
���������� 	�
���
����

�
� �����
���� �� ������������ 	���
�
���

�� ����
���� ������ ���
�����

� ����������	� �
����� �
����	�����

����������� ����

��������� ��� ��� ���� ! ���"����� ��#� !$ �%�����$

��� �&!&���$ �����'��� !$ �(������ ! �������!

��� ���

����������
 ���������

)$ &"��$ �)� ���*��+��)� ,�� �� �!-� ���

����������	.� ���/0���.� ���1

�/�
.2.
�	� �� �
����	����

��. /.�����	.

. �+���$ 3445

Acknowledgments

I would like to thank my supervisor Professor Evaggelia Pitoura for her help,
support, the time spent during the elaboration of this thesis, and especially, the
patience she has shown until this thesis is completed. Furthermore, I would
like to thank Professor Panos Vassiliadis for sharing his knowledge with me,
especially on the study of the OLAP techniques. I would also like to thank my
friends Georgia Koloniari, George Rigas, Thodoris Tsotsos, and Andreas Fotiou
for their useful contribution, and their help on many issues of this work.

Contents

Contents i

1 Introduction 5
1.1 Context Preliminaries . 5
1.2 Scope of Thesis . 7
1.3 Thesis Outline . 9

2 A Logical Model for Context and Preferences 10
2.1 Reference Example . 10
2.2 Modeling Context . 11
2.3 Contextual Preferences . 14

2.3.1 Basic Preferences . 14
2.3.2 Aggregate Preferences . 15

2.4 Inheriting Preferences . 15
2.5 Techniques for the Expression of Preferences 17
2.6 Other Models of Preferences . 17

3 The Storage Model 21
3.1 Storing Basic Preferences . 21
3.2 Storing Context Hierarchies . 22
3.3 Storing the Value Functions . 24
3.4 Storing Aggregate Preferences . 25

4 Querying Context 27
4.1 Querying Simple Preferences . 27
4.2 Querying with Aggregate Scores 28
4.3 Computing Aggregate Scores . 28
4.4 Traditional OLAP Operators . 29

ii

5 Caching Context States 31
5.1 The Context Tree . 31
5.2 Querying the Context Tree . 35
5.3 Querying with Approximate Results 36
5.4 Querying Using Hierarchies . 40
5.5 Additional Issues . 40

5.5.1 Replacement Policies . 40
5.5.2 Mapping Context Parameters to Levels 41

5.6 Bloom-Based Index for the Context Tree 42
5.6.1 Bloom Filters Preliminaries 42
5.6.2 Multi-level Bloom Filters 43

6 Implementation and Evaluation 45
6.1 Prototype Implementation . 45
6.2 Performance Evaluation of the Context Tree 47

6.2.1 Evaluating the Size of the Context Tree 50
6.2.2 Evaluating the Accuracy of Approximate Results 51

7 Related Work 57
7.1 Context-Awareness . 57
7.2 Infrastructures for Context . 58
7.3 Context-Aware DBMS . 59

7.3.1 Context-Aware Query Processing 59
7.3.2 Architecture of Context-Aware DBMS 62

7.4 Context Management . 62
7.4.1 Model of Context . 63
7.4.2 Storing Context . 65
7.4.3 Updating Context . 65

7.5 Top-K Querying . 66

8 Conclusions and
Future Work 69

iii

List of Figures

2.1 The database schema of our running example. 11
2.2 Hierarchies on location. 12
2.3 The hierarchy tree for parameter L. 15
2.4 The hierarchy tree of location. 16
2.5 The entity relationship schema of Situated Preferences. 20

3.1 Data cubes for each context parameter. 22
3.2 The two fact tables of our schema (one for each context parame-

ter) and the dimension tables for Users and Restaurants. 23
3.3 A typical (left) and an extended dimension table (right). 24
3.4 A cube in the Context Relational model. 26

5.1 A context tree. 32
5.2 A set of aggregate preferences. 33
5.3 A context tree for a specific profile. 34
5.4 The hierarchy tree of location. 40
5.5 A Bloom filter with 4 hash functions. 42
5.6 The BBF for the context tree of Fig 5.3. 43
5.7 The DBF for the context tree of Fig 5.3. 44

6.1 Overall system architecture of a Context-Dependent Preference
Database. 46

6.2 Query Example. 47
6.3 Result Example. 47
6.4 Result Example. 48
6.5 Zipf Data Distribution. 50
6.6 Uniform Data Distribution . 51
6.7 Zipf Data Distribution with a = 1.0 (left) and a = 1.5 (right) . . 51
6.8 Different Results between two similar Queries. 52

iv

6.9 Different Results between two similar Queries with or without
similar Degrees. 53

6.10 Different Results between two similar Queries when ε′ = 0.04,
ε′ = 0.08, and ε′ = 0.12. 54

6.11 Different Results between two similar Queries when ε′ = 0.04,
ε′ = 0.08, and ε′ = 0.12. 54

6.12 Different Results between two similar Queries when ε′ = 0.04,
ε′ = 0.08, and ε′ = 0.12. 55

6.13 Different Results when the Approximation Coverage Threshold
has the values 40%, 60%, 80%. 55

6.14 Different Results when the Approximation Coverage Threshold
has values 40%, 60%, 80%. 56

7.1 Connecting Context and Databases 63

v

List of Tables

2.1 Preference SQL Queries . 19

6.1 Input Parameters . 49

vi

List of Algorithms

1 Search Path Algorithm . 36

vii

Abstract

Konstantinos Stefanidis.
MSc, Computer Science Department, University of Ioannina, Greece.
October, 2005.
Context-Aware Preferences for Database Systems.
Supervisor: Evaggelia Pitoura.

A context-aware system is a system that uses context to provide relevant
information or services to its users. While there has been a variety of context
middleware infrastructures and context-aware applications, little work has been
done on integrating context into database management systems. In this thesis,
we consider a preference database system that facilitates context-aware queries,
that is, queries whose result depends on the context at the time of their submis-
sion. At first, we present the fundamental concepts related to context modeling
and define user preferences. We propose using data cubes to store the de-
pendencies between context-dependent preferences and database relations and
OLAP techniques for processing context-aware queries. This provides support
for manipulating the captured context data at different levels of abstractions,
for instance, in the case of a context parameter representing location, this al-
lows us to express the fact that a city belongs to a country. To improve query
performance, we use an auxiliary data structure, called context tree, to store
precomputed preferences. A path in the context tree corresponds to an assign-
ment of values to context parameters and thus to a context state. This tree
provides an efficient way to retrieve top-k results that are relevant to a prefer-
ence query. We further show how search in this data structure can be improved
using an additional hash-based index to test for membership in the context tree.
We also outline an implementation of a prototype application, and we evaluate
the performance of the context tree on answering queries.

1

��������

������������ 	�
�����
� ��� ����������� ��� �
� ���������

MSc, ����� ��
���������� ���
�������� ���������� ��� !�
�� "##$�
%���
����
 ��������
�� ��� &���'����� �
 	�����'(�
�
 ��
������� �
 	��������

&��
�� %
���)����

���!�)�����* ���++
��� ��������

Context
���� ����������
 ��
������� ����
� �� ��
�������
,
� +�� �� ������
-
���
� ��� ��������
 � ��� ���(�
��� .�� ���(�
��
����)�� ������ ��� ����-

,
��� �)�� �����
��
�� ��� ����
� �� ,
��
,
� ��
���(�
 �
� ���
�
������

�(� �����
 ��� ����
�����+��� ����
�����!����)��� ��� �����
 ��� �
�
���-

��+��� ����
��)���)�� �/��
�� �� ���)�
� ���/�
�
� ��
�
��
� ����� �����
�

�����
���� ��
����
���
�� +�� ��� �����)����� ���
�
�
�'��� �
�
��)�
�
 ���

��
�
�� �� �� �����
���� ����� ����
��/� �� context ��� ����������� ���0

���(� ��� ��(���)�� �/��
��
���� context-aware �� ��
�������
� �� context +��
�� ���)�
� ����� �����
� ��
���)� ��
������
� ��� ��
�
��
�� �������('�����

������
�� �
 �
�����+�� ����

���� �� +
+��(� (�� �� context
���� ��� +
����)������ ��� ���
+�������
��
���
����
 ��������*

• �� �����������	 context ��� ����)�
��� ��� �(����
������������ ��
 ���-
����� �/��
�
� �
 �(���� ��� !��������� �
 ������� ��(����
 1(���
�-

�����)�2� ����

• �� context
����
 ��� �
�����!��
� ��� ��������
�� ��� �����
� �
 ,)�

���� �� ��(���� ����� ���� ����

• �� �����	 context ��� ����)�
��� �
 ����+���
� ��� ������/ �
��!��������
(��� ,
����������
���
�� ,��/!��� ����

• �
�	��� ��� ����
� �� �
� �
��� �� ��� ������� ���+�� �)�� ��
 �)���

�� ����� �
����� ����

"

���(�� ��� �������� ������
� context-aware
�����+)�� ��+
 ��
���� ����
��
)�
� +��
� ��
�
��������
 ��� context �
 ��������� ����
����
� !��
�� �
-
���)���� 	
 ����� �
 �
����������
�+����
3
����
��
� ���'���
)�� �/��
��

!��
�� �
���)��� �
 ��������
��� �� ����� �����
��'
� context-aware ����������

�� ����)�
��� ���
�����
�� ��� �
3������� ��(��� ���)� ���)���� ��

�����
���� ��� context �
 ���+�� ���
����'
���

� �
�
�
4������ ��������'���
 ��� ����
�����
���� �� context ��� ��
 ���)�
�� ���-

'���
 ��� ��������
�� ��� ��
�� �� 0���� �����
�
����'
� �
� ������
�
 ���

+��)�� �
���)�� ��������)�� !�,�(
�����)������� �
����)��� ���,�(�
��3/

��� # ��� ��� 5� %���������
 ��� ��������
�� �
 !����)� ��� �/�,
�
�� .�� !�����

������
�
 �
��+���
��� ��(��� �(�� �����
��� ��� context,
� ��� �/�,
�
 ��(
(�
�� � !�,�(�
�����)������ +�� ��� �/�,
�
 ������
�
 �����+�'
��� ��(����

���)���� !�,��/� ��� ����������� !���� � ��������
�� ��
������� ���� ���

+������� ������
�
� �����)��� �� ��� �����
���� ��� context ����
�)�
� �

������
����
���
�� ���� �
�������
���� �����(��� ������
�
 ��
������
� �

�������� ���
�(�
���
���

����
�����
 �
 ����
 ��
��/!�� �
���)��� +�� �
� ���,��
��
 ��� ���-

�����
��� 6�� �
� ����!
�� ���,
�
/����� �
 �/!��� �(�� �� !����)� ��������
��

��� ��
�� �� � ���,�(� ��� �/!��
���� ���� �
 ��� ���,�(��� �����)���� ���

context, ��, � �����
�)��� �/!�� +�� ��,
 �����
���� 	
 ��,
 �/!� �����
� ���
�������
 +�� �
� �����
��� ��� context,
� �� ��(����
�
����'��� +���������
��� �
� ��
��'����� �
 �� context. 	
 ��,
 �
�� ��� �/!�� ���,
�
/
��� � !�,�(�

�����)������ �
� ���������
� ������
�
�� 0��� ��
��)��
�� �
� ����
� ���

�/!�� +�� �
� ���,��
��
 ��� ��������
�� ��� �����

���� (�� ��� ���)����

�
 �����(�
�� �� �
������/�
 �� �
���)�� �
 ������
����
���
�� �
�������� 0����

+�� �����
�+��� ��
 +
�+������ ,)�

�(� �����
 ����
�
� �����
��� ��� con-
text, ���(���
����)�
� �
�)�����
 ���� ������
�
� �

���
�� �
������ � �

���
�� �(�
�� �� �/�,
�
� ��������
�� �
� ���,
�
/����� �
 �/!��� �
 ����(

�
 !
�����
 �
� ��(���
� ��� ���������� �
 ��(�� ��� �
 � ��� 4��,
�
/�����

�(�� �� ��������
�� ���)���� �����+���
� ��(���
+�/�
�
�
�����
�� �
)��

�)���� ��� �����'
��� context tree ��� ��
�������
���� ��
��
����� 1����)�
���
��������2�

�����)��� ��������'���
)�� �/���� ��(������
����
��

�����
��� ���

�����/� �� �
,�/� ��� �/��
�� ���� ��
�����
�� ���)� �����/� �� �����
,�/�

��
������� ���� ��
������� ��� !���'
��� ��� ��������(��� ��������
�� ���

��� context. ��
3
+�/�
 ���� �
�
��)� slice, dice, roll-up, ��� drill-down �
�

OLAP, ��, � ��� ����)����
 ��� ��
��������/���� �� �������� �
�
��)� ��
�

��)�
�
 ���
�����
���

	�
 ���)�
��� ����/���
 ������� ,)���� ��� �����/� �
 !
�����
 �
� ��(��-

�
�
��)�
�
�
�����
��� ��� ��+�
����)��� �
��+������
 ��� ���� �
���)���

7

��� �����'
��� context tree. ��
��������/�
 �
 ���� ���� +�� �
� ���,��
��

��� ����
�
������ ���
+�/�
���
�����
�� 1+�� ��+�
����)�
� ���)� ��� ����-

�)���� ��� context), ��
 ���� �� ����
�)����� �� ��
�������
,�/� ��(
�(�
-
�
�
�����
��� 	
 ��,

���
�� ��� �)����� ������������� ��� �����
���� ���

context. ����)����)�� �������� ��� �)����� ���������
� �
 ��� ���,
�
 ��� �
�
 ��,
 �����
���� ��,
 �(�!�� ��� �)����� 1
��(� ��� �/����2 �
��)�
�)��

�/���� ��('
/+
 �
� ������ [key, pointer],
� �� �/��� �
��)���� �� k �� ��

�
���)�� �
 �� �8
�(�
�� �������(!�,�(
�����)�������

�� context tree ��� ���)�
�)��� ��������(��(�� +�� �
� �����
�
 ��� k

���/�
��� ����
�
������ ����
� �
�
�� 0���� ���
� �
�
 �
,
� ��� �/��
���

������ ���'
��/�
 �� �����
� �� ���������� �������� ��� �
����� 4� ���� ������/-

�
 �� k ���/�
�� ����
�)����� ��(�� ���������� �/��� ��� �)������ %�����
-

����� �����+�'���
 �
�
� �
�
� ���
���+���
 ��� �)����)�� �)� �������� 1��

���������� �
�
� �
�
�2 ��'� �
 �� k ���/�
�� ����
�)������ �����(�,
���

�
��
�����
 �� ����)�� ��
 �� �����
��'
�
�����
�� ����� �� �����
���� �

�����+���(� ��� k ���/�
��� ����
�
������ ��(�
� ����� ��/�� ���!���
�

(��� �������� ���,
�
��)�
� ���(���
�
�����
�� ��� context tree.
9 ��(���
 ���'��
�
� ���������/ ��
 ���� �
���)��� ��� �������)�,
�

����
� �� !
����,
� ��
������� ����
����(�,
��
��
����� ��� !���'����� ����

�����
�������(��� �����'����� Bloom ������� �� Bloom ������ �����
��'���

���������
�����
�� ��� ����)������ ��
� �������� � (��
�(� �����
��)����

0����� (��� ��,
��� ��� �/��
�� ��� �)�
� �
�
� ��� ���������
� �
 ��+�
����)�

���,
�
 ��� � +�� ��� �����)����� ��� context, ���� �� ���'
������
 �� ������
-
�� �������� ��� context tree, ��
��������/�
 �� �� �� Bloom ������� 4��� ���

���)���� ��� +��+��
 �����
�
 +�� �� �� �����
� � (�� �� �������� ��� �)�����

����)���� �� �
� �����
�� ����
/+���
 �
� ���'��
�
 ��� context tree.
�����(�,
��� ����������
 ���
�����+�� ��
� �����
����)�
���)��� �����
�

��
�����
� ��� ��������
�� ��� +��)�� �/��
�� !��
�� �
���)�
��� ��
���(�

�����(���� �� ��������
�� ���)� ��
��'����� �
 �/� �����)����� context: ���
����(��� �
 ,)�
-����,
��� ��� �����
� �� �����
�)���� �
 �����(�
�� ��

,)����
�����
�� ��� �/��
���
� �� �������
�� ��� ���!�����
3��� ���� ��(

��� ��)����
� ���)� ��� context. �)���� ����������
 �
� ��(���
 ��� context
tree,
��
� ���� ��� �
��� ��(�
��������

4

Chapter 1

Introduction

1.1 Context Preliminaries

1.2 Scope of Thesis

1.3 Thesis Outline

1.1 Context Preliminaries

Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place or object that is considered relevant to
the interaction between a user and an application, including the user and the
application themselves [1]. There are various types of context such as time,
location, computing devices and user’s profiles.

