

Αποθηκευµένες Όψεις για Κατατακτήριες Ερωτήσεις µε Άνω Όριο Αποτελεσµάτων: Επεξεργασία

ερωτήσεων, Ενηµέρωση και Οµοιότητα

Η

 ∆Ι∆ΑΚΤΟΡΙΚΗ ∆ΙΑΤΡΙΒΗ

Υποβάλλεται στην

ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης

του Τµήµατος Πληροφορικής

Εξεταστική Επιτροπή

από την

Ευτυχία Μπαϊκούση

ως µέρος των Υποχρεώσεων

για τη λήψη

του

∆Ι∆ΑΚΤΟΡΙΚΟΥ ∆ΙΠΛΩΜΑΤΟΣ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Ιανουάριος 2012

ii

Τριµελής Συµβουλευτική Επιτροπή

• Βασιλειάδης Παναγιώτης, Επίκουρος Καθηγητής του Τµήµατος Πληροφορικής

του Πανεπιστηµίου Ιωαννίνων (επιβλέπων).

• Πιτουρά Ευαγγελία, Αναπληρώτρια Καθηγήτρια του Τµήµατος Πληροφορικής

του Πανεπιστηµίου Ιωαννίνων.

• Σελλής Τιµολέων, Καθηγητής του Τµήµατος Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών του Εθνικού Μετσόβιου Πανεπιστηµίου.

Επταµελής Εξεταστική Επιτροπή

• Βασιλειάδης Παναγιώτης, Επίκουρος Καθηγητής του Τµήµατος Πληροφορικής

του Πανεπιστηµίου Ιωαννίνων (επιβλέπων).

• ∆ηµακόπουλος Βασίλειος, Επίκουρος Καθηγητής του Τµήµατος Πληροφορικής

του Πανεπιστηµίου Ιωαννίνων.

• Ζάρρας Απόστολος, Επίκουρος Καθηγητής του Τµήµατος Πληροφορικής του

Πανεπιστηµίου Ιωαννίνων.

• Παληός Λεωνίδας, Αναπληρωτής Καθηγητής του Τµήµατος Πληροφορικής του

Πανεπιστηµίου Ιωαννίνων.

• Πιτουρά Ευαγγελία, Αναπληρώτρια Καθηγήτρια του Τµήµατος Πληροφορικής

του Πανεπιστηµίου Ιωαννίνων (µέλος τριµελούς συµβουλευτικής επιτροπής).

• Σελλής Τιµολέων, Καθηγητής του Τµήµατος Ηλεκτρολόγων Μηχανικών και

Μηχανικών Υπολογιστών του Εθνικού Μετσόβιου Πανεπιστηµίου (µέλος

τριµελούς συµβουλευτικής επιτροπής).

• Τσαπάρας Παναγιώτης, Επίκουρος Καθηγητής του Τµήµατος Πληροφορικής

του Πανεπιστηµίου Ιωαννίνων.

iii

 ACKNOWLEGMENTS

I would like to express my warmest thanks and gratitude to my advisor Prof. Panos

Vassiliadis for the valuable guidance, advice and encouragement he has offered while

supervising my thesis. For the time and effort he spent on my work throughout all

these years. Collaborating with him has been a pleasant and memorable experience. I

am also very grateful to Prof. Evaggelia Pitoura and Prof. Timos Sellis for acting as

secondary referees for my thesis. Many thanks also to Prof. Vassilios Dimakopoulos,

Prof. Apostolos Zarras, Prof. Leonidas Palios, Prof. Panayiotis Tsaparas for serving in

my thesis committee.

I would also like to express my gratitude to the state scholarship foundation IKY for

the funding provided throughout my studies as well as to Prof. Nikos Mamoulis for

his time and effort spent while collaborating with him and for the funding he provided

while visiting the Hong Kong University.

Last but not least, I would like to thank all people of the DMOD Laboratory that

throughout all these years have provided helpful feedback and turned the countless

hours in the office into a joyful and pleasant experience. Especial thanks to my office-

mate Giorgos Rogkakos for his collaboration while working on the similarity of

multidimensional data points. Finally, I would like to thank my family and parents for

their continuous support and understanding all these years.

This thesis has been supported by the state scholarship foundation IKY.

iv

TABLE OF CONTENTS

CHAPTER 1. Introduction 1

1.1. Terminology and Contribution in a Nutshell 2

1.2. Thesis Contribution & Outline 3

CHAPTER 2.View Usability for Answering Top-k Queries Over

Materialized Views 7

2.1. Background and Related Work 8

2.1.1. Algorithms for top-k Queries over Relations 8

2.1.2. Algorithms for top-k Queries over a Relation and Materialized

Views 11

2.1.3. Related Problems in Different Context 20

2.1.4. Research Opportunities and Comparison to Related Work 22

2.2. Adequacy of a Materialized View to Answer a Query for the 2D Case 24

2.2.1. Problem Formulation 24

2.2.2. The Case when the View is “Higher” than the Query 27

2.2.3. Strictness of the Suitability Theorem 29

2.2.4. Computation of Offsets and Safe Areas 30

2.2.5. The Case when the View is “Lower” than the Query 31

2.2.6. Special Cases 32

2.2.7. Algorithmic Results 34

2.3. Queries and Views with More than Two Scoring Attributes 35

2.3.1. Fundamental Results for the n-Dimensional Case 35

2.3.2. Discussion 39

2.3.3. Algorithmic Results 40

2.4. Working with More Than One Views 40

2.4.1. Safe Area Containment with More than One Views 40

2.4.2. Working with More than One Views in Parallel 42

2.5. Experiments 46

2.5.1. Experimental Method for 2D 46

2.5.2. Experimental Method for n-D 50

2.6. Chapter Summary and Findings 64

CHAPTER 3. Maintenance of Top-k Materialized Views 67

3.1. Efficient Maintenance of Materialized top-k Views [YYY+03] 71

3.2. Fine-Tuning of Views to Sustain High Update Rates 72

3.2.1. Formal Definition of the Problem 72

3.2.2. Sketch of the Method 74

3.2.3. Handling of Updates 75

3.2.4. Computation of the Actual Rates that Affect V 75

3.2.5. Computation of kcomp 78

3.2.6. Fine-Tuning of kcomp 80

v

3.2.7. Discussion 81

3.2.8. Example 81

3.3. Generalization of the Problem 84

3.3.1. Formal Definition of the Problem Generalized for More than Two

Attributes 84

3.3.2. Formal Definition of the Problem Generalized for Non-Linear

Monotonic Functions 85

3.4. Multiple View Updates 85

3.4.1. View Nucleation 86

3.4.2. Updates for Nucleated Views 87

3.4.3. Discussion & Summary 93

3.5. Updating Multiple Nucleated Views 94

3.5.1. Representation of Nucleation Relationships as Hierarchy Paths 94

3.6. Experiments 100

3.6.1. Experimental Study of Sustaining High Rate of Deletions 100

3.6.2. Experimental Study for Multiple Views Updates 111

3.7. Chapter Summary and Findings 115

CHAPTER 4.Similarity Measures for Multidimensional Data 117

4.1. Distance Families 121

4.1.1. Distance Functions between two Values 121

4.1.2. Distance Functions between two Cells of Cubes 130

4.1.3. Distance Functions between two OLAP Cubes 134

4.2. Cell Mapping and Categories of Distance Functions according to it 135

4.2.1. Distance Functions that Include Mappings 137

4.2.2. Distance Functions that do not Include Mappings 140

4.3. Experiments 141

4.3.1. User Study for Distances between two Values of Dimensions 141

4.3.2. User Study for Distances between two Cubes 145

4.3.3. Reliability and Validity Considerations 149

4.4. Chapter Summary and Findings 150

CHAPTER 5. Conclusions 153

5.1. Summary of Contributions 153

5.2. Open Problems and Insights for Future Work 156

5.2.1. View selection and caching 156

5.2.2. View caching 157

5.2.3. Combining indexing techniques with materialized views for query

processing of top-k queries in multi dimensional space 158

References 159

vi

LIST OF TABLES

Table 2.1. Experimental Parameters for 2D. 47

Table 2.2 Experimental Parameters for Synthetic N-D. 50

Table 2.3 Absolute Times and Time Savings for Random Data. 58

Table 2.4 Absolute Times and Time Savings for Correlated Data. 59

Table 2.5 Absolute Times and Time Savings for Anticorrelated Data. 60

Table 2.6 Experimental Parameters for Synthetic N-D. 60

Table 3.1. Experimental Parameters. 101

Table 3.2. Experimental Parameters. 112

Table 4.1. Adult Dataset Tables. 142

Table 4.2. Notation of Distance Functions Used in the Experiment. 143

Table 4.3. Top Three Most Frequent Distance Functions for Each User Group. 143

Table 4.4 The Most Frequent Distance Function for Each Set of Scenarios. 144

Table 4.5. Frequencies of Preferred Distances within Each User Group for

Each Distance Family. 145

Table 4.6. The Distance Functions Used in the Second User Study. 146

Table 4.7. Frequency of Chosen as First Distance Function Among All the

Answers. 147

Table 4.8 User Stability. 147

Table 4.9 The Winning Functions and the Winner Functions. 148

vii

LIST OF FIGURES

Figure 2.1. Example of Sorted Lists of a Relation’s Attributes. 9

Figure 2.2. Convex Hulls in 2 Dimensional Space. 12

Figure 2.3. Vector Representation of Scoring Function and Rank Attributes. 13

Figure 2.4. Possible Orderings of Tuples t1 and t2. (a)Positive Slope of t1t2,

(b)Negative Slope of t1t2. 14

Figure 2.5. Visual Demonstration of the LPTA Technique for Query

Answering top-k via Views. 20

Figure 2.6. Answering a Query Q via a View VU when the View is “Higher”

than the Query. 27

Figure 2.7. Example of Why a View V is Not Always Reliable for Answering a

Query Q. 28

Figure 2.8. At Least k Points in the Safe Area of a View V Make it Reliable for

Answering a Query Q. 30

Figure 2.9. The Case where the View is “Under” the Query. 31

Figure 2.10. Special Case where V is of the Form sV = y. 32

Figure 2.11. Special Case where V is of the Form sV = x. 33

Figure 2.12. All the Safe Area Should Possibly be Exhausted for the

Determination of the top-k Query Tuples. 35

Figure 2.13. The Two Sub-Regions Defined by PV. 37

Figure 2.14. Example of Why a View V is Not Always Reliable for Answering

a Query Q. 39

Figure 2.15. A Query Q with One View on Either of its Sides, VU for the Upper

Side and VD for the Lower Side. 42

Figure 2.16. The Active Zone for the Range slow, high of Query Q within its Safe

Area over View VU. 43

Figure 2.17. Percentage of Views Used for 100 Queries. 47

Figure 2.18. Percentage of Views Used for Different Time Spans (Numbers of

Posed Queries). 48

Figure 2.19. Time Savings from the Usage of Queries for Different Database

Sizes and Requested Results. 49

Figure 2.20. Detailed Information for the Efficiency of the Method in Time

Savings. 49

Figure 2.21. Percentage of Queries Answered for Random Data. 52

Figure 2.22. Percentage of Queries Answered for Correlated Data. 53

Figure 2.23. Percentage of Queries Answered for Anticorrelated Data. 54

Figure 2.24. Time Savings from the Usage of Views for Random Data. 55

Figure 2.25. Time Savings from the Usage of Views for Correlated Data. 56

Figure 2.26. Time Savings from the Usage of Views for Anticorrelated Data. 57

Figure 2.27. Percentage of Queries Answered for Real Dataset. 62

viii

Figure 2.28. Time Savings of Our Method for Real Dataset. 63

Figure 3.1. Exponential Probability Distribution. 77

Figure 3.2. Beta Probability Distribution. 78

Figure 3.3. Base Relation R. 82

Figure 3.4. Insertions and Deletions Occurring in Base Relation R. 83

Figure 3.5. The View V Prior and Subsequent to Updates. 84

Figure 3.6. Both Views Are of Proportional Equations. 89

Figure 3.7. Intersection of Two Views Outside the Active Area. 91

Figure 3.8. Intersection of Two Views Inside the Active Area. 92

Figure 3.9. Hierarchies for Efficient View Updates. 95

Figure 3.10. Maximum and Average Misses as a Function of |R| and λ. 103

Figure 3.11. Maximum Misses as a Function of k and D/I. 104

Figure 3.12. Size of Relation R (|R|) over Time as Insertions and Deletions

Take Place for Workload W1 Having a Ratio of Deletion Rate

over Insertion Rate D/I =1.0. 106

Figure 3.13. Size of Relation R (|R|) over Time as Insertions and Deletions

Take Place for Workload W2 Having a Ratio of Deletion Rate

over Insertion Rate D/I ≈ 2.0. 106

Figure 3.14. Size of Relation R (|R|) over Time as Insertions and Deletions

Take Place for Workload W3 Having a Ratio of Deletion Rate

over Insertion Rate D/I ≈ 0.5. 106

Figure 3.15. Average Number of Insertions and Deletions that Affect the Top-k

Tuples in the View. 108

Figure 3.16. Memory Overhead Expressed as the Number of Tuples Stored in

the View. 108

Figure 3.17. Comparison of k, kcomp, and kcomp with Tuning. 109

Figure 3.18. Comparison of kcomp with Tuning and [YYY+03]. 110

Figure 3.19. Time to Build the Top-k View (microseconds). 111

Figure 3.20. Comparison between Naive and Nucleation Method. All Graphs

Show the Time of Applying Updates as a Function of Insertion

Size and |R|. 114

Figure 4.1. The hierarchy of levels for dimensions Time and Location 122

Figure 4.2. Values of the Location Dimension. 122

Figure 4.3. Partial Distances Between Two Values in Different Levels of

Hierarchy. 128

Figure 4.4. Instances of Cells c1 and c2. 131

Figure 4.5. Lattice of the Dimension TIME for the Values of Cells of Figure

4.4. 132

Figure 4.6. Lattice of the Dimension LOCATION for the Values of Cells of

Figure 4.4. 132

Figure 4.7. Instances of Two Cubes and the Mapping of their Cells. 136

Figure 4.8. Instances of Cubes CUBE1 and CUBE2 and the Mapping of the

Cells of the Cube CUBE2 to the Cells of the Cube CUBE1. 138

ix

LIST OF ALGORITHMS

Algorithm 2.1. 2D SafArI Algorithm 34

Algorithm 2.2. SafArI Algorithm 41

Algorithm 2.3. Algorithm Compute Query Extent 45

Algorithm 3.1. Algorithm Create Hierarchy Paths 96

Algorithm 3.2. Algorithm Maintain View Updates 98

Algorithm 3.3. Algorithm Check Intersection Point I 99

x

 ABSTRACT

Eftychia Baikousi.

PhD, Computer Science Department, University of Ioannina, Greece, January 2012.

Title of Dissertation: Materialized Views for top-k queries: Query Processing, View

Refreshment and Similarity.

Supervisor: Panos Vassiliadis.

Nowadays, there is a huge amount of data available to users. Due to the variety and

great volume of data, retrieving the most important pieces of information, can become

an overwhelming task. In the areas of Information Retrieval and Data Management,

researchers have paid attention to the generic problem of retrieving the top-k similar

objects from a repository according to a users preference query. In the field of Data

Management, this problem is known as top-k querying problem. In the field of

Information Retrieval, in applications such as multimedia retrieval, the problem is

mainly addressed as finding the most similar objects to a given one according to a

similarity metric. The goal of this thesis is to explore and investigate the answering of

top-k queries through the exploitation of materialized top-k views. In addition, we

study the problem of capturing the distance function that best complies with human

perception for finding the similarity between two data collections of multidimensional

points under the form of OLAP cubes.

The top-k querying problem concerns the retrieval of the top-k results of a ranked

query over a database. Specifically, given a relation R (tid, A1, A2,..., Am) and a query

Q over R the desideratum is to retrieve the top-k tuples from R having the k highest

values according to a scoring function f that accompanies Q. In an effort to improve

the performance of the retrieval of top-k tuples from R, we study the problem by

taking into consideration results from previously posed queries that are cached as

materialized views. We study the problem by acquainting a geometric representation

and we provide theoretical guarantees on whether a materialized view is able to

xi

answer a top-k query. We proceed by proposing the SafArI algorithm for deciding the

usability of a materialized view as well as the answer of the top-k query, in case the

view is suitable for the query.

In the presence of updates in the relation over which a set of views is defined, we

provide a method for keeping the top-k materialized views up to date without needing

to re-compute them and provide results in two directions. Firstly, we deal with the

problem of maintaining top-k views in the presence of high deletion rates and provide

a principled method that is independent of the statistical properties of the data and the

characteristics of the update streams. Secondly, we assess the problem of efficiently

maintaining multiple top-k views, where we provide theoretical guarantees for the

nucleation of a view with respect to another view and the reflection of this property to

the management of updates. Further on, we propose an algorithm that maintains a

large number of views, via their appropriate structuring in hierarchies of views.

Apart from finding top-k answers for data in the form of multidimensional points, we

also assess the problem of finding how similar are two collections of data according to

human perception. To put the question a little more precisely, given two sets of points

in a multidimensional hierarchical space, what is the distance between these two

collections? In applications such as multimedia information retrieval and digital

libraries, where contemporary data lead to huge repositories of heterogeneous data

stored in data warehouses, there is a need of similarity search that complements the

traditional exact match search. We address the problem by (a) organizing alternative

distance functions in a taxonomy of functions and (b) experimentally assessing the

effectiveness of each distance function via a user study in order to discover which

distance function is mostly preferred by the users.

xii

ΕΚΤΕΝΗΣ ΠΕΡΙΛΗΨΗ ΣΤΑ ΕΛΛΗΝΙΚΑ

Ευτυχία Μπαϊκούση.

PhD, Τµήµα Πληροφορικής, Πανεπιστήµιο Ιωαννίνων, Ιανουάριος 2012.

Τίτος ∆ιατριβής:

Επιβλέπων: Παναγιώτης Βασιλειάδης.

Λόγω του µεγάλου όγκου δεδοµένων και της πληθώρας πληροφοριών που είναι

διαθέσιµες στους χρήστες µέσω διαδικτύου και όχι µόνο, είναι αναγκαία η αποδοτική

ανάκτηση των πιο ενδιαφερόντων και προτιµητέων πληροφοριών. Τόσο στην περιοχή

της Ανάκτησης ∆εδοµένων όσο και στο χώρο των Βάσεων ∆εδοµένων, οι ερευνητές

έχουν ασχοληθεί µε το γενικότερο πρόβληµα της ανάκτησης και εξόρυξης των κ πιο

όµοιων αντικειµένων από ένα σύνολο αντικειµένων σύµφωνα µε τις προτιµήσεις που

θέτουν οι χρήστες. Συγκεκριµένα, στο χώρο των Βάσεων ∆εδοµένων, το πρόβληµα

διατυπώνεται ως η ανάκτηση της απάντησης κατατακτήριων ερωτήσεων µε άνω όριο

αποτελεσµάτων. Στο χώρο της Ανάκτησης ∆εδοµένων, το πρόβληµα κυρίως

απαντάται ως η εύρεση των πιο όµοιων αντικειµένων ως προς ένα δεδοµένο

αντικείµενο, όπως, παραδείγµατος χάριν, σε εφαρµογές ανάκτησης δεδοµένων από

βάσεις πολυµέσων. Ο στόχος της παρούσας διατριβής είναι η µελέτη και η έρευνα

του προβλήµατος της ανάκτησης των αποτελεσµάτων κατατακτήριων ερωτήσεων µε

άνω όριο αποτελεσµάτων µέσω της χρήσης υλοποιηµένων όψεων. Επιπρόσθετα,

µελετάται το πρόβληµα του εντοπισµού της συνάρτησης απόστασης που µπορεί να

χρησιµοποιηθεί ώστε να εκφράσει την ανθρώπινη αντίληψη για την εύρεση της

οµοιότητας από δυο συλλογές δεδοµένων στο πολυδιάστατο χώρο.

Το πρόβληµα της απάντησης κατατακτήριων ερωτήσεων µε άνω όριο

αποτελεσµάτων αφορά την ανάκτηση των κ αποτελεσµάτων µε την υψηλότερη τιµή

σύµφωνα µε µια κατατακτήρια ερώτηση που τίθεται σε µία βάση δεδοµένων.

Συγκεκριµένα, δοθείσης µιας σχέσης R (tid, A1, A2,..., Am) και µιας ερώτησης Q πάνω

στην R, ο στόχος είναι η ανάκτηση των κ πλειάδων από τη σχέση R τέτοιων ώστε να

xiii

έχουν τις κ υψηλότερες τιµές σύµφωνα µε µια συνάρτηση βαθµολόγησης που

συνοδεύει την ερώτηση Q. Σε µια προσπάθεια να βελτιώσουµε την απόδοση της

ανάκτησης των κ υψηλότερων, ως προς την τιµή, πλειάδων από τη σχέση R, µελετάµε

το πρόβληµα κάνοντας χρήση των αποτελεσµάτων που ανακτήθηκαν από

προηγούµενες ερωτήσεις και τα οποία έχουµε αποθηκεύσει µε την µορφή

υλοποιηµένων όψεων. Μελετάµε το πρόβληµα υιοθετώντας µια γεωµετρική

αναπαράσταση και παρέχουµε θεωρητικές εγγυήσεις για το κατά πόσο τα

αποτελέσµατα της υλοποιηµένης όψης µπορούν να προβούν αρκετά ώστε να

απαντηθεί η κατατακτήρια ερώτηση µε άνω όριο αποτελεσµάτων. Προτείνουµε τον

SafArI αλγόριθµο για την απόφαση της χρησιµότητας της υλοποιηµένης όψης καθώς

και για την απάντηση της κατατακτήριας ερώτησης µε άνω όριο αποτελεσµάτων όταν

η χρήση της όψης είναι κατάλληλη για την δοθείσα ερώτηση. Ο αλγόριθµος

στηρίζεται στην αποκαλούµενη ασφαλή περιοχή (safe area) µιας υλοποιηµένης όψης,

η οποία ορίζεται αφενός από την όψη και αφετέρου από µία ερώτηση µε άνω όριο

αποτελεσµάτων.

Επιπλέον, προτείνουµε µια µέθοδο για την διατήρηση της ενηµερότητας των

υλοποιηµένων όψεων µε άνω όριο αποτελεσµάτων χωρίς να χρειαστεί ο

επανυπολογισµός τους, όταν προκύπτουν ενηµερώσεις σε µια σχέση πάνω στην οποία

είναι ορισµένες οι όψεις. Το πρόβληµα µελετάται προς δύο κατευθύνσεις. Πρώτον,

αντιµετωπίζουµε το πρόβληµα σε συνθήκες αυξηµένου ρυθµού διαγραφών και

προτείνουµε µια καλά ορισµένη µέθοδο ανεξάρτητη των στατιστικών ιδιοτήτων που

έχουν αφενός τα δεδοµένα και αφετέρου, οι ενηµερώσεις. ∆εύτερον, επιλύουµε το

πρόβληµα της αποδοτικής ενηµέρωσης υλοποιηµένων όψεων µε άνω όριο

αποτελεσµάτων, όπου προτείνουµε θεωρητικές εγγυήσεις για τον εγκλεισµό µιας

όψης από µια άλλη όψη και το αντίκτυπο αυτής της ιδιότητας στην διαδικασία

διατήρησης της ενηµερότητας πολλαπλών όψεων. Συγκεκριµένα, προτείνουµε

αλγοριθµικές τεχνικές για την διατήρηση της ενηµερότητας πολλών όψεων

κατασκευάζοντας και κάνοντας χρήση κατάλληλων ιεραρχικών δοµών των όψεων.

Εκτός της απάντησης ερωτήσεων µε άνω όριο αποτελεσµάτων από δεδοµένα του

πολυδιάστατου χώρου, επιλύουµε το πρόβληµα της εύρεσης της οµοιότητας δυο

συλλογών δεδοµένων. Συγκεκριµένα, το πρόβληµα εντοπίζεται στην εύρεση της

xiv

κατάλληλης έκφρασης της οµοιότητας δυο συλλογών δεδοµένων σύµφωνα µε την

ανθρώπινη αντίληψη. Με άλλα λόγια απαντάµε στο εξής ερώτηµα: ∆οθέντων δυο

συνόλων που περιέχουν σηµεία του πολυδιάστατου ιεραρχικού χώρου, ποια είναι η

απόσταση ανάµεσα στα δεδοµένα δύο σύνολα; Ειδικά σε εφαρµογές όπως η

ανάκτηση πληροφοριών από βάσεις δεδοµένων υπό τη µορφή πολυµέσων καθώς και

ψηφιακές βιβλιοθήκες, υπάρχει επιτακτικά η ανάγκη της εύρεσης οµοιότητας

δεδοµένων που συµπληρώνει την παραδοσιακή εύρεση του απόλυτα ταιριαστού

αντικειµένου ως προς ένα άλλο δεδοµένο. Ιδιαίτερα σε τέτοιου είδους εφαρµογές, η

φύση των δεδοµένων οδηγεί σε τεράστιες συλλογές δεδοµένων διαφορετικού τύπου

τα οποία αποθηκεύονται σε αποθήκες δεδοµένων. Μελετάµε το πρόβληµα σε δύο

άξονες. Πρώτον, οργανώνουµε διάφορα είδη συναρτήσεων αποστάσεων σε µια

ταξινοµία συναρτήσεων. ∆εύτερον, αποτιµούµε πειραµατικά την

αποτελεσµατικότητα της κάθε συνάρτησης απόστασης µέσω µιας πειραµατικής

µελέτης µε πραγµατικούς χρήστες ώστε να ανακαλύψουµε την συνάρτηση απόστασης

που προτιµάται κατά κύριο λόγο από τους χρήστες.

1

CHAPTER 1. INTRODUCTION

1.1 Terminology and Contribution in a Nutshell

1.2 Thesis Contribution & Outline

Due to the vast amount of data and information available to users (especially via the

Web), the problem of retrieving the most important pieces of information can become

an overwhelming task. In the areas of Information Retrieval and Data Management,

researchers have been attracted to the generic problem of retrieving the top-k similar

objects from a repository according to a user’s preference query. In the field of Data

Management, this problem is known as top-k querying problem. In the field of

Information Retrieval (e.g., in applications such as multimedia retrieval), the problem

is mainly addressed as finding the most similar objects to a given one according to a

similarity metric. Consider for example, a database containing data about hotels,

restaurants and attractive places to see in a designated area where travelers arrive at an

airport. When airplanes arrive, several potential sightseers arrive with it, at the same

time a massive number of travelers depart. Assume that travelers are equipped with

wireless devices such as smart phones or tablets and can connect to the airport’s

server. Assume a relation Traveler (t_id, t_age, t_maritalStatus, …) as well as

relations about the traveler’s profile and travelling history. For a municipal employee

who is assigned to advertise the interesting places to travelers, it is important to find

the top-k attractions according to their profiles. In order to do so, the employee uses

queries with scoring functions over the traveler’s characteristics. For instance, assume

the employee wants to advertise the Christmas Village that the municipal built for the

Christmas Holidays at present. Thus, the employee needs to create a profile for the

new attraction. The profile includes a formula that assigns a score for potential

sightseers according to similarity functions that match the characteristics of the

2

attraction to the characteristics of the traveler. To speed things up, it is reasonable to

find the top-k travelers in order to send them the related advertisement. In other

words, the employee’s task is reduced to finding the top-k travelers according to the

employee’s scoring function. Due to the departures of the airplanes, the top-k list of

travelers needs to be refreshed so that the remaining possible sightseers are notified.

Therefore, the top-k list of travelers should be maintained when updates occur in the

relation Travelers.

1.1. Terminology and Contribution in a Nutshell

The goal of this thesis is to explore and investigate the answering of top-k queries

through the exploitation of materialized top-k views. To clarify the aforementioned

statement for the non-expert reader, we have to provide informal explanations of the

two terms that define its essence.

• A top-k, or ranking query requests the k highest tuples of a relation R

according to a scoring function over the attributes of the relation.

• In the field of databases the term (relational) view comes in two flavors

[Rous97]. The first category of views comes under the terms plain view,

unmaterialized view, or simply view, and it is actually a query expression in

the form of a macro with no extensional attachments which is executed at run-

time. In simple terms, we can register a query to the database management

system as a view; then, subsequent queries can reuse this query as a data

source. Note that the results of the query are not cached in the system and,

thus, whenever used in another query, a plain view acts as a macro that is

resolved to its original constituents, integrated in the new query and executed

as part of it. If, on the other hand, we wish to speed up the execution of the

subsequent queries, we can register a view as a materialized view. A

materialized view caches the results of the query and therefore, it can acts as a

typical relation in the execution of subsequent queries. At the same time,

whenever updates occur to the relations that are used in the definition of the

materialized view, the latter has to be refreshed with the new data. In both

their families, views are characterized by the duality of coming with (a) a

query expression that defines them (thus they are queries in a sense) and (b) a

3

set of tuples (the result of the query) that makes them appear as relations, too

(either computed on the fly, or appropriately materialized in the background).

In any case, views are a powerful mechanism, frequently used to make the life

of the developer easier and the execution of the system faster.

In this thesis, we refer to the notion materialized ranking view in order to describe a

materialized view that contains the results of a top-k query. Apart from answering top-

k queries through materialized views, we also study the problem of maintaining top-k

materialized views in the presence of updates in the relation such that the views can

be up to date and useful for the answering of top-k queries. In addition, in order to

express similarity between objects there is the need of discovering the distance

functions that users prefer for computing the similarity of two data collections. In

order to do so we resort to the simplest framework that can be given to a user to work

with and that is OLAP Cubes. Thus, we provide a taxonomy of the distance functions

used for collections of multidimensional data and conduct an extensive user study

analysis in order to reveal the most preferred function by users.

1.2. Thesis Contribution & Outline

The technical contributions of this thesis are organized in three chapters, each solving

one of the three aforementioned problems. In the sequel, we give an overview of the

technical contributions of each chapter; in the final chapter of this thesis, we conclude

our results and present insights for future work.

Answering top-k Queries via Materialized Views

In Chapter 2, we work on the problem of answering top-k queries by making use of

materialized ranked views. We provide theoretical and algorithmic results for the

above problem. Firstly, we adopt a geometric representation of the top-k query

problem and then we conduct a theoretical analysis for providing theoretical

guarantees for the suitability of a materialized view in order to answer a top-k query.

Specifically, we provide theoretical guarantees for the adequacy of a view to answer a

top-k query, along with algorithmic techniques to compute the query via a view when

this is possible. Initially, we study the problem for a top-k query answering in the

2-dimensional space. Following, we generalize the problem for the n dimensional

4

space. In addition, we explore the problem of answering a query via a combination of

more than one view and show that despite the efficiency of using two views instead of

one for the answering of a query as demonstrated in the related literature, it is

impossible to improve our theoretical guarantees for the answering of a query via a

combination of views. We also discuss the issue of providing partial results for a

query via a materialized view by splitting the range of score into appropriate sub-

ranges. This way, different parts of the query answer can be obtained in parallel, by

distributing their processing to different servers. We demonstrate the efficiency and

effectiveness of our method over a set of extensive experiments over both synthetic

and real datasets. The results of this chapter have previously been published in

[BaVa09].

Maintaining Materialized top-k Views

In Chapter 3, we study the problem of maintaining materialized top-k views and

provide results in two directions. The first direction is towards maintaining top-k

materialized views in the presence of high deletion rates. We propose a principled

method that complements the inefficiency of the state of the art independently of the

statistical properties of the data and the characteristics of the update streams. Our

method consists of the following steps: (a) a computation of the rate that actually

affects the materialized view, (b) a computation of the necessary extension to k in

order to handle the augmented number of deletions that occur and (c) a fine tuning

part that adjusts this value to take the fluctuation of the statistical properties of this

value into consideration. Secondly, we deal with the problem maintaining multiple

top-k views and their efficient maintenance in the presence of updates to their base

relation. To this end, we provide theoretical guarantees for the establishment of the

effect of updates to a certain view, whenever we know that another view has been

updated. We introduce the notion of nucleation (i.e., dominance relationship) between

views and based on this notion we propose a hierarchical structure of the materialized

views. Through the appropriate hierarchical structuring of the views we provide

algorithmic results towards the maintenance of a large number of views. Finally, we

show that our method accurately sustains intervals with high deletion activity in the

workload through our experiments. In addition, we show that our method outperforms

the state-of-the-art, as the computation of the exact number of auxiliary view tuples is

5

faster than the computation of refill queries as proposed in the related literature. The

results of this chapter have previously been published in [BaVa07], [BaVa10].

Similarity Measures for Multidimensional Data

As already mentioned, in Chapter 2 and 3 we deal with the problem of answering top-

k queries from data in the form of points in the multidimensional space. Each top-k

view or query is a collection of such points, ranked according to a scoring function.

However, although we have answered the question “Given a query, can we use a view

to answer it?” we have not answered the question “Given a query and a set of views,

can we find the one that is most similar to it?”. We believe that in the heart of this

problem of view similarity is the answer to the question “How similar are two data

collections?”. In Chapter 4 we study the problem of discovering the distance functions

for computing the similarity of two data collections, according to what real users

actually think. In order to do so, we resort to the simplest framework that can be given

to a user to work with and that is OLAP Cubes and hierarchical multidimensional

spaces. OLAP is preferred for simplicity as it organizes data in dimensions and

measures that are most intuitive to users. We model a collection of data in the form of

a multi-dimensional array called Cube. Specifically, we provide a taxonomy of

distance functions that are applied between two OLAP cubes. We provide an

extensive user study that reveals the distance functions that more close to human

perception. In the first user study analysis we discover, which distance function

between two values of a dimension is best with regard to the user needs. We show

that our findings indicate that the distance function δLCA,P, which is expressed as the

length of the path between two values and their common ancestor in the dimension’s

hierarchy is the most preferred by users in our experiments. Moreover, two more

functions are widely chosen by users. These are the highway functions δAnc that is

expressed with regard to the ancestor xy and δH,Desc that is expressed by selecting the

representative from a descendant. According to this findings, in the second user study

we aim in discovering which distance function (the closest relative or the Hausdorff

distance function) from the category of distance function between two data cubes,

users prefer. Overall, the former function was preferred by the users than the latter;

however the individual scores of the tests indicate that this advantage is rather narrow.

