
Function Extrapolation through Differential
Equation Learning

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Christina Seventikidou

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2022

Examining Committee:

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina (Advisor)

• Konstantinos D. Blekas, Professor, Department of Computer Science and En-
gineering, University of Ioannina

• Konstantinos Vlachos, Assist. Professor, Department of Computer Science and
Engineering, University of Ioannina

DEDICATION

To my parents, for always loving and supporting me.

ACKNOWLEDGEMENTS

First, I would like to thank my thesis supervisor, Professor Aristidis Likas, for the
opportunity he gave me and for all the support, patience and guidance he provided.
His generous sharing of knowledge has been a major inspiration for me while working
on this dissertation and also during his graduate courses. I would also like to thank
Professor Isaac Lagaris for providing ideas on which this thesis was based.

Furthermore, I would like to express my gratitude to all the members of the
Dept. of Computer Science and Engineering with whom I worked, because without
the knowledge I received from them, the completion of this thesis would not have
been possible.

In addition, I would like to thank the members of the Dept. of Mathematics of
the University of Ioannina, for shaping me as a mathematician.

Moreover, I owe special thanks to Giorgos Mitaros, graduate of the Dept. of Com-
puter Science and Engineering, partner and best friend, for his unconditional support
and the endless hours of scientific discussions and tutoring in software engineering
during our undergraduate studies.

I wish also to thank my fellow students, Christina, Maria, Mary and Rafaela for
the support, the discussions and the cooperation during our undergraduate studies
in mathematics.

Above all else, I am grateful to my family for their support, love and motivation
in my every step.

TABLE OF CONTENTS

List of Figures iii

List of Tables v

List of Algorithms vi

Abstract vii

Εκτεταμένη Περίληψη ix

1 Introduction 1
1.1 Motivation . 1
1.2 Approach and contribution . 2
1.3 Thesis outline . 3

2 Preliminary concepts and methods 4
2.1 Machine Learning . 4

2.1.1 Supervised Learning . 5
2.1.2 Artificial Neural Networks . 6
2.1.3 Feedforward neural networks . 8

2.2 Numerical methods for solving ordinary differential equations 13
2.2.1 Ordinary differential equations 13
2.2.2 Initial value problem . 14
2.2.3 The Existence and Uniqueness of Solutions 14
2.2.4 Basic concepts of Numerical Methods for Initial-Value Problems 16
2.2.5 Runge Kutta methods . 17
2.2.6 Solving ODEs with neural networks 19

2.3 Extrapolation . 21

i

2.3.1 Definition, basic concepts . 21

3 The proposed method 23
3.1 Structure of the method . 23

3.1.1 First step - initial neural network 23
3.1.2 Second step – numerical ODE definition 24
3.1.3 Third step – solution of numerical ODE 25

3.2 Summary of the method . 25
3.3 Gradient of a neural network . 26
3.4 Variations of the method . 27

4 Experimental results 29
4.1 Software requirements . 30
4.2 Datasets . 30
4.3 Hyperparameters and architecture details 31
4.4 Illustration of the method . 32
4.5 Extrapolation results . 37
4.6 Data with noise . 38
4.7 Results of the alternative ODE models 43
4.8 Experiment with unknown ODE . 46

5 Epilogue 50
5.1 Conclusion . 50
5.2 Future work . 51

Bibliography 52

ii

LIST OF FIGURES

2.1 Architecture of an artificial neural network 8
2.2 Example of a feed forward neural network, here W (1) is n × 3, W (2)

is 3× 1, b(1) is 3× 1, b(2) is 1× 1 . 9
2.3 Example of a neural network that we apply back propagation 11
2.4 Given the data points in white section, the lines represent polynomial

models in order to make predictions for intermediate points in white
region(interpolation) as well as make predictions for data outside the
domain in grey region(extrapolation) 21

3.1 Architecture of Ni(t) . 24
3.2 Intervals of the proposed method graphically 26

4.1 Example 1 - ODE . 33
4.2 Example 1 - P(t) approximation . 33
4.3 Example 2 - ODE . 34
4.4 Example 2 - P(t) approximation . 34
4.5 Example 3 - ODE . 35
4.6 Example 3 - P(t) approximation . 35
4.7 Example 4 - ODE . 36
4.8 Example 4 - P(t) approximation . 36
4.9 Problem 1 - Extrapolation error for various ranges 39
4.10 Problem 2 - Extrapolation error for various ranges 39
4.11 Problem 3 - Extrapolation error for various ranges 40
4.12 Problem 4 - Extrapolation error for various ranges 40
4.13 The real time series where we do not which ODE it satisfies 46
4.14 Case 1 . 48
4.15 Case 2 . 48

iii

4.16 Case 3 . 49

iv

LIST OF TABLES

2.1 RK tableau . 18

4.1 Hyperparameters of Neural Networks that were trained in the imple-
mentation, using models (3.1) or (3.5) 31

4.2 Intervals I, I1, I2 . 32
4.3 Statistics of extrapolation error . 41
4.4 Example 1 - Statistics of extrapolation error for data with noise for

ti ∈ T = [xmax, xmax + 2] . 42
4.5 Example 2 - Statistics of extrapolation error for data with noise for

ti ∈ T = [xmax, xmax + 2] . 42
4.6 Example 3 - Statistics of extrapolation error for data with noise for

ti ∈ T = [xmax, xmax + 2] . 43
4.7 Example 4 - Statistics of extrapolation error for data with noise for

ti ∈ T = [xmax, xmax + 2] . 43
4.8 Statistics of extrapolation error . 45
4.9 Statistics of extrapolation error . 45
4.10 Statistics of extrapolation error . 46
4.11 Intervals I, I1, I2 for the testing time series example 47
4.12 Statistics of the extrapolation error of the testing time series, for ti ∈

T = [xmax, xmax + 1.5], R=1.5, with model (3.1) 49

v

LIST OF ALGORITHMS

2.1 RK of order 4 algorithm . 19
3.1 Algorithm of the proposed method . 28

vi

ABSTRACT

Christina Seventikidou, M.Sc. in Data and Computer Systems Engineering, Depart-
ment of Computer Science and Engineering, School of Engineering, University of
Ioannina, Greece, 2022.
Function Extrapolation through Differential Equation Learning.
Advisor: Aristidis Likas, Professor.

With the existence of different phenomena that are evolved in time, often there is
the need to find a function that can describe them in order to draw inferences and
make predictions. A characteristic example is time series prediction, where we are
given the values of a function within an input range and we aim to predict future
values outside the range (extrapolation). In continuous problems, the time-evolution
can in many cases be described by differential equations. In this thesis we will focus
only on problems that can be described by ordinary differential equations and in
particular by first order differential equations.

The objective of this thesis is the design and implementation of an approach
inspired by neural networks and differential equations, in order to study the extrap-
olation ability of a function based on a given data set. The typical approach would
be to train a machine learning model (here a neural network) based on the available
function values and then use this model for the extrapolation task. In the proposed
method, we assume that this model is the solution to an unknown differential equa-
tion. If we manage to find out the differential equation that describes the model in
time evolution, then we can use it to obtain good extrapolation results.

Given a set of examples (ti, yi), where ti belongs to a training domain I, we first
train a neural network Ni(t). Since we have Ni(t) we can compute the derivative
dNi

dt
and define a differential equation model in the form dNi

dt
= g(N(t;w)) where g(.)

involves one or more neural networks. The parameters of the differential equation
model (w) are specified through training, so that the differential equation is satisfied

vii

at various points of the training interval. Once we obtain the differential equation
model, we can solve it with a numerical method and use this solution to find the
function values outside of the interval I. The proposed method has been tested on
several problems and we will present the experimental results as well as the empirical
conclusions regarding the efficiency of extrapolation.
Keywords: machine learning, deep learning, neural networks, differential equations,
extrapolation

viii

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Χριστίνα Σεβεντικίδου, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστη-
μάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, 2022.
Πρόβλεψη μελλοντικών τιμών συνάρτησης με μάθηση της διαφορικής εξίσωσης που
μοντελοποιεί την εξέλιξη της.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

Με την ύπαρξη διαφορετικών φαινομένων που εξελίσσονται στο χρόνο, συχνά
υπάρχει η ανάγκη να βρεθεί μια συνάρτηση που να μπορεί να τα περιγράψει προκει-
μένου να εξαχθούν συμπεράσματα και να γίνουν προβλέψεις. Ένα χαρακτηριστικό
παράδειγμα είναι η πρόβλεψη χρονοσειρών, όπου μας δίνονται οι τιμές μιας συνάρ-
τησης μέσα σε ένα διάστημα τιμών και στοχεύουμε να προβλέψουμε μελλοντικές
τιμές εκτός του διαστήματος (παρέκταση, extrapolation). Για συνεχή προβλήματα,
η χρονική εξέλιξη μπορεί σε πολλές περιπτώσεις να περιγραφεί με διαφορικές εξι-
σώσεις. Σε αυτή τη διατριβή θα εστιάσουμε μόνο σε προβλήματα που μπορούν να
περιγραφούν με συνήθεις διαφορικές εξισώσεις και ιδιαίτερα με διαφορικές εξισώ-
σεις πρώτης τάξης.

Στόχος της παρούσας διπλωματικής εργασίας είναι ο σχεδιασμός και η εφαρμογή
μιας προσέγγισης εμπνευσμένης από νευρωνικά δίκτυα και διαφορικές εξισώσεις,
προκειμένου να μελετηθεί η δυνατότητα παρέκτασης μιας συνάρτησης, με βάση
ένα δοθέν σύνολο δεδομένων. Η τυπική προσέγγιση θα ήταν να εκπαιδεύσουμε ένα
μοντέλο μηχανικής μάθησης (εδώ νευρωνικό δίκτυο) χρησιμοποιώντας το διαθέσιμο
σύνολο δεδομένων και στη συνέχεια να χρησιμοποιήσουμε αυτό το μοντέλο για
την παρέκταση. Στην προτεινόμενη μέθοδο υποθέτουμε ότι αυτό το μοντέλο είναι η
λύση μιας άγνωστης διαφορικής εξίσωσης. Αν καταφέρουμε να βρούμε τη διαφορική
εξίσωση που περιγράφει το μοντέλο κατά την εξέλιξη του χρόνου, τότε μπορούμε

ix

να τη λύσουμε με μια αριθμητική μέθοδο. Μπορούμε να εκμεταλλευτούμε αυτή τη
λύση για να επιτύχουμε καλά αποτελέσματα παρέκτασης.

