

Derivation of state diagrams for database schema

evolution

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Christina Trialoni

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN ADVANCED COMPUTER SYSTEMS

University of Ioannina

School of Engineering

Ioannina 2022

Examining Committee:

• Panos Vassiliadis, Professor, Department of Computer Science and Engineer-

ing, University of Ioannina (Advisor)

• Evaggelia Pitoura, Professor, Department of Computer Science and Engineer-

ing, University of Ioannina

• Apostolos Zarras, Professor, Department of Computer Science and Engineer-

ing, University of Ioannina

DEDICATION

I would like to dedicate the thesis to my family and everyone else that has been

close to me.

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor, Professor Panos Vassiliadis, for my

master thesis. He was always present throughout the duration of the thesis and

without his invaluable help I would not have made it this far. He always offered his

insights and help during the research and writing phases of the thesis.

I would also like to thank my friends for all of their support and understanding

during this time.

Finally, I would love to thank my family, for all the love and support they have

showed me, as well as for helping me believe in myself, that I can achieve greater

goals.

Ioannina, July 2022

Christina Trialoni

i

CONTENTS

List of Figures iii

List of Tables vi

List of Algorithms vii

Abstract viii

Εκτεταμένη περίληψη x

CHAPTER 1 Introduction 1

1.1 Goals... 1

1.2 Structure of the Thesis .. 4

CHAPTER 2 Related Work 5

2.1 Introduction .. 5

2.2 Related Work on Software and Schema Evolution 6

2.2.1 Lehman Laws ... 6

2.2.2 Thesaurus Tool and Impact of Schema Changes on Systems 6

2.2.3 UMLDiff Tool ..7

2.2.4 VTracker and Evolution of Webservices ... 8

2.2.5 How the Development Process is Affected by the Schema Changes 9

2.2.6 Autoregressive Moving Average Models ..10

2.2.7 Study on Lehman Laws Applications ..10

2.2.8 Patterns Derived from Schema Evolution Properties10

2.2.9 Electrolysis Pattern .. 11

2.2.10 EVO-NET ..12

2.2.11 Schema Evolution and Taxa ..12

2.3 Comparison to Related Work and Thesis Outline13

CHAPTER 3 Phase Extraction and Merging Algorithms 15

ii

3.1 Introduction ...15

3.2 Fundamental Concepts and Reference Algorithm 16

3.2.1 Original Setup .. 16

3.2.2 Fundamental Concepts ... 16

3.2.3 Reference Algorithm .. 17

3.3 The Merge Same Labels Algorithms ... 22

3.3.1 The Naive Merge Same Labels Algorithm 22

3.3.2 Post Processing for the Merge Same Labels Algorithm 24

3.3.3 Merge All but Steep Algorithm ... 25

3.3.4 Examples .. 26

3.4 Signatures ... 33

CHAPTER 4 Experiments 36

4.1 Experimental Setup .. 36

4.2 Effectiveness Assessment ... 37

4.2.1 Algorithm Effectiveness ... 37

4.2.2 Same Label Merge variants ... 38

4.2.3 Merge All But Steep ... 43

4.3 Efficiency Assessment ... 46

4.3.1 Same Label Merge Algorithms .. 46

4.3.2 Merge All but Steep Algorithm ..51

4.4 Correlation between Schema Duration and Merges 52

4.5 State Diagrams .. 55

CHAPTER 5 Conclusions and Future Work 61

5.1 Conclusion .. 61

5.2 Future Work .. 63

iii

LIST OF FIGURES

Figure 2.1 The 4 patterns of: Gamma (top left), inverse Gamma (top right), comet

(bottom left) and empty triangle (bottom right). [10] (figure reproduced with

author permission) .. 11

Figure 2.2 The Electrolysis pattern: the left axis shows the durations in years; the

right axis shows the level of activity of tables; the vertical axis shows the

percentage of tables with respect to their activity class. [11] (figure reproduced

with author permission) ..12

Figure 3.1 A single Transition and Phases it connects ... 17

Figure 3.2 A PhaseSeries ... 17

Figure 3.3 White Tulip: Initial data .. 26

Figure 3.4 White Tulip: Initial metrics .. 27

Figure 3.5 White Tulip: Transitions, Phases and Labels 28

Figure 3.6 White Tulip: Initial x-y axis representation ... 28

Figure 3.7 White Tulip: Same Label detailed results ... 30

Figure 3.8 White Tulip: Same Label output x-y axis representation 30

Figure 3.9 White Tulip: Post Processed Same Label detailed results31

Figure 3.10 White Tulip: Post Processed Same Label output x-y axis representation

 .. 32

Figure 3.11 White Tulip: Merge All but Steep details ... 33

Figure 3.12 White Tulip: Merge All but Steep x-y axis representation 33

Figure 3.13 White Tulip: Fully Detailed Signatures .. 34

Figure 3.14 White Tulip: Signatures without durations .. 34

Figure 3.15 White Tulip: Signatures without Transition Labels 35

Figure 4.1 Transition ranges and taxa for MSL+ .. 42

Figure 4.2 Breakdown of projects in taxa and number of transitions for MSL+ ... 43

Figure 4.3 Transition ranges and taxa for MABS ... 45

iv

Figure 4.4 Breakdown of projects in taxa and number of transitions for MABS. . 46

 Figure 4.5 "mapbox__mode-mbtiles” and “mozilla__tls-observatory” stats. 47

Figure 4.6 Post Processing Same Labels Algorithm Graph for the "mapbox__mode-

mbtiles" project ... 47

Figure 4.7 Post Processing Same Labels Algorithm Graph for the "mozilla__tls-

observatory" project ... 48

Figure 4.8 Average time (μs) taken to execute algorithm for projects that lasted 1,

10, 20, 30, 41, 51, 63, 72, 85, 99, 100 and 105 months 49

Figure 4.9 Average time (μs) taken to execute each algorithm for projects that lasted

1, 10, 20, 30, 41, 51, 63, 72, 85, 99, 100 and 105 months 50

Figure 4.10 Average time (μs) taken to execute the Merge All But Steep Algorithm

for projects that lasted 1, 10, 20, 30, 41, 51, 63, 72, 85, 99, 100 and 105 months

 ...51

Figure 4.11 Average time (μs) taken to execute each Algorithm for projects that

lasted 1, 10, 20, 30, 41, 51, 63, 72, 85, 99, 100 and 105 months 52

Figure 4.12 Correlation between merges and duration executing MSL. 53

Figure 4.13 Average time (μs) taken per number of merges executing MSL. 54

Figure 4.14 Correlation between merges and duration executing MABS. 54

Figure 4.15 Average time (μs) taken per number of merges executing MABS, using

the same projects as in figure 4.13. .. 55

Figure 4.16 A state diagram. The first circle indicates the birth, the big round circles

indicate Phases and their loops, the return to the same state. The arrows that

connect the Phases are the Transitions. A circle without a loop is a Monadic

point. The double circle indicates the end. ... 55

Figure 4.17 MSL+: P(M) ... 56

Figure 4.18 MSL+: P(F)-T()-P(M) ... 57

Figure 4.19 MSL+: P(F) ... 57

Figure 4.20 MSL+: P(M)-T()-P(M) .. 57

Figure 4.21 MSL+: P(F)-T()-P(F) ... 58

Figure 4.22 MABS: P(L) ... 58

Figure 4.23 MABS: P(M) .. 59

Figure 4.24 MABS: P(F) ... 59

Figure 4.25 MABS: P(F)-T()-P(M) ... 59

v

Figure 4.26 MABS: P(L)-T()-P(L) .. 60

vi

LIST OF TABLES

Table 4.1 Computer Hardware Specifications ... 37

Table 4.2 Computer Software Specifications ... 37

Table 4.3 Signatures for white tulip .. 38

Table 4.4 Phase-Label-Only Signatures of Phase Series, their frequency, and their