The results of this chapter have previously been published in [BaRV11].

6

7

CHAPTER 2. VIEW USABILITY FOR

ANSWERING TOP-K QUERIES OVER

MATERIALIZED VIEWS

2.1 Background and Related Work

2.2 Adequacy of a Materialized View to Answer a Query for the 2D Case

2.3 Queries and Views with More than Two Scoring Attributes

2.4 Working with More Than One Views

2.5 Experiments

2.6 Chapter Summary and Findings

The first problem that we address in this thesis is finding an answer to the question on

how we can decide on the suitability of a materialized ranking view to answer a

ranking query.

Before proceeding, we formally define a top-k or ranking query.

Given a relation R (tid, A1, A2, ... Am) and a query Q over R having the form of a

score function ℜ→××)A(dom...)A(dom:f m1 ,

Retrieve the top-k tuples from R

Having the k highest values according to the scoring function of Q.

In this Chapter, we first describe the related literature and background. For reasons of

presentation, we start our technical analysis in Section 2.2 with an analysis of the

problem of answering a top-k query through the usage of materialized views for the

2-dimensional case. Specifically, we provide theoretical guarantees for the suitability

of a materialized view in the answering of the query and propose the adequate

algorithm, the 2DSafArI algorithm. In Section 2.3 we generalize the problem and our

8

findings for the n dimensional case. Then, in Section 2.4 we deal with the problem of

answering top-k queries through the usage of more than one materialized views.

Firstly, we show that the usage of the union of the safe areas of two views do not add

better guarantees for the answering of a query. Secondly, we exploit the problem of

answering a top-k query by parallelizing its process and assigning different parts of

the query’s answer to a different view and then uniting the results. In Section 2.5 we

present the results of our experiments for our proposed methods. Finally, in Section

2.6 we summarize our findings.

2.1. Background and Related Work

In this section, we give an overview of the basic algorithms that answer a top-k query

over a relation R. Firstly we describe the algorithms that provide an answer to a top-k

query. Secondly, we describe the algorithms that make use of materialized views in

order to answer a top-k query. Although, we discuss the related work that pertains to

the problems of this thesis in detail, it is possible that a reader is interested for a more

extensive coverage of the area, outside the bounds of this thesis’ problems; in this

case, we refer the interested reader to a comprehensive survey by Ilyas et. al [IlBS08]

that covers the area of top-k query processing in a broad, yet structured perspective.

2.1.1. Algorithms for top-k Queries over Relations

In this section, we give an overview of the basic algorithms that answer a top-k query

over a relation R.

Fagin’s Algorithm (FA) [Fagi96], [Fagi98]

In 1996, R. Fagin published his seminal paper [Fagi96] in PODS on the topic of

combining fuzzy information from multimedia information systems. The problem that

Fagin attacks is motivated by the area of multimedia databases where a multimedia

information system integrates data that reside in different database systems and posed

queries ask for the k highest objects according to a monotone function over the fuzzy

sets that describe the multimedia object. The problem then is that a user wants to

score the tuples of the relation according to a scoring function (e.g., rank high the

9

photos with high amounts of blue and low contrast) and keep a fixed amount of them

e.g., the best (top) k tuples, according to their score. The main idea of the algorithm is

that every relation is accompanied by several sorted lists, one for each attribute. For

example, assume a relation R(id, x1, x2) from which we need to retrieve the top-k

tuples under the scoring function Q: min(x1, x2) where for each attribute there is one

sorted list (Figure 2.1). Then the goal of the proposed algorithm is to exploit the lists

in order to speed up the identification of the top-k tuples. Formally, the problem

addressed by Fagin is as follows. Given a relation R (tid, A1, A2,…, Am), from which a

set of sorted lists L={(tid, Ai)|tid, Ai∈R} ∀Ai ∈R is formed and a query scoring

function g(X) such that g(X) is a monotone aggregation function, Fagin’s algorithm

FA retrieves the top-k tuples of R.

Definition 2.1 (Monotone Aggregation Function). A scoring function g(X) is a

monotone aggregation function if for any tuple t(x1, …,xm) the following hold

1. g(t) is an aggregation function over the attribute values of the tuple t and

2. if for every attribute value xi of tuple t and x’i of tuple t’ such that xi ≤ x’i , then

g(t) ≤ g(t’) (monotone).

R Sorted X1 Sorted X2

ID X1 X2

a 0.9 0.85

b 0.8 0.7

c 0.72 0.2

.

.

.

.

.

.

.

.

.

.

.

.

d 0.6 0.9

Figure 2.1. Example of Sorted Lists of a Relation’s Attributes.

The FA algorithm consists of a three-step process.

(d, 0.9)

(a, 0.85)

(b, 0.7)

(c, 0.2)

.

.

.

(a, 0.9)

(b, 0.8)

(c, 0.72)

(d, 0.6)

.

.

.

10

• First, do sorted access to each of the m sorted lists, until there are at least k tuples

seen in each of the m lists.

• Secondly, for each tuple X seen, do random accesses to each of the lists to find the

i
th

 attribute of that tuple, which is xi.

• Thirdly, for each X seen, compute its score g(X) =g(x1, x2… xm). The output is the

ordered set {(X, g(X) |X ∈Y} where Y contains the k tuples with the highest scores.

FA is correct when g is a monotone aggregation function. The properties for function

g are important in the sense that they assure that all tuples not seen under sorted

access do not participate in the top-k tuples.

Threshold algorithm (TA) [FaLN01] [GüBK00] [NeRa99]

FA is optimal in high probability sense whereas, the threshold algorithm is instance

optimal. Similarly to FA, TA can be applied over a relation having m attributes. TA is

expressed through a three-step process: First do sorted access in parallel to each of the

m sorted lists. For each tuple X seen under a list, do random accesses to all the other

lists to find the scores xi

of X. Compute the score g(X) =g(x1, x2… xm) of the tuple X

and remember X and its score if it is one of the k highest. Secondly, define the

threshold value τ as g(x1, x2… xm) where xi is the score of the last tuple seen under

sorted access to each of the lists. Halt when at least k tuples have been seen with score

at least equal toτ. The output is then the ordered set {(X, g(X)| X∈Y} where Y contains

the k tuples that have been seen with the highest grades. TA is correct when g is a

monotone aggregation function.

TA is correct when g is a monotone aggregation function. In addition, [FaLN01] have

proved that TA is instance optimal. An algorithm B is instance optimal over a class of

algorithms A and a class of legal inputs D to the algorithms when B∈A and if for

every A∈A and for every D∈D, we have cost (B, D) =O (cost (A, D)), where cost (B,

D) is the middleware cost incurring by running the algorithm B over database D.

11

Variations of the Threshold Algorithm

Apart from TA algorithm, there were a number of variations proposed by researchers.

The NRA algorithm proposed by [FaLN01] and the LARA algorithm proposed by

[MCYC06] finds the top-k tuples by conducting only sorted accesses and without

supporting random accesses over the relation R. The top-k tuples are retrieved but

their actual scores may not be reported, since the algorithm retrieves the tuples based

on bounds of their scores. Moreover, [FaLN01] describe the TAz algorithm that is a

variation the TA algorithm in case sorted accesses are prohibited to all of the sorted

lists. In addition, [FaLN01] describe the TA-θ algorithm that is an approximation of

the TA algorithm. Specifically, TA-θ finds a θ approximation of top-k tuples in the

sense that the algorithm’s stopping condition is reached when at least k tuples with

score at least equal to τ / θ are retrieved. Finally, [FaLN01] also describe the CA

(Combined Algorithm) algorithm that allows random accesses but takes into

consideration the cost of a random access relatively to the cost of a sorted access.

2.1.2. Algorithms for top-k Queries over a Relation and Materialized Views

FA and TA are two well-known algorithms that solve the problem of answering top-k

queries over a database with a quite good performance. The research community was

quick to provide additional means for the computation of the top-k tuples of such a

query via the exploitation of indices or/and materialized views. In the setting of

materialized views, results of previous top-k queries are stored in the form of

materialized views. Then, a new top-k query may be answered through materialized

views resulting in better performance than making use only of the base relation from

the database.

The Onion Technique: Indexing for Linear Optimization Queries [CBC++00]

The onion technique [CBC+00] consists of the so called onion indices that involve

layered convex hulls. Specifically, assuming that each tuple is represented as a point

in the N dimensional space, with a dimension representing the values of an attribute,

the onion indices are a set of layered convex hulls of these points (Figure 2.2). These

convex hulls can be used in order to retrieve in a consecutive way the top-1 tuple, top-

2 tuple and so on until all top-k tuples are retrieved. The top-1 tuple is retrieved by

12

exploiting the outmost convex hull, the top-2 tuple is retrieved by exploiting the

remaining points of the outmost convex hull along with the points of the next layered

convex hull and so on, and until all top-k points are retrieved. Since this method

consists of an indexing technique, it provides performance gains. Nevertheless the

main drawback of this technique is the fact that it cannot be used when the top-k

query involves constraints such as predicates on attribute values. Also, the

construction of the convex hulls is time consuming and thus it is not suitable

especially in the presence of updates in the relation.

Figure 2.2. Convex Hulls in 2 Dimensional Space.

Rank Join Indices [TPK++03]

Apart from the Onion indices, the Rank-join indices [TPK+03] is another type of

indices for the retrieval of top-k results. Tsaparas et al. ([TPK+03]) solve the problem

of top-k query answering under the following setting:

Given Two relations R(A1, A2, … An), S(B1, B2, …Bm) with A1 and B1 being rank

attributes, from which a new relation R ⊳⊲θ S (A1, B1) is obtained by joining

R and S over the attributes A2, …An and B2, … Bm.,

Find the top-k tuples from R ⊳⊲θ S according to a linear scoring function over the

attributes A1 and B1.

13

The problem addressed consists of two sub-problems. The first sub-problem is to

prune unnecessary tuples that will not be part of the top-k answer prior to the join

result. The second sub-problem is to index and materialize the remaining tuples in

order to answer any top-k linear query. In order to retrieve the top-k tuples from the

join results there is no need to join all tuples from R with all tuples of S. Thus, the first

sub-problem is to prune the join results. Given a relation R of size n (i.e., |R| = n) and

a relation S, in order to find the top-K tuples of the joined results, we can join each

tuple in R only with the top-K tuples of S. Thus, in the worst case, the join result will

produce n·K tuples instead of |R|×|S|. In addition, if a tuple in the joined result is

dominated by at least K tuples then this tuple can be excluded from the joined (n·K)

tuples since this tuple will never be part of any top-k answer with k ≤ K. For a tuple t

(s1, s2) in the 2-D space, t is dominated by t’ (s’1, s’2) if and only if s1≤s’1 and s2≤s’2.

In order to retrieve the top-K tuples from R ⊳⊲θ S, the two initial steps are:

a. Find n·K joined tuples, denoted as C and

b. Exclude from C the dominated tuples, i.e., exclude all tuples that are

dominated by at least K tuples from C, this new set is denoted as DK.

Figure 2.3. Vector Representation of Scoring Function and Rank Attributes.

For any linear function f and a value k≤K, the top-k tuples of R ⊳⊲θ S in regards to f

can be retrieved by only taking into consideration tuples in the set DK. So, the second

sub-problem is to manage to index-materialize DK in order to answer any top-k linear

14

query (with k≤K). Assume that any tuple from DK, is represented as a point in the 2-D

space whose dimensions are the two rank attributes A1 and B1. Any linear scoring

function f = w1·x +w2·y is represented as a vector beginning from the origin of the axes

and ending at the point (w1, w2). The score of a tuple t in regards to a scoring function

f is found by computing the length of the projection of tuple t over the vector f as

shown in Figure 2.3.

The ordering of the tuples in regards to the scoring function of f can be found by

ranking the length of the projections of the tuples over f. The problem is to determine

how the ordering of tuples alters when the scoring function f sweeps the 2-D space.

The 2-D space is swept by using a vector of increasing angle in order to represent any

possible linear scoring function by changing the weight factors of f. Thus, the scores

of a tuple t in regards to any linear scoring function f can be materialized. The

ordering of the tuples from Dk in regards to a scoring function f can be found by

ranking the length of the projections of the tuples over f. The problem is to determine

how the ordering of tuples alters when the scoring function f sweeps the 2-D space.

Figure 2.4.Possible Orderings of Tuples t1 and t2. (a)

Assume two tuples t1 and t2 with t1t2 being the line segment of the two tuples. In case

the slope of t1t2 is positive (Figure 2.4a), then the ordering between t1 and t2 is the

same for all possible scoring functions. In case the slope of t1t2 is negative (Figure

2.4b), then the ordering between t1 and t2 is reversed depending on the position of the

15

vector f. For a vector f being positioned “lower” from the perpendicular line to t1t2 and

a vector f’ being “upper” from the perpendicular line to t1t2 the ordering of the two

tuples t1 and t2 is reversed for these two vectors.

For each pair of tuples, the separating vector is constructed. The separating vector of

two tuples t1 and t2 is the vector which is perpendicular to the line segment t1t2. The

set of all separating vectors for the tuples from the set DK is denoted as V. In addition,

the separating vectors in V are sorted in descending order in regards to the angle of the

separating vector with the X-axis. The scoring function f sweeps the 2-D plane staring

from the X-axis towards the Y-axis. When f meets a separating vector the new

ordering of tuples is computed and materialized. Thus, if there are M separating

vectors, the space is partitioned into M+1 regions. For each region the ordering of

tuples is pre-computed and materialized. Therefore, when a top-k query with a linear

scoring function arises, it is only needed to find the position of f in regards to the

separating sector of the M+1 sectors of space. By determining the separating region,

the answer of the top-k query is already pre-computed. In order to efficiently

determine the separating region in which a new posed top-k query belongs, the

authors propose an index structure. The index structure consists of B-tree index that

contains all M separating vectors along with their top-k set, ordered according to the

vector’s angle in regards to the X-axis. Thus, when a new top-k query arises, the angle

of the scoring function’s vector is used and searched over the B-tree index, where

then the corresponding top-k set is returned.

Prefer [HrKP01], [HrPa04]

The PREFER system introduced in [HrKP01], [HrPa04] answers preference queries

through the usage of materialized views in a pipelined way. PREFER consists of a

pre-processing step, the ViewSelection algorithm and the core algorithm

PipelineResults. In the pre-processing part, PREFER decides which views should be

materialized according to the system’s performance requirements and a given relation.

Thus, firstly PREFER executes the ViewSelection algorithm. Given a

multidimensional space of k dimensions, each normalized in the interval [0, 1] and a

set of views V over this multidimensional space, the ViewSelection algorithm

computes a set of views V’, VV ⊆′ that maximizes the number of points covered in

16

[0, 1]
k
 . Each view contains all tuples from the relation ordered according to each

scoring function. In order to answer a new posed top-k query, the PREFER system

selects the materialized view that best matches the new top-k query. Since every

materialized view contains all tuples of the relation, any one of them could be used

and would definitely provide the answer to the new top-k query. The materialized

view that best matches the new query is the one that will access the less number of

tuples in order to provide the new answer.

The answer of the new query q is retrieved in a pipelined way through the tuples of

the materialized view v. The goal of the PipelineResults algorithm is to rank the tuples

of a relation R(A1, ...,Am) of m attributes, according to a query q. The query q is

characterized by a preference vector. A preference vector is of the form (w1, w2,

…wm) where each coordinate wi denotes the preferred weight of the i-th attribute.

Therefore, the scoring function of q becomes ∑ = ⋅m
i ii Aw1 . Algorithm PipelineResults

employs a views Rv(tid, scorev) that contains the tuples of R, ranked by another

preference vector v. Assume that the first set of tuples seen from the view v contains l

tuples. In case l ≥ k the answer of the top-k query q can be computed. In case l < k, the

next set of tuples from v are scanned. This procedure is repeated until k tuples have

been seen. For each set of tuples from v, the number of tuples seen is based on the

following property. Assume a top-k query q over a relation R with a scoring function

Fq and a materialized view v with the scoring function Fv that orders the tuples of R.

The l
th

 tuple from the first set of tuples seen from v is the maximum value of T q,v
1

such that for every t in R : Fv(t) < T q,v
1

⇒ Fq(t) < Fq (tv
1) where tv

1 is the top tuple in

v. For any next iteration, tuple t v
1 is replaced with the tuple that has the highest score

in v and has not been seen yet. The maximum value 1
q,vT is called the watermark

value. The watermark value is a score with respect to the ranking function of the

materialized view that determines how deep in the ranked materialized view we

should go in order to output the top result tuple of the query This way, the PREFER

system can answer a top-k query by making use of one materialized view from a set of

views that rank the entire relation R according to different linear scoring functions.

17

Linear Programming Adaptation of the Threshold Algorithm LPTA [DGKT06]

The LPTA algorithm is an algorithm that combines the results from materialized

ranking views in order to answer a top-k query. Informally, a materialized ranking

view is the materialized results of the tuples of a previously posed top-k query

according to a linear scoring function. In other words, the LPTA algorithm answers a

top-k query by making use of the tuples stored in materialized views Therefore, for

each top-k query LPTA needs to solve two sub-problems: (a) Find the most suitable

materialized views in order to answer the query and (b) retrieve the answer of the

query by exploiting the materialized views chosen from the previous sub-problem.

LPTA is based on the TA algorithm and is applied on a set of materialized views in

order to answer top-k queries. For a relation R containing an attribute Ai, a base view

Vi is a materialized view of the form (id, Ai) ordered over all the tuples of relation R.

In the sequel we assume a set of materialized views V=(V1, …Vr) that contain the base

views. LPTA is implemented through a two-step procedure.

The first procedure of LPTA is the SelectViews algorithm. Algorithm SelectViews(V,

Q) determines the most efficient subset U⊆V over a set of materialized views V, in

order to execute a given query Q. The set U is the most efficient subset of V in the

sense that it produces the answer to the top-k query most efficiently among all

possible subsets of V. The SelectViews algorithm is based on a simple greedy heuristic

procedure that selects the subset U that has the cheapest cost.

Secondly, the LPTA algorithm obtains an answer to Q combining all the information

conveyed by the views in U. Each view V(tid, scorev) is a set of pairs of the form

(tuple identifier, score of that tuple) using the view’s scoring function. LPTA starts

with an empty top-k buffer and proceeds in the following four steps.

1. It does sorted accesses in parallel to each of the views.

2. For each tuple X read from a view, random accesses are done on relation R in

order to find the scores xi

of X.

3. The score t(X) =t(x1, x2… xm) of the tuple X in regards to the query Q is

computed and the top-k buffer is updated.

4. The stopping condition is checked.

18

In order to check the stopping condition, a linear program is solved. Assume that the

last tuple read from each view Vi has score scorei in regards to its scoring function

SFi. The objective function of the linear program is the query’s score function. The

constraints for the linear program are the inequalities SFi≤ scorei. The stopping

condition holds when the solution of the linear program is at least equal to the

minimum value of the top-k buffer. In case the set of views U is equal to the set of

base views then LPTA becomes the TA algorithm.

The key intuition of the LPTA algorithm can be visualized through a geometric

representation.

Assume a relation R(id, X, Y) where without loss of generality the domains of X and Y

are normalized over the interval [0, 1]. Apart from the base views Vx and Vy, assume

two materialized views Vu(id, Score1) and Vd(id, Score2). Scores Score1 and Score2 are

defined as linear functions over the attributes of the relation R. In addition, assume a

query Q with a linear scoring function as well. The scoring functions of the views and

the query can be depicted as lines. In particular, the line of a linear scoring function of

the form w(a⋅x + y) = score is depicted as: y = a
-1

 ⋅x. Since the line is perpendicular to

the scoring function the product of their slopes should be equal to -1. The linear

scoring function is depicted as its perpendicular line for the reason that the score of a

tuple t(id, x, y) in regards to the scoring function can be found by projecting that point

over the corresponding line. In Figure 2.5a we depict a view Vu and a query Q via the

corresponding lines. Assume that the tuple with the k-th largest score according to Q

is denoted as M. In addition, AB denotes the line that passes through M and is

perpendicular to the line Q. Then, the top-k tuples according to Q belong in the region

of the triangle ABR. This is due to the fact that top-k tuples will have a score higher

than the score of the k-th tuple. The only possible points that can have a higher score

than the point M are contained in the triangle ABR.

Assume now we want to answer the query Q by using the tuples stored in the

materialized view V. LPTA performs sorted accesses over the tuples of V. This can be

visualized as sweeping a line perpendicular to the vector of the view towards the point

O(0, 0). The order of tuples read by LPTA through sorted accesses over V is identical

19

to the order of the points met by sweeping the line towards O. This means that the

number of sorted accesses performed through the algorithm is the number of points

that belong in the region of the triangle A1BR for view Vu and the number of points

that belong in the region of the triangle AB2R for view Vd.

In case only Vu is available, the stopping condition for the algorithm is reached when

the sweeping line crosses position A1B. This occurs because, the view should

encounter all tuples whose score in respect to Q are at least equal to the score of the

point B. Remember that points M and B have the same score in regards to Q and

therefore, the region below the line A1B does not contain any tuples with score greater

than the score of M. Similarly, in case only view Vd is available, the stopping

condition is reached when the sweeping line crosses position AB2. In case both views

Vu and Vd are available, the stopping condition is reached when the sweeping lines

intersect in a point that lies on the line AB where in Figure 2.5c is denoted as S. In the

first case, where only Vu is used for answering Q, the number of sorted accesses

performed through LPTA is the number of points that belong in the region of the

triangle A1BR. Correspondingly, if only Vd is used, the number of points that belong in

the region of the triangle AB2R is the number of sorted accesses LPTA will perform.

So far, in the above we describe the intuition of the geometric representation of the

LPTA algorithm in order to answer a top-k query through the usage of the tuples

materialized in a view. In the following, we see how the LPTA algorithm chooses the

most suitable materialized views to use in order to answer the top-k query. The best

choice of the set of views that will answer Q depends upon the number of points that

will be accessed, since the points accessed is identical to the number of sorted

accesses LPTA will perform. Assume that the number of tuples visited when only Vu

is used (i.e., the number of points that belong in the triangle A1BR) is T1. The number

of tuples visited when only Vd is used (i.e., the number of points that belong in the

triangle AB2R) is denoted as T2. The number of tuples visited when both views Vu and

Vd are used (i.e., the number of points in the region A1SB2R which is the shaded area

in Figure 2.5c) is denoted as T3. Then, Vu will be preferred in case T1 is less than T2

and less than T3. Respectively, view Vd will be preferred when T2 is less than T1 and

less than T3. Finally, both views would be preferred in case T3 is less than T1 and T2.

20

(a) The query is lower than the view (a) The query is higher than the view

(c) Two views for the answering of a query

Figure 2.5. Visual Demonstration of the LPTA Technique for Query Answering top-k

via Views.

2.1.3. Related Problems in Different Context

Top-k queries have been extensively studied in research in centralized [ChGr99]

systems and have proved very beneficial for applications such as multimedia retrieval

and digital libraries. The growth of information available to users through internet has

emerged researchers to support top-k queries in different contexts such as distributed

systems and Peer to Peer systems. In addition, in an effort to improve performance

issues researchers have studied the problem of answering top-k queries by making use

of caching techniques.

21

Distributed Environments

Top-k queries have been extensively studied in research in centralized [ChGr99], as

well as distributed environments such as Peer to Peer systems. Due to the growth of

information available and the increased number of users accessing them over the

Web, distributed systems have been proved to be very popular. Therefore, there is an

emergence demand of supporting top-k queries in distributed environments. Most

research has focused on answering top-k queries over a distributed system where data

are partitioned either vertically [MaBG04, ChGM04, GuBK00, MiTW05, CaWa04],

or horizontally [BNST05, VDNV08]. However, the common factor is that the

relational data are distributed over sources and a newly posed query accesses part of

them in order to retrieve the answer. The focus of these works has been the

optimization of response times and scalability. Some techniques use a centralized

node that describes which source contains which partition of data [CaWa04] or

employ indexing techniques of the distribution of the data [MiTW05]. Other

techniques adopt a model that contains super-peers that cache results of their peers

[VDNV08], or address a network topology such as HyperCup [BNST05].

Caching Techniques

One way of overcoming problems such as network communication overhead and

response times is through the usage of caching techniques. Caching previously posed

queries and their results is an efficient method for dealing with issues of network

overhead either in centralized systems [TrNY04] or in distributed systems such as

P2P [SGAE04], where the latter support range queries. The exploitation of the result

set of a previous query for the answering of a subsequent query is frequently

encountered in the research literature (see for example [Koss00] and [Graef00]) under

the name of query or view caching. Once a query is maintained in main memory for

this purpose, it practically becomes a materialized view. Considering the case of top-k

queries, in [ZhTZ07], the authors describe a system called BRANCA that answers

top-k queries over an acyclic network of servers. The main idea of this system is

based on the rationale of caching the results and information from previously posed

top-k queries in order to make use of them for future ones. Specifically, each server

contains a cache for each of its sub-graphs over the network. The cache retains results

of previously posed top-k queries over the specific sub-graph. This technique results

22

in less communication cost over the network when a new top-k query arrives.

[VDNV08] propose a system called SPEERTO that supports top-k query processing

in a distributed environment making use of caching techniques through K-skybands.

In this line of work, caching queries and their results is done through materialized

views. The problem of answering queries using materialized views has been studied

extensively for query optimizing, data integration, data warehousing and semantic

data caching in client-server systems as well as top-k querying such as in [DGKT06]

described earlier.

2.1.4. Research Opportunities and Comparison to Related Work

Related work has extensively dealt with the problem of answering top-k queries under

various contexts [IlBS08]. To this end, previous efforts have provided various

algorithms for efficiently answering such queries by making use of indexing

techniques or taking into consideration results from previously materialized ranked

views. In addition, top-k queries have been studied under the context of distributed

databases and through caching techniques. However, there are still problems that

remain open in the context of top-k query processing. Following, we highlight a set of

interesting, fundamental problems that remain open in the context of query processing

in the presence of materialized views for top-k queries.

1) Surprisingly, a missing piece in the related literature concerns the

establishment of theoretical guarantees for the suitability of a materialized top-

k view in order to answer a newly posed top-k query, regardless of probability

estimations or statistical properties of the underlying dataset.

2) In a similar vein, another absent piece of theoretical groundwork concerns the

efficient answering of top-k queries from materialized top-k views solely,

without accessing the base relation over which the views are defined.

3) Finally, a theoretical analysis on the appropriate and needed number of

materialized views for the answering of a top-k query is also missing from the

current body of knowledge.

In this Chapter, we study the problem of answering top-k queries by making use of

materialized ranked views in order to provide better performance. To this end we

23

provide a theoretical analysis based on geometric representation of the problem of

whether and when a materialized view can be proved useful for answering such

queries, something that has been missing from related work.

In the related work, the LPTA algorithm dealt with the problem of answering top-k

queries through materialized ranked views. According to the estimation on the score

of the last tuple of the query LPTA decides on the suitability of a materialized view in

regards to the query. Specifically, [DGKT06] have provided the algorithm

SelectViews that selects a suitable set of views according to the query. In order to do

so, they estimate the score of the last tuple (denoted as topkmin) in regards to the query

Q. The estimation is computed through the usage of histograms for the distribution of

the data. The SelectViews algorithm is based on this estimation. Therefore, there is no

theoretically established guarantee that the selected views will be able to answer the

query. To overcome this problem we conduct a theoretical analysis and provide

theoretical guarantees along with the appropriate theorems that state whether and

when a materialized ranking view is suitable for the answering of a top-k query.

In fact, [DGKT06] provide two variants of how the set of views are selected. In the

first case, views contain all the tuples from relation R ranked according their scoring

function. Since the views contain all the tuples, query Q will definitely be answered

because there will not be any missed tuples that should be contained in the top-k

answer of Q. However, an error in the estimation of topkmin, might lead to a selection

of views that is not the best choice in regards to execution time. In the second case,

views only contain a portion of the tuples from relation R. Actually, they contain the

top-k’ tuples according to their scoring function. An error in the estimation of topkmin

might cause the inability to answer Q. This is because, there might be tuples not

included in the set of views selected, which however should be part of the top-k

answer of Q. In order to overcome this problem, [DGKT06] have proposed the set of

selected views to always contain the base views Vx and Vy. For a query Q over two

attributes namely x and y, Vx is a materialized view of the form (id, x) ordered over all

the tuples of relation R. Similarly, Vy is a materialized view of the form (id, y) ordered

over all the tuples of relation R. Therefore, even if the selected views apart from Vx

and Vy cannot provide an answer to the query Q, then the usage of the base views will

24

guarantee it. In contrast, we propose algorithms that according to the theoretical

establishments we provide, we retrieve the answer to a top-k query from exclusively

the results of a materialized view, when this is possible, without having to scan all the

tuples of the relation R.

Moreover, the LPTA algorithm selects the suitable views (usually more than one) in

order to provide the answer to the top-k query. We theoretically prove that the

theoretical guarantees of more than one views in regards to a top-k query do not offer

further usefulness for answering the query compared to the guarantees of a single

view. Specifically, through these deliberations we overcome the problems of the

related work and provide answers to the remaining open problems.

2.2. Adequacy of a Materialized View to Answer a Query for the 2D Case

In this section, we provide theoretical and algorithmic results for answering top-k

queries using materialized views. For reasons of perception and intuition we initially

examine the problem of answering top-k queries of a relation in the 2-dimensional

space. In the next sections we generalize the problem for the n-dimensional space as

well. We start with our fundamental result and then proceed to investigate why our

basic theorems could prove to be too strict. Finally, we present a simple algorithm for

deciding the usability of a view for a top-k query.

2.2.1. Problem Formulation

Given a relation R (id, X, Y) a materialized view V (id, X, Y, s) over R having the

top-n tuples from R where s = w (a⋅x +y) and w, a being positive parameters

and a query Q over R having the form of a score function sQ where sQ = wQ

(aQ⋅x +y) and wQ, aQ being positive parameters,

Retrieve the top-k tuples from R

Having the k highest values according to the scoring function of Q.

Assume a relation R(ID, X, Y) where, without loss of generality, the domains of X and

Y are normalized over the interval [0, 1]. In addition, we assume that the weight

25

factors of the linear scoring function are positive. In case the weight factors are

negative, we can always convert the equivalent scoring function to one with positive

weight factors with suitable transformations. Thus, without loss of generality we

assume the attribute values of a tuple being normalized into the interval [0,1] and the

weight factors of the scoring functions of the query as well as the materialized view

being positive parameters. This way, any tuple of the relation R can be represented as

a point (Figure 2.6). The area that we are interested in is the area that contains all

tuples from R, and we call this area the active area. The active area is formally

defined from the following definition.

Definition 2.2 (Active Area). The rectangle defined by the line segments OX, OY,

XR, YR (where O(0,0) X(1,0), Y(0,1), R(1,1)) is the active area that contains all tuples

of a relation a relation R(ID, X, Y) where without loss of generality the domains of X

and Y are normalized over the interval [0, 1].

In addition, assume a top-n materialized view V(ID, X, Y, s), with the score s being

defined as s = w (a⋅x +y) and w, a being positive parameters. Then, this equation is

characterized by a line y = a
-1

⋅x. The score of any tuple in R in regards to the view V

can be found by projecting the point that represents this tuple over the line that

characterizes the view. We define as the border line LV of the view V, a perpendicular

line over the line y = a
-1

⋅x that splits the active area into two sub-areas. Observe in

Figure 2.6 the border line LV that splits the area into two sub-areas from which the one

is actually the area that contains all tuples materialized in the view. Specifically, the

sub-area above the border line LV contains all top-n tuples of the view and we call this

sub-area the extent of V.

Definition 2.3 (View Border Line LV). The border line LV, of a top-n materialized

view V having the scoring function sV=wV(aV⋅x+y) and tn being the n
th

 tuple of V, is

the line drawn perpendicular to the line that describes the scoring function of V (y =

aV
-1

⋅x) and passing from the point sV(tn) (with xNV, yNV being the points where it meets

the axes X, Y).

26

Definition 2.4 (Extent of V). The area defined above the line LV towards the point

R(1,1) (within the active area) is the extent of the materialized view that contains the

top-n tuples with respect to V.

Assume also the query Q(ID, X, Y, sQ) with the score sQ being defined as

sQ=wQ(aQ⋅x+y) and wQ, aQ being positive parameters. Again, this equation is

characterized by a line y = aQ
-1⋅ x. Assume that the extent of V has n tuples and the

query Q requests k ≤ n tuples. The question is whether it is possible to answer Q using

only the tuples materialized in V. Similar to the border line LV we define the border

line of the query, this time within the extent of V. Specifically, the border line LQ of

the query, as shown in Figure 2.6, splits the active area into two sub-areas such that

the sub-area above the border line LQ contains all those tuples of R with the higher

scores in regards to the query that are also part of the view’s extent. In other words,

the border line LQ depicts a border of the active area such that any point above LQ will

e the query’s answer and simultaneously will be part of the view’s result.

Definition 2.5 (Query Border Line LQ). The border line LQ, for a combination of a

view V and a query Q, is the line drawn perpendicular to the line that describes the

scoring function of the query Q (yQ = aQ
-1

⋅x) and meets the view’s border line LV in

one point such that any point of LQ within the active area belongs to the extent of V.

The sub-area above the border line LQ within the extent of V is the area that can be

proved helpful in order to answer a top-k query by exploiting only the tuples

materialized in V. This occurs from the fact that the points belonging above the border

line LQ are all points from the relation that are contained in the materialized view and

will definitely be part of the top-k query’s answer. We refer to this area as the safe

area, shown in Figure 2.6 as the shaded area.