While context is a general term, a classification of the most common types
of context used in building software systems is the following:

• Computing context. Computing context includes (i) network connectivity,
communication costs and communication bandwidth, (ii) nearby resources
such as printers, displays and workstations and (iii) local resources such as
cpu, energy and type of display. Such parameters affect data engineering
since to improve performance data engineering mechanisms (such as query
processing algorithms and concurrency control protocols) must take into
account the underlying resources.

5

• User context. User context includes the user’s profile, location, people
nearby, even the current social situation. This type of context parameters
directly affect the type of information relevant to a user. Thus, the user
context affects the results of query processing.

• Physical context. Physical context refers to the environment surrounding
the user such as lighting, noise levels, traffic conditions and temperature.
Such type of context indirectly affects the type of information that is
relevant for, or interesting to the user.

• Time context. Time context refers to the typical characterizations of time
such as time of a day, week, month and season of the year. Time may
affect the result of a query, since relevance may also be dependent on the
time.

The above taxonomy of context types is introduced in [2]. Each type is called
context parameter. There are dependencies among the various types of context
parameters. For instance, time context may affect the computing context, e.g.,
network traffic at weekends is less than during weekdays.

Context information often involves real world entities. Thus, it makes sense
to measure the quality of context information (QoI), or the extent to which
the data corresponds to the real world. The quality of context information can
vary, perhaps substantially, depending on the context source and the type of
context. The following characteristics of context necessitate the introduction
of appropriate metrics for assessing the quality of context information. Such
characteristics include the following [3]:

• Context exhibits a range of temporal characteristics. Some types of con-
text (such as the user profiles) are relatively static whereas other types of
context (such as location) are dynamic. Furthermore, storing the context
history is important for predicting future values of context and developing
appropriate models for context evolution.

• Context information is imperfect. There are various reasons for that.
One reason stems from the fact that context often are dynamic, thus it
gets quickly out-dated. Then, some forms of context information is often
produced by crude sensor inputs which may result in faulty information.
Furthermore, due to disconnections (e.g., wireless connections becoming
unavailable) or failures (e.g., sensors running out of battery power), the
available information may be imprecise. Finally, there is often the need
for time-consuming transformations for producing usable values of context.
Often the overhead of such transformations may be avoided or reduced on
the cost of producing rougher estimations.

6

• There are many alternative presentations of context offering varying de-
tails and depth.

• Finally, context parameters are highly interrelated. There are complex
dependencies among them that are sometimes difficult to deduce. Such
dependencies may lead to conflicting and sometimes inconsistent results.

There are many issues regarding the quality of context information. First, one
must identify what are the parameters that characterize quality. Then, one
must also determine how are these parameters measured, that is, what is an
appropriate metric for each one of the quality parameters. Furthermore, an
important issue is the estimation of quality provided and more importantly how
is this quality guaranteed. Research has not sufficiently addressed all these
issues. Most comprehensive research efforts regarding handling the quality of
context focus on a particular type of context, that of location. Various models
have been developed for predicting the location of moving objects. A survey on
location management can be found in [4].

In general, we identify the following Quality of Service (QoS) parameters as
relevant to context information and data management:

• Accuracy: the deviation of the estimated value of a context parameter
from the actual value of the parameter

• Level of Detail : this refers to the granularity of the presented information,
for instance, in the case of time, this can be measured e.g., in years, hours
or seconds

• Conflict-free: this measure is application-dependent and refers to the re-
quirement of having consistent and non-contradicting values

• Timeliness: the deviation of the value of the context parameter in time
(the extent to which a value is kept up-to-date)

A context-aware system is a system that uses context to provide relevant
information and/or services to its users, where relevancy depends on the users’
task. Although there has been a lot of work on developing a variety of context
infrastructures and context-aware middleware and applications (for example,
the Context Toolkit [5] and the Dartmouth Solar System [6]), there has been
little work concerning the integration of context information into databases.

1.2 Scope of Thesis

In this thesis, we investigate the use of context in relational database manage-
ment systems. We consider context-aware queries that are queries whose results

7

depend on the context at the time of their submission. In particular, users
express their preferences on specific attributes of a relation. Such preferences
depend on context, that is, they may have different values depending on context.

We model context as a finite set of special-purpose attributes, called context
parameters. Examples of context parameters are location, weather and the
type of computing device in use. A context state is an assignment of values
to context parameters. Users express their preferences on specific database
instances based on a single context parameter. Such basic preferences, i.e.,
preferences associating database relations with a single context attribute, are
combined to compute aggregate preferences that include more than one context
parameter.

We store basic preferences in data cubes, following the OLAP paradigm.
An advantage of using cubes and OLAP techniques is that they provide the
capability of using hierarchies to introduce different levels of abstraction for the
captured context data. For instance, this allows us to aggregate data along the
location context parameter, by grouping preferences for all cities of a specific
country. We show how context-aware preference queries are processed and the
role of OLAP techniques in their manipulation.

Aggregate preferences are not explicitly stored. To improve performance, we
propose storing aggregate preferences computed as results of previous queries
using an auxiliary data structure called context tree. A path in the context
tree corresponds to an assignment of values to context parameters, that is, to a
context state, for which the aggregate score has been previously computed.

The context tree provides an efficient way to retrieve the top-k results that
are relevant to a preference query. When a query is posed to the system, we
first check if there exists a context state that matches it in the context tree. If
so, we retrieve the top-k results from the associated leaf node. Otherwise, we
compute the answer and insert the new context state, i.e., the new path and
the associated top-k results, in the tree. Furthermore, the results stored in the
context tree can be re-used to speed-up query processing. This happens for a
similar query, i.e., for a query whose context state has similar values with a
previous one. In this case, the results of the new query are approximate. We
also show how search in the context tree can be improved by using a variation
of a Bloom-based filter for testing membership in the tree.

As a proof-of-concept, we have implemented a simple application that allows
users to express their preferences regarding a restaurant database. These pref-
erences depend on two context parameters, location and weather. Then, users
can pose preference queries whose results depend on context. Furthermore, we
evaluate the performance of the context tree on answering queries, running a
set of experiments.

8

Summarizing, we make the following contributions:

• We provide a logical model for the representation of user preferences and
context-related information. The impact of context information on the
evaluation of user preferences is explicitly traced.

• We discuss the implementation of our model in a relational DBMS.

• We investigate the usage of On-Line Analytical Processing (OLAP) tech-
niques for the manipulation of context-aware query operations.

• We propose storing previously computed aggregate scores using a data
structure termed context tree that indexes these results based on the con-
text parameters.

1.3 Thesis Outline

Chapter 2 describes our reference example, which is used in the rest of the thesis
to explain our approach. Furthermore, in the same chapter we introduce our
preference model. Chapter 3 focuses on how preferences are stored. Chapter 4
discusses query processing in our framework. Chapter 5 introduces the context
tree for storing aggregate preferences. Our prototype implementation is outlined
in Chapter 6. In the same chapter, we present the performance evaluation of the
context tree, while related work is presented in Chapter 7. Chapter 8 concludes
this thesis with a summary of our contributions and directions for future work.

9

Chapter 2

A Logical Model for

Context and Preferences

2.1 Reference Example

2.2 Modeling Context

2.3 Contextual Preferences

2.4 Inheriting Preferences

2.5 On Expressing Preferences

2.6 Other Models of Preferences

Our model is based on relating context and database relations through pref-
erences. In this chapter, we first introduce a reference example used to explain
our approach, throughout this thesis. Then, we present the fundamental con-
cepts related to context modeling and define user preferences.

2.1 Reference Example

Consider a database schema with information about restaurants and users (Fig.
2.1). In this application, we consider two context parameters as relevant:
location and weather. Users have preferences about restaurants that they ex-
press by providing a numeric score between 0 and 1. The degree of interest that a

10

Restaurant(rid, name, phone, region, cuisine)
User(uid, name, phone, address, e-mail)

Figure 2.1: The database schema of our running example.

user expresses for a restaurant depends on the values of the context parameters.
For instance, a user may want to eat different kinds of food when the weather
is rainy, cloudy or sunshine. For example, user Mary may give to restaurant
Zoloushka that serves “Russian” food a higher score when the weather is rainy

than when the weather is sunshine. Furthermore, the current user’s location
affects the result of a query, for example, a user may prefer restaurants that are
nearby her current location. Thus, a user’s preference on a specific restaurant
depends on the context parameters. A user can specify preferences without
giving values for all context parameters, i.e., preference(187, 334, *, rainy) =
0.8 means that the restaurant Zoloushka with id = 187, for user Mary with
id = 334 has interest score 0.8, when the weather is rainy, independently of the
user’s location. In general, when a context parameter has the special value ∗,
any value is acceptable.

2.2 Modeling Context

The modeling of context relies on several fundamental concepts. As usual,
domains represent the available types and collections of values of the system.
Context parameters refer to the available set of attributes that the database
designer will chose to represent context. At any point in time, a context state
refers to an instantiation of the context parameters at this point. Context
parameters are extended with OLAP-like hierarchies, in order to enable a richer
set of query operations to be applied over them.

Domains. A domain is an infinitely countable set of values. All domains are
enriched with a special value for representing NULL, the semantics of which
refers to our lack of knowledge.

Attributes and Relations. As usual, we assume a countable collection of
attribute names. Each attribute Ai is characterized by a name and a domain
dom(Ai). A relation schema is a finite set of attributes and a relation instance
is a finite subset of the Cartesian product of the domains of the relation schema.

Context Parameters. Context is modeled through a finite set of special-
purpose attributes, called context parameters (ci). For a given application X ,

11

Acropolis

Athens

 Greece

Region

City

Country

 Perama

Ioannina

ALL all

Kifisia

Figure 2.2: Hierarchies on location.

we can define its context environment CX as a set of n context parameters
{c1, c2, . . . , cn}.

Context State. In general, a context state is an assignment of values to con-
text parameters. The context state at time instant t is a tuple with the values
of the context parameters at time instant t, CSX(t) = {c1(t), c2(t), . . . cn(t)},
where ci(t) is the value of the context parameter ci at timepoint t. For instance,
assuming location and weather as context parameters, a context state can be:
CS(current) = {Acropolis, sunshine}.

Hierarchies for Attributes. It is possible for an attribute to participate in
an associated hierarchy of levels of aggregated data i.e., it can be viewed from
different levels of detail. Formally, an attribute hierarchy is a lattice of attributes
– called levels for the purpose of the hierarchy – L = (L1, . . . , Ln, ALL). We
require that the upper bound of the lattice is always the level ALL, so that we
can group all the values into the single value ′all′. The lower bound of the lattice
is called the detailed level of the parameter. For instance, let us consider the
hierarchy location of Fig. 2.2. Levels of location are Region, City, Country,
and ALL. Region is the most detailed level. Level ALL is the most coarse level
for all the levels of a hierarchy. Aggregating to the level ALL of a hierarchy
ignores the respective parameter in the grouping (i.e., practically groups the
data with respect to all the other parameters, except for this particular one).

The relationship between the values of the context levels is achieved through
the use of the set of ancL2

L1
functions. A function ancL2

L1
assigns a value of the do-

main of L2 to a value of the domain of L1. For instance, ancCity
Region(Acropolis) =

Athens. A formal definition of these hierarchies can be found in [7].

Dynamic and Static Context Parameters. Traditionally, data stored in
databases are considered constant unless it is explicitly modified. Since, some
context values change continuously with time, we represent the corresponding

12

context parameters as functions of time. In that way, using functions of time we
can compute the value of a parameter at the point we want to use it, without
needing continuously updates. Related work has been done in the context of
managing the location of moving objects in [8, 9]. In our work, we discriminate
between two kinds of context parameters: (a) static and (b) dynamic context
parameters. Static context parameters take as value a simple value out of their
domain. Dynamic context parameters on the other hand, are instantiated by
the application of a function, the result of which is an instance of the domain
of the context parameter.

Thus, we can represent context values as functions of time; context changes
as time passes, even without an explicit update. For example, the distance
between Mary and a restaurant that she wants to visit is given as a function of
time. This distance continually changes, when Mary is moving. In that way,
the sorted result of a query might be different, when the same query is entered
in the system at several times, even if the time interval between them is very
small. The explanation is that after a few minutes the user might be closer to
another restaurant. From the above, we consider that the answer to a query
depends not only on the database content, but also on the time at which the
query is executed.

In such a model, we can enter queries that refer to past time or to the
future. The answer to future queries in a usual database is frequently tentative.
Suppose that Mary is moving with her car. In the system is entered the query
Q=“retrieve the position of the car, after an hour”. When we represent the
position of the car as a function of time, we can have the prospective knowledge
to estimate the position in a future time, if we know for example the speed and
the direction of the car. So, there is no need to update continuously the position
of the car, because we can compute its new one. Also, we can answer queries
such as Q, i.e., queries that referred at future or at past time.

When a value of a context parameter is a function of time, it changes over
time according to some given equation, even if it is not explicitly updated. In
contrast, if the value is stored in the database in the traditional sense, it changes
only when an explicit update occurs. For example, we can compute the position
of Mary′s car (Mary′s location) when we know the time interval, the speed
and the direction of the car. More specifically, when we know the previous
location of the car, the current car’s speed, its direction and the time interval
between the two positions, we can compute the current position of the car. With
this technique, it is not necessary to continuously update (explicitly) the car’s
position, but modify the speed and the direction of the car, when these change.

In our example, we assume that weather is a static parameter, i.e., each
new value for weather is derived by an explicit update. On the other hand,

13

location is a dynamic parameter. In particular, location is defined as a function
of time and in that way, we can compute the value of this parameter at the point
we want to use it, without the need for continuous explicit updates. Defining
appropriate functions and procedures for determining the value of a dynamic
context parameter in the current or some future time instant is beyond the scope
of this thesis.

2.3 Contextual Preferences

In this section, we define how a context state affects the results of a query. In
our model, each user expresses his/her preference by providing a numeric score
between 0 and 1 [10]. This score expresses a degree of interest, which is a real
number. Value 1 indicates extreme interest. In reverse, value 0 indicates no
interest for a preference. The special value � for a preference, means that there
is a user’s veto for the preference. Furthermore, the value ∗ represents that any
value is acceptable.

More specifically, we divide preferences into basic (concerning a single con-
text parameter) and aggregate ones (concerning a combination of context para-
meters).

2.3.1 Basic Preferences

Each basic preference is described by (a) a context parameter ci, (b) a set of
non-context parameters Ai, and (c) a degree of interest, i.e., a real number be-
tween 0 and 1. So, for the context parameter ci, we have:

preferencebasici(ci, Ak+1, . . . , An) = interest scorei

In our reference example, there are two context parameters, location and
weather. Also, the set of non-context parameters are attributes about restaurants

and users (in this case the user is Mary) that are stored in the database. From
Mary′s profile, we know that when she is at Acropolis she gives at the restau-
rant BeauBrummel the score 0.8, and when the weather is cloudy the same
restaurant has score 0.9. In order to explain Mary′s high scores to the above
preferences, we refer that the restaurant BeauBrummel is located in Athens,
near Acropolis, and Mary likes to eat french cuisine when the weather is
cloudy (BeauBrummel has french cuisine). So, the basic preferences are:

preferencebasic1(Acropolis, BeauBrummel, Mary) = 0.8,
preferencebasic2(cloudy, BeauBrummel, Mary) = 0.9.

14

.

L1

L2 . . .

ALL

Figure 2.3: The hierarchy tree for parameter L.

2.3.2 Aggregate Preferences

Each aggregate preference is derived from a combination of basic preferences.
The aggregate preference is expressed by a set of context parameters ci and a
set of non-context parameters Ai, and has a degree of interest

(preference(c1, . . . ck, Ak+1, . . . , An) = interest score).
The interest score of the aggregate preference is a value function of the

individuals scores (the degrees of the basic preferences). The value function
prescribes how to combine basic preferences to produce the aggregate score,
according to the user’s profile. Users define in their profile how the basic scores
contribute to the aggregate, giving a weight to each context parameter. So, if the
weight for a context parameter is wi the interest score will be: interest score =

w1 ∗ interest score1 + . . . + wk ∗ interest scorek.
In the previous example if the weight of location is 0.6 and the weight of

weather is 0.4, the preference has score: 0.6 ∗ 0.8 + 0.4 ∗ 0.9 = 0.84 (from the
above value function). Thus, we have:

preference(Acropolis, cloudy, BeauBrummel, Mary) = 0.84.
Note also, that when a basic preference has a veto (�) value, this preference

does not contribute to the creation of the aggregate one.

