In cases
where insertions are close to deletions, the underestimation of the value of Kcomp
would lead to potentially important errors (in the Zipf case, errors have come up to 9

misses which is almost 1% of the top-k view size).

It is also interesting how the distribution of data affects the stability of the error
(Gaussian seems to converge, as expected, whereas the Zipf drops when the

percentage of k is small over R, as the hot values are rather fixed).

103

—— max misses, A=0.1%
8 T| —— avg misses, \=0.1%
74 —>— max misses, A=1%
== avg misses, A=1%
6 -
§5
24
&
2 -
1 -
0
\Qsjv Q
%R (D/1=1.5, k=1000)

Gaussian

—— max misses, \=0.1%
7 —&—avg misses, 1=0.1%
—X—max misses, A\=1%

6 X\ —X—avg misses, \=1% <]
4
N/

R size (D/I= 1.5, k=1000)

Negative Exponential

10 —— max misses, A=0.1%
—¢ = avg misses, 1=0.1% /\
8 —>— max misses, A=1%

—X = avg misses, A=1% / \(
86 | >//

£y /\
2,
P
- \§ﬁ—~
O —)))

100K 500K IM M
R (D/I=1.5,k=1000)

Zipf

Figure 3.10. Maximum and Average Misses as a Function of IRl and A.

104

8 ——D/I=1.0
7 T|—®—Dn=15 /A
w6 41— —=D/N1=20 7
%5 / /
E, /
E y/
3 — -
2 /
1
0 —— -/ .
5 10 100 1000
k (R=1M, A = 1%)
Gaussian
6
——D/I=1
5 +——®—D/=15 A
" —A-D/I=2 /
Q4
'UJ
£,
Z,
1 L S
0 a—
5 10 100 1000
k (R=1M, A=1%)
Negative Exponential
10
——D/I=10
g || —®D/=15 /
—A- D/[=20

S

max misses
=N
|

[\
|

10 100 1000
k (R=1M, A=1%)

-1

Zipf

Figure 3.11. Maximum Misses as a Function of k and D/I.

Our experimental study has also explored the case of larger workloads of updates that

may occur in the base relation. Specifically, the experiments were conducted by

105

making use of three different scenarios of possible update workloads. All the
scenarios were applied over a database of 1 million records with attributes x and y
following the Gaussian distribution (in any case, the distribution of data does not have
an effect to the effectiveness of the method as our aforementioned experiments have
demonstrated). Every experiment was conducted 100 times in order to eliminate cases
where the actual values of the tuples inserted or the tuples deleted contribute
significantly to the experimental results. All three workloads contain 91 thousand
updates occurring in the base relation and in all three of them the insertions and
deletions do not occur uniformly. There are peaks and valleys of high insertion and
deletion rates throughout all three scenarios. The first workload (denoted as W),
depicted in Figure 3.12, contains updates where insertions and deletions are of the
same size (specifically, 45500 insertions and 45500 deletions). The two other
workloads are constructed in order to test the method to extreme cases. In the second
workload (denoted as W;), shown in Figure 3.13, deletions are approximately twice as
many as the insertions (specifically, 60700 deletions and 30300 insertions). The third
workload (denoted as W3), shown in Figure 3.14, is the inverse of workload W,.
Specifically, W3 occurred by replacing in workload W, deletions with insertions and
vice versa. Thus, W3 constitutes of 60700 insertions and 30300 deletions, having a

ratio of deletion rate over insertion rate approximately equal to 0.5.

In order to assure that a large number of updates will affect the top-k view results, we
have set the parameter k to 1000 tuples. The resulting numbers of tuples that are either
inserted or deleted in the extent of the top-k view are depicted in Figure 3.15 for all

the workloads.

For all these three workloads, we have counted the number of misses that occurred (as
a measure of how often we would have to run refill queries) as well as the memory
overhead for kcomp and kcomp With tuning, measured as the number of extra tuples that

we need to keep in the view. Our findings are as follows:

106

Wi

1000200

1000100

i
1000000 .Y
= 999300 i '

995800

9959700

999600

Figure 3.12. Size of Relation R (IRl) over Time as Insertions and Deletions Take Place
for Workload W, Having a Ratio of Deletion Rate over Insertion Rate D/l =1.0.

W2
1005000
1000000
985000
950000 m
985000 \
— 980000 \
s M
975000
970000 ‘h‘-“""'“‘a
965000
960000
955000
950000

Figure 3.13. Size of Relation R (IRl) over Time as Insertions and Deletions Take Place
for Workload W, Having a Ratio of Deletion Rate over Insertion Rate D/I = 2.0.

1035000
1030000 /_,_/
1025000 4_/'*"/
1020000 /
1015000 /_
— 1010000
o —A_/._‘—-/
= 1005000

1000000

995000

990000

BE5000

980000

Figure 3.14. Size of Relation R (IRl) over Time as Insertions and Deletions Take Place
for Workload W3 Having a Ratio of Deletion Rate over Insertion Rate D/l = 0.5.

107

— Concerning the number of misses, the number of missed tuples was exactly
zero for all the three workloads and in each one of the 100 runs of every
workload.

— Concerning the memory overheads, the extra tuples that we had to store for the
top-1000 view of our experiments was quite low. The results for kcomp and
keomp With tuning are shown in Figure 3.16 for all three workloads. Observe
that in all three scenarios the number of extra tuples materialized over 1000
tuples, due to the extra tuning (i.e., the difference of k and kcomp With tuning)
does not exceed 188 tuples. Specifically, the mixed workload W, requires 137
extra tuples (i.e., a 13.7% increase over k). Workload W, that is heavy on
deletions (and therefore requires a provision for a larger kcomp, in order to
sustain the high deletion rate) requires an increase of 18.8% (although the
deletion rate is twice as high as the insertion rate). Workload W3 which is
heavy on insertions only requires an increase of 0.89% over k. In particular, in
workload W3, equation 3.5 gives for kcomp the value of 971 tuples instead of
1000 tuples, due to the high insertion rate in regards to the deletion rate.
However, in the experimental setup we have used as kcomp the maximum value

between k and the computed value of kcomp from equation 3.5.

Efficiency of the Method

We compared the values of kcomp Without the fine tuning (i.e., through equation 3.5)
and kcomp tuning with this fine tuning. The comparison of the above values was
conducted for all three distributions as well as for all parameters listed in Table 3.1.
Due to the fact that our equation is independent of the distribution the tuples follow
we only present some indicative results. In Figure 3.17 we compare kcomp and Kcomp
tuning (a) as a function of k, where the size of R is 100000 tuples and (b) as a function
of the size of R where we have fixed k=1000. For both of them and for all possible
values of D/I the size of the update stream A is 1% and the distribution is the Negative
exponential. In Figure 3.17 (a) the Y-axis denotes the percentage of extra tuples. From
both graphs in Figure 3.17 we observe that keomp 18 slightly greater than k and kcomp
tuning is slightly greater than k.omp 1n all cases. The number of the auxiliary tuples in

the view (i.e., kcomp and Kcomp tuning) in the maximum case is approximately 1% and

108

6% respectively. Thus, the number of the auxiliary tuples does not cause a great extra

memory cost.

B AVG INS aff

80 T 5 AVG DEL aff

70

60
w 50
]
o 40 -
=
* 3p A

20 -

10

D ol

w1 w2 e
Workloads (R=1M, k = 1000)

Figure 3.15. Average Number of Insertions and Deletions that Affect the Top-k
Tuples in the View.

B KCOMP
= KCOMP tuning

1250
1188

1200

1150

1100

1050

#tuples

1000

950 +

900 -

w1 w2 w3
Workloads (R=1M, k = 1000)

Figure 3.16. Memory Overhead Expressed as the Number of Tuples Stored in the
View.

109

7 1@ KCOMP-k
6 @ KCOMP tuning -k D/I=2.0
D/l=1.5

5 1
7)) m M — —
9 4 I . O
g- D/=1.0
R 3

2 L L L

1 b | | [-

0 T T T T lll«l:'—lll

NN \000 NN \000 o 0 ® \000
k (R=100K, A=1%)

(a) Percentage of extra tuples as a function of k and D/I

1070 T —e—K
1060 +- m - KCOMP / o o A
1050 | —4— KCOMP tuning
1040 1
$ 1030 1
5. 1020 D/l=1
E1010 2--3---w A==
1000 1 =
990
980 -
970
960 T T

D/l=2
D/I=1.5

R (k=1000, A=1%)

(b) Number of extra tuples as a function of R and D/I

Figure 3.17. Comparison of k, kcomp, and kcomp With Tuning.

In Figure 3.18, we compare the value of kcomp tuning with the one proposed by
[YYY+03]. Again, we compare the above (a) as a function of k where the size of R is
set to 2M (the largest possible value) and (b) as a function of R where k is fixed to
100. In both graphs the distribution is the negative exponential. The parameter D/I=1,
since it is the only value that can be compared with the proposed method in
[YYY+03]. We notice that the number of tuples proposed by [YYY+03] is
significantly larger than the one proposed in our method. Thus the memory cost in our

method is considerably less.

110

—— KCOMP tuning A
1400 1— _ A - Opponent =

0 | \
100000 500000 1000000 2000000
R (k=100, A=1%)

L 3
*

(a) Number of extra tuples as a function of R

3000
JI KCOMP tuning
2500 | 1O Opponent

2000 -

1500 — — -

#tuples

1000 —

500 u

0 i — .

5 10 100 1000
k (R=2M, A=1%)

(b) Number of extra tuples as a function of k

Figure 3.18. Comparison of kcomp With Tuning and [YYY+03].

The second part of our experimental results had to do with the comparison of the time
needed to compute the value of kcomp as compared to the time needed to re-compute
the view as part of a refill query. Figure 3.19 measures the computation time needed
for the view computation for a value of k in microseconds. On the contrary, the time
necessary to perform the computation of keomp has consistently been negligible

(practically O in all occasions).

111

N K | Gauss |Negative exponential | Zipf
100K| 5 | 328000 348500 242000
100K | 10 | 333000 345667 239667
100K | 100 | 335500 343000 239667
100K | 1000 | 395333 406000 299500
500K| 5 [1650667 1715500 1216333
S500K| 10 |[1650667 1713000 1208333
500K | 100 | 1653167 1710500 1205667
500K | 1000 | 1736667 1796167 1291833

IM | 5 [3298667 3429000 2427167

IM | 10 |3301333 3426667 2429667

IM | 100 3304000 3439500 2422167

IM |1000|3403167 3520500 2606667

2M | 5 |6650667 6900500 5406333

2M | 10 [6653167 6900833 4909000

2M | 100 |6747167 6906000 4906500

2M {1000 |6895500 7082833 4992167

Figure 3.19. Time to Build the Top-k View (microseconds).

3.6.2. Experimental Study for Multiple Views Updates

In this section we describe the experimental study and findings of maintaining
multiple views by making use of the nucleation relationship among them. The
experimental study has focused on proving the correctness and efficiency of the
proposed method. We have implemented the algorithms described in section 5.4 and
compared them with a base method which we refer to as naive method. The naive
method checks a batch of updates over each view independently and applies them
appropriately. In order to test the correctness of the proposed nucleation method we
have compared the results of the updated views with the results of applying the
updates over each view independently and the outcome has been absolute identical.
Having secured the correctness of our algorithms’ implementation the rest of the
experimental study focused on proving the efficiency of the proposed method in terms

of the time needed to apply updates over multiple views. Our experiments have

112

demonstrated that, indeed when batches of updates are applied to a multitude of top-k
views, using the nucleation relationships is faster than the naive method. Under the
context of proving the efficiency of the nucleation method, we have measured the
time needed to maintain multiple views in the presence of updates over the base

relation, for both the nucleation and naive method.

In all our experiments we have used a relation R(RID, X, Y) where the attribute values
of X and Y were generated randomly from the interval [0, 10000]. All the views
needed to be maintained are of the form V(RID, X, Y, score) where score is a
weighted sum over the attributes X and Y. Particularly, the scoring function of the
views is of the form score = wy'X + wy'Y, with the parameters wx and wy being
randomly generated from the interval [0, 1]. The parameters that we have tested for
their effect on the efficiency of the view refreshment are: (a) the number of relation
tuples, (b) the maximum number of materialized top-k results within a set of views
expressed as a percentage over the relation size, (c) the number of materialized views
needed to be maintained and (d) the percentage of the insertion stream over the
relation size. We have kept the fraction of the delete rate, over the insertion rate

constant and equal to 0.5.
The notation for the parameters and the specific values that we have used are listed in

Table 3.2. All of the experiments were conducted on a 2.53GHz Core Duo PC with
3.12 GB of memory.