Λαμβάνοντας υπόψη ένα σύνολο παραδειγμάτων (ti, yi), όπου το ti ανήκει σε ένα
διάστημα I, αρχικά εκπαιδεύουμε ένα νευρωνικό δίκτυο Ni(t). Εφόσον έχουμε το
Ni(t) μπορούμε να υπολογίσουμε την παράγωγο dNi

dt
και να ορίσουμε ένα μοντέλο

διαφορικής εξίσωσης με τη μορφή dNi

dt
= g(N(t;w)) όπου το g(.) περιλαμβάνει ένα

ή περισσότερα νευρωνικά δίκτυα. Οι παράμετροι του μοντέλου διαφορικής εξίσω-
σης (w) καθορίζονται μέσω της εκπαίδευσης, έτσι ώστε η διαφορική εξίσωση να
ικανοποιείται σε διάφορα σημεία του διαστήματος εκπαίδευσης. Κατά συνέπεια,
μόλις ληφθεί το μοντέλο διαφορικής εξίσωσης, μπορούμε να το λύσουμε με αριθ-
μητικές μεθόδους και να χρησιμοποιήσουμε αυτή τη λύση για να βρούμε τις τιμές
της συνάρτησης εκτός του διαστήματος I. Η προτεινόμενη μέθοδος έχει δοκιμα-
στεί σε πολλά προβλήματα και θα παρουσιάσουμε τα πειραματικά αποτελέσματα
που προέκυψαν καθώς και τα εμπειρικά συμπεράσματα λαμβάνοντας υπόψην την
αποτελεσματικότητα της παρέκτασης.

Λέξεις‐κλειδιά: μηχανική μάθηση, βαθιά μάθηση, νευρωνικά δίκτυα, διαφορικές
εξισώσεις, παρέκταση(extrapolation)

x

CHAPTER 1

INTRODUCTION

1.1 Motivation

1.2 Approach and contribution

1.3 Thesis outline

1.1 Motivation

People use their knowledge and instinct to solve mathematical problems every day
in real life and obtain inferences. Mathematics are often hidden behind many tasks,
hence a solver should educe the necessary information and formulate it in math-
ematical language to get the answer. Machine solving problems with sophisticated
intelligence, as well as mathematical problems has been a topic of interest to scientists
for decades [1]. As hardware and software tools have improved and computing power
has increased, implementation became faster, making artificial intelligence, and more
specifically deep learning, a direction for solving complex mathematical problems.
In particular, neural networks have gained great popularity in applied mathematics
problems, such as differential equations deploying machine learning and artificial in-
telligence concepts. An ordinary differential equation is used to describe the dynamics
of a physical system that changes over time. These systems span many disciplines,
including health sciences, epidemiology, biology, finance and even climate. Modeling
the changes in these systems and making predictions can be a difficult task.

Data driven approaches to the study of dynamical systems have gained attention.
Recent research in data-driven prediction has been heavily influenced by machine

1

learning and in particular by neural networks [2] [3]. Neural networks have been
used to solve differential equations [4] [5], and recently in a variety of methods
such as, ordinary differential equation networks (ODENet) [6], deep residual learn-
ing [7] and deep operator networks (DeepONet) [8]. These approaches aim to model
the dynamics of an intricate system. Subsequently, an other group of methods has
evolved, called physics-informed neural networks [9] [10]. The goal is for neural net-
works to approximate the evolution of the system after training, by applying physical
laws. These methods represent a breakthrough, along with other methods that have
followed, addressing the challenges of modeling dynamical systems in a variety of
applications. Some examples include health sciences [11] and ecology [12]. Although
prediction methods have evolved, the wide range of complex systems in nature still
requires the development of new and improved techniques [13].

The motivation for this thesis was triggered by combining neural networks and
differential equations, to conduct a study and test a method based οn neural networks
for extrapolation and future states forecasting. Based on a given set of examples, we
aim to exploit differential equations in order to learn a function in the evolution of
time.

1.2 Approach and contribution

The main contribution of this thesis is the comprehensive study, design and imple-
mentation of an approach, influenced by a range of concepts, from neural networks
and numerical methods to differential equations and dynamical systems.

The proposed method attempts to predict the future values of a function and
more specifically of a time series. For continuous problems the time-evolution can
be described by differential equations in many cases. In this thesis we focus only
on problems that can be described by ordinary differential equations (ODEs) and in
particular by first order ODEs. Given a data set of examples (ti, yi) where ti belongs in
an interval I, we initially train a neural network in order to approximate the function
that describes these data in I. Afterwards we discover the differential equation that
is satisfied by this function, which is called differential equation model or numerical
ODE. The main research question is whether the solution of this differential equation
model can achieve good extrapolation, which means whether it can be used to describe

2

yi outside I. We aim to compare the proposed method with the initial trained neural
network regarding extrapolation performance, and draw conclusions.

1.3 Thesis outline

This thesis consists of 5 chapters:
Chapter 1: It is a general introduction about the scope of this thesis, some related
work, the approach and motivation of the thesis.

Chapter 2: It is devoted to an overview of the background and theory relevant to this
thesis. We expound on ordinary differential equations and the initial value problem,
focusing on numerical methods to solve them. We also analyze and implement a
neural network solver for first order differential equations[4]. In addition, we intro-
duce the background theory for machine learning, neural networks and extrapolation.

Chapter 3: A detailed description of the proposed method is presented. The chapter
contains the explanatory analysis of each step, as well as the summary of the method.

Chapter 4: In this chapter, the implementation details for the proposed method
are presented. Also, the chapter contains the analysis of the experimental results for
problems where we know the differential equation as well as for the case where the
differential equation is unknown.

Chapter 6: Finally, this chapter contains a discussion of the results, a summary
of the thesis and suggestions for future work.

3

CHAPTER 2

PRELIMINARY CONCEPTS AND METHODS

2.1 Machine Learning

2.2 Numerical methods for solving ordinary differential equations

2.3 Extrapolation

2.1 Machine Learning

The study of machines which perform tasks and solve problems that are considered
to require intelligence is called artificial intelligence, AI for short. Machine learning is
a discipline of AI and computer science, which uses algorithms and data to mimic the
human learning process. In particular ML focuses on the use of parametric models,
which are trained on a set of representative examples and have the ability to gen-
eralize in order to answer questions for new examples and make predictions. The
history of ML dates to many years back, when in 1950 Alan Turing had the idea of
“Turing Test” to study if a computer has true intelligence. Afterwards, in 1952, the
first computer program that could play checkers was developed by Arthur Samuel, a
pioneer in the field of artificial intelligence. The program had the capability to learn
new strategies and enhance its performance by playing. Subsequently, Frank Rosen-
blatt designed perceptron (the first computer neural network) to imitate the human
brain. By 1990s, machine learning obtained a more data-driven figure and programs
extracted conclusions from big amounts of data training. Since then there have been
many breakthroughs in the field that tackle previously unattainable challenges [14].

4

Machine learning can be viewed as a technological field of study that consists of self
learning algorithms that automatically improve themselves and learn by using given
data so that they are able to make conclusions, as well as generalize for new data.

The there basic features of a machine learning algorithm (model) are:

1. Define the hypothesis space, which means that we have to make an assumption
about the suitable model for our problem, with its corresponding parameters.

2. Furthermore, we have to define an evaluation function, to answer whether a
model linked with its parameters is sufficient or not. A good model is the less
mistaken with the proper parameters.

3. Define optimization method. We have to determine a way to optimize the pa-
rameters during the training.

Machine learning algorithms can be categorized in three basic problems:

• Supervised Learning: It is the machine learning task of learning a function from
a given data set with the target variable available. The model is trained on the
training data and then it is tested for its generalization ability on new data.

• Unsupervised Learning: Compared to supervised learning, there is no teacher
to correct the model, since the given data are unlabeled and the target value is
not available. The main problems addressed are finding hidden patterns in the
data, such as clustering, anomaly detection and density estimation.

• Reinforcement Learning: Describes a class of problems where an agent operates
in an environment and must learn using feedback from this environment.

Due to the algorithms that are used in this thesis, only supervised learning will be
analyzed further [15] [16].

2.1.1 Supervised Learning

Supervised earning is so called because the learning process is aided by the given
label of observation variables. In particular, a data set consists of examples, each of
which has a set of features or attributes and a target variable, called class/label. The
goal of supervised learning is to learn the mapping between the features and the
target. In order to learn, the data set is divided into a training set and a testing set.

5

The training set is used during the training process, when the mapping is learned, by
using the ground truth labels. The testing set is used only at the end to test whether
the inferred learning algorithm achieves generalization, which means whether it can
also map the features to the corresponding labels of previously unseen data [17].

The procedure of supervised learning can be described as follows:
Given a set of n data points {(xi, yi)}i=1,2,3...,N , where xi ∈ Rn is the input vec-
tor/features of the ith example and yi ∈ Rd is the ground truth label/class, a learning
algorithm tries to learn the function f : Rn → Rd such that yi ≈ f(xi). The function
f is a parametric model and after the training phase the best parameters are found,
based on the training set. The goal is to infer a function f that can also be represen-
tative for new data points in the interval of training[18].
Supervised learning can be categorized into two types of problems:
Classification: The algorithms recognize specific input values/features and classify
them to categories.
Regression: An algorithm is used to map the input values/features to a continuous
value and not a class.