Definition 2.6 (Safe Area). The area defined above the border line LQ towards the

point R(1, 1) within the (active area) is called the safe area of the query Q with respect

to the materialized view V.

27

Figure 2.6. Answering a Query Q via a View VU when the View is “Higher” than the

Query.

We will explore the problem of answering a top-k query Q through the tuples

materialized in a view based on its diagrammatic representation and we will discern

two cases: in the first case, the line of the view is higher than the one of the query, in

the second case, the reverse holds.

2.2.2. The Case when the View is “Higher” than the Query

In this case (Figure. 2.6), we assume that aQ
-1
≤ a

-1
 (which means that V is drawn

“higher” than Q in their graphical representation). We will employ the subscript U for

the entire notation concerning view V and refer to it as VU(ID, X, Y, sU), with the score

sU being defined as sU=wU(aU⋅x+y).

Let tn be the n-th tuple materialized in VU. Assume that tn has a score s(tn). Let LU:

xNUyNU be the border line of V passing from point s(tn) (with xNU, yNU being the points

where it meets the axes X, Y). The area above the line LU contains the top-n tuples

with respect to VU. Now, take the line LQ: xNUyQ, which is the border line of Q and

starts at the point xNU. The safe area of Q with respect to V contains points that belong

both to Q and VU.

28

Lemma 2.1. It is possible that VU contains more than k tuples but misses the answer

to Q.

Proof. Assume a tuple t of R (Figure 2.7, near the X-axis) that (a) does not belong to

the extent of VU and (b) should be part of Q’s top-k answer set. In this case, since t

does not belong to VU, it is lower than the line LU. Assume also tuples t1, t2 placed as

depicted in Figure 2.7. The scores of these tuples are high enough so that they can be

included in the top-n for view VU (remember that the score of a tuple with respect to a

query/view involves projecting the tuple to the line of the query/view). Still, tuple t

has a higher score than all of these tuples with respect to query Q (observe that the

dotted line which starts from t and is perpendicular to Q produces a higher score than

the respective line for t2). Observe that this situation includes the tuple tn which is the

n-th tuple of VU. Therefore, VU is insufficient to answer Q. �

Figure 2.7. Example of Why a View V is Not Always Reliable for Answering a Query

Q.

Theorem 2.1. VU can answer Q if the safe area of Q in regards to VU contains at least

k points.

Proof. We will prove the theorem by contradiction. Assume a tuple t of R (Figure 2.7)

that (a) does not belong to VU and (b) should be part of Q’s top-k answer set. In this

case, since t does not belong to VU, it is lower than the line LU. Still, LU is always

lower than LQ, therefore, the projection of t over line Q will also be lower than LQ. If

29

the safe area has more than k points, these k points all have scores (projections to line

Q) higher than t, with respect to Q, which cannot be true, since we assume that t

belongs to the top-k answer set of Q. �

It is interesting to observe that (a) the inverse of Theorem 2.1 does not always hold,

and (b) how can we decide that a point belongs to the safe area. We discuss these two

aspects in the following sub-sections.

2.2.3. Strictness of the Suitability Theorem

It is not possible to infer the inverse of Theorem 2.1. Even if the safe area does not

contain k tuples it would still be possible to answer Q with tuples that belong to VU if

a critical area below the line VU does not contain any tuples. For example, assume the

case where tuple t was not present in R, no tuple belongs to the safe area and the

query Q asked for top-3 tuples. Then tuples t1, t2, tn can answer Q since there are not

other tuples below line LU. Still, the main problem is that we need to refer to R (or to

some sketch of it) to find whether such tuples lying below LU exist or not. In fact, it is

not even necessary to search the whole area below LU, but rather a specific subset of

it. In our example, it is sufficient to check whether the area of the triangle (xNUx1p1)

contains any tuples or not.

Definition 2.7 (Critical Area). The area in the active region defined by the lines LV

and the line that produces the lowest possible score for Q from the tuples in V is the

critical area of Q in regards to V.

The following theorem formalizes the conditions under which a view can answer a

query even if it’s safe area is insufficient.

Theorem 2.2. It is possible that VU can answer Q even if there are less than k tuples in

the safe area. For this to hold, it is necessary that the critical area of Q with respect to

VU is void of tuples.

30

Figure 2.8. At Least k Points in the Safe Area of a View V Make it Reliable for

Answering a Query Q.

Proof. The point x1 is the point that meets the X-axis and belongs to line L1 that

corresponds to the tuple in VU with the lowest score with respect to Q (here, in the

example of Figure 2.8, tuple t1). The point p1 is the point where this line meets LU. In

other words, we need to find the line that produces the lowest score for Q, for all the

tuples in VU. If the triangle defined by the X-axis, LU and L1 has no points, then the

points within VU are the ones producing the lowest possible scores for Q. So, if VU

contains more than k points, it can answer Q. �

2.2.4. Computation of Offsets and Safe Areas

A technical point has to do with whether a point belongs to the safe area or not. The

line LQ is defined by the equation y= - aQ ⋅ x + aQ⋅

xNU (easy to check: being

perpendicular to line Q, the product of line Q with the line LQ must be -1; then the

offset can easily be computed by putting y = 0 for LQ). Assume a tuple tb(xb, yb). Tuple

tb belongs to the safe area if yb ≥ -aQ⋅xb + aQ⋅xNU.

Quite similar to the above point is the computation of the point xNU which is needed

for the equation of the line LQ: assume we know the n-th tuple of VU, tn(xn, yn). Then,

this belongs to the line LU that is perpendicular to VU, therefore with an equation of

31

the form y= -aU⋅x + offset. Since tn belongs to this line, offset = yn + aU

⋅ xn. For y = 0,

we deal with the point xNU and then offset = aU ⋅

xNU, i.e., xNU = aU

-1
(yn + aU⋅

xn).

If one does not want to go through the computation of Q’s score for all the tuples of

VU, then another safe criterion would be to use xlast (Figure 2.8), which is the point of

the X-axis that corresponds to the line that gives the score for yNU with respect to Q. In

any case, this property can be used if one is interested in approximate results (in fact,

the smaller the area of the triangle, the higher the possibility that VU can answer the

query Q). Moreover, sketches of the data distribution in R can also help in deciding

whether the area is empty or not (and to what extent).

2.2.5. The Case when the View is “Lower” than the Query

In this case, we assume that aQ
-1

 ≥ a
-1

 (which means that V is drawn “lower” than Q in

their graphical representation). We will employ the subscript D for all the notation

concerning view V and refer to it as VD(ID, X, Y, sD), with the score sD being defined

as sD = wD (aD⋅x +y).

Figure 2.9. The Case where the View is “Under” the Query.

Similarly to the previous case, we can prove that (a) it is possible for view VD to omit

tuples that should belong to the extent of Q and (b) there is a safe area that can

guarantee that Q can be answered solely by VD. Again, we will employ the line (xND

32

yND) that passes from the n-th point of VD and gives its score (i.e., it is perpendicular

to the line of VD). We use point yND this time and take the line LQ: yND xQ that is

perpendicular to the line Q. The line LQ is defined by the equation y = -aQ ⋅ x + yND

and a tuple tb (xb, yb) belongs to the safe area above the line LQ if yb ≥ -aQ ⋅ xb + yND.

2.2.6. Special Cases

In the above we have assumed that the scoring functions of the views and the query

are in the form of w(a ⋅ x + y)= s. However, the scoring function of a view or a query

can be of the form score s = x or s = y. In this section, we describe these special cases.

(i) Assume a view with a scoring function of the form sV = yV (i.e., the attribute x does

not play any role in the computation of a tuple’s score). In such a case (Figure 2.10),

line LV is of the form y = yn. In addition, assume a query Q with scoring function

wQ(aQ ⋅ x + y)= sQ. Assume that the active domains of attributes X and Y are X∈[xmin,

xmax] and Y∈ [ymin, ymax]. Then, the safe area is above line LQ as usual.

Figure 2.10. Special Case where V is of the Form sV = y.

An even more extreme case is when both the view and the query ignore attribute x in

their scoring function (i.e., both aV = aQ = 0). In this case, both V and Q are found

over axis Y. Then, V can answer Q when it contains more tuples than what Q requests.

This is due to the fact that in such a case the scoring function of V is proportional to

the scoring function of Q.

33

Figure 2.11. Special Case where V is of the Form sV = x.

An intriguing situation arises when view V is found over the Y-axis and the query Q is

found over axis X. In other words, the view score sV is defined as sV= y and the query

score is defined as sQ = x. In this case, there is no guarantee that V can answer Q.

Assume the case where there exist tuples with very high X values and very low Y

values; then these tuples are the top-k tuples of the query; still due to their low Y

values they are outside the safe area border and not part of the view. Therefore, it is

obligatory to consider the full space as the safe area.

(ii) Assume a view with a scoring function of the form sV = xV (Figure 2.11). In such a

case, the line that is perpendicular to V and passes through the last tuple tn(xn, yn)

materialized, is of the form LV : x = xn. In addition, assume a query Q with scoring

function wQ(aQ ⋅ x + y)= sQ. Assume that the active domains of attributes X and Y are

X∈[xmin, xmax] and Y∈ [ymin, ymax]. Then, the safe area is above line LQ. LQ is defined

as the line that is perpendicular to Q and passes through the point p (xn, ymax).

Similarly to the previous case, we can encounter two extreme sub cases. The first of

these cases concerns the situation where the scoring function of the query has the

same slope with the query. Then, V can answer Q when it contains more tuples than

what Q requests for. This is because in such a case the scoring function of V is

proportional to the scoring function of Q. The second of these cases, concerns the

situation where the scoring function of the query has the parameter aQ = 0: again,

there is no guarantee that V can answer Q.

34

2D SafArI Algorithm

Input: A materialized view V(ID, X, Y, sU)
n, with its equation s

= w (a ⋅ x + y) and its n tuples,

A Q(ID, X, Y, sQ)
k, sQ = wQ (aQ ⋅ x + y), k ≤ n,

Output: a decision on whether Q can be answered by V along with

the population of V

Variables: a counter to count how many tuples V has inside the safe

area of Q

 Begin.

1. Let tn be the n-th tuple of V, tn(xn,yn)=V[n]

2. If (αQ
-1 ≤ α-1){

3. compute point xNU: xNU = a
-1 (yn + a⋅xn)

4. define line LQ as y = -αQ⋅x + αQ⋅xNU

5. }

6. else{

7. compute point yND: yND = yn + a⋅xn

8. define line LQ as y = -αQ⋅x + yND

9. }

10. for all tuples of V {

11. compute sQ(V[i])

12. if (sQ(V[i]) belongs above line LQ) counter++ ;

13. }

14. if (counter ≥ k) return(true);

15. else return(false);

 End.

Algorithm 2.1. 2D SafArI Algorithm

2.2.7. Algorithmic Results

Now, we are ready to give the 2D SafArI algorithm (2D Safe Area Illation algorithm)

an algorithm for deciding view suitability in the 2D case (shown as Algorithm 2.1)

that decides whether a 2D query Q can be answered by a 2D view V and populates Q

if the test is positive. As Figure 2.12 indicates, the complexity of the algorithm

depends on the number of tuples stored in the materialized view (i.e., the number of

iterations for the for loop in Algorithm 2.1).

35

Figure 2.12. All the Safe Area Should Possibly be Exhausted for the Determination of

the top-k Query Tuples.

2.3. Queries and Views with More than Two Scoring Attributes

The results of the previous sections can be generalized for an N-dimensional space. In

this section, we will discuss the suitability of views to answer queries when an

arbitrary number of scoring attributes is involved, explore special cases and provide a

simple algorithm to check the suitability of a view to answer a query.

2.3.1. Fundamental Results for the n-Dimensional Case

Assume a relation R(ID, X1, X2,…, XN) where without loss of generality the attributes

Xi are within the interval [0,1]. All tuples of R can be represented as points over an

N-dimensional space.

Definition 2.7 (Active Region). The hyper-cube that contains all points of the form

(x1, ..xN) with 0≤xi≤1 is the active region and contains all tuples of a relation a relation

R(ID, X1, X2,…, XN).

In addition, assume a materialized view of the form V (ID, X1, X2,…, XN, s) with score

s being defined as s = w (a1

⋅ x1 + a2 ⋅ x2 +… + xN). In an N-dimensional space, V can

be represented as a line with equations LV:
Nx

a

x

a

x
=== ...

2

2

1

1 . The score of any point t

36

from R can be found by projecting this point t over the line LV. Assume that the extent

of V has n tuples. Let tn be the n-th tuple in V with score sv(tn).

Definition 2.8 (HyperPlane PV). The hyper plane PV, with respect to a top-n

materialized view V having the scoring function sV = w (a1

⋅ x1 + a2 ⋅ x2 +… + xN) and

tn being the n
th

 tuple of V, is the hyper plane drawn perpendicular to the line that

describes the scoring function of V (LV:
Nx

a

x

a

x
=== ...

2

2

1

1) and passing from the point

sV(tn) (with x1V, x2V, …, xNV being the points where it meets the axes X1, X2, …XN

respectively).

Then, the hyper plane PV defined by the equation s = w (a1 ⋅

x1 + a2 ⋅

x2 + …+ xN)

which is perpendicular to line LV and contains tn, separates the space into two sub-

regions. Let one sub-region denoted as SRlow be the one defined from the hyperplane

PV and towards infinity, whereas the other sub-region SRhigh is the one defined from

the hyperplane PV and in the opposite direction towards the beginning of the axes.

Definition 2.9 (Extent of V SRlow). The area defined above the hyper plane PV

towards the point R(1,…,1) (within the active region) is the extent of the materialized

view that contains the top-n tuples with respect to V, denoted as SRlow.

Figure 2.13 depicts the plane PV in a three-dimensional space and the two sub-regions

that it defines. Observe that the plane PV is denoted as a triangle. This illustrates the

visible part of a plane intersecting all three axes when it is observed from the positive

sub-axes.

Assume also the query Q (ID, X1, X2,…, XN, sQ) with the score sQ being defined as sQ

= wQ (a1Q

⋅

x1 + a2Q ⋅

x2 +… + xN). Similarly, Q can be represented as a line with

equations LQ N

QQ

x
a

x

a

x
=== ...

2

2

1

1 . In addition, assume that Q requests k ≤ n tuples. The

question is whether it is possible to answer Q using only the tuples materialized in V.

Definition 2.10 (HyperPlane PQ). The hyper plane PQ, with respect to a materialized

view V and a query Q, is the hyper plane perpendicular to the line that describes the

37

scoring function of the query Q (LQ N

QQ

x
a

x

a

x
=== ...

2

2

1

1) and meets PV in one point such

that any point of PQ within the active region belongs in the sub region SRlow.

Definition 2.11 (Safe Area). The area defined above hyper plane PQ towards the

point R(1,…,1) within the active region is called the safe area of the query Q with

respect to the materialized view V.

Figure 2.13. The Two Sub-Regions Defined by PV.

Lemma 2.2. It is possible that V contains more than k tuples but misses the answer to

Q.

Proof. Assume tk is the k-th tuple of Q with score sQ(tk). Assume also a tuple t1 of R

that (a) does not belong to V and (b) should be part of Q’s top-k answer. Then, the

following inequalities hold for t1: sv(t1) ≤ sv(tn) and sQ(t1) ≥ sQ(tk). Assume also a tuple

t2 that belongs in the sub-region defined between the two hyperplanes PQ and PV.

Therefore the following inequalities hold for t2: sv(t2) ≥ sv(tn) and sQ(t2) ≤ sQ(tk) since

hyperplane PQ lies above the hyperplane PV. By combining the four inequalities we

get the following: sv(t1) ≤ sv(tn) ≤ sv(t2) and sQ(t2) ≤ sQ(tk) ≤ sQ(t1). This indicates that

the view contains more than k tuples but there are still other tuples (i.e., t2) not

belonging to the view that are in the top-k tuples of Q. �

38

Theorem 2.3. V can answer Q if the safe area contains at least k points.

Proof. By contradiction. Assume a tuple t of R that (a) does not belong in V and (b) t

should be part of Q’s top-k answer set. Similarly with Theorem 2.1, since t does not

belong in V, it lies in the sub-region SRhigh. However, the hyperplane PV is always

below the hyperplane PQ, therefore, the projection of t over line Q will also be lower

than PQ. If the safe area has more than k points, these k points all have scores

(projections to line LQ) higher than t, with respect to Q, which cannot be true, since

we assume that t belongs to the top-k answer set of Q. �

Much like the case of two dimensions, it is not possible to infer the inverse of the

theorem. Even if the safe area does not contain k tuples it would still be possible to

answer Q with tuples that belong to V if a critical area below the hyperplane PV does

not contain any tuples.

Definition 2.12 (Critical Area). The area in the active region defined by the hyper

planes PV and the hyper plane that is perpendicular to LQ and passes from the point

belonging in V and producing the lowest possible score in regards to the query Q, is

the critical area of Q in regards to V.

Theorem 2.4. It is possible that V can answer Q even if there are less than k tuples in

the safe area. For this to hold, it is necessary that the critical area of Q in regards to

V is void of tuples.

Proof. Assume t1 be a tuple in V and sQ(t1) is its score in regards to Q. In addition let

this tuple be the one that has the lowest score in regards to Q among all the tuples

from V. Assume PQ1 is the hyperplane that is perpendicular to LQ and passes through

point t1. If the critical area has no points, then all points within V are the ones

producing the lowest possible scores for Q. As a result, if V contains more than k

points, it can answer Q. �

39

Figure 2.14. Example of Why a View V is Not Always Reliable for Answering a

Query Q.

2.3.2. Discussion

Similarly to the two dimensional case, a couple of observations can be made at this

point:

• In order to avoid the computation of Q’s score for all the tuples of V, a safe

criterion would be to use tlast. tlast denotes a virtual point (which means that it does

not necessarily belongs in V or R) of hyperplane PV that produces the lowest score

in respect to Q.

• The above criterion can be used if one is interested in approximate results (in fact,

the smaller the critical region, the higher is the possibility that V can answer the

query Q). In addition, sketches of the data distribution in R can also be helpful in

deciding whether the region is empty or not and to what extent.

A second technical point has to do with testing whether a point belongs to the safe

area or not. Assume the last tuple in V is tn with score sv(tn) in regards to V. Then the

hyperplane PV is described from the equation w(a1 ⋅

x1 + a2 ⋅

x2 + … + xN)= sv(tn).

Without loss of generality assume that the hyperplanes PQ and PV intersect with the Xi

axis, where i ∈ {1,…, N}, in point xiV (0, …, xiV,…,0). Since xiV belongs in PV its

coordinates are xiV (0,…, sv(tn)⋅

(w⋅ai)

-1
,…0) where all are equal to zero except the i-th

coordinate. Similarly, it could be any other axis Xi. The hyperplane PQ is defined by

the equation wQ (a1Q ⋅

x1 + a2Q ⋅

x2 +… + xN) = sQ. Consequently, sQ can be computed

by taking into consideration that xiV belongs in PQ as well. Thus, sQ is equal to wQ ⋅

40

sv(tn) ⋅(w⋅ai)
-1

 and the hyperplane PQ is defined from the equation a1Q ⋅

x1 + a2Q ⋅

x2 + …

+ xN = sv(tn) (w⋅ai)
-1

. Assume a tuple tb (x1b, x2b, … , xNb). Tuple tb belongs to the safe

area if xNb ≥ -a1Q ⋅

 x1b - a2Q ⋅

 x2b - …+ sv(tn) ⋅

⋅(w⋅ai)

-1
.

2.3.3. Algorithmic Results

Now, we are ready to give the SafArI algorithm (Algorithm 2.2) that decides whether

Q can be answered by V and populates Q if the test is positive.

The computation of where the hyperplanes PQ and PV first meet on one of the n axis

and thus the safe area for n-dimensions is computed by solving a linear problem with

the usage of the simplex method. Therefore, the value sQ that determines the

hyperplane PQ is computed through the solution of the following linear problem: The

objective function is to maximize wQ (a1Q ⋅

x1 + a2Q ⋅

x2 +… + xN) under the constraints

 s.t. w(a1 ⋅

x1 + a2 ⋅

x2 + … + xN) ≤ sv(tn)

 0 ≤ xi ≤ 1, for all i ∈ {1,…, N}

Again, remember that we assume that the materialized view is memory resident, so

we do not need to resort to unnecessary I/O’s.

2.4. Working with More Than One Views

In this section we deal with the problem of answering top-k queries through the usage

of more than one materialized views. Firstly, we show that the usage of two

materialized views and specifically the union of the safe areas of two views do not

add better guarantees for the answering of a query. Secondly, we exploit the problem

of answering a top-k query by parallelizing its process and assigning different parts of

the query’s answer to a different view and then uniting the results.

2.4.1. Safe Area Containment with More than One Views

 [DGKT06] have proved that a query can be answered either by a single view, or by a

combination of two views whose lines lie on different sides of the query’s line.

Assume now that for a given query Q, we do not have a single view that can answer

the query, but, there exist two views VU and VD that lie on different sides of the

41

query’s line. Is it possible to use these two views to answer Q without referring to the

relation R?

SafArI Algorithm

Input: A materialized view V (ID, X1, X2,…, XN, s)n, with its

equation s = w (a1 ⋅ x1 + a2 ⋅ x2 + … + xN) and its n tuples,

A Q (ID, X1, X2,…, XN, sQ)
k, sQ = wQ (a1Q ⋅ x1 + a2Q ⋅ x2 + … +

xN), k ≤ n,

Output: A decision on whether Q can be answered by V along with

the population of V

Variables: a counter to count how many tuples V has inside the safe

area of Q

 Begin

1. Let tn be the n-th tuple of V, tn(x1,x2,…,xN)=V[n].

2. Define hyper-plane PQ

 Solve linear problem:

 max sQ

 s.t. sV ≤ sV(tn)

3. for all tuples of V {

4. Compute sQ(V[i])

5. if (sQ(V[i]) belongs above hyper-plane PQ) counter++ ;

6. }

7. if (counter ≥ k) return(true);

8. Else return(false);

 End

Algorithm 2.2 SafArI Algorithm

A query Q is encompassed by two preexisting, materialized views V1 and V2. LV1 and

LV2 denote the lines that represent the two views. In addition, assume P1 and P2

denote the hyperplanes that are perpendicular to LV1 and LV2 and pass from the last

point contained in V1 and V2 respectively. The hyperplanes PQ1 and PQ2 are

perpendicular to the line LQ of the query and assume that PQ1 meets P1 in Xi axis

whereas PQ2 meets P2 in Xj axis, with i≠j. The sub-region above PQ1 towards infinity

characterizes the safe area for V1. Similarly, the sub-region above PQ2 towards infinity

characterizes the safe area for V2. For reasons of intuition we illustrate in Figure 2.15

42

a query Q encompassed by two materialized views in the 2D space. A query Q is

encompassed by two preexisting, materialized views VU and VD, the first on the upper

and the second on the lower side of Q. Figure 2.15 also depicts the lines LU and LD,

which are perpendicular to the respective views and signify their last stored tuple.

These lines are also used to draw the lines LQU and LQD which are perpendicular to Q

and characterize the safe areas for VU and VD respectively.

Theorem 2.5. Assume two views encompassing a query Q, none of which is safe to

be used for answering the query by itself. It is impossible to safely guarantee the

answering of the query by the combined usage of the two safe areas of the views.

Proof. Since the border lines LQU and LQD are both perpendicular to Q, the safe area of

one view is encompassed in the safe area of the other view. Since neither view is safe

for the answering of the query, it follows that the union of their safe areas is

insufficient, too. �

Figure 2.15. A Query Q with One View on Either of its Sides, VU for the Upper Side

and VD for the Lower Side.

2.4.2. Working with More than One Views in Parallel

The above negative result produces an interesting useful side effect. Assume the case

where several materialized views are available; still, instead of being centrally stored,

the different views are distributed among different servers. A mediator receives

queries and it is responsible for assigning queries to views (or R) to be answered. It is

43

reasonable to assume that the mediator has some global knowledge for each view’s

equation, number of materialized tuples and value of the last tuple. We will also

assume that the maximum and minimum values of the active domain of attributes X

and Y of relation R are known to the mediator, too. Assume now that a query arrives

and we want to parallelize its processing. Is it possible to assign a different part of the

query to a different view and then unite the results?

In this section, we will first show that it is feasible to assign a subset of the query

answer to a certain view. Since we have knowledge of the active domains of attributes

X and Y, we can estimate the maximum and minimum scores with respect to the query

Q. We will show that it is possible to split the range of values for the score and assign

a sub-range of scores to specific views.

Y

XO(0,0)

Q

VU

R(1,1)

Line LQ

Line LU

Line Ll

Line Lh

slow

shigh

vhigh
vlow

Figure 2.16. The Active Zone for the Range slow, high of Query Q within its Safe Area

over View VU.

Theorem 2.6. Assume a materialized view V (with a line VU : y = aU
-1

 ⋅ x) and a query

Q (with a line Q : y = aQ
-1

 ⋅ x) over the same relation R. Assume also that V is safe to

answer Q and we are interested in computing only a subset of Q, say Q’, that includes

the tuples whose score falls within the range [slow, shigh] (with slow ≤ shigh and slow and

shigh the distances of the respective points from the beginning of the axis, with both

these points found in the safe area and belonging to line Q). Q’ can be computed

solely from V, by including in its result set all the tuples that belong to the area

44

surrounded by the lines Ll and Lh, which we call search area, and is defined as

follows: Ll : y = -aQ ⋅ x + slow ⋅ 12 +Qa , Lh : y = -aQ ⋅ x + shigh ⋅ 12 +Qa .

Proof. Clearly, all tuples belonging to the above area also belong to the safe area of Q

over R. To compute the lines Ll and Lh we need to locate the coordinates of the points

with distance slow and shigh from the beginning of the axes. For point ph (xh, yh)

corresponding to shigh, we know that (i) yh = aQ
-1

 ⋅ xh and (ii) xh
2
 + yh

2
 = sh

2
. This way

we can compute the coordinates for the point ph (xh, yh) and respectively, for the point

pl (xl, yl). Then, we need to compute the equations for lines Ll and Lh. The equation of

both lines is of the form y = -aQ ⋅ x + offset, with offset being unknown (remember that

the two lines are parallel to the line LQ that bounds the safe area). To compute the

offset for each line, we need to place the appropriate point in the equation (e.g., for

point ph (xh, yh) we have yh = -aQ ⋅ xh + offset) and solve the system of equations that

also comprises the equation of line Q. The solution gives the equations of the

theorem. �

Observe that it is indifferent whether V is on the upper or lower side of Q, since we

have carefully selected the scores slow and shigh to be within the safe area.

Having proved the bounds of the search area, we are ready to come up with an

algorithm for identifying the tuples of V that belong to the search area. Observe

Figure 2.16. We need to identify tuples that have a score with respect to V’s scoring

function within the range [vlow, vhigh]. Unfortunately, we cannot solely rely on the

score bounds of vlow, vhigh for this purpose, since it is possible that V contains tuples

outside the safe area of Q whose score (with respect to V) falls within the range [vlow,

vhigh].

Lemma 2.3. Given the values slow, shigh for the scores of the query Q, the range of

scores for tuples belonging to V, that are candidate for being part of Q’s extent too,

are:

vlow = slow ⋅
UQ

Q

aa

a

⋅+

+

1

12

⋅ 12 +Ua , vhigh = shigh ⋅
UQ

Q

aa

a

⋅+

+

1

1
2

⋅ 12 +Ua

45

Algorithm Compute Query Extent

Input:

A materialized view V(ID,X,Y,sU)
n, with its equation s =

w(α⋅x+y) and its n tuples (sorted over sU), a Q(ID,X,Y,sQ)
k,

sQ = wQ(αQ⋅x+y), k ≤ n,

Output: the computation of Q via the tuples of V

 Begin

1. Compute vlow and vhigh

2. Locate the first(last) tuple with score vlow(vhigh) via binary

search

3. do{

4. Get the next tuple t

5. Test the conditions

 st ∈ [vlow, vhigh],

 yt ≥ -aQ ⋅ xt +slow ⋅ 12 +Qa ,

 yt ≥ -aQ ⋅ xt +shigh ⋅ 12 +Qa

6. If t passes all tests

7. Compute t’s score for Q

8. Add t (sorted over sQ) to Q’s extent

9. } until the last (first) tuple with score vhigh (vlow) is found

 End.

Algorithm 2.3. Algorithm Compute Query Extent

Proof. The point ph (xh, yh) falls on the intersection of two lines, VU and Lh. Also xh
2
 +

yh
2
 = vh

2
. By solving the system of three equations we can compute the score vhigh. We

can compute vlow similarly. �

Theorem 2.7. A tuple pt (xt, yt) that belongs to V with score st (with respect to V),

qualifies for an answer to Q (with a score aQ ⋅ xt + yt) if it fulfils the following three

conditions:

st ∈ [vlow, vhigh] with this range computed via the above lemma,

yt ≥ -aQ ⋅ xt +slow ⋅ 12 +Qa ,

yt ≥ -aQ ⋅ xt +shigh ⋅ 12 +Qa

46

Proof. Obvious. �

If V is not sorted over the score of its tuples, then there is no alternative than scanning

all its tuples and testing the above conditions. If V is sorted on its score, nevertheless,

the algorithm for computing the answer to Q by using the tuples of V is

straightforward.

2.5. Experiments

In this section, we report on the experimental assessment of the usage of materialized

views to answer top-k queries. We have conducted two sets of experiments. The first

set focuses on the algorithm for the 2 dimensional space, whereas the second set of

experiments involves the n dimensional space.

Our experimental study has been conducted towards assuring the following two goals:

1. Effectiveness. The first desideratum of the experimental study has been the

verification of the hypothesis that the proposed theoretical results can actually

be used for answering a newly posed top-k query through the exclusive usage

of a materialized view.

2. Efficiency. The second desideratum of the experimental study has been the

testing of the hypothesis that the answering of top-k queries via materialized

views can indeed improve the performance of query answering at a significant

factor.

We have implemented our view usability method and use the only method that can

guarantee view usability correctness (i.e., TA) as an opponent. We do not use

auxiliary structures in our experiments (e.g., sketches of the non-covered area of a

materialized view, or any other indexes).

2.5.1. Experimental Method for 2D

In this set of experiments, all tests involve a relation R(tid,X,Y). All the queries were

fully answered and then used as materialized views for the subsequent queries.

47

Effectiveness, k<=0.1|R|

29,00%

30,00%

31,00%

32,00%

33,00%

34,00%

35,00%

36,00%

10000 50000 100000
|R|

%
q
u
e
r
ie
s
 a
n
s
.
b
y
 v
ie
w
s

Figure 2.17. Percentage of Views Used for 100 Queries.

We have generated random data sets of different sizes. We generate a sequence of

queries with random coefficients and result size (k). Each query’s result is cached as a

materialized view; so, every query tests all its previous queries as candidates. The

important parameters that we have experimented with are: (a) the relation size |R|, (b)

the number of queries asked |Q| (practically testing how the method works as time

passes and more views get to be materialized) and, (c) the range of the requested

tuples k as compared to the underlying database size |R|/k. The values that we have

worked are listed in Table 2.1.

For this set of experiments we have used a server with 1GB memory and a Core 2

CPU at 2.13 GHz. All the implementations were made using BerkeleyDB and its C

API.

Table 2.1. Experimental Parameters for 2D.

 Size of source table R (tuples) |R| 1x10
4
, 5x10

4
, 1x10

5

 Size of mat. view (tuples) k 10, 50, 100, 500, 1000

 Number of queries asked |Q| 100, 1000

48

Effectiveness, k<=0.001*|R|

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

10000 50000
|R|

%
 q
u
e
r
ie
s
 a
n
s
.
b
y
 v
ie
w
s

1 00 v iew s

1 000 v iew s

Figure 2.18. Percentage of Views Used for Different Time Spans (Numbers of Posed

Queries).

Effectiveness

The effectiveness of the method is depicted in Figure 2.17 and 2.18. Figure 2.17

shows that the effectiveness of the method is quite stable and ranges around 30%-35%

for different data sizes. It is also interesting to observe Figure 2.18, where we use

different time spans and different ranges for k to observe the behavior of our method.

This is practically achieved by issuing a larger number of queries (i.e., 1000 instead of

100 queries).

The first observation when comparing the two figures concerns the difference in

efficiency as we vary the maximum value of k that the queries can take. Observe the

dark bars of the two figures, both depicting what happens when 100 queries were

issued (so, the only difference is the R/k factor). In Figure 2.17, the queries are large

in size and can request up to 1% of the relation as a result. Frequently, it was the case

that a large view that was materialized early in the query series would serve as the

answering source for subsequent queries. A second observation from Figure 2.18,

concerns the effectiveness of the method over time. So, in Figure 2.18, we see what

happens as time passes (1000 queries), and we can observe that the effectiveness of

the method rises significantly after a while (again to the height of 35%-40%), even for

small k’s.

49

Efficiency , 100 queries

-20,00%

-15,00%

-10,00%

-5,00%

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

10000 50000 100000

|R|

%
g
a
in
s
 f
r
o
m
 v
ie
w
s

R/k=1 00

R/k=1 000

Figure 2.19. Time Savings from the Usage of Queries for Different Database Sizes

and Requested Results.

R k D/k % views

used

Total time

without views

(sec’s)

Total

time via

views

Total

opponent

time

%

improved

10000 100 100 35 0.35 0.006 0.09 24.28

10000 10 1000 7 0.07 0.00001 0.0007 0.99

50000 500 100 32 4.32 0.39 1.06 15.39

50000 50 1000 10 1.06 0.0001 0.07 6.82

100000 1000 100 31 12.03 4.59 2.45 -17.79

100000 100 1000 11 2.68 0.003 0.26 9.66

Figure 2.20. Detailed Information for the Efficiency of the Method in Time Savings.