Table 3.2. Experimental Parameters.

Size of source table R (tuples) IR |2x10°, 3x10°, 4x10°
Max size of mat. tuples (pct over IRI) | max_k| 1/100, 1/1000
Number of views M {100, 1000

Size of insertion stream A |1/10, 1/100, 1/1000
(pct over IRI)

In all the experiments the measure for time is expressed as number of seconds. The

comparison of the time needed for the two methods has been conducted for all

113

possible combinations of the above parameters listed in Table 3.2. We run every
experiment five times and the results presented here are the average time. In all charts
of Figure 3.20 the Y-axis indicates the time needed for the two methods to apply the
updates. The X-axis shows (a) the size of the source table R and (b) the size of the
insertion stream. Specifically, for each possible value of IR (i.e., 200, 300 and 400
thousand tuples) X-axis also indicates the stream of insertions for all three possible
values (i.e., 1/10, 1/100 and 1/1000 percentage of IRI). Since, the fraction of the
deletion rate over the insertion rate is set to be 0.5 the number of updates occurring
can be calculated as 1.5 times the value of parameter A, times the value of parameter
IRI. The naive method is denoted with the darker grey color, whereas the nucleation
method is presented with the lighter grey color. In all charts we can notice that the
nucleation method is faster than the naive. The title of each chart also clarifies the

fixed value of the parameters M and max_k.

Graphs (a) and (b) in Figure 3.20 demonstrate the time needed for applying updates
over a set of 100 views. In these two graphs the maximum number of tuples
materialized in each view expressed as a rate over IRl is 0.1 % and 1% respectively. In
graph (a) of Figure 3.20 the ratio time between the two methods is not that significant
but still the nucleation method is faster than the naive method. In graph (b) of Figure
3.20 we observe that time needed for nucleation method is approximately half the
time needed for the naive method. This is due to the fact that the number of views is
100 and in each view the maximum number of tuples materialized is only 200, 300
and 400 respectively for each size of R. In other words, the larger the extent of the

views (due to the size of k), the larger the benefits from the nucleation method are.

In graphs (c) and (d) of Figure 3.20 we see the time needed for the two methods over
a set of 1000 views (as opposed to 100 views for the cases of (a) and (b)). The
maximum value of tuples materialized in each view is set to 0.1 % and 1%
respectively. In graph (c) the ratio time between the two methods ranges
approximately between 2 and 4. In graph (d), the time needed for the nucleation
method is approximately 4 times faster than the naive method. Again, nucleation
scales up much better than the naive method. Moreover, if one reads Figure 3.20

vertically, one can observe that the scaling capabilities involve both the extend of the

114

view and the number of materialized views; in fact, the improvements in cases (c) and
(d) where a larger number of views is maintained are significantly higher than the

improvements of cases (a) and (b) where a smaller number of views is maintained.

] M=100, max_k= 0.1%]R| & M= 100, max_k= 1%]R|
M nai ..
8 nanie T B 50 Mnaive
7 nucleation nucleation
36 2
n n
£S5 £
@ @
£’ £
=JE =
2
1
0 4 4
1/1000 1/100 1/10 |1/1000 1/100 1/10 | 1/1000 1/100 1/10 1/1000 1/100 1/10 |1/1000 1/100 1/10 | 1/1000 1/100 1/10
200K 300K 400K 200K 300K 400K
4, |R| 4, |R|
(a) (b)
& M= 1000, max_k= 0.1%]R| i M=1000, max_k=1%|R|
30 M naive ,50 . Wnaive
nucleation nucleation
o 25
@
v
= 20
£ 15
B0 I
5 —-J
0 |
1/1000 /100 1/10 1/1000 1/100 1/10 1/1000 1/100 1/10 R TR Ty
200K 300K 400K — — i
AR 4Rl
(© (d)

Figure 3.20. Comparison between Naive and Nucleation Method. All Graphs Show
the Time of Applying Updates as a Function of Insertion Size and IRI.

In all the graphs of Figure 3.20 we can observe that the time needed for the naive
method scales up linearly with respect to the number of updates occurring in the base

relation. Considering the nucleation method the time scales up almost linearly as well.

115

3.7. Chapter Summary and Findings

In this Chapter we have handled the problem of maintaining materialized top-k views
and provided results in two directions. The first problem we have been concerned
with has to do with the maintenance of top-k views in the presence of high deletion
rates. We have provided a principled method that complements the inefficiency of the
state of the art independently of the statistical properties of the data and the
characteristics of the update streams. The method comprises the following steps: (a) a
computation of the rate that actually affects the materialized view, (b) a computation
of the necessary extension to k in order to handle the augmented number of deletions
that occur and (c) a fine tuning part that adjusts this value to take the fluctuation of the
statistical properties of this value into consideration. The second problem we have
been concerned with concerns the case of multiple top-k views and their efficient
maintenance in the presence of updates to their base relation. We have provided
theoretical guarantees for the establishment of the effect of updates to a certain view,
whenever we know that another view has been updated. We have also provided
algorithmic results towards the maintenance of a large number of views, via their
appropriate structuring in a hierarchy of views. Our experiments have shown that our
method accurately sustains intervals with high deletion activity in the workload and
specifically in at least 95% of the cases there were top-k materialized views that
contained at least k items. The experiments indicate that our method outperforms the
state-of-the-art in terms of efficiency as the computation of the exact number of
auxiliary view tuples has shown to be faster than the computation of refill queries as
proposed in the related literature. At the same time, the number of auxiliary view
tuples has been less than the number proposed in [YYY+03]. Moreover, the fine
tuning method we proposed, gave zero losses. The experiments for updating multiple
views revealed that the time needed through the nucleation method outperforms the

naive method.

116

117

CHAPTER 4.SIMILARITY MEASURES FOR
MULTIDIMENSIONAL DATA

4.1 Distance Families
4.2 Cell Mapping and Categories of Distance Functions according to it
4.3 Experiments

4.4 Chapter Summary and Findings

In our deliberations so far, we have dealt with our data as points in the
multidimensional space. Each top-k view or query is a collection of such points,
ranked according to a scoring function. So far, we have been interested on the
suitability of a view to answer a query as well as the refreshment of such views. Still,
inherent to the problem of view management is the answer to the question “How
similar are two data collections?”. If a query is given to us and we have to suggest
similar views to the user to explore, or we have to decide the most similar views in
order to answer a query, which ones would we use? To answer the question we need a
fundamental insight on the question “which is the best distance function for two data
collections?” We are interested in discovering what users prefer and not which

function is more efficiently computed or has the nicest properties.

In order to achieve an answer to this question we resort to the simplest framework that
can be given to a user to work with and that is OLAP Cubes and hierarchical
multidimensional spaces. OLAP is preferred for simplicity as it organizes data in
dimensions and measures that are most intuitive to users. We model a collection of
data in the form of a multi-dimensional array called Cube. Each cell of the cube

contains data that are called measures of the cell. The cell is uniquely defined by its

118

coordinates as values of the dimensions of the cube. A dimension D is a lattice of a
finite subset of levels and a partial order defined among the levels. Formally, the

notions of dimension and Cube are defined as follows.

Definition 4.1 (dimension) [VaSk00]. A dimension D is a lattice (£, <) such that:
L= (L, ..., L, ALL) is a finite subset of levels and < is a partial order defined among
the levels of £, such that L; < L; < ALL for every 1<i<n. We require that the upper
bound of the lattice is always the level ALL, so that we can group all the values of the
dimension into the single value ‘all’. The lower bound of the lattice is called the

detailed level of the dimension.

Definition 4.2 (Cube) [VaSk00]. A cube ¢ over the schema [L, ...L,, M1,My], is
an expression of the form: c= (DSO, o, [Li, ...Ly, My, ...My], [aggl(Mlo, ey
aggm(Mmo)]), where DS° is a detailed data set over the schema S= [Llo, ...LnO, M10,
...Mmo], m=k, ¢ is a detailed selection condition, Mlo, ...Mmo are detailed measures,
M,M,, are aggregated measures, Lio and L; are levels such that Lio < L; 1<i<n

and agg;, 1<i<m are aggregated functions from the set {sum, min, max, count}.

Then the research question is rephrased: given two sets of points in a
multidimensional hierarchical space, what is the distance between these two
collections? The above research problem is generic and has several applications in
domains such as multimedia information retrieval, statistical data analysis, scientific
databases and digital libraries [ZADBO6]. In such applications, where contemporary
data lead to huge repositories of heterogeneous data stored in data warehouses, there
is a need of similarity search that complements the traditional exact match search. For
example, one might easily envision a context where a user of an OLAP tool is

proactively informed on reports that are similar to the one she is currently browsing.

In this chapter, we address the problem by (a) organizing alternative distance
functions in a taxonomy of functions and (b) experimentally assessing the
effectiveness of each distance function via a user study. The novelty of our work is
not in the suggestion of new distance functions, but rather, it lies (a) in the adjustment

of existing distance functions in the OLAP setting and (b) in their evaluation —via two

119

user studies- in order to discover which distance function is mostly preferred by the

users.

In the related literature there are a number of papers that have pointed out the
necessity of having appropriate similarity measures in order to discover objects that
are similar to each other and measure in a quantitative way the distance among them.
Most of them examine similarity measures used between objects that are described
from various features such as in image retrieval or data that are stored in a
hierarchical taxonomy. Notably, [SaJa95] and [SaJa99] describe how similarity
measures used by human perception and computer science follow different properties.
The authors provide a collection of references where the metric axioms have been
refuted. Computer scientists in the areas of data mining and information retrieval have
also considered the problem of introducing appropriate similarity measures. Few
papers have associated the areas of mathematics and computer science and have
introduced similarity measures for lattices by mapping them with semantic hierarchies

[JoslO4].

So far, related work have dealt with similar problems in different ways; however, this
particular problem has not been dealt per se. Specifically, Sarawagi in [Sara99] and
[SaraO1] has dealt with the problem of discovering interesting patterns and differences
within two instances of an OLAP cube. The DIFF and RELAX operators summarize
the difference between two sub-cubes in order to discover the reason of abnormalities
within the measures of two given cells. The only common element of this work with
ours is the usage of the Manhattan distance in the process of discovering
abnormalities. Our work addresses the problem of finding the appropriate distance
function among a great variety of functions in order to compute the similarity between
two given OLAP cubes. Giacometti et al. [GMNS09] propose a recommendation
system for OLAP queries by evaluating distances between multidimensional queries.
This work involves the distance between queries whereas our work involves distance
functions between the data of multidimensional queries. Li et al. in [LiBMO03]
describe the semantic similarity between ontologies. In contrast to our work, they
consider a limited set of functions whereas we have a wider range of distance

functions and our work focuses on distances between data of an OLAP cube.

120

The main findings of our approach are due to two user studies that have been
conducted to assess which distance functions appear to work better for the users
(Section 4.3). The first experiment involved 15 users of various backgrounds and the
Adult real dataset [FuWYO05]. Each user was given 14 scenarios that contained a
reference cube as well as a set o variant cubes, each associated with a distance
function. The task of the user was to select a cube from the set of variant cubes that
seemed more similar to the reference cube. The diversity of users and data types
contained in the experiment was taken into consideration in order to discover which
distance function between two values of a dimension is preferred depending on the
user group or the type of data. The first user study showed that all distance functions
under test were used at least once, but there were a couple of distance functions that
were most preferred among the others. In particular, the users seemed to prefer
distance functions that express the similarity between two cubes based either on the

hierarchical shortest path, or with regard to ancestor values.

The second user study involved 39 users and the results of the first user study were
taken into account. Each user was given 14 scenarios that contained a reference cube
and three variant cubes. The purpose of this second user study concerns the most
preferred distance function between two data cubes. Two distance functions have
been in the center of attention in this study: the Hausdorff distance function and the
closest relative function that sums the individual distances of cells of the two cubes.
The latter has been selected by users at a remarkably higher percentage of occasions
than the former (57% vs. 38%); however, if one considers the winner per scenario the
result is only 6 vs. 5 in favor of closest relatives. Thus, we conclude that although the

closest relative has an advantage over Hausdorff, this cannot be overemphasized.