transitions for MSL+. .. 41

Table 4.5 Phase-Label-Only Signatures of Phase Series, their frequency, and their

transitions for MABS. .. 44

Table 4.6 First 5 Phase-Label-Only Signatures of Phase Series, their frequency, and

their transitions for MSL+. ... 56

Table 4.7 First 5 Phase-Label-Only Signatures of Phase Series, their frequency, and

their transitions for MABS. .. 58

Table 6.1 Sum of execution time needed for the Same Label Merge+ algorithm in

relation to the taxa and months taken for each project 72

Table 6.2 Sum of execution time needed for the Merge All but Steep algorithm in

relation to the taxa and months taken for each project 79

vii

LIST OF ALGORITHMS

Algorithm 3.1 General Merging Algorithm. .. 20

Algorithm 3.2 Updated Merging Algorithm. ..21

Algorithm 3.3 CreateMockTransitionFunction(Transition firstTransition) 22

Algorithm 3.4 Naive Same Labels Algorithm. ... 23

Algorithm 3.5 Merge Same Labels Algorithm. .. 24

Algorithm 3.6 Merge All but Steep Algorithm. ... 25

viii

ABSTRACT

Christina Trialoni, M.Sc. in Data and Computer Systems Engineering, Department of

Computer Science and Engineering, School of Engineering, University of Ioannina,

Greece, July 2022

Derivation of state diagrams for database schema evolution

Advisor: Panagiotis Vassiliadis, Professor

Schema evolution is the process of altering the structure of a database, also known

as “schema”, via the insertion, deletion or update of schema constructs, such as

tables, attributes and constraints, in the process of developing, or maintaining the

structure of the data, in order to service the surrounding applications that -- as all

software modules do -- evolve too.

The goal of this thesis is to extract the various phases that a schema of a project

enters during its lifecycle, and create "signatures" of frequently encountered se-

quences of phases in the lives of relational database schemata.

Using a publicly available corpus of schema evolution histories from Free Open-

Source Projects, we organize the history of corpus' projects in monthly quanta as

time units and assess change via a cumulative metric of monthly change. Starting

with each time-unit as a different phase, the PhaseSeries of schema evolution for a

project is then, a sequence of unit-phases, linked via transitions marking the amount

of change (measured as the sum of inserted, deleted and updated attributes) that

occurred between two units. A transition is the bridge that connects two phases and

it is also labelled with respect to the amount of change between the two neighboring

phases. Then, we merge subsequent unit-phases into larger phases depending on a

similarity criterion that takes into consideration transition labels, and mark the re-

sulting phases accordingly. We introduce different algorithms for merging phases,

by altering the similarity criterion with the goal of finding the sweet spot between

ix

having too many transitions (contributing a high level of accuracy) and conciseness

(as having fewer transitions improves readability of the description of a project's life,

at the price of reducing accuracy). We refer to the description of the life of a schema

via these phases and transitions as the "signature" of the schema's evolution. Once

all signatures for the entire corpus have been computed, we group them into fre-

quently encountered signatures, introducing, thus, frequent patterns of schema lives.

These patterns can be visually demonstrated via state diagrams.

x

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ

Χριστίνα Τριαλώνη, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-

των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο

Ιωαννίνων, Ιούλιος 2022

Δημιουργία διαγραμμάτων καταστάσεων για την εξέλιξη σχήματος σε βάσεις δε-

δομένων

Επιβλέπων: Παναγιώτης Βασιλειάδης, Καθηγητής

Εξέλιξη σχήματος βάσεων δεδομένων, είναι η διαδικασία αλλαγής της δομής μιας

βάσης, ή αλλιώς "σχήματος", μέσω προσθήκης, διαγραφής ή αλλαγής στοιχείων του

σχήματος, όπως πίνακες, χαρακτηριστικά και περιορισμοί κατά τη διάρκεια της

φάσης ανάπτυξης, ή η συντήρηση της δομής των δεδομένων, έτσι ώστε να εξυπη-

ρετηθούν όλες οι συσχετιζόμενες εφαρμογές, οι οποίες -- όπως και όλα τα κομμάτια

λογισμικού -- εξελίσσονται. Ο στόχος της διπλωματικής είναι η εξαγωγή διαφόρων

φάσεων, στις οποίες μπαίνει ένα σχήμα ενός πρότζεκτ κατά τη διάρκεια του κύκλου

ζωής του, και η δημιουργία "υπογραφών" των πιο συχνά εμφανιζόμενων ακολου-

θιών φάσεων κατά τη διάρκεια ζωής των σχεσιακών σχημάτων βάσεων. Χρησιμο-

ποιώντας μια δημόσια συλλογή από ιστορίες εξέλιξης σχημάτων από ελεύθερα έργα

ελεύθερου κώδικα, οργανώνουμε την ιστορία των συστημάτων σε μηνιαία κβάντα

ως σημεία χρόνου και ορίζουμε τις αλλαγές μέσω σωρευτικών μετρικών μηνιαίων

αλλαγών. Ξεκινώντας με κάθε χρονική μονάδα ως μια διαφορετική φάση, οι χρο-

νοσειρές της εξέλιξης σχήματος για ένα έργο είναι η σειρά μονάδων φάσεων, συν-

δεδεμένων μέσω μεταβάσεων που ορίζουν την ποσότητα αλλαγής (μετρημένη ως

το άθροισμα των χαρακτηριστικών που εισάχθηκαν, διαγράφτηκαν και αλλάχθη-

καν) που συνέβησαν μεταξύ δύο φάσεων. Μια μετάβαση είναι η γέφυρα η οποία

ενώνει δύο φάσεις και επισημειώνεται ανάλογα με τον αριθμό αλλαγών μεταξύ

δύο γειτονικών φάσεων. Έπειτα, συνενώνουμε γειτονικές μονάδες φάσεων σε με-

γαλύτερες φάσεις, στη βάση ενός κριτηρίου ομοιότητας το οποίο λαμβάνει υπ' όψιν

xi

τους χαρακτηρισμούς των μεταβάσεων και καθορίζει τις φάσεις που προκύπτουν.

Παρουσιάζουμε διαφορετικούς αλγορίθμους για την ένωση φάσεων, εναλλάσσοντας

το κριτήριο ομοιότητας με στόχο την εύρεση της χρυσής τομής μεταξύ του να έ-

χουμε πολλές μεταβάσεις (το οποίο συμβάλλει στο να έχουμε μεγάλη ακρίβεια) και

περιεκτικότητα (το να έχουμε λιγότερες μεταβάσεις βελτιώνει την αναγνωσιμότητα

της περιγραφής της ζωής ενός έργου, με κόστος την μείωση ακρίβειας). Αναφερό-

μαστε στην περιγραφή της ζωής ενός σχήματος μέσω αυτών των φάσεων και των

μεταβάσεων ως την "υπογραφή" της εξέλιξης του σχήματος. Μόλις όλες οι υπογρα-

φές για όλη τη συλλογή των έργων έχουν υπολογιστεί, τις ομαδοποιούμε σε υπο-

γραφές που εμφανίζονται συχνά, παρουσιάζοντας έτσι, τα πιο συχνά πρότυπα της

ζωής των σχημάτων. Αυτά τα πρότυπα μπορούν να αναπαρασταθούν οπτικά μέσω

διαγραμμάτων καταστάσεων.