Efficiency

The efficiency of the method over random data is depicted in Figure 2.19. We vary

two parameters, the relation size, and the maximum possible number that k can take,

and we assess the improvement in time when comparing our method with the

opponent. The detailed numbers (including total query times) are shown in Figure

2.20.

50

Interestingly, the time savings present a conflicting case. As the number of stored

results rises (dark bars, concerning large k’s, up to 1% of the relation size) the savings

drop from a 25% improvement to a decrease of 18%. This is clearly due to the size of

used memory. As more results are collected in main memory there are two problems:

(a) memory allocation becomes slow (in fact, we frequently brought our gnu compiler

to its limits) and (ii) it is possible that a certain view will be able to answer several

queries due to a very large k and a usable slope. Exhausting the safe area for this view

might prove too slow for queries with a large k (remember that we can be ascertained

for the correct result only once we have reached the safe area border). Thus, a caching

problem has to be solved based on the grounds of this observation. In any case, if one

considers realistic BI scenarios, a top-k query returning 1% is extremely too large; so

this is a case in the limit of this technology. On the other hand, the efficiency

increases consistently for more reasonable k’s of size 0.1%. As the memory allocation

is not a problem for this setting, the improvements start from a negligible 1% for

small relations and rise up to 24% for a large relation. This is clearly due to the fact

that views with appropriate slopes can significantly speed-up the whole process as

compared to their full evaluation.

2.5.2. Experimental Method for n-D

The second set of experiments involves the testing of the algorithm for the n

dimensional space. In this set of experiments we have made use of synthetic as well as

real data sets. All synthetic experiments involve a relation R(tid, X1, … Xn) of various

distributions and dimensionality. For this set of experiments we have used a Core 2

CPU at 2.53 GHz with 3.12GB memory. All the implementations were made using

BerkeleyDB and its C API.

Table 2.2 Experimental Parameters for Synthetic N-D.

Data Distribution Distr Random, Correlated, Anticorrelated

Data dimensionality D 2, 3, 4, 5, 6, 7, 8

Max size of top-k tuples Max_k 25, 100

51

Synthetic Data Sets

The synthetic datasets are of three optional distributions: Random, Correlated and

Anticorrelated. Random datasets are generated such that the attributes of the tuples

are independent of each other following a uniform distribution. The Correlated and

Anticorrelated datasets are generated as described in [BoKS01]. In the correlated

datasets the attribute values of the tuples are positive correlated, whereas in the

anticorrelated datasets, one attribute value is large and the remaining attribute values

are small. The datasets are of dimensionality d that varies from 2 to 8. We generate

views and queries with random coefficients and result size (k). The weights of the

scoring function of the views and the queries all add to 1. The important parameters

that we have experimented with are: (a) the distribution of the relation (Distr), (b) the

dimensionality d of the relation and, (c) the maximum number of the requested tuples

(max_k). The size of the relation is 1 million records, the number of views

materialized is set to be 100 and the queries requested are 1000. The parameters for

this set of experiments are listed in Table 2.2.

The effectiveness of the method is depicted in Figures 2.21, 2.22 and 2.23. In these

figures we present the percentage of queries that were answered by our method over

the set of 100 prematerialized views. For all the figures the (a) part depicts the

percentage of queries answered when both views and queries request top-k tuples,

where k is randomly generated with maximum value 100, and the (b) part depicts the

percentage of queries answered by our method when views and queries request top-k

tuples with maximum value of k being 25. For the random and anticorrelated dataset

we observe that the percentage of queries answered decreases as the dimensionality of

the dataset increases. In the correlated dataset the percentage of queries answered by

our method seems rather constant and independent of the dimensionality and almost

100%. In addition, when comparing figures (a) and (b) in each distribution dataset we

observe that the percentage of queries answered when the dimensionality increases is

similar and rather regardless of the max_ k value.

52

0

10

20

30

40

50

60

70

80

90

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 q

u
e
ri

e
s
 a

n
s
.

b
y
 v

ie
w

s

(a)Percentage of queries answered with max_k 100

0

10

20

30

40

50

60

70

80

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 q

u
e
ri

e
s
 a

n
s
.

b
y
 v

ie
w

s

(b) Percentage of queries answered with max_k 25

Figure 2.21. Percentage of Queries Answered for Random Data.

The efficiency of the method is depicted in Figures 2.24, 2.25, 2.26. We vary again

the distribution, the dimensionality and the maximum possible number that k can take,

and we assess the improvement in time when comparing our method with the

opponent. Specifically, we measure the percentage time improvements of our method

when compared to the opponent. The detailed numbers (including total query times)

are depicted in Tables 2.3, 2.4 and 2.5 for the distributions Random, Correlated and

Anticorrelated respectively. By observing Figure 2.24 and 2.26 we can see that the

time savings for these datasets decrease while the dimensionality increases. On the

contrary, in Figure 2.25 we can observe that the time savings of our method seem to

increase when the dimensionality increases. However, in Figure 2.25 (b) the time

savings for 2, 3, and 4 dimensions when max k is 25 are negative showing that the

53

opponent outperforms our method. In conjunction with Table 2.4 we can observe that

for the correlated data the opponent as well as our method needs a small amount of

time to compute the results. For the same parameters (i.e., d, max_k) but for random

and anticorrelated data the time needed by the opponent (see Table 2.3 and 2.5) in

comparison to the correlated data is much greater.

0

20

40

60

80

100

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 q

u
e
ri

e
s
 a

n
s
.

b
y
 v

ie
w

s

(a) Percentage of queries answered with max_k 100

0

20

40

60

80

100

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 q

u
e
ri

e
s
 a

n
s
.

b
y
 v

ie
w

s

(b) Percentage of queries answered with max_k 25

Figure 2.22. Percentage of Queries Answered for Correlated Data.

54

0

10

20

30

40

50

60

70

80

90

2D 5D 6D 8D

Dimensions

%
 q

u
e
ri

e
s
 a

n
s
.

b
y
 v

ie
w

s

(a) Percentage of queries answered with max_k 100

0

20

40

60

80

100

2D 3D 4D 5D 6D 8D

Dimensions

%
 q

u
e
ri

e
s
 a

n
s
.

b
y
 v

ie
w

s

(b) Percentage of queries answered with max_k 25

Figure 2.23. Percentage of Queries Answered for Anticorrelated Data.

55

0

10

20

30

40

50

60

70

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(a) Time savings from the usage of views with max_k 100

-10

0

10

20

30

40

50

60

70

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(b) Time savings from the usage of views with max_k 25

Figure 2.24. Time Savings from the Usage of Views for Random Data.

56

0

10

20

30

40

50

60

70

80

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(a) Time savings from the usage of views with max_k 100

-200

-150

-100

-50

0

50

100

2D 3D 4D 5D 6D 7D 8D

Dimensions

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(b) Time savings from the usage of views with max_k 25

Figure 2.25. Time Savings from the Usage of Views for Correlated Data.

57

0

10

20

30

40

50

60

70

80

90

2D 5D 6D 8D

Dimensions

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(a) Time savings from the usage of views with max_k 100

0

10

20

30

40

50

60

70

80

90

2D 3D 4D 5D 6D

Dimensions

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(b) Time savings from the usage of views with max_k 25

Figure 2.26. Time Savings from the Usage of Views for Anticorrelated Data.

58

Table 2.3 Absolute Times and Time Savings for Random Data.

d Max_k % Q

answ

ered

Total

opponent

time

(sec’s)

Total time

of our

method

(sec’s)

Total

opponent time

for queries

answered via

views

Total time of

our method

for queries

answered via

views

%

improved

2 100 77.8 109.31 40.47 79.78 5.77 62.97

2 25 73.4 59.62 25.01 41.98 3.17 58.03

3 100 51.3 674.93 397.52 304.63 5.13 41.10

3 25 51.2 393.97 235.62 177.98 3.62 40.19

4 100 28 1872.74 1453.43 456.89 3.97 22.39

4 25 24.7 1337.10 1095.07 285.36 4.06 18.10

5 100 12.2 3630.21 3319.41 360.97 2.75 8.56

5 25 11 2822.67 2620.57 254.23 2.94 7.15

6 100 9.5 5364.30 5013.96 405.73 1.52 6.53

6 25 6 4108.59 3994.96 168.48 2.01 2.76

7 100 2.4 9121.94 9052.71 128.86 0.96 0.75

7 25 4.3 7444.47 7457.33 56.11 2.35 -0.17

8 100 1.4 12610.82 12569.41 101.83 0.65 0.32

8 25 4.1 10353.91 10407.03 8.93 2.68 -0.51

59

Table 2.4 Absolute Times and Time Savings for Correlated Data.

d Max_k % Q

answe

red

Total

opponent

time

(sec’s)

Total

time of

our

method

(sec’s)

Total

opponent time

for queries

answered via

views

Total time of

our method

for queries

answered via

views

%

improved

2 100 97.8 1.73 1.68 1.65 1.60 2.96

2 25 100 0.47 1.15 0.47 1.15 -140.73

3 100 97.7 2.45 1.96 2.33 1.71 19.88

3 25 100 0.69 1.22 0.69 1.22 -74.76

4 100 94.8 3.01 2.36 2.69 1.67 21.64

4 25 100 0.81 1.25 0.81 1.25 -52.86

5 100 99.2 3.83 1.88 3.77 1.78 50.92

5 25 100 1.26 1.25 1.26 1.25 0.48

6 100 87.8 4.66 4.29 3.56 1.63 7.91

6 25 100 1.36 1.31 1.36 1.31 3.48

7 100 96.1 5.29 2.68 4.87 1.82 49.16

7 25 100 1.64 1.34 1.64 1.34 18.42

8 100 99.9 6.56 2.03 6.55 2.01 69.01

8 25 100 2.53 1.40 2.53 1.40 44.67

60

Table 2.5 Absolute Times and Time Savings for Anticorrelated Data.

d max_k % Q

answe

red

Total

opponent

time (sec’s)

Total time

of our

method

(sec’s)

Total

opponent time

for queries

answered via

views

Total time of

our method

for queries

answered via

views

% improved

2 100 85.5 7056.78 1518.47 5545.90 3.82 78.48

2 25 90.2 6823.17 1161.88 5672.06 7.33 82.97

3 25 66.1 12532.81 6580.70 5974.25 8.27 47.49

4 25 42.7 15939.83 11366.84 4608.92 5.84 28.68

5 100 32.5 18807.73 14632.41 4217.97 5.02 22.20

5 25 29.2 18299.33 14907.86 3437.27 6.73 18.53

6 100 24.7 22298.06 19158.12 3184.52 4.30 14.08

6 25 32.7 21914.17 17612.97 4344.64 6.08 19.62

7 100 22.2 26247.56 23073.72 3218.96 5.24 12.09

7 25 20.4 26138.95 23645.24 2545.39 5.22 9.54

8 100 85.5 7056.78 1518.47 5545.90 3.82 78.48

8 25 90.2 6823.17 1161.88 5672.06 7.33 82.97

.Table 2.6 Experimental Parameters for Synthetic N-D.

Number of mat. Views |V| 100, 500

Number of queries |Q| 100, 1000

Max size of top-k tuples max_k 25, 50, 100

Real Data Sets

To demonstrate the usefulness of our methods, we ran our algorithm on a real data set,

Household data set, which is publicly available from the ipums (http://

www.ipums.org) and has been frequently used in the related literature. This dataset

contains about 4 million tuples with 5 attributes. Again, we generate views and

queries with random coefficients and result size (k) where weight factors all add to 1.

The important parameters that we have experimented with are: (a) the number of

materialized views |V|, (b) the number of queries asked |Q|, (c) the maximum number

61

of the requested tuples max_k. The parameters for this set of experiments are listed in

Table 2.6

In Figure 2.27 we can see the percentage of queries answered by our method for (a)

1000 queries over 100 views, (b) 100 queries over 100 views and (c) 1000 queries

over 500 views. We can observe that in all three sets the percentage of queries

answered are above 35%. In addition, in Figures 2.27 (a) and (b) which demonstrate

the percentage of queries over 100 views, we see that the percentages of queries

answered are similar for each max_k. In the third figure, where the number of views is

greater (i.e., 500) we see that the percentage of queries answered are higher and above

60%, something reasonable due to the greater possibility of a query being answered

from a greater set of possible views.

In Figure 2.28 we observe the time savings of our method over the opponent for the

three sets of experiments: (a) 1000 queries over 100 views, (b) 100 queries over 100

views and (c) 1000 queries over 500 views. Again, Figure 2.28 presents the time

savings for the three max_k values for the real dataset. We can observe that the time

savings mainly are around 20%. The time savings of the third figure are quite smaller

something that can be explained due to the greater number of possible views. This is

reasonable since there are more views that should be checked until we can conclude

whether a query can be answered by a view.

62

40

42

44

46

48

50

52

25 50 100

max k

%
 q

u
e
ri

e
s
 a

n
s
.

b
y
 v

ie
w

s

(a) Percentage of 1000 queries answered over 100 views

0

10

20

30

40

50

60

25 50 100

max k

%
 q

u
e
ri

e
s
 a

n
s
.
b

y
 v

ie
w

s

(b) Percentage of 100 queries answered over 100 views

59

59.5

60

60.5

61

61.5

62

62.5

63

63.5

25 50

max k

%
 q

u
e
ri

e
s
 a

n
s
.

b
y
 v

ie
w

s

(c) Percentage of 1000 queries answered over 500 views

Figure 2.27 Percentage of Queries Answered for Real Dataset.

63

0

5

10

15

20

25

30

35

25 50 100

max k

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(a) Time savings for 1000 queries over 100 views

0

5

10

15

20

25

25 50 100

max k

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(b) Time savings for 100 queries over 100 views

0

5

10

15

20

25 50

max k

%
 g

a
in

s
 f

ro
m

 v
ie

w
s

(c) Time savings for 1000 queries over 500 views

Figure 2.28 Time Savings of Our Method for Real Dataset.

64

2.6. Chapter Summary and Findings

In this Chapter we have provided theoretical guarantees of the suitability of a

materialized ranked view for the answering of a top-k query. To this end, we have

introduced the notion of safe area of a query in regards to a view and provided the

respective suitability theorem. In addition, we have proved that the theorem is strict in

the sense that it cannot be inversed. In other words, we have proved that even if the

safe area is not eligible for answering a top–k query, still the view may be suitable for

answering a query and described this through the notion of the critical area.

According to these theoretical establishments for the case of 2-D spaces as well as for

the case of multidimensional spaces, we have provided algorithmic results for the

answering of a top-k query through the usage of a materialized view, namely the 2D

SafAri algorithm and the SafArI algorithm. Moreover, we have theoretically proved

that the safe areas of a query in regards to more than one views do not offer further

usefulness for answering the query compared to the safe area of a single view. We

have also discussed the issue of providing partial results for a query via a materialized

view by splitting the range of score into appropriate sub-ranges and provided the

Compute Query Extent Algorithm. This way, different parts of the query answer can

be obtained in parallel, by distributing their processing to different servers.

We have tested our methods for their efficiency and effectiveness through a set of

experiments over synthetic as well as real datasets. The first set of experiments

concerned the 2D SafArI Algorithm, where the effectiveness of the method proved to

be quite stable and ranged around 30-35%. The efficiency of our method is shown to

increase consistently for reasonable k’s of size 0.1% of the dataset size and rise up to

24% for large relations. The second set of experiments concerned the N-D case. The

effectiveness of our method was counted as the percentage of queries answered from

a set of materialized views. For the synthetic datasets, the effectiveness of the method

seemed to be affected by the dimensionality for the random and anticorrelated

datasets whereas for the correlated datasets the effectiveness was rather constant

around 100%. The effectiveness of our method was also tested over a real dataset and

proved to be above 35% in all scenarios and increased significantly when the number

of materialized views increased. The efficiency of our method showed again an

influence from the dimensionality, where for the random and anticorrelated datasets

65

the efficiency decreased while the dimensionality was increased. However, for the

correlated datasets the efficiency increased when the dimensionality was increased.

As for the efficiency of our method over the real dataset, this appeared to be around

20% in terms of time savings over the state of the art.

66

67

CHAPTER 3. MAINTENANCE OF TOP-K

MATERIALIZED VIEWS

3.1 Efficient Maintenance of Materialized top-k Views [YYY+03]

3.2 Fine-Tuning of Views to Sustain High Update Rates

3.3 Generalization of the Problem

3.4 Multiple View Updates

3.5 Updating Multiple Nucleated Views

3.6 Experiments

3.7 Chapter Summary and Findings

View materialization is typically used for increasing the efficiency of query

answering. However, this speed-up comes at a price. Remember that in our view

maintenance setting, results of previous top-k queries are stored in the form of

materialized views. Then, a new top-k query may be answered through materialized

views resulting in better performance than making use only of the base relation from

the database. As typically happens with materialized views, though, when the source

relation is updated, we need to refresh the contents of all the materialized views in

order to reflect the most recent data.

Before proceeding, we present a motivating example to contextualize our discussion.

Consider a database containing data about stores, products and customers visiting a

shopping center near the metro station. When a train arrives, several potential

customers arrive with it, at the same time though, there is a massive departure of

existing potential customers due to the train’s departure. We assume a pervasive

environment, where customers are equipped with wireless devices and connect to the

68

shopping center’s server as they enter the building. Assume a relation Customer (c_id,

c_name, c_age, c_income) as well as accompanying relations with the customer’s

profile, sales history, etc. For a salesman that needs to send the appropriate

advertisements, it is important to know which customers are the top-k ones according

to their characteristics. To achieve this, salesmen use queries that have scoring

functions over customer data. For example, assume a salesman wants to advertise a

new gadget about mobile phones. The salesman needs to create a profile for the new

product, or register the product in an existing profile. The profile includes a formula

that assigns a score for a potential customer according to several distance functions

and matching of the gadget’s and the customer’s characteristics. To speed up things, it

is reasonable to search for the top-k customers in order to send them the

advertisement. When a train departs, many customers leave the shopping center; still,

the top-k list of candidates per product must be maintained so that the remaining

possibly interested clients are notified. Consequently, the top-k customer lists should

be maintained when updates occur in the relation of customers.

The two main problems that pertain to the maintenance of materialized views are (a)

the correct and efficient maintenance of a single view when updates occur to the base

relation, and (b) the generalization of the maintenance problem for a large number of

materialized views. Remember that, given a relation R (tid, A1, A2,..., Am) and a query

Q over R retrieve the top-k tuples from R having the k highest values according to a

scoring function f that accompanies Q. Typically, f is a monotone ranking function of

the form: f : dom(A1) ×…× dom(Am) →ℜ.

Maintaining a single top-k materialized view. Concerning the problem of

maintaining a single view, the first –and only- attempt that we are aware of is

[YYY+03]. To sustain the update rate at the source relation without having to fully re-

compute the materialized views, [YYY+03] maintain kmax tuples (instead of the

necessary k) and perform refill queries whenever the contents of the materialized

views fall below the threshold of k tuples. Yet, the approach of [YYY+03] suffers

from the following problems: (a) the method is theoretically guaranteed to work well

only when insertions and deletions are of the same probability (in fact, the authors

deal with updates in their experiments), (b) there is no quality-of-service guarantee

69

when deletions are more probable than insertions. In this chapter, we compensate for

these shortcomings by providing a method that is able to provide quality guarantees

when the deletion rate is higher than the insertion rate. The case is not so rare if one

considers that the number of persons logged in a web server or a portal presents

anticipated high peaks and valleys at specific time points or dates. The first

contribution of our work is to deal with these phenomena efficiently. The solution to

the problem is not obvious for the following reasons. First, even if the value

distributions of the attributes that participate in the computation of the score are

known individually, it is not possible to compute the distribution of their linear

combination, i.e., the score (unless they are stable probabilities – e.g., Normal,

Cauchy). Second, even if we extend k with extra tuples to sustain the incoming stream

of updates that eventually affects the top-k materialized view, the extra tuples increase

the possibility that an incoming source update might affect the view, thus resulting in

the need to recursively compute this extension. Finally, we need to accommodate

statistical fluctuations from the expected values. To resolve all the above, we provide

a principled method that operates independently of the statistical properties of the data

and the characteristics of the update streams. The method comprises the following

steps: (a) a computation of the rate that actually affects the materialized view, (b) a

computation of the necessary extension to k in order to handle the augmented number

of deletions that occur and (c) a fine tuning part that adjusts this value to take the

fluctuation of the statistical properties of this value into consideration.

Maintaining a set of top-k materialized views. The problem of maintaining multiple

materialized views is quite important. Its most prominent occurrence has to do with

the situation where incoming queries are cached and treated as materialized views to

efficiently support the answering of subsequent queries. The problem is hard if we

assume that we need all the materialized views to be refreshed every time the source

relation undergoes a change. A first workaround concerns the typical warehouse

solution of collecting individual updates to larger batches that can be processed much

more efficiently than treating each update one tuple at a time. Still, even in this

setting, we would like to avoid visiting every view for every tuple. Two extra

problems that occur are (a) it is not sufficient to simply include the appropriate tuples

in the extent of a materialized view, but we need to compute their score and position

70

them appropriately in this extent (so, the sharing of tuples between views does not

relieve us a lot from the overheads) and (b) we cannot solve the problem by sorting

the tuples by their value over a single attribute, since the scoring function takes

several attributes into consideration. A possibility that opens is to be able to prune

data from the batch when we can infer that they need not be checked against a certain

view. So, we develop mathematical guarantees that can decide whenever the current

contents of a view need to be updated from a certain batch of modifications, when we

know that another view has been affected by this same batch. We assume that the

tuples in the extent of our views include (a) the tuple identifier of the tuple in the base

relation, (b) the scoring attributes (needed for the management of updates) and (c) its

score in the view. In our method, we introduce the idea of nucleation between views,

which is quite similar to inclusion: a view V2 nucleates another view V1, whenever all

tuples of the former belong to the extent of the latter, with the exception of their

scores. The decision for this kind of inclusion is not straightforward; to avoid

checking all the extents of two views we employ a geometric representation of the

score function and the tuples of the two views and decide on the nucleation on the

basis of this representation. Then, we structure views in a set of hierarchies, where

each ancestor view nucleates its descendants. Updates can be pruned from a

hierarchy, or a part of it, when a certain view in the hierarchy is unaffected from a

modification; in this case, all its ancestor views avoid the test, too. At the same time,

nucleation hierarchies come with a price: they are instance dependent and thus they

need to be rechecked after the modifications of the view extents take place.

Chapter Roadmap. In this Chapter we address the problem of efficiently maintaining

top-k materialized views. In Section 3.1 we describe the state-of-the-art work. In

Section 3.2 we propose a method for the fine-tuning of a materialized view for the 2

dimensional case. In Section 3.3 we generalize the problem for the n dimensional

space and for non-linear scoring functions. In Section 3.4 we describe the problem of

updating multiple views and insert the notion of nucleation relationships between

views. In Section 3.5 we provide an algorithm that updates multiple views by

constructing a hierarchy structure based on the nucleation relationships of the views.

In Section 3.6 we report on the experimental assessment of the estimation of the

71

essential view size in order to sustain a high rate of updates. Finally, in Section 3.7 we

summarize our findings.

3.1. Efficient Maintenance of Materialized top-k Views [YYY+03]

[YYY+03] deal with the following problem: Given a base table R (id, val) where val

is the score of the tuple according to a scoring function and a materialized view V (id,

val) containing the top-k tuples from R according to their values, compute a kmax that

is adjusted at runtime such that a refill query, that re-computes the view V from

scratch for the missing part, is rarely needed. Assume an update of the form <id, val>

occurs and let valk’ the tuple with the lowest value in V. Then the update can be

classified as ignorable, neutral, good or bad. Ignorable is an update when its id is not

in V and val<valk’ and thus there is no effect in V. A neutral update occurs when its id

is in V and val>valk’. Then the tuple id is updated with value val. An update is

categorized as good update when its id is not in V and val>valk’. Then this tuple is

inserted in V and k’ is increased by one. If k’ exceeds kmax then the lowest tuple in V is

deleted. A bad update describes an update whose id is in V and val<valk’. The tuple id

is then deleted from V and k’ is decreased by one. If k’ drops below k, a refill

operation is performed. A refill operation queries the base table R and returns all

tuples ranked between k and kmax. [YYY+03] formulated the problem through a

random walk model. The values of k’ between two refill operations are represented

through a 1- dimensional random walk model. The points are represented as {0, …, n}

where 0 denotes the starting point (kmax)and n (kmax – k +1) the absorbing point at

which a refill operation is needed. Assume that the random walk is currently in

position i and a bad update moves the random walk to position i+1 with probability pi,

whereas a good update moves the random walk to position i-1 with probability qi. In

any other case the update is ignorable or neutral with probability 1 - pi - qi. The

problem is focused on analyzing the number of steps needed for the random walk

model to go from 0 to n. In other words the analysis is conducted in order to find the

probabilistic properties of the refill interval Z.

According to the assumptions that each step is independent of all previous choices

and the probabilities of bad and good updates remain constant as updates occur in the

72

view (p0=p1=…=pn-1=p and q0=q1=…=qn-1=q) the following occur. When p=q then

if
ε+

= 2

1

Nn the refill integral Z is greater than N with high probability

being 2
2

41 /Ne]NZPr[
ε

−−≥> , for any positive constantε. When p<q, if

Nlncn = the refill integral Z is greater than N with high probability

being)(o]NZPr[11−>> , for constant c big enough depending only on p and q.

When p>q, then, if n = N the refill integral Z is on the order of n. An adaptive

algorithm chooses kmax at runtime without need to know the probabilities of good and

bad updates. The algorithm is trying to keep the refill interval Z around the value

Z0=Crefill/ Cupdate (where Crefill is the observed cost of a refill query and Cupdate is the

observed cost of a base table update). The algorithm counts the number of base table

updates occurred from the last refill operation. If the updates are less than Z0 /a then

kmax is increased whereas if the number of updates is greater than aZ0 then kmax is

decreased, where a is a constant parameter.

3.2. Fine-Tuning of Views to Sustain High Update Rates

In this section we present our method for the fine tuning of materialized views defined

over a relation that goes through updates in high rates. First, we formally define the

problem. Second, we sketch our method and then, we move on to further detail the

individual steps of the method.

3.2.1. Formal Definition of the Problem

The formal definition of the problem is:

Given a base relation R (ID, X, Y) that originally contains N tuples, a

materialized view V that contains top-k tuples of the form (id, val) where

val is the score according to a function f(x, y)= a⋅x + b⋅y and a, b are

constant parameters, the update ratios Λins, Λdel and Λupd for insertions,

deletions and updates respectively over the base relation R,,

Compute kcomp that is of the form kcomp = k +∆k

Such that the view will contain at least k tuples, k ≤ kcomp, with probability p, after a

period T.

73

Assume a base relation R (ID, X, Y), that contains N tuples a materialized view V that

contains top-k tuples of the form (id, val) where val is the score according to a

function f(x, y)= a⋅x + b⋅y and a, b are constant parameters. Assume that the last tuple

in the view has value valk. Given the aforementioned update rates, insertions,

deletions and updates occur in the base relation R with probabilities PINS, PDEL and

PUPD respectively. These probabilities are expressed as:
UPDDELINS

INS

INSP
Λ+Λ+Λ

Λ
= ,

UPDDELINS

DEL
DELP

Λ+Λ+Λ

Λ
= and

UPDDELINS

UPD

UPD
P

Λ+Λ+Λ

Λ
=

In the rest of our deliberations, updates are treated as combinations of deletions and

insertions. This is a quite reasonable treatment, since we are mainly interested in the

statistical properties of the rates of these actions and not in their hidden semantics. A

simple method for the conversion of the involved rates is given in Section 3.2.2.

Our problem is to find a kcomp that will guarantee that the view will be maintained

when insertions and deletions will occur in R. In order to do so, we must estimate the

number of insertions and deletions that might affect the view. In other words, we need

to compute the probability of the view being affected by a tuple inserted in R or

deleted from R.

Assume that a new tuple z (id, x, y) is inserted in R. The probability of this tuple

affecting the view is p (z > valk). Hence, the probability of a new tuple to be inserted

in R and affect the view V is
aff
insp which is expressed as:

aff
insp = p (z > valk) ⋅ pins. The

probability of a tuple to be deleted from R and affect the view V is
aff
delp which occurs

as
aff
delp = p (z > valk) ⋅ pdel.

A problem that occurs with the maintenance of kcomp tuples at the view side is that

kcomp incurs extra maintenance overheads, since the tuples of ∆k can suffer updates

too. Thus, we need to compute
aff
insp and

aff
delp for the case where kcomp tuples are

maintained. Therefore, the view V will contain kcomp tuples instead of k. Assume that

74

the last tuple of the view containing kcomp tuples is valkcomp. Consequently, the

probability of a new tuple z to affect the view V is p(z>valkcomp) whereas the

probability of a new tuple to be inserted in R and affect the view occurs as:
aff
insp =

p(z>valkcomp) ⋅ pins. Respectively the probability of a tuple z to be deleted from R and

affect the view V can be expressed as:
aff
delp = p(z>valkcomp) ⋅ pdel.

3.2.2. Sketch of the Method

The proposed method is focused around three main steps: first, we compute the

percentage of the incoming source updates that affect a top-k materialized view;

second, we compute a safe value for the additional view tuples that we need in order

to sustain high deletion rates; third, we fine tune this value with a safety range of

values. Specifically, the three main steps are:

1. Given ΛINS, ΛDEL and ΛUPD, we can compute λins and λdel, pins and pdel, and

finally,
aff
insp and

aff
delp as well as

aff
insλ and

aff
delλ .

ΛINS, ΛDEL and ΛUPD denote the ratios of insertions deletions and updates that

occur in the base table R. pins and pdel denote the probabilities of an insertion

and deletion occurring on the base table R respectively.
aff
insp and

aff
delp denote

the probabilities of insertions and deletions that affect the view V respectively.

These probabilities are expressed as a function of kcomp.
aff
insλ and

aff
delλ denote

the ratios of insertions and deletions occurring in the view V in the period of

operations T. Updates are treated as a combination of deletions and insertions

thus λins and λdel denote the ratios of insertions and deletions including those

occurring from updates.

2. Compute kcomp as a function of
aff
insλ ,

aff
delλ .

kcomp denotes the number of tuples that the view V should initially contain,

such that after a period of operations T, V will contain at least k tuples.

3. Fine-tune kcomp by using the variance of the probability that a deletion and

insertion action affects the materialized view.

75

3.2.3. Handling of Updates

Given ΛINS, ΛDEL and ΛUPD and treating updates as a combination of deletions and

insertions, the ratios λins and λdel can be computed through the following equations:

λins = number of insertions including those from updates / T

λdel = number of deletions including those from updates / T

ΛINS = number of insertions / T

ΛDEL = number of deletions /T

ΛUPD = number of updates /T

Therefore, λins=ΛINS+ΛUPD , λdel=ΛDEL+ΛUPD. In addition, pins and pdel can be

expressed through the usage of ratios as
delins

ins
insp

λλ

λ

+
= and

delins

del
delp

λλ

λ

+
= respectively.

3.2.4. Computation of the Actual Rates that Affect V

The problem now is to compute the probabilities
aff
insp and

aff
delp that affect the view V.

These probabilities can be computed as
aff
insp = pins⋅ p (z > valkcomp) and

aff
delp = pdel ⋅

p(z> valkcomp) respectively. Actually,
aff
insp is the number of insertions affecting the

view V divided by the number of insertions and deletions occurring on the base table

R and
aff
delp is the number of deletions affecting the view V divided by the number of

insertions and deletions occurring on the base table R. Now the problem is focused

upon finding the probability p(z>valk).

In order to compute the above probability we will use the Empirical Cumulative

Distribution Function Fn(x) (ECDF). Instead of using of a particular parametric

cumulative distribution function, we will use ECDF which is a non parametric

cumulative distribution function that adapts itself to the data. ECDF returns the values

of a function F(x) such that Fn(x) represents the proportion of observations in a

sample less than or equal to x. Fn(x) assigns the probability 1/n to each of n

76

observations in the sample. In other words Fn(x) estimates the true population

proportion F(x). ECDF is formally defined as follows [Triv02]:

Let X1, X2, …, Xn be independent, identically distributed random variables and let

x1<x2<…<xn denote the values of the order statistics of the sample. Then the empirical

distribution function Fn(x) is defined by the following formula:

Fn(x) =

0, x<x1

n

i
, xi ≤ x<xi+1

1, xn≤ x.

The alternative definition of Fn(x) is:

n

x_are_that_sample_the_in_values_of_number ≤
=(x)Fn

Assume that the base relation R contains N tuples and the view V should contain kcomp

tuples. If we order these tuples according to their values then there are N-kcomp tuples

in R with value less than the value of kcomp. The following theorem implies that when

the sample size n is large, Fn(x) is quite likely to be close to F(x) over the entire real

line.

Theorem 3.1 Glivenko-Cantelli Theorem [DeSc02]:

Let F(x) denote the density function of the distribution from which the random sample

X1, X2,…, Xn was drawn. For each given number x (-∞<x<∞) the probability that any

particular observation Xi will be less than or equal to x is F(x). Therefore, it follows

from the law of large numbers that as ∞→n , the proportion Fn(x) of observations in

the sample that are less than or equal to x will converge to F(x) uniformly over all

values of x. Let |)x(F)x(F|supD n
x

n −=
∞<<∞−

, the Glivenko-Cantelli theorem states

that 0→
p

nD . �

Therefore, the probability of a tuple z affecting the view V can be expressed as:

77

p(z>valkcomp)= 1- p(z≤valkcomp)=1-FN(kcomp)

p(z>valkcomp)=1-
N

k

N

kN compcomp
=

−

Eq 3.1

As a more general example, consider a base relation R where the score of its tuples

according to a function follow an exponential distribution in the interval [0, 2] and

that a view V requires the top-k tuples of R according to their score value. In Figure

3.1 the probability distribution function of an exponential distribution is illustrated. In

addition, assume that the top-k tuples are the 20% of the relation R and thus the

vertical line top-k shown in Figure 3.1 denotes the values of the tuples that participate

in the top-k view. Thus, the values in the view are greater or equal to 0.3. Assume a

new tuple t following the same exponential distribution being inserted in R. For the

new tuple t the probability of its value participating in the top-k ones is again 20%.