Roadmap. We start by (Section 4.1) providing a taxonomy of distance functions for
cubes based on a detailed study of the characteristics of dimension hierarchies, levels
and members. At first, we organize our families of functions as follows: Initially we
describe functions that can be applied between two specific values that belong to the
same dimension (Section 4.1.1). Following, we describe distance functions that are

applied between two cells of a cube (Section 4.1.2) and then distance functions

121

between two OLAP cubes (Section 4.1.3). In Section 4.2 we introduce the method
that is used in order to map the cells of one cube to the cells of another cube. We refer
to this method as Cell Mapping. Section 4.3 presents the user study experiments along
with the results of the most preferred distance functions. All the results and the user
study experiments can be found in the web page [Baikll]:
http://www.cs.uoi.gr/~ebaikou/publications/2011_ICDE/ that includes questionnaires

and findings, too. Finally, in Section 4.4 we summarize our findings.

4.1. Distance Families

In this section, we organize the distance functions that can be used to measure the
distance between two cubes in a taxonomy. The formal foundations of modeling
multidimensional spaces and cubes are based on an existing model in the related
literature [VaSkOO]. We build our taxonomy of distances progressively: In Section
4.1.1, we describe the functions that can be applied between two values for a given
dimension. In Section 4.1.2 we provide a taxonomy for distance functions between
two cells of cubes and in Section 4.1.3 a taxonomy for distance functions between two
OLAP cubes. The distance functions described are all normalized within the interval
[0, 1] and in many cases, such as in the weighted sum distance function, weight
factors may be used. The normalization and usage of weight factors in the distance
functions is not obligatory. Throughout all our deliberations we will refer to two
reference dimensions, Time and Location. The hierarchies of these dimensions are
shown in Figure 4.1. In more detail, the Time dimension hierarchy consists of 5 levels.
The levels of Time are Day(L;), Week(L,) and Month(L,), Year(Ls) and All(L4). The
dimension Location consists of four levels of hierarchy which are Ciry(L;),
Country(L,), Continent(Lz) and All(Ls). Figure 4.2 illustrates the lattice of the

dimension Location at the instance level.

4.1.1. Distance Functions between two Values
In this section, we specify the distance functions that can be applied over two specific

values of a dimension. In order to clarify things, distance functions described in this

122

section apply only between two dimension values and not between measure values of

a cube.

Assume a dimension D, its lattice of level hierarchies Li<l,=<...<ALL, and two
specific values x and y from levels of hierarchy Ly and Ly respectively. We classify the
distance functions in the following categories: (/) locally computable and (2)

hierarchical computable distance functions.

All All

f !
Year Continent

AN f

Week Month Country
~ I

Day City
Time Hierarchy Location Hierarchy

Figure 4.1. The hierarchy of levels for dimensions Time and Location

all

ALL -
’ AN
4
s ‘ h h .
. Europe America
Continent
Ed ~
_? ,*
r- /’
UK SN
) \ US4 CANADA
Cowmtry , \
e » ”
! ‘I 4 : N .
! oY 0
,' 1 ’ 1 N] ‘\
ST i \ ,f 1 \\ 1 A
City N \ h \

London
Essex
Dxillas
Dernver
Toronio

Qriebec

Figure 4.2. Values of the Location Dimension.

123

Locally Computable Distance Functions. The first category of locally computable
distance functions can be divided into three subcategories: (a) Distance functions with
explicit assignment of values, (b) Distance functions based on attribute values and (c)

Distance functions based on the values of x and y.

Distance Functions with Explicit Assignment of Values. The functions of this category
explicitly define n” distances for the n values of the dom (L;) (the compared values
must belong to the same level of the hierarchy). This requires dom(L;) to be a finite
set. For example, the distance between two cities can be explicitly defined via a

distance table.

Distance Functions based on Attribute Values. Assume a level whose instances are
accompanied with a set of attributes. Then, every level instance can be described as a
tuple of attribute values. In this case, the distance between the two values x and y can
possibly be expressed with respect to their attribute values via simple distance
function applicable to the attributes’ domains (e.g., simple subtraction for arithmetic
values). For instance, assume a dimension Products accompanied with an attribute
Weight which describes the weight of the products and assume a level of hierarchy of
the dimension named Drinks. In addition, assume two specific values x = ‘milk’ and y
= ‘orange juice’ where their weight attributes are x.weight = 500 and y.weight = 330
respectively. Then, the distance between these two values can be expressed according
to their weight attribute by making use, for instance, of the Minkowski distance
function which is described in the following subsection. Thus, the distance between

the values x and y can be defined as |x.weight — y.weightl = 170.

Distance Functions based on the Values x and y. In this subcategory, the distance
between two values may be expressed through a function of their actual values
whenever this is possible. This function is applicable for all type values even for
nominal values. A first option is to use of the simple identity function, resulting in a

value from the set {0, 1}, where dist(x, y) = 0 if x=y, or dist(x, y) = 1 if x#y.

Another option is to make use of the Minkowski family distance functions especially

when the values are of interval type. Minkowski family distance functions can be

124

applied between two ordinal type values under the condition that the ordinal values
have been mapped to the set of integer numbers. In this section, since the distance
function is applied for two specific values, all types of Minkowski distances reduce to
the Manhattan distance which is Ix-yl. In order to normalize this function within the
interval [0, 1], we can divide the distance value by the difference between the

maximum and minimum values of the level where x and y belong to.

Hierarchical Computable Distance Functions

The second category of hierarchical computable distance functions can be divided
into four subcategories: (a) Distance functions with respect to an aggregation
function, (b) Distance functions with respect to hierarchy path, (c) Percentage

distance functions and (d) Highway distance functions.

Distance functions with respect to an Aggregation Function. The distance for two
values that do not belong to the detailed level L; can be expressed with respect to an
aggregation function (e.g., count, max) applied over the descendants of the two values

in a lower level of hierarchy.

Assume an instance x from level L; and deSC?L (x) the set of its descendants, where L

is any lower level of L;. The result of applying an aggregation function over the set

desci“'L (x)is denoted as Xpgar = Sagar (descfiL (x)). Assume two values x and y with

Xager = Jager (descfL () and y, ... = [, (desc 2 (y)), where L;, could be any lower level

of L and L;, xe L;, ye L; and f,ger denotes an aggregation function such as count, min,
max, avg or sum. The distance between the values x and y can now be expressed

according to the following formula: dist(x,y) = g(x), where the function g

aggr ® y aggr
can be computed from the locally computable functions. The normalized form of this
function, within the interval [0, 1], can be expressed as

g(xaggr’ yaggr)

b

dist(x,y) =
ager))

, where a and b are any possible values from the same

maxll g(aaggr s

level of hierarchy as x and y, i.e., a, be L; .

125

Distance Functions with respect to Hierarchy Path. The distance between two values
x and y can be expressed according to the length of the path in the hierarchy that
connects them. Several distance functions and combinations falling into this
subcategory were described by Li, Bandar and McLean in [LiBMO3]. Here, we
describe the distance functions that can be applied between two values x and y from a
hierarchy, (a) with respect to the length of the path in the hierarchy, and, (b) with
respect to the depth in the hierarchy path. Assume two values x and y such that x € Ly
and y € L,. We denote the Lowest Common Ancestor of x and y as lca(x,y).

The lowest common ancestor lca(x,y), of two values x and y --where x € Ly and y €
Ly, lca(x,y) € L, and L, is any non lower level of Ly and Ly, L,> L, Ly -- is a value

such that:

b b L b
lea(x,y)={zlz =ancf§(x)/\z = ancf;(y)/\ Az | Z=anCLi(X)/\ Z=aﬂcf_f,()’)/\

L,=L,}

The distance between the values x and y can be expressed with one of the following

formulas:
w *| path (x,lca) | W, *| path (y, lca) |
dpath(-x’y)=
(W, + wy)* | path(ALL,L;)|
| path(lca,L;)|
ddepth (X, y) = P (Ll)

| path(ALL,L,)|

The first formula indicates that the distance is expressed as the weighted sum of the
length of the path from the values x and y to their lowest common ancestor Ica. The
second formula indicates that the distance of the values is expressed as the length of
the path of the lowest common ancestor Ica from the detailed level L; of the
hierarchy. These two functions are normalized in the interval [0, 1] by making use of
the height of the hierarchy. Specifically, the first formula is divided by

(wy +wy)* path(ALL,L,;)| whereas the second formula 1is divided by

| path(ALL,L;)|. As an example, assume two values x="NY’ and y=‘Canada’ from

the hierarchy Location denoted in Figure 4.2 where their lowest common ancestor is

the value lca = ‘America’ from the level Continent. For simplicity, assume the

126

weighted factors wy and wy are set to 1. Therefore, the functions become: dpan= (Ipath
(x, lca)l + Ipath (y, lca)l)/ 2*|path(ALL, Li)| and dgepm= path (Ica, L)l Ipath(ALL, L)l

The distance between x and y occurs to be dpan= (2+1)/2*3 =0.5 and dgepin=2/3.

Percentage Distance Functions. According to this subcategory, the distance between
two values x and y, where y is an ancestor of x, may be expressed according to a
percentage of occurrences over the values of the hierarchy. In other words, the
similarity of two values is expressed as the similarity of the number of descendants
this two values have. Assume the lattice of level hierarchies be denoted as
Li<... <Ly < L=< Ly<All where L, denotes the most detailed level. The distance of a
value x in a level L, with regard to its ancestor y in level L, may be calculated

according to the function:

| descé" (x)1

dist(x,y) = , where L; is one of L, L; and L;.

| desczy 621

The above formula expresses the distance between a value x and one of its ancestors y
as a percentage via three ways. In case L; is Ly, then the distance is expressed as a
percentage with regard to the occurrences of all the other values from L, whose
ancestor is y. In case L; is Ly(or L), the distance is expressed as a percentage of
occurrences of the descendants of x in a lower level of hierarchy L; (or L;) with regard
to the descendants of y in the same lower level Li(or L;). As an example, assume the
dimension Location where its lattice can be visualized in Figure 4.1 and the values of
this dimension are visualized in Figure 4.2. Assume the values x=‘USA’ and
y=*‘America’. Then, with regard to the above formula the distance between these two
values can be computed as:

dist(USA',' America') = ! =l where L; is chosen to be the

Continent /1 s ot
| desc oy (America’)l 2

level Ly, i.e., Leountry

, |descciy™™ (USAYI 3 _
dist("USA',' America') = == where L; is chosen to be the

Continent DN
| desccyy, " (' America') |5

detailed level Ly, i.e., Lcity

127

In this example the third case coincides with the second since the lower and detailed

level, i.e. City, are identical.

Highway Distance Functions. Assume that every level of hierarchy L is grouped into
k groups and every group has its own representative ry. Then, the distance between
two representatives can be thought of as a highway [SaSc05]. We denote with r(x)
and r(y) the representatives of the groups where x and y belong to respectively.
Therefore, the distance between the values x and y can be expressed with the
following formula:

dist (x, y) = dist (x, r(x)) + dist (r(x), r(y)) + dist (y, r(y))

The partial distances between a value and its representative and the distance between
the two representatives, r(x) and r(y), depends on the way the representative is
selected. In most cases, the representatives are selected so that they belong to the
same level of hierarchy and thus their distance can be computed from the locally
computable functions, the path functions or the aggregated functions (in case the two
representatives belong to different levels their distance may be computed by applying
any distance function from the path section or the aggregated distance function
section). The main categories of selecting the representative apart from an explicit
assignment are with regard to (a) an ancestor and (b) a descendant. For the following,
dist(a, b) denotes the distance of any two values a, b. Without loss of generality

assume L, <Ly (see Figure 4.3). In addition, assume the ancestor of x in level Ly is

Xy :ancty (x) and a representative of y in the level of hierarchy L, denoted

asy =f (descfxy (y))- The function f applied over the descendants of y can result either

to an explicitly assigned descendant or to the result of an aggregation function (e.g.,
min, max) over the set of descendants. In the following, we describe the partial

distances of the previous formula depending on the way the representative is selected.

a) The representative of a group is an ancestor. The representative of each value x and

Ly

y could be r(x) = amcgJ (x) and r(y)= anc

(y)where Ly and Ly is any upper level of

L, and L, respectively. Ly and Ly are not obligatory different. In general, the distance

128

between a value x and its representative may be computed through any distance
function from the path, the percentage or the aggregated functions. For example,
assume two values x="UK’ and y="USA’ from the level Country of the hierarchy
Location denoted in Figure 4.2. Assume the representative r(x)=‘Europe’ and the
representative r(y)=‘America’. The distance of the values x and y is by summing the
distances dist(‘UK’, ‘Europe’), dist(‘Europe’, ‘America’) and dist(‘ America’, ‘USA’).