There are many algorithms, methods and applications of supervised learning. Due
to the objective of this thesis, further analysis will focus on artificial neural networks,
and in particular feed forward neural networks. Artificial neural networks and more
specifically deep neural networks are the basis of a subset of machine learning that
has evolved, Deep Learning. We will move sequentially from the most basic of neural
networks to further extensions.

2.1.2 Artificial Neural Networks

The first computer neural network that attempted to mimic a human neuron is called
Perceptron. It can be concerned as a mathematical linear model for binary classifi-
cation. As a single neuron it can learn only linearly separable patterns, that is, the
algorithm takes binary classified input data and outputs a line or hyperplane that
attempts to separate data of one class from data of the other. The parameters of the
algorithm is w0, called as bias and a set of weights wi, that correspond to the feature
vector.

Mathematically the model can be described as follows:
Given a training set of N examples each of which has a feature vector x = [x1, x2, ..., xn]

6

and a target variable of two classes t with t ∈ {ω1, ω2}, the problem is to compute
the unknown parameters w0 and wi, i = 1, 2, 3, ..., n in order to define the decision
hyperplane.

Artificial neural networks are computational networks biologically inspired by
the human nervous system. Perceptrons can process data with binary output, while
there are many more complex problems to be solved. The initial idea behind artificial
neural networks is to stack perceptron units, in order to create layers. The layers are
in fact linear functions that apply linear transformations to the input vector. After the
linear transformation, it is important the processing element to pass through a non
linear function, called activation function. The use of nonlinear activation functions
after a linear transformation allows the inference of any type of function that maps
the inputs to the corresponding outputs, even if it is a complex mapping. Thus they
can be viewed as functional approximation machines. Conventionally, the activation
function is the same for all the layers and all the neurons are activated except from
the input units.

One typical activation function is the Sigmoid, which is non linear as should be
and continuous, so the neural network is differentiable and this helps the optimization
process. Sigmoid function is given by

σ(x) =
1

1 + e−x
(2.1)

The architecture of the an artificial neural network is as follows:

• Input layer: Accepts the feature vector x = [x1, x2, .., xn]

• Output layer: It is the last layer of the network that has one node for each value
of the output.

• Hidden layers: The layers between the input and the output layer.

Some extra important notes for the structure of neural networks include that
neurons in the same layer do not connect to each other and the neurons of one layer
are linked with the neurons of the next and previous levels only. There has to be at
least one hidden layer in the neural network. The number of hidden layers is called
the depth of the network – thus the term of deep neural networks and deep learning.
Also, the number of nodes in a layer is called the width of the layer.

7

Figure 2.1: Architecture of an artificial neural network

2.1.3 Feedforward neural networks

The Feedforward neural network is in fact a multi layer perceptron (MLP) and is
known as the simplest neural network and one of the most popular neural networks[19].
In the feedforward neural network, the output of a layer is input of the immediately
following layer, there is no connections between neurons in the same layer and the
computations are done sequentially. Firstly we have to define the architecture of the
network

(
H, dh, f

)
, where H is the number of hidden layers, dh is the number of

neurons in each hidden layer and f is the activation functions to be used
The parameters of the model are the weights and biases, given by matrices W (i),

b(i) correspondingly, between layers i and i+1, with 1 < i < L − 1. We assume that
we have L layers where the input layer is the first and the output layer the Lth.

Particularly W (i) is a M ×N matrix, where M is the number of neurons in layer
i and N is the number of neurons in layer i+1. As for biases, they are a vector M × 1,
where M is the number of neurons of layer i+1 (figure (2.2)).

Given a training set of N examples, each of them has a feature vector
X= [x1, x2, .., xn]

T and a target variable t, the input layer is consisted of the feature
vector and the output is computed as follows:

• W (1)TX + b(1) = h1 , h1 is the vector of neurons of the first hidden layer

• the result is passed through a non linear activation function f (1), so we have
f (1)(h1)

8

Figure 2.2: Example of a feed forward neural network, here W (1) is n × 3, W (2) is
3× 1, b(1) is 3× 1, b(2) is 1× 1

• W (2)Tf (1)(h1) + b(2) = h2, where h2 is the vector of neurons of second hidden
layer

• we pass it through an activation function so we have f (2)(h2)

• This process is repeated for all layers until we get the output.

Mathematically, an artificial neural network can be viewed as a function F : X →
Y , where X ∈ Rn is the input space, and Y ∈ Rd is the output space. The output of
the neural network ŷ ∈ Rd for a given input x ∈ Rn is given by:

ŷ = F (x) =

f (L)

(
w(L)Tf (L−1)

(
...
(
w(3)Tf (2)

(
w(2)Tf (1)

(
w(1)Tx+ b(1)

)
+ b(2)

)
+ b(3)

)
...

)
+ b(L) (2.2)

This is as called,the forward pass of the feed forward neural network.

Training of neural networks ‐ backpropagation algorithm

The goal is to learn the optimal parameters of weights and biases in order to infer
the model F that maps the input vectors to the corresponding outputs, or F (x) ≈ t

∀(x⃗, t⃗) ∈ training set. Initially, the parameters are random and a process of training
will correct them. The problem is approached as a typical optimization task. Thus an
appropriate cost function should be adopted and an algorithmic scheme to optimize
it.

9

Since we refer to a regression problem, a basic choice for the loss function, is the
sum of squares. Supposing that o(x, t) denotes the output vector of the network after
the forward pass of input vector x, with weights w we have

E(w) =
1

2
∥t− o(x, t)∥2 (2.3)

The algorithm for the minimization of (2.3) can be gradient descent or a more
efficient version called stochastic gradient decent or any other gradient based opti-
mization method. With gradient decent we run through all the samples in the training
set for an update of a parameter in a particular iteration, while in stohastic gradient
decent, we use a subset of training samples, called minibatch.
The weights are updated iterative following the rule:

wt+1 = wt − ρ
∂E

∂w
(2.4)

To apply gradient descent, we have to calculate the derivative. In 1986 Hinton
proposed backpropagation, influenced by the chain rule [20].

Theorem 2.1. (Chain Rule) Let g = (g1, .., gn) : I → Rn a differentiable curve. U ⊂ Rn

open subset with g(I) ⊂ U and f : U → R differentiable. Then f ◦ g : I → R differentiable
with

(f ◦ g)′(t) = grad(f(g(t))(g′(t)) =
∂f

∂x1

(g(t))g′1(t) ++
∂f

∂xn

(g(t))g′n(t)

∀t ∈ I

The theorem follows [21].

Backpropagation intuition

We initialize the network with random parameters and we do a forward pass for
an example (x, t). The output of the network is o(x, t) and thus we have the error
of the network, given by (2.3), and we can back propagate it. To explain the back
propagation algorithm we will present a specific example, and then we will generalize.
One important note is that we use sigmoid function as activation function for all the
layers, except the first layer, and it is true that σ′(t) = σ(t)(1− σ(t)).

We have:

• X = [x1, x2]
T = a(1)

10

Figure 2.3: Example of a neural network that we apply back propagation

• h(2) = W (1)TX → a(2) = σ(h(2))

• h(3) = W (2)Ta(2) → o = σ(h(3)) = a(3)

• E(w) = 1
2
(a(3) − t)2 and we need the derivatives ∂E

∂W (2)
and ∂E

∂W (1)

We start from the output layer, and by using the chain rule we have:

∂E

∂W (2)
=

∂E

∂a(3)
∂a(3)

∂h(3)

∂h(3)

∂W (2)

where

• ∂E
∂a(3)

= a(3) − t

• ∂a(3)

∂h(3) = σ′(h(3)) = σ(h(3))(1− σ(h(3))

• ∂h(3)

∂W (2)
= a(2)

⇒ ∂E

∂W (2)
= (a(3) − t)σ(h(3))(1− σ(h(3))a(2)

Afterwards, we continue the same process, starting from the last hidden layer until
the input layer, here we have only one hidden layer.

∂E

∂W (1)
=

∂E

∂a(2)
∂a(2)

∂h(2)

∂h(2)

∂W (1)

where

• ∂E
∂a(2)

= ∂E
∂a(3)

∂a(3)

∂h(3)
∂h(3)

∂a(2)
, where

– ∂E
∂a(3)

= a(3) − t

– ∂a(3)

∂h(3) = σ′(h(3)) = σ(h(3))(1− σ(h(3))

11

– ∂h(3)

∂a(2)
= W (2)

• ∂a(2)

∂h(2) = σ′(h(2)) = σ(h(2))(1− σ(h(2)))

• ∂h(2)

∂W (1)
= X = a(1)

⇒ ∂E

∂W (1)
= (a(3) − t)σ(h(3))(1− σ(h(3))W (2)σ(h(2))(1− σ(h(2)))X

Backpropagation general form

In order to obtain a general form of the derivatives that backpropagation gives we
compute a quantity δ. We assume that we have a network with L layers, that the first
layer is the input layer and the output layer is the Lth layer.

• Output layer
δL = (a(L) − t)σ(a(L))(1− σ(a(L)))

• Hidden layers
δi = δi+1(σ(a

(i))(1− σ(a(i)))W (i)

i = 2,, L− 1

Since it hold that
∂E

∂W (i)
= δi+1a

(i)

we calculate the derivative and apply it in (2.4) for an appropriate value of learning
rate ρ.

For the paramater of bias we have that

∂E

∂b(i)
= δi

with i = 2, .., L

There are many more details about neural networks in order to expand the topic
but with respect to the objective of this thesis, no further analysis will be done.
The main task in this thesis is regression with neural networks. There are many non
linear activation functions, like rectified linear activation function or ReLU, Hyperbolic
Tangent or Tanh and SoftMax. In classification problems Categorical cross entropy
is the commonly used loss function, that is well combined with SoftMax activation
function.

12

2.2 Numerical methods for solving ordinary differential equations

2.2.1 Ordinary differential equations

Differential equations are a field of both pure and applied mathematics and is a
powerful tool in many areas of science, being used extensively in mechanics, physics,
biology, and geometry. Physical lows that govern phenomena can be written as ordi-
nary differential equations, so that the equations themselves represent the relationship
between physical quantities and their rate of change through these lows.