2.4 Inheriting Preferences

When the context parameter of a basic preference participates in different levels
of a hierarchy, users can express their preference in any level, as well in more than
one level. For example, Mary can denote that the restaurant Beau Brummel
has interest score 0.8 when she is at Kifisia and 0.6 when she is in Athens.
Note that in the hierarchy of location the city of Athens is one level up the
region of Kifisia.

The tree of Fig. 2.3 represents the different levels of hierarchy for a context
parameter. For the parameter L, let L1, L2,. . . , Ln, ALL be the different levels

15

Ioannina

PeramaKifisiaAcropolis

Athens

Salonica

.

. . .

0.8 0.7

0.9

Greece
. . .

all
0.5

Figure 2.4: The hierarchy tree of location.

of the hierarchy, which can take various different values. There is a hierarchy
tree, for each combination of non-context parameters. In our reference example
(Fig. 2.4), there is a hierarchy tree for each user profile and for a specific
restaurant that represents the interest scores of the user for the restaurants,
accordingly to the context parameter’s hierarchy. The root of the tree concerns
level ALL with the single value all. The values of a certain dimension level
L are found in the same level of the tree (e.g., Athens and Salonica, being
both members of the dimension level City, are found at the same level of the
tree in Fig. 2.4). The ancestor relationships ancL2

L1
are translated to parent-child

relationships in the tree (e.g., the node Greece is the parent of the node Athens).
Each node is characterized by a score value for the preference of concerning the
combination of the non-context attributes with the context value of the node.

If the query conditions refer to a level of the tree in which there is no explicit
score given by the user, we propose three ways to find the appropriate score for
a preference. In the first approach, we traverse the tree upwards until we find
the first predecessor for which a score is specified. In this case, we assume that
a user that defines a score for a specific level, implicitly defines the same score
for all the following levels. In the second one, we compute the average score of
all the successors of the immediately following level. This approach has a main
drawback. When the successors have no score, we must execute the first method.
Finally, in a more sophisticated approach we can compute a weighted average
score combining the scores from both the predecessor and the successors.

In any of the above cases, if no score is defined at any level of the hierarchy,
there is a default score of 0.5. Furthermore, it is possible for a score to exist at a
certain level, but the query is referred to a higher level. In these circumstances, if
the first or the third approach is chosen, and there is no score for any predecessor,
we use the default score 0.5.

Take for example, Fig. 2.4 that depicts a hierarchy for a user and a

16

restaurant. So, for instance the restaurant Beau Brummel has score 0.8 when
Mary is near Acropolis, 0.7 when she is in Kifisia, and 0.9 when she is in
Ioannina. The root of the hierarchy has the default score 0.5. These degrees of
interest scores, except the last one, have been explicitly defined by the user at
her profile. If the query conditions refer to Athens, for which there is no score,
the first approach gives score 0.5, because this is the first predecessor’s score. If
we choose the second approach, this leads to score (0.8 + 0.7)/2 = 0.75, while
the third one produces a weighted combination of the above scores.

2.5 Techniques for the Expression of Preferences

To facilitate the procedure of expressing interests, the system may provide sets
of pre-specified profiles with specific context-dependent preference values for the
non-context parameters as well as default weights for computing the aggregate
scores. In this case, instead of explicitly specifying basic and aggregate prefer-
ences for the non-context parameters, users may just select the profile that best
matches their interests from the set of the available ones. By doing so, the user
adopts the preferences specified by the selected profile.

Since the focus of this work is on efficiently combining preferences and data-
base operations, our working assumption is that preferences are explicitly spec-
ified by users. Alternatively, preferences may be deduced by the previous be-
havior of the user, for instance by using data mining techniques on the history
of the user database accesses. The issue of implicitly inferring preferences is
orthogonal to the work presented in this thesis. There has been some previous
work on the topic [11], that can be integrated in our approach.

2.6 Other Models of Preferences

The research literature on preferences is extensive. In particular, in the context
of database queries, there are two different approaches for expressing prefer-
ences: a quantitative and a qualitative one. Both the quantitative and the
qualitative approaches can be integrated with query processing.

With the quantitative approach, preferences are expressed indirectly by using
scoring functions that associate a numeric score with every tuple of the query
answer. Such a general quantitative framework for expressing and combining
preferences is proposed in [10]. In this framework, a preference is expressed by
the user for an entity. Entities are described by record types which are sets
of named fields, where each field can take values from a certain type. The
‘*’ symbol is used to match any element of that type. Preferences are ex-

17

pressed as functions that map entities of a given record type to a numerical
score. This is the main difference with our approach, because we assign ex-
plicitly a numerical score to the corresponding entities. A set of preferences
can be combined using a generic combine operator which is instantiated with a
value function. For example, the preference of a user for restaurants can be ex-
pressed as preference(type of food), with values preference(chinese) = 0.1,
preference(greek) = 0.8 and preference(other) = 0.1.

In the quantitative framework of [12], user preferences are stored as degrees
of interests in atomic query elements (such as individual selection or join con-
ditions). The degree of interest expresses the interest of a person to include
the associated condition into the qualification of a given query. Specific rules
are specified for deriving preference of complex queries by building on stored
atomic ones. The results of a query are ranked based on the estimated degree
of interest in the combination of preferences they satisfy. Our approach can be
generalized for this framework as well, either by including contextual parame-
ters in the atomic query elements or by making the degree of interest for each
atomic query element depend on context.

Both quantitative frameworks can be readily extended to include context.
One way this can be achieved is by defining preference functions based on con-
text. Then, based on the current values of context, the associated preference
functions can be selected, combined and used to rank the results of any given
query. Similarly, we may either include contextual parameters in the atomic
query elements or make the degree of interest for each atomic query element
depend on context.

In the qualitative approach, the preferences between the tuples in the answer
to a query are specified directly, typically using binary preference relations. For
example, one may express that restaurant1 is preferred from restaurant2 if
their opening hours are the same and its price is lower. This framework can
also be readily extended to include context. For instance, one may express that
restaurant1 is preferred from restaurant2 if their opening hours are the same,
its price is lower and it is closer to the current user’s location. A logical qual-
itative framework is presented in [13] for formulating preferences as preference
formulas. The preference formula is a first-order formula defining a preference
relation between two tuples.

A different approach to expressing preferences is presented in [14, 15]. This
approach introduces Preference SQL that extends SQL with a preference model.
In standard SQL, database queries are characterized by hard constraints, in the
sense that user wishes are either satisfied completely or not at all (any preference
is translated in the where clause). Preference SQL provides a paradigm shift
from the exact matches towards a best possible match-making, i.e., preferences

18

Table 2.1: Preference SQL Queries

Q1 select * from [table name]
preferring [attribute name] around[value];

Q2 select * from [table name]
preferring highest([attribute name]);

are to be treated as soft constraints. That means finding the best possible match
between one’s wishes and the reality.

Preference SQL includes a variety of built-in base preference types. In partic-
ular, there is a number of different selection criteria that refer to approximation,
minimization, maximization, favorites, dislikes, etc. For example, observe the
queries in Table 2.1. The first query (Q1) uses the preference type around to
express a positive preference to values close to a numerical target value. The
second query (Q2) asks for the highest value, if it is possible. Otherwise, the
closest value to the maximum is considered acceptable.

Many times a “wish” cannot be expressed by a basic preference solely. For
this cases, Preference SQL offers complex preferences that are based on a com-
bination of basic ones. For instance, the pareto accumulation is the ‘AND’-ing
of basic preferences. Imagine that a customer buying a computer considers a
maximum memory size and CPU speed as equally important. This preference
can be expressed as:

• select * from computers
preferring highest(main memory) and
highest(cpu speed);

Our approach differs from Preference SQL on how preferences are expressed.
In Preference SQL, preferences are implemented using operators and the result
shows that an object is more preferable than another, while in our approach the
results are ordered according to the degrees of interest that a user gives to data
objects.

The previous approach is extended in [16], where a context state is repre-
sented as a situation. Each situation has a timestamp that denotes the date
and the time of the situation, an entity type location that describes the current
position and influences that describe other aspects affecting the situation. In-
fluences are divided into personal and surrounding. Personal influences denote
human factors of a situation like physical state and surrounding ones describe
outer influences like weather condition. In this approach, preferences are mod-

19

 preference situation
 in
 holds

M N

 p_id s_id

Figure 2.5: The entity relationship schema of Situated Preferences.

eled as in authors’ previous work ([14]). There are three types of preferences:
long− term, singular, and non− singular. The first one holds generally, while
a singular preference holds in exactly one situation. The non-singular preference
holds in more than one situation.

Situated preferences are modeled as N : M relationships between situations
and preferences (Fig. 2.5). Each situation has a unique s id and each preference
has a unique p id. A concrete situated preference can be considered as a tuple
(s id, p id) expressing that the preference p id holds in the situation s id.

20

Chapter 3

The Storage Model

3.1 Storing Basic Preferences

3.2 Storing Context Hierarchies

3.3 Storing the Value Functions

3.4 Storing Aggregate Preferences

In this chapter, we discuss the implementation of our context model in rela-
tional DBMS structures. First, we discuss the storage of preferences and then
the storage of attribute hierarchies.

3.1 Storing Basic Preferences

There is a straightforward way to store our context and preference information
in the database. We organize preferences as data cubes, following the OLAP
(On-Line Analytical Processing) paradigm [7]. OLAP is a category of software
technology that based on the multidimensional view of data. In this multidi-
mensional data model, hypercubes, or simply cubes, are used. The information
in cubes is stored in a multidimensional array. Thus, a cube is a group of data
cells. Each cell is uniquely defined by the corresponding values of the dimen-
sions of the cube. The contents of the cells are named measures and represent
the measured values of the real world. Measures are functionally dependent, in
the relational sense, on the dimensions of the cube.

21

 Restaurants Restaurants

UserUser

Location Weather

Figure 3.1: Data cubes for each context parameter.

In our model, we store basic user preferences in cubes. The number of
data cubes is equal with the number of context parameters, i.e., we have one
cube for each parameter, as shown in Fig. 3.1. In each cube, there is one
dimension for restaurants, one dimension for users and one dimension for the
context parameter. In each cell of the cube, we store the degree of interest
for a specific preference. So, we can have the knowledge of score for a user,
a restaurant and a context parameter. Formally, a cube is defined as a finite
set of attributes C = (AC , A1, . . . , An, M), where AC is a context parameter,
A1, . . . , An are non-context attributes and M is the interest score. The values
of a cube are the values of the corresponding preference rules.

A relational table implements such a cube in a straightforward fashion. The
primary key of the table is AC , A1, . . . , An. If dimension tables representing hier-
archies exist (see next), we employ foreign keys for the attributes corresponding
to these dimensions.

Our schema is based on the classical star schema. In a star schema, data
is organized through a centralized fact table, linking several dimension tables.
Each dimension table contains information specific to the dimension itself, i.e.,
information relevant to the dimension. The fact table correlates all dimensions
through a set of foreign keys. This is the table that implements the cube.
The schema of our approach is depicted in Fig. 3.2. As we can see, there are
two fact tables, Fact Location and Fact Weather. The dimension tables are:
Users and Restaurants. These are dimension tables for both fact tables.

3.2 Storing Context Hierarchies

An advantage of using cubes to store user preferences is that they provide the
capability of using hierarchies to introduce different levels of abstractions of

22

 uid

 rid

score

rid

uid

score

uid

phone

address

e−mail

 name

 weather

 rid

 name

 phone

 region

 cuisine

region

 city

country

 lid

 lid

Restaurants

Location

 Users

 Fact_Location

Fact_Weather

Figure 3.2: The two fact tables of our schema (one for each context parameter)
and the dimension tables for Users and Restaurants.

the captured context data through the drill-down and roll-up operators ([17]).
By drilling down on the aggregate data the user is getting a more detailed view
of the information. Roll-up is the opposite operation: it is the process of viewing
data in progressively less detail.

In that way, we can have a hierarchy on a given context dimension. Context
dimension hierarchies give to the application the opportunity to use a combi-
nation of data between the fact and the dimension tables on one of the context
parameters. The typical way to store data in databases is shown in Fig. 3.3
(left). In this modeling, we assign an attribute for each level in the hierarchy.
We also assign an artificial key to efficiently implement references to the dimen-
sion table. The contents of the table are the values of the ancL2

L1
functions of

the hierarchy. The denormalized tables of this kind, participating in a database
schema (often called a star schema) suffer from the fact that there exists exactly
one row for each value of the lowest level of the hierarchy, but no rows explicitly
representing values of higher levels of the hierarchy. Therefore, if we want to
express preferences at a higher level of the hierarchy, we need to extend this
modeling (assume for example that we wish to express the preferences of Mary

when she is in Cyprus, independently of the specific region, or city of Cyprus
she is found at).

To this end, in our model, we use an extension of this approach, as shown in
the right of Fig. 3.3. In this kind of dimension tables, we introduce a dedicated
tuple for each value at any level of the hierarchy. We populate attributes of lower
levels with NULLs. To explain the particular level that a value participates at,
we also introduce a level indicator attribute. Dimension levels are assigned
attribute numbers through a topological sort of the lattice.

23

 1

2

3

G_ID Region City Country

Greece

Greece

Greece

 Acropolis

 Kefalari

Athens

Athens

...
 Perama Ioannina

 1

2

3

G_ID Region City Country

Greece

Greece

Greece

 Acropolis

 Kefalari

 Polichni

Athens

Athens

Salonica

...
101

102

120

NULL

NULL

NULL NULL

Salonica

Athens Greece

Greece

Greece

Level

1

1

1

2

2

3

...

3CyprusNULLNULL121

...

Figure 3.3: A typical (left) and an extended dimension table (right).

3.3 Storing the Value Functions

The computation of aggregate preferences refers to the composition of simple
basic preferences, in order to compute the aggregate one. The technique used for
this involves using weights for each of the parameters. Each aggregate preference
involves (a) a set of k context parameters -i.e., cubes and (b) a set of n non-
context parameters, common to all context cubes:

preference(c1, . . . ck, Ak+1, . . . , An) = interest score

The non-context parameters pin the values of the aggregate scores to specific
numbers and then, the individual scores for each context parameter are collected
from each context table. Recall that the formula for computing an aggregate
preference is: interest score = w1 ∗ interest score1 + . . .+wk ∗ interest scorek.

Therefore, the only extra information that needs to be stored concerns the
weights employed for the computation of the formula. To this end, we employ
a special purpose table AggScores(wC1, . . . , wCk, Ak+1, . . . , An). The value for
each context parameter wCi is the weight for the respective interest score and
the value for each non-context attribute Aj is the specific value uniquely de-
termining the aggregate preference. For instance, in our running example, the
table AggScores has the attributes Location weight, Weather weight, User

and Restaurant. A record in this table can be (0.6, 0.4, Mary, Beau Brum-
mel). Assume that from Mary′s profile, we know that Beau Brummel has
interest score at the current location 0.8 and at the current weather 0.9, then,
the aggregate score is: 0.6 ∗ 0.8 + 0.4 ∗ 0.9 = 0.84. For simplicity, we just
store one weight for each context parameter, making the previous record of the
AggScores table (0.6, 0,4, Mary).

24

3.4 Storing Aggregate Preferences

Aggregate preferences are not explicitly stored in our system. The main reason is
space and time efficiency, since this would require maintaining a context cube for
each context state and for each combination of non-context attributes. Assume
that the context environment CX has n context parameters {c1, c2, . . . , cn} and
that the cardinality of the domain dom(ci) of each parameter ci is (for simplicity)
m. This means that there are mn potential context states, leading to a very large
number of context cubes and prohibitively high costs for their maintenance.

Note that some of the mn context states may not be useful, since they may
correspond to combinations of values of context parameters that represent con-
text states that are not valid or have a very small probability of being queried.
Furthermore, some context parameters or context states may be more popu-
lar for some non-context parameters (e.g., users) than for others, thus making
the storage of all states for all non-context parameters unjustifiable. Finally,
retrieving specific entries of such cubes is not very efficient, since it would re-
quire building and maintaining indexes on various combinations of the context
parameters.

For these reasons, we choose to store only previously computed aggregate
scores. We also propose using an auxiliary data structure that we call the context
tree to index them (described in Section 5).

In [18], the Context Relational model (CR model) that uses data cubes is
proposed. This model extends the relational model to argue about context. In
particular, there is a set of worlds, while each world expresses a combination
of values of the context parameters. The number of worlds is equal with the
number of all combinations of context parameters’ values. A world corresponds
to our notion of context state. The authors use cubes to store for each world
and for each entity (tuple), the value that each non-context related attribute of
the entity has, i.e., there is one dimension for the worlds, one for the entities
and one for the attributes (as depicted in Fig. 3.4). In our approach, instead of
storing all context states in a cube, we use the context tree to store the states
that are previously requested. So, we avoid to store wasteful information, while
the number of context states increases exponentially with the number of context
parameters.