In this category there are two special cases:

ALL atl .
lcat i
EZ ’/.x\
IT I(,/ \\\\ 1
L, —2¢—— '
,'* dist{x,) @isty, v}
dist(x, x,) .: ‘:r
Li g
. f.r \“ Cig Sf@x, .X/J ".r 1..‘ X
- * . *

Figure 4.3. Partial Distances Between Two Values in Different Levels of Hierarchy.

The representatives r(x) and r(y) coincide in being the lowest common ancestor Ica,
where the formula is simplified as: dist (x, y) = dist (x, lca) + dist (y, lca).

The representative r(y) is identical to the actual value of y. In this case the distance is
expressed as a summation of dist(x, x,) and dist(xy, y), as shown in Figure 4.3, where
xy 18 the representative of x from the level L,. Therefore, the distance dist(y, r(y)) = 0.

Formally this is expressed as: dist(x, y) =

dist (x, x) + dist (x,, y) = dist (x,anc 2 (x)) + dist (anc Zf (x),y)

In case the representative x, of x and y coincides, the distance is simplified as dist(x,
x)= dist(x, xy). Since dist(x, xy) and dist(xy, y) are within the interval [0, 1], the
normalized form of dist(x, y) occurs by dividing it by 2. For example, assume two

values x = ‘USA’ and y = ‘Europe’ from the dimension Location as seen in Figure 4.2.

129

The ancestor xy of x is anc e (x) =' America' . Assume dist(x, xy) is computed from

the percentage family functions. dist(xy, y) is computed through the first formula from
the path family functions where the weighted factors wy and wy are set to 1. The
distance between x and y becomes dist(‘USA’, ‘Europe’)= (dist(x, xy) + dist(xy, y))/2 =
(dist(‘USA’, ‘America’) + dist(‘America’, ‘Europe’))/2 = (1/2 + 2/3)/2 =7/12.

b) The representative of a group is a descendant. The representative of a group can be
selected with respect to the descendants of the group where x belongs. For example,
consider countries whose representatives can be selected among their cities, based for
instance on the major airport or the highest population. In case the representative r(x)

is a value from the domain of L (i.e., r(x) picked explicitly by applying a min or max

aggregation over the setdesc™™ (x)), the distance between x and r(x) can be an
ggreg L y
X

function from the families of path, percentage or aggregated functions. In case r(x) is

an arithmetic type value (i.e., a sum or count aggregation function over the

set a’esch (x)), the distance between x and r(x) can be any simple arithmetic function

such as the Minkowski. There is a special case where the representative r(x) is
identical to the actual value of x. Thus, the distance is expressed as a summation of
dist(y, yx) and dist(yx, x), where yy is the representative of y from the level Ly as shown

in Figure 4.3. Therefore, the distance dist(x, r(x))=0. Formally this is expressed as:

dist(y, y,) +dist(y,.x) _ dist(y. f (desc;’ (y)+dist(f (desc;” (7)).x)

dist(x,y)=
(x,y) 5 5

where the denominator is set to 2 for normalization reasons. For example, assume two

values from the hierarchy Location, x="USA’ and y=‘Europe’, where the descendant

of y is selected as f (descfy(y)) ='UK'. Assume the distance between y and its

I desci’: (ol

descendant y, is computed through the formula dist(y,,y) = from the

| desc,” ()]

percentage family functions. The distance between x and yx is computed through the
first formula from the path family functions with w, and wy set to 1. Then, the

distance between x and y becomes

130

dist(y, y,) +dist(y,,x) _
2
dist('Europe','"UK') + dist('UK','USA") _ 1/1+4/6 _ 5
2 2 6

dist('USA','Europe') =

In the special case where x is a descendant of y the above formula is simplified

as: dist(x,y) = dist(y, y,) .

4.1.2. Distance Functions between two Cells of Cubes

In this section, we describe the distance functions that can possibly be applied in order
to measure the distance between two cells from a cube. Assume an OLAP cube C
defined over the detailed schema C= [Llo, Lzo, e Lno, M 10, MQO, ...,Mmo], where LiO 18
a detailed level and Mjo 18 a detailed measure. In addition, assume two cells from this
cube, c; = (', By ooy by mi's ma, o my) and ¢ = (13, 17, ., LY, mit, o,
mmz), where lil, liz € dom(LiO) and mjl, ij denote the values of the corresponding
measure Mjo. The distance between two cells ¢; and ¢, can be expressed with regard to
(a) their level coordinates di(Lil, Li2) and (b) their measure values dj(Mjl, Mf). In other
words, dist(c;, c2)= f (ddLi', L), dj(M;', Mi*)). The function f can possibly be (a) a

weighted sum, (b) Minkowski, (c) min or (d) proportion of common coordinates.

Distance functions between two Cells of a Cube Expressed as a Weighted Sum.
In this category the distance between two cells ¢, ¢, where ¢, ¢, € C can be
n Z ., 12
Zwidi(lil’liz) ZWjdj(mj m;”)
=1

i=l += , where w; and

n m ,
Wi W b
i=1 J=1

expressed through the formula

w’ are parameters that assign a weight for the level L; and the measure M,

respectively, di(l;', 1) denotes the partial distance between two values from
dimension D; and dj(m;', m;”) denotes the partial distance between two instances of the
measure MjO. Regarding the distance di(lil, liz), this can be expressed through the
various distance functions (Section 4.1.1) between two values from the same
dimension. The distance dj(m;', m;®) between two instances of a measure can be

calculated through the Minkowski family distance when my;', m;® are of arithmetic

131

type, or through the simple identity function in case mjl, mjz are of character type. The
above formula is a general expression of the distance between two cells.
Simplifications of this can be applied. For instance, the distance of two cells can be
calculated only with respect to the coordinates that define each cell and without taking
into consideration the measure values of each cell, i.e., by omitting from the above
formula the second fraction. Moreover, in case the partial distances are normalized in
the interval [0, 1] then, the distance between two cells is normalized in the same
interval [0, 1]. For example, assume we want to compute the distance between cells
ci, ¢z as shown in Figure 4.4. Both cells consist of two dimensions (Time, Location),
with the hierarchy levels of Figure 4.1, and contain one measure (Sales). In the above
formula we set all the weight factors to 0.5 --both for dimensions (w) and measures
(w’). The distance between dimensions is computed according to the function dpan
that takes into account the length of the path of the hierarchy. The distance between
the measures is computed through the normalized Manhattan distance function. In
addition, assume that the overall maximum and minimum values of the measure sales
are 10 and 1 respectively. Then, d(c;,c3)-=

w*d(Month . ,Month .,)+w*d(Country ., Country .,)
+

w+w

W*d(Sales, Sales.,) _ 0.5%1/3+0.5%1/3 0.5%(14=31/110-11)

: =4/9
w 0.5+0.5 0.5

To compute the distances d(Month, ,Month,,) and d(Country, ,Country,,) we refer

the reader to Figure 4.5 and 4.6.

Month Cgunﬁ'y Sales
Gl Mayr2000 UsA 4
G Apri2000 canada 3

Figure 4.4. Instances of Cells ¢ and c;.

In Figure 4.5 we see that the length of the path between the nodes a and Ica is 1, and
the length of the path between the nodes b and Ica is 1 again. According to the

132

. I+1 1 . .
function dpan, d(Month, ,Month,,):?:E. In a similar manner, by using the
. . . . +1 1
information that derives from Figure 4.6 d(Country,, ,Country,,):—6 :5.

Dimension TIME
ATL —All level
lea 5000 —Year level
a b
Apr/2000 May/2000 —Month level
d/Apr/2000 d/May/2000 —Day level

Figure 4.5. Lattice of the Dimension TIME for the Values of Cells of Figure 4.4.

Dimension LOCATION
ALL —All level
lea gmerica — Continent level
« N\,
USA Canada - _Caung; level

New York Toronto — Citylevel

Figure 4.6. Lattice of the Dimension LOCATION for the Values of Cells of Figure
4.4.

Distance functions between two Cells of a Cube Expressed with regard to the
Minkowski Family Distances.
In this section, we describe the possible distance functions between two cells of a

cube by using the Minkowski family distances. In general, the Minkowski distance is

defined via the formula L, [(x;,.... X, J(Yy, ¥,)] = Pf;di(xi,yi)P, where di(xi, i)

denotes the distance between the two coordinates x; and y; of two given points x and y.

133

Assume two cells ¢; = (I, by o by mi'y mo's oo my') and 2 = (12, 17, .., L)Y, mi,
m22, ey mmz), where lil, liz € dom(L;) and mjl, mj2 denote the values of the
corresponding measure M;. The Minkowski distance can be applied in this category,
by substituting point coordinates x; and y; with cell coordinates, thus /' and 1% In
general, in the Minkowski family distances the partial distances are defined as d;(x;,
yvi)=lxi - yil. When applying the Minkowski distance over cell coordinates, then the
partial distances di(lil, liz) can be expressed as the distance between two values from

the same dimension (Section 4.1.1).

So far, the distance between two cells is described only with regard to their level
coordinates. However, the distance between two cells can also be expressed by taking
into consideration their measure values, too. The Minkowski family distances can be
applied, as well, with regard to the partial distances dj(mjl, mjz). Therefore, the
distance between two cells can be expressed by adding the equivalent two formulas.

Depending on the value of p (1, 2, .., o) the Minkowski distance is defined as:

L, =1\’/i(di(li‘,lf))? +z\a/§(d,»(m,»l,mﬁ)P
i=1 J=1

Distance Functions between two Cells of a Cube Expressed as the Minimum Partial

Distance.

. . 141 1 1 1 1
In this category, the distance between two cells ¢c; = ([, ', lr', ..., Ly, my , my , ..., mpy)
and ¢; = (112, 122, e lnz, mlz, mzz, e mmz) can be expressed as:

min{d, (I;',1;*)} +min{d ; (m;' ,m;*)} =
d, d;

mjn{dl(111,112),d2(121,122),...,51,,(1”1,1”2)}
. 1 2 1 2 1 2
+mm{d1(ml Jm ")d,(my ,my”),...d, (m, ,m,)}.

Therefore, the distance between two points is expressed as the minimum distance of

their level coordinates plus the minimum distance of their measure values.

134

Distance Functions between two Cells of a Cube Expressed as a Proportion of
Common Coordinates.

In this category the distance between two cells can be expressed as a proportion of
their common values of their level coordinates and their measure values. Therefore,
the distance between two cells ¢; = (lll, 121, e lnl, mll, mgl, e mml) and ¢, = (112, 122,

...,lnz, m 12, mzz, e mmz) can be expressed through the formula f:

count(l! =17Vie {1.2..n)) count(m;' =m;*Vj € (1.2.....m})

n m

The above formula defines the distance between two cells as a summation of two
fractions. The first fraction is the number of level values that are same for both cells,
divided by the number of all level values that describe a cell. The second fraction
expresses the number of measures that have the same value for both cells divided by

the number of all possible measures in a cell.