1

CHAPTER 1

INTRODUCTION

1.1 Goals

1.2 Structure of the Thesis

1.1 Goals

The world around us keeps evolving with a rapid pace. The market is growing

offering new technologies and creating new needs. This impact has also been appar-

ent in the computer science field and specifically in software development and

maintenance.

Software development is the process of designing, creating and maintaining applica-

tions and everything else that directly impacts the application, such as the database

used to store and access the data. The contents of a database, such as the tables,

fields, relationships, functions, procedures and constraints make up the schema.

Schema evolution is how any database can be altered with respect to its internal

structure from the development phase up to the maintenance phase of the applica-

tion. Changes can consist of insertions, deletions, additions, merges and more, and

they can happen during any part of the development process or during the mainte-

nance timeframe. They can also happen frequently, or more scarcely, or never.

The field of schema evolution is relatively new, however in the last few years more

and more studies emerge, despite the small number of open-source databases. Most

of these studies focus on figuring the various states a schema can enter and aim to

help developers “predict” the course of an application during its lifecycle, in order

2

to organize and distribute time and resources evenly and with as little risk as possi-

ble. In one of the studies [5], a tool called UML-Diff was created in order to help

figure all changes in the classes of a system. Using this information, the researchers

managed to extract various phases the development can enter and group them into

categories of similar traits. In another study [13], one of the goals was the extraction

of different characteristics of schema evolution types, which are called taxa. Taxa

basically label the number of changes during the schema evolution of a database.

Both of the aforementioned studies have provided methods and tools to extract

phases [5] and categorize schema evolution types based on the history of activity

[13], respectively. However, they haven’t managed to find specific phases and cate-

gories of schema evolution patterns. In this thesis we combine the general idea and

findings in studies [5] and [13], in order to find evolution categories in schemata.

Using the results of [13] and the histories of its 195 databases, the goals of the thesis

are the following:

− The representation of histories of the schemata in phases.

− The clustering of the “histories with phases” into homogenous clusters.

− For each cluster, the creation of a state diagram.

To accomplish that, 3 steps are followed.

− Firstly, the PhaseSeries of the project are created. To do so, the Phases and

Transitions are extracted from the result files of each project.

The Phases are the different states during specific timeframes, while the

schema evolves. Regarding to that, a Phase can consist of one or more

timeframes with their respective changes, which are called Atomic Measure-

ments. In other words, an Atomic Measurement includes the percentage of

total number of changes and percentage of time.

The Τransitions are the bridges that connect the neighboring Phases. In more

detail, a Transition is the passage of a Phase or state of a project into a dif-

ferent Phase state. So, for example if a project has two Phases, where during

the first one a lot of changes occurred, while in the second there were no

changes at all, then those Phases create a Transition between them. Each

Phase is a cohesive group of continuous time points with similar change rates

and the transition between the phases marks a change in the change rate. A

3

transition can be labelled depending on the difference between the Phases it

connects.

The labels are the following:

o Flat: Indicates no changes between the Phases

o Low: The neighboring Phases have a small number of changes between

them

o Regular: A normal number of changes between the Phases

o Steep: A significant number of changes between the Phases.

− The second step includes merging the various Phases and Transitions in order

to create a shorter version of the PhaseSeries, while keeping the most im-

portant details. The merging process can happen under various conditions,

which can include the degree of similarity of labels, or certain labels them-

selves, or duration of Phases depending on the project’s duration. In this

project, 4 different conditions are used in the algorithms and they are analyzed

further. One point that has to be considered, is the cost of each approach. If

many Phases are merged, then accuracy and information is lost, however if

the opposite approach is used then we end up with a lot of accuracy, meaning

more Phases, with extra Transitions.

− The third step includes the grouping of all similar PhaseSeries, in order to

create the state diagrams and categorize them.

In a nutshell, the final goal is to reach a merging condition that allows us to

create PhaseSeries that do not include a lot of information on each schema

(Phases/Transitions), while not losing a lot of accuracy. When this condition is

met, the various state diagrams are created and categorized. The result is the

various categories of state diagrams that indicate the different characteristics of

database evolution.

4

1.2 Structure of the Thesis

The thesis consists of 5 main chapters:

In chapter 1, the current one, we discuss the main goals of the thesis.

In chapter 2, the related work is presented.

In chapter 3, the whole process is presented in detail, while providing various ex-

amples on the different procedures.

In chapter 4, the experiments and results are presented, as well as the conclusions

reached.

In chapter 5, the conclusions and future work are presented.

5

CHAPTER 2

RELATED WORK

2.1 Introduction

2.2 Related Work on Software and Schema Evolution

2.3 Comparison to Related Work and Thesis Outline

2.1 Introduction

What is schema evolution and why is it important to observe it?

Schema evolution is the process of altering the structure of a database from an older

to a newer version, typically done by inserting, removing, or altering the constituent

elements of the schema of the database [14].

All applications require databases in order to store, use, create data and their entire

functionality depends on them. Schema evolution affects all the applications, since

the databases they use, are altered. Such changes can lead to errors during run time

or errors that require alteration of the code. So, it is highly important for developers

to be able to predict, expect and understand any possible changes of their applica-

tions' schemata during their lifetime.

6

2.2 Related Work on Software and Schema Evolution

2.2.1 Lehman Laws

Concerning the field of software evolution, studies begun around 50 years ago and

the most important findings appeared in the mid-2010s. The first extensive study

had as a result a set of rules called Lehman Laws [1] [2] [3]. These rules focus on

feedback-based systems on software evolution and include the following laws:

− Law of continuing change - A software, or system, must be evolving contin-

uously in order to fulfill any new requirements.

− Law of Increasing Complexity - A system that is evolving is also increasing

in complexity, unless the process of refactoring is done to it.

− Law of Self-Regulation - This means that the system is regulated by feedback.

− Law of Conservation of Organizational Stability - The work rate of an organ-

ization that evolves the system, tends to be continuous over the lifetime of

the system.

− Law of Familiarity - The growth ratio depends on the need to maintain

familiarity.

− Law of Continuing Growth - User satisfaction must be maintained all times;

therefore, a system needs to be growing during all of its lifetime, in order to

fulfill the users' needs.

− Law of Declining Quality - If not all needs are met and there's no evolution

or adaptation of a system, then its use and quality also decline.

− Law of Feedback System - The evolution processes are multi-level, multi-

loop, multi-agent feedback systems.

Schema and database evolution is a field which has not been explored extensively.

2.2.2 Thesaurus Tool and Impact of Schema Changes on Systems

In 1993, a research paper was published by Dag Sjøberg [4], in which the goal was

to create a method in order to define and measure the categories and types of

changes which occur during the evolution of databases/application systems, as well

as the consequences. To achieve this goal, a tool called Thesaurus was used and a

big scale functional database was monitored. The database belonged to a health

7

management system and it was tested for 18 months. The findings of the research

effort showed the fact that schema changes have a big impact on an application

throughout its lifecycle, including the development and gone-live phase. Changes

include a big number of relation and field additions, but a smaller number of dele-

tions. With so many alterations in a system, a change management tool was needed

to monitor the situation. This is the reason Thesaurus was used for this specific

study. This tool analyzed the database schema and application programs, extracted

all information about the application changes made by the developers and estimated

any changes created by the schema changes.