Figure 3.1. Exponential Probability Distribution.

Again, consider a similar situation where a view contains the top-k tuples from a base

relation R according to a scoring function. Assume that the score values of R this time

follow a beta distribution in the interval [0, 1] with parameters given as 5 and 2.

Figure 3.2 illustrates the probability distribution function of such a distribution.

Similar to the previous example, the vertical line illustrated as top-k in Figure 3.2

denotes that the view contains 20% of R’s tuples where the values participating in the

view are greater or equal to 1.7. Assume a new tuple denoted as t being inserted in R.

78

The new tuple t will again follow the same beta distribution and the probability of t

having a value greater than 0.8 is 20%.

Figure 3.2. Beta Probability Distribution.

Therefore,
aff
insλ and aff

delλ are computed through the following equations:

aff
ins

aff
ins p=λ ⋅(λins + λdel) and aff

del
aff
del p=λ ⋅(λins + λdel).

According to equation 3.1,
aff
insλ and

aff
delλ can be expressed as:

aff
insλ = pins ⋅ p(z > valkcomp) ⋅(λins + λdel)

aff
insλ = pins ⋅

N

kcomp
 ⋅(λins + λdel)

Eq 3.2

 and

aff
delλ = pdel ⋅ p(z > valkcomp) ⋅(λins + λdel)

aff
delλ = pdel ⋅

N

kcomp
 ⋅(λins + λdel)

Eq 3.3

3.2.5. Computation of kcomp

The last step of the method is to compute kcomp, such that it will guarantee that the

view will contain at least k tuples, k ≤ kcomp, with probability p, after a period of

operation T. In other words compute a kcomp that is of the form kcomp = k + ∆k. In

general, when the ratio of insertions λins is greater than that of deletions λdel it is clear

that V will be maintained. The problem arises when the opposite occurs, i.e., when the

79

ratio of deletions is greater than that of insertions. In such a case it is vital to compute

a value for kcomp that can guarantee that V will contain at least k tuples after a period

of operations.

Let us denote the frequency of deletions that affect the view V as aff
delλ . In a period of

time T, in order to keep the view maintained the following inequality should

hold: kk
aff
del

T
comp ≥Τ⋅− λ .

Thus, in case both insertions and deletions occur in a period of time T, in order to

keep the view maintained for kcomp the following inequality should hold kcomp ≥ k +

)(aff
ins

aff
del λλ − ⋅T. Clearly, to minimize memory consumption, we need to take the

minimum possible kcomp and thus treat the above inequality as the equation kcomp = k +

)(aff
ins

aff
del λλ − ⋅T.

Therefore, by replacing
aff
insλ and

aff
delλ from equations 3.2 and 3.3 the following

equality occurs:

kcomp= k + (pdel – pins) ⋅(λins + λdel) ⋅
N

kcomp
⋅ T ⇒

kcomp= k + (λdel – λins) ⋅
N

kcomp
⋅ T

Eq 3.4

Thus, by solving the above equation according to kcomp we obtain:

kcomp = k ⋅
T*)(N

N

delins λλ −+

Eq 3.5

Equation 3.5 has a meaning when N + (λins – λdel) ⋅ T> 0. This states that the size of

the base relation R will not fall below 0, after updates occur in a period of operations

T. At the same time, when λins – λdel < 0 (i.e., the case we are particularly interested

in), then the fraction is greater than 1 and thus, kcomp > k.

80

3.2.6. Fine-Tuning of kcomp

Although we now have a formula to compute the value of kcomp, we have expressed

the probability of a new tuple z(id, x, y) affecting the top-kcomp tuples of the view as

p(z>valkcomp). Assume that a new tuple z is inserted in R. The probability of this tuple

to affect the view is p(z>valkcomp) whereas, the probability of this tuple not to affect

the view is 1- p(z>valkcomp). The above can be expressed as a Bernoulli experiment

with two possible events. These are (a) the new tuple being inserted in V with

probability of success p(z>valkcomp) and, (b) the exact opposite where the new tuple is

not inserted in V with probability 1- p(z>valkcomp). When the ratio of insertions

occurring in the base relation R are λins, a Bernoulli experiment is occurring λins times

where the probability of success is p(z>valkcomp) and the number of successes follow a

Binomial distribution. The probability of having Yins affected insertions in the view

follow a Binomial distribution of the form Binomial (λins, p(z>valkcomp)). The variance

of the above distribution can be expressed as:

Var(Yins) = λins⋅ p(z>valkcomp) ⋅ (1- p(z>valkcomp)).

The above formula indicates that insertions expected to affect the view may vary by

Var(Yins). Correspondingly, if there are λdel deletions occurring in the base relation R,

then the variance of these deletions expected to affect the view is

Var(Ydel) = λdel ⋅ p(z>valkcomp) ⋅ (1- p(z>valkcomp)). This occurs as the variance of the

Binomial distribution B(λdel, p(z>valkcomp)), which is similar to the one used for

insertions.

Therefore in the worst case, in order to guarantee that the view will contain at least k

tuples with confidence 95%, where k ≤ kcomp, equation 3.4 becomes as stated below:

kcomp = k + (λdel – λins) ⋅
N

kcomp
 ⋅T + 2 ⋅ Var(Ydel) + 2 Var(Yins) Eq 3.6

The confidence rate of 95% occurs from statistical properties concerning the variance

factor appearing in equation 3.6. In case another confidence percentage is needed,

equation 3.6 can be adjusted according to typical statistical methods [DeSc02].

81

3.2.7. Discussion

The problem of maintaining a view when updates occur in a base relation R, mainly

lies in the problem of estimating the number of updates that will affect the view.

Statisticians have contributed in this by providing equations that compute the value of

a probability of the form p(z>valkcomp). However, the equation of such a probability

depends on the distribution that the variable z follows. In our context, the variable z is

a linear combination of the form a⋅x + b⋅y where x and y are values from the attributes

X and Y of the base relation. Even if the distributions that X and Y follow are known,

the distribution of the score Z cannot be computed unless X and Y follow a stable

distribution. A stable distribution (e.g., Normal, Cauchy) has the property of stability.

This property states that if a number of independent identically distributed (iid)

random variables have a stable distribution, then a linear combination of these

variables will have the same distribution. Therefore, the distribution of the variable Z

can only be known in few cases. However, even if the distribution of the score was

known, the probability p(z>valkcomp) could be computed only with respect to the valk

instead of the value valkcomp. This is because the valkcomp could not been know in

advance. Therefore, an iterative procedure would be needed. This occurs from the fact

that we could compute the effect top-k tuples could have but not the effect the extra

tuples would arise. Thus, a recursive procedure would be required.

3.2.8. Example

As an example, consider the base relation R (ID, X, Y) initially containing N tuples

with N=20 where attributes X and Y follow a uniform distribution over the interval [0,

100]. In addition, consider a materialized view V that contains the top-3 tuples (k=3)

of the form (id, val) where val=3⋅x+7⋅y is the score according to a function f(x, y)=a⋅x

+ b⋅y and a=3, b=7. The base relation R and the initial state of V are shown in Figure

3.3. Finally, the update ratios are Λins=5, Λdel=15 and Λupd=0. We will compute kcomp

such that the view would contain kcomp tuples instead of k in order to be kept

maintained when insertions, deletions and updates will occur in the base relation R.

Moreover, let the period of operations occurring set as T=1.

82

According to the method of Section 3.2.3, the ratios λins and λdel are 5 and 15

respectively. Therefore, pins=0.25 and pdel=0.75. The probability p(z≥ valkcomp) can be

calculated according to the following:

p(z≤valkcomp) = FN (valkcomp)

p(z≤valkcomp) = (number of elements in score sample≤ valkcomp) / N

p(z>valkcomp) = kcomp / 20

In consequence, the probabilities
aff
insp and

aff
delp can be calculated as:

aff
insp = pins ⋅p(z≥valkcomp) = 0.25 ⋅

20

compk
and

aff
delp = pdel ⋅p(z≥valkcomp) = 0.75 ⋅

20

compk
.

R V

id X Y id Z

1 56 41 10 929

2 58 62 15 847

3 15 97 4 836

4 78 86

5 69 10

6 96 60

7 12 43

8 74 76

9 26 71

10 95 92

11 34 51

12 27 36

13 19 25

14 68 81

15 91 82

16 84 65

17 41 59

18 37 37

19 23 17

20 47 27

Figure 3.3. Base Relation R.

Given the previous probabilities, the effective update ratios for the view V are then:

aff
insλ =

aff
insp ⋅(λins + λdel) = 0.25 ⋅

20

compk
⋅(5 + 15)

83

aff
delλ =

aff
delp ⋅(λins + λdel) = 0.75 ⋅

20

compk
⋅(5 + 15)

The above equations state that if 5 insertions will occur in the base relation R,

aff
insλ will affect the view and if 15 deletions occur then

aff
delλ will affect the view

respectively. To be more specific the ceiling function is applied on
aff
insλ and

aff
delλ .

Therefore, for kcomp the following inequality holds:

kcomp ≥ k +)
aff
ins

aff
del(λλ − ⋅T ⇒ kcomp ≥ 6

where actually kcomp = 6. Thus, kcomp should be 6 in order to keep the view maintained

after insertions, deletions and updates will occur in the base relation R. Suppose that

insertions and deletions, shown in Figure 3.4, occur in the base relation R. The view V

contains initially top-6 tuples and after updates the view will contain top-3 tuples.

These are shown in Figure 3.5 where the dark shading denotes the initial top-3 tuples

of V whereas the light shading denotes the extra top-3 tuples in order to have top-kcomp

tuples.

insertions deletions

Id X Y id X Y

21 25 33 1 56 41

22 18 64 2 58 62

23 97 83 3 15 97

24 31 50 4 78 86

25 53 82 5 69 10

7 12 43

8 74 76

10 95 92

11 34 51

12 27 36

13 19 25

15 91 82

16 84 65

17 41 59

20 47 27

Figure 3.4. Insertions and Deletions Occurring in Base Relation R.

84

V V

id Z id Z

10 929 Deleted 23 872

23 872 Inserted 14 771

15 847 Deleted 25 733

4 836 Deleted

14 771

8 754 Deleted

25 733 Inserted

3 724 Deleted

Figure 3.5. The View V Prior and Subsequent to Updates.

3.3. Generalization of the Problem

In this section we provide two generalization of the above problem. The first

generalization concerns a relation R that contains more than two attributes and the

scoring function is of linear form whereas the second generalization concerns the

problem when the scoring function is not obligatory linear but is a monotone function.

Assume that the relation is of the form R (ID, X1, X2, …, Xn) and the scoring function

of the view includes all the attributes Xi or a number of them. The problem then can

be generalized as:

3.3.1. Formal Definition of the Problem Generalized for More than Two Attributes

Given a base relation R (ID, X1, X2, …, Xn) that originally contains N tuples, a

materialized view V that contains top-k tuples of the form (id, val) where

val is the score according to a function f(x1, x2, …,xn)=a1⋅x1 +

a2⋅x2+…+an⋅xn and a1, a2, …an are constant parameters, the update ratios

Λins, Λdel and Λupd for insertions, deletions and updates respectively over

the base relation R,

Compute kcomp that is of the form kcomp = k +∆k

Such that the view will contain at least k tuples, k ≤ kcomp, with probability p, after a

period T.

The solution to the problem is similar to the previous three-step method which leads

to the computation of equation 3.5. This is because the computation of kcomp from

85

equation 3.5 is independent of the attributes that participate in the scoring function of

V.

3.3.2. Formal Definition of the Problem Generalized for Non-Linear Monotonic

Functions

Given a base relation R (ID, X1, X2, …, Xn) that originally contains N tuples, a

materialized view V that contains top-k tuples of the form (id, val) where

val is the score according to a monotone function f(x1, x2, …,xn), the

update ratios Λins, Λdel and Λupd for insertions, deletions and updates

respectively over the base relation R,

Compute kcomp that is of the form kcomp = k +∆k

Such that the view will contain at least k tuples, k ≤ kcomp, with probability p, after a

period T.

In general, the scoring function of the view can be any monotonic function and not

compulsory a linear function. The monotonic property is important in order to make

use of the ECDF distribution function. Remember that ECDF returns the values of a

function F(x) such that Fn(x) represents the proportion of observations in a sample

less than or equal to x. Therefore, it is necessary that the values among a sample have

an order. In other words, for the setting of our problem, the values of the sample are

the tuples and their score according to the scoring function of V.

3.4. Multiple View Updates

So far, our deliberations have been focused on the fine tuning of the size of a

materialized view in order to sustain high update rates. The next step in our

investigation of the field of top-k materialized view refreshment is to consider the

case where more than one views need to be materialized. We will split the overall

problem in two parts:

The first problem that we consider concerns the dominance of a view over another

and how this reflects to the view refreshment problem. In other words, we investigate

86

whether we can efficiently infer when the updates over a view directly affect the

materialized contents of another view. Formally, assume a relation R(ID, X, Y,…) and

two materialized views V1(ID, X, Y, s1) and V2(ID, X, Y, s2) that contain k1 and k2

tuples respectively. The score s1 of V1 is defined as s1= a1⋅x +b1⋅y and the score s2 of

V2 is defined as s2=a2⋅x + b2⋅y and a1, a2, b1, b2 are positive parameters. Assume that

updates occur at the relation R, and one of the views is affected by them (i.e., its

extent has to be updated). Then, the question that arises is whether it is possible to

know a-priori if the impact of these updates deterministically results in the necessity

to update the other view too. We provide guarantees for this case via a geometrical

representation of the views and their scoring equations and we can safely determine

the effect of an update on a view on the basis of its effect on another view.

The second problem that we consider involves the design of an efficient structure for

a large set of top-k materialized views in order to speed up their maintenance. The

constructed structure is based on the abovementioned dominance relationship among

the views. We introduce hierarchies for the views and test batches of updates over the

bottom of the hierarchies. If the updates affect the bottom view, its immediate

ancestors are candidates for being affected by the updates; otherwise, we can surely

alleviate them from the burden of being tested against the update under examination.

Obviously, the same pattern recursively propagates throughout all the hierarchy as

long as a member of the hierarchy is affected.

The structure of this section is as follows. First, we start with preliminary ideas

coming from the related literature and subsequently, we expand these results to

discuss the case of view dominance. The third part of the section involves the

discussion of view maintenance for large sets of views.

3.4.1. View Nucleation

Assume a relation R(ID, X, Y,…) and a materialized view V (ID, X, Y, s1) that contains

k tuples, scored via s which is defined as s = wx⋅x +wy⋅y = w⋅ (a⋅x + y). Both a1, and b1

are positive numbers). To simplify notation, we will often denote the view as V(a, k).

Assume now a relation R(ID, X, Y,…) and two materialized views V1(ID, X, Y, s1) and

87

V2(ID, X, Y, s2) that contain k1 and k2 tuples respectively, with the score s1 of V1

defined as s1= a1⋅x +b1⋅y and the score s2 of V2 defined as s2=a2⋅x + b2⋅y. All a1, a2, b1,

b2 are positive numbers. Assume now that updates occur to the base relation and they

must be propagated to the views. In a typical relational situation with SPJ queries, we

would say that a view V1 is contained within view V2, if the extent (i.e., the

materialized tuples) of view V1 is always a subset of the extent of view V2. In our

case, due to the fact that the scores of the materialized tuples are different, we slightly

tweak the terminology and instead of the ‘containment’ terms we employ a

terminology around the notion of ‘nucleus’.

Definition 3.1 (Nucleation Relationship of two Views). Assume a relation R(ID, X,

Y,…) and two materialized views V1(a 1, k1) and V2(a2, k2). A view V2 nucleates a

view V1 if for each tuple t(t.id,t.x,t.y,…) ∈ R that belongs to the extent of V2 as a tuple

t2(t.id,t.x,t.y,s2(t)) ∈ V2 (i.e., with a score s2(t)), a respective tuple t1(t.id,t.x,t.y,s1(t))

obligatorily belongs to the extent of V1. We denote this nucleation as V2 ⊆ V1.

Definition 3.2 (Nucleus equivalent Views). Two views V1(a 1, k1) and V2(a2, k2) are

nucleus equivalent if both V2 nucleates V1 and V1 nucleates V2.

Clearly, the main idea behind nucleation is that despite the difference in scores, the

‘nucleus’ of a tuple (i.e., the tuple identifier and the scoring attributes) are the same in

the respective materialized tuples.

3.4.2. Updates for Nucleated Views

Can we efficiently decide when a view V1 is nucleated by another view V2? In this

subsection, we will deal with this problem based on an analysis conducted via a

geometric representation. Specifically, assume the views V1 and V2 defined as V1(ID,

X, Y, s1) and V2(ID, X, Y, s2) that contain k1 and k2 tuples respectively, with the score

s1 of V1 defined as s1= a1⋅x +b1⋅y and the score s2 of V2 defined as s2=a2⋅x + b2⋅y.

These two views are characterized by the lines y=b1⋅a1
-1

⋅x and y= b2⋅a2
-1

⋅x

respectively. There are two cases depending on the scoring functions of V1 and V2

and, consequently, on the slopes of their characteristic lines. The first case is trivial in

88

the sense that the two views are practically characterized by the same line. The second

case concerns the typical situation when the lines of the two views are different. In the

sequel, we discuss these cases in more detail.

Case 1:
2

2

1

1

b

a

b

a
=

In this situation, the equation of V1 is proportional to the equation of V2. Without loss

of generality assume that the equation of V1 is s1= a1⋅x +b1⋅y and the equation of V2 is

s2= λ (a1⋅x +b1⋅y) where λ∈ℜ
+
. Then, the line that characterizes both views is y=

b1⋅a1
-1

⋅x. There are two sub-cases in this situation.

Case 1.1: k1=k2. In addition, assume that both views contain the same number of

tuples, i.e., k1=k2. In this case, any update affecting V1 will definitely affect V2 and

vice versa. The only difference between the results of the two views will be the score

of their tuples. Obviously, if V1 contains a tuple t with score s1(t) then the same tuple

will belong in V2 but with score s2(t)= λ⋅ s1(t).

Lemma 3.1. If the equation of a view V1 is proportional to the equation of a view V2

with the same extent size k of materialized tuples, then they both contain the exact

same tuples (i.e., they are nucleus equivalent) with the same ordering.

Proof. Assume that the equation of V1 is s1= a1⋅x +b1⋅y and the equation of V2 is s2= λ

(a1⋅x +b1⋅y) where λ∈ℜ
+
. In addition, assume tk(xk, yk) is the last tuple in V1. Then for

any tuple t(xt, yt) from V1, obviously by definition s1(t) ≥ s1(tk). In other words, a1⋅xt

+b1⋅yt ≥ a1⋅xtk +b1⋅ytk. Multiplying this inequality with the proportion λ, we get λ (a1⋅xt

+b1⋅yt) ≥ λ (a1⋅xtk +b1⋅ytk). This states that s2(t) ≥ s2(tk) for every tuple t from V1.

However, the last inequality is the definition of the top-k tuples of V2. Therefore, any

tuple in V1 will be in V2 as well. In addition, if for two tuples t1 and t2 from V1 we

know that s1(t1) ≥ s1(t2) then by multiplying the inequality with the parameter λ we get

s2(t1) ≥ s2(t2). This proves that tuples t1 and t2 appear with the same ordering in V2 as

well. �

89

Corollary 3.1. If the equation of a view V1 is proportional to the equation of a view

V2 with the same extent size k of materialized tuples, whenever V1 is affected by an

update, V2 will be affected as well and vice versa.

Proof. Assume a tuple t(xt, yt) being updated (inserted or deleted) in R and t affects V1

with score s1(t). This means that s1(t) = a1⋅xt +b1⋅yt and s1(t) ≥ s1(tk), where tk is the last

tuple materialized in V1. Multiplying the above inequality by the parameter λ we get

λ⋅s1(t) ≥ λ⋅s1(tk) which can be written as s2(t) ≥ s2(tk). From the above lemma tk is also

the last materialized tuple in V2. Therefore, tuple t has a higher score than tk for V2 as

well. Therefore, tuple will also affect V2. �

Figure 3.6. Both Views Are of Proportional Equations.

Case 1.2: k1< k2. Consider now the case where the equations of the two views V1 and

V2 are still proportional, but k1< k2 (which means that V1 contains less tuples than V2).

In this case, V1 nucleates V2 and any update affecting V1 will definitely affect V2 as

well.

Corollary 3.2. If the equation of a view V1(a, k1) is proportional to the equation of a

view V2(a, k2) and k1< k2, V1 nucleates V2.

90

Proof. According to the above lemma as shown in Figure 3.6, the top-k1 tuples are

exactly the same for both views. The inverse however, does not always hold. This is

because an update occurring in V2 might be affecting the tuples that are ranked below

k1 and thus, the k1 tuples of V1 will not suffer any change. Obviously, if an update

occurring in V2 affects the top-k1 tuples then it will affect V1 as well. �

Case 2:
2

2

1

1

b

a

b

a
≠

In this situation, the equations of the two views are completely different. In this case,

since the equations of the two views are not proportional, the only piece of

information that can be used in order to conduct a conclusion with respect to the

nucleation of the two views is the position of the last tuple of each view. Again,

assume two views V1(ID, X, Y, s1) and V2(ID, X, Y, s2) with k1 and k2 tuples

respectively where score s1 is defined as s1= a1⋅x +b1⋅y and s2 is defined as s2=a2⋅x +

b2⋅y. The lines that characterize the two views are V1: y=b1⋅a1
-1

⋅x and V2: y= b2⋅a2
-1

⋅x

respectively (see Figure 3.7 or Figure 3.8). Let tk1 be the last tuple materialized in V1

with score s1(tk1) and L1 be the line which is vertical to the line of V1 and passes from

point tk1. The area above the line L1 contains the top-k1 tuples with respect to V1. Now,

take the line L2, which is vertical to V2 and passes through the point tk2, where tk2 is

the last tuple materialized in V2. The area above line L2 contains points that belong to

V2. In addition, let I denote the point where L1 and L2 intersect.

The position of the intersection point I is critical in regards to the knowledge of

whether updates affecting one view will affect the other view or not. Assume that the

active domains of attributes X and Y are X∈[xmin, xmax] and Y∈ [ymin, ymax]. We will

employ the term active area to refer to the region in which any tuple from relation R

belongs. This is constrained within a rectangle defined by the points (xmin, ymin) and

(xmax, ymax). Checking whether point I lies inside the active area or not can be easily

done when the last tuple of each view is known. Line L1 is expressed as: a1⋅x

+b1⋅y=s1(tk1). Similarly, line L2 is expressed as: a2⋅x +b2⋅y=s2(tk2). Therefore, the

coordinates of point I(xI, yI) can be found by solving the linear system of L1 and L2.

Specifically,

91

xI = (a1⋅b2 – a2⋅b1)
-1

⋅ (b2 ⋅ s1(tk1) - b1⋅s2(tk2)) and

yI = (a1⋅b2 – a2⋅b1)
-1

⋅ (a1⋅s2(tk2) - a2⋅s1(tk1)).

Depending on the position of where point I lies we have the following cases:

Case 2.1: point I intersects outside of the active area. Point I lies outside of the

active area if at least one of its coordinates xI, yI does not belong in the active domains

of X and Y respectively. In fact, in case point I lies outside the active area (see Figure

3.7), then all tuples materialized in one view are also materialized in the other view as

well. This situation indicates that whenever an update occurs in V2, this will definitely

affect V1 as well. The inverse however is not always true.

In Figure 3.7, tuples of V2 also belong in V1 and V2 nucleates V1. In other words, V2 is

a subset of V1 in the sense that any tuple in V2 will be part of V1 but with a different

ranking and score.

Figure 3.7. Intersection of Two Views Outside the Active Area.

Case 2.2: Point I intersects inside the active area. Point I lies inside the active area

if both of its coordinates xI, yI belong in the active domains of X and Y respectively. In

case point I lies within the active area, there is no clear guarantee of the way the views

are affected when updates occur. However, there is a sub-area which we refer to as

safe area, where both views will be affected in the same way. Observe Figure 3.8,

where the safe area is the convex defined by the points y2, I, x1, R. This area contains

92

points that both belong in V1 and V2. If an update occurs within this safe area then if

one view is affected then obviously the other view will be affected.

Figure 3.8. Intersection of Two Views Inside the Active Area.

On the other hand, there are two critical areas where an update might occur and affect

one view but not the other. These two critical areas are the two triangles tr1: y1y2I and

tr2: x1x2I. Assume the relation R is updated with a tuple t that falls within the triangle

tr1. This means that either t is inserted in R and its representation lies within tr1, or t

belonging in tr1 is deleted from R. Then, t will affect V1, but will leave V2 unaffected.

Similarly, if tuple t falls within the triangle tr2, then V2 will suffer changes whereas V1

will remain unchanged.

Case 2.3: Special Case. Assume two views V1(a1, k1) and V2(a2, k2) as the ones

depicted in Figure 3.8, where point I is within the active area. The safe area of these

two views is the convex defined by the points: y2, I, x1, R. The main observation that

can be made is that the tuples in the safe area are common and therefore, the two

views share the same set of top-k tuples, k ≤ k1,k2 (although, possibly with different

ordering for each view, since each point in the safe area has a different score for each

of the two views). The areas outside the safe area contain k1-k and k2-k tuples for each

view, respectively.

93

In addition, assume now that both (i) k1=k2 and (ii) the two critical regions tr1: y1y2I

and tr2: x1x2I are void of tuples. In such a case when an update occurs, a conclusion

can be conducted depending on the type of the update (i.e., insertion or deletion):

If the update is a deletion and affects one of the views, then it will definitely affect the

other view.

However, if an insertion occurs and affects one of the views, then depending on the

position of the insertion the other view might be or not affected. This depends on

whether the insertion lies within the safe area or in one of the non-common triangles.

3.4.3. Discussion & Summary

It is important to stress that the nucleation relationship of the two views is typically

dependent on the specific instances (expect for special cases) and has to be re-

evaluated each time that updates occur.

Whenever an update occurs that affects at least one of the views, the position of its

respective line (L1 and/or L2) is altered. In fact, when an insertion occurs in at least

one of the views, the position of its respective line is moved towards the upper right

part of the active area (or, infinity, if one chooses to think without active areas).

Similarly, when a deletion occurs in a view, its respective line is moved towards the

beginning of the axes. Therefore, lines L1 and/or L2 should be recomputed after every

update affects at least one of the views. Consequently, point I should be recomputed.

This might also cause the change from the situation where I is outside the active area

to the situation where I is inside the active area and vice versa.

Combining the above cases the following theorem occurs (the proof is obvious by

referring to the lemmas and discussions of this section).

Theorem3.2. Assume two views V1 (ID, X, Y, s1) and V2 (ID, X, Y, s2) that contain k1

and k2 tuples and have their scores defined as s1 = a1 ⋅

x + b1 ⋅

y and s2 = a2 ⋅

x + b2 ⋅

y,

respectively. In addition, without loss of generality, assume for the slopes of the lines

94

L1 and L2 that
2

2

1

1

b

a

b

a
≤ . When updates occur in the relation R and the view V1 is

affected, then, the view V2 will be affected if one of the following holds:

The scoring function of V1 is proportional to the scoring function of V2 and k1≤k2

The intersection point I of L1 and L2 lies outside the active area, and L2 is above L1

The intersection point I lies inside the active area, critical areas tr1 and tr2 are void of

tuples and updates are only deletions.

The intersection point I lies inside the active area, critical areas tr1 and tr2 are void of

tuples and insertions occur only within the safe area. �

3.5. Updating Multiple Nucleated Views

Assume a relation R(ID, X, Y,…) containing initially n tuples. In addition, assume that

our user requirements allow us to structure the updates that occur in R in a batch way,

with ∆R
+
, ∆R

-
 denoting the insertions and deletions of a batch respectively. Assume a

set of m materialized views V = {Vi(ID, X, Y, si) | 1 ≤ i ≤ m} where each view Vi

contains ki tuples with score si defined as si= ai⋅x +bi⋅y. When updates occur in R, the

set of views V should be maintained appropriately. In a naïve manner, ∆R
+
 and ∆R

-

would be checked over each view of the set V. However, if there are nucleation

relationships among them, the update process can be done more efficiently. In this

section we describe an algorithm that updates a set of views by taking advantage of

the nucleation relationships among them.

3.5.1. Representation of Nucleation Relationships as Hierarchy Paths

Assume that there exist several nucleation relationships among the set of views V.

Taking into consideration the nucleation between views, we can construct a number

of hierarchy paths among them. Each hierarchy path will contain the views that are

related-connected by nucleation relationships. As a simple example, assume that V1

nucleates V2 and V2 nucleates V3. This can be depicted as a hierarchy shown in Figure

3.9 where the nucleation relationship is represented as an ancestor-descendant

relationship (i.e., the fact that V1 nucleates V2 is depicted as V1 being the ancestor of

V2). In other words, when a view Vi is an ancestor of a view Vj in a hierarchy path, all

95

tuple ids of Vi are also contained in the materialized tuples of Vj at this specific point

in time (i.e., for the current extents of the two views). Following the same example,

the hierarchy path H1 from Figure 3.9 indicates that all the tuples materialized in V1

are also materialized in V2 and all tuples materialized in V2 are materialized in V3.

Since, tuples materialized in V1 are also in V2 and all tuples from V2 are materialized

in V3, by induction, all tuples in V1 are also part of the materialized tuples in V3 as

well. Therefore, when an update affects a view that is part of a hierarchy path, then all

its descendants will be affected by this update. On the other hand, if an update is not

affecting the lowest view from a hierarchy path, then it will definitely not affect any

of its ancestors. According to this, we propose a procedure for updating a number of

views based on their nucleation. We need to stress that the relationships are instance-

dependent, i.e., they depend on the contents of the views at any time point and they

need to be re-evaluated after each update occurs. Also, this explains why we

structure our discussion around batches of updates (as opposed to individual

modifications). From the theoretical point of view, individual modifications are a

special case of batch updates; at the same, tuple-at-a-time updates can be an overkill

when compared to the processing of batches.

Figure 3.9. Hierarchies for Efficient View Updates.

Before proceeding to the algorithms that update the views of a set V we need to

construct the algorithm that creates the hierarchy paths. Firstly, we describe the

algorithm that constructs the hierarchy paths among the views from set V.

96

Algorithm Create Hierarchy Paths

Input: A set of views V= {Vi(ID, X, Y, si) | 1 ≤ i ≤ m},

Output: a set of hierarchy paths H = {Hj | 1 ≤ j ≤ l}

Begin

1. H = {Hj | Hj=Vi} //every view forms a hierarchy path

2. For every Hj of H {

3. Begin from root Vj of Hj {

4. For every Hl ≠ Hj of H {

5. Begin from root Vl of Hl {

6. CI=CheckInerstectionPointI(Vj,Vl)

7. if (CI = true){

8. Remove Hj, Hl from H

9. Hj = Merge { Hj, Hl }

10. Add Hj in H

11. }

12. Vl = Vl-1 //move a level down the path Hl

13. } until CI = true

14. }

15. Vj = Vj-1 //move a level down the path Hj

16. } until CI = true

17. }

18. Return(H)

End.

Algorithm 3.1 Algorithm Create Hierarchy Paths

Algorithms. How can we create a number of hierarchy paths according to the

nucleation relationships for a set of m views V? Let the set of hierarchy paths be

denoted as HHHH = {Hj | 1 ≤ j ≤ l} where l ≤ m. Each hierarchy path Hj is a partial order

(denoted as p) among the views. Consider the hierarchy path H1 denoted in Figure

3.9. Then, for views V1, V2, and V3, partial orders are defined as: V1 p V2 p V3. The

algorithm Create Hierarchy paths initially treats each view of the set V as a hierarchy

path of its own. Then, in an iterative manner it checks among views of hierarchy paths

nucleation relationships exist. In case there is a partial order between a view of a

hierarchy path and a view of another hierarchy path, the two hierarchy paths are

merged into a new hierarchy path. The algorithm proceeds until all nucleation

97

relationships are considered. For each two hierarchy paths, the algorithm iteratively

checks the views from one hierarchy path with the views of the other hierarchy path

starting from the root and proceeding top-down until it finds a nucleation relationship.

Now, once the hierarchy paths have been constructed, we can update the views by

taking into consideration the fact that any update not affecting a lower view in a

hierarchy path will not affect any of its ancestors. In fact, the algorithm works in a

bottom up way for every hierarchy path constructed. Initially, we check if the updated

tuples ∆R
+
 and ∆R

-
 of R, affect the lowest views from each hierarchy path. Then, the

set of ∆R
+
 tuples are split into two sets: (i) Ignorable set and (ii) Affected set. The

Ignorable set contains all the tuples from ∆R
+
 that do not affect the view, where the

Affected set contains all the rest. In the next step, the algorithm proceeds by checking

which updates affect the immediate ancestor of the previous view. However, there is

no need to check every update from set ∆R
+
. Instead, only updates contained in the

Affected set are checked. Similarly to the previous step, the Affected set is now split

into two new sets (i) Ignorable and (ii) Affected. The same procedure is conducted for

the set ∆R
-
, where in each step the set of possible updates are split into (i) Ignorable

set and (ii) Affected set. This procedure is repeated for every hierarchy path, until the

root of the path is reached. In addition, every time a view V is checked and the sets of

Ignorable and Affected tuples are created, V is updated in regards to the Affected set of

tuples.

Notice that in the Create Hierarchy Paths algorithm, if a view does not participate in

any hierarchy path, then it creates a hierarchy path of its own. Therefore, there will

not be any views not updated. In other words, in the worst case where no view

nucleates another one, the algorithm is simplified to the naïve algorithm where every

view is checked and maintained.