4.1.3. Distance Functions between two OLAP Cubes

Assume two OLAP cubes C and C defined over the same detailed schema [Llo, Lzo,
e Lno, M 10, Mzo, ...,Mmo], where Lio 18 a detailed level and Mjo is a detailed measure.
In addition, assume that cube C consists of / cells of the form ¢ = (14, b, ..., l,, mi, my,
..., my) and cube C’ consists of k cells of the form ¢’ = (ll’, lz’, ces ln’, ml’, mzy, .
mm’), where [, li’ € dom(LiO) and m;, mj’ denote the values of the corresponding
measure Mjo. In general, the two cubes can be of different cardinality, i.e., [# k.
Assume dist(c, ¢’) where ¢ € C and ¢’ € C’ denotes the distance between two specific
cells according to the various categories of Section 4.1.2. The distance between the
two cubes can be expressed as a synthesis of the partial distances dist(c, ¢’). In other
words, dist(C, C’)= f (dist(c, ¢’)) is a function of the partial distances dist(c, c¢’). The
function f can possibly belong to one of the following families: (a) closest relative, (b)
Hausdorff distance, (c) a weighted sum, (d) Minkowski distance, and (e) Jaccard’s
coefficient. For example, assume we want to compute the distance between the two
cubes CUBE, and CUBE, as shown in Figure 4.7. CUBE; consists of three cells
whereas CUBE, consists of 5 cells. Each cell in both cubes consists of two
dimensions in different levels of hierarchy and the measure Sales. Specifically, each

cell of CUBE, is of the form ¢ = (Day, City, Sales) and each cell of CUBE, is of the

135

form ¢’ = (Year, Country, Sales). The distance between the two cubes can be
expressed by applying a function f over the partial distances dist(c, ¢’) of the cells of

the two cubes.

4.2. Cell Mapping and Categories of Distance Functions according to it

The aforementioned function f can be computed either (i) over the full space of cell
combinations of cells from the two cubes (families (a), (b) and (e)), or, (i1) over a
specific subset of this space that is defined via a specific mapping of the cubes’ cells
(families (c) and (d)). In this section, we introduce the method that is used in order to
map the cells of one cube to the cells of another cube. We refer to this method as Cell
Mapping. For two cubes C; and C,, the simple mapping of their cells includes the
connection of every cell of the cube C; with one cell of the cube C,. Intuitively, the
mapping of a cell in cube C; tries to capture the discovery of the “closest possible
representative” of this cell in cube C,. The “closest representative” is the cell of the
cube C, with the less distance among the dimension values with the cell of the cube
Ci. In principle, the Cell Mapping method can be thought of as a relation that
connects the cells of a cube to the cells of another cube (i.e., one can consider several
candidate “representatives” of a cell). However, in our setting, this relation is reduced
to a function, since we are interested in mapping each cell from the first cube to only
one cell from the second cube. This is done for reasons of simplicity and allows the
elegant definition of cube distances (see next). We impose the restriction that the
function is total, i.e., each and every cell from the first cube is mapped to a cell of the
second cube. We do not require that the mapping is 1:1 and onto; thus, in the second
cube there might be a cell in which more than one cells from the first cube, or, no

cells at all, are mapped to it.

As an example assume the cubes that are presented in the Figure 4.7. The cells ¢y, ¢,
c3 of CUBE, are mapped to the cells c¢7, cs, cs of CUBE, respectively. Moreover, in
the same figure the cells c4, c6, cs of CUBE, are not mapped with any cell of CUBE;.
We can also observe that the cell ¢s of CUBE, is mapped with two cells of CUBE).

136

The cell mapping method needs to compute the distances between the dimensions of
each cell of the first cube with the dimensions of every cell of the second cube and
ignores the distance between the measures. So, if the distance between two cells ¢y, ¢
is expressed as f (di(Lil, Liz), di(Mjl, Mf)), then the mapping method considers only
the di(Lil, Liz). Thus, each cell of the first cube is mapped to the cell of the second

cube with the lowest di(Lil, Liz) distance.

Day City Sales Year Country Sales
)| 3/5/2000 London 5 e 2000 U4 3
eq| 37572001 | New York] | 2000 Us4]
ca| 4572001 | New Tork 7)< G| 2001 Canadea &
ol 200! UK S
CUBE, of 2000 e 2
Cell Mapping CUBE,

Figure 4.7. Instances of Two Cubes and the Mapping of their Cells.

In our taxonomy, two distance functions between cubes use the cell mapping method.
These are (a) distance functions expressed with regard to the Closest Relative and (b)
the distance function expressed by Hausdorff distance. After the mapping has been
accomplished, the distances between the mapped cells are computed. Finally, the
computation of the distance between the two cubes is performed on the basis of the

distances among the mapped cells.

The distance functions that can be used in order to compute the distance between two
OLAP cubes can be divided into two categories. The first category involves distance
functions that include the cell mapping method. The second category contains
distance functions that do not include the cell mapping method. Following, we
describe each distance function and formally define it. The distance functions of the
first category are the Closest Relative and the Hausdorff Distance (Section 4.1.3) that
include the cell mapping method. Then, the category of families that do not consider
the cell mapping method in their definition, include the Weighted Sum function, the
Minkowski family of distance functions, the Jaccard’s Coefficient and the minimum of

distances function.

137

4.2.1. Distance Functions that Include Mappings
This subsection contains the description of the distance functions that involve the Cell
Mapping method. These distance functions are the Closest Relative and the Hausdorff

and are described as follows.

Distance Function between Two Cubes Expressed with regard to the Closest Relative.
In this category the distance between two cubes C and C’ is expressed as the
summation of distances between every cell of a cube with the most similar cell of
another cube through the formula:

k

> (dist(c;,c"))

i=l vl disty, (c;,¢") = min{dist, (c;,c')}

where distgi, denotes the distance of two cells excluding the distance of their

measures. In the above formula, Vc'ldist, (c;,¢') =min{dist, (c;,c')} reveals the

cell mapping. Each one of the k cells from cube C is mapped to the cell of the cube

C' that has the minimum dist4;,, from it.

As an example, we will detail the computation of the distance between the cubes
CUBE,| and CUBE, shown in Figure 4.7. The first step is to map the cells of the cube
CUBE, to the appropriate cells of the cube CUBE). In order to simplify the example,
the computational part of the cell mapping method is not described here, but the cell
mapping is denoted in Figure 4.7 through arrows between the cells of the two cubes.
The distance function used in this example for the purpose of computing the distance
between the cells of the two cubes is the weighted sum. The weight that was used is
0.5, equal for both the dimensions and measures. In addition, the distance function
used to measure the distance between the dimensions is the d,.;, function. The cells ¢,
2, 3, are mapped to the cells ¢7, ¢s5, and ¢s respectively. According to this mapping, in

order to compute the distance between the two cubes, the needed distances between

cells are:

* ES k — —
d(cl,C7):O'5 1/6+0.5 1/6+O.5 (15-51/110 ll):1/6
0.5+0.5 0.5
k * ES — —

d(ca, c5)= 05*1/6+0.5*1/6 0.5*%(16-61/110 1I): 16

+
0.5+0.5 0.5

138

O.5*1/6+O.5*1/6+O.5*(I6—7I/I10—1I)
0.5+0.5 0.5

d(C3, C5): =5/18

For the above computations we refer the reader to Figures 4.5 and 4.6 where the
hierarchies of the dimensions TIME and LOCATION are presented. With the above
distances, we can now compute the full distance between the cubes CUBE; and

CUBE, through the first formula of the closest relative family functions:

d(Cl,C7)+ d(Cz,C5)+ d(C3,C5) _1_1

d(CUBE,,CUBE,)= S ”

Distance functions between two cubes expressed by Hausdorff distance. In this
category, the distance between two cubes can be expressed by using the Hausdorff

distance [HuKR93]. The Hausdorff distance between two cubes can be defined as

H(C,C’) = max(h(C,C”), h(C’,C)) where h(C,C’) = m%x{ml'crg{dist(c,c’)}} and dist (c,

c’) is the distance between two cells ¢ and ¢’ from the cubes C and C’ respectively.
Function A(C, C’) is called the directed Hausdorff distance from C to C’ and the
distance measured is the maximum distance of a cube C to the “nearest” cell of the

other cube C’. The Hausdorff distance is the maximum of 4(C, C’) and h(C’, C).

Day City Sales Year Country Sales
o 3/5/2000 | London 5 e] 2000 e 3
¢y| 3572001 | New York 4] | 2000 LA 4]
3| 4/5/2001 | New York 7 G| 200! Canada 8
el 2001 UK 5
CUBE, o 2000 UsA 9
Cell Mapping CUBE,

Figure 4.8. Instances of Cubes CUBE| and CUBE, and the Mapping of the Cells of
the Cube CUBE; to the Cells of the Cube CUBE;.

In the Hausdorff distance function, the cell mapping method is bidirectional. That
means that except from the mapping that we have examined in the closest relative
function, we also need the extra mapping from the cells of cube C’ to the cells of cube

C.

139

When the bidirectional mapping is completed, we obtain two sets of mapped cells. In
each set, for every pair of mapped cells, we compute their distance considering their
measures as well. Thus, we have two sets of minimum distances between cells, the set
of minimum distances from the cells of cube C to the cells of cube C’ and the set of
minimum distances between from the cells of cube C’ to the cells of cube C. From
each of the two sets we pick the greatest distance and finally from these two distances

we pick the greater one.

To make things more clear, an example follows. Assume again cubes CUBE; and
CUBE, as shown in Figure 4.8. In Figure 4.8, we can observe the mapping from the
cells of CUBE, to the cells of CUBE;. According to this bidirectional mapping the

two resulting sets of minimum distances are:
Si{d(c,c7),d(cy,c5)d(c3,¢5)}

Saf d(cy,c5),d(cs,c5),d(cq,c,),d(cq,cp),d(cg,c5)}.

The distances of the set S; are already computed on a previous example, so here we
only need to compute the distances of set S,. The distances d(cs,c3), d(c7,c1) coincide
with the distances d(cs,cs), d(ci,c7) respectively. The computations below use the
same distance functions between values and cells and also the same weight factors, as
in the previous example.

O.5*1/6+O.5*1/6+O.5*(|3—7I/I10—1I)_E

d(cs. c3)= _
(c4, ¢3) 0.5+0.5 0.5 18
0.5%1/6+0.5%3/6 0.5%(18—61/110-11) 10

d(cs, c2)= + =—
05+0.5 0.5 18
0.5%1/6+0.5%1/6 0.5%(19=71/110-11) 7

d(cs, c3)= + =—
0.5+0.5 0.5 18

Now, the Hausdorff distance between the cubes CUBE, and CUBE, is equal to the
next formula:

d(CUBE,,CUBEy)=max{max{S1},max{S,} }=

max{max{1/6,1/6,5/18}, max{11/18,5/18, 1/6,10/18,7/18} }=
max{5/18,11/18}=11/18.

140

4.2.2. Distance Functions that do not Include Mappings

This subsection includes the distance functions that do not include mappings. These
functions are the Weighted Sum function, the Minkowski family of distance functions,
the Jaccard’s Coefficient and the minimum of distances function. The Weighted Sum

1k
> 2 wdist(c;,c’)

i=l j=1

function is expressed through the formula: , where dist(ci,c;-)is the

distance between a cell from cube C to a cell from cube C” and wj; denotes the weight

factors assigned to each distance.

The distance functions of the Minkowski family --depending on the values of the

1 k
parameter p (1, 2, ...,)-- can be expressed as: L, :R/ZZdist(ci,c})p, where
i=l j=1

dist(c; ,c;) is the distance between a cell from cube C to a cell from cube C’.

The distance between two cubes can be expressed with regard to the Jaccard’s
coefficient [ZADBO06]. The Jaccard’s coefficient is defined as:

dist(C,C’)=1—Mand it expresses the ratio between the cardinalities of

cucl

intersection and union of the cubes C and C’.

The Minimum of distances function expresses the distance between two cubes as the
minimum distance among all possible distances between the cells of the compared
cubes. Therefore, the distance between C and C’ is expressed as: dist(C, C’) = min{
dist(c, ¢’) | ce C, c’e C’}, where dist(c, ¢’) is the distance between a cell from cube C
to a cell from cube C’. In case the two cubes are disjoint i.e., CNC’=0 , then dist(C,

C’) is a positive number, whereas if the two cubes have common cells i.e., CNC’#0 ,

then dist(C, C’) is zero.

As a simple example, assume the two cubes from Figure 4.7. and ignore the arrows
that denote the cell mapping. According to the minimum of distances function, the
distance between the two cubes is computed through the following formula where j

denotes any cell from CUBE;: d(CUBE,,CUBE;)=

141

min{ d(cy,c;),d(c,,c;),d(cy,c;)}, V)€ {4,5,....8} =1/6.
J

4.3. Experiments

4.3.1. User Study for Distances between two Values of Dimensions

In this section, we describe a user study we conducted for discovering which distance
functions between two values of a dimension seem to be more suitable for user needs.
The experiment involved 15 users out of which 10 are graduate students in Computer
Science and 5 that are of other backgrounds. In the rest of the section we refer to the
set of users with computer science background as Users_cs, the set of users with other
background as Users_non and the set of all users independently of their background

as Users_all.