In order to compare the total storage space of the cubes used in both ap-
proaches, we suppose that we store the aggregate preferences in a cube. We
consider that we have n context parameters. The cardinality of each domain
of each parameter is m. We suppose further, that we have a relation with k

attributes, n′ of which are context related. This relation has t tuples. In our
approach, the cube has one dimension for each context parameter, and one di-

25

Attributes

Worlds

 Entities

Figure 3.4: A cube in the Context Relational model.

mension for the tuples. So, the number of cells is mn × t. We need also, extra
space for storing the t tuples of the relation. The cube in the approach pre-
sented in [18] has one dimension for the worlds, one dimension for the tuples
and one dimension for the non-context related attributes. Thus, the number of
cells is mn′ × (k − n′) × t. Comparing the two approaches, note that different
information is stored. In our model, we store degrees for data objects in order
to rank them according to the user’s interest, however in [18] different values
are stored for the same objects when the context conditions are different.

26

Chapter 4

Querying Context

4.1 Querying Simple Preferences

4.2 Querying with Aggregate Scores

4.3 Computing Aggregate Scores

4.4 Traditional OLAP Operators

In this chapter, we classify the query operations that can be posed to our
context-aware DBMS, by exploiting the combined information on preferences
and context. We further present traditional OLAP operators such as slice, dice,
roll-up and drill-down, and how they can be used in our query operations.

4.1 Querying Simple Preferences

Firstly, there are queries executed without a need for the computation of the
aggregate score. In this category of queries, users explicitly define that they are
not interested in specific context parameters. For example, the following query
computes the users’ preferences directly.
Query 1 Look for Mary′s most preferable restaurants near Acropolis, indepen-
dently of the status of weather.
In SQL, the query is:

• select R.name, FL.score
from Users U, Restaurants R, Fact Location FL, Location L

27

where U.uid=FL.uid and R.rid=FL.rid and L.lid=FL.lid and U.name=‘Mary′

and L.location=‘Acropolis′

order by FL.score desc;

Another similar query would be “Look for the users near Acropolis that pre-
fer restaurant Beau Brummel independently of weather” that can be used to
advertise a specific restaurant in the context of “Acropolis”.

4.2 Querying with Aggregate Scores

Another useful operation is the computation of aggregate scores from simple
ones. For example, the following query needs to compute the aggregate score:
Query 2 Look for Mary′s most preferable restaurants (in the current context).

The execution of Query 2 leads to the execution of the following subqueries
(we suppose that CS(current) = {Acropolis, sunshine}):

• select R.name, FL.score
from Users U, Restaurants R, Fact Location FL, Location L
where U.name=‘Mary′ and U.uid=FL.uid and R.rid=FL.rid and L.lid=FL.lid
and current location = ‘Acropolis′;
and

• select R.name, FW.score
from Users U, Restaurants R, Fact Weather FW
where U.name=‘Mary′ and U.uid=FW.uid and R.rid=FW.rid and cur-
rent weather = ‘sunshine′;

Using the results of subqueries, we calculate the aggregate scores for restaurants
using the value function, as described above. In this case, we have the most
preferable Mary’s restaurants in decreasing order.

4.3 Computing Aggregate Scores

The technique used for processing queries involving aggregate scores (e.g., Query
2 above) is the following.

1. First, we select specific values for Users and for the context parameter.
For instance, for the first cube a selection could be on a value of location,
e.g., Acropolis and for a value of user, e.g., Mary.

2. Second, having pinned all dimension attributes to a specific value, we have
all the preference interest scores available. In fact, the individual scores

28

for each context parameter are collected from each context table (although
this practically involves a relational join on all non-context parameters, it
is quite more easy to simply collect the values from the respective cubes
from a set of point queries over them). So, we can compute the aggregate
score of a preference by using a value function (as described in the previous
sections).

3. In the context of an OLAP session, the aggregate scores just computed for
a user can be stored in a new transient cube. As with cubes concerning ba-
sic preferences, a cube concerning aggregate preferences has one attribute
for each context and non-context parameter and an extra attribute for
the interest score. Then, the user can reuse the result of a query, by just
using the last cube, without executing all the above steps. In Section 5,
we describe a space-efficient structure for storing such results.

4.4 Traditional OLAP Operators

OLAP provides a principled way of querying information. The traditional tech-
niques for relational querying are enriched with special purpose query operators,
such as roll-up and drill-down [19, 7].

Slice-n-Dice. The dice operator on a data set corresponds to a selection (in
the relational sense) of values on each dimension. A slice is a selection on
one of the N dimensions of the cube. A dice operator can be implemented as
a sequence of slices. Simple preference queries can be computed using slice
operators. For instance, Query 1 can be implemented using slice operations on
User and Location.

Roll-up. The roll-up operation provides an aggregation on one dimension.
More specific, roll-up corresponds to the aggregation of data from a lower to a
higher level of granularity within a dimension’s hierarchy. Assume that the user
has executed Query 1 over the database and receives an unsatisfactory small
number of answers. Then, she can decide that is worth broadening the scope of
the search and investigate the broader Athens area for interesting restaurants.
In this case, a roll-up operation on location can generate a cube that uses cities

instead of regions. The following query express this roll-up operation in SQL:

• select R.name, FL.score
from Users U, Restaurants R, Fact Location FL, Location L

29

where U.uid=FL.uid and R.rid=FL.rid and L.lid=FL.lid and U.name =
‘Mary′ and L.city = ‘Athens′

order by FL.score desc;

Drill-down. Similarly, drill-down is the reverse of roll-up and allows the de-
aggregation of information moving from higher to lower levels of granularity.
So, when we have the result of a query which includes restaurants that are
located in Athens, we can take a result that includes restaurants located at
Acropolis, using the drill-down operator.

30

Chapter 5

Caching Context States

5.1 The Context Tree

5.2 Querying the Context Tree

5.3 Querying with Approximate Results

5.4 Querying Using Hierarchies

5.5 Additional Issues

5.6 Bloom-Based Index for the Context Tree

In this chapter, we discuss issues regarding improving the performance of
our system. In particular, we discuss how we can store (cache) results of previ-
ous queries executed at a specific context, so that these results can be re-used
by subsequent queries. First, we describe a hierarchical data structure, called
context tree, that is used to index these results. Then, we show how search in
this data structure can be improved using an additional hash-based index to
test for membership in the context tree.

5.1 The Context Tree

Assume that the context environment CX has n context parameters {c1, c2, . . . ,

cn}. An alternative way to store aggregate preferences uses a context tree, as
shown in Fig. 5.1. The context tree is used to store aggregate preferences
that were computed as results of previous queries, so that these results can be

31

c c c any...

...c c any ...

c any c any...c

21 23 21 23 25

11 12 14

n2 n2 n3

c c c 22 ...c

c1

c2

cn

top_k list {(id, score)}

Figure 5.1: A context tree.

re-used by subsequent ones. There is one context tree per user or per system-
defined profile (i.e., per group of users with similar interests, see Section 2.5).
The maximum height of the context tree is equal to the number of context
parameters plus one. Each context parameter is mapped onto one of the levels
of the tree and there is one additional level for the leaves. For simplicity, assume
that context parameter ci is mapped to level i. A path in the context tree
denotes a context state, i.e., an assignment of values to context parameters.

At the leaf nodes, we store a list of ids, e.g., restaurant ids, along with their
aggregate scores for the associated context state, that is, for the path from the
root leading to them. Instead of storing aggregate values for all non-context
parameters, to be storage-efficient, we just store the top − k ids (keys), that is
the ids of the items having the k-highest aggregate scores for the path leading to
them. The motivation is that this allows us to provide users with a fast answer
with the data items that best match their query. Only if more than k-results
are needed, additional computation will be initiated. The list of ids is sorted in
decreasing order according to their scores.

The context tree is constructed incrementally each time a context-aware
query is computed. Each non-leaf node at level k contains cells of the form
[key, pointer], where key is equal to ckj ∈ dom(ck) for a value of the context
parameter ck that appeared in some previously computed context query. The
pointer of each cell points to the node at the next lower level (level k + 1)
containing all the distinct values of the next context parameter (parameter
ck+1) that appeared in the same context query with ckj . In addition, key may
take the special value any, which corresponds to the lack of the specification
of the associated context parameter in the query. For example, assume two
context parameters, location and weather and that weather is assigned to level
m of the tree and location to the level just below it, level m + 1. Then, take for
instance a query, where the user specifies weather = cloudy, but gives no value

32

query 1 / cloudy / Plaka
query 2 / cloudy / Acropolis
query 3 / sunshine / Plaka
query 4 / cloudy / *

Figure 5.2: A set of aggregate preferences.

for location. Then, there will be a cell [cloudy, pointer] at level m pointing to a
node at level m+1 containing a cell [any, pointer]. Initially, the context tree is
empty, that is the root node contains a single cell of the form [any, null].

The way that the context parameters are assigned to the levels of the context
tree affects its size. As a simple heuristic, context parameters are assigned to
levels based on the cardinality of their domains: the bigger the number of
distinct values a context parameter takes, the higher it appears in the context
tree. We explain further the mapping of context parameters to levels in Section
5.5.2.

In Fig. 5.2, we present a set of context preferences expressed in four previ-
ously submitted queries. Assume that we have two context parameters, weather

and location and that weather is assigned to the first level of the tree and
location to the next one. Leaf nodes store the ids of the top − k restaurants,
that is the restaurants with the top − k highest aggregate scores. Related work
has been done in the area of computing the top − k objects for a query’s result
in [20, 21, 22]. This work is presented in chapter 7. For the above preference
queries we construct the context tree of Fig. 5.3.

In this tree, for the first preference (cloudy/P laka) we construct the first
path of the tree (the leftmost one). The next preference (cloudy/Acropolis) has
the same value for the context parameter weather with the first one, so we do
not add any new cell to the root node. Next, we add a cell for Acropolis to the
node that the root points to. The third preference (sunshine/P laka) has value
sunshine for weather and this leads to the creation of a new cell in the root
node. As before, the last preference (/cloudy/∗) has a cloudy value and so, the
remaining path for that preference has as a predecessor the cloudy cell of the
root. If we follow the any cell of the corresponding node of the second level, the
∗ operator of this preference is satisfied.

The aggregate preferences in Fig. 5.2 can be derived from simple users’
queries that have presented in the previous chapter. For instance, the query
“Look for Mary’s most preferable restaurants in the current context, while
CS(current) = {cloudy, P laka}”, corresponds to the first preference of Fig. 5.2.
Respectively, the preference (cloudy/*) can be expressed by the query “Look for
Mary’s most preferable restaurants, when the weather is cloudy, independently

33

Plaka Acropolis any

top_k top_k top_k

Plaka

cloudy sunshine

top_k

Figure 5.3: A context tree for a specific profile.

of her location”. This query in SQL is:

• select R.name, FW.score
from Users U, Restaurants R, Fact Weather FW
where U.uid=FW.uid and R.rid=FW.rid and U.name=‘Mary′

and weather=‘cloudy′

order by FW.score desc;

When a query is issued, we first check whether there exists a context state
that matches it in the context tree. If so, we retrieve the top − k results from
the associated leaf node. Otherwise, we compute the answer and insert the
new context state in the tree. There is a number of interesting variations. For
instance, if the query includes the * operator for a context parameter, we can
combine the top−k results that are associated with the paths that have any value
for this parameter and the same values for all the others, to produce the new
list of top − k results. Furthermore, instead of storing the results of all queries,
we may just store the results of the most frequently requested ones. This can
be easily implemented by associating a counter with each path and replacing
(deleting) from the tree the path that is less frequently used. Other issues refer
to queries with approximate results or to queries that their context parameters
participate in different levels of hierarchy. All these issues are illustrated further
in the following sections.

In summary, a context tree for n context parameters satisfies the following
properties:

• It is a directed acyclic graph with a single root node.

• There are at most n+1 levels, each one of the first n of them corresponding
to a context parameter and the last one to the level of the leaf nodes.

• Each non-leaf node at level k maintains cells of the form [key, pointer]
where key ∈ dom(ck) for some value of ck that appeared in a query or key

34

= any. No two cells within the same node contain the same key value.
The pointer points to a node at level k + 1 having cells with key values
which appeared in the same query with the key.

• Each leaf node stores a set of sorted pointers to data.

The context tree resembles the Dwarf data structure [23] used to compute
and store data cubes. Whereas Dwarf is build by scanning the fact table and
includes all existing combinations of values for all cube dimensions, the context
tree is incrementally computed, each time a preference query is evaluated and
includes only paths (context states) previously queried. Furthermore, Dwarf
leaf nodes contain aggregate values, whereas the context tree leaf nodes contain
ordered sets.

5.2 Querying the Context Tree

The context tree provides an efficient way to retrieve the top-k results that are
relevant to a preference query. When a query is posed to the system, we first
check if there exists a context state that matches it in the context tree. If
so, we retrieve the top-k results from the associated leaf node. Otherwise, we
compute the answer and insert the new context state, i.e., the new path and
the associated top-k results, in the tree.

However, in some cases, even if a path corresponding to a query does not
exist in the context tree, there is no need to compute the answer from scratch for
all kinds of queries. Instead, it may be possible to derive the top-k results from
a combination of other relative results. In our approach, we use this method
when a ‘*’ operator is contained in the query. More specifically, when a query
includes the ‘*’ value for a context parameter, we merge the top-k results of the
paths that have any value for this parameter and the same values for all the
others, in order to take the top-k results of the new query.

For example, for the context tree of Fig. 5.3, when we have the query
*/Plaka, we execute a merge sort algorithm to merge the results of the first and
the last path. Next, we insert the new context state in the tree. From this new
path, we can retrieve the combined top-k results.

As referred above, a query is a simple traversal on the context tree from the
root to a leaf. At level i, we search for the cell having as key the ith value in
the query and descend to the next level. If the ith value is any (respectively
the ‘*’ operator), we follow the pointer of the any cell. For a context tree with
n context parameters (c1, c2, . . . , cn), if each parameter has |dom(ci)| values in
its domain, the maximum number of cells that are required to be visited for

35

a query is |dom(c1)| + |dom(c2)| + . . . + |dom(cn)|. Each query is fast, simply,
because it involves exactly such node visits as the height of the tree minus one,
i.e., as the number of the context parameters. Algorithm 1 below presents the
search process in the context tree.

Algorithm 1 Search Path Algorithm
Input: node, query[]
Output: top − k results

if query[ctr] ! = −1 then
/* ctr refers the level of the query */
while not all the existing cells are examined do

if the key of a cell is equal with query[ctr] then
ctr + +;
if this is the last level of the query then

return the top − k list
end if
call Search Path Algorithm (node → child, query)
return

end if
end while

end if

5.3 Querying with Approximate Results

We further extend our approach by checking when the top − k results can be
derived from a combination of relative results for a query with a ‘*’ operator.
So, for a specific context parameter, if its value is a ‘*’, we check if the number
of the existing values of the same parameter in the same node in the context tree
is larger than a threshold value. Only in this case, i.e., in the case that there
are more than x% values of the corresponding parameter in the tree, we merge
the relative results. Otherwise, we compute the answer. The threshold x% is
called approximation coverage threshold. The value for the threshold parameter
may be either system defined or given as input by the user.

For instance, for the previous query (*/Plaka), the corresponding node in
the context tree (Fig. 5.3) has two of the three values of the weather’s domain.
We remind that this domain has the values: rainy, cloudy, and sunshine. So,
if the approximation coverage threshold has a value that is less or equal to
66.67% the result comes as before. Otherwise, we compute the top − k results
from scratch.

36

An alternative method supports queries that give as answers approximate
results. So, instead of descending to the next level of the tree only if a cell has
the same value with the corresponding query’s value, we continue to traverse
the tree if a cell has a relative to the query’s value and not the same one. We
introduce a neighborhood approximation threshold to express when two values
are relative. The value for this threshold is different for each context parameter
and depends on its domain. As before, the threshold may be either determined
by the user or is system defined. In any case, it is necessary to store some extra
information that concerns the values that are approximate values with others.

For example, the query rainy/Plaka can give us the results of the first top-k
list, (Fig. 5.3), if a user considers that the values rainy and cloudy are similar.
As depicted in Fig. 5.3, these results are associated with the query cloudy/Plaka.

Furthermore, we are interested to know how the transition from a context
state to another affects the aggregate scores of the tuples. In particular, in order
to show how much similar the top-k results are, when two approximate queries
are posed in the system, we first prove the intuitive property that even “small”
changes in context values may lead to different rating. Then, we prove that
“small” changes in context values between a context state s and a context state
s′ leads to “small” changes in the rating of the queries’ results.