A differential equation is an equation that represents the relationship between
unknown functions and their derivatives. There are some types of differential equa-
tions, depending on their characteristics. Some of the most common characteristics
that play a role in categorising an equation are the order, whether it is an ordinary
or partial equation, linear or non-linear and homogeneous or not. With respect to
the scope of this thesis, we mention the ordinary differential equations (ODEs) and
the initial-value problem.

ODEs describe the change of a variable y(x) with respect to an independent vari-
able x and the general form of an nth order ODE is given by (2.5)

a0(x)y + a1(x)y
′ + a2(x)y

′′ + ...+ any
(n) + p(x) = 0 (2.5)

where y′ = dy
dx
is the first order derivative, y′′ = d2y

dx2 the second derivative and respec-
tively y(n) = dny

dxn the nth derivative.
The equation (2.5) can be written also as an implicit ODE of n order, as is called,

given by the form:

F (x, y, y′, y′′, ...y(n−1), y(n)) = 0 (2.6)

or the explicit ODE of n order given by:

F (x, y, y′, y′′, ...y(n−1)) = y(n) (2.7)

The solution of an ordinary differential equation requires to define the type of the
ODE and follow the corresponding methodologies. Also, we have to mention that the
solution is a differentiable function as many times as the order of the ODE, which
verifies the ODE. However, in the scope of this thesis, we do not dive deep into how
to solve the general ordinary differential equation.

13

2.2.2 Initial value problem

An ODE that its solution satisfies a given initial condition is known as an initial value
problem (IVP). A nth order initial value problem constist of two parts:

• the ODE, given by 2.5

• initial conditions which gives the values of y(t), y′(t), y′′(t), ..., y(n)(t) at a partic-
ular point, that can be written in the form:

y(t0) = y0

y′(t0) = y1

y′′(t0) = y2
...

y(n)(t0) = y(n)

(2.8)

In the scope of this thesis, we introduce the first order initial value problem that is
given from the form y′(t) = f(t, y(t)), t ∈ [a, b]

y(a) = y0

(2.9)

We suppose that f ∈ C([a, b]×R) and the IVP given by (2.9) is satisfied by the function
y ∈ C1([a, b]). Most of real-life situations, require the solution of an initial-value
problem to be modelled and they are complicated to be solved exactly. An approach
for their solution is to use numerical methods for approximating the solution of the
original problem. We present a brief description for some numerical methods further
down.

Before presenting methods for approximating the solution of a first order initial-
value problem, we need to consider some definitions from the theory of ordinary dif-
ferential equations. The main things to consider are about the existence and unique-
ness of a solution, as well as whether it is well posed.

2.2.3 The Existence and Uniqueness of Solutions

Definition 2.1. A function f(t, y) : [a, b]×R → R is said to satisfy a Lipschitz condition
in the variable y, uniformly in t, if

(∃L > 0)(∀t ∈ [a, b])(∀y1, y2) : |f(t, y1)− f(t, y2)| ≤ L|y1 − y2| (2.10)

14

The constant L is called a Lipschitz constant for f.

Theorem 2.2. Assume that f(t, y) : [a, b]×R → R is continuous, differentiable and satisfies
the Lipschitz condition with respect to y, uniformly with respect to t, then for any inital
value y0 ∈ R the initial value problemy′(t) = f(t, y(t)), t ∈ [a, b]

y(a) = y0

possesses a unique solution.

Well posed methods

Now that we answered whether an IVP has a unique solution, it is also important
to answer to an other question. Initial-value problems describe physical phenomena,
thus we need to know especially when we use numerical methods to solve them,
whether small changes in the statement of the problem result to correspondingly
small changes in the solution.

Definition 2.2. The initial value problemy′(t) = f(t, y(t)), t ∈ [a, b]

y(a) = y0

is said to be well posed if:

• it has a unique solution y(t) ∈ C1[a, b]

• the initial value problem z′(t) = f(t, z(t)), t ∈ [a, b]

z(a) = z0, z0 ̸= y0

has a unique solution z(t) ∈ C1[a, b] such that

|z(t)− y(t)| < eL(t−a)|z0 − y0|

Numerical methods for the solutions of an initial value problem require it to be
well posed. The following theorem specifies conditions to ensure that an initial-value
problem is well-posed.

15

Theorem 2.3. Suppose a continues function f(t, y) : [a, b]×R → R that satisfies a Lipchitz
condition in the variable y, uniformly in t, then the initial value problem given by (2.9) is
well posed.

Some methods of IVPs are described in [22] [23].

2.2.4 Basic concepts of Numerical Methods for Initial‐Value Prob‐

lems

This section is intended to give an idea on how to solve ODEs numerically. Ap-
proximating the solution of an initial-value problem given by (2.9) with a numerical
method is not to find a continuous, close to the solution approximation, but instead,
approximations of y(t) will be generated at various values in the interval [a, b], called
mesh points. Once we obtain the approximate solution at these points, we can in-
terpolate to other points of [a, b]. The simplest numerical method for initial value
problems is Euler’s method, that is derived by using Taylor’s theorem, as well as
higher order Taylor methods. They are seldom used in practice, as these concepts
are generalized to more advanced methods, like Runge–Kutta and multistep schemes
[22]. In the scope of this thesis, we will introduce Euler’s method in order to get an
intuition and then we will expand to Runge Kutta.

Euler’s method

The goal of Euler’s method is to obtain an approximation of the solution y(t) to the
well-posed initial-value problemy′(t) = f(t, y(t)), t ∈ [a, b]

y(a) = y0

Let a = t0 < t1 < .. < tN = b be an uniform partition of the interval [a, b]. Euler’s
formula is given by: yn+1 = yn + hf(tn, yn)

y0 = y0 = y(a)
(2.11)

Once we use a uniform partition, with N ∈ N we let the distance between the points
to be h = b−a

N
, called step size, and ti = a + hi, i = 0, 1, 2, ..N . Euler’s numerical

16

method gives a set of approximations of y(t) at points ti. We start with y0 = y0 and
then we produce yi ≈ y(ti).

Higher order Taylor methods

Euler’s method is derived by Taylor’s theorem for n=1.

Theorem 2.4. (Taylor) Suppose that f is defined on some open interval I around a and
f (n+1)(x) exists on this interval. Then for each x ̸= a in I, there is a value c between x and
a, so that

f(x) =
N∑

n=0

f (n)(a)

n!
(x− a)n +

f (N+1)(c)

(N + 1)!
(x− a)(N+1) (2.12)

= f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)

2!
+ ...+ f (n+1)(c)

(x− a)N+1

(N + 1)!

Note

By using (2.12), for y(tn+1) around tn with h = tn+1 − tn , we get

y(tn+1) = y(tn) + hy′(tn) +
h2

2!
y′′(tn) + ...+

hn+1

(n+ 1)!
y(n+1)(c)

with c ∈ (ti, ti+1)

The main disadvantage of the Taylor methods is that they require the computation
and evaluation of the derivatives of f(t, y(t)) = y′(t). This is a complicated and time-
consuming procedure for most problems.

2.2.5 Runge Kutta methods

Runge-Kutta methods have the advantages of the Taylor methods but eliminate the
need to compute and evaluate the derivatives of f(t, y(t)). The RK (Runge–Kutta)
methods are single-step methods, which means that for the computation of the ap-
proximation yn+1 they use only the approximation at the previous point yn. We first
consider the initial value problem (2.9) and we seek its solution y : [a, b] → R. Each
set of constants (A, τi, bi) describes a RK method, that is usually written in the form of
a Runge–Kutta tableau (notation of J. Butcher). We have that i, j = 1, 2, 3,, q and
q are the computational rules. Let N ∈ N, h = b−a

N
, ti = a + ih points in the uniform

partition of [a, b] and yn the approximation of y(tn). We furthermore introduce the

17

a11 a12 ... a1q τ1

a21 a22 ... a2q τ2
...
aq1 aq2 ... aqq τq

b1 b2 ... bq

=
A τ

bT

Table 2.1: RK tableau

intermediate points tn,i = tn + τih with yn,i the approximation of y(tn,i). The general
RK method with q intermediate stages is described by:

y0 = y0

yn,i = yn + h
∑q

j=1 aijf(t
n,j, yn,j)

yn+1 = yn + h
∑q

i=1 bif(t
n,i, yn,i)

(2.13)

The stages yn,i are approximations to y(tn,i) but are only used for the computation
of the approximations yn+1.

One common used Runge Kutta method is of order four, that is also used in this
thesis, given by (2.14).

y0 = y0 = y(a)

k1 = hf(tn, yn)

k2 = hf

(
tn +

h

2
, yn +

1

2
k1

)
k3 = hf

(
tn +

h

2
, yn +

1

2
k2

)
k4 = hf(tn+1, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4) (2.14)

We introduce the notation k1, k2, k3, k4 into the method to eliminate the need for
successive nesting in f(t, y) [22] [23]. The RK of order four to approximate the
solution of an initial value problemy′(t) = f(t, y(t)), t ∈ [a, b]

y(a) = y0

18

for (N + 1) equally spaced numbers in the interval [a, b] is given by algorithm 3.1.

Algorithm 2.1 RK of order 4 algorithm
Require: integer N, initial condition y0 = y(a), an interval [a, b]
1: h = b−a

N

2: y0 = y0

3: for n=0 to N-1 do
4: tn = a+ nh

5: k1 = hf(tn, yn)

6: k2 = hf

(
tn + h

2
, yn + 1

2
k1

)
7: k3 = hf

(
tn + h

2
, yn + 1

2
k2

)
8: k4 = hf(tn+1, yn + k3)

9: yn+1 = yn + 1
6
(k1 + 2k2 + 2k3 + k4)

10: end for

2.2.6 Solving ODEs with neural networks

In respect with the topic of this thesis, we will do a briefly description of the method
that is presented in [4]. We followed the methodology for solving an ODE of first
order.