In the experiments we used the “Adult” real data set according to the dimension
hierarchies as described in [FuWYO05]. This dataset contains the fact table Adult and 8

dimension tables which are described in Table 4.1.

The purpose of the experiment is to assess which distance function between two
values is best with regard to the user preferences. Each user was given 14 case
scenarios. Each scenario contained a reference cube and a set of cubes, which we call
variant cubes, that occurred by slightly altering the reference cube. The 14 scenarios
included different kinds of cubes with regard to the value types and the different
levels of granularity. For each reference cube which was randomly selected, the
variant cubes were generated from the fact table by altering the granularity level for
one dimension, or by altering the value range of the reference cube. For instance,
assume a reference cube containing the dimension levels Age_level,, Education_level,
under the age interval [17, 21]. According to the first type of modification, a variant
cube could be generated by changing the dimension level to Age_level, or Age_levely,
or changing the level of the Education Dimension. According to the second type of
modification, another variant cube could be generated by changing the age interval to

[22, 26] or to [17, 26]. Among all possible variations of the reference cube we

142

manually chose the set of variant cubes such that each of them was most similar to the
reference cube according to a distance function. In order to observe which distance
function is preferred by users depending on the type of data of the cubes, we have
organized the 14 scenarios into 3 sets. The first set consists of cubes containing only
arithmetic type values (5 scenarios). The second set consists of cubes containing only
categorical type values (2 scenarios). The third set consists of cubes containing a
combination of both categorical and arithmetic type values (7 scenarios). All the

scenarios used for this user study can be found in [Baik11].

Table 4.1. Adult Dataset Tables.

Value Type | Tuples | Dim. Levels

Adult fact Table 30418 | -
Age Dim. Numeric 72 5
Education Dim. Categorical | 16 5
Gender Dim. Categorical | 2 2
Marital Status Dim. Categorical |7 4
Native Country Dim. | Categorical | 41 4
Occupation Dim. Categorical | 14 3
Race Dim. Categorical | 5 3
Work Class Dim. Categorical |7 4

In each scenario, the users were asked to select the variant cube that seemed more
similar to the reference cube based on their personal criteria. The distance functions
that have been used in the experiment are shown in Table 4.2, where the first column
shows the family in which each distance function belongs to according to Section
4.1.1. In the second column there is an abbreviated name for each function. To
compute the distance between two cubes, the Closest Relative distance function is
used (Section 4.1.3). The distance between two cells of cubes is the weighted sum of
the partial distances of the two values, one from each cell, with all weights set to 1

(Section 4.1.2).

143

Table 4.2. Notation of Distance Functions Used in the Experiment.

Family Abbr. | Distance function name

Local oM Manhattan

Aggregation | Opowc With respect to a lower level of hierarchy where f,q,, =count

Orowm | With respect to a lower level of hierarchy where fyoqr = max

Hierarchical OLCAP Lowest common ancestor through dpam

Path orcap | Lowest common ancestor through depn
Percentage 09, Applying percentage function
Highway O Anc With respect to an ancestor xy

ODesc With respect to a descendant yx

Ooupesc | Highway, selecting the representative from a descendant

OH.Anc Highway, selecting the representative from an ancestor

The analysis of the collected data provides several findings. The first finding concerns
the top three most preferred distance functions measured over the detailed data for all
scenarios and all users. It is remarkable that the top three distance functions for each
of the user groups were the same and with the same ordering and specifically, these
are the dpcap, the dane and the dypesc. The frequencies for each one of the top three

distance functions in each group of users is shown in Table 4.3.

Table 4.3. Top Three Most Frequent Distance Functions for Each User Group.

Users_all | Users_cs | Users_non
oLcap | 40.47% | 38.57% | 44.28%

O Anc 18.09% | 20.00% | 14.28%
OHDesc | 9-52% 10.71% | 7.14%

The second finding concerns the most preferred function by users depending on the
type of data the cubes contained. Table 4.4 summarizes the result of the most frequent
distance function for each set of scenarios and each set of users. We observe that for
the categorical type of cubes, all user groups prefer the Jicap distance function,

whereas for the arithmetic and the arithmetic & categorical sets, the functions that

144

users mainly prefer are the drcap and dan.. More than one distance functions appear as

winners in Table 4.4 due to ties in the frequency of occurrences for each function.

The third finding concerns the winner distance function per scenario. For every
scenario, we take into account the 15 occurrences by all users and see which distance
function is the most frequent. We call this function the winner function of the
scenario. The most frequent winner function was J;cap with a 35.71% percentage for
both the Users_all and the Users_cs group (5 of the 14 scenarios), and 57.14% for the
Users_non group (8 of the 14 scenarios). The most frequent function for 14 of the 15
users was the dpcap function. For one user from the Users_cs group the most frequent

function was the Jycap.

Table 4.4 The Most Frequent Distance Function for Each Set of Scenarios.

Users_all | Users_cs Users_non
Arithmetic O Anc OLCAP> OH.Descs Oanc | OLCAP
Categorical OLcAP OLCAP OLCAP
Arithmetic & Categorical OAnc OAnc OLCA.P> OAnc

The fourth finding concerns the diversity and spread of user choices. There are two
major findings: (a) All functions were picked by some user, and, (b) there are certain
functions that appeared as user choices for all users of a user group. Specifically,
functions Jrcap, Oupese and Jan. were selected at least once by users of group
Users_cs. Similarly, functions 0y cap, dLowm and dan. were selected at least once by
Users_non.

The fifth finding concerns the most preferred family of functions. Table 4.5 depicts
the absolute number of appearances of each distance function family per user group.
The most preferred family of distance functions is the Hierarchy Path family, which
also contains the top one most preferred distance function Jpcap. Moreover, we
observe that the ranking of the distance function families was exactly the same for

each user group.

145

Table 4.5. Frequencies of Preferred Distances within Each User Group for Each
Distance Family.

Local | Aggregation | Hierarchy Path | Percentage | High-way
Users_cs 1 9 69 9 52
Users_non 2 5 34 5 24
Users_all 3 14 103 14 76

The selection stability of users (i.e., discrepancies in users’ answers at the same
questions) was the sixth issue. The selection stability was determined by setting the
13" and the 14™ scenario to be replicas of the 3" and 10™ scenario respectively. 4 out
of 5 users from the set of Users_non, 6 out of 10 users from the set of Users cs
(consequently, 10 users from Users_all set) selected the same function for both of the
two similar scenarios. The rest of the users selected the same function for only one out

of the two repeated scenarios.

Summary. Overall, the findings indicate that the most preferred distance function is
the Jrcap, Which is expressed with respect to the shortest path of a hierarchy
dimension. A null hypothesis stating that the fact that 40.47% of the times oy cap Was
chosen as a winner is due to a random phenomenon, has a p-value of 6.6x10”. Apart
from the dycap, the distance functions dan. and dypese Were also popular with the
users. In addition, the most preferred distance function family is the Hierarchy Path

family.

4.3.2. User Study for Distances between two Cubes

In the previous user study, the overall observation was that the users prefer the d;cap
distance function between two values of the same dimension. Based on this result, and
also by setting the weighted sum function as the distance function between cells, we
set up the second user study in order to examine which distance function between two
cubes is preferred by the users. Specifically, we try to find out which distance
function among the two functions that include the cell mapping method (Section

4.1.3) is most closely related to the human perception. These two distance functions

146

are namely the closest relative and the Hausdorff distance function. Table 4.6 shows

the distance functions that were used in this user study.

The user study contained 14 new scenarios. Each scenario included 4 cubes named A,
B, C and D. The cube A in every scenario was the reference cube. The users were
asked to order the rest of the three cubes from the most similar to the less similar
when compared to the cube A. The cubes B, C and D were chosen such that one of
them was the closest to the cube A according to the closest relative function and
another was the closest to cube A according to the Hausdorff distance function. The
remaining cube was chosen to be the most distant from cube A for both distance
functions. All the scenarios used for this user study can be found in [Rogkl10] and

[Baik11].

All scenarios were uploaded as jpeg pictures in an html page where users were asked
to complete an answer sheet and send it back to us via email. The URL of this page
was sent to the email-list of the graduate students of the Computer Science

Department of the University of loannina.

Table 4.6. The Distance Functions Used in the Second User Study.
Hausdorff

between two cubes

Closest relative

between two cells of cubes weighted sum

between two values of a dimension | dicap

between two measures Manhattan

In order to test a user’s answer reliability, in the 6" scenario, the cube B was identical
with the cube A. Moreover, in order to measure the users’ stability, the 13" and 14"
scenarios were replicas of the 5" and 9™ scenarios respectively with a reordering on

the columns of the cubes.

147

Table 4.7. Frequency of Chosen as First Distance Function Among All the Answers.

Frequency | Percentage
Hausdorff 154 38%
Closest relative 232 57%
Most distant cube 21 5%

The 12 first scenarios can be divided into three groups according to the weights in the
distance function between cells. The first 4 scenarios consist of cubes that do not
include measures. We refer to this group as the no_measures group. The next 4
scenarios consist of cubes that include measures where the weight factors on measures
and dimensions in the function between cells are not equal. Specifically, assuming
that cubes consist of k dimensions and / measures, the weight factors were set to
k/(l+k) for the dimensions and I//(l+k) for the measures. We refer to this group as the
not_equal group. Finally, the last four scenarios consist of cubes that include
measures and the weight factors on the measures and on the dimensions in the
between cells distance function are equal and set to 0.5. We refer to this group as the

equal group.

Table 4.8 User Stability.

User_OK User_Half OK User_Stable
scenario | Freq. | Perc. | Freq. | Perc. Freq. | Perc.
13" 28 75% 5 13% 24 65%
14" 19 | 51% 8 21% 24 | 65%

The number of users that responded with an answer sheet was 39. Two of the 39 users
did not choose the cube B in the sixth scenario as the most similar to the cube A. For
that reason their answers were not taken into consideration. We refer to the remaining

37 users as valid_users.

The first finding of this user study concerns the most frequent distance function that
was chosen from the users as their first choice. Among all the 11 (scenarios) * 37

(users) = 407 answers (the sixth scenario is excluded), 232 times (=57%) the users

148

gave as their first choice the cube that represents the closest relative distance function.
The cube that represents the Hausdorff distance function was chosen 154 times
(=38%) as the first choice of the users. Only 21 times (=5%) the users chose the
most distant cube as their first choice. The summarization of the above results is

shown in the Table 4.7.

Table 4.9 The Winning Functions and the Winner Functions.

Scenario Scenario | Winner function Group Winner
Group per scenario
no_measures | Scen.l Closest relative | 29/37

Scen.2 Closest relative | 30/37
Scen.3 Closest relative | 31/37

Closest relative

Scen.4 Hausdorff 25/37
not_equal Scen.5 Hausdorff 28/37
Scen.7 Closest relative | 26/37 Hausdorff
Scen.8 Hausdorff 27/37
equal Scen.9 Hausdorff 19/37
Scen.10 | Hausdorff 21/37

Scen.11 Closest relative | 32/37
Scen.12 Closest relative | 22/37

The second finding of the user study concerns the stability of the user choices. As we
mentioned before, the 13™ and 14™ scenario were replicas of the 5 and 9" scenario
respectively. In each of these two scenarios a user that orders the cubes in the same
way as in the original scenario is denoted as user_OK. A user that gave the same
answer for the most similar cube but the order of the other cubes was not the same is
denoted as user_Half_OK. Finally, a user that was denoted as user_OK for both
replicas scenarios or denoted as user_OK for the one replica scenario and
user_Half_OK for the other replica scenario is denoted as user_ Stable. According to
the answers of the valid 37 users of this user study, in the 13™ scenario there were 28
user_OK users and 5 user_Half OK users. In the 14" scenario there were 19 user_OK

users and 8 user_Half OK users. The 24 of the 37 (=65%) users were user_Stable

149

users. We believe that a 65% 1s a safe number that can ensure the stability and
reliability of their answers. The Table 4.8 summarizes the above results and

percentages.