2.2.3 UMLDiff Tool

In 2005, a new tool called UMLDiff, was introduced [5]. This tool could recognize

the design-level changes that have happened during the system’s evolution. Based

on the results of this research, analyses on 3 different development steps are per-

formed in order to recognize patterns and gain an insight on potential development

sequences like additions or deletions.

− The first step begins during the development process. Just an input of the

systems versions is required and then the reverse engineering of the models

in initiated. The last part is a product of the UMLDiff differentiations. This

whole process is implemented in the JDE, which is a plugin of the Eclipse

IDE.

− The second step includes the detection of changes from one version to an-

other. The researchers of this study had already made a case study on

JFreeChart and smaller ones on the UMLDiff algorithm which helped them

with this phase. So, they used that in order to detect the version changes that

are relevant to the software development process.

− During the third and final phase, the various class-evolution profiles have

been obtained and discretized and each set of version changes is classified in

terms of a five-class taxonomy. With these results and using 3 analyses, it is

possible to gain insight for the development of the system. These analyses

include:

o Phasic analysis. In this analysis, the evolution profiles are segmented

into coherent phases. These Phases include "Start with" Phase and

8

"End with" Phase, which indicate the creation and the final alteration

of a class respectively. Additionally, if a class gets removed, then its

"End with Phase" is also its "Remove with" Phase. Every alteration that

occurs in between is included include "In the middle" Phase. These

Phases can also be characterized by the number of changes the classes

included. For example, any of these Phases may have included classes

with "Intense evolution", "Rapid development", "Restructures", "Slow

development" or "Steady State".

o Gamma analysis. In this analysis the patterns are identified. To reach

this goal, the relative order of the various phase types in the class evo-

lution profiles is examined, in order to figure the relationships between

them. So, for each possible Phase pairing, a score is calculated and

finally a gamma map is created. The gamma map displays all of the

phases in their precedence order and abstracts the overall sequential

pattern from a phase map.

o Optimal matching analysis. In this analysis the most frequent patterns

during the evolution of the system are identified. To achieve this goal,

clusters of phases of classes that evolved in a similar manner for a

specific period or not.

2.2.4 VTracker and Evolution of Webservices

In 2011 a paper on the evolution on web services [6] studied, how the changes in

WSDL files affect client applications. In order to define those impacts, a tool called

VTracker was used and 5 web services were being monitored. The VTracker tool is

a domain agnostic tree differencing algorithm. As a result of this study, 2 points

were made.

− First, the tool was successful in identifying changes and determining effective

and ineffective maintenance scenarios.

− Finally, web services are usually growing, rather than being altered. Generally,

additions of new features or changes don’t affect the clients. However, dele-

tions should be avoided as they can cause crashes on client applications.

9

2.2.5 How the Development Process is Affected by the Schema

Changes

In 2013, a study [7] which had as a main goal to figure how code development is

affected by schema changes, in order to provide data for the creation of an assistive

tool, to be used during database evolution, was introduced. The approach of this

research was focused on 3 key points.

− The frequency of the database evolution

− The volume and types of changes of database evolution

− The code co-evolution with the database

To this end, a certain process was followed in order to retrieve information needed.

First of all, the schema files were located and then the databases were extracted. Out

of those, only the valid ones were kept, which contain the most changes. After that,

the atomic changes were extracted by manually figuring the differences of the sche-

mata versions. Lastly, analysis on co-evolution can be done. The results of this re-

search gave answers to the first key questions. More specifically, turns out that the

schemas evolve frequently and mostly during early development, they grow in size

and gain columns as they evolve. Regarding the way databases evolve, 6 different

categories were observed.

− Transformations

− Structure Refactoring

− Data Quality Refactoring

− Referential Integrity Refactoring

− Method Refactoring

− Architectural Refactoring

Out of these categories, the first 3 appeared more frequently and the final one rela-

tively infrequently. Regarding the atomic changes, additions of tables and altera-

tion/additions of columns were the most frequent. Data also showed very little impact

of the existence of constraints of procedures. Finally, all additions and changes were

used mostly during evolution and as for a final point the results showed that schema

changes can impact code and the development process greatly.

10

2.2.6 Autoregressive Moving Average Models

In 2014 a study [8] used Autoregressive Moving Average (ARMA) models to analyze

and model stationary Time Series. Time Series are sequential measurements or ob-

servations of a phenomenon of interest through time. During this, 3 phases were

needed to be implemented to create the models.

− The first phase includes the model identification, which requires the data

preparation and then the model selection by using various estimations out of

the autocorrelation and partial correlation functions.

− The second Phase includes model estimation and Testing. 3 steps are being

followed, such as estimation, diagnostics and model selection.

− The final Phase is about forecasting and simulation. It is extremely important

to choose the best model for forecasting and simulation of the dynamics.

The approach mentioned above, was used on various systems and the evaluation

showed that the models can predict accurately with minor errors. The results of this

research can be used to predict the time required and budget needed for the creation

of applications.

2.2.7 Study on Lehman Laws Applications

A study emerged during 2014 and it focused on the Lehman Laws and their appli-

cation to the database evolution [9]. During this study, 9 Open-Source databases

where being monitored and 3 rules were extracted.

− The first rule is called “Feedback-Based Behavior for Schema Evolution”. It

indicates that the size of schema grows and the changes happening are de-

pendent on the user needs.

− The second one, “HeartBeat of change” explains that changes come in out-

bursts, therefore not a linear process.

− And the last one is “Schema Growth is Small “, which is almost self-explana-

tory. Basically, schema overall shows minimal changes during its lifetime.

2.2.8 Patterns Derived from Schema Evolution Properties

The next study was published in 2015, focused on determining the patterns regard-

ing table properties [10]. 4 patterns were extracted from the research.

− The Γ pattern. This pattern implies that schemata that are large are less likely

to be deleted and they have long lifetime.

11

− Comet pattern. This pattern explains that tables with medium sized schemata

tend to have the most updates.

− The inverse Γ pattern. This pattern indicates that tables that don't survive

long, produce less updates than the ones that survive the longest.

− The Empty Triangle pattern is a mix of all of the above. Deleted tables appear

to have the shortest life duration, whereas older tables have a very low prob-

ability of deletion.

Figure 2.1 The 4 patterns of: Gamma (top left), inverse Gamma (top right), comet

(bottom left) and empty triangle (bottom right). [10] (figure reproduced with au-

thor permission)

2.2.9 Electrolysis Pattern

The study of 2017 focused more on how survival is related to the duration of tables

as well as their activity profile [11].

Just one pattern was derived from this study and it focuses on the antitheses that

appear between the active tables and their life cycle versus inactive tables. It is called

Electronics pattern. It explains that tables that have had a short life cycle with very

few updates are most likely dead, whereas, active tables have lived longer and at-

tracted plenty of updates.

12

Figure 2.2 The Electrolysis pattern: the left axis shows the durations in years; the

right axis shows the level of activity of tables; the vertical axis shows the percent-

age of tables with respect to their activity class. [11] (figure reproduced with author

permission)

2.2.10 EVO-NET

The problem of how relations among states reflect the evolution of temporal data,

was researched during 2021 [12]. A state graph was used to portray the time –

varying relations during various time series. In order to figure the various patterns

created, a GNN based model called Evo-Net (Evolutionary State Graph Network)

was used on real world databases. The framework can transform any given time

series into a dynamic graph based on characteristics, such as states or weights and

creates a neural network to predict correlations and various events.