Description of the method

Assume a general differential equation definition

G

(
x,Ψ(x),∇Ψ(x),∇2Ψ(x)

)
= 0, ∀x ∈ D ⊂ Rn (2.15)

subject to certain boundary conditions (BC’s) (for instance Dirichlet and/or Neu-
mann), D is the definition domain and Ψ(x) is the solution of this ODE.

In order to solve this ODE we have to use a set of points of the discretization
of the domain D and its boundary S, D̂ and Ŝ respectively. The problem is then
transformed into the following system of equations:

G

(
xi,Ψ(xi),∇Ψ(xi),∇2Ψ(xi)

)
= 0, ∀xi ∈ D̂ (2.16)

subject to the constraints imposed by the B.Cs.

19

Suppose that Ψt(x, p) is the trial solution with adjustable parameters p. Then the
problem is transformed to:

minp

∑
xi∈D̂

(
G
(
xi,Ψt(xi, p),∇Ψt(xi, p),∇2Ψt(xi, p)

))2

(2.17)

subject to the constraints imposed by the B.Cs.
We choose a form for the trial function such that by construction satisfies the BC’s.

This is achieved by writing it as a sum of two terms:

Ψt(x) = A(x) + F (x,N(x, p)) (2.18)

where A(x) satisfies the boundary conditions and do not contain adjustable parame-
ters and F (x,N(x, p)) contains the single-output feedforward neural network N(x, p)

with adjustable parameters p, which are the weights and biases that are adjusted in
order to deal the minimization problem 2.17.

With respect to this thesis, we deal with problems of the form:

dΨ(x)

dx
= f(x,Ψ) (2.19)

with x ∈ [a, b], Ψ(a) = A and solution Ψ(x). For the solution of the problem 2.19 we
have the trial solution

Ψt(x) = A+ (x− a)N(x, p)

and we have to find the optimal parameters p (weights, biases) in order to minimize
the loss function given by 2.20.

Ep =
∑
i

{
dΨt(xi)

dx
− f(xi,Ψt(xi))

}2

(2.20)

The derivative Ψ′
t(x) =

dΨt(x)
dx

is given by:

Ψ′
t(x) = N(x, p) + (x− a)

dN(x, p)

dx
(2.21)

After the process of minimizing 2.20 we have the optimal parameters p and thus
we have Ψt(x) ≈ Ψ(x). The gradient of the network with respect to inputs is described
in section 3.3.

20

2.3 Extrapolation

2.3.1 Definition, basic concepts

In mathematics extrapolation is a type of estimation of some function at points that
are outside the range of known values. Through extrapolation we make inferences
about a hypothetical situation based on known facts, that is, we can do forecasting.
Interpolation is a related term, which involves determining a function’s value at
intermediate points based on the value of other points.

Figure 2.4: Given the data points in white section, the lines represent polynomial mod-
els in order to make predictions for intermediate points in white region(interpolation)
as well as make predictions for data outside the domain in grey region(extrapolation)

We can see that there is a risk in extrapolation as the model predictions outside
of the training domain are sensitive and can result in unpredictable behaviour.

In order to choose the optimal method for extrapolation we have to initially answer
to some questions that concern the problem and the data that are available. The
estimations have high risk of uncertainty as we expand known experience into an
area not known. Some of the methods that are used are:
Linear extrapolation that is used for data that can be represented by a line or a
hyperplane and it is expanded to regression techniques.
Polynomial extrapolation that is typically done by Lagrange interpolation or using
Newton’s method of finite differences to create a Newton series that fits the data. The
resulting polynomial may produces estimations for extrapolation.

There are also other methods of extrapolation but with respect to the topic of this
thesis we will not expand further.

21

Extrapolation of neural networks

It is well known that neural networks are universal function approximators. How-
ever, neural networks are not expected to extrapolate well for data points in a non
trained region, in most nonlinear tasks. In the scope of this thesis we care about the
extrapolation ability of neural networks, through a proposed method that is presented
further down. We exploit the ability of differential equations to follow the function
evolution and we try to discover if the neural networks can be used in a simplified
way for extrapolation purpose.

22

CHAPTER 3

THE PROPOSED METHOD

3.1 Structure of the method

3.2 Summary of the method

3.3 Gradient of a neural network

3.4 Variations of the method

3.1 Structure of the method

The proposed method consists of three basic steps, that are applied sequentially. As-
suming we have a problem that can be described by two variables in a certain domain,
for example, a time series, a neural network can model the relationship between the
variables in this domain. However, one limitation is that it has no extrapolation capa-
bility. Therefore, it may not be appropriate to use neural networks to make reliable
predictions outside the domain for which they were trained. The method proposed
here attempts to obtain extrapolation results for the problem described and is pre-
sented analytically in this section.

3.1.1 First step ‐ initial neural network

The problem consists of n data points (ti, P (ti)) corresponding to an unknown func-
tion P(t). We assume that ti ∈ I = [xmin, xmax]. We approximate the unknown function
P(t) by training the neural network Ni(t) in I. As we said, a neural network can be

23

trained to approximate a function regardless of the complexity in the defined domain,
so let us assume that

P (t) ≈ Ni(t)

in I. However, for ti > xmax, Ni(t) yields results that cannot be related to P (t), and
the extrapolation may fail.

Neural network description

Ni(t) is a single-linear-output feedforward neural network with one input unit t and
one hidden layer consisted of H sigmoid units. For a given input t the output of the
network is N =

∑H
i=1 viσ(zi) ,where zi = wit+ui, wi denotes the weight from the input

unit to the hidden unit i, vi denotes the weights of the hidden unit i to the output,
ui denotes the bias of the hidden unit i and σ(z) is the sigmoid transfer function.

The architecture of Ni(t) is given graphically in figure 3.1.

Figure 3.1: Architecture of Ni(t)

3.1.2 Second step – numerical ODE definition

Suppose that P (t), with P (t) ≈ Ni(t), is the solution of an unknown ordinary dif-
ferential equation (ODE) of first order. The idea of the proposed method is to train
a model to learn this ODE. Differential equations can express laws of physics and
predict the evolution of a system, hence it would be useful to explore the ODE that
gives P (t) as solution, in order to obtain predictions for future data. We define this
ODE by equation (3.1)

dNi(t)

dt
= No(t)Ni(t) (3.1)

24

No(t) is a feed-forward neural network with the same architecture as Ni(t) and
parameters θ which are the corresponding weights and biases.The network No(t) is
trained in the interval I1 = [smin, smax], where
I1 ⊂ I and smin > xmin.

The error quantity to be minimized for training N0(t) is given by

E(θ) =
∑
i

{dNi(t)

dt
−No(t)Ni(t)}2 (3.2)

After the training of No(t) we have the numerical ODE (3.1) and we can finally solve
this ODE to check if its solution approximates P(t).

3.1.3 Third step – solution of numerical ODE

ODE (3.1) should give accurate solution at least in the domain I and most desirable
after xmax. The two methods that were chosen to solve the numerical ODE are:

• Runge Kutta of order 4, as described in 2.2.5.

• Neural network solution, as described in 2.2.6.

We solve the numerical ODE (3.1) in the domain I3 = [smin, fmax] with fmax > xmax,
as we care about the extrapolation results.

3.2 Summary of the method

In total the following three steps constitute the proposed method,

• Given n data points (ti, P (ti))

• I = [xmin, xmax] : domain of the initial neural network Ni(t) training

– P (t) ≈ Ni(t)

• Numerical ODE (3.1) : dNi

dt
= No(t)Ni(t)

• I1 = [smin, smax] : domain of (1) definition and No(t) training

– I1 ⊂ I and smin > xmin

• I2 = [smin, fmax] : domain of ODE (1) solution with fmax > xmax.

25

Figure 3.2: Intervals of the proposed method
graphically

The illustration of the intervals is given in figure 3.2.
The reason for choosing these intervals is that we are mainly concerned with the

property of extrapolation. It has beedn observed that ignoring the starting points
from xmin helps to get better results after xmax. Better results in extrapolation mean
that the numerical ODE (3.1) manages to approximate the exact ODE with solution
P (t) after xmax. The value of smax is chosen to be less or equal to xmax because the
initial neural network Ni(t) near the edge may not be able to approximate P(t). The
accuracy of Ni(t) is very important for the performance of No(t).

3.3 Gradient of a neural network

The efficient minimization of the error quantity given by equation (3.2) requires the
gradient of the neural network Ni(t) with respect to its inputs. Since an artificial neural
network is a differential approximation function, we can compute the derivatives. The
proposed method was tested for first order ODEs, since the main purpose is to model
data (ti,P(ti)) coming from a function P(t) that is the solution of an ODE we do
not know, so we assume it is a first order differential equation. It would be simple to
extend the method for second or higher order ODEs, since we can have the derivatives
of N(t).

• first derivative

dNi

dt
=

H∑
i=1

viσ
′(zi) =

H∑
i=1

viσ(zi)(1− σ(zi))wi

26

• second derivative

d2N

dt2
=

H∑
i=1

viσ
′′(zi) =

H∑
i=1

viσ(zi)(1− σ(zi))(1− 2σ(zi))w
2
i

Similarly we can find the higher order derivatives.

3.4 Variations of the method

This section presents some different models that have been tested instead of the
model described by equation (3.1). There are many variants that could be tried, three
of them are presented here.

Add a second neural network ‐ correction network

The ODE model (3.1), attempts to approximate the exact ODE with solution P (t) ≈
Ni(t) can be modified into a more sophisticated model, given by equation (3.3),

dNi

dt
= No(t)Ni(t) +Nc(t) (3.3)

where Nc(t) is a feed-forward neural network with the same architecture as Ni(t) and
No(t) and the corresponding parameters of weights and biases. This approach was
inspired because the model from equation (3.1) does not give accurate results at the
points where Ni(t) = 0. This is because the form of (3.1) is dNi

dt
= neto(t)Ni(t). Thus,

when Ni(t) becomes zero, the derivative is also zero and the ODE model (3.1) cannot
approximate the exact ODE with solution P(t). In the experimental part, it is found
that the ODE (3.1) generates spikes at these points ti with Ni(ti) = 0. The idea is that
the second network can correct these spikes, contributing to a better extrapolation.
There are two approaches:

• train the two networks simultaneously

• train No(t) first and then Nc(t)

The simplified model

One simple variation of ((3.1)) is to keep No(t)and Nc(t) and train them to learn the
derivative of the network Ni(t) without including the model Ni(t):

27

dN

dt
= No(t) +Nc(t). (3.4)

Also the two networks can be trained together or separately. Furthermore, we have
considered the model

dNi

dt
= No(t) (3.5)

which is the most simple model that can be used, where we just approximate the
derivative with No(t).