The third observation concerns the scenario winner function. The term scenario
winner function refers to the function that was mostly selected as the first choice from
the users in a specific scenario. Our findings cannot ensure that one of the two
functions is more preferred than the other: The closest relative function was the
scenario winner function for 6 scenarios and the Hausdorff function was the scenario
winner function for the rest 5 scenarios (Table 4.9). Observe that the findings of Table
4.7 give a 19% difference between the two prevailing functions --a finding that is not
demonstrated in Table 4.9. This is explained by the fact that when the closest relative
function is a winner, it wins with an overwhelming majority; on the contrary, when
the Hausdorff function is a winner, the numbers are lower. The 4™ column in Table
4.9 shows how many times the winner function was chosen as a first choice among

the 37 valid users.

The fourth observation concerns the (scenario) group winner function (Table 4.9). For
a group of scenarios, its group winner is the function that appeared as scenario winner
in the majority of the scenarios of the group. For the no_measures group the group
winner function was the closest relative function, as it was the winner function for the
3 out of the 4 scenarios. For the not_equal group the group winner function was the
Hausdorff, as it was the winner function for the 2 out of the 3 scenarios. Finally, for
the group equal, we have a draw: in two scenarios the winner function was the closest
relative function and in two scenarios the winner function was the Hausdorff function.
The above results reveal a user preference in the closest relative function for scenarios
that do not include measures. On the other hand for the other types of scenarios the

results are not clear.

4.3.3. Reliability and Validity Considerations
Test Reliability. A possible threat to the test’s reliability is the inability of users to

understand what was asked from them to perform, or did not handle the test with

150

seriousness and mental concentration. In the 1% user study, the users took the
experiment in our presence so we can ensure there were no ambiguous situations or
possible misunderstandings. In the 2" user study, users completed the questionnaire
via the web. However, there was a clear description of the setting of the experiment
along with an example, so we believe there were not any misunderstandings of what
the users should answer. Moreover, we excluded users that failed giving the
straightforward answer (in scenario 6 of the 2nd experiment). Finally, in both user

studies, we tested the stability of users via replica scenarios.

Test Validity. Possible threats to tests’ external validity are the size and the mix of
the corpus of users. Naturally, the size of users can always be increased; however we
deem that the corpuses we have used are not negligible. Concerning the mix of users,
in the 1* experiment we choose to include a group of users with a diversity of
backgrounds as well as a clearly distinct group of users with background of computer
science (and thus, higher affinity to the notion of comparing two data cubes). An
interesting observation is the fact that there are differences of opinions between the
Users_cs and Users_non (Table 4.3 and Table 4.5), however these are small and do
not change the overall ranking of the preferred functions. Thus, we were able to
proceed to a web-based questionnaire in the 2" study. In addition, the possible
scenarios were selected in a way that includes a variety of data types (arithmetic,

categorical) and various levels of granularity over the data.

4.4. Chapter Summary and Findings

This Chapter presented a variety of distance functions that can be used in order to
compute the similarity between two OLAP cubes. The functions were described with
respect to the properties of the dimension hierarchies and based on these they were
grouped into functions that can be applied (a) between two values from a dimension
of a multidimensional space, (b) between two points of a multidimensional space and

(c) between two sets of points of a multidimensional space.

In order to assess which distance functions are more close to human perception, we

conducted two user study analysis. The first user study analysis was conducted in

151

order to discover, which distance function between two values of a dimension is best
with regard to the user needs. Our findings indicate that the distance function dyca p,
which is expressed as the length of the path between two values and their common
ancestor in the dimension’s hierarchy was the most preferred by users in our
experiments. Two more functions were widely chosen by users. These were the
highway functions dan. that is expressed with regard to the ancestor xy and J pesc that

is expressed by selecting the representative from a descendant.

The second user study we conducted, took into account the results of the first user
study analysis. Specifically, the second user study analysis aimed in discovering
which distance function (the closest relative or the Hausdorff distance function) from
the category of distance function between two data cubes, users prefer. Overall, the
former function was preferred by the users than the latter; however the individual

scores of the tests indicate that this advantage is rather narrow.

152

153

CHAPTER 5. CONCLUSIONS

5.1 Summary of Contributions

5.2 Open Problems and Insights for Future Work

The goal of this thesis was to explore and investigate the answering of top-k queries
through the exploitation of materialized top-k views. Apart from answering top-k
queries through materialized views, we have also studied the problem of maintaining
top-k materialized views in the presence of updates in the relation such that the views
can be up to date and useful for the answering of top-k queries. Moreover, we
explored the problem of expressing the similarity between two data collections. In
order to express similarity between objects we have worked on discovering the
distance functions that users prefer for computing the similarity of two data
collections. To this end, we resorted to the simplest framework that can be given to

users to work with and that has been OLAP Cubes.

5.1. Summary of Contributions

In this section we summarize the main research challenges and findings of this thesis.

Answering top-k Queries via Materialized Views

We have provided theoretical and algorithmic results for the answering of top-k
queries through the usage of materialized top-k views. By adopting a geometric
representation of the top-k query problem we have conducted a theoretical analysis for
providing theoretical guarantees for the suitability of a materialized view in order to
answer a top-k query. Specifically, we illustrated this through the notion of safe area

of a query in regards to a view and provided the suitability theorem. Moreover, we

154

have proved that the theorem is strict in the sense that it cannot be inversed. Thus, we
have proved that even if the safe area is not eligible for answering a top—k query, still
the view may be suitable for answering a query and we have described this through
the notion of the critical area. In addition, according to the theoretical establishments
we have provided two algorithms for the answering of top-k queries through the usage
of materialized views without accessing the tuples of the relation. We have provided
the 2D SafArl Algorithm for the 2D case, and the SafArl Algoroithm for the n-D
case. Furthermore, we have theoretically proved that the safe areas of a query in
regards to more than one views do not offer further usefulness for answering the
query compared to the safe area of a single view. We have also discussed the issue of
providing partial results for a query via a materialized view by splitting the range of
scores into appropriate sub-ranges and provided the Compute Query Extent
Algorithm. We have proved the efficiency and effectiveness of our method through an
extensive set of experiments. The experiments that concerned the 2D SafArl
Algorithm, revealed that the effectiveness of the method has been rather stable and
around 30-35%. The efficiency of our method showed a consistent increase for
reasonable sizes of k that rose up to 24%. The second set of experiments concerned
the N-D case. The effectiveness as well as the efficiency of our method revealed that
for random and anticorrelated datasets there was an influence on the results in regards
to the dimensionality. However, for the correlated datasets the effectiveness was
unaffected by dimensionality almost 100%. The real dataset experiments revealed and
effectiveness above 35% in all scenarios and increased significantly when the number

of materialized views increased.

Maintaining Materialized top-k Views

Considering the problem of maintaining top-k materialized views, we have provided
results in two directions. As for the first direction we have provided a principled
method that complements the inefficiency of the state of the art independently of the
statistical properties of the data and the characteristics of the update streams for the
maintenance of materialized views. Specifically, the method we have provided
consists of three steps: (a) computes the rate that actually affects the materialized
view, (b) computes the necessary extension to k in order to handle the augmented

number of deletions that occur, and (c) fine tunes by adjusting this value to take the

155

fluctuation of the statistical properties of this value into consideration. The second
direction concerned the case of multiple top-k views and their efficient maintenance in
the presence of updates to their base relation. We have provided theoretical
guarantees for the establishment of the effect of updates to a certain view, whenever
we know that another view has been updated. We have also provided algorithmic
results towards the maintenance of a large number of views, via their appropriate
structuring in a hierarchy of views. Our experiments have shown that our method
accurately sustains intervals with high deletion activity in the workload and
specifically in at least 95% of the cases there were top-k materialized views that
contained at least k items. The experiments indicate that our method outperforms the
state-of-the-art [YYY+03] in terms of efficiency as the computation of the exact
number of auxiliary view tuples has shown to be faster than the computation of refill
queries as proposed in the related literature. At the same time, the number of auxiliary
view tuples has been less than the number proposed in [YY Y+03]. Moreover, the fine

tuning method we proposed, gave zero losses.

Similarity Measures for Multidimensional Data

The contribution towards the problem of discovering the distance functions for
computing the similarity of two data collections, according to what real users actually
think was again into two directions. We firstly presented a variety of distance
functions that can be used in order to compute the similarity between two OLAP
cubes and were described with respect to the properties of the dimension hierarchies.
Thus, they were grouped into functions that can be applied (a) between two values
from a dimension of a multidimensional space, (b) between two points of a
multidimensional space and (c) between two sets of points of a multidimensional
space. Following, we assessed which distance functions are more close to human
perception, where we have conducted two user study analysis. The first user study
analysis was conducted in order to discover, which distance function between two
values of a dimension is best with regard to the user needs. Our findings indicated that
the distance function J;ca p, Which is expressed as the length of the path between two
values and their common ancestor in the dimension’s hierarchy was the most
preferred by users in our experiments. Two more functions were widely chosen by

users. These were the highway functions da,. that is expressed with regard to the

156

ancestor xy and OJppesc that is expressed by selecting the representative from a
descendant. The second user study we conducted, took into account the results of the
first user study analysis. Specifically, the second user study analysis aimed in
discovering which distance function (the closest relative or the Hausdorff distance
function) from the category of distance function between two data cubes, users prefer.
Overall, the former function was preferred by the users than the latter; however the

individual scores of the tests indicate that this advantage is rather narrow.

5.2. Open Problems and Insights for Future Work
In this section we provide directions for future research on issues that are still open

and can be based on the results of this thesis.

5.2.1. View selection and caching

The problem of answering top-k queries through the usage of materialized ranking
views raises the problem of selecting the appropriate views in order to process
efficiently and effectively the posed queries. The view selection problem has been
addressed by both PREFER and LPTA algorithms. However, these works either
assume that the materialized views contain all tuples of the underlying relation ranked
according to the view’s scoring function, or, they select the most suitable ranked view
based on an estimation of the score of the last tuple of the top-k query. Thus, in the
second case there is no theoretically established guarantee that the selected views will
be able to answer the query. In any case, the estimation of the last tuple in the query
might lead to selecting a view that is not the most appropriate either in the sense that
it cannot provide an answer to the query or in the sense that is not the most efficient
one. Given, the theoretical established guarantees we have proved, it would be
interesting to study the problem of selecting the appropriate materialized view in
order to answer the top-k query in terms of efficiency. Thus, by adopting a cost
formula for each materialized view that safely guarantees the answer to the top-k
query, it could be possible to select the most appropriate view for answering the

query. The cost formula can express the cost of the usage of a given materialized view

157

in order to provide the answer to the top-k query through the number of tuples that

should be fetched, or, as the area of the materialized view in terms of surface units.

5.2.2. View caching

Similar to the view selection problem, another open issue involves the view caching
problem. In particular, in the context of distributed settings, where each underlying
server contains some local data, it is interesting to decide appropriately which
materialized views would be cached and which servers contain which cached results.
In general, the view caching problem is closely related to the view selection problem
since the overall idea is to identify the most promising set of views for the upcoming
queries. In other words, the caching problem is addressed as selecting the most useful
views in terms of the ability to provide an answer for a top-k query as well as
efficiency in the presence of resource constraints. On one hand, a view should be
contained in the set of cached results if it is likely enough to provide an answer for
most of the top-k queries. This could be achieved by caching a set of materialized
views that capture most of the space of the relation, so that there would always be a
materialized view that could provide the answer to any possible top-k query.
However, another idea would be to cache those materialized views that are most
likely to be used for the majority of the top-k queries leaving out the outlier top-k
queries. In order to decide the most appropriate set of materialized views, the above
two ideas should be taken into consideration and balanced in a way that the best
combination would provide the less cost for the answering of the new top-k queries.
Similarly to the view selection problem, a cost formula that expresses the cost of
providing the answer of a top-k query from a specific materialized view should be
constructed. In addition, since the views are materialized, the cost formula should also
contain in its expression the cost of maintaining a view in the presence of updates.
This cost formula would help in eliminating from the cached views those that provide

the answer to top-k queries with high costs when compared to all the rest views.