98

Algorithm Maintain View Updates

Input: Hierarchy paths H ,∆R+ tuples inserted in R and ∆R- tuples

deleted from R,

Output: maintain views

 Begin

1. Let Vl be the lowest view in a hierarchy path

2. For all hierarchy paths Hj {

3. For all Vl in Hj{

4. V = Vl

5. Aff+ = ∆R+

6. Aff- = ∆R-

7. Ign+ = {}

8. Ign- = {}

9. do{

10. For all tuples t+ in Aff+ {

11. if (t+ not affects V){

12. Ign+ = Ign+ ∪ {t+}

13. }

14. }

15. For all tuples t- in Aff- {

16. if (t- not affects V){

17. Ign- = Ign- ∪ {t-}

18. }

19. }

20. Aff+ = Aff+ - Ign+

21. Aff- = Aff- - Ign-

22. Update V with tuples in Aff+ and Aff-

23. V = parent(V) //set the view V to be its immediate ancestor from hierarchy

path

24. } until the root of the hierarchy path is reached

25. }

26. }

 End.

Algorithm 3.2. Algorithm Maintain View Updates

99

After each batch of updates has been checked and performed over the views, the

hierarchy paths must be reconstructed. This is due to the fact that when updates occur

in views then their relative positions and therefore, nucleation relationships are

altered. In other words, before a new batch of updates is processed, the hierarchy

paths should be appropriately reconstructed. To this end, we execute algorithm Create

Hierarchy Paths.

Algorithm Check Intersection Point I

Input: Two materialized views V1(ID, X, Y, s1)
k1, with s1 = a1 ⋅ x

+ b1 ⋅ y and V2(ID, X, Y, s2)
k2, with s2 = a2 ⋅ x + b2 ⋅ y and

maximum and minimum values of attributes X and Y in R,

Output: the position of the intersection point of V1 and V2

 Begin

1. Let tk1 be the last tuple of V1, tk1(xk1,yk1)=s1(tk1)

2. Let tk2 be the last tuple of V2, tk2(xk2,yk2)=s2(tk1)

3. xI=(a1⋅b2-a2⋅b1)
-1⋅(b2⋅s1(tk1)–b1⋅s2(tk2))

4. yI=(a1⋅b2-a2⋅b1)
-1⋅(a1⋅s2(tk2)-a2⋅s1(tk1)) //compute coordinates for point I

5. if (Xmin ≤ XI ≤ Xmax and Ymin ≤ YI ≤ Ymax){

6. return(false);

7. }

8. else {

9. d1 = dist(O(0,0), V1);

10. d2 = dist(O(0,0), V2);

11. if (d1 < d2){

12. return(V1 nucleates V2);

13. }

14. else {

15. return(V2 nucleates V1);

16. }

17. return(true);

18. }

 End

Algorithm 3.3. Algorithm Check Intersection Point I

100

3.6. Experiments

In this section, we report on the experimental assessment of (a) the estimation of the

essential view size in order to sustain a high rate of updates and (b) updating multiple

views by making use of the nucleation relationship among them. We start with

presenting the experimental methodology and discuss our findings over the first set of

experiments and then continue by describing the experimental methodology and

results over the second set of experiments

3.6.1. Experimental Study of Sustaining High Rate of Deletions

Throughout this section we describe the experimental methodology and conclusions

over the proposed method of sustaining a materialized view in the presence of high

deletion rates. Our experimental study has been conducted towards assuring the

following two goals:

− Effectiveness. The first desideratum of the experimental study has been the

verification of the fact that the proposed method can accurately sustain

intervals with high deletion activity in the workload. In other words, the

experimental goal was to verify that a top-k materialized view contains at least

k items, in at least 95% of the cases.

− Efficiency. The second desideratum of the experimental study has been the

establishment of the fact that the computation of the exact number of auxiliary

view tuples is faster than the computation of refill queries as proposed in the

related literature. As well as the number of auxiliary view tuples is less than

the number proposed in [YYY+03].

To achieve the first goal we have estimated kcomp via two methods: (a) without the fine

tuning that uses the rates’ variances (i.e., through equation 3.5) and (b) with this fine

tuning (i.e., through equation 3.6). For both methods, we have computed the number

of tuples that were deleted from the view, below the threshold of k.

In the context of the second goal, we have measured three metrics: (a) the memory

overhead for kcomp and kcomp with tuning, measured as the number of extra tuples that

we need to keep in the view, (b) the time overhead for computing kcomp and kcomp with

101

tuning as compared to the necessary time to compute the refill queries of [YYY+03]

and (c) the time needed to compute the equation for kcomp. Again, we have evaluated

these metrics using both the aforementioned methods.

In all our experiments we have used one relation R(RID, X, Y) and one view V(RID,

score) with a formula score = 3X+7Y. The parameters that we have tested for their

effect over the aforementioned measures are: (a) the number of relation tuples, (b) the

number of materialized top-k results, (c) the fraction of the delete rate, over the

insertion rate and (d) the percentage of the update stream over the relation size. We

have not altered the time window T in our experiments; nevertheless, this is

equivalent to varying the last parameter (denoted as λ), which measures the amount of

modifications that take place as a percentage of the size of R. In other words, it is

equivalent to increase the modifications number instead of reducing the window size.

We have tested the method over data whose attributes X and Y followed the Gaussian

(with mean µ=50 and variance σ=10 for both X, Y), negative exponential (with a=1.5

for X and a=2.0 for Y) and Zipf distributions (with a=2.1 for both X, Y). The notation

for the parameters and the specific values that we have used are listed in Table 3.1.

All the experiments were conducted on a 2.8 GHz Pentium4 PC with 1 GB of

memory

Table 3.1. Experimental Parameters.

 Size of source table R (tuples) |R| 1x10
5
, 5x10

5
, 1x10

6
, 2x10

6

 Size of mat. view (tuples) k 5, 10, 100, 1000

 Size of update stream

(pct over |R|)

λ 1/1000, 1/100

 Deletion rate over insertion rate (ratio) D/I 1.0, 1.5, 2.0

Effectiveness of the Method

The effectiveness of the method is demonstrated in Figure 3.10 and Figure 3.11. We

present results organized by the data distribution of the attributes and compare two

methods for computing kcomp, (a) the method including the fine-tuning part and (b) the

102

method simply based on equation 3.5. We have conducted the full range of

combinations of the values listed in Table 3.1.

In Figure 3.10, we fix D/I to 1.5 and k to 1000 (the largest possible value) and vary

the size of R (in the X-axis) and the update stream size (in different lines in the

Figure). Each experiment has been conducted 5 times. We measure both the average

and the maximum number of misses. In Figure 3.11 we report only the maximum

number of misses, as it appears to be in analogy with the average in almost all the

cases, and we vary k and D/I, while keeping R fixed to 1M rows and λ to 1%. The

findings are as follows:

The fine tuning method gives 0 losses, and thus describes the bold line lying on top of

the X-axis in Figure 3.10 and 3.11.

If the fine tuning was not included, misses would have been encountered. In cases

where insertions are close to deletions, the underestimation of the value of kcomp

would lead to potentially important errors (in the Zipf case, errors have come up to 9

misses which is almost 1% of the top-k view size).

It is also interesting how the distribution of data affects the stability of the error

(Gaussian seems to converge, as expected, whereas the Zipf drops when the

percentage of k is small over R, as the hot values are rather fixed).

103

0

1

2

3

4

5

6

7

8

100
K

500
K 1M 2M

R (D/I=1.5, k=1000)

#
m

is
se

s

max misses, λ=0.1%
avg misses, λ=0.1%
max misses, λ=1%
avg misses, λ=1%

Gaussian

0

1

2

3

4

5

6

7

100
K

500
K 1M 2M

R size (D/I = 1.5, k = 1000)

#
m

is
se

s

max misses, λ=0.1%

avg misses, λ=0.1%
max misses, λ=1%

avg misses, λ=1%

Negative Exponential

0

2

4

6

8

10

100K 500K 1M 2M

R (D/I = 1.5, k = 1000)

#
m

is
se

s

max misses, λ=0.1%

avg misses, λ=0.1%

max misses, λ=1%

avg misses, λ=1%

Zipf

Figure 3.10. Maximum and Average Misses as a Function of |R| and λ.

104

0

1

2

3

4

5

6

7

8

5 10 100 1000

k (R=1M, λ = 1%)

#
m

ax
 m

is
se

s

D/I = 1.0

D/I = 1.5

D/I = 2.0

Gaussian

0

1

2

3

4

5

6

5 10 100 1000

k (R=1M, λ=1%)

#
m

ax
 m

is
se

s

D/I = 1

D/I = 1.5

D/I = 2

Negative Exponential

0

2

4

6

8

10

5 10 100 1000
k (R=1M, λ=1%)

#
 m

ax
 m

is
se

s

D/I = 1.0

D/I=1.5

D/I = 2.0

Zipf

Figure 3.11. Maximum Misses as a Function of k and D/I.

Our experimental study has also explored the case of larger workloads of updates that

may occur in the base relation. Specifically, the experiments were conducted by

105

making use of three different scenarios of possible update workloads. All the

scenarios were applied over a database of 1 million records with attributes x and y

following the Gaussian distribution (in any case, the distribution of data does not have

an effect to the effectiveness of the method as our aforementioned experiments have

demonstrated). Every experiment was conducted 100 times in order to eliminate cases

where the actual values of the tuples inserted or the tuples deleted contribute

significantly to the experimental results. All three workloads contain 91 thousand

updates occurring in the base relation and in all three of them the insertions and

deletions do not occur uniformly. There are peaks and valleys of high insertion and

deletion rates throughout all three scenarios. The first workload (denoted as W1),

depicted in Figure 3.12, contains updates where insertions and deletions are of the

same size (specifically, 45500 insertions and 45500 deletions). The two other

workloads are constructed in order to test the method to extreme cases. In the second

workload (denoted as W2), shown in Figure 3.13, deletions are approximately twice as

many as the insertions (specifically, 60700 deletions and 30300 insertions). The third

workload (denoted as W3), shown in Figure 3.14, is the inverse of workload W2.

Specifically, W3 occurred by replacing in workload W2 deletions with insertions and

vice versa. Thus, W3 constitutes of 60700 insertions and 30300 deletions, having a

ratio of deletion rate over insertion rate approximately equal to 0.5.

Ιn order to assure that a large number of updates will affect the top-k view results, we

have set the parameter k to 1000 tuples. The resulting numbers of tuples that are either

inserted or deleted in the extent of the top-k view are depicted in Figure 3.15 for all

the workloads.

For all these three workloads, we have counted the number of misses that occurred (as

a measure of how often we would have to run refill queries) as well as the memory

overhead for kcomp and kcomp with tuning, measured as the number of extra tuples that

we need to keep in the view. Our findings are as follows:

106

Figure 3.12. Size of Relation R (|R|) over Time as Insertions and Deletions Take Place

for Workload W1 Having a Ratio of Deletion Rate over Insertion Rate D/I =1.0.

Figure 3.13. Size of Relation R (|R|) over Time as Insertions and Deletions Take Place

for Workload W2 Having a Ratio of Deletion Rate over Insertion Rate D/I ≈ 2.0.

Figure 3.14. Size of Relation R (|R|) over Time as Insertions and Deletions Take Place

for Workload W3 Having a Ratio of Deletion Rate over Insertion Rate D/I ≈ 0.5.

107

− Concerning the number of misses, the number of missed tuples was exactly

zero for all the three workloads and in each one of the 100 runs of every

workload.

− Concerning the memory overheads, the extra tuples that we had to store for the

top-1000 view of our experiments was quite low. The results for kcomp and

kcomp with tuning are shown in Figure 3.16 for all three workloads. Observe

that in all three scenarios the number of extra tuples materialized over 1000

tuples, due to the extra tuning (i.e., the difference of k and kcomp with tuning)

does not exceed 188 tuples. Specifically, the mixed workload W1 requires 137

extra tuples (i.e., a 13.7% increase over k). Workload W2 that is heavy on

deletions (and therefore requires a provision for a larger kcomp, in order to

sustain the high deletion rate) requires an increase of 18.8% (although the

deletion rate is twice as high as the insertion rate). Workload W3 which is

heavy on insertions only requires an increase of 0.89% over k. In particular, in

workload W3, equation 3.5 gives for kcomp the value of 971 tuples instead of

1000 tuples, due to the high insertion rate in regards to the deletion rate.

However, in the experimental setup we have used as kcomp the maximum value

between k and the computed value of kcomp from equation 3.5.

Efficiency of the Method

We compared the values of kcomp without the fine tuning (i.e., through equation 3.5)

and kcomp tuning with this fine tuning. The comparison of the above values was

conducted for all three distributions as well as for all parameters listed in Table 3.1.

Due to the fact that our equation is independent of the distribution the tuples follow

we only present some indicative results. In Figure 3.17 we compare kcomp and kcomp

tuning (a) as a function of k, where the size of R is 100000 tuples and (b) as a function

of the size of R where we have fixed k=1000. For both of them and for all possible

values of D/I the size of the update stream λ is 1% and the distribution is the Negative

exponential. In Figure 3.17 (a) the Y-axis denotes the percentage of extra tuples. From

both graphs in Figure 3.17 we observe that kcomp is slightly greater than k and kcomp

tuning is slightly greater than kcomp in all cases. The number of the auxiliary tuples in

the view (i.e., kcomp and kcomp tuning) in the maximum case is approximately 1% and

108

6% respectively. Thus, the number of the auxiliary tuples does not cause a great extra

memory cost.

Figure 3.15. Average Number of Insertions and Deletions that Affect the Top-k

Tuples in the View.

Figure 3.16. Memory Overhead Expressed as the Number of Tuples Stored in the

View.

109

D/I=1.0

D/I=2.0

D/I=1.5

0

1

2

3

4

5

6

7

5 10 10
0

10
00 5 10 10

0

10
00 5 10 10

0

10
00

k (R=100K, λ=1%)

%
tu

p
le

s

KCOMP-k

KCOMP tuning -k

(a) Percentage of extra tuples as a function of k and D/I

D/I=2

D/I=1.5

D/I=1

960

970

980

990

1000

1010

1020

1030

1040

1050

1060

1070

10
0K

500
K 1M 2M

10
0K

500
K 1M 2M

100
K

50
0K 1M 2M

R (k=1000, λ=1%)

#
tu

p
le

s

K

KCOMP

KCOMP tuning

(b) Number of extra tuples as a function of R and D/I

Figure 3.17. Comparison of k, kcomp, and kcomp with Tuning.

In Figure 3.18, we compare the value of kcomp tuning with the one proposed by

[YYY+03]. Again, we compare the above (a) as a function of k where the size of R is

set to 2M (the largest possible value) and (b) as a function of R where k is fixed to

100. In both graphs the distribution is the negative exponential. The parameter D/I=1,

since it is the only value that can be compared with the proposed method in

[YYY+03]. We notice that the number of tuples proposed by [YYY+03] is

significantly larger than the one proposed in our method. Thus the memory cost in our

method is considerably less.

110

(a) Number of extra tuples as a function of R

(b) Number of extra tuples as a function of k

Figure 3.18. Comparison of kcomp with Tuning and [YYY+03].

The second part of our experimental results had to do with the comparison of the time

needed to compute the value of kcomp as compared to the time needed to re-compute

the view as part of a refill query. Figure 3.19 measures the computation time needed

for the view computation for a value of k in microseconds. On the contrary, the time

necessary to perform the computation of kcomp has consistently been negligible

(practically 0 in all occasions).

111

N K Gauss Negative exponential Zipf

100K 5 328000 348500 242000

100K 10 333000 345667 239667

100K 100 335500 343000 239667

100K 1000 395333 406000 299500

500K 5 1650667 1715500 1216333

500K 10 1650667 1713000 1208333

500K 100 1653167 1710500 1205667

500K 1000 1736667 1796167 1291833

1M 5 3298667 3429000 2427167

1M 10 3301333 3426667 2429667

1M 100 3304000 3439500 2422167

1M 1000 3403167 3520500 2606667

2M 5 6650667 6900500 5406333

2M 10 6653167 6900833 4909000

2M 100 6747167 6906000 4906500

2M 1000 6895500 7082833 4992167

Figure 3.19. Time to Build the Top-k View (microseconds).

3.6.2. Experimental Study for Multiple Views Updates

In this section we describe the experimental study and findings of maintaining

multiple views by making use of the nucleation relationship among them. The

experimental study has focused on proving the correctness and efficiency of the

proposed method. We have implemented the algorithms described in section 5.4 and

compared them with a base method which we refer to as naïve method. The naïve

method checks a batch of updates over each view independently and applies them

appropriately. In order to test the correctness of the proposed nucleation method we

have compared the results of the updated views with the results of applying the

updates over each view independently and the outcome has been absolute identical.

Having secured the correctness of our algorithms’ implementation the rest of the

experimental study focused on proving the efficiency of the proposed method in terms

of the time needed to apply updates over multiple views. Our experiments have

112

demonstrated that, indeed when batches of updates are applied to a multitude of top-k

views, using the nucleation relationships is faster than the naïve method. Under the

context of proving the efficiency of the nucleation method, we have measured the

time needed to maintain multiple views in the presence of updates over the base

relation, for both the nucleation and naïve method.

In all our experiments we have used a relation R(RID, X, Y) where the attribute values

of X and Y were generated randomly from the interval [0, 10000]. All the views

needed to be maintained are of the form V(RID, X, Y, score) where score is a

weighted sum over the attributes X and Y. Particularly, the scoring function of the

views is of the form score = wx·X + wy·Y, with the parameters wx and wy being

randomly generated from the interval [0, 1]. The parameters that we have tested for

their effect on the efficiency of the view refreshment are: (a) the number of relation

tuples, (b) the maximum number of materialized top-k results within a set of views

expressed as a percentage over the relation size, (c) the number of materialized views

needed to be maintained and (d) the percentage of the insertion stream over the

relation size. We have kept the fraction of the delete rate, over the insertion rate

constant and equal to 0.5.

The notation for the parameters and the specific values that we have used are listed in

Table 3.2. All of the experiments were conducted on a 2.53GHz Core Duo PC with

3.12 GB of memory.

Table 3.2. Experimental Parameters.

 Size of source table R (tuples) |R| 2x10
5
, 3x10

5
, 4x10

5

 Max size of mat. tuples (pct over |R|) max_k 1/100, 1/1000

 Number of views M 100, 1000

Size of insertion stream

(pct over |R|)

λ 1/10, 1/100, 1/1000

In all the experiments the measure for time is expressed as number of seconds. The

comparison of the time needed for the two methods has been conducted for all

113

possible combinations of the above parameters listed in Table 3.2. We run every

experiment five times and the results presented here are the average time. In all charts

of Figure 3.20 the Y-axis indicates the time needed for the two methods to apply the

updates. The X-axis shows (a) the size of the source table R and (b) the size of the

insertion stream. Specifically, for each possible value of |R| (i.e., 200, 300 and 400

thousand tuples) X-axis also indicates the stream of insertions for all three possible

values (i.e., 1/10, 1/100 and 1/1000 percentage of |R|). Since, the fraction of the

deletion rate over the insertion rate is set to be 0.5 the number of updates occurring

can be calculated as 1.5 times the value of parameter λ, times the value of parameter

|R|. The naïve method is denoted with the darker grey color, whereas the nucleation

method is presented with the lighter grey color. In all charts we can notice that the

nucleation method is faster than the naïve. The title of each chart also clarifies the

fixed value of the parameters M and max_k.

Graphs (a) and (b) in Figure 3.20 demonstrate the time needed for applying updates

over a set of 100 views. In these two graphs the maximum number of tuples

materialized in each view expressed as a rate over |R| is 0.1 % and 1% respectively. In

graph (a) of Figure 3.20 the ratio time between the two methods is not that significant

but still the nucleation method is faster than the naïve method. In graph (b) of Figure

3.20 we observe that time needed for nucleation method is approximately half the

time needed for the naïve method. This is due to the fact that the number of views is

100 and in each view the maximum number of tuples materialized is only 200, 300

and 400 respectively for each size of R. In other words, the larger the extent of the

views (due to the size of k), the larger the benefits from the nucleation method are.

In graphs (c) and (d) of Figure 3.20 we see the time needed for the two methods over

a set of 1000 views (as opposed to 100 views for the cases of (a) and (b)). The

maximum value of tuples materialized in each view is set to 0.1 % and 1%

respectively. In graph (c) the ratio time between the two methods ranges

approximately between 2 and 4. In graph (d), the time needed for the nucleation

method is approximately 4 times faster than the naïve method. Again, nucleation

scales up much better than the naïve method. Moreover, if one reads Figure 3.20

vertically, one can observe that the scaling capabilities involve both the extend of the

114

view and the number of materialized views; in fact, the improvements in cases (c) and

(d) where a larger number of views is maintained are significantly higher than the

improvements of cases (a) and (b) where a smaller number of views is maintained.

(a) (b)

(c) (d)

Figure 3.20. Comparison between Naive and Nucleation Method. All Graphs Show

the Time of Applying Updates as a Function of Insertion Size and |R|.

In all the graphs of Figure 3.20 we can observe that the time needed for the naïve

method scales up linearly with respect to the number of updates occurring in the base

relation. Considering the nucleation method the time scales up almost linearly as well.

115

3.7. Chapter Summary and Findings

In this Chapter we have handled the problem of maintaining materialized top-k views

and provided results in two directions. The first problem we have been concerned

with has to do with the maintenance of top-k views in the presence of high deletion

rates. We have provided a principled method that complements the inefficiency of the

state of the art independently of the statistical properties of the data and the

characteristics of the update streams. The method comprises the following steps: (a) a

computation of the rate that actually affects the materialized view, (b) a computation

of the necessary extension to k in order to handle the augmented number of deletions

that occur and (c) a fine tuning part that adjusts this value to take the fluctuation of the

statistical properties of this value into consideration. The second problem we have

been concerned with concerns the case of multiple top-k views and their efficient

maintenance in the presence of updates to their base relation. We have provided

theoretical guarantees for the establishment of the effect of updates to a certain view,

whenever we know that another view has been updated. We have also provided

algorithmic results towards the maintenance of a large number of views, via their

appropriate structuring in a hierarchy of views. Our experiments have shown that our

method accurately sustains intervals with high deletion activity in the workload and

specifically in at least 95% of the cases there were top-k materialized views that

contained at least k items. The experiments indicate that our method outperforms the

state-of-the-art in terms of efficiency as the computation of the exact number of

auxiliary view tuples has shown to be faster than the computation of refill queries as

proposed in the related literature. At the same time, the number of auxiliary view

tuples has been less than the number proposed in [YYY+03]. Moreover, the fine

tuning method we proposed, gave zero losses. The experiments for updating multiple

views revealed that the time needed through the nucleation method outperforms the

naïve method.

116

117

CHAPTER 4. SIMILARITY MEASURES FOR

MULTIDIMENSIONAL DATA

4.1 Distance Families

4.2 Cell Mapping and Categories of Distance Functions according to it

4.3 Experiments

4.4 Chapter Summary and Findings

In our deliberations so far, we have dealt with our data as points in the

multidimensional space. Each top-k view or query is a collection of such points,

ranked according to a scoring function. So far, we have been interested on the

suitability of a view to answer a query as well as the refreshment of such views. Still,

inherent to the problem of view management is the answer to the question “How

similar are two data collections?”. If a query is given to us and we have to suggest

similar views to the user to explore, or we have to decide the most similar views in

order to answer a query, which ones would we use? To answer the question we need a

fundamental insight on the question “which is the best distance function for two data

collections?” We are interested in discovering what users prefer and not which

function is more efficiently computed or has the nicest properties.

In order to achieve an answer to this question we resort to the simplest framework that

can be given to a user to work with and that is OLAP Cubes and hierarchical

multidimensional spaces. OLAP is preferred for simplicity as it organizes data in

dimensions and measures that are most intuitive to users. We model a collection of

data in the form of a multi-dimensional array called Cube. Each cell of the cube

contains data that are called measures of the cell. The cell is uniquely defined by its

118

coordinates as values of the dimensions of the cube. A dimension D is a lattice of a

finite subset of levels and a partial order defined among the levels. Formally, the

notions of dimension and Cube are defined as follows.

Definition 4.1 (dimension) [VaSk00]. A dimension D is a lattice (L, p) such that:

L= (L1, ..., Ln, ALL) is a finite subset of levels and p is a partial order defined among

the levels of L, such that L1 p Li p ALL for every 1<i≤n. We require that the upper

bound of the lattice is always the level ALL, so that we can group all the values of the

dimension into the single value ‘all’. The lower bound of the lattice is called the

detailed level of the dimension.

Definition 4.2 (Cube) [VaSk00]. A cube c over the schema [L1, …Ln, M1, …,Mm], is

an expression of the form: c= (DS
0
, φ, [L1, …Ln, M1, …Mm], [agg1(M1

0
, …,

aggm(Mm
0
)]), where DS

0
 is a detailed data set over the schema S= [L1

0
, …Ln

0
, M1

0
,

…Mm
0
], m≤k, φ is a detailed selection condition, M1

0
, …Mm

0
 are detailed measures,

M1, …,Mm are aggregated measures, Li
0
 and Li are levels such that Li

0
p Li, 1<i≤n

and aggi, 1<i≤m are aggregated functions from the set {sum, min, max, count}.

Then the research question is rephrased: given two sets of points in a

multidimensional hierarchical space, what is the distance between these two

collections? The above research problem is generic and has several applications in

domains such as multimedia information retrieval, statistical data analysis, scientific

databases and digital libraries [ZADB06]. In such applications, where contemporary

data lead to huge repositories of heterogeneous data stored in data warehouses, there

is a need of similarity search that complements the traditional exact match search. For

example, one might easily envision a context where a user of an OLAP tool is

proactively informed on reports that are similar to the one she is currently browsing.

In this chapter, we address the problem by (a) organizing alternative distance

functions in a taxonomy of functions and (b) experimentally assessing the

effectiveness of each distance function via a user study. The novelty of our work is

not in the suggestion of new distance functions, but rather, it lies (a) in the adjustment

of existing distance functions in the OLAP setting and (b) in their evaluation –via two

119

user studies- in order to discover which distance function is mostly preferred by the

users.

In the related literature there are a number of papers that have pointed out the

necessity of having appropriate similarity measures in order to discover objects that

are similar to each other and measure in a quantitative way the distance among them.

Most of them examine similarity measures used between objects that are described

from various features such as in image retrieval or data that are stored in a

hierarchical taxonomy. Notably, [SaJa95] and [SaJa99] describe how similarity

measures used by human perception and computer science follow different properties.

The authors provide a collection of references where the metric axioms have been

refuted. Computer scientists in the areas of data mining and information retrieval have

also considered the problem of introducing appropriate similarity measures. Few

papers have associated the areas of mathematics and computer science and have

introduced similarity measures for lattices by mapping them with semantic hierarchies

[Josl04].

So far, related work have dealt with similar problems in different ways; however, this

particular problem has not been dealt per se. Specifically, Sarawagi in [Sara99] and

[Sara01] has dealt with the problem of discovering interesting patterns and differences

within two instances of an OLAP cube. The DIFF and RELAX operators summarize

the difference between two sub-cubes in order to discover the reason of abnormalities

within the measures of two given cells. The only common element of this work with

ours is the usage of the Manhattan distance in the process of discovering

abnormalities. Our work addresses the problem of finding the appropriate distance

function among a great variety of functions in order to compute the similarity between

two given OLAP cubes. Giacometti et al. [GMNS09] propose a recommendation

system for OLAP queries by evaluating distances between multidimensional queries.

This work involves the distance between queries whereas our work involves distance

functions between the data of multidimensional queries. Li et al. in [LiBM03]

describe the semantic similarity between ontologies. In contrast to our work, they

consider a limited set of functions whereas we have a wider range of distance

functions and our work focuses on distances between data of an OLAP cube.

120

The main findings of our approach are due to two user studies that have been

conducted to assess which distance functions appear to work better for the users

(Section 4.3). The first experiment involved 15 users of various backgrounds and the

Adult real dataset [FuWY05]. Each user was given 14 scenarios that contained a

reference cube as well as a set o variant cubes, each associated with a distance

function. The task of the user was to select a cube from the set of variant cubes that

seemed more similar to the reference cube. The diversity of users and data types

contained in the experiment was taken into consideration in order to discover which

distance function between two values of a dimension is preferred depending on the

user group or the type of data. The first user study showed that all distance functions

under test were used at least once, but there were a couple of distance functions that

were most preferred among the others. In particular, the users seemed to prefer

distance functions that express the similarity between two cubes based either on the

hierarchical shortest path, or with regard to ancestor values.

The second user study involved 39 users and the results of the first user study were

taken into account. Each user was given 14 scenarios that contained a reference cube

and three variant cubes. The purpose of this second user study concerns the most

preferred distance function between two data cubes. Two distance functions have

been in the center of attention in this study: the Hausdorff distance function and the

closest relative function that sums the individual distances of cells of the two cubes.

The latter has been selected by users at a remarkably higher percentage of occasions

than the former (57% vs. 38%); however, if one considers the winner per scenario the

result is only 6 vs. 5 in favor of closest relatives. Thus, we conclude that although the

closest relative has an advantage over Hausdorff, this cannot be overemphasized.

Roadmap. We start by (Section 4.1) providing a taxonomy of distance functions for

cubes based on a detailed study of the characteristics of dimension hierarchies, levels

and members. At first, we organize our families of functions as follows: Initially we

describe functions that can be applied between two specific values that belong to the

same dimension (Section 4.1.1). Following, we describe distance functions that are

applied between two cells of a cube (Section 4.1.2) and then distance functions

121

between two OLAP cubes (Section 4.1.3). In Section 4.2 we introduce the method

that is used in order to map the cells of one cube to the cells of another cube. We refer

to this method as Cell Mapping. Section 4.3 presents the user study experiments along

with the results of the most preferred distance functions. All the results and the user

study experiments can be found in the web page [Baik11]:

http://www.cs.uoi.gr/~ebaikou/publications/2011_ICDE/ that includes questionnaires

and findings, too. Finally, in Section 4.4 we summarize our findings.

4.1. Distance Families

In this section, we organize the distance functions that can be used to measure the

distance between two cubes in a taxonomy. The formal foundations of modeling

multidimensional spaces and cubes are based on an existing model in the related

literature [VaSk00]. We build our taxonomy of distances progressively: In Section

4.1.1, we describe the functions that can be applied between two values for a given

dimension. In Section 4.1.2 we provide a taxonomy for distance functions between

two cells of cubes and in Section 4.1.3 a taxonomy for distance functions between two

OLAP cubes. The distance functions described are all normalized within the interval

[0, 1] and in many cases, such as in the weighted sum distance function, weight

factors may be used. The normalization and usage of weight factors in the distance

functions is not obligatory. Throughout all our deliberations we will refer to two

reference dimensions, Time and Location. The hierarchies of these dimensions are

shown in Figure 4.1. In more detail, the Time dimension hierarchy consists of 5 levels.

The levels of Time are Day(L1), Week(L2) and Month(L2), Year(L3) and All(L4). The

dimension Location consists of four levels of hierarchy which are City(L1),

Country(L2), Continent(L3) and All(L4). Figure 4.2 illustrates the lattice of the

dimension Location at the instance level.

4.1.1. Distance Functions between two Values

In this section, we specify the distance functions that can be applied over two specific

values of a dimension. In order to clarify things, distance functions described in this

122

section apply only between two dimension values and not between measure values of

a cube.

Assume a dimension D, its lattice of level hierarchies L1pL2p…pALL, and two

specific values x and y from levels of hierarchy Lx and Ly respectively. We classify the

distance functions in the following categories: (1) locally computable and (2)

hierarchical computable distance functions.

Figure 4.1. The hierarchy of levels for dimensions Time and Location

Figure 4.2. Values of the Location Dimension.

123

Locally Computable Distance Functions. The first category of locally computable

distance functions can be divided into three subcategories: (a) Distance functions with

explicit assignment of values, (b) Distance functions based on attribute values and (c)

Distance functions based on the values of x and y.

Distance Functions with Explicit Assignment of Values. The functions of this category

explicitly define n
2
 distances for the n values of the dom (Li) (the compared values

must belong to the same level of the hierarchy). This requires dom(Li) to be a finite

set. For example, the distance between two cities can be explicitly defined via a

distance table.

Distance Functions based on Attribute Values. Assume a level whose instances are

accompanied with a set of attributes. Then, every level instance can be described as a

tuple of attribute values. In this case, the distance between the two values x and y can

possibly be expressed with respect to their attribute values via simple distance

function applicable to the attributes’ domains (e.g., simple subtraction for arithmetic

values). For instance, assume a dimension Products accompanied with an attribute

Weight which describes the weight of the products and assume a level of hierarchy of

the dimension named Drinks. In addition, assume two specific values x = ‘milk’ and y

= ‘orange juice’ where their weight attributes are x.weight = 500 and y.weight = 330

respectively. Then, the distance between these two values can be expressed according

to their weight attribute by making use, for instance, of the Minkowski distance

function which is described in the following subsection. Thus, the distance between

the values x and y can be defined as |x.weight – y.weight| = 170.

Distance Functions based on the Values x and y. In this subcategory, the distance

between two values may be expressed through a function of their actual values

whenever this is possible. This function is applicable for all type values even for

nominal values. A first option is to use of the simple identity function, resulting in a

value from the set {0, 1}, where dist(x, y) = 0 if x=y, or dist(x, y) = 1 if x≠y.

Another option is to make use of the Minkowski family distance functions especially

when the values are of interval type. Minkowski family distance functions can be

124

applied between two ordinal type values under the condition that the ordinal values

have been mapped to the set of integer numbers. In this section, since the distance

function is applied for two specific values, all types of Minkowski distances reduce to

the Manhattan distance which is |x-y|. In order to normalize this function within the

interval [0, 1], we can divide the distance value by the difference between the

maximum and minimum values of the level where x and y belong to.