2.2.11 Schema Evolution and Taxa

Finally, the most recent research happened during 2021 and it's considered as the

largest empirical study on the Free Open-Source Software projects [13]. This research

was conducted on 195 projects and focused on understanding the characteristics of

schema evolution in order to answer 3 queries.

− The first is whether the schema evolution is a continuous process

− The second is whether there could be a categorization or patterns of schema

lives.

13

− The final one is about the properties of schema evolution.

The findings about the first query implied that schema evolution is not a continuous

activity. However, only a small number of projects are fairly active. This absence of

evolution is related to the difficulty of the adjustments and maintenance required.

The second finding revealed the existence of “taxa” of schemata, which characterize

their activity, by monitoring their heartbeat, or in other words how active they were

throughout their lifespan. These taxa are the following:

− History-less - They contain 1 commit on the initial file.

− Frozen - 0 changes and 0 active commits.

− Almost Frozen- Very few commits and little changes.

− Focused Shot & Frozen - Very few commits, focused change in a single com-

mit.

− Moderate - Moderate rate of heartbeat (active commits), moderate volume of

activity.

− Focused Shot & Low - A couple of reeds and a few active commits, focused

change.

− Active - Frequent rate of heartbeat (active commits), high volume of activity.

The last finding focused on the volume, frequency and important characteristics of

changes on the schemata. Volume of change is measured in affected attributes as

well as table creations, alterations and deletions. The number of any kind of commits

characterizes the frequency of changes. The density of change is characterized by the

special kind of commits called reeds and turfs. Last but not least, the change of size

of the schema on a coarse level is characterized by the tables inserted or deleted at

the start and at the end of the life cycle of the schema.

2.3 Comparison to Related Work and Thesis Outline

So far, the research in the schema evolution field is still evolving. Even though there

are quite a few studies on this field, there has been a number of important revelations

on this field. These include patterns during evolution as well as categories depending

on number of changes or taxa. Some of these studies relied on the various laws or

comparative methods that are used for software evolution. This thesis is aiming to

14

continue from where the latest schema evolution research left off [13], while also

using some of the software evolution methods that have been mentioned, using a

tool to define changes and development phases [5] and model creation [8]. The goal

of this thesis is to extract the various states a schema of a project enters during its

development lifecycle over a substantial corpus of schema histories and represent

them as a sequence of phases. Then, the final goal is to come up with a concise,

informative set of common patterns of these phase sequences and visually represent

them as state diagrams. To the best of our knowledge this is the first time that an

attempt towards this problem is made in the field of schema evolution.

Using the findings of the research [13], we aim to extract the metrics that will help

identify the various stages a schema of a project entered during its development

period. The number of changes, which can be found for each month, will be classified

into labeled states. These states contain Atomic Measurements and can be grouped

into a phase. In this research the initial goal is to group and merge all the Atomic

Measurements depending on a factor, such as similarity of label or condition, into a

phase and link the neighboring phases using a transition. A transition is the bridge

that connects two phases and can also be labelled by the difference the two neigh-

boring phases create. All the Transitions, Phases and Atomic Measurements of the

project make up the PhaseSeries.

Our goal is to find the silver lining between having many transitions, which gives a

lot of accuracy and information, or having fewer transitions and reducing accuracy.

After we gain the data for one database of a project, we aim to do the same for more

projects and group all of them into categories, based on the resulting PhaseSeries

and overall behavior. With this approach, we aim to extract concrete categories and

their frequency of appearance on different taxa.

15

CHAPTER 3

PHASE EXTRACTION AND MERGING ALGO-

RITHMS

3.1 Introduction

3.2 Fundamental Concepts and Reference Algorithm

3.3 The Merge Same Labels Algorithms

3.4 Signatures

3.1 Introduction

The goal of this thesis is to extract information from schemata of various databases,

organize them into a PhaseSeries and group the PhaseSeries in order to extract var-

ious categories of schema evolution patterns. To achieve those goals, we break the

process into 3 steps:

− The first step includes the ingestion of data, in order to extract the Phases and

Transitions and create the initial PhaseSeries of the schema. The definitions

of these terms are:

o A Phase is a state of the schema during schema evolution, during a

specific timeframe with a similar rate of change. This state can have

the span of one Atomic Measurement or more.

o An Atomic Measurement contains the (x,y) metrics. The x is the per-

centage of time metric and y is the percentage of total activity metric.

16

o A Transition is the link that connects two neighboring phases; the

Phase-From, which is the initial phase and the Phase-To which is the

phase it ends in.

o A PhaseSeries contains all the Phases and Transitions of a project.

− The second step includes the merging of the Phases and Transitions given a

specific condition. In this way we aim to create a compact PhaseSeries that

gives us all the information needed without losing a lot of accuracy. The

merging conditions can be similarity of Phases or Transitions, or duration of

a Phase in comparison with the project's duration.

− The final step includes the grouping and clustering of all similar PhaseSeries

in order to extract patterns of schema evolution categories.

3.2 Fundamental Concepts and Reference Algorithm

3.2.1 Original Setup

The initial step of the Phase Extractor is the ingestion of data.

The data that is required can be found in a tsv file, which contains data of the

evolution history of a database. Each file includes monthly information gathered

during each project's development cycle, such as insertions, deletions, overall changes

and other metrics. For this project we require:

− The number of months the evolution of the schema lasted.

− The total schema changes that occurred during this period.

So, initially, the tsv file of a specific project must be loaded into the system. Two

metrics are computed from the data.

− The cumulative fraction of schema evolution timespan for every month (x)

using the formula: currentMonth/(TotalNumberOfMonths-1)

− The cumulative fraction of changes for every month (y) using the formula:

sumOfPrevious + (currentNumberOfChanges/SumOfChanges).

3.2.2 Fundamental Concepts

Given the above data, we use each pair of (x,y) in order to create one Phase.

− x: cumulative time progress percentage.

− y: cumulative evolution activity percentage.

17

A Phase is a sequence of contiguous Atomic Measurements that demonstrate similar

evolutionary behavior of the schema, during a specific timeframe. A Phase can have

the span of one Atomic Measurement or more. At the initial step, each Phase consists

of one Atomic Measurement.

A Transition is the link from one phase to another. In other words, it is the bridge

that connects a Phase of the development with the next one. A Transition includes

two Phases, which are the ones it connects; the initial PhaseFrom and the next

PhaseTo.

Figure 3.1 A single Transition and Phases it connects

3.2.3 Reference Algorithm

So, at first, we assume each Atomic Measurement (e.g., the amount of change per

commit, or per month) to be a Phase and each pair of consecutive Phases to create

a Transition. A Transition's PhaseTo will be the same phase as the PhaseFrom of

the next transition. All of the Transitions and the Phases they link, are included in

a list called PhaseSeries. Initially, a PhaseSeries consists of (TotalMonths-1) Transi-

tions and (TotalMonths) Phases.

Figure 3.2 A PhaseSeries

18

The next step is the labeling of the Transitions. The transition from one phase to

another creates a line in the (x,y) space which can be characterized by the angle it

creates. The higher the degrees of an angle, the steeper the transition is. And that

means that the bigger the angle, the higher the rate of change occurred during a

particular transition between two phases of a project.

In order to find this angle, we go through the following steps.