The method that is proposed in this chapter follows algorithm 3.1.

Algorithm 3.1 Algorithm of the proposed method
Require: a data set of examples (ti, P (ti)), the interval I=[xmin, xmax] of ti
1: train the initial network Ni(t) in I
2: select the numerical ODE model
3: define I1

4: train the networks of the defined numerical ODE in I1

5: define I2

6: solve the numerical ODE in I2 with Runge Kutta of order 4 and Neural network
7: plot together: P (t), the initial Ni(t), the Runge Kutta solution of the numerical
ODE and the neural network solution of the numerical ODE and observe the
extrapolation results.

28

CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Software requirements

4.2 Datasets

4.3 Hyperparameters and architecture details

4.4 Illustration of the method

4.5 Extrapolation results

4.6 Data with noise

4.7 Results of the alternative ODE models

4.8 Experiment with unknown ODE

In this section the experimental process is presented and the results that came up. An
important note is that the performance of the proposed method strongly depends on
the initialization of the intervals I, I1, I2. Therefore, each of the experiments had to be
performed several times, with different values of the intervals and different parameter
settings. Each step of the implementation depends on the previous step and strongly
affects the extrapolation. For example, poor training for Ni(t) near xmax, affects the
next steps and thus the extrapolation. Once the experimental results were collected,
an analysis was performed to draw conclusions. It is important to say that after the
experimental study the conclusion is that the model (3.1) gives the best extrapolation
results, compared to the other models.

29

4.1 Software requirements

The code of this thesis was written in Python programming language using the
following libraries:

• Numpy library, a fundamental package for scientific computing with Python
and mathematical computations with matrices and vectors.

• Pytorch, an open source machine learning framework which uses Tensors, useful
for calculus problems with derivatives, building and training artificial neural
networks.

• Matplotlib, a library for creating different kind of visualizations.

4.2 Datasets

In all experiments and examples presented, the initial dataset consists of one feature
t and one target value P (t), with t ∈ I = [xmin, xmax].

• For the training of Ni(t) we consider a uniform partition of [xmin, xmax] with
data points (ti, P (ti)) where P (t) is supposed to be the solution of a first order
ordinary differential equation. In total, the method was tested on 4 examples
with different characteristics. Each data set is divided into two subsets: training
set and test set, consisting of 100 and 50 points respectively.

• In the second phase of the implementation we need to learn the differential
equation whose solution is Ni(t) ≈ P (t). For this purpose, we trained in I1,
No(t) for the model (3.1) and also Nc(t) for the other models. Since we know
Ni(t) and thus dNi

dt
, we can define the number of data points that will be used

in this step. The goal is to minimize the error quantity given by (3.2). After
research, in order to avoid overffiting and obtain fast results, for the specific
examples that were tried, we decided to use 800 data points for the training set
and 1000 or more new points for the testing.

• In the third stage we have the numerical differential equation (the model) in I1

and we solve it in I2. For the solution, we can also define the number of data
points that can be used for the Runge Kutta method, as well as for the training

30

of the neural network Ns(t). The number of data points for training is set to
800 and for testing to 2000 new points.

We also repeated the experiments with the same data sets with the addition of noise
in P (t) to test how the noise affects the results.

4.3 Hyperparameters and architecture details

Determining the hyperparameters and the proper architecture of a neural network
in advance is a difficult task. Based on investigations, all the neural networks trained
during the implementation and used in the proposed models, have the same architec-
ture. They are fully connected with 3 layers: an input layer, one hidden layer and an
output layer. The hidden layer consists of H = 10 neurons and Sigmoid was chosen
as the activation function to represent the nonlinear relationships between the feature
and the target.

For training, we used the Adam optimizer and Adam’s hyperparameter η has the
value of 0.01 for all the trained neural networks. In table 4.1, we present the values
of the hyperparameters for the models given by the equations (3.1) and (3.5) as a
whole.

Table 4.1: Hyperparameters of Neural Networks that were trained in the implemen-
tation, using models (3.1) or (3.5)

Neural hidden Neurons training test epochs
Network layers points points

Ni(t) 1 10 100 50 [2000− 4000]

No(t) 1 10 800 1500 [8000− 10000]

Nc(t) 1 10 800 2000 [1000− 2000]

For the models given by (3.3) and (3.4), we have to train also Nc(t):

• if we train the two networks No and Nc together, then we train for [8000−10000]

epochs.

• if we train the two networks separately, then we train first No for [9000− 10000]

epochs and after Nc with [1000− 1500] epochs.

31

The number of epochs is defined regarding the examples used in this thesis. The best
choice for the number of epochs is based on the problem and on the purpose about
how much we can reduce the error without causing overfitting.

4.4 Illustration of the method

This section provides an illustration of the method and how it performs in 4 different
cases that we know the ODE and the solution P(t) for t ∈ I and we want to investigate
whether the proposed method can extrapolate. The model that is used for these results
is 3.1, because as mentioned it gives the best extrapolation results. For each problem
is shown:

• The ODE that gives the solution P (t), which is tested with the numerical
ODE(model 3.1). They should be identical or very similar. We can see how
the numerical ODE behaves in the domain and also outside of the domain for
untrained data.

• A figure containing the comparison between the solution of numerical ODE with
neural network, the solution of the numerical ODE with Runge Kutta, the exact
function P (t) and the approximation of the initial network Ni(t), Ni(t) ≈ P (t).
Again, we can see the result in the domain and also for extrapolation points.

It is of major importance to refer that we assume, without loss of generality, that
all the examples used follow the theory described in section 2.2.

The choice of intervals I, I1 and I2 was crucial. Each example was tested for many
combinations of the intervals, larger or smaller. The illustration of the method follows
the intervals shown in table 4.2.

Table 4.2: Intervals I, I1, I2

Problem I = [xmin, xmax] I1 = [smin, smax] I2 = [smin, fmax]

1 [−4, 4] [0, 4] [0, 6]

2 [−4, 4] [1, 4] [1, 6]

3 [0, 5] [1, 5] [1, 7]

4 [0, 7] [1, 7] [1, 9]

32

Problem 1
dP

dt
= cost

with P (−4) = sin(−4) and t ∈ [−4, 4]. The analytical solution is P (t) = sint.

Figure 4.1: Example 1 - ODE

Figure 4.2: Example 1 - P(t) approximation

33

Problem 2
dP

dt
= −1

5
P + e−

t
5 cost

with P (−4) = e−
4
5 sin(−4) and t ∈ [−4, 4]. The analytical solution is

P (t) = e−
t
5 sint.

Figure 4.3: Example 2 - ODE

Figure 4.4: Example 2 - P(t) approximation

34

Problem 3
dP

dt
= −2P + 12sin(2t)

with P(0)=5 and t ∈ [0, 5]. The analytical solution is

P (t) = −3cos(2t) + 3sin(2t) + 8e−2t.

Figure 4.5: Example 3 - ODE

Figure 4.6: Example 3 - P(t) approximation

35

Problem 4
dP

dt
+ cos(tP) = 2cost

with P (0) = 3 and t ∈ [0, 7]. The analytical solution is

P (t) = 2 + e−sint.

Figure 4.7: Example 4 - ODE

Figure 4.8: Example 4 - P(t) approximation

36

4.5 Extrapolation results

The first question that should be answered is whether the proposed method gives
better results from Ni(t) in terms of extrapolation or not. Of course, we are also in-
terested about interpolation. A second question is how we can measure the results in
order to obtain conclusions.
After the experimental phase where all the results were collected, we present here an
analysis of the mean extrapolation error to draw inferences. The model used in this
section is the model (3.1).

• An interesting thing that would be useful is to define the range of extrapolation. In
this section we analyse for each example, a range of how far out of the domain
is safe to extrapolate.

• We aslo make a quantitative comparison between the two methods used to solve
the numerical ODE, which are Runge Kutta and neural network. In this way
we test also the ground truth (comparison with P(t)).

In table 4.3 we can observe that the initial approximation of the function P(t) with
Ni(t) gives a larger mean extrapolation error for all the examples. This was not
unpredictable, as it was expected that Ni(t) would have a low mean error only in the
training domain.

Extrapolation error

We define the extrapolation error as:

Errorextr(ti) = |prediction(ti)− P (ti)| (4.1)

with ti ∈ T = [xmax, fmax]

• prediction is Ni(t) or the solution of the numerical ODE either with Runge Kutta
or neural network for points ti ∈ T .

• P (ti) is the value of ti ∈ T.

37

Range of extrapolation

We define the range of extrapolation as

R = fmax − xmax (4.2)

with fmax > xmax. Figures (4.9) to (4.12) show the mean value of the extrapolation
error for different cases of R comparing the Runge Kutta solution and the neural
network. The conclusion is that, for these examples, we can extrapolate up to two
units of xmax for both methods. We see that there is no conclusion which method
works better. For example, in problem 1 the results are very close and there is no
significant difference because the extrapolation error is very low for both methods. In
contrast, the neural network solution for problem 2 yields a larger mean error. In the
illustration of the method, we can see that the main feature in each example is that the
numerical ODE approaches the exact ODE after xmax. If we have the numerical ODE,
then we can solve it and get an accurate solution. In all examples, we used smax = xmax

because we achieved to train Ni(t) with a very low error even in the neighborhood of
the boundary xmax. However, the result is the same if we choose xmax = smax + ϵ and
it might help to kind of examples with approximation problems at the boundary. The
training of Ni(t) is very important to be precise especially in the points around xmax

because it also affects the numerical ODE due to the derivative dN
dt
. In table 4.3 we can

see the statistics of the extrapolation error for ti ∈ T = [xmax, fmax] = [xmax, xmax +2].