Hierarchical Computable Distance Functions

The second category of hierarchical computable distance functions can be divided

into four subcategories: (a) Distance functions with respect to an aggregation

function, (b) Distance functions with respect to hierarchy path, (c) Percentage

distance functions and (d) Highway distance functions.

Distance functions with respect to an Aggregation Function. The distance for two

values that do not belong to the detailed level L1 can be expressed with respect to an

aggregation function (e.g., count, max) applied over the descendants of the two values

in a lower level of hierarchy.

Assume an instance x from level Li and)(i

L
xdesc

L

L
the set of its descendants, where LL

is any lower level of Li. The result of applying an aggregation function over the set

)(i

L
xdesc

L

L
is denoted as))((i

Laggraggr xdescfx
L

L
= . Assume two values x and y with

))((i

L
aggraggr xdescfx

L

L
= and))((j

Laggraggr ydescfy
L

L
= , where LL could be any lower level

of Li and Lj, x∈Li, y∈Lj and faggr denotes an aggregation function such as count, min,

max, avg or sum. The distance between the values x and y can now be expressed

according to the following formula:),()(aggraggr yxgy,xdist = , where the function g

can be computed from the locally computable functions. The normalized form of this

function, within the interval [0, 1], can be expressed as

)},(

),(
)(

aggraggr

aggraggr

bagmax{

yxg
y,xdist = , where a and b are any possible values from the same

level of hierarchy as x and y, i.e., a, b∈ Li .

125

Distance Functions with respect to Hierarchy Path. The distance between two values

x and y can be expressed according to the length of the path in the hierarchy that

connects them. Several distance functions and combinations falling into this

subcategory were described by Li, Bandar and McLean in [LiBM03]. Here, we

describe the distance functions that can be applied between two values x and y from a

hierarchy, (a) with respect to the length of the path in the hierarchy, and, (b) with

respect to the depth in the hierarchy path. Assume two values x and y such that x ∈ Lx

and y ∈ Ly. We denote the Lowest Common Ancestor of x and y as lca(x,y).

The lowest common ancestor lca(x,y), of two values x and y --where x ∈ Lx and y ∈

Ly, lca(x,y) ∈ Lz and Lz is any non lower level of Lx and Ly, Lz f Lx, Ly -- is a value

such that:

lca(x,y)={z|z = ∧)x(anc z

x

L

L
z = ∧)y(anc z

y

L

L
 (� z’ | z’= ∧)x(anc z

x

L

L
 z’= ∧)y(anc z

y

L

L

Lz’ p Lz }

The distance between the values x and y can be expressed with one of the following

formulas:

dpath(x,y)=

 |)(|)*w(w

 |) (y, | *w|) (x, | *w

1yx

yx

L,ALLpath

lcapathlcapath

+

+

ddepth (x, y) =
|)(|

 |) (|

1

1

L,ALLpath

L,lcapath

The first formula indicates that the distance is expressed as the weighted sum of the

length of the path from the values x and y to their lowest common ancestor lca. The

second formula indicates that the distance of the values is expressed as the length of

the path of the lowest common ancestor lca from the detailed level L1 of the

hierarchy. These two functions are normalized in the interval [0, 1] by making use of

the height of the hierarchy. Specifically, the first formula is divided by

|)L,ALLpathww 1yx (|)*(+ whereas the second formula is divided by

|)(| 1L,ALLpath . As an example, assume two values x=‘NY’ and y=‘Canada’ from

the hierarchy Location denoted in Figure 4.2 where their lowest common ancestor is

the value lca = ‘America’ from the level Continent. For simplicity, assume the

126

weighted factors wx and wy are set to 1. Therefore, the functions become: dpath= (|path

(x, lca)| + |path (y, lca)|)/ 2*|path(ALL, L1)| and ddepth= |path (lca, L1)|/ |path(ALL, L1)|.

The distance between x and y occurs to be dpath= (2+1)/2*3 =0.5 and ddepth=2/3.

Percentage Distance Functions. According to this subcategory, the distance between

two values x and y, where y is an ancestor of x, may be expressed according to a

percentage of occurrences over the values of the hierarchy. In other words, the

similarity of two values is expressed as the similarity of the number of descendants

this two values have. Assume the lattice of level hierarchies be denoted as

L1p…pLLp Lxp LypAll where L1 denotes the most detailed level. The distance of a

value x in a level Lx with regard to its ancestor y in level Ly may be calculated

according to the function:

|)(|

|)(|
),(

y

i

x

i

ydesc

xdesc
yxdist

L

L

L

L
= , where Li is one of Lx, LL and L1.

The above formula expresses the distance between a value x and one of its ancestors y

as a percentage via three ways. In case Li is Lx, then the distance is expressed as a

percentage with regard to the occurrences of all the other values from Lx whose

ancestor is y. In case Li is LL(or L1), the distance is expressed as a percentage of

occurrences of the descendants of x in a lower level of hierarchy LL(or L1) with regard

to the descendants of y in the same lower level LL(or L1). As an example, assume the

dimension Location where its lattice can be visualized in Figure 4.1 and the values of

this dimension are visualized in Figure 4.2. Assume the values x=‘USA’ and

y=‘America’. Then, with regard to the above formula the distance between these two

values can be computed as:

2

1

|)America'('|

1
)America'',USA'(' ==

Continent
Countrydesc

dist where Li is chosen to be the

level Lx, i.e., Lcountry

5

3

|)America'('|

|)USA'('|
)America'',USA'(' ==

Continent
City

Country
City

desc

desc
dist where Li is chosen to be the

detailed level L1, i.e., Lcity

127

In this example the third case coincides with the second since the lower and detailed

level, i.e. City, are identical.

Highway Distance Functions. Assume that every level of hierarchy L is grouped into

k groups and every group has its own representative rk. Then, the distance between

two representatives can be thought of as a highway [SaSc05]. We denote with r(x)

and r(y) the representatives of the groups where x and y belong to respectively.

Therefore, the distance between the values x and y can be expressed with the

following formula:

dist (x, y) = dist (x, r(x)) + dist (r(x), r(y)) + dist (y, r(y))

The partial distances between a value and its representative and the distance between

the two representatives, r(x) and r(y), depends on the way the representative is

selected. In most cases, the representatives are selected so that they belong to the

same level of hierarchy and thus their distance can be computed from the locally

computable functions, the path functions or the aggregated functions (in case the two

representatives belong to different levels their distance may be computed by applying

any distance function from the path section or the aggregated distance function

section). The main categories of selecting the representative apart from an explicit

assignment are with regard to (a) an ancestor and (b) a descendant. For the following,

dist(a, b) denotes the distance of any two values a, b. Without loss of generality

assume Lx pLy (see Figure 4.3). In addition, assume the ancestor of x in level Ly is

)(y

xy xancx
L

L
= and a representative of y in the level of hierarchy Lx denoted

as))((y

xx ydescfy
L

L
= . The function f applied over the descendants of y can result either

to an explicitly assigned descendant or to the result of an aggregation function (e.g.,

min, max) over the set of descendants. In the following, we describe the partial

distances of the previous formula depending on the way the representative is selected.

a) The representative of a group is an ancestor. The representative of each value x and

y could be)()(U

x
xancxr

L

L
= and)()(V

y
yancyr

L

L
= where LU and LV is any upper level of

Lx and Ly respectively. LU and LV are not obligatory different. In general, the distance

128

between a value x and its representative may be computed through any distance

function from the path, the percentage or the aggregated functions. For example,

assume two values x=‘UK’ and y=‘USA’ from the level Country of the hierarchy

Location denoted in Figure 4.2. Assume the representative r(x)=‘Europe’ and the

representative r(y)=‘America’. The distance of the values x and y is by summing the

distances dist(‘UK’, ‘Europe’), dist(‘Europe’, ‘America’) and dist(‘America’, ‘USA’).

In this category there are two special cases:

Figure 4.3. Partial Distances Between Two Values in Different Levels of Hierarchy.

The representatives r(x) and r(y) coincide in being the lowest common ancestor lca,

where the formula is simplified as: dist (x, y) = dist (x, lca) + dist (y, lca).

The representative r(y) is identical to the actual value of y. In this case the distance is

expressed as a summation of dist(x, xy) and dist(xy, y), as shown in Figure 4.3, where

xy is the representative of x from the level Ly. Therefore, the distance dist(y, r(y)) = 0.

Formally this is expressed as: yxdist =) ,(

)),(())() ,() ,(y

x

y

xyy yxancdistx(anc,xdistyxdistxxdist
L

L

L

L
++ =

In case the representative xy of x and y coincides, the distance is simplified as dist(x,

x)= dist(x, xy). Since dist(x, xy) and dist(xy, y) are within the interval [0, 1], the

normalized form of dist(x, y) occurs by dividing it by 2. For example, assume two

values x = ‘USA’ and y = ‘Europe’ from the dimension Location as seen in Figure 4.2.

129

The ancestor xy of x is America'')(=xanc
Continent
Country

. Assume dist(x, xy) is computed from

the percentage family functions. dist(xy, y) is computed through the first formula from

the path family functions where the weighted factors wx and wy are set to 1. The

distance between x and y becomes dist(‘USA’, ‘Europe’)= (dist(x, xy) + dist(xy, y))/2 =

(dist(‘USA’, ‘America’) + dist(‘America’, ‘Europe’))/2 = (1/2 + 2/3)/2 = 7/12.

b) The representative of a group is a descendant. The representative of a group can be

selected with respect to the descendants of the group where x belongs. For example,

consider countries whose representatives can be selected among their cities, based for

instance on the major airport or the highest population. In case the representative r(x)

is a value from the domain of LL (i.e., r(x) picked explicitly by applying a min or max

aggregation over the set)(L

x
xdesc

L

L
), the distance between x and r(x) can be any

function from the families of path, percentage or aggregated functions. In case r(x) is

an arithmetic type value (i.e., a sum or count aggregation function over the

set)(L

x
xdesc

L

L
), the distance between x and r(x) can be any simple arithmetic function

such as the Minkowski. There is a special case where the representative r(x) is

identical to the actual value of x. Thus, the distance is expressed as a summation of

dist(y, yx) and dist(yx, x), where yx is the representative of y from the level Lx as shown

in Figure 4.3. Therefore, the distance dist(x, r(x))=0. Formally this is expressed as:

=
+

=
2

) ,() ,(
),(xx xydistyydist

yxdist
2

))),((()))((,(y

x

y

x
xydescfdistydescfydist

L

L

L

L
+

,

where the denominator is set to 2 for normalization reasons. For example, assume two

values from the hierarchy Location, x=‘USA’ and y=‘Europe’, where the descendant

of y is selected as 'ydescf
L

L
UK'))((y

x
= . Assume the distance between y and its

descendant yx is computed through the formula
|)(|

|)(|
),(

y

x

x

x x

x

ydesc

ydesc
yydist

L

L

L

L
= from the

percentage family functions. The distance between x and yx is computed through the

first formula from the path family functions with wx and wy set to 1. Then, the

distance between x and y becomes

130

6

5

2

6411

2

)USA'',UK'(')UK'',Europe'('

2

),() ,(
)Europe'',USA'(' xx

=
+

=
+

=
+

=

distdist

xydistyydist
dist

.

In the special case where x is a descendant of y the above formula is simplified

as:)()(xy, ydistx,ydist = .

4.1.2. Distance Functions between two Cells of Cubes

In this section, we describe the distance functions that can possibly be applied in order

to measure the distance between two cells from a cube. Assume an OLAP cube C

defined over the detailed schema C= [L1
0
, L2

0
, …, Ln

0
, M1

0
, M2

0
, …,Mm

0
], where Li

0
 is

a detailed level and Mj
0
 is a detailed measure. In addition, assume two cells from this

cube, c1 = (l1
1
, l2

1
, …, ln

1
, m1

1
, m2

1
, …, mm

1
) and c2 = (l1

2
, l2

2
, …, ln

2
, m1

2
, m2

2
, …,

mm
2
), where li

1
, li

2
 ∈ dom(Li

0
) and mj

1
, mj

2
 denote the values of the corresponding

measure Mj
0
. The distance between two cells c1 and c2 can be expressed with regard to

(a) their level coordinates di(Li
1
, Li

2
) and (b) their measure values dj(Mj

1
, Mj

2
). In other

words, dist(c1, c2)= f (di(Li
1
, Li

2
), dj(Mi

1
, Mi

2
)). The function f can possibly be (a) a

weighted sum, (b) Minkowski, (c) min or (d) proportion of common coordinates.

Distance functions between two Cells of a Cube Expressed as a Weighted Sum.

In this category the distance between two cells c1, c2 where c1, c2 ∈ C can be

expressed through the formula

∑

∑

∑

∑

=

=

=

=

′

′

+
m

j
j

m

j
jjjj

n

i
i

n

i
iiii

w

)m,m(dw

w

)l,l(dw

1

1

21

1

1

21

 , where wi and

jw′ are parameters that assign a weight for the level Li and the measure Mj

respectively, di(li
1
, li

2
) denotes the partial distance between two values from

dimension Di and dj(mj
1
, mj

2
) denotes the partial distance between two instances of the

measure Mj
0
. Regarding the distance di(li

1
, li

2
), this can be expressed through the

various distance functions (Section 4.1.1) between two values from the same

dimension. The distance dj(mj
1
, mj

2
) between two instances of a measure can be

calculated through the Minkowski family distance when mj
1
, mj

2
 are of arithmetic

131

type, or through the simple identity function in case mj
1
, mj

2
 are of character type. The

above formula is a general expression of the distance between two cells.

Simplifications of this can be applied. For instance, the distance of two cells can be

calculated only with respect to the coordinates that define each cell and without taking

into consideration the measure values of each cell, i.e., by omitting from the above

formula the second fraction. Moreover, in case the partial distances are normalized in

the interval [0, 1] then, the distance between two cells is normalized in the same

interval [0, 1]. For example, assume we want to compute the distance between cells

c1, c2 as shown in Figure 4.4. Both cells consist of two dimensions (Time, Location),

with the hierarchy levels of Figure 4.1, and contain one measure (Sales). In the above

formula we set all the weight factors to 0.5 --both for dimensions (w) and measures

(w’). The distance between dimensions is computed according to the function dpath

that takes into account the length of the path of the hierarchy. The distance between

the measures is computed through the normalized Manhattan distance function. In

addition, assume that the overall maximum and minimum values of the measure sales

are 10 and 1 respectively. Then, d(c1,c2)=

+
+

+

ww

)Country,Country(d*w)Month,Month(d*w cccc 2121

=
′

′

w

)Sales,Sales(d*w cc 21

50

1103450

5050

31503150

.

|)|/|(|*.

..

/*./*. −−
+

+

+
=4/9

To compute the distances)Month,Month(d cc 21
 and)Country,Country(d cc 21

 we refer

the reader to Figure 4.5 and 4.6.

Figure 4.4. Instances of Cells c1 and c2.

In Figure 4.5 we see that the length of the path between the nodes a and lca is 1, and

the length of the path between the nodes b and lca is 1 again. According to the

132

function dpath,)Month,Month(d cc 21
=

6

11+
=

3

1
. In a similar manner, by using the

information that derives from Figure 4.6)Country,Country(d cc 21
=

6

11+
=

3

1
.

Figure 4.5. Lattice of the Dimension TIME for the Values of Cells of Figure 4.4.

Figure 4.6. Lattice of the Dimension LOCATION for the Values of Cells of Figure

4.4.

Distance functions between two Cells of a Cube Expressed with regard to the

Minkowski Family Distances.

In this section, we describe the possible distance functions between two cells of a

cube by using the Minkowski family distances. In general, the Minkowski distance is

defined via the formula p
n

i

p
iiinnp)y,x(d)]y,...,y(),x,...,x[(L ∑

=

=
1

11 , where di(xi, yi)

denotes the distance between the two coordinates xi and yi of two given points x and y.

133

Assume two cells c1 = (l1
1
, l2

1
, …, ln

1
, m1

1
, m2

1
, …, mm

1
) and c2 = (l1

2
, l2

2
, …, ln

2
, m1

2
,

m2
2
, …, mm

2
), where li

1
, li

2
 ∈ dom(Li) and mj

1
, mj

2
 denote the values of the

corresponding measure Mj. The Minkowski distance can be applied in this category,

by substituting point coordinates xi and yi with cell coordinates, thus li
1
 and li

2
. In

general, in the Minkowski family distances the partial distances are defined as di(xi,

yi)=|xi - yi|. When applying the Minkowski distance over cell coordinates, then the

partial distances di(li
1
, li

2
) can be expressed as the distance between two values from

the same dimension (Section 4.1.1).

So far, the distance between two cells is described only with regard to their level

coordinates. However, the distance between two cells can also be expressed by taking

into consideration their measure values, too. The Minkowski family distances can be

applied, as well, with regard to the partial distances dj(mj
1
, mj

2
). Therefore, the

distance between two cells can be expressed by adding the equivalent two formulas.

Depending on the value of p (1, 2, .., ∞) the Minkowski distance is defined as:

p
m

j

p
jjj

p
n

i

p
iiip))m,m(d())l,l(d(L ∑∑

==

+=
1

21

1

21 .

Distance Functions between two Cells of a Cube Expressed as the Minimum Partial

Distance.

In this category, the distance between two cells c1 = (l1
1
, l2

1
, …, ln

1
, m1

1
, m2

1
, …, mm

1
)

and c2 = (l1
2
, l2

2
, …, ln

2
, m1

2
, m2

2
, …, mm

2
) can be expressed as:

=+)},({min)},({min
2121

jjj
d

iii
d

mmdlld
ji

 { }),(),...,,(),,(min
212

2
1

22
2

1
1

11 nnn lldlldlld

 { })m,m(d),...,m,m(d),m,m(dmin mmm

212
2

1
22

2
1

1
11+ .

Therefore, the distance between two points is expressed as the minimum distance of

their level coordinates plus the minimum distance of their measure values.

134

Distance Functions between two Cells of a Cube Expressed as a Proportion of

Common Coordinates.

In this category the distance between two cells can be expressed as a proportion of

their common values of their level coordinates and their measure values. Therefore,

the distance between two cells c1 = (l1
1
, l2

1
, …, ln

1
, m1

1
, m2

1
, …, mm

1
) and c2 = (l1

2
, l2

2
,

…,ln
2
, m1

2
, m2

2
, …, mm

2
) can be expressed through the formula f:

m

mjmmcount

n

nillcount }){1,2,...,(}){1,2,...,(
2

j
1
j

2
i

1
i

∈∀=
+

∈∀=

The above formula defines the distance between two cells as a summation of two

fractions. The first fraction is the number of level values that are same for both cells,

divided by the number of all level values that describe a cell. The second fraction

expresses the number of measures that have the same value for both cells divided by

the number of all possible measures in a cell.

4.1.3. Distance Functions between two OLAP Cubes

Assume two OLAP cubes C and C
’
 defined over the same detailed schema [L1

0
, L2

0
,

…, Ln
0
, M1

0
, M2

0
, …,Mm

0
], where Li

0
 is a detailed level and Mj

0
 is a detailed measure.

In addition, assume that cube C consists of l cells of the form c = (l1, l2, …, ln, m1, m2,

…, mm) and cube C’ consists of k cells of the form c’ = (l1
’
, l2

’
, …, ln

’
, m1

’
, m2

’
, …,

mm
’
), where li, li

’
 ∈ dom(Li

0
) and mj, mj

’
 denote the values of the corresponding

measure Mj
0
. In general, the two cubes can be of different cardinality, i.e., l ≠ k.

Assume dist(c, c’) where c ∈ C and c’ ∈ C’ denotes the distance between two specific

cells according to the various categories of Section 4.1.2. The distance between the

two cubes can be expressed as a synthesis of the partial distances dist(c, c’). In other

words, dist(C, C’)= f (dist(c, c’)) is a function of the partial distances dist(c, c’). The

function f can possibly belong to one of the following families: (a) closest relative, (b)

Hausdorff distance, (c) a weighted sum, (d) Minkowski distance, and (e) Jaccard’s

coefficient. For example, assume we want to compute the distance between the two

cubes CUBE1 and CUBE2 as shown in Figure 4.7. CUBE1 consists of three cells

whereas CUBE2 consists of 5 cells. Each cell in both cubes consists of two

dimensions in different levels of hierarchy and the measure Sales. Specifically, each

cell of CUBE1 is of the form c = (Day, City, Sales) and each cell of CUBE2 is of the

135

form c’ = (Year, Country, Sales). The distance between the two cubes can be

expressed by applying a function f over the partial distances dist(c, c’) of the cells of

the two cubes.

4.2. Cell Mapping and Categories of Distance Functions according to it

The aforementioned function f can be computed either (i) over the full space of cell

combinations of cells from the two cubes (families (a), (b) and (e)), or, (ii) over a

specific subset of this space that is defined via a specific mapping of the cubes’ cells

(families (c) and (d)). In this section, we introduce the method that is used in order to

map the cells of one cube to the cells of another cube. We refer to this method as Cell

Mapping. For two cubes C1 and C2, the simple mapping of their cells includes the

connection of every cell of the cube C1 with one cell of the cube C2. Intuitively, the

mapping of a cell in cube C1 tries to capture the discovery of the “closest possible

representative” of this cell in cube C2. The “closest representative” is the cell of the

cube C2 with the less distance among the dimension values with the cell of the cube

C1. In principle, the Cell Mapping method can be thought of as a relation that

connects the cells of a cube to the cells of another cube (i.e., one can consider several

candidate “representatives” of a cell). However, in our setting, this relation is reduced

to a function, since we are interested in mapping each cell from the first cube to only

one cell from the second cube. This is done for reasons of simplicity and allows the

elegant definition of cube distances (see next). We impose the restriction that the

function is total, i.e., each and every cell from the first cube is mapped to a cell of the

second cube. We do not require that the mapping is 1:1 and onto; thus, in the second

cube there might be a cell in which more than one cells from the first cube, or, no

cells at all, are mapped to it.

As an example assume the cubes that are presented in the Figure 4.7. The cells c1, c2,

c3 of CUBE1 are mapped to the cells c7, c5, c5 of CUBE2 respectively. Moreover, in

the same figure the cells c4, c6, c8 of CUBE2 are not mapped with any cell of CUBE1.

We can also observe that the cell c5 of CUBE2 is mapped with two cells of CUBE1.

136

The cell mapping method needs to compute the distances between the dimensions of

each cell of the first cube with the dimensions of every cell of the second cube and

ignores the distance between the measures. So, if the distance between two cells c1, c2

is expressed as f (di(Li
1
, Li

2
), di(Mj

1
, Mj

2
)), then the mapping method considers only

the di(Li
1
, Li

2
). Thus, each cell of the first cube is mapped to the cell of the second

cube with the lowest di(Li
1
, Li

2
) distance.

Figure 4.7. Instances of Two Cubes and the Mapping of their Cells.

In our taxonomy, two distance functions between cubes use the cell mapping method.

These are (a) distance functions expressed with regard to the Closest Relative and (b)

the distance function expressed by Hausdorff distance. After the mapping has been

accomplished, the distances between the mapped cells are computed. Finally, the

computation of the distance between the two cubes is performed on the basis of the

distances among the mapped cells.

 The distance functions that can be used in order to compute the distance between two

OLAP cubes can be divided into two categories. The first category involves distance

functions that include the cell mapping method. The second category contains

distance functions that do not include the cell mapping method. Following, we

describe each distance function and formally define it. The distance functions of the

first category are the Closest Relative and the Hausdorff Distance (Section 4.1.3) that

include the cell mapping method. Then, the category of families that do not consider

the cell mapping method in their definition, include the Weighted Sum function, the

Minkowski family of distance functions, the Jaccard’s Coefficient and the minimum of

distances function.

137

4.2.1. Distance Functions that Include Mappings

This subsection contains the description of the distance functions that involve the Cell

Mapping method. These distance functions are the Closest Relative and the Hausdorff

and are described as follows.

Distance Function between Two Cubes Expressed with regard to the Closest Relative.

In this category the distance between two cubes C and C’ is expressed as the

summation of distances between every cell of a cube with the most similar cell of

another cube through the formula:

)},(min{),(
k

k

1i 'ccdist'ccdist|c

))c,c(dist(

idimidim

i

=′∀

′∑
=

where distdim denotes the distance of two cells excluding the distance of their

measures. In the above formula,),('ccdist|c idim
′∀)},(min{ 'ccdist idim= reveals the

cell mapping. Each one of the k cells from cube C is mapped to the cell of the cube

'C that has the minimum distdim from it.

As an example, we will detail the computation of the distance between the cubes

CUBE1 and CUBE2 shown in Figure 4.7. The first step is to map the cells of the cube

CUBE1 to the appropriate cells of the cube CUBE2. In order to simplify the example,

the computational part of the cell mapping method is not described here, but the cell

mapping is denoted in Figure 4.7 through arrows between the cells of the two cubes.

The distance function used in this example for the purpose of computing the distance

between the cells of the two cubes is the weighted sum. The weight that was used is

0.5, equal for both the dimensions and measures. In addition, the distance function

used to measure the distance between the dimensions is the dpath function. The cells c1,

c2, c3, are mapped to the cells c7, c5, and c5 respectively. According to this mapping, in

order to compute the distance between the two cubes, the needed distances between

cells are:

 d(c1, c7) =
50

1105550

5050

61506150

.

|)|/|(|*.

..

/*./*. −−
+

+

+
= 1/6

 d(c2, c5)=
50

1106650

5050

61506150

.

|)|/|(|*.

..

/*./*. −−
+

+

+
= 1/6

138

 d(c3, c5)=
50

1107650

5050

61506150

.

|)|/|(|*.

..

/*./*. −−
+

+

+
=5/18

For the above computations we refer the reader to Figures 4.5 and 4.6 where the

hierarchies of the dimensions TIME and LOCATION are presented. With the above

distances, we can now compute the full distance between the cubes CUBE1 and

CUBE2 through the first formula of the closest relative family functions:

d(CUBE1,CUBE2)=
54

11

3

),(,(),(535271 =
++ cc d)cc dccd

Distance functions between two cubes expressed by Hausdorff distance. In this

category, the distance between two cubes can be expressed by using the Hausdorff

distance [HuKR93]. The Hausdorff distance between two cubes can be defined as

H(C,C’) = max(h(C,C’), h(C’,C)) where h(C,C’) =)}},({{
Cc'Cc

'ccdistminmax
'∈∈

 and dist (c,

c’) is the distance between two cells c and c’ from the cubes C and C’ respectively.

Function h(C, C’) is called the directed Hausdorff distance from C to C’ and the

distance measured is the maximum distance of a cube C to the “nearest” cell of the

other cube C’. The Hausdorff distance is the maximum of h(C, C’) and h(C’, C).

Figure 4.8. Instances of Cubes CUBE1 and CUBE2 and the Mapping of the Cells of

the Cube CUBE2 to the Cells of the Cube CUBE1.

In the Hausdorff distance function, the cell mapping method is bidirectional. That

means that except from the mapping that we have examined in the closest relative

function, we also need the extra mapping from the cells of cube C’ to the cells of cube

C.

139

When the bidirectional mapping is completed, we obtain two sets of mapped cells. In

each set, for every pair of mapped cells, we compute their distance considering their

measures as well. Thus, we have two sets of minimum distances between cells, the set

of minimum distances from the cells of cube C to the cells of cube C’ and the set of

minimum distances between from the cells of cube C’ to the cells of cube C. From

each of the two sets we pick the greatest distance and finally from these two distances

we pick the greater one.

To make things more clear, an example follows. Assume again cubes CUBE1 and

CUBE2 as shown in Figure 4.8. In Figure 4.8, we can observe the mapping from the

cells of CUBE2 to the cells of CUBE1. According to this bidirectional mapping the

two resulting sets of minimum distances are:

S1)},(,(),(535271 ccd,)ccd,ccd{

S2)},(),(),(),(),(3817263534 ccd,ccd,ccd,ccd,ccd{ .

The distances of the set S1 are already computed on a previous example, so here we

only need to compute the distances of set S2. The distances d(c5,c3), d(c7,c1) coincide

with the distances d(c3,c5), d(c1,c7) respectively. The computations below use the

same distance functions between values and cells and also the same weight factors, as

in the previous example.

d(c4, c3)=
18

11

50

1107350

5050

61506150
=

−−
+

+

+

.

|)|/|(|*.

..

/*./*.

d(c6, c2)=
18

10

50

1106850

5050

63506150
=

−−
+

+

+

.

|)|/|(|*.

..

/*./*.

d(c8, c3)=
18

7

50

1107950

5050

61506150
=

−−
+

+

+

.

|)|/|(|*.

..

/*./*.

Now, the Hausdorff distance between the cubes CUBE1 and CUBE2 is equal to the

next formula:

d(CUBE1,CUBE2)=max{max{S1},max{S2}}=

max{max{1/6,1/6,5/18}, max{11/18,5/18, 1/6,10/18,7/18}}=

max{5/18,11/18}=11/18.

140

4.2.2. Distance Functions that do not Include Mappings

This subsection includes the distance functions that do not include mappings. These

functions are the Weighted Sum function, the Minkowski family of distance functions,

the Jaccard’s Coefficient and the minimum of distances function. The Weighted Sum

function is expressed through the formula:

∑∑

∑∑

= =

= =

′

l

1i

k

1j
ij

l

1i

k

1j

)(

w

c,cdistw jiij

, where)(ji c,cdist ′ is the

distance between a cell from cube C to a cell from cube C’ and wij denotes the weight

factors assigned to each distance.

The distance functions of the Minkowski family --depending on the values of the

parameter p (1, 2, ..., ∞)-- can be expressed as: p
l

1i

k

1j

p
p)(∑∑

= =

′= ji c,cdistL , where

)(ji c,cdist ′ is the distance between a cell from cube C to a cell from cube C’.

The distance between two cubes can be expressed with regard to the Jaccard’s

coefficient [ZADB06]. The Jaccard’s coefficient is defined as:

|'CC|

|'CC|
)'C,C(dist

∪

∩
−= 1 and it expresses the ratio between the cardinalities of

intersection and union of the cubes C and C’.

The Minimum of distances function expresses the distance between two cubes as the

minimum distance among all possible distances between the cells of the compared

cubes. Therefore, the distance between C and C’ is expressed as: dist(C, C’) = min{

dist(c, c’) | c∈C, c’∈C’}, where dist(c, c’) is the distance between a cell from cube C

to a cell from cube C’. In case the two cubes are disjoint i.e., C∩C’= 0/ , then dist(C,

C’) is a positive number, whereas if the two cubes have common cells i.e., C∩C’≠ 0/ ,

then dist(C, C’) is zero.

As a simple example, assume the two cubes from Figure 4.7. and ignore the arrows

that denote the cell mapping. According to the minimum of distances function, the

distance between the two cubes is computed through the following formula where j

denotes any cell from CUBE2: d(CUBE1,CUBE2)=

141

}{4,5,...,8)},,(,(),(321 ∈∀jccd,)ccd,ccd{min jjj
j

 =1/6.

4.3. Experiments

4.3.1. User Study for Distances between two Values of Dimensions

In this section, we describe a user study we conducted for discovering which distance

functions between two values of a dimension seem to be more suitable for user needs.

The experiment involved 15 users out of which 10 are graduate students in Computer

Science and 5 that are of other backgrounds. In the rest of the section we refer to the

set of users with computer science background as Users_cs, the set of users with other

background as Users_non and the set of all users independently of their background

as Users_all.

In the experiments we used the “Adult” real data set according to the dimension

hierarchies as described in [FuWY05]. This dataset contains the fact table Adult and 8

dimension tables which are described in Table 4.1.

The purpose of the experiment is to assess which distance function between two

values is best with regard to the user preferences. Each user was given 14 case

scenarios. Each scenario contained a reference cube and a set of cubes, which we call

variant cubes, that occurred by slightly altering the reference cube. The 14 scenarios

included different kinds of cubes with regard to the value types and the different

levels of granularity. For each reference cube which was randomly selected, the

variant cubes were generated from the fact table by altering the granularity level for

one dimension, or by altering the value range of the reference cube. For instance,

assume a reference cube containing the dimension levels Age_level1, Education_level2

under the age interval [17, 21]. According to the first type of modification, a variant

cube could be generated by changing the dimension level to Age_level2 or Age_level0,

or changing the level of the Education Dimension. According to the second type of

modification, another variant cube could be generated by changing the age interval to

[22, 26] or to [17, 26]. Among all possible variations of the reference cube we

142

manually chose the set of variant cubes such that each of them was most similar to the

reference cube according to a distance function. In order to observe which distance

function is preferred by users depending on the type of data of the cubes, we have

organized the 14 scenarios into 3 sets. The first set consists of cubes containing only

arithmetic type values (5 scenarios). The second set consists of cubes containing only

categorical type values (2 scenarios). The third set consists of cubes containing a

combination of both categorical and arithmetic type values (7 scenarios). All the

scenarios used for this user study can be found in [Baik11].

Table 4.1. Adult Dataset Tables.

 Value Type Tuples Dim. Levels

Adult fact Table 30418 -

Age Dim. Numeric 72 5

Education Dim. Categorical 16 5

Gender Dim. Categorical 2 2

Marital Status Dim. Categorical 7 4

Native Country Dim. Categorical 41 4

Occupation Dim. Categorical 14 3

Race Dim. Categorical 5 3

Work Class Dim. Categorical 7 4

In each scenario, the users were asked to select the variant cube that seemed more

similar to the reference cube based on their personal criteria. The distance functions

that have been used in the experiment are shown in Table 4.2, where the first column

shows the family in which each distance function belongs to according to Section

4.1.1. In the second column there is an abbreviated name for each function. To

compute the distance between two cubes, the Closest Relative distance function is

used (Section 4.1.3). The distance between two cells of cubes is the weighted sum of

the partial distances of the two values, one from each cell, with all weights set to 1

(Section 4.1.2).