Suppose for example, two context parameters as relevant: weather and lo-
cation. Assume that weather has weight w1 = 0.6 and location has weight
w2 = 0.4. Also, suppose results that include two tuples: the restaurant Ithaka

(t1) and the restaurant Golden Lake (t2). We assign degrees to preferences as
follows. Tuple t1 has degree of interest 0.9 when the weather is sunshine, 0.7 for
cloudy weather and 0.6 for rainy weather. Also, t1 has degree 0.9 when the user
is in Ioannina and 0.7 when the user is at Anatoli. Tuple t2 has degrees 0.6, 0.8,
0.9 when we have sunshine, cloudy and rainy weather, respectively. Finally, the
degrees of interest are 0.6 and 0.8, when the user is in Ioannina or at Anatoli.

Note that we suppose that the values cloudy and rainy for the context pa-
rameter weather are similar and so, their scores have nearby values. In that
way, for the query cloudy/Ioannina, t1 has aggregate score w1 ∗ d1 + w2 ∗ d2 =
0.6 ∗ 0.7 + 0.4 ∗ 0.7 = 0.78 and t2 has score 0.6 ∗ 0.8 + 0.4 ∗ 0.6 = 0.72. For the
similar query rainy/Ioannina, t1 has score 0.72 and t2 0.78. Consequently, as
referred above, small changes in context values leads to a different rating of the
queries’ results.

Next, we prove that “small” changes in context values lead to “small”
changes in the rating of the queries’ results.

More specifically, let t1 and t2 be two tuples and s and s′ be two context
states. Assume that in s, t1 and t2 have aggregate scores d1 and d2 respectively
and in s′, d′1 and d′2 respectively. When the two context states are similar, we

37

would like the following to hold:

|d1 − d2| ≤ ε ⇒ (5.1)

|d′1 − d′2| ≤ δ (5.2)

where ε and δ are “small” positive constants.
Assume further, that if two context states have similar values, then the scores

of the tuples are similar that is, for every t and for a specific context parameter,

|dit − d′it| ≤ ε′ (5.3)

for a small constant ε′, with 0 ≤ ε′ ≤ 1.
With the following property, we prove that when only one of the degrees of

the context parameters is changed, δ = ε + 2 ∗w1 ∗ ε′, where ε′ is the difference
between the degrees of interest of the same context parameter of two similar
context states, and w1 is the weight of the context parameter that its value is
changed.

Property 1 Let t1, t2 be two tuples that have aggregate scores d1, d2 in a
context state s and d′1, d′2 in a context state s′ respectively. When s, s’ are
similar, i.e., |dit−d′it| ≤ ε′, and only one of the degrees of the context parameters
is changed, if |d1 − d2| ≤ ε then, |d′1 − d′2| ≤ ε + 2 ∗ w1 ∗ ε′.

Proof Since only one of the degrees of the context parameters is changed, we
have:

d1 = w1 ∗ d1t1 + Σn
i=2wi ∗ dit1 (5.4)

d2 = w1 ∗ d1t2 + Σn
i=2wi ∗ dit2 (5.5)

and

d′1 = w1 ∗ d′1t1 + Σn
i=2wi ∗ dit1 (5.6)

d′2 = w1 ∗ d′1t2 + Σn
i=2wi ∗ dit2 (5.7)

From (5.3), for the above two tuples we have:

|d1t1 − d′1t1 | ≤ ε′ (5.8)

38

|d1t2 − d′1t2 | ≤ ε′ (5.9)

From (5.4), (5.5) and (5.6), (5.7), Equations (5.1), (5.2) can be written as:

|w1 ∗ d1t1 + Σn
i=2wi ∗ dit1 − w1 ∗ d1t2 − Σn

i=2wi ∗ dit2 | ≤ ε (5.10)

|w1 ∗ d′1t1 + Σn
i=2wi ∗ dit1 − w1 ∗ d′1t2 − Σn

i=2wi ∗ dit2 | ≤ δ (5.11)

and so, we would like to prove that if (5.10) holds, then Equation (5.11) holds,
with the assumptions of (5.8) and (5.9).

From (5.10), we have: −ε ≤ w1 ∗d1t1 +Σn
i=2wi ∗dit1 −w1∗d1t2 −Σn

i=2wi ∗dit2

≤ ε ⇒

a ≤ w1 ∗ d′1t1 + Σn
i=2wi ∗ dit1 − w1 ∗ d′1t2 − Σn

i=2wi ∗ dit2 ≤ b (5.12)

with a = −ε−w1 ∗ d1t1 +w1 ∗ d′1t1 +w1 ∗ d1t2 −w1 ∗ d′1t2 and b = ε−w1 ∗ d1t1 +
w1 ∗ d′1t1 + w1 ∗ d1t2 − w1 ∗ d′1t2 .

From (5.8), and (5.9) we can take that: d1t2 − d′1t2 ≥ −ε′ and d′1t1 − d1t1 ≥
−ε′, and so, a = −ε+w1∗(d′1t1−d1t1)+w1∗(d1t2−d′1t2) ≥ −ε−w1∗ε′−w1∗ε′ =
−ε − 2 ∗ w1 ∗ ε′, i.e., a ≥ −ε − 2 ∗ w1 ∗ ε′.

Furthermore, from (5.8), and (5.9) we can take that: d1t2 − d′1t2 ≤ ε′ and
d′1t1 − d1t1 ≤ ε′, and so, b = ε + w1 ∗ (d′1t1 − d1t1) + w1 ∗ (d1t2 − d′1t2) ≤
ε + w1 ∗ ε′ + w1 ∗ ε′ = ε + 2 ∗ w1 ∗ ε′, i.e., b ≤ ε + 2 ∗ w1 ∗ ε′.

From the above, (5.12) can be written: −ε−2∗w1 ∗ε′ ≤ w1 ∗d′1t1 +Σn
i=2wi ∗

dit1 − w1 ∗ d′1t2 − Σn
i=2wi ∗ dit2 ≤ ε + 2 ∗ w1 ∗ ε′ ⇒

|w1 ∗ d′1t1 + Σn
i=2wi ∗ dit1 − w1 ∗ d′1t2 − Σn

i=2wi ∗ dit2 | ≤ ε + 2 ∗ w1 ∗ ε′ (5.13)

and thus, the equation (5.11) holds, with δ = ε + 2 ∗ w1 ∗ ε′.
We generalize Property 1 for the case where more than one of the degrees of

the context parameters are changed. Thus:

Property 2 Let t1, t2 be two tuples that have aggregate scores d1, d2 in a
context state s and d′1, d′2 in a context state s′ respectively. When s, s’ are
similar, i.e., |dit − d′it| ≤ ε′, if |d1 − d2| ≤ ε then, |d′1 − d′2| ≤ ε + 2 ∗ (w1 + w2 +
. . . + wn) ∗ ε′.

The proof of Property 2 proceeds similar to the proof of Property 1.

39

Athens Ionannina ...

 Plaka Acropolis Kifisia ... Perama Anatoli ...

Figure 5.4: The hierarchy tree of location.

5.4 Querying Using Hierarchies

A extension of our model supports hierarchies in posing and answering context-
aware queries. With this extension, a query may contain a context parameter
that participates in a non leaf level of the hierarchy. When a query is issued
and the value of a context parameter is given in an upper level of the hierarchy,
we combine the top-k results that are associated with paths that contain the
corresponding values of the given value in the query.

The only extra information that needs to be stored concerns the hierarchy
of the context parameter. We store this hierarchy in a tree. The height of the
hierarchy tree is equal to the number of the hierarchy levels minus 1. Each node
of the tree contains cells of the form [key, pointer], where key is equal to a value
of the corresponding level of the hierarchy. The pointer of each cell points to
the node at the next lower level.

In the following example, we show how this variation of the context tree is
used. Figure 5.4 represents the hierarchy tree for the context parameter location.
In the root of the tree, we store information about cities in Greece. Each cell
of the root points to specific regions of a city. So, for the context tree of Fig.
5.3, when we have the query cloudy/Athens, we retrieve the regions of Athens
from the hierarchy tree and then we merge the top-k results that are associated
with the context states that have for weather the value cloudy and for location
values retrieved from the hierarchy tree. In that way, the system returns a list
of top-k results.

5.5 Additional Issues

5.5.1 Replacement Policies

The context tree is an alternative structure to the cube. We use it to store
aggregate preferences that were computed as results of previous queries, so that
these results can be re-used by subsequent ones. The main reason is space

40

and time efficiency. This tree is constructed incrementally. In that way, each
time a preference query is evaluated, the path that corresponds to the context
state of the query is added to the tree. In order to keep the tree in memory,
it is desirable to take up limited space. Thus, instead of storing the results of
all context-aware queries, we may just store the results of the most frequently
requested ones. This variation of the context tree improves query performance,
because in this case less time is required for traversing the context tree.

In general, the context tree is used to cache context states that are related
with previous submitted queries. This tree can store a specific number of context
states, and so, it may be needed to delete some of them. We consider two
replacement policies for choosing which paths to delete from the context tree.
The first one uses the LRU (Least Recently Used) algorithm: we replace the
path that was used least recently. To implement this policy, we store the time
of the last access of a path at each path of the tree and we replace - delete the
path with the oldest (smallest) such value. The second replacement policy uses
the LFU (Least Frequently Used) algorithm: we replace the path that is least
frequently used. This can be easily implemented by associating a counter with
each path. The counter maintains the number of times that the corresponding
path is accessed. So, we delete from the tree the path having the counter with
the smallest value.

5.5.2 Mapping Context Parameters to Levels

The choice of the ordering of the context parameters has an effect on the total
size of the context tree. In particular, context parameters with higher cardinal-
ities in their domains are more beneficial if they are placed on the higher levels
of the context tree. Using this mapping, we eliminate the total storage space of
the context tree, because the total number of cells is smaller. For instance, if
the domain of the first level of the tree, i.e., the root of the tree, has n0 values,
the second level has n1 values, and the last one nk, the total number of cells is
n0 ∗ (1 + n1 ∗ (1 + . . . (1 + nk))). Thus, when n0 ≤ n1 ≤ . . . ≤ nk the above
number is as small as possible.

This way of assigning parameters to levels is a simple heuristic method.
Unfortunately, the best mapping depends on the query workload. For example,
if we have many queries with a ‘*’ operator for a specific context parameter, it is
efficient to assign this parameter to the highest level of the tree. Consequently,
the semantics of each parameter in combination with the query workload of the
system constitutes a basic factor for assigning context parameters to levels.

The ordering used will either be the one given by the user (if one has been
specified), or will be automatically chosen by the system after determining the

41

4

3

2

1 1

2

3

4

Bit vector v

1

1

H (a) = P

H (a) = P

H (a) = P

H (a) = P

 Element a

1

1

Figure 5.5: A Bloom filter with 4 hash functions.

cardinalities of the parameters domains and potentially the query workload.

5.6 Bloom-Based Index for the Context Tree

In order to improve the query performance of the context tree, we propose using
Bloom filters [24]. A Bloom filter is a main-memory data structure that sup-
ports very efficient membership queries. When a new query for a context state
is submitted by the user, instead of searching the context tree for a matching
context state, the Bloom-based data structure is conducted first. Given a con-
text state, the Bloom-based data structure provides a quick answer on whether
this state exists in the tree. If the context state does not exist, then retrieving
the entire context tree is avoided.

5.6.1 Bloom Filters Preliminaries

A Bloom filter is a space-efficient probabilistic data structure that is used to
test whether or not an element is a member of a set. This method is used for
representing a set A = a1, a2, . . . , al of l elements (also called keys) to support
membership queries (is element X in set Y?). The idea is to allocate a vector
v of m bits (Fig. 5.5), initially all set to 0, and then choose f independent hash
functions, h1, h2, . . . , hf , each with range 1 to m. For each element A, the bits
at positions h1(a), h2(a), . . . , hf (a) in v are set to 1. A particular bit might be
set to 1 multiple times, but only the first change has an effect. Given a query
for b we check the bits at positions h1(b), h2(b), . . . , hf (b). If any of them is 0,
then certainly b is not in the set A. Otherwise we conjecture that b is in the set
although there is a certain probability that we are wrong. This is called a false
positive (or a false drop) and it is the payoff for Bloom filters’ compactness. The
parameters k and f should be chosen such that the probability of a false positive
(and hence a false hit) is acceptable. Although false positives are possible, false
negatives are not.

42

1 0 0 0 1 0 1 0 0 0 0 0

0 1 1 1 1 0 0 0 1 0 0 1

BBF

BBF

 1

 2

cloudy OR sunshine

Plaka OR Acropolis

OR any

OR any

Figure 5.6: The BBF for the context tree of Fig 5.3.

The probability of a false positive for an element not in the set, or the
false positive rate, can be calculated in a straightforward fashion, given our
assumption that hash functions are perfectly random. After all the elements of
A are hashed into the Bloom filter, the probability that a specific bit is still 0 is
(1− 1/m)f l � e−f l/m, where m is the size of the Bloom filter, f is the number
of hash functions and l is the number of elements that we index in the filter.

In their original form, Bloom filters provided support only for simple keyword
queries and not for path queries such as those representing context states. To
this end, in our previous work we have introduced multi-level Bloom filters,
namely Breadth and Depth Bloom filters [25, 26].

5.6.2 Multi-level Bloom Filters

Let a context tree T for n context parameters and let the level of the root be
level 1. There are two ways to hash the tree, corresponding to its breadth and
depth first traversal.

The Breadth Bloom Filter (BBF) for a context tree T with n context para-
meters is a set of n Bloom filters {BBF1, BBF2, . . . , BBFi}, where each Bloom
filter, BBFi, corresponds to an internal (i.e., non leaf) level i of the context
tree, that is, there is one filter for each context parameter ci. In each BBFi, we
insert all keys that appear in cells in nodes at level i of the context tree. For
example, the BBF for the context tree of Fig. 5.3 is a set of two Bloom filters
(Fig. 5.6).

Depth Bloom filters provide an alternative way to summarize context trees.
We use different Bloom filters to hash paths of different lengths. The Depth
Bloom Filter (DBF) for a context tree T for n context parameters is a set of
Bloom filters {DBF0, DBF1, DBF2, . . . , DBFi−1}, i ≤ n. There is one Bloom
filter, denoted DBFi, for each path of the tree with length i, that is, having
(i+1) nodes, where we insert all paths of length i. Note that a path with length
i < n corresponds to a context state in which there are values specified only for
the first i parameters. Note that we insert paths as a whole, we do not hash
each element of the path separately; instead, we hash their concatenation. The
DBF for the context tree in Fig. 5.3 is a set of two Bloom filters (Fig. 5.7).

43

1 0 0 0 1 0 1 0 0 1 0 1

DBF

DBF

 1 1 1 1 1 0 1 0 1 1 1 1

0

1 (cloudy / Plaka OR
cloudy / Acropolis OR

Paths of length 0

Paths of length 1

sunshine / Plaka OR

(cloudy OR sunshine
OR Plaka OR Acropolis
OR any)

cloudy / any)

Figure 5.7: The DBF for the context tree of Fig 5.3.

Let a path a1/a2/ . . . /ap corresponding to a context state with p context
parameters. In the case of a BBF , to check whether a path a1/a2/ . . . /ap

corresponding to a context state exists, each level i from 1 to p of the filter is
checked for the corresponding ai. The test is positive, if we have a hit for all
elements in the path. In the case of DBF , we first check whether all elements
in the path expression appear in DBF0. Then, for a query of length p, every
sub-path of the query with length 2 to p is checked at the corresponding level.
If we have a match for all sub-paths, then we conclude that the path may exist
in the context tree, else we have a miss.

When comparing the two filters, DBF works better (has a smaller false
positive ratio) than BBF [25]. The reason is that when using BBFs, a new
kind of false positive appears. Consider the tree of Fig. 5.3 and the query:
sunshine/Acropolis. We have a match for sunshine at BBF1 and for Acropolis

at BBF2; thus we falsely deduce that the path exists. However, DBFs is less
space efficient, since the number of paths is very large. This the reason, that
we may keep Bloom filters for paths with length less than n − 1.

44

Chapter 6

Implementation and

Evaluation

6.1 Prototype Implementation

6.2 Performance Evaluation of the Context Tree

6.1 Prototype Implementation

Figure 6.1 depicts the overall system architecture of a preference database sys-
tem. The Context-Aware Preference Database Management System (DBMS)
stores both database relations and preferences that relate the context-dependent
attributes of the relations with the context parameters. To process context-
dependent queries, preferences are taken into account to present the results
based on their preference score at the specified context state. We assume that
the values of the current context state are provided as input to our system.