4.6 Data with noise

In all the examples, the data are synthetic which we obtained from a function P(t),
which is solution of known ODE. They do not contain any kind of noise. However,
adding noise to the data presents a more realistic case and increases the difficulty. In
this section, we present the results of adding random noise from 0.2 to 0.4 for all
the used problems. We observe the statistics of the extrapolation error as the noise
becomes bigger and in tables 4.4 - 4.7 is shown that the extrapolation error is getting
more as the noise is increased. Actually, for noise value of 0.4 the extrapolation error
is almost equal to the mean error of Ni(t) when there is no noise, which means that
the proposed method fails to extrapolate better than Ni(t). In contrast with noise
values of 0.2 and 0.3 where the extrapolation error is lower. This will also be shown

38

Figure 4.9: Problem 1 - Extrapolation error for various
ranges

Figure 4.10: Problem 2 - Extrapolation error for various
ranges

39

Figure 4.11: Problem 3 - Extrapolation error for various
ranges

Figure 4.12: Problem 4 - Extrapolation error for various
ranges

40

Table 4.3: Statistics of extrapolation error

for ti ∈ T = [xmax, xmax + 2]

Method Problem Mean St.Dev. Max
Runge Kutta 1 0.0469 0.0198 0.0784

2 0.0380 0.0208 0.0717
3 1.1671 0.5485 1.9121
4 0.0788 0.0720 0.2270

Neural Network 1 0.0514 0.0232 0.0894
2 0.0418 0.0238 0.0830
3 1.0081 0.6579 1.9044
4 0.0721 0.0450 0.1347

initial Ni(t) 1 1.2123 0.512 2.0433
2 1.3227 0.3641 1.6302
3 2.1147 0.7514 3.1215
4 1.5957 0.1425 1.9403

in section (4.8), where we consider a real dataset, which of course contains noise.

41

Table 4.4: Example 1 - Statistics of extrapolation error for data with noise for ti ∈
T = [xmax, xmax + 2]

Method Noise Mean St.Dev. Max
Runge Kutta 0 0.0469 0.0198 0.0784

0.2 0.0779 0.3071 0.5321
0.3 0.6711 0.2910 1.8156
0.4 1.2132 0.6201 2.0112

Neural Network 0 0.0514 0.0232 0.0894
0.2 0.0823 0.2031 0.1209
0.3 0.8399 0.5188 1.1045
0.4 1.5103 0.6233 1.9934

Table 4.5: Example 2 - Statistics of extrapolation error for data with noise for ti ∈
T = [xmax, xmax + 2]

Method Noise Mean St.Dev. Max
Runge Kutta 0 0.0380 0.0208 0.0717

0.2 0.0522 0.3291 1.1201
0.3 0.8191 0.4920 1.8526
0.4 1.3212 0.7581 1.8822

Neural Network 0 0.0418 0.0238 0.0830
0.2 0.0623 0.4322 0.7939
0.3 0.7989 0.5988 1.4565
0.4 1.5231 0.6523 1.9883

42

Table 4.6: Example 3 - Statistics of extrapolation error for data with noise for ti ∈
T = [xmax, xmax + 2]

Method Noise Mean St.Dev. Max
Runge Kutta 0 1.1671 0.5485 1.9121

0.2 1.456 0.4181 1.7201
0.3 1.5881 0.7812 2.556
0.4 1.862 0.8281 2.722

Neural Network 0 1.0081 0.6579 1.9044
0.2 1.1221 0.6622 1.3439
0.3 1.3399 0.7988 1.6655
0.4 1.5523 0.8933 2.1083

Table 4.7: Example 4 - Statistics of extrapolation error for data with noise for ti ∈
T = [xmax, xmax + 2]

Method Noise Mean St.Dev. Max
Runge Kutta 0 0.0788 0.0720 0.2270

0.2 0.1223 0.2291 0.4021
0.3 0.6981 0.5610 0.8156
0.4 1.0662 0.681 1.722

Neural Network 0 0.0721 0.0450 0.1347
0.2 0.2321 0.0722 0.4239
0.3 0.6599 0.1588 1.0543
0.4 1.0323 1.2323 1.3083

4.7 Results of the alternative ODE models

Throughout chapter 2 we mention the ODE model given by equation (3.1) as having
the best extrapolation ability, in contrast with the other alternative models presented.
There are many combinations of these models that can yield new ODE models. In
this thesis we tested three alternative models, which are :

• dNi

dt
= No(t)Ni(t) +Nc(t), model given by (3.3)

43

• dN
dt

= No(t) +Nc(t), model given by (3.4)

• dN
dt

= No(t), model given by (3.5)

Main idea

Recalling again the model given by (3.1): dNi

dt
= No(t)Ni(t), we can see that Ni(t) is

a part of it. This is because we initially thought that an ODE could contain its own
solution. However, as we mentioned earlier, when Ni(t) becomes zero, the derivative
dNi

dt
also becomes zero. In these cases, the model given by (3.1) cannot approximate the

exact ODE and spikes occur. We can also observe this phenomenon in the illustration
of the method, in section 4.4. The main idea behind the alternative models is to avoid
these spikes.

Results

The model given by (3.3) can be trained in two ways, either by training No and Nc

together, or separately. In the first way, the spikes vanish since the derivative dNi

dt
does

not become zero when Ni is zero. However the extrapolation results are worse than
those of the model 3.1 and the ODE model does not fit exactly the ODE outside the
training domain, so the solution of the numerical ODE does not fit with P(t) either.
In the second way where they are trained separately, the spikes are still present. This
is because we first train No(t) to learn the derivative, so we have spikes. Then, we
train Nc(t) to improve or correct the numerical ODE. In this way the model does
overfitting. As with the model (3.4), we can also train the two networks together or
separately. By using this model there are no spikes in the numerical ODE, but this
fact does not improve the extrapolation. Moreover, when the two networks are trained
separately, the model does overfitting. Finally, model (3.5) also shows no spikes in
the numerical ODE, but the extrapolation is worse, compared to model (3.1). Tables
4.8 to 4.10 show the statistical results of the extrapolation error for R=2, for solving
the numerical ODE with Runge Kutta and neural network, as well as the ground
truth with the initial network Ni(t). We can observe, that compared to the results of
the model (3.1), keeping the same range of extrapolation (R=2), the mean error is
worse.

44

Numerical ODE behavior

The performance of each model is based in the property of numerical ODE to be
accurate out of the domain, which is something that deeply depends in the training
on Ni(t). Since we define how far out of the domain the numerical ODE can be
accurate, we can solve it. In conclusion, these alternative models can not produce a
numerical ODE that is precise after xmax, although the training of Ni(t) is the same.

Table 4.8: Statistics of extrapolation error

for ti ∈ T = [xmax, xmax + 2] with model (3.3):dNi

dt
= No(t)Ni(t) +Nc(t)

Method Problem Mean St.Dev. Max
Runge Kutta 1 0.8181 0.3918 1.2784

2 0.6380 0.4258 1.6756
3 1.8782 0.8485 2.1234
4 0.8088 0.8422 1.4270

Neural Network 1 0.8644 0.4532 1.3884
2 0.5928 0.4238 0.9809
3 1.7881 0.8599 2.1044
4 0.8721 0.8450 1.2637

Table 4.9: Statistics of extrapolation error

for ti ∈ T = [xmax, xmax + 2] with model (3.4):dNi

dt
= No(t) +Nc(t)

Method Problem Mean St.Dev. Max
Runge Kutta 1 0.5469 0.5198 0.9784

2 0.6380 0.4208 1.0726
3 1.5672 0.8485 2.0524
4 0.7673 0.3740 1.0237

Neural Network 1 0.0514 0.0232 0.0894
2 0.5446 0.5269 0.8930
3 1.6784 0.8649 2.9342
4 0.7521 0.7942 1.1481

45

Table 4.10: Statistics of extrapolation error

for ti ∈ T = [xmax, xmax + 2] with model (3.5):dNi

dt
= No(t)

Method Problem Mean St.Dev. Max
Runge Kutta 1 0.6469 0.7198 1.0593

2 0.6838 0.5901 1.0875
3 1.8570 0.9460 2.6801
4 1.2488 0.5781 1.72270

Neural Network 1 0.6734 0.5232 0.9098
2 0.6741 0.6578 1.1850
3 1.9857 0.8579 2.8334
4 1.2681 0.5908 1.9793

4.8 Experiment with unknown ODE

For testing the method we use a time series with real data (ti, P (ti)), therefore we do
not know the ordinary differential equation that is hidden behind P(t)(if any exists).
We suppose that the time series is a solution of an ODE, which is approximated by
model (3.1).

Figure 4.13: The real time series where we do not which
ODE it satisfies

46

Results of the method with unknown ODE

The process for identifying the extrapolation result includes the following steps:

• train the initial neural network Ni(t) to learn P(t) in I = [xmin, xmax].

• train No(t) in order to obtain the numerical ODE, for different intervals I1.

• solve the numerical ODE in I2, for R=1.5.

Figures (4.14) to (4.16) illustrate the performance of the method, for different cases
of xmax. After the black horizontal line, there are extrapolation data, that were not
used for training. We can notice that the proposed method can approximate P(t) after
xmax up to a maximum of 1.5 units. This happens due to the fact that we have real
data that contain noise. Unfortunately, we do not have the exact ODE, to test the
behavior of the numerical ODE after xmax. However, it turns out that the numerical
ODE approximation is effective for 0.5 to 1 unit, so the solution of the numerical
ODE can approximate P(t). The training of Ni(t) again played an important role, as
it must be as precise as possible, without overfitting. The interval values for each case
are listed in the table 4.11. For the training of Ni(t) we had to increase the number
of epochs to 13.000, while keeping the same hyperparameters that we mentioned
earlier. Table 4.12 shows the statisticals for each case, with the extrapolation range R
= 1.5. It is important to say that the results are not always the same when we run
the experiments.This happens because of the deep dependence on Ni(t) training but
also on No(t) training.