158

5.2.3. Combining indexing techniques with materialized views for query processing of
top-k queries in multi dimensional space

The usage of materialized views as well as indexing techniques has been used in
query processing mainly in terms of performance. Materialized views are used in
order to provide an answer to a query that is pre-computed. Indices could prove
helpful when they index the views and thus the later are selected and obtained faster.
An initial attempt of indexing materialized views for the answering of top-k queries
has been proposed by Tsaparas et. al. in Ranked Joined Indices. However, RJI solve
the problem only for the 2 dimensional case. It would be interesting to see how an
index for materialized views could be constructed and proved helpful for the
answering of top-k queries in multidimensional space. Two main characteristics of the
materialized ranked views play significant role in the answering of a top-k query. The
first is the depth of the view, i.e., the number of tuples that are materialized in the
view. The second is the closeness of the view to the top-k query. Specifically, the
second factor is the closeness of the line that characterizes a view to the line that
characterizes the query. An interesting idea would be to efficiently structure the
collection of materialized views in main memory where indices could be used for this
purpose. The depth of the view could be expressed either as the number of tuples
contained in the view, or the actual score of the last tuple materialized in the view. As
for the second characteristic, it is more complicated due to the fact that the scoring
function of the query is not obligatory know a-priori. Therefore, it would be
interesting to find a way to describe the position of the line that characterizes the view
in the space regardless of the query line. For a line in N dimensional space, N-1
angles are needed in order to position the slope of the line in space. N-1 angles
however are not so efficiently indexed, in general. This could possibly be solved by

adopting spherical coordinates.

159

REFERENCES

[BNSTOS5]

[Baik11]

[BaRV11]

[BaVa07]

[BaVa09]

[BaVal0]

[BoKSO1]

[CaWa04]

W. Balke, W. Nejdl, and W. Siberski, U. Thaden, “Progressive
Distributed Top k Retrieval in Peer-to-Peer Networks”, Proceedings
of the International Conference on Data Engineering (ICDE), pp.
174-185, 2005.

Similarity Measures for Multidimensional Data User study.
Available at http://www.cs.uoi.gr/~ebaikou/publications/2011_ICDE.
E. Baikousi, G. Rogkakos, P. Vassiliadis, "Similarity Measures for
Multidimensional Data", Proceedings of International Conference on
Data Engineering (ICDE), pp. 171-182, 2011.

E. Baikousi, P. Vassiliadis, “Tuning the top-k view update process”,
Proceedings of 3rd Multidisciplinary Workshop on Advances in
Preference Handling (M-Pref), 2007.

E. Baikousi, P. Vassiliadis, "View Usability and Safety for the
Answering of top-k Queries via Materialized Views", Proceedings of
the International Workshop on Data Warehousing and OLAP
(DOLAP), pp. 97-104, 20009.

E. Baikousi, P. Vassiladis, "Maintenance of top-k materialized
views", Distributed and Parallel Databases (DAPD), vol. 27(2), pp
95-137, 2010.

S. Borzsonyi, D. Kossmann, K. Stocker, "The skyline operator",
Proceedings of the International Conference on Data Engineering
(ICDE), pp. 421-430, 2001.

P. Cao, Z. Wang, “Efficient top-K query calculation in distributed
networks”, Proceedings of the Principles of Distributed Computing

(PODC), pp. 206-215, 2004.

160

[CBC++00] Y.Chang, L. D. Bergman, V. Castelli, C. Li, M. Lo, J. R. Smith, "The

[ChGMO04]

[ChGr99]

[DeSc02]

[DGKTO6]

[Fagio6]

[Fagios]

[FaLNO1]

[FuWYO05]

[GMNSO09]

onion technique: Indexing for linear optimization queries",
Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pp. 391-402, 2000.

S. Chaudhuri, L. Gravano, A. Marian, "Optimizing Top-k Selection
Queries over Multimedia Repositories”, IEEE Trans. Knowl. Data
Eng., vol. 16(8), 2004.

S. Chaudhuri, L. Gravano, "Evaluating Top-k Selection Queries",
Proceedings of the International Conference on Very Large Data
Bases (VLDB), pp. 397-410, 1999.

M. H. DeGroot, M. J. Schervish, ‘“Probability and statistics”,
Addison Wesley, 2002.

G. Das, D. Gunopulos, N. Koudas, D. Tsirogiannis. “Answering Top-
k Queries Using Views”, Proceedings of the International Conference
on Very Large Data Bases (VLDB), pp. 451-462, 2006

R. Fagin, “Combining fuzzy information from multiple systems”,
Proceedings of the Symposium on Principles of Database Systems,
pp- 216-226, 1996.

R. Fagin, “Fuzzy queries in multimedia database systems”,
Proceedings of the Symposium on Principles of Database Systems,
pp- 1-10, 1998.

R. Fagin, A. Lotem, M. Naor, "Optimal aggregation algorithms for
middleware", Journal of Computer and System Sciences, vol. 66, pp.
614-656, 2003.

B. C. M. Fung, K. Wang, and P. S. Yu, "Top-Down Specialization
for Information and Privacy Preservation”, Proceedings of the
International Conference on Data Engineering (ICDE), pp. 205-216,
2005.

A. Giacometti, P. Marcel, E. Negre, A. Soulet, “Query
Recommendations for OLAP Discovery Driven Analysis”,
Proceedings of the International Workshop on Data Warehousing and

OLAP (DOLAP), pp. 81-88, 2009.

161

[Graef00]

[GuBKO00]

[HrKPO1]

[HrPa04]

[HuKR93]

[IIBSO8]

[Josl04]

[Koss00]

[LiBMO3]

[MaBGO04]

G. Graefe, "Dynamic Query Evaluation Plans: Some Course
Corrections?", IEEE Data Eng. Bull., vol. (23) 2, 2000.

U. Giintzer, W. Balke, W. KieBling, “Optimizing Multi-Feature
Queries for Image Databases”, Proceedings of the International
Conference on Very Large Data Bases (VLDB), pp. 419-428, 2000.
V. Hristidis, N. Koudas, Y. Papakonstantinou, “PREFER a system
for the efficient execution of multi-parametric ranked queries”,
Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pp. 259-270, 2001.

V. Hristidis, Y. Papakonstantinou, “Algorithms and applications for
answering ranked queries using ranked views”, VLDB Journal, vol.
13(1), pp. 49-70, 2004.

D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge, “Comparing
images using the hausdorff distance”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 15(9), pp. 850-863, 1993.
LF. Tlyas, G. Beskales, M.A. Soliman, "A survey of top-k query
processing techniques in relational database systems", ACM
Computing Survey, vol. 40(4), 2008.

C. Joslyn, “Poset Ontologies and Concept Lattices as Semantic
Hierarchies”, Proceedings of the International Conference on
Conceptual Structures (ICCS 2004), pp. 287-302, 2004.

D. Kossmann, "The State of the art in distributed query processing",
ACM Computing Survey, vol. 32(4), pp. 422-469, 2000.

Y. Li, Z. A. Bandar, D. McLean, “An approach for measuring
semantic similarity between words using multiple information
sources”, IEEE Transactions on Knowledge and Data Engineering,
vol. 15(4), pp. 871-882, 2003.

A. Marian, N. Bruno, L. Gravano, "Evaluating top-k queries over
web-accessible databases", ACM Transactions on Database Systems,

vol. 29(2), pp. 319-362, 2004.

162

[MCYCO06]

[MiTWO5]

[NeRa99]

[Rogk10]

[Rous97]

[SaJa95]

[SaJa99]

[Sara01]

[Sara99]

[SaSc05]

[SGAEO4]

N. Mamoulis, K. H. Cheng, M. L. Yui, D. W. Cheung, "Efficient
aggregation of ranked inputs", Proceedings of the International
Conference on Data Engineering (ICDE), pp. 72-83, 2006.

S. Michel, P. Triantafillou, G. Weikum, “KLEE: A Framework for
Distributed Top-k Query Algorithms”, Proceedings of the
International Conference on Very Large Data Bases (VLDB), pp.
637-648, 2005.

S. Nepal, M. V. Ramakrishna, “Query processing issues in image
(multimedia) databases”, Proceedings of the International Conference
on Data Engineering (ICDE), pp. 22-29, 1999.

G. Rogkakos, “Similarity Measures for Multidimensional Data,”
MSc thesis, Univ. of loannina, Ioannina, Greece, July. 2010.

N. Roussopoulos, "Materialized Views and Data Warehouse",
Proceedings of the KRDB Workshop, pp. 12.1-12.6, 1997.

S. Santini and R. Jain, “Similarity matching”, Proceedings of the
Asian Conference on Computer Vision (ACCV), pp. 571-580, 1995.
S. Santini and R. Jain. ”Similarity measures”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 21(9), pp.871-883,
1999.

S. Sarawagi, “idiff: Informative summarization of differences in
multidimensional aggregates”. Data Mining and Knowledge
Discovery, vol. 5(4), pp.255-276, 2001.

S. Sarawagi, “Explaining differences in multidimensional
aggregates”, Proceedings of the International Conference on Very
Large Data Bases (VLDB), pp. 42-53, 1999.

P. Sanders and D. Schultes, “Highway Hierarchies Hasten Exact
Shortest PathQueries”, Proceedings of the Annual European
Symposium (ESA), pp. 568-579, 2005.

O. D. Sahin, A. Gupta, D. Agrawal, A. El Abbadi, “A Peer-to-peer
Framework for Caching Range Queries”, Proceedings of the
International Conference on Data Engineering (ICDE), pp. 165-176,
2004.

163

[TPK++03]

[Triv02]

[TrNY04]

[VaSkO00]

[VDNVO08]

[YYY+03]

[ZADBO6]

[ZhTZ07]

P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, D. Srivastava,
"Ranked join indices", Proceedings of the International Conference
on Data Engineering (ICDE), pp. 277-288, 2003.

K. Trivedi, “Probability and statistics with reliability, queuing and
computer science applications”, John Wiley & Sons, Inc, 2002.

P. Triantafillou, N. Ntarmos, J. Yannakopoulos, “A Cache Engine for
E-Content Integration”, IEEE Internet Computing, vol. 8(2), pp. 45-
53, 2004.

P. Vassiliadis, S. Skiadopoulos, “Modeling and Optimization Issues
for Multidimensional Databases”, Proceedings of the International
Conference CAiSE, pp. 482-497, 2000.

A. Vlachou, C. Doulkeridis, K. Norvaag, M. Vazirgiannis, “On
efficient top-k query processing in highly distributed environments”,
Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), pp. 753-764, 2008.

Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, Yuguo Chen. “Efficient
Maintenance of Materialized Top-k Views”, Proceedings of the
International Conference on Data Engineering (ICDE), pp.189-200,
2003.

P. Zezula, G. Amato, V. Dohnal and M. Batko, “Similarity Search:
The Metric Space Approach”, Advances in Database Systems,
Springer, vol. 32, 2006.

K. Zhao, Y. Tao, S. Zhou, “Efficient top-k processing in large-scaled
distributed environments”, Data Knowledge Engineering, vol. 63(2),

pp. 315-335, 2007.

164

165

AHMOXIEYXEIX XYITPA®EA

[BaRV11]

[BaVa07]

[BaVa09]

[BaValO]

E. Baikousi, G. Rogkakos, P. Vassiliadis, "Similarity Measures for
Multidimensional Data", Proceedings of International Conference on
Data Engineering (ICDE), pp. 171-182, 2011.

E. Baikousi, P. Vassiliadis, “Tuning the top-k view update process”,
Proceedings of 3rd Multidisciplinary Workshop on Advances in
Preference Handling (M-Pref), 2007.

E. Baikousi, P. Vassiliadis, "View Usability and Safety for the
Answering of top-k Queries via Materialized Views", Proceedings of
the International Workshop on Data Warehousing and OLAP
(DOLAP), pp. 97-104, 20009.

E. Baikousi, P. Vassiladis, "Maintenance of top-k materialized
views", Distributed and Parallel Databases (DAPD), vol. 27(2), pp
95-137, 2010.

166

SHORT CV

Eftychia Baikousi was born in 1982 in loannina, Greece. She received her B.Sc. in
Mathematics in 2003 from the Department of Mathematics in the University of
Ioannina. She received her M.Sc. in Computer Science from the University of
Manchester Institution Science and Technology in 2004. Ms Baikousi joined the
Distributed Data Management Laboratory in 2005. Her research interests focus on
top-k query processing and similarity of data points.