To demonstrate the feasibility of our approach, we have developed a pro-
totype application based on our reference example. The application is called
Preference Restaurant Guide and maintains information about restaurants and
users. Its schema is the one depicted in Fig. 3.2. We consider two context
parameters as relevant: location and weather. The prototype application is
build on top of Oracle 8i, using Borland JBuilder 7. The prototype implements
all modules of our approach except of the context tree.

45

 Data

 Querying
 Process

Results Query User Input

 Preferences
 Context

Context−Aware
Preference
DBMS

 State
Context

Figure 6.1: Overall system architecture of a Context-Dependent Preference
Database.

When a user joins the system, she registers her attributes and then, she
selects which context parameters she considers as relevant. Users express their
preferences about restaurants by providing a numerical score between 0 and
1. The degree of interest that a user expresses for a restaurant depends on
the values of the context parameters, she considers as relevant. If more than
one context parameter is defined as relevant, i.e., both location and weather,
weights are specified to express how each parameter affects the computation of
the aggregate score.

Besides user registration, the other part of the application includes query
processing. Query processing runs in two modes: context-aware and non context-
aware. In the non-context aware node, preferences are ignored. In the context-
aware mode, the user specifies the values of the context-parameters she is in-
terested in, and the results are sorted according to the user’s preference in the
specified context state. There is a default state that corresponds to the current
context state. In addition, a user may use an OLAP operator to execute a
roll-up or a drill-down to the results of a query. For example, suppose a result
that contains restaurants located in the region of Acropolis. A single roll − up

provides restaurants in the city of Athens. In following, we present a sequence
of instances of the application Preference Restaurant Guide.

Suppose that Mary is at Kifisia and the weather is sunshine, i.e., the
current context state is CS(current) = {Kifisia, sunshine}, when she would
like to know the best two restaurants, according to her preferences that are
located at Kifisia. The above query is expressed as shown in Fig. 6.2 and
the result is depicted in Fig. 6.3. If Mary chooses to use an OLAP operator
to execute a roll − up to the results of the query, the application returns the
restaurants that are located in the city of Athens. The results of this operation

46

Figure 6.2: Query Example.

Figure 6.3: Result Example.

are shown Fig. 6.4.

6.2 Performance Evaluation of the Context Tree

In this section, we evaluate the performance of the context tree on answering
queries. We run a set of experiments with different values on the input pa-
rameters. The input parameters of our experiments are summarized in Table
6.1.

We divide the input parameters into three categories: context parameters,
query workload parameters, and query approximation parameters. In particular,

47

Figure 6.4: Result Example.

we use three context parameters as relevant and thus, the context tree has three
levels (plus one for the top−k lists). There are two different number of sizes for
the cardinalities of the domains of the context parameters: the small domain
with 5 values and the large one with 50 values. Furthermore, we use a hierarchy
tree with three levels. This tree is associated with one of the context parameters.

The approximation coverage threshold refers to the percentage of values in
a node that need to be present for a context parameter, in order to compute
the top − k list combining other computed lists when there is a ‘*’ operator
at the corresponding level in a new query. In a similar way, the neighborhood
approximation threshold refers to the approximate values that are relative to the
values of the queries, while the parameter ε′ expresses the difference between
the degrees of interest of the same context parameter of two similar context
states. Furthermore, we use various values for weights. In particular, there are
two cases: at the first one all the weights have the value 0.33, and at the second
one the weights w1, w2, and w3 shared the values 0.5, 0.3, and 0.2.

Finally, we performed our experiments with various numbers of stored queries
from 50 to 200 with a step of 50 queries, while the number of tuples is 1000.
10% of the values are ‘*’. The other 90% are either uniformly random values
from the domain of the relative context parameter, or follow the zipf data distri-
bution. Using this distribution, we can select the values that are more frequent
in queries, and changing the value of parameter a, we can specify how frequent
these values are. So, for a domain with 5 values (1 to 5), when the ranking
determines that 1 is more frequent than 2, 2 more frequent than 3, and so on,
the frequencies of the values, when we select 100 of them, are represented in
Fig.6.5. If a = 1.5, the first values of the ranking are more frequent, than when

48

Table 6.1: Input Parameters

Context Parameters Default Value Range

Number of Context Parameters 3
Cardinality of the Context
Parameters’ Domains

Small 5
Large 50

Levels of hierarchy 3

Query Workload

Number of Tuples 1000
Number of Stored Queries 50-200
Percentage of ‘*’ values 10%
Data Distributions uniform

zipf - a=1.0
zipf - a=1.5

Query Approximation

Approximation Coverage ≥ 40%, ≥ 60%, ≥ 80%
Threshold
Neighborhood Approximation
Threshold

For a Small Domain
If vi odd vi + 1
Else vi − 1

For a Large Domain
If v′i mod 5 ! = 0 [v′i/5
 ∗ 5 + 1, �v′i/5� ∗ 5]
Else [(v′i/5 − 1) ∗ 5 + 1, v′i]

Parameter ε′ 0.04
0.08
0.12

Different Weights 0.5, 0.3, 0.2
0.33

49

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6

F
re

qu
en

cy

Ranking of Values

a=1.0
a=1.5

Figure 6.5: Zipf Data Distribution.

a = 1.0.

6.2.1 Evaluating the Size of the Context Tree

With the first experiment, we show that the mapping of the context parameters
to levels is more efficient, as concerns the size of the context tree, when the
context parameters with higher cardinalities in their domains are placed on the
higher levels of the tree, i.e., lower at the tree. In this experiment, we count
the total number of cells in the tree. Note that we count the number of cells,
instead of counting the number of nodes in the context tree, because the size
of each node may be different depending on the number of different values of
context parameters that appear in the submitted queries.

For a context tree with three parameters, we call ordering 1 the ordering
of the context parameters when the domain of the parameter of the first level
has 5 values, the next domain has 5 values too, and the last one has 50 values.
Ordering 2 is the ordering when the domains have 5, 50, 5 values respectively,
and for the ordering 3 the domains have 50, 5, 5 values. 10% of the query values
are selected to be the any value. The rest 90% of the values are selected from the
corresponding domain, either using a uniform data distribution, or using a zipf
data distribution. We use the zipf distribution with a = 1.0 and a = 1.5. We
performed this experiment 50 times for each combination of ordering and data
distribution for 50 to 200 queries with a step of 50 queries. Thus, in Fig. 6.6 we
can see that using a uniform distribution, the total storage space is minimized
when the parameter with 50 values in its domain is assigned to the last level
of the tree. In this case, the total number of cells is smaller. The results are
similar when we use the zipf distribution. In particular, in Fig. 6.7, we see that
the number of cells is smaller, comparing this number with the previous one,

50

50

100

150

200

250

300

350

400

40 60 80 100 120 140 160 180 200

N
um

be
r

of
 C

el
ls

Queries

ordering 1
ordering 2
ordering 3

Figure 6.6: Uniform Data Distribution

50

100

150

200

250

300

350

400

40 60 80 100 120 140 160 180 200

N
um

be
r

of
 C

el
ls

Queries

ordering 1
ordering 2
ordering 3

50

100

150

200

250

300

350

400

40 60 80 100 120 140 160 180 200

N
um

be
r

of
 C

el
ls

Queries

ordering 1
ordering 2
ordering 3

Figure 6.7: Zipf Data Distribution with a = 1.0 (left) and a = 1.5 (right)

because using the zipf distribution the “hot” values are more frequent in queries,
i.e., more values are the same. In Fig. 6.7 (left) the parameter a has value 1.0,
and in Fig. 6.7 (right) a has value 1.5. This large value for a, eliminates further
the number of cells, because too many query values are the same.

6.2.2 Evaluating the Accuracy of Approximate Results

With the second experiment, we show how accurate are the top-k results of a
preference query, using previous results of a relevant query. In particular, there
are many cases that there is no need to compute the answer from scratch. So,
we can avoid computing the answer for a query similar with a previous one,
paying the cost of loosing some accuracy in the results.

We performed this experiment using the results of the previous one as con-
cerns the mapping of the context parameters to the levels of the tree. Thus,
the first and the second levels take values from the small domain and the third
from the large domain. Furthermore, we use initially the neighborhood approx-
imation threshold and then, the approximation coverage threshold. We run our

51

0

5

10

15

20

25

30

35

40

1 level 2 level 3 level

P
er

ce
nt

ag
e

of
 D

iff
er

en
t R

es
ul

ts

Level of Query that Changed

w1=w2=w3=0.33

Figure 6.8: Different Results between two similar Queries.

experiments 100 times for each case, using integer discrete values. Also, the
number of tuples is 1000.

Using the Neighborhood Approximation Threshold

In this set of experiments, we examine how accurate are the top-k results, when
we do not compute them but we use previous results to produce them. That
happens for a query similar with a previous one, expressing the similarity by
closely related values. In order to express when two values are closely related,
we use the neighborhood approximation threshold.

While a query is mapped to a context state, we consider at first that a query
is similar with another one, when they have the same values for all the context
parameters except one. This difference between the values of the same context
parameter for two queries is expressed by nearby values. More specifically, we
suppose that a value vi that belongs to a small domain has as closely related
the value vi +1, if vi is odd. If vi is even, has as closely related the value vi − 1.
For instance, the above means that 4 has as closely related the value 3 and
respectively, 1 has as closely related the value 2. The closely related values for
a value v′i that belongs to the large domain are included in the range [v′i/5
 ∗
5+1, �v′i/5�∗5], if v′i mod 5 ! = 0. Otherwise, the range is [(v′i/5−1)∗5+1, v′i].
That means, that the values that included for example in the range [6, 10] or
[21, 25] are closely related. The above similarity between two queries can be
generalized for queries whose corresponding context states have more than one
different and nearby values.

In order to examine the accuracy of approximate results, we use the prop-
erties proved in Section 5.3. These properties express the fact that “small”
changes in context values lead to “small” changes in the rating of the queries’

52

0

20

40

60

80

100

1 level 2 levels 3 levels

P
er

ce
nt

ag
e

of
 D

iff
er

en
t R

es
ul

ts

Levels of Query that Changed

similar degrees
random degrees

Figure 6.9: Different Results between two similar Queries with or without sim-
ilar Degrees.

results. More specific, let t1, t2 be two tuples that have aggregate scores d1,
d2 in a context state s and d′1, d′2 in a context state s′ respectively. When s,
s’ are similar, i.e., |dit − d′it| ≤ ε′, and only one of the degrees of the context
parameters is changed, if |d1 − d2| ≤ ε then, |d′1 − d′2| ≤ ε + 2 ∗ w1 ∗ ε′.

In Fig. 6.8, queries are used whose context states have different values in
one context parameter. With this experiment, we show that the percentage
of different results in the top-k list between two similar queries is independent
of the context parameter whose value is changed. Here, we used the weights
w1 = 0.33, w2 = 0.33, and w3 = 0.33. Also, the degrees of interest between two
relative values differ at most ε′ = 0.08.

In Fig. 6.9, we show that the percentage of different results in the top-k list
between similar queries is not random, but depends on the parameter ε′ (this
can be understood from the above property). So, in this figure we compare
the following two cases. In the first case, the degrees of interest between two
similar values differs at most ε′ = 0.08. In the second one, the degrees of closely
related values are independent (selected randomly). In both cases, the weights
are w1 = 0.33, w2 = 0.33, and w3 = 0.33.

Next, we use three values for the parameter ε′: 0.04, 0.08, and 0.12. Also,
the weights have the values 0.5, 0.3, and 0.2. We compare first, the number
of different results between two similar queries that differ at the value of one
context parameter. This context parameter has a weight w1 that is 0.5, 0.3,
and 0.2, respectively. We run this experiment for each value of the parameter
ε′, and the results are depicted in Fig. 6.10. Then, we examine the case in
which the values of two context parameters are different between the similar
queries (Fig. 6.11). In this case, using the property that generalize the above
one, note that the results depend on both the weights that correspond to the

53

0

5

10

15

20

25

30

35

40

45

50

w1=0.5 w1=0.3 w1=0.2

P
er

ce
nt

ag
e

of
 D

iff
er

en
t R

es
ul

ts

Weights Relative to First Level

e=0.04
e=0.08
e=0.12

Figure 6.10: Different Results between two similar Queries when ε′ = 0.04,
ε′ = 0.08, and ε′ = 0.12.

0

5

10

15

20

25

30

35

40

45

50

(w1=0.5, w2=0.3) (w2=0.5, w2=0.2) (w1=0.3, w2=0.2)

P
er

ce
nt

ag
e

of
 D

iff
er

en
t R

es
ul

ts

Weights Relative to First and Second Levels

e=0.04
e=0.08
e=0.12

Figure 6.11: Different Results between two similar Queries when ε′ = 0.04,
ε′ = 0.08, and ε′ = 0.12.

context parameters that their values are changed. Finally, we study the results,
when all the values are different and closely related (Fig. 6.12).

With this experiment, we show that the smaller the value of the parameter
ε′, the smaller the difference between the results in the top-k list of two similar
queries. Note further, that the value of the weight that is relative to the value of
the context parameter that is changed affects the previous number of different
results. Thus, in a similar way, the smaller the value a weight of a context
parameter takes, the smaller the number of different results.

54

0

5

10

15

20

25

30

35

40

45

50

e=0.04 e=0.08 e=0.12

P
er

ce
nt

ag
e

of
 D

iff
er

en
t R

es
ul

ts

Different Values for Parameter e

w1=0.5,w2=0.3,w3=0.2

Figure 6.12: Different Results between two similar Queries when ε′ = 0.04,
ε′ = 0.08, and ε′ = 0.12.

0

5

10

15

20

25

30

35

40

1 level 2 level 3 level

P
er

ce
nt

ag
e

of
 D

iff
er

en
t R

es
ul

ts

Level of Query that Changed

 40%
 60%
 80%

Figure 6.13: Different Results when the Approximation Coverage Threshold has
the values 40%, 60%, 80%.

Using the Approximation Coverage Threshold

Another case where the top-k results are derived from a combination of other
relative results is when a query contains the ‘*’ operator, i.e., the any value. In
this set of experiments, we use the approximation coverage threshold that refers
to the percentage of the values of a context parameter that is expressed with
the any value at the query, that must exist in the context tree.

We run our experiments giving to the parameter ε′ the value 0.08, while
the weights take the values 0.5, 0.3, and 0.2. Additionally, we use three values
for the approximation coverage threshold namely, 40%, 60%, and 80%. Note
further, that an approximation coverage threshold of k% means that at least
k% of the required values are available, i.e., there are already computed and

55

0

5

10

15

20

25

30

35

40

1 and 2 levels 1 and 3 levels 2 and 3 levels

P
er

ce
nt

ag
e

of
 D

iff
er

en
t R

es
ul

ts

Levels of Query that Changed

 40%
 60%
 80%

Figure 6.14: Different Results when the Approximation Coverage Threshold has
values 40%, 60%, 80%.

stored in the context tree.
In Fig. 6.13, we present the percentage of different results in the top-k

list, when the ‘*’ operator is placed at the first, second and third level, for
each threshold value. In Fig. 6.14, there are two ‘*’ values, at the first and
second levels, at the first and third levels, and at the second and third levels,
respectively.

In both cases, the approximation is better when the ‘*’ value is placed at
the third level, which is the level that takes values from the large domain. That
happens because in this case, more paths of the context tree are included to the
relative paths, and so, more top-k lists of results are merged to produce the new
top-k list.

56

Chapter 7

Related Work

7.1 Context-Awareness

7.2 Infrastructures for Context

7.3 Context-aware DBMS

7.4 Context-Management

7.5 Top-K Querying

In this chapter, related work is presented. First, we present infrastructures
for context, which are middleware systems that address issues common to all
applications that want to take advantage of context. Then, we discuss how
context can be integrated into a Database Management System. Since there
are many types of context information, a unifying model for modeling and a
general approach for storing context parameters are challenging issues. In that
way, we provide a survey of various approaches to both problems. Furthermore,
in a different research topic, we present related work for determining the top-k
results for a query.

7.1 Context-Awareness

A system is context-aware if it uses context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task. Each
context-aware application may support one the following features [1]:

57

• presentation of information and services to a user;

• automatic execution of a service for a user; and

• tagging of context to information to support later retrieval.

There are various types of context-aware applications depending on the way
context is used. A nice classification is provided in [27] which identifies the
following categories of context-aware applications:

• Proximate selection is a user-interface technique where the objects located
nearby are emphasized or otherwise made easier to choose.

• Automatic contextual reconfiguration is the process of adding new compo-
nents, removing existing components, or altering the connections between
components due to context changes. Typical components and connections
are servers and their communication channels to clients. However recon-
figurable components may also include loadable device drivers, program
modules and hardware elements.