− We calculate the distance of the y metric created between the phases of the

transition. This can be achieved by distracting the y metric of the last Atomic

Measurement of the Phase-To by the y metric of the first Atomic Measurement

of Phase-From. So, dy = yLast-yFirst.

− The same has to be done for the x metric. So dx=xLast-xFirst.

− The next step is to measure the division of dy/dx and calculate the atan(dy/dx)

which gives us the angle in degrees.

− Depending on the degrees the angle can be characterized as:

o FLAT: φ<=0 degrees - no change rate during the transition

o LOW: 0<φ<=30 degrees - a small change rate during the transition

o REGULAR: 30<φ<=60 degrees - a normal change rate during a tran-

sition

o STEEP: 60<φ degrees - a significant change rate during a transition

The next step is the iteration of the PhaseSeries in order to merge neighboring Tran-

sitions by following a certain condition. The conditions can be the similarity of labels,

or duration of Phases and overall Project. When these conditions are met, the merg-

ing of the selected Transitions can occur. During each cycle of iterations, we are

comparing a pair of neighboring Transitions, e.g., T0-T1, T1-T2, etc. If T1 can be

merged, it will be merged to the T0, so the next pair to be examined in the iteration

will be T0-T2. In more detail, merging can be achieved by appending the Phase-To

of the second Transition to the Phase-To of the preceding Transition. That includes

all of the Atomic Measurements of the Phase that is being appended. In other words,

we add all of the Atomic Measurements of the Phase-To of the second Phase in the

list of Atomic Measurements of the PhaseTo of the first Phase. In this way, the

number of phases and transitions is reduced. After this process is done, it is crucial

to recalculate the label of the merged Transition.

19

While the merging process is in action, more and more Phases will be merged to-

gether. That means that Phases will contain more than one Atomic Measurements.

It is crucial to identify the internal angles that are created during this process. The

angles can be characterized by labels similarly as the Transitions' labels. To find the

internal angle of a Phase we follow similar same steps as finding the Transition's

labels:

− We calculate the distance of the y metric created between the Atomic Meas-

urements of the Phase. This can be achieved by distracting the y metric of the

last Atomic Measurement by the y metric of the first Atomic Measurement.

So, dy = yLast-yFirst.

− The same has to be done for the x metric. So dx=xLast-xFirst.

− The next step is to measure the division of dy/dx and calculate the atan

(dy/dx) which gives us the angle in degrees.

− Depending on the degrees the angle can be characterized as:

o FLAT: φ<=0 degrees - no changes during the Phase

o LOW: 0<φ<= 30 degrees - a low rate of changes during the Phase

o REGULAR: 30<φ<=60 degrees-a normal rate of change during a Phase

o STEEP: 60<φ degrees - a significant change rate during a Phase

At the beginning of the iterations the Phases will contain one Atomic Measurement,

so they will be classified as MONADIC POINT (M).

Once the initial PhaseSeries model is ready, we can proceed with the merging algo-

rithms. A general algorithm can have the following form:

− Input: The PhaseSeries which is a transition list L = {T0,...,Tn}. Every Tran-

sition contains two single Atomic Measurement Phases, Phase.From and

Phase.To. Every Transition contains a label.

− Output: A new PhaseSeries which is the new Transition list L' where consec-

utive transitions from L have been merged according to a specific condition.

− Variables:

o L: A list that contains all of the transitions.

o L': A list that contains all of the new transitions.

o firstTransition: First transition of the list L.

o secondTransition: Second transition of the list L.

o counter: Counts the number of iterations.

20

Algorithm 3.1 General Merging Algorithm.

Require: L,L.size>1

Ensure: L'

1: transitionList L; transitionList L';

2: firstTransition = L.get(0); secondTransition = L.get(1);

3: counter = 1; //as long as we have 2 or more transitions

4: while (counter<L.size-1){

5:
 if (canMergeByCondition(firstTransition, secondTransition) ==

TRUE){

6: firstTransition.PhaseTo.append(secondTransition.PhaseTo)

7: }else{

8: L'.add(firstTransition);

9: firstTransition = secondTransition;

10: }

11: counter++;

12: secondTransition = L.get(counter);

13: }

14: return L’;

21

Algorithm 3.2 Updated Merging Algorithm.

Require: L,L.size>1

Ensure: L'

1: transitionList L; transitionList L';

2: L.add(createMockTransitionFunction(L.get(0)));

3: firstTransition = L.get(0); secondTransition = L.get(1);

4: counter = 1; //as long as we have 2 or more transitions

5: while (counter<L.size-1){

6:
 if (canMergeByCondition(firstTransition, secondTransition) ==

TRUE){

7: firstTransition.PhaseTo.append(secondTransition.PhaseTo)

8: }else{

9: L'.add(firstTransition);

10: firstTransition = secondTransition;

11: }

12: counter++;

13: secondTransition = L.get(counter);

14: }

15:
L’.get(1).PhaseFrom=L’.get(0).PhaseTo //set PhaseTo of mockTransition

to the PhaseFrom of the first “real” transition

16: L’.remove(0); //remove mockTransition

17: return L’;

A subtle issue with this algorithm is that the very first Transition is never examined,

so it never gets merged. This can be left as is, if desirable. If not, the solution to that

can be achieved by adding a “mock Transition” at the beginning of the initial

PhaseSeries, which will contain the very first Phase as PhaseFrom and PhaseTo. In

this way we are able to keep merging the PhaseTo, once the condition allows it.

Once the merging process is complete, the Phase.To of the “mock Transition” will

become the Phase.From of the first actual Transition, which is going to be the second

Transition in the PhaseSeries. Once this action is done, we remove the mock transi-

tion and get the new PhaseSeries as a result. Algorithm 3.2 details this process.

22

3.3 The Merge Same Labels Algorithms

3.3.1 The Naive Merge Same Labels Algorithm

Once the PhaseSeries is labeled, it is time to merge the transitions that have the same

labels. In this algorithm we simply iterate the PhaseSeries and compare the labels of

each pair of transitions. The neighboring transitions that have the same labels will

be merged into one.

The method explained can be accomplished by following the next steps.

− We begin the iteration by examining the first two transitions.

− We compare the labels

− If the two consecutive Transitions have the same label, they can be merged.

o We keep the new transition and compare it to the next one in the list,

using the same method

− If the two consecutive Transitions do not have the same labels, do not merge.

o Keep the second transition and compare it to the next one.

o The very first transition remains unchanged.

That was the first algorithm of phase merging and can be used as the initial step of

other algorithms.

Algorithm 3.3 CreateMockTransitionFunction(Transition firstTransition)

Require: firstTransition

Ensure: Transition T’ //mockTransition

1: Transition T';

2: T’.PhaseFrom = firstTransition.PhaseFrom;

3: T’.PhaseTo = firstTransition.PhaseFrom;

4: return T’;

23

Algorithm 3.4 Naive Same Labels Algorithm.

Require: L,L.size>1

Ensure: L'

1: transitionList L; transitionList L';

2: L.add(createMockTransitionFunction(L.get(0)));

3: firstTransition = L.get(0); secondTransition = L.get(1);

4: counter = 1; //as long as we have 2 or more transitions

5: while (counter<L.size-1){

6: if (firstTransition.Label == secondTransition.Label){

7: firstTransition.PhaseTo.append(secondTransition.PhaseTo)

8: }else{

9: L'.add(firstTransition);

10: firstTransition = secondTransition;

11: }

12: counter++;

13: secondTransition = L.get(counter);

14: }

15:
L’.get(1).PhaseFrom=L’.get(0).PhaseTo //set PhaseTo of mockTransition

to the PhaseFrom of the first “real” transition

16: L’.remove(0); //remove mockTransition

17: return L’;

24

3.3.2 Post Processing for the Merge Same Labels Algorithm

Algorithm 3.5 Merge Same Labels Algorithm.