143

Table 4.2. Notation of Distance Functions Used in the Experiment.

Family Abbr. Distance function name

Local δM Manhattan

Aggregation δLow,c With respect to a lower level of hierarchy where faggr =count

δLow,m With respect to a lower level of hierarchy where faggr = max

Hierarchical

Path

δLCA,P Lowest common ancestor through dpath

δLCA,D Lowest common ancestor through ddepth

Percentage δ% Applying percentage function

Highway δAnc With respect to an ancestor xy

δDesc With respect to a descendant yx

δH,Desc Highway, selecting the representative from a descendant

δH,Anc Highway, selecting the representative from an ancestor

The analysis of the collected data provides several findings. The first finding concerns

the top three most preferred distance functions measured over the detailed data for all

scenarios and all users. It is remarkable that the top three distance functions for each

of the user groups were the same and with the same ordering and specifically, these

are the δLCA,P, the δAnc and the δH,Desc. The frequencies for each one of the top three

distance functions in each group of users is shown in Table 4.3.

Table 4.3. Top Three Most Frequent Distance Functions for Each User Group.

 Users_all Users_cs Users_non

δLCA,P 40.47% 38.57% 44.28%

δAnc 18.09% 20.00% 14.28%

δH,Desc 9.52% 10.71% 7.14%

The second finding concerns the most preferred function by users depending on the

type of data the cubes contained. Table 4.4 summarizes the result of the most frequent

distance function for each set of scenarios and each set of users. We observe that for

the categorical type of cubes, all user groups prefer the δLCA,P distance function,

whereas for the arithmetic and the arithmetic & categorical sets, the functions that

144

users mainly prefer are the δLCA,P and δAnc. More than one distance functions appear as

winners in Table 4.4 due to ties in the frequency of occurrences for each function.

The third finding concerns the winner distance function per scenario. For every

scenario, we take into account the 15 occurrences by all users and see which distance

function is the most frequent. We call this function the winner function of the

scenario. The most frequent winner function was δLCA,P with a 35.71% percentage for

both the Users_all and the Users_cs group (5 of the 14 scenarios), and 57.14% for the

Users_non group (8 of the 14 scenarios). The most frequent function for 14 of the 15

users was the δLCA,P function. For one user from the Users_cs group the most frequent

function was the δLCA,D.

Table 4.4 The Most Frequent Distance Function for Each Set of Scenarios.

 Users_all Users_cs Users_non

Arithmetic δAnc δLCA,P, δH,Desc, δAnc δLCA,P

Categorical δLCA,P δLCA,P δLCA,P

Arithmetic & Categorical δAnc δAnc δLCA,P, δAnc

The fourth finding concerns the diversity and spread of user choices. There are two

major findings: (a) All functions were picked by some user, and, (b) there are certain

functions that appeared as user choices for all users of a user group. Specifically,

functions δLCA,P, δH,Desc and δAnc were selected at least once by users of group

Users_cs. Similarly, functions δLCA,P, δLow,m and δAnc were selected at least once by

Users_non.

The fifth finding concerns the most preferred family of functions. Table 4.5 depicts

the absolute number of appearances of each distance function family per user group.

The most preferred family of distance functions is the Hierarchy Path family, which

also contains the top one most preferred distance function δLCA,P. Moreover, we

observe that the ranking of the distance function families was exactly the same for

each user group.

145

Table 4.5. Frequencies of Preferred Distances within Each User Group for Each

Distance Family.

 Local Aggregation Hierarchy Path Percentage High-way

Users_cs 1 9 69 9 52

Users_non 2 5 34 5 24

Users_all 3 14 103 14 76

The selection stability of users (i.e., discrepancies in users’ answers at the same

questions) was the sixth issue. The selection stability was determined by setting the

13
th

 and the 14
th

 scenario to be replicas of the 3
rd

and 10
th

 scenario respectively. 4 out

of 5 users from the set of Users_non, 6 out of 10 users from the set of Users_cs

(consequently, 10 users from Users_all set) selected the same function for both of the

two similar scenarios. The rest of the users selected the same function for only one out

of the two repeated scenarios.

Summary. Overall, the findings indicate that the most preferred distance function is

the δLCA,P, which is expressed with respect to the shortest path of a hierarchy

dimension. A null hypothesis stating that the fact that 40.47% of the times δLCA,P was

chosen as a winner is due to a random phenomenon, has a p-value of 6.6×10
-5

. Apart

from the δLCA,P, the distance functions δAnc and δH,Desc were also popular with the

users. In addition, the most preferred distance function family is the Hierarchy Path

family.

4.3.2. User Study for Distances between two Cubes

In the previous user study, the overall observation was that the users prefer the δLCA,P

distance function between two values of the same dimension. Based on this result, and

also by setting the weighted sum function as the distance function between cells, we

set up the second user study in order to examine which distance function between two

cubes is preferred by the users. Specifically, we try to find out which distance

function among the two functions that include the cell mapping method (Section

4.1.3) is most closely related to the human perception. These two distance functions

146

are namely the closest relative and the Hausdorff distance function. Table 4.6 shows

the distance functions that were used in this user study.

The user study contained 14 new scenarios. Each scenario included 4 cubes named A,

B, C and D. The cube A in every scenario was the reference cube. The users were

asked to order the rest of the three cubes from the most similar to the less similar

when compared to the cube A. The cubes B, C and D were chosen such that one of

them was the closest to the cube A according to the closest relative function and

another was the closest to cube A according to the Hausdorff distance function. The

remaining cube was chosen to be the most distant from cube A for both distance

functions. All the scenarios used for this user study can be found in [Rogk10] and

[Baik11].

All scenarios were uploaded as jpeg pictures in an html page where users were asked

to complete an answer sheet and send it back to us via email. The URL of this page

was sent to the email-list of the graduate students of the Computer Science

Department of the University of Ioannina.

Table 4.6. The Distance Functions Used in the Second User Study.

between two cubes
Hausdorff

Closest relative

between two cells of cubes weighted sum

between two values of a dimension δLCA,P

between two measures Manhattan

In order to test a user’s answer reliability, in the 6
th

 scenario, the cube B was identical

with the cube A. Moreover, in order to measure the users’ stability, the 13
th

 and 14
th

scenarios were replicas of the 5
th

 and 9
th

 scenarios respectively with a reordering on

the columns of the cubes.

147

Table 4.7. Frequency of Chosen as First Distance Function Among All the Answers.

 Frequency Percentage

Hausdorff 154 38%

Closest relative 232 57%

Most distant cube 21 5%

The 12

first scenarios can be divided into three groups according to the weights in the

distance function between cells. The first 4 scenarios consist of cubes that do not

include measures. We refer to this group as the no_measures group. The next 4

scenarios consist of cubes that include measures where the weight factors on measures

and dimensions in the function between cells are not equal. Specifically, assuming

that cubes consist of k dimensions and l measures, the weight factors were set to

k/(l+k) for the dimensions and l/(l+k) for the measures. We refer to this group as the

not_equal group. Finally, the last four scenarios consist of cubes that include

measures and the weight factors on the measures and on the dimensions in the

between cells distance function are equal and set to 0.5. We refer to this group as the

equal group.

Table 4.8 User Stability.

 User_OK User_Half_OK User_Stable

scenario Freq. Perc. Freq. Perc. Freq. Perc.

13
th

 28 75% 5 13% 24 65%

14
th

 19 51% 8 21% 24 65%

The number of users that responded with an answer sheet was 39. Two of the 39 users

did not choose the cube B in the sixth scenario as the most similar to the cube A. For

that reason their answers were not taken into consideration. We refer to the remaining

37 users as valid_users.

The first finding of this user study concerns the most frequent distance function that

was chosen from the users as their first choice. Among all the 11 (scenarios) * 37

(users) = 407 answers (the sixth scenario is excluded), 232 times (≈ 57%) the users

148

gave as their first choice the cube that represents the closest relative distance function.

The cube that represents the Hausdorff distance function was chosen 154 times

(≈ 38%) as the first choice of the users. Only 21 times (≈ 5%) the users chose the

most distant cube as their first choice. The summarization of the above results is

shown in the Table 4.7.

Table 4.9 The Winning Functions and the Winner Functions.

Scenario

Group

Scenario Winner function

per scenario

Group Winner

no_measures Scen.1 Closest relative 29/37

Closest relative
Scen.2 Closest relative 30/37

Scen.3 Closest relative 31/37

Scen.4 Hausdorff 25/37

not_equal Scen.5 Hausdorff 28/37

Hausdorff Scen.7 Closest relative 26/37

Scen.8 Hausdorff 27/37

equal Scen.9 Hausdorff 19/37

-
Scen.10 Hausdorff 21/37

Scen.11 Closest relative 32/37

Scen.12 Closest relative 22/37

The second finding of the user study concerns the stability of the user choices. As we

mentioned before, the 13
th

 and 14
th

 scenario were replicas of the 5
th

 and 9
th

 scenario

respectively. In each of these two scenarios a user that orders the cubes in the same

way as in the original scenario is denoted as user_OK. A user that gave the same

answer for the most similar cube but the order of the other cubes was not the same is

denoted as user_Half_OK. Finally, a user that was denoted as user_OK for both

replicas scenarios or denoted as user_OK for the one replica scenario and

user_Half_OK for the other replica scenario is denoted as user_ Stable. According to

the answers of the valid 37 users of this user study, in the 13
th

 scenario there were 28

user_OK users and 5 user_Half_OK users. In the 14
th

 scenario there were 19 user_OK

users and 8 user_Half_OK users. The 24 of the 37 (≈ 65%) users were user_Stable

149

users. We believe that a 65% is a safe number that can ensure the stability and

reliability of their answers. The Table 4.8 summarizes the above results and

percentages.

The third observation concerns the scenario winner function. The term scenario

winner function refers to the function that was mostly selected as the first choice from

the users in a specific scenario. Our findings cannot ensure that one of the two

functions is more preferred than the other: The closest relative function was the

scenario winner function for 6 scenarios and the Hausdorff function was the scenario

winner function for the rest 5 scenarios (Table 4.9). Observe that the findings of Table

4.7 give a 19% difference between the two prevailing functions --a finding that is not

demonstrated in Table 4.9. This is explained by the fact that when the closest relative

function is a winner, it wins with an overwhelming majority; on the contrary, when

the Hausdorff function is a winner, the numbers are lower. The 4
th

 column in Table

4.9 shows how many times the winner function was chosen as a first choice among

the 37 valid users.

The fourth observation concerns the (scenario) group winner function (Table 4.9). For

a group of scenarios, its group winner is the function that appeared as scenario winner

in the majority of the scenarios of the group. For the no_measures group the group

winner function was the closest relative function, as it was the winner function for the

3 out of the 4 scenarios. For the not_equal group the group winner function was the

Hausdorff, as it was the winner function for the 2 out of the 3 scenarios. Finally, for

the group equal, we have a draw: in two scenarios the winner function was the closest

relative function and in two scenarios the winner function was the Hausdorff function.

The above results reveal a user preference in the closest relative function for scenarios

that do not include measures. On the other hand for the other types of scenarios the

results are not clear.

4.3.3. Reliability and Validity Considerations

Test Reliability. A possible threat to the test’s reliability is the inability of users to

understand what was asked from them to perform, or did not handle the test with

150

seriousness and mental concentration. In the 1
st
 user study, the users took the

experiment in our presence so we can ensure there were no ambiguous situations or

possible misunderstandings. In the 2
nd

 user study, users completed the questionnaire

via the web. However, there was a clear description of the setting of the experiment

along with an example, so we believe there were not any misunderstandings of what

the users should answer. Moreover, we excluded users that failed giving the

straightforward answer (in scenario 6 of the 2
nd

 experiment). Finally, in both user

studies, we tested the stability of users via replica scenarios.

Test Validity. Possible threats to tests’ external validity are the size and the mix of

the corpus of users. Naturally, the size of users can always be increased; however we

deem that the corpuses we have used are not negligible. Concerning the mix of users,

in the 1
st
 experiment we choose to include a group of users with a diversity of

backgrounds as well as a clearly distinct group of users with background of computer

science (and thus, higher affinity to the notion of comparing two data cubes). An

interesting observation is the fact that there are differences of opinions between the

Users_cs and Users_non (Table 4.3 and Table 4.5), however these are small and do

not change the overall ranking of the preferred functions. Thus, we were able to

proceed to a web-based questionnaire in the 2
nd

 study. In addition, the possible

scenarios were selected in a way that includes a variety of data types (arithmetic,

categorical) and various levels of granularity over the data.

4.4. Chapter Summary and Findings

This Chapter presented a variety of distance functions that can be used in order to

compute the similarity between two OLAP cubes. The functions were described with

respect to the properties of the dimension hierarchies and based on these they were

grouped into functions that can be applied (a) between two values from a dimension

of a multidimensional space, (b) between two points of a multidimensional space and

(c) between two sets of points of a multidimensional space.

In order to assess which distance functions are more close to human perception, we

conducted two user study analysis. The first user study analysis was conducted in

151

order to discover, which distance function between two values of a dimension is best

with regard to the user needs. Our findings indicate that the distance function δLCA,P,

which is expressed as the length of the path between two values and their common

ancestor in the dimension’s hierarchy was the most preferred by users in our

experiments. Two more functions were widely chosen by users. These were the

highway functions δAnc that is expressed with regard to the ancestor xy and δH,Desc that

is expressed by selecting the representative from a descendant.

The second user study we conducted, took into account the results of the first user

study analysis. Specifically, the second user study analysis aimed in discovering

which distance function (the closest relative or the Hausdorff distance function) from

the category of distance function between two data cubes, users prefer. Overall, the

former function was preferred by the users than the latter; however the individual

scores of the tests indicate that this advantage is rather narrow.

152

153

CHAPTER 5. CONCLUSIONS

5.1 Summary of Contributions

5.2 Open Problems and Insights for Future Work

The goal of this thesis was to explore and investigate the answering of top-k queries

through the exploitation of materialized top-k views. Apart from answering top-k

queries through materialized views, we have also studied the problem of maintaining

top-k materialized views in the presence of updates in the relation such that the views

can be up to date and useful for the answering of top-k queries. Moreover, we

explored the problem of expressing the similarity between two data collections. In

order to express similarity between objects we have worked on discovering the

distance functions that users prefer for computing the similarity of two data

collections. To this end, we resorted to the simplest framework that can be given to

users to work with and that has been OLAP Cubes.

5.1. Summary of Contributions

In this section we summarize the main research challenges and findings of this thesis.

Answering top-k Queries via Materialized Views

We have provided theoretical and algorithmic results for the answering of top-k

queries through the usage of materialized top-k views. By adopting a geometric

representation of the top-k query problem we have conducted a theoretical analysis for

providing theoretical guarantees for the suitability of a materialized view in order to

answer a top-k query. Specifically, we illustrated this through the notion of safe area

of a query in regards to a view and provided the suitability theorem. Moreover, we

154

have proved that the theorem is strict in the sense that it cannot be inversed. Thus, we

have proved that even if the safe area is not eligible for answering a top–k query, still

the view may be suitable for answering a query and we have described this through

the notion of the critical area. In addition, according to the theoretical establishments

we have provided two algorithms for the answering of top-k queries through the usage

of materialized views without accessing the tuples of the relation. We have provided

the 2D SafArI Algorithm for the 2D case, and the SafArI Algoroithm for the n-D

case. Furthermore, we have theoretically proved that the safe areas of a query in

regards to more than one views do not offer further usefulness for answering the

query compared to the safe area of a single view. We have also discussed the issue of

providing partial results for a query via a materialized view by splitting the range of

scores into appropriate sub-ranges and provided the Compute Query Extent

Algorithm. We have proved the efficiency and effectiveness of our method through an

extensive set of experiments. The experiments that concerned the 2D SafArI

Algorithm, revealed that the effectiveness of the method has been rather stable and

around 30-35%. The efficiency of our method showed a consistent increase for

reasonable sizes of k that rose up to 24%. The second set of experiments concerned

the N-D case. The effectiveness as well as the efficiency of our method revealed that

for random and anticorrelated datasets there was an influence on the results in regards

to the dimensionality. However, for the correlated datasets the effectiveness was

unaffected by dimensionality almost 100%. The real dataset experiments revealed and

effectiveness above 35% in all scenarios and increased significantly when the number

of materialized views increased.

Maintaining Materialized top-k Views

Considering the problem of maintaining top-k materialized views, we have provided

results in two directions. As for the first direction we have provided a principled

method that complements the inefficiency of the state of the art independently of the

statistical properties of the data and the characteristics of the update streams for the

maintenance of materialized views. Specifically, the method we have provided

consists of three steps: (a) computes the rate that actually affects the materialized

view, (b) computes the necessary extension to k in order to handle the augmented

number of deletions that occur, and (c) fine tunes by adjusting this value to take the

155

fluctuation of the statistical properties of this value into consideration. The second

direction concerned the case of multiple top-k views and their efficient maintenance in

the presence of updates to their base relation. We have provided theoretical

guarantees for the establishment of the effect of updates to a certain view, whenever

we know that another view has been updated. We have also provided algorithmic

results towards the maintenance of a large number of views, via their appropriate

structuring in a hierarchy of views. Our experiments have shown that our method

accurately sustains intervals with high deletion activity in the workload and

specifically in at least 95% of the cases there were top-k materialized views that

contained at least k items. The experiments indicate that our method outperforms the

state-of-the-art [YYY+03] in terms of efficiency as the computation of the exact

number of auxiliary view tuples has shown to be faster than the computation of refill

queries as proposed in the related literature. At the same time, the number of auxiliary

view tuples has been less than the number proposed in [YYY+03]. Moreover, the fine

tuning method we proposed, gave zero losses.

Similarity Measures for Multidimensional Data

The contribution towards the problem of discovering the distance functions for

computing the similarity of two data collections, according to what real users actually

think was again into two directions. We firstly presented a variety of distance

functions that can be used in order to compute the similarity between two OLAP

cubes and were described with respect to the properties of the dimension hierarchies.

Thus, they were grouped into functions that can be applied (a) between two values

from a dimension of a multidimensional space, (b) between two points of a

multidimensional space and (c) between two sets of points of a multidimensional

space. Following, we assessed which distance functions are more close to human

perception, where we have conducted two user study analysis. The first user study

analysis was conducted in order to discover, which distance function between two

values of a dimension is best with regard to the user needs. Our findings indicated that

the distance function δLCA,P, which is expressed as the length of the path between two

values and their common ancestor in the dimension’s hierarchy was the most

preferred by users in our experiments. Two more functions were widely chosen by

users. These were the highway functions δAnc that is expressed with regard to the

156

ancestor xy and δH,Desc that is expressed by selecting the representative from a

descendant. The second user study we conducted, took into account the results of the

first user study analysis. Specifically, the second user study analysis aimed in

discovering which distance function (the closest relative or the Hausdorff distance

function) from the category of distance function between two data cubes, users prefer.

Overall, the former function was preferred by the users than the latter; however the

individual scores of the tests indicate that this advantage is rather narrow.

5.2. Open Problems and Insights for Future Work

In this section we provide directions for future research on issues that are still open

and can be based on the results of this thesis.

5.2.1. View selection and caching

The problem of answering top-k queries through the usage of materialized ranking

views raises the problem of selecting the appropriate views in order to process

efficiently and effectively the posed queries. The view selection problem has been

addressed by both PREFER and LPTA algorithms. However, these works either

assume that the materialized views contain all tuples of the underlying relation ranked

according to the view’s scoring function, or, they select the most suitable ranked view

based on an estimation of the score of the last tuple of the top-k query. Thus, in the

second case there is no theoretically established guarantee that the selected views will

be able to answer the query. In any case, the estimation of the last tuple in the query

might lead to selecting a view that is not the most appropriate either in the sense that

it cannot provide an answer to the query or in the sense that is not the most efficient

one. Given, the theoretical established guarantees we have proved, it would be

interesting to study the problem of selecting the appropriate materialized view in

order to answer the top-k query in terms of efficiency. Thus, by adopting a cost

formula for each materialized view that safely guarantees the answer to the top-k

query, it could be possible to select the most appropriate view for answering the

query. The cost formula can express the cost of the usage of a given materialized view

157

in order to provide the answer to the top-k query through the number of tuples that

should be fetched, or, as the area of the materialized view in terms of surface units.

5.2.2. View caching

Similar to the view selection problem, another open issue involves the view caching

problem. In particular, in the context of distributed settings, where each underlying

server contains some local data, it is interesting to decide appropriately which

materialized views would be cached and which servers contain which cached results.

In general, the view caching problem is closely related to the view selection problem

since the overall idea is to identify the most promising set of views for the upcoming

queries. In other words, the caching problem is addressed as selecting the most useful

views in terms of the ability to provide an answer for a top-k query as well as

efficiency in the presence of resource constraints. On one hand, a view should be

contained in the set of cached results if it is likely enough to provide an answer for

most of the top-k queries. This could be achieved by caching a set of materialized

views that capture most of the space of the relation, so that there would always be a

materialized view that could provide the answer to any possible top-k query.

However, another idea would be to cache those materialized views that are most

likely to be used for the majority of the top-k queries leaving out the outlier top-k

queries. In order to decide the most appropriate set of materialized views, the above

two ideas should be taken into consideration and balanced in a way that the best

combination would provide the less cost for the answering of the new top-k queries.

Similarly to the view selection problem, a cost formula that expresses the cost of

providing the answer of a top-k query from a specific materialized view should be

constructed. In addition, since the views are materialized, the cost formula should also

contain in its expression the cost of maintaining a view in the presence of updates.

This cost formula would help in eliminating from the cached views those that provide

the answer to top-k queries with high costs when compared to all the rest views.

158

5.2.3. Combining indexing techniques with materialized views for query processing of

top-k queries in multi dimensional space

The usage of materialized views as well as indexing techniques has been used in

query processing mainly in terms of performance. Materialized views are used in

order to provide an answer to a query that is pre-computed. Indices could prove

helpful when they index the views and thus the later are selected and obtained faster.

An initial attempt of indexing materialized views for the answering of top-k queries

has been proposed by Tsaparas et. al. in Ranked Joined Indices. However, RJI solve

the problem only for the 2 dimensional case. It would be interesting to see how an

index for materialized views could be constructed and proved helpful for the

answering of top-k queries in multidimensional space. Two main characteristics of the

materialized ranked views play significant role in the answering of a top-k query. The

first is the depth of the view, i.e., the number of tuples that are materialized in the

view. The second is the closeness of the view to the top-k query. Specifically, the

second factor is the closeness of the line that characterizes a view to the line that

characterizes the query. An interesting idea would be to efficiently structure the

collection of materialized views in main memory where indices could be used for this

purpose. The depth of the view could be expressed either as the number of tuples

contained in the view, or the actual score of the last tuple materialized in the view. As

for the second characteristic, it is more complicated due to the fact that the scoring

function of the query is not obligatory know a-priori. Therefore, it would be

interesting to find a way to describe the position of the line that characterizes the view

in the space regardless of the query line. For a line in N dimensional space, N-1

angles are needed in order to position the slope of the line in space. N-1 angles

however are not so efficiently indexed, in general. This could possibly be solved by

adopting spherical coordinates.

159

REFERENCES

[BNST05] W. Balke, W. Nejdl, and W. Siberski, U. Thaden, “Progressive

Distributed Top k Retrieval in Peer-to-Peer Networks”, Proceedings

of the International Conference on Data Engineering (ICDE), pp.

174-185, 2005.

[Baik11] Similarity Measures for Multidimensional Data User study.

Available at http://www.cs.uoi.gr/~ebaikou/publications/2011_ICDE.

[BaRV11] E. Baikousi, G. Rogkakos, P. Vassiliadis, "Similarity Measures for

Multidimensional Data", Proceedings of International Conference on

Data Engineering (ICDE), pp. 171-182, 2011.

[BaVa07] E. Baikousi, P. Vassiliadis, “Tuning the top-k view update process”,

Proceedings of 3rd Multidisciplinary Workshop on Advances in

Preference Handling (M-Pref), 2007.

[BaVa09] E. Baikousi, P. Vassiliadis, "View Usability and Safety for the

Answering of top-k Queries via Materialized Views", Proceedings of

the International Workshop on Data Warehousing and OLAP

(DOLAP), pp. 97-104, 2009.

[BaVa10] E. Baikousi, P. Vassiladis, "Maintenance of top-k materialized

views", Distributed and Parallel Databases (DAPD), vol. 27(2), pp

95-137, 2010.

[BoKS01] S. Borzsonyi, D. Kossmann, K. Stocker, "The skyline operator",

Proceedings of the International Conference on Data Engineering

(ICDE), pp. 421-430, 2001.

[CaWa04] P. Cao, Z. Wang, “Efficient top-K query calculation in distributed

networks”, Proceedings of the Principles of Distributed Computing

(PODC), pp. 206-215, 2004.

160

[CBC++00] Y.Chang, L. D. Bergman, V. Castelli, C. Li, M. Lo, J. R. Smith, "The

onion technique: Indexing for linear optimization queries",

Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD), pp. 391-402, 2000.

[ChGM04] S. Chaudhuri, L. Gravano, A. Marian, "Optimizing Top-k Selection

Queries over Multimedia Repositories", IEEE Trans. Knowl. Data

Eng., vol. 16(8), 2004.

[ChGr99] S. Chaudhuri, L. Gravano, "Evaluating Top-k Selection Queries",

Proceedings of the International Conference on Very Large Data

Bases (VLDB), pp. 397-410, 1999.

[DeSc02] M. H. DeGroot, M. J. Schervish, “Probability and statistics”,

Addison Wesley, 2002.

[DGKT06] G. Das, D. Gunopulos, N. Koudas, D. Tsirogiannis. “Answering Top-

k Queries Using Views”, Proceedings of the International Conference

on Very Large Data Bases (VLDB), pp. 451-462, 2006

[Fagi96] R. Fagin, “Combining fuzzy information from multiple systems”,

Proceedings of the Symposium on Principles of Database Systems,

pp. 216-226, 1996.

[Fagi98] R. Fagin, “Fuzzy queries in multimedia database systems”,

Proceedings of the Symposium on Principles of Database Systems,

pp. 1-10, 1998.

[FaLN01] R. Fagin, A. Lotem, M. Naor, "Optimal aggregation algorithms for

middleware", Journal of Computer and System Sciences, vol. 66, pp.

614-656, 2003.

[FuWY05] B. C. M. Fung, K. Wang, and P. S. Yu, "Top-Down Specialization

for Information and Privacy Preservation", Proceedings of the

International Conference on Data Engineering (ICDE), pp. 205-216,

2005.

[GMNS09] A. Giacometti, P. Marcel, E. Negre, A. Soulet, “Query

Recommendations for OLAP Discovery Driven Analysis”,

Proceedings of the International Workshop on Data Warehousing and

OLAP (DOLAP), pp. 81-88, 2009.

161

[Graef00] G. Graefe, "Dynamic Query Evaluation Plans: Some Course

Corrections?", IEEE Data Eng. Bull., vol. (23) 2, 2000.

[GuBK00] U. Güntzer, W. Balke, W. Kießling, “Optimizing Multi-Feature

Queries for Image Databases”, Proceedings of the International

Conference on Very Large Data Bases (VLDB), pp. 419-428, 2000.

[HrKP01] V. Hristidis, N. Koudas, Y. Papakonstantinou, “PREFER a system

for the efficient execution of multi-parametric ranked queries”,

Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD), pp. 259-270, 2001.

[HrPa04] V. Hristidis, Y. Papakonstantinou, “Algorithms and applications for

answering ranked queries using ranked views”, VLDB Journal, vol.

13(1), pp. 49-70, 2004.

[HuKR93] D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge, “Comparing

images using the hausdorff distance”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 15(9), pp. 850-863, 1993.

[IlBS08] I.F. Ilyas, G. Beskales, M.A. Soliman, "A survey of top-k query

processing techniques in relational database systems", ACM

Computing Survey, vol. 40(4), 2008.

[Josl04] C. Joslyn, “Poset Ontologies and Concept Lattices as Semantic

Hierarchies”, Proceedings of the International Conference on

Conceptual Structures (ICCS 2004), pp. 287-302, 2004.

[Koss00] D. Kossmann, "The State of the art in distributed query processing",

ACM Computing Survey, vol. 32(4), pp. 422-469, 2000.

[LiBM03] Y. Li, Z. A. Bandar, D. McLean, “An approach for measuring

semantic similarity between words using multiple information

sources”, IEEE Transactions on Knowledge and Data Engineering,

vol. 15(4), pp. 871-882, 2003.

[MaBG04] A. Marian, N. Bruno, L. Gravano, "Evaluating top-k queries over

web-accessible databases", ACM Transactions on Database Systems,

vol. 29(2), pp. 319-362, 2004.

162

[MCYC06] N. Mamoulis, K. H. Cheng, M. L. Yui, D. W. Cheung, "Efficient

aggregation of ranked inputs", Proceedings of the International

Conference on Data Engineering (ICDE), pp. 72-83, 2006.

[MiTW05] S. Michel, P. Triantafillou, G. Weikum, “KLEE: A Framework for

Distributed Top-k Query Algorithms”, Proceedings of the

International Conference on Very Large Data Bases (VLDB), pp.

637-648, 2005.

[NeRa99] S. Nepal, M. V. Ramakrishna, “Query processing issues in image

(multimedia) databases”, Proceedings of the International Conference

on Data Engineering (ICDE), pp. 22–29, 1999.

[Rogk10] G. Rogkakos, “Similarity Measures for Multidimensional Data,”

MSc thesis, Univ. of Ioannina, Ioannina, Greece, July. 2010.

[Rous97] N. Roussopoulos, "Materialized Views and Data Warehouse",

Proceedings of the KRDB Workshop, pp. 12.1-12.6, 1997.

[SaJa95] S. Santini and R. Jain, “Similarity matching”, Proceedings of the

Asian Conference on Computer Vision (ACCV), pp. 571–580, 1995.

[SaJa99] S. Santini and R. Jain. ”Similarity measures”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 21(9), pp.871–883,

1999.

[Sara01] S. Sarawagi, “idiff: Informative summarization of differences in

multidimensional aggregates”. Data Mining and Knowledge

Discovery, vol. 5(4), pp.255–276, 2001.

[Sara99] S. Sarawagi, “Explaining differences in multidimensional

aggregates”, Proceedings of the International Conference on Very

Large Data Bases (VLDB), pp. 42-53, 1999.

[SaSc05] P. Sanders and D. Schultes, “Highway Hierarchies Hasten Exact

Shortest PathQueries”, Proceedings of the Annual European

Symposium (ESA), pp. 568-579, 2005.

[SGAE04] O. D. Sahin, A. Gupta, D. Agrawal, A. El Abbadi, “A Peer-to-peer

Framework for Caching Range Queries”, Proceedings of the

International Conference on Data Engineering (ICDE), pp. 165-176,

2004.

163

[TPK++03] P. Tsaparas, T. Palpanas, Y. Kotidis, N. Koudas, D. Srivastava,

"Ranked join indices", Proceedings of the International Conference

on Data Engineering (ICDE), pp. 277-288, 2003.

[Triv02] K. Trivedi, “Probability and statistics with reliability, queuing and

computer science applications”, John Wiley & Sons, Inc, 2002.

[TrNY04] P. Triantafillou, N. Ntarmos, J. Yannakopoulos, “A Cache Engine for

E-Content Integration”, IEEE Internet Computing, vol. 8(2), pp. 45-

53, 2004.

[VaSk00] P. Vassiliadis, S. Skiadopoulos, “Modeling and Optimization Issues

for Multidimensional Databases”, Proceedings of the International

Conference CAiSE, pp. 482-497, 2000.

[VDNV08] A. Vlachou, C. Doulkeridis, K. Norvaag, M. Vazirgiannis, “On

efficient top-k query processing in highly distributed environments”,

Proceedings of the ACM SIGMOD International Conference on

Management of Data (SIGMOD), pp. 753-764, 2008.

[YYY+03] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, Yuguo Chen. “Efficient

Maintenance of Materialized Top-k Views”, Proceedings of the

International Conference on Data Engineering (ICDE), pp.189-200,

2003.

[ZADB06] P. Zezula, G. Amato, V. Dohnal and M. Batko, “Similarity Search:

The Metric Space Approach”, Advances in Database Systems,

Springer, vol. 32, 2006.

[ZhTZ07] K. Zhao, Y. Tao, S. Zhou, “Efficient top-k processing in large-scaled

distributed environments”, Data Knowledge Engineering, vol. 63(2),

pp. 315-335, 2007.

164

165

∆ΗΜΟΣΙΕΥΣΕΙΣ ΣΥΓΓΡΑΦΕΑ

[BaRV11] E. Baikousi, G. Rogkakos, P. Vassiliadis, "Similarity Measures for

Multidimensional Data", Proceedings of International Conference on

Data Engineering (ICDE), pp. 171-182, 2011.

[BaVa07] E. Baikousi, P. Vassiliadis, “Tuning the top-k view update process”,

Proceedings of 3rd Multidisciplinary Workshop on Advances in

Preference Handling (M-Pref), 2007.

[BaVa09] E. Baikousi, P. Vassiliadis, "View Usability and Safety for the

Answering of top-k Queries via Materialized Views", Proceedings of

the International Workshop on Data Warehousing and OLAP

(DOLAP), pp. 97-104, 2009.

[BaVa10] E. Baikousi, P. Vassiladis, "Maintenance of top-k materialized

views", Distributed and Parallel Databases (DAPD), vol. 27(2), pp

95-137, 2010.

166

SHORT CV

Eftychia Baikousi was born in 1982 in Ioannina, Greece. She received her B.Sc. in

Mathematics in 2003 from the Department of Mathematics in the University of

Ioannina. She received her M.Sc. in Computer Science from the University of

Manchester Institution Science and Technology in 2004. Ms Baikousi joined the

Distributed Data Management Laboratory in 2005. Her research interests focus on

top-k query processing and similarity of data points.