• Contextual information and commands can produce different results ac-
cording to the context in which they are issued.

• Context-triggered actions are simple IF-THEN rules used to specify how
context-aware systems should adapt. There are similar to contextual in-
formation and commands, except that context-triggered action commands
are invoked automatically

7.2 Infrastructures for Context

Infrastructures for context are middleware systems that address issues common
to all applications that want to take advantage of context. Such issues include
capturing, accessing and storing context. Efficient distribution and support for
independent execution from applications are desirable features for such archi-
tectures. Some popular context infrastructures include the following.

Context Toolkit. The Context Toolkit [28] is a distributed architecture that
supports It is based on three abstractions: context widgets, context interpreters
and context aggregators. A context widget acquires a certain type of context
information and makes this information available to applications. A context
interpreter accepts one or more types of context and produces a single piece of
context. A context aggregator aggregates or collects context. It is responsible
for all the context for a single entity. Applications can subscribe to pre-defined
aggregators and supply appropriate filters.

58

Solar. The Solar system [29, 30] advocates a graph-based abstraction for con-
text aggregation and dissemination. Context information is modeled through
events which are produced by sources. Events flow through a directed acyclic
graph of events-processing operators and are delivered to subscribing applica-
tions. Applications subscribe by describing their desired event stream as a tree
of operators that aggregate low-level context information published by existing
sources into the high-level context information needed by the application.

Cooltown. The Cooltown project [31] proposed a web-based model of context
in which each entity (person, place or thing) has a corresponding description
that can be retrieved via a URL. Using URLs for addressing, physical URL
beaconing and sensing of URLs for discovery, and localized web servers for
directories, they create a location-aware but ubiquitous system to support no-
madic users. On top of this infrastructure, the Internet connectivity is used to
support communications services.

CoolAgent. CoolAgent [32] is a context-aware multi-agent system. Ontology
sharing, sensing and reasoning is supported through the use of the Resource
Description Framework (RDF) and a Prolog-based system.

7.3 Context-Aware DBMS

In this section, we consider how context can be integrated into a Database Man-
agement System. Context information related to a DBMS includes user-related
information (such as information provided through a user profile), computational-
related (such supporting small device, limited energy, quality of network con-
nection (e.g., in terms of reliability, frequent disconnections, intermittent con-
nectivity an low bandwidth) and environmental conditions (weather, location,
time of the day).

7.3.1 Context-Aware Query Processing

Context-aware query processing has many aspects. We consider how context
affects (i) the results returned by a query, (ii) query optimization and (iii) the
way the results are presented to the users.

Although, there is some research on location-aware query processing, inte-
grating other forms of context in query processing is a new issue. The only
related work that we are aware of is the context-aware query processing frame-
work of [33]. In this framework, context-aware query processing is divided into
three-phases: query pre-processing, query execution and query post-processing.

59

Query pre-processing is performed in two steps: a query refinement and a con-
text binding step. The goal of the query refinement step is to further constraint
the query condition by means of different contextual information. Context bind-
ing instantiates with exact values the contextual attributes involved in the re-
fined query. After query execution, at the query post-processing phase, the
results are sorted. External services may then be invoked for the delivering of
results to the users. Five context-aware strategies are defined. Strategy 1 refers
to queries that consider the current value of context as their reference point, for
example such queries include looking for the closest restaurant, the next flight,
the shortest route. To implement them, the contextual attributes are bound to
their current values. Strategy 2 includes queries that access facts about the past
(i.e., history data) which are recalled based on the relevant context. In this case,
archived data are linked based on their common contextual attributes. Strategy
3 considers context as an additional constraint to the query. A given query is
refined to include relevant constraint rules. Strategy 4 reduces the result set
by ordering the produced results based on the user profile. This is achieved by
using an associated sorting rule. Strategy 5 considers the delivery and presen-
tation of results to the user by observing related delivery rules. This framework
is orthogonal to our approach and a potential extension of our work includes
enriching our model with constrains involving context attributes.

In the following, we shall use as a simple running example a database of
information about restaurants. The type of the record entries for restaurants
are tuples of a relation schema Restaurant(id, type-of-food, address, outdoors,
opening-hours, price). The context parameters are weather, location, time and
the user profile.

Context-Aware Results

Context may affect the results produced by a query. In this case, the same query
may produce different results depending on the context in which it is executed.
Context-aware query processing may be seen as a two-step process. In the first
phase, the context relevant to a specific query is initially identified and then
acquired. During the second phase, the relevant context is integrated within
the query.

Querying Context Parameters. One way to involve context within queries
is by allowing explicit access to context parameters within a query. Context
parameters are treated as attributes of a virtual relation; let us call this rela-
tion Context. The attributes of Context are bounded to the current value of
context when the query is executed. In the following example, we assume that

60

the attribute time of Context is bound to the current time when the query is
executed. The query returns all restaurants that are currently open.

select Restaurant.id
from restaurants, Context
where Context.time in Restaurant.opening-hours

Context as a Predicate. Another way to achieve context-awareness is to
augment the query with appropriate predicates. In particular, a given query is
transformed to a different one by adding additional constraints to it. One way
this may be achieved is by adding constraints using the contextual attributes.
Another way is by associating rules with specific attributes or relations and
adding these rules to the query. For example assume that a user specifies that
when the weather is good, the user likes to eat outdoors. The following example
returns all restaurant with an outdoor facility when the weather is good and
any restaurant otherwise.

An initial query submitted by the user:

select Restaurant.id
from Restaurants

is transformed to

select Restaurant.id
from Restaurants, Context
where (Context.weather = “sunny” and Restaurant.outdoors = “available”) or
Context.weather = “rainy”

Context as Preference. Context can be used to confine database query-
ing by selecting as results the best matching tuples. This can be achieved by
defining preferences based on context, so that under a specific context a tuple
is preferred over another. In our approach, each user expresses his preference
by providing a numeric score between 0 and 1. This score expresses a degree
of interest. Furthermore, we divide preferences into basic (concerning a single
context parameter) and aggregate ones (concerning a combination of context
parameters).

Context for Associative Recall. Finally, context can be used for associative
recall of past events. For example, in a “memory” database, context (such as
time or location) can be used to retrieve the associated facts. For instance, it
may be easier to retrieve facts (such as who was the prime minister of Greece) or
objects (such as for example photographs or favorite music albums) by referring

61

to the particular time period of one’s life (e.g., when user “John” was dating
“Mary”) or a geographic location (e.g., during one’s vacation in Hawaii) closely
associated with the facts or objects. To achieve such retrieval, storage of facts
or objects in a database must include information about the context parameters
when they occurred.

Context-Aware Query Optimization

Besides affecting the results of a query, context information may be used in
query optimization to achieve more cost-effective plans. Computing context is
very relevant in this case. Instead of optimizing disk access, query plans may
be derived to optimize other performance metrics such as energy (when energy
power is an issue). Furthermore, the user context can also be exploited. For
instance, query processing may be such that the most relevant results (based
on the user’s profile) are returned first.

Context-Aware Query Presentation

The way the results are presented to a user directly depends on the device
currently used by the user. For instance, when a user is interested in receiving
pictures, if he uses a PDA receives pictures of lower resolution than when using
a PC. In addition, energy and networking considerations may affect the way
query results are delivered to the user.

7.3.2 Architecture of Context-Aware DBMS

A overview of how context can be integrated within a Database Management
System (DBMS) is depicted in Figure 7.1. The Awareness Modules commu-
nicate with the sources that produce data (for instance, temperature sensors)
and propagate any updates to the Context Manager. The Context Manager
is responsible for managing (modeling, storing, updating) any context related
information. The Context Repository is the module where context is stored.
There are two ways of integrating context in a DBMS: (a) the context man-
ager may be part of the DBMS or (b) the context manager may be seen as an
intermediate middleware layer.

7.4 Context Management

There are many types of context information thus providing a unifying model for
modeling and a general approach for storing context parameters are challenging
issues. We provide next a survey of various approaches to both problems.

62

Awareness Module (AM) Awareness Module (AM)

Context
Repository

Context Manager

.. .

DBMS

Figure 7.1: Connecting Context and Databases

7.4.1 Model of Context

A variety of models have been introduced for context. Discussions of the dif-
ferent models can be found in [2, 34]. Such models fall in one of the categories
described next.

Models for Location. Location is a context parameter that has attracted
a lot of attention. Models for location are different than other values of con-
text mainly because the location of moving objects is a parameter whose value
changes continuously with time. There are basically two different way to rep-
resent location: a symbolic and a geometric model. With the symbolic model,
location is represented using abstract symbols, while with the geometric model,
location is represented using coordinates. A nice overview of current research
on the topic can be found in [35].

Key-Value Models. The simplest model is to represent contextual informa-
tion in the form of (context-variable, value) pairs. Key-value pairs can be used
for efficient exact match queries for example for automatic contextual reconfig-
uration. Such models are general and easy to manage but lack in expressibility
of semantic information.

Markup Schemes. Context is modeled using “contextual” tags. Common to
such schemes is a hierarchical data structure that is express through the nesting
of tags.

An example of such representation is a CC/PP profile [36]. A CC/PP profile
is a description of device capabilities and user preferences that can be used to
guide the adaptation of content presented to that device. CC/PP is based on
RDF, the Resource Description Framework, which was designed by the W3C
as a general purpose metadata description language. The Resource Description

63

Framework (RDF) is used to create profiles that describe user agent capabili-
ties and preferences. A CC/PP profile contains a number of CC/PP attribute
names and associated values that are used by a server to determine the most
appropriate form of a resource to deliver to a client. It is structured to allow
a client to describe its capabilities by reference to a standard profile, accessi-
ble to an origin server or other sender of resource data, and a smaller set of
features that are in addition to or different than the standard profile. A set of
CC/PP attribute names, permissible values and associated meanings constitute
a CC/PP vocabulary.

An example of using a markup scheme is “stick-e” notes [37] which are
the electronic equivalents of post-it notes. Context information is modeled as
tags and corresponding fields. The stick-e fields can recursively contain other
tags and corresponding fields. The note of the <body> tag is automatically
triggered when the contextual constraints in the <require> tag are met. This
model has evolved into the ConteXtML model which is an XML-based protocol
for exchanging contextual information.

Graphical Models. A variety of general models (such as the E/R model and
UML) are graphical. Such models are very expressive and are mainly used as
conceptual models. However, they convey little information at the instance level
or on implementation issues.

Object-Oriented Models. Important features of object-oriented models are
encapsulation and re-usability.

Logic-Based Models. A large number of proposals to represent context are
based on logic. Important in this respect is the formalization proposed in [38].
Contexts are considered as first class objects. The basic relation is ist(c,p). It
asserts that the proposition p is true in the context c. The most important
formulas relate the propositions true in different contexts. Introducing contexts
as formal objects permits axiomatizations in limited contexts to be expanded
to transcend the original limitations. This seems necessary to provide AI pro-
grams using logic with certain capabilities that human fact representation and
human reasoning possess. Fully implementing transcendence seems to require
further extensions to mathematical logic, i.e., beyond the non-monotonic infer-
ence methods.

Ontology-Based Models. Ontologies have currently attracted much atten-
tion for specifying concepts and interrelations.

64

7.4.2 Storing Context

An important issue is what is an appropriate model for storing context. Besides
storing the current context for building context-aware systems and applications,
there is growing effort to extract interesting knowledge (such rules, regularities,
constraints, patterns) from large collections of context data.

Storing context data using data cubes, called context cubes, is proposed
in [17] for developing context-aware applications that use archive sensor data.
The context cube provides a multidimensional model of context data where each
dimension presents a context dimension of interest. The context cube also pro-
vides a number of tools for accessing, interpreting and aggregating context data
by using concept relationships defined within the real context of the applica-
tion. The basic cube operations are slice, dice, roll-up and drill-down. A slice is
a selection of one dimension of an n-dimensional cube. The dice is a selection
applied to all dimensions of the cube. Roll-up generates a new cube by applying
an aggregate function on one dimension. Drill-down is the inverse of roll-up;
it generates a context cube with finer granularity on one of the n dimensions.
So in this work, data cubes are used to store historical context data and to
extract interesting knowledge from collections of context data. Furthermore,
a cube can be used to create new context from analysis of the existing data.
In our work, we use data cubes for storing context-dependent preferences and
answering related queries.

7.4.3 Updating Context

Since context parameters change with time, deriving a model of how they change
is important. This enables the prediction of future values of context. Further-
more, such information can be used to fine-tune various system-related parame-
ters as well as a variety of protocols. Finally, having a model for context updates
allow building systems that are more cost-effective. There are in general two
ways for communicating updates: a push and a pull model. In the push model,
the source of the context update push the new value of the associated context
parameter to the context-aware system. In the pull model, the context-aware
system polls the source to learn about any updates. In both models, there is
cost associated with update propagation. A model of context would reduce such
cost, since it will eliminate the cost of communication between the source and
the context-aware system. It will also reduce the computation cost at both ends.

Deriving general models for context updates is a formidable task, because of
the great variety of context information. Models have been advanced for location
updates, since it is possible to predict future locations when the moving objects

65

follow some pattern of movement or are moving in trajectories (for example,
cars in highways).

Another important issue relevant to data engineering is how to communicate
the change of context to the result of querying processing. We distinguish the
following three different approaches regarding how to update the query so that
it takes into account context:

• each query answer includes the valid time of the answer

• the previous results is cached and used them to prune the search for the
new results

• the result is precomputed by using some model to predict the values of
the context parameters.

7.5 Top-K Querying

In our work at the leaf nodes of the context tree, we store a list of ids, e.g.
restaurant ids, along with their aggregate scores for the associated context state
that is, for the path from the root leading to them. Instead of storing aggregate
values for all non-context parameters, to be storage-efficient, we just store the
top-k ids (keys) that are the ids of the items having the k-highest aggregate
scores for the path leading to them. The motivation is that this allows us to
provide users with a fast answer with the data items that best match their
query. Only if more than k-results are needed, additional computation will be
initiated. The list of ids is sorted in decreasing order according to their scores.

In [21], algorithms are given for determining the top-k objects for a query’s
result. The authors assume that each database consists of a finite set of objects.
Each object has m fields x1, x2, . . . , xm, where xi ∈ [0, 1] for each i. Each xi is a
grade of an object R under one of the m attributes, and t(x1, x2, . . . , xm) is the
overall grade of object R for an aggregation function t. The database is thought
of as consisting of m sorted lists L1, L2, . . . , Lm. Each entry of Li is of the form
(R, xi), where xi is the ith field of R. Each list Li is sorted in decreasing order
by the xi value. Also, they consider two modes of access to data: the sorted
access and the random one. A sorted access is a sequential access from the top.
Here, the system obtains the grade of an object in one of the sorted lists by
proceeding through the list sequentially from the top. Thus, if object R has the
lth highest grade in the ith list, then l sorted access to the ith list are required
to see this grade under sorted access. In random access, the system requests the
grade of object R in the ith list, and obtains it in one random access.

66

Instead of executing the naive algorithm to obtain the top-k answers (look
at every entry in each of the m sorted lists, computing using t the overall grade
of every object and return the top-k answers), several algorithms have been
proposed. At first, Fagin [20] introduced an algorithm, named FA (Fagin’s
Algorithm). Initially, the FA executes sorted access to each of the m sorted lists
Li in parallel, i.e., access the top member of each of the lists, then the second
member and so on. FA waits until there is a set of at least k objects, such that
each of these objects has been seen in each of the m lists. FA finds the ith field
of xi, for each object with a random access to each list Li. Finally, computes
the overall grades according to the aggregation function t for all objects that
have been seen and returns the objects with the k highest grades.

The Threshold Algorithm (TA) executes sorted access in parallel to each of
the m sorted lists Li. For each object R is seen executes random access to the
other lists to find the grade xi of R in every list Li, and then computes the
overall grade of R. For each list Li, let xi be the grade of the last object seen
under sorted access. TA computes a threshold value r to be t(x1, . . . , xm). The
algorithm stops when at least k objects have been seen whose grade is at least
equal to r and returns the k objects with the highest grades. An interesting
variation of TA algorithm is the approximation algorithm TAθ. This algorithm
stops when at least k objects have been seen whose grade, when multiplied by
θ (θ > 1), is at least equal to r.