Require: output L from Same Label Algorithm, L.size>1

Ensure: L'

1: transitionList L; transitionList L';

2: L.add(createMockTransitionFunction(L.get(0)));

3: firstTransition = L.get(0); secondTransition = L.get(1);

4: counter = 1; //as long as we have 2 or more transitions

5: while (counter<L.size-1){

6: if (secondTransition.Label == FLAT){

7: firstTransition.PhaseTo.append(secondTransition.PhaseTo)

8: }else{

9: L'.add(firstTransition);

10: firstTransition = secondTransition;

11: }

12: counter++;

13: secondTransition = L.get(counter);

14: }

15:
L’.get(1).PhaseFrom=L’.get(0).PhaseTo //set PhaseTo of mockTransition

to the PhaseFrom of the first “real” transition

16: L’.remove(0); //remove mockTransition

17: return L’;

One issue that occurred with the Naive Merge Same Labels Algorithm was that it

produced several Transitions that were Flats. There is no reason to keep Phases

connected by flat Transitions separately, as they portray a "dead" state of the evolu-

tion. The algorithm that has been analyzed in the previous chapter can be updated

so that all of the Flat Transitions will be eliminated from the PhaseSeries. So, during

the iteration, if the neighboring Transition is Flat, will be merged with the previous

one. The Merge Same Labels (MSL) Algorithm complements the Naive MSL by elim-

inating Flat Transitions.

25

3.3.3 Merge All but Steep Algorithm

Algorithm 3.6 Merge All but Steep Algorithm.

Require: output L from Post-Processed Same Label Algorithm, L.size>1

Ensure: L'

1: transitionList L; transitionList L';

2: L.add(createMockTransitionFunction(L.get(0)));

3: firstTransition = L.get(0); secondTransition = L.get(1);

4: counter = 1; //as long as we have 2 or more transitions

5: while (counter<L.size-1){

6: if (secondTransition.Label != STEEP){

7: firstTransition.PhaseTo.append(secondTransition.PhaseTo)

8: }else{

9: L'.add(firstTransition);

10: firstTransition = secondTransition;

11: }

12: counter++;

13: secondTransition = L.get(counter);

14: }

15:
L’.get(1).PhaseFrom=L’.get(0).PhaseTo //set PhaseTo of mockTransition

to the PhaseFrom of the first “real” transition

16: L’.remove(0); //remove mockTransition

17: return L’;

Algorithm MSL is the reference algorithm to provide a sequence of cohesive homog-

enous Phases for the evolution of schema. However, it occasionally produces large

sequences with many Phases. To shrink the number of individual Phases we need

to merge Phases further. To this end, Algorithm Merge All But Steep (MABS) is

introduced.

In this algorithm the condition is that any Transition that is not Steep will be merged

with the previous one. Additionally, to that, the phases themselves must not be steep

either. This basically applies to phases that have more than one time points. Their

26

internal angle is calculated and if the outcome is over 60 degrees, then the phase

itself can be labeled as steep.

− The initial step of the algorithm is to use the post processed same-label-merge

method in order to reduce the number of transitions that will be evaluated.

− After this process, a method similar to the previous algorithm is used. The

PhaseSeries is iterated and the neighboring transitions are being evaluated.

o In this case if the next transition is FLAT, LOW or REGULAR, it gets

merged with the previous transition. Since the phase-to of the previous

transition and the phase-from of the next transition is the same, we

append the phase-to of the next transition to the phase-to of the pre-

vious transition.

o If any of the conditions mentioned above are not met, then the iteration

moves to the next pair of transitions.

o If the conditions are met, then the previous transition (with the merged

phase) is being compared with the next transition.

− This process is followed until the last transition.

3.3.4 Examples

The outcome of the algorithms can also be visible through an example.

The examples that will be used are derived from the evaluation of TheWhiteTulip

project.

Original Extraction

The White Tulip Project lasted 10 months and had 34 changes in total as shown at

the Figure 3.3.

Figure 3.3 White Tulip: Initial data

27

Before any merging we need to find the x-y metrics.

− x: cumulative time progress percentage.

− y: cumulative evolution activity percentage.

The metric x is calculated by dividing the current month by the final month. For

example, to find the progress percentage of month 6, we divide 6/9 and the outcome

is 0.67.

The y metric is calculated by dividing the totalAttributeActivity by the total number

of changes and adding the previous percentage, if it exists. For example the project

percentage of month 6 is calculated by dividing 14/34 and adding the project per-

centage of month 5. In the case of month zero, there is no percentage for a previous

month so we do not add anything. Results are shown in the Figure 3.4.

Figure 3.4 White Tulip: Initial metrics

From the data above we can conclude that there are 9 transitions and 10 phases

initially. After this step we have enough data to calculate the degrees and therefore

decide the labels of the PhaseSeries. For this calculation we compute dy/dx initially,

which is (yFinal-yFirst)/(xFinal-xFirst). After that, we calculate the atan of the prod-

uct in degrees and decide the label. The results are shown in figures 3.5 and 3.6.

28

Figure 3.5 White Tulip: Transitions, Phases and Labels

Figure 3.6 White Tulip: Initial x-y axis representation

Each red continuous solid segment indicates a transition. Each group of continuous

blue dashed segments indicate a phase and the points inside the phase indicate the

group of time points.

We can now proceed with the algorithms.

29

Same Label Merge

The very first algorithm that must be implemented merges all the transitions with

the same labels.

− First, we add the T0 mock transition which by default is Flat. It’s Phase-

From is B3 and its Phase-To is also B3

− We compare T0 (Flat) with T1 (Flat) and realize that they can be merged.

The new T01 transition’s Phase-From will consist of the Atomic Measurement

B3 and the Atomic Measurements B4-B5 will consist of Phase-To. The new

transition’s label is Flat. That is because we calculate by taking the last Atomic

Measurement of Phase-From(B3) and the first one of Phase-To(B4), which

results in Flat.

− Continuing from T01 (Flat), we compare with T2 (Regular). Their labels are

not the same, so we compare the next pair.

− T2’s (Regular) and T3’s (Steep) labels are also different so they cannot be

merged.

− The same applies to T3 (Steep) and T4 (Flat).

− However, T4 (Flat) and T5 (Flat) have the same labels. So they will be

merged. The new T45 transition’s Phase-From will consist of the Atomic

Measurement B6 and the Atomic Measurements B7-B8 will consist of Phase-

To. The new transition’s label is Flat. That is because we calculate by taking

the last Atomic Measurement of Phase-From(B6) and the first one of Phase-

To(B7), which results in Flat, just like transition T4.

− Comparing the new T45(Flat) to the next one T6(Steep) we notice that they

do not have the same labels, therefore cannot be merged

− T6(Steep) and T7(Flat) cannot be merged either.

− T7(Flat) and T8(Flat) can be merged. The new transition’s Phase-From will

include the Atomic Measurement B9 and Phase-To will include B10 and B11

Atomic Measurements. The new transition’s label is Flat. That is because we

calculate by taking the last Atomic Measurement of Phase-From(B9) and the

first one of Phase-To(B10), which results in Flat, just like transition T9.