Table 4.11: Intervals I, I1, I2 for the testing time series example

Case I = [xmin, xmax] I1 = [smin, smax] I2 = [smin, fmax]

1 [0, 3] [1, 3] [1, 4]

2 [0, 2] [1, 2] [1, 3]

3 [1, 3.5] [2, 3.5] [2, 4.5]

47

Figure 4.14: Case 1

Illustration of case 1

Illustration of case 2

Figure 4.15: Case 2

48

Figure 4.16: Case 3

Table 4.12: Statistics of the extrapolation error of the testing time series, for ti ∈ T =

[xmax, xmax + 1.5], R=1.5, with model (3.1)

Method Case Mean St.Dev. Max
Runge Kutta 1 0.0899 0.0828 0.8989

2 0.0780 0.0628 0.5217
3 0.0771 0.05365 0.2021

Neural Network 1 0.0918 0.0832 0.8994
2 0.0782 0.0631 0.5221
3 0.0769 0.5367 0.2021

initial Ni(t) 1 0.3133 0.0512 0.5532
2 0.1227 0.0641 0.3321
3 0.2137 0.0514 0.2151

Illustration of case 3

We can observe in figures 4.14 to 4.16 as well as in table 4.12 that the proposed
method has a significant better extrapolation ability than the initial neural network
in the three cases. The Runge Kutta method and the Neural Network solution have
similar performance and it is shown that there is no important difference between
them, regarding the extrapolation error.

49

CHAPTER 5

EPILOGUE

5.1 Conclusion

5.2 Future work

5.1 Conclusion

In this thesis we studied a method inspired by neural networks and numerical meth-
ods for solving differential equations, for function extrapolation. The study of the
background theory and the design of the proposed method led to the implemen-
tation of several variants and experiments. The proposed method attempts to solve
the problem of extrapolation in a time series problem where we have a set of data
(ti, P (ti)), with ti ∈ I. We initially start by training a neural network in I to approxi-
mate P(t), and then we discover the first-order ODE, which is satisfied by P(t), using a
numerical ODE model. We then solve the numerical ODE using a numerical method.
Specifically, we use Runge Kutta and a neural network to solve the numerical ODE.
The solution is expected to yield efficient extrapolation performance. Experimental
results for the examples used show that the proposed method achieves better ex-
trapolation than an initial feedforward neural network for a given data set. Runge
Kutta and neural network method do not have significant differences in solving the
numerical ODE. However, we must say that the extrapolation results are influenced
by the type of the problem and the training phase.

50

5.2 Future work

The proposed method can theoretically be adapted to any time series problem with
two variables and can achieve reasonable extrapolation. However, extrapolation in
general carries a large risk due to uncertainty and randomness. There is a high
dependence on the training process and parameter setting. Thus, there is still much
research to be done in order to obtain even clearer and more reliable results.

• It would be interesting to try more models as ODE models, combine neural
networks and use other alternatives.

• Another thing to try is to explore more hyperparameter setups in order to
fine-tune the models.

• We can also try to re-train the model using the extrapolation results from the
previous intervals and investigate how far we can extrapolate using this method-
ology.

• As mentioned earlier, it is important for the initial network to be accurate at
the boundary xmax. It would be intriguing to make the proposed method more
systematic and automatically check in the edge whether the interval needs to
be shortened a bit or not, as well as how this affects the extrapolation.

51

BIBLIOGRAPHY

[1] L. Siklóssy, “On the evolution of artificial intelligence,” Information Sciences,
vol. 2, no. 4, pp. 369–377, 1970. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0020025570900344

[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–
44, 05 2015.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org

[4] I. Lagaris, A. Likas, and D. Fotiadis, “Artificial neural networks for solving or-
dinary and partial differential equations,” IEEE Transactions on Neural Networks,
vol. 9, no. 5, pp. 987–1000, 1998.

[5] C. Michoski, M. Milosavljević, T. Oliver, and D. R. Hatch, “Solving differential
equations using deep neural networks,” Neurocomputing, vol. 399, pp. 193–
212, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231220301909

[6] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary
differential equations,” Advances in neural information processing systems, vol. 31,
2018.

[7] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear
embeddings of nonlinear dynamics,” Nature communications, vol. 9, no. 1, pp.
1–10, 2018.

[8] L. Lu, P. Jin, and G. E. Karniadakis, “Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem
of operators,” arXiv preprint arXiv:1910.03193, 2019.

52

https://www.sciencedirect.com/science/article/pii/0020025570900344
https://www.sciencedirect.com/science/article/pii/0020025570900344
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/S0925231220301909
https://www.sciencedirect.com/science/article/pii/S0925231220301909

[9] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,” Journal of
Computational Physics, vol. 378, pp. 686–707, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021999118307125

[10] G. Karniadakis, Y. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” pp. 1–19, 05 2021.

[11] G. Kissas, Y. Yang, E. Hwuang, W. R. Witschey, J. A. Detre, and
P. Perdikaris, “Machine learning in cardiovascular flows modeling: Predicting
arterial blood pressure from non-invasive 4d flow mri data using
physics-informed neural networks,” Computer Methods in Applied Mechanics
and Engineering, vol. 358, p. 112623, 2020. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0045782519305055

[12] S. Christin, E. Hervet, and N. Lecomte, “Applications for deep learning in
ecology,” bioRxiv, 2018. [Online]. Available: https://www.biorxiv.org/content/
early/2018/05/30/334854

[13] E. B. Ghadami A, “Data-driven prediction in dynamical systems: recent
developments,” 2022. [Online]. Available: https://royalsocietypublishing.org/doi/
epdf/10.1098/rsta.2021.0213

[14] P. Sodhi, N. Awasthi, and V. Sharma, “Introduction to machine learning and its
basic application in python,” SSRN Electronic Journal, 01 2019.

[15] J. Brownlee, Master Machine Learning Algorithms: Discover How They Work and
Implement Them From Scratch, 2016. [Online]. Available: https://books.google.gr/
books?id=PdZBnQAACAAJ

[16] C. M. Bishop, Pattern Recognition and Machine Learning, 2006.

[17] A. Hurson and S. Wu, AI and Cloud Computing, ser. ISSN, 2021. [Online].
Available: https://books.google.gr/books?id=4WIFEAAAQBAJ

[18] “Supervised learning (2022, august 31). wikipedia. retrieved september 29,
2022.” [Online]. Available: https://en.wikipedia.org/wiki/Supervised_learning

53

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0045782519305055
https://www.sciencedirect.com/science/article/pii/S0045782519305055
https://www.biorxiv.org/content/early/2018/05/30/334854
https://www.biorxiv.org/content/early/2018/05/30/334854
https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2021.0213
https://royalsocietypublishing.org/doi/epdf/10.1098/rsta.2021.0213
https://books.google.gr/books?id=PdZBnQAACAAJ
https://books.google.gr/books?id=PdZBnQAACAAJ
https://books.google.gr/books?id=4WIFEAAAQBAJ
https://en.wikipedia.org/wiki/Supervised_learning

[19] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85–117, 2015. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0893608014002135

[20] “Backpropagation.” [Online]. Available: https://en.wikipedia.org/wiki/
Backpropagation

[21] �. Γιαννούλης, “Γιαννούλης, Ι. (2015). Διανυσματική Ανάλυση [Προ-
πτυχιακό εγχειρίδιο]. Κάλλιπος, Ανοικτές Ακαδημαϊκές Εκδόσεις.
http://hdl.handle.net/11419/1201.” [Online]. Available: http://hdl.handle.net/
11419/1201

[22] G. D. Akrivis, “Numerical methods for initial value problems, georgios
d. akrivis.” [Online]. Available: http://www.bcamath.org/documentos_public/
courses/AKRIVIS20121119-23.pdf

[23] R. Burden, J. Faires, and A. Burden, Numerical Analysis. Cengage Learning,
2015. [Online]. Available: https://books.google.gr/books?id=9DV-BAAAQBAJ

54

https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Backpropagation
http://hdl.handle.net/11419/1201
http://hdl.handle.net/11419/1201
http://www.bcamath.org/documentos_public/courses/AKRIVIS20121119-23.pdf
http://www.bcamath.org/documentos_public/courses/AKRIVIS20121119-23.pdf
https://books.google.gr/books?id=9DV-BAAAQBAJ

SHORT BIOGRAPHY

Christina Seventikidou was born in Ptolemaida, Greece, in 1995. In 2013 she enrolled
in the undergraduate program of Mathematics of the University of Ioannina and
earned her Degree in 2018. In 2020 she enrolled in the Graduate Program of the
Department of Computer Science and Engineering of University of Ioannina, and is
persuiting a MSc Degree entitled ”Data and Computer Systems Engineering”.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Motivation
	Approach and contribution
	Thesis outline

	Preliminary concepts and methods
	 Machine Learning
	Supervised Learning
	Artificial Neural Networks
	Feedforward neural networks

	Numerical methods for solving ordinary differential equations
	Ordinary differential equations
	Initial value problem
	The Existence and Uniqueness of Solutions
	Basic concepts of Numerical Methods for Initial-Value Problems
	Runge Kutta methods
	Solving ODEs with neural networks

	 Extrapolation
	Definition, basic concepts

	The proposed method
	 Structure of the method
	First step - initial neural network
	Second step – numerical ODE definition
	Third step – solution of numerical ODE

	Summary of the method
	Gradient of a neural network
	Variations of the method

	Experimental results
	Software requirements
	 Datasets
	 Hyperparameters and architecture details
	 Illustration of the method
	 Extrapolation results
	 Data with noise
	 Results of the alternative ODE models
	Experiment with unknown ODE

	Epilogue
	Conclusion
	Future work

	Bibliography
	Short Biography