Furthermore, a No Random Access Algorithm (NRA) is proposed for systems
where random accesses are forbidden. NRA executes sorted access in parallel
to each of the m sorted lists Li. At each depth d (when d objects have been
accessed under sorted access in each list) the bottom values x

(d)
1 , x

(d)
2 , . . . , x

(d)
m

encountered in the lists. For every object R NRA computes the lower bound
W (d)(R) and the upper bound B(d)(R). The lower bound for an object R at
depth d is the grade of the aggregate function t where for each unknown grade
xi we put 0. In the computation of the upper bound for each unknown grade
xi we put the value xi, where xi is the smallest value obtained via sorted access
in list Li. The algorithm maintains the k objects with the largest W (d). If two
objects have the same W (d) values, the object with the highest B(d) value wins.
NRA stops when k distinct objects have been seen and all the other objects
have an upper bound value less or equal with the lower bound value of the kth

object. A modification of the NRA algorithm is the combined algorithm CA
that uses random accesses and takes their costs (relative to sorted access) into
account. The main idea of CA is to run NRA, but every h = cR/cS steps, where
cR is the cost of a sorted access and cS the cost of a random access, to run a
random access phase and update the upper and lower bounds.

Additionally, there is some similarity with the work done in the context of the

67

PREFER system [22] for processing ranked queries that are, queries that return
the top objects of a database according to a preference function. The focus
of this work is on a different topic. In particular, this approach precomputes
materialized ranked views, in order to guarantee better query performance, and
then answers a ranked query q with a preference function f ′, from a materialized
ranked view v that is based on another preference function f , when for example
the two functions f and f ′ have different weight values. In that way, at first
the appropriate view is selected, finding which view has the maximum coverage
area with the query. In following, the algorithm takes the n first objects of the
view or more specific the n first objects that have values less than a threshold
value. Then, reorders these objects according to the preference function of the
query and returns all of them that are before the first object of the previous
ordering, i.e., the ordering that based on the view’s preference function. This is
the output of the ranked query.

Relevant in this respect is the research in [39, 40]. In top-k queries [39], users
specify target values for certain attributes, without requiring exact matches to
these values in return. Instead, the result to such queries is typically a rank of
the “top-k” tuples that best match the given attribute values. The skyline [40] is
defined as those tuples of a relation that are not dominated by any other tuple.
A tuple dominates another tuple if it is as good or better in all dimensions and
better in at least one dimension.

68

Chapter 8

Conclusions and

Future Work

The use of context is important in many applications such as in pervasive com-
puting where it is important that users receive only relevant information. In
this thesis, we consider integrating context with query processing, so that when
a user poses a query in a database, the result depends on context. In partic-
ular, each user indicates preferences on specific attribute values of a relation.
Such preferences depend on context. Users express their preferences on specific
database instances based on a single context parameter. Such basic preferences,
i.e., preferences associating database relations with a single context attribute,
are combined to compute aggregate preferences that include more than one con-
text parameter. We store basic preferences in data cubes and show how OLAP
techniques can be used to compute context-aware queries, that is queries whose
results depend on context.

Aggregate preferences are not explicitly stored. To improve performance, we
propose storing aggregate preferences computed as results of previous queries
using an auxiliary data structure called context tree. A path in the context
tree corresponds to an assignment of values to context parameters, that is, to a
context state, for which the aggregate score has been previously computed.

The context tree provides an efficient way to retrieve the top-k results that
are relevant to a preference query. When a query is posed to the system, we
first check if there exists a context state that matches it in the context tree. If
so, we retrieve the top-k results from the associated leaf node. Otherwise, we
compute the answer and insert the new context state, i.e., the new path and
the associated top-k results, in the tree. Furthermore, the results stored in the

69

context tree can be re-used to speed-up query processing. This happens for a
similar query, i.e., for a query that has similar values to its context state with
a previous one. In this case, the results of the new query are approximate. We
also show how search in the context tree can be improved using a variation of a
Bloom-based filter for testing membership in the tree.

Finally, we demonstrate the feasibility of our approach through a prototype
application regarding a context-aware restaurant guide, and we evaluate the
performance of the context tree on answering queries.

This work is a first step towards using the context tree. There are many
issues that need further investigation. So far, we used point queries. A point
query is a simple traversal on the context tree structure from the root to a leaf.
At level i, we search for the cell having as key the ith value of the query and
descend to the next level following the appropriate pointer. If the ith value is
any, we follow the pointer of the any cell.

Range queries differ from point queries because they contain at least one
context parameter with a range of values. If a range is specified for the ith

context parameter, i.e., for the ith level of the query, for each key satisfying the
specified range we recursively descend to the corresponding subtree in a depth-
first manner. In this case, the top-k results that are relevant to the query can
be produced merging the individual results of the corresponding point queries.

We can further extend our model, as concerns the range queries, modifying
the model of preferences. So far, each basic preference is described by a context
parameter, a set of non-context parameters, and a degree of interest, while
an aggregate preference is expressed by a set of context parameters, a set of
non-context parameters, and similarly has a degree of interest. In an extended
approach, users can express their basic preferences giving scores that refer to a
range of values of the corresponding context parameter. Respectively, a context
parameter of an aggregate preference can refer to a range of values, because
each aggregate preference is derived from a combination of basic ones.

The context tree is used to cache context states that are related with previous
submitted queries. We store to each context state the corresponding to the query
top-k results, so that these results can be re-used by subsequent queries. While
the context tree takes up limited space, we consider two replacement policies
for choosing which paths to delete. These policies use the LRU and the LFU

algorithm, respectively. However, a context state is not selected to be deleted,
some of its top-k results may be not fresh. In this way, we propose to delete
the old paths. To implement this policy, we can store at each path the time
that the path is inserted in the tree and periodically to delete the paths with
small such values. Alternatively, when a change in a basic score is occurred, we
compute from scratch the aggregate score of the associated data object and we

70

examine if it needed an update to the top-k lists.
Another interesting issue, in a different area, is how context tree can con-

tribute to the creation of clusters of nodes in decentralized p2p systems. In
general, all the nodes of a cluster have similar interests. Usually, clusters in
unstructured p2p systems are organized according to the content of data files
stored at each node. Several approaches have been proposed in previous work.
For instance, in the associative overlays ([41]), all nodes that belong to a cluster
satisfy a predicate. This set of nodes is called a guide rule and all the guide rules
define the network topology. Each node maintains a small list of other nodes
that belong to the same guide rule. A search process in a guide rule is performed
like the blind search in unstructured systems.

In a similar way, Semantic Overlay Networks (SONs - [42]) consist of clusters
of nodes. Each cluster includes nodes that are semantically related. Two nodes
are semantically related when the content of their data files are similar. All
connections are between nodes that belong to the same SON, without the need
that in a SON all nodes are connected to each other. Furthermore, a node
might belong to more than one SON. Queries are processed first by finding the
appropriate SON to answer it. Then, the query is propagated to this SON and
finally, is performed a blind search in the specific SON. This process reduces
the time to answer a query.

Another way to exploit the similarities of content of the nodes’ data files is
to place them (or their indices) to specific nodes. For each data file a vector is
created, according to its content. This vector is used to place the data file. Also,
each query has a vector. The similarity between a file’s vector and a query’s
vector, leads the query to an appropriate node, i.e., a node that may have the
result of the query. This approach is presented in [43].

In a different approach, we can use the query workload of each node and not
only the content of its data files to construct clusters of nodes. In particular, the
context tree can be used as an index that expresses the local query workload of
a specific node. Two nodes are included in the same cluster if they have similar
context trees. The similarity between two context trees refers the percentage of
same paths in the trees. In this part of our future work, the multi-level Bloom
filters can be used to characterize if two context trees are similar or not.

71

Bibliography

[1] A. K. Dey. Understanding and Using Context. Personal and Ubiquitous
Computing, 5(1), 2001.

[2] G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing
Research. Dartmouth Computer Science Technical Report TR2000-381,
2000.

[3] K. Henricksen, J. Indulska, and A. Rakotonirainy. Modeling Context Infor-
mation in Pervasive Computing Systems. In Proc. of the 1st International
Conference on Pervasive, pages 167–180, 2002.

[4] E. Pitoura and G. Samaras. Locating Objects in Mobile Computing. IEEE
TKDE, 13(4), 2001.

[5] D. Salber, A. K. Dey, and G. D. Abowd. The Context Toolkit: Aiding the
Development of Context-Enabled Applications. CHI Conference on Human
Factors in Computing Systems, 1999.

[6] G. Chen, M. Li, and D. Kotz. Design and implementation of a large-scale
context fusion network. International Conference on Mobile and Ubiquitous
Systems: Networking and Services, 2004.

[7] P. Vassiliadis and S. Skiadopoulos. Modelling and Optimisation Issues for
Multidimensional Databases. In Proc. of 12th International on Advanced
Information Systems Engineering,(CAiSE 2000), Stockholm, Sweden, June
5-9, 2000, volume 1789 of Lecture Notes in Computer Science, pages 482–
497. Springer, 2000.

[8] P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and Querying
Moving Objects. International Conference on Data Engineering, 1997.

[9] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Updating and Query-
ing Databases that Track Mobile Units. Distributed and Parallel Databases
Journal, 7(3), 1999.

72

[10] R. Agrawal and E. L. Wimmers. A Framework for Expressing and Com-
bining Preferences. In Proc. of SIGMOD, 2000.

[11] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic Ranking
of Database Query Results. International Conference on Very Large Data
Bases, 2004.

[12] G. Koutrika and Y. Ioannidis. Personalization of Queries in Database Sys-
tems. In Proc. of ICDE, 2004.

[13] J. Chomicki. Preference Formulas in Relational Queries. TODS, 28(4), Dec
2003.

[14] W. Kiessling. Foundations of Preferences in Database Systems. Interna-
tional Conference on Very Large Data Bases, 2002.

[15] W. Kiessling and G. Koestler. Preference SQL - Design, Implementation,
Experiences. International Conference on Very Large Data Bases, 2002.

[16] S. Holland and W. Kiessling. Situated preferences and preference reposito-
ries for personalized database applications. In ER, pages 511–523, 2004.

[17] L. Harvel, L. Liu, G. D. Abowd, Y-X. Lim, C. Scheibe, and C. Chathamr.
Flexible and Effective Manipulation of Sensed Contex. In Proc. of the 2nd
Intl. Conf. on Pervasive Computing, 2004.

[18] Y. Roussos, Y. Stavrakas, and V. Pavlaki. Towards a Context-Aware Rela-
tional Model. In the proceedings of the International Workshop on Context
Representation and Reasoning (CRR’05), 2005.

[19] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Mining
and Knowledge Discovery, 1(1), 1997.

[20] R. Fagin. Combining Fuzzy Information from Multiple Systems. Journal
of Computer and System Sciences, 1999.

[21] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Algorithms for
Middleware. PODS, 2001.

[22] V. Hristidis and Y. Papakonstantinou. Algorithms and applications for an-
swering ranked queries using ranked views. The VLDB Journal, 13(1):49–
70, 2004.

73

[23] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis. Dwarf:
Shrinking the PetaCube. In Proc. ACM SIGMOD, 2002.

[24] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[25] G. Koloniari and E. Pitoura. Bloom-Based Filters for Hierarchical Data.
5th Workshop on Distributed Data Structures and Algorithms, 2003.

[26] G. Koloniari and E. Pitoura. Filters for XML-based Service. Discovery in
Pervasive Computing, 47(4):461–474, 2003.

[27] B. N. Schilit, N. I. Adams, and R. Want. Context-Aware Computing Ap-
plications. In Proc. of the Workshop on Mobile Computing Systems and
Application, 1994.

[28] A. K. Dey. Providing Architectural Support for Building Context-Aware
Applications. PhD Thesis, College of Computing, Georgia Institute of
Technology, December 2000, 2000.

[29] G. Chen and D. Kotz. Solar: An Open Platform for Context-Aware Mobile
Applications. In Proc. of the 1st International Conference on Pervasive
Computing, 2002.

[30] G. Chen and D. Kotz. Context Aggregation and Dissemination in Ubiqui-
tous Computing Systems. In Proc. of the 4th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA02), 2002.

[31] T. Kindberg, J. Barton, and J. Morgan et al. People, Places, Things: Web
Presence for the Real World. MONET, 7(5), 2002.

[32] H. Chen, S. Tolia, C. Sayers, T. Finin, and A. Joshi. Creating Context-
Aware Software Agents. In Proc. of the First GSFC/JPL Workshop on
Radical Agent Concepts, 2002.

[33] L. Feng, P.M.G. Apers, and W. Jonker. Towards Context-Aware Data
Management for Ambient Intelligence. In Proc. of the 15th Intl. Conf. on
Database and Expert Systems Applications (DEXA), 2004.

[34] T. Strang and C. Linnhoff-Popien. A Context Modeling Survey. In Proc.
of the Workshop on Advanced Context Modelling, Reasoning and Manage-
ment associated with the Sixth International Conference o n Ubiquitous
Computing (UbiComp 2004), 2004.

74

[35] M. Koubarakis, T. K. Sellis, and A. U. Frank et. al. Spatio-Temporal
Databases: The CHOROCHRONOS Approach. Lecture Notes in Computer
Science 2520 Springer, 2003.

[36] W3C. Composite Capabilities/Preferencs Profile (CC/PP).
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/,
2004.

[37] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware Applications: from
the Laboratory to the Marketplace. IEEE Personal Communications, 4(5),
1998.

[38] J. McCarthy. Notes in Formalizing Context. In Proc. of the 13th Interna-
tional Joint Conference in Artificial Intelligence, 1993.

[39] S. Chaudhuri and L. Gravano. Evaluating Top-k Selection Queries. In
Proc. of VLDB, 1999.

[40] S. Bfrzsfnyi, D. Kossmann, and K. Stocker. The Skyline Operator. In Proc.
of ICDE, 2001.

[41] E. Cohen, A. Fiat, and H. Kaplan. Associative Search in Peer to Peer
Networks: Harnessing Latent Semantics. In Proceedings of the IEEE IN-
FOCOM’03 Conference, 2003.

[42] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for
P2P Systems. Stanford University, Technical Report, http://www-
db.stanford.edu/peers, 2003.

[43] C. Tang, Z. Vu, and S. Dwarkadas. Peer-to-Peer Information Retrieval
Using Self-Organizing Semantic Overlay Networks. In Proceedings of the
ACM SIGCOMM’03 Conference, 2003.

75

Index

Approximation Coverage Threshold, 36
Associative Overlays, 70

Guide Rule, 70
Atomic Query Element, 18
Attribute, 11
Awareness Module, 62

Bloom Filter, 42
Breadth Bloom Filter, 43
Depth Bloom Filter, 43
False Positive, 42

CC/PP Profile, 63
Clusters, 70
Context, 5

Quality of Context, 6
Types of Context, 5

Computing Context, 5
Physical Context, 5
Time Context, 5
User Context, 5

Context Environment, 12
Context Manager, 62
Context Parameter, 12

Dynamic Context Parameter, 13
Static Context Parameter, 13

Context Relational Model, 25
World, 25

Context Repository, 62
Context State, 12
Context Tree, 32
Context-Aware Application, 58

Automatic contextual
reconfiguration, 58

Context-triggered actions, 58
Contextual information and

commands, 58
Proximate selection, 58

Context-Aware Query, 7
Context-Aware Query Processing, 59

Query Execution, 59
Query Post-Processing, 59
Query Pre-Processing, 59

Context-Aware System, 7, 57
ConteXtML, 64
Contextual Preference, 14

Aggregate Preference, 15
Basic Preference, 14

Cube, 21
Cell, 21
Dimension, 21
Measure, 21

Domain, 11
Dwarf, 35

Hierarchies for Attributes, 12
Hypercube, 21

Infrastructures for Context, 58
Context Toolkit, 58
CoolAgent, 59
Cooltown, 59
Solar, 59

76

Inheriting Preference, 15

Least Frequently Used, 41
Least Recently Used, 41

Neighborhood Approximation Thresh-
old, 37

OLAP, 21, 29
Dice, 29
Drill-down, 30
Roll-up, 29
Slice, 29

Point Query, 70
PREFER, 68
Preference Formula, 18
Preference Restaurant Guide, 45
Preference SQL, 18

Basic Preference Type, 19
Around, 19
Highest, 19

Complex Preference Type, 19
Pareto Accumulation, 19

Hard Constraints, 18
Soft Constraints, 19

Qualitative Preference, 18
Quality of Service, 7

Accuracy, 7
Conflict-free, 7
Level of Detail, 7
Timeliness, 7

Quantitative Preference, 17

Range Query, 70
Ranked Queries, 68
Relation, 11
Resource Description Framework, 63

Semantic Overlay Networks, 71
Situated Preference, 20

Situation, 19
Influence, 19

Personal, 19
Surrounding, 19

Location, 19
Timestamb, 19

Skyline, 68
Star Schema, 22

Dimension Table, 22
Fact Table, 22

Top-K, 33

Uniform Data Distribution, 51
Updating Context, 65

Pull Model, 65
Push Model, 65

Zipf Data Distribution, 51

77