− The new transition (Flat) cannot be merged with T9(Low).

30

− The final step is the removal of the “mock Transition”. This is contained in

T01. Its neighboring transition is T2, so the new Phase-From of T2 will be

T01’s Phase-To (B3-B4) and T01 will be eliminated.

− Detailed results are shown in figures 3.7 and 3.8

Figure 3.7 White Tulip: Same Label detailed results

Figure 3.8 White Tulip: Same Label output x-y axis representation

31

Post-Processed Same Label Merge

Now the goal is to merge all the transitions that are flat.

− First, we add the T0 mock transition which by default is Flat. It’s Phase-

From is B3-B4 and it is Phase-To is also B3-B4

− We compare T0 (Flat) with T1 (Regular) and realize that they cannot be

merged.

− Comparing T1 (Regular) and T2 (Steep), we realize T2 is not Flat so they

cannot be merged.

− The T2 (Steep) and T3 (Flat) can be merged. So, the new Transition will be

T23(Steep), where the Phase-To will consist of B6-B7-B8 Atomic Measure-

ments.

− T23(Steep) cannot be merged with T4(Steep).

− T4 (Steep) and T5 (Flat) can be merged. So, the new Transition will be

T45(Steep), where the Phase-To will consist of B9-B10-B11 Atomic Measure-

ments.

− T45(Steep) cannot be merged with T6(Low).

− The final step is the removal of the “mock Transition” T0. It’s neighboring

transition is T1, so the new Phase-From of T1 will be T0’s Phase-To (B3-B4)

and T0 will be eliminated.

− Detailed results are shown in figures 3.9 and 3.10.

Figure 3.9 White Tulip: Post Processed Same Label detailed results

32

Figure 3.10 White Tulip: Post Processed Same Label output x-y axis representation

Merge All But Steep

Now the goal is to merge all the transitions that are not steep.

− First, we add the T0 mock transition which by default is Flat. It’s Phase-

From is B3-B4 and it’s Phase-To is also B3-B4.

− We compare it with T1 (Regular) and notice that it can be merged. The new

T01 transition’s Phase-From will consist of the Atomic Measurements B3-B4

and the Atomic Measurements B3-B4-B5 will consist the Phase-To. The new

transition’s label is Flat. That is because we calculate by taking the last Atomic

Measurement of Phase-From(B4) and the first one of Phase-To(B3), which

results in Flat.

− The next transition T2 is Steep, so it cannot be merged.

− T3 is also Steep, so it cannot be merged either.

− T4 is Low so it can be merged with T3. The new T34 transition’s PhaseFrom

contains B8 and PhaseTo contains B9-B10-B11-B12.

− Now it’s time to remove the mockTransition. T01’s PhaseFrom will become

T2’s PhaseFrom, which will include the Atomic Measurements B3-B4-B5.

33

− Detailed Results are shown in figures 3.11 and 3.12.

Figure 3.11 White Tulip: Merge All but Steep details

Figure 3.12 White Tulip: Merge All but Steep x-y axis representation

3.4 Signatures

We need to be able to represent a PhaseSeries, in order to further process it, as well

as be able understand it, without losing information. A concise and intuitive way to

achieve this is the representation of PhaseSeries via signatures. A signature is a series

of symbols that inform us of all the Phases and Transitions between them and they

can contain the labels and duration of each component. This representation is a

compact but detailed way to understand the resulting series after a merging process.

So, focusing on "The white tulip" project's examples we can derive data for each

algorithm. The detailed signatures for each algorithm, appear in Figure 3.13.

34

Figure 3.13 White Tulip: Fully Detailed Signatures

For the naive Same Label Merge Algorithm, in the first line of Figure 3.13, observe

the P(F:2). This means that the initial Phase consists of 2 Atomic Measurements and

the Phase’s Label is Flat. Similarly, the T(R) shows the Transition which connects

neighboring Phases (Transitions do not have durations). In this case it is labeled as

Regular. The next Phase, P(M), indicates a Phase with a single point, which means

that this point is between two transitions.

In the case of the post-processing of Merge Same Label where Flat phases are re-

moved from the signature, we observe that the signature has become a lot more

compact. That is because all single points and Flat Transitions have been merged

and eliminated, as shown in the 3.3.2 chapter.

In the case of the Merge All But Steep Algorithm, observe that the signature has

become significantly shorter, at the price of accuracy. In this case, all of the Transi-

tions that were labelled as Flat, Low and Regular have been merged, leaving only

Steep transitions behind.

The signature representation is very helpful to understand the state of a project, after

a merging process and it can become a lot more compact to help us understand the

Phases and Transitions if we remove the details about the duration of Phases. This

is shown in the figure 3.14. The reason for reducing the amount of information in

the signature is that this compression facilitates the grouping of different projects

into groups with identical, or at least significantly similar, signatures.

Figure 3.14 White Tulip: Signatures without durations

35

Finally, we can represent signatures without the Transition levels. This can allow us

to derive the structure of the Phases and Transitions a project entered during its

evolution, through the various merging algorithm variants. This facilitates the iden-

tification of similar signatures even further. The new signatures for our running

example are shown in Figure 3.15.

Figure 3.15 White Tulip: Signatures without Transition Labels

36

CHAPTER 4

EXPERIMENTS

4.1 Experimental Setup

4.2 Effectiveness Assessment

4.3 Efficiency Assessment

4.4 Correlation between Project Lines and Merges

4.5 State Diagrams

4.1 Experimental Setup

Several experiments were conducted in order to test the effectiveness and efficiency

of the algorithms that were analyzed in the previous chapters. We tested on the 195

databases of ICDE 2021 [13]. These datasets are part of a collection that facilitate

the study of Schema Evolution. Each dataset refers to the history of a database

schema as a sequence of releases. The collection of this data has been compiled and

processed by Panos Vassiliadis, in May 2019.

The algorithms that were tested were “The Naive Merge Same Labels Algorithm”,

“Merge Same Labels Algorithm” and “Merge All But Steep”. More specifically, on

the first algorithm, the method that iterates, merges and returns the new PhaseSeries

has been timed and tested, and regarding the second algorithm we timed the post-

processing part, which reiterates and merges all flat Transitions. So, to test the full

functionality of the “Same Labels Merge” Algorithm, we summed both of the afore-

mentioned algorithms’ findings. The second algorithm that was tested was the

37

“Merge All but Steep” Algorithm. Similarly, the timing results of this algorithm must

be added to the previous results so that we can have an idea of the full picture.

All the experiments were run 5 times on the Eclipse IDE platform, in order to find

average timings. The tests were conducted on a laptop with the specifications as

shown in the tables 4.1 and 4.2:

Device ID IdeaPad Gaming 3 15ACH6

Processor
AMD Ryzen 7 5800H with Radeon

Graphics

Installed RAM 16 GB (13.9 GB usable)

System type
64-bit operating system, x64-based

processor

Table 4.1 Computer Hardware Specifications

OS Edition Windows 11 Home

Version 21H2

Installed on 12/20/2021

OS build 22000.739

Table 4.2 Computer Software Specifications

The results of the experiments for each algorithm include:

− The amount of the effectiveness of each algorithm in terms of the frequent

phase sequences it produces.

− The results of execution time that make up the efficiency for each algorithm.

− The results of execution time per number of merges for each algorithm.

− Examples of resulting state diagrams.

4.2 Effectiveness Assessment

4.2.1 Algorithm Effectiveness

In this Section, we discuss the effectiveness of the proposed algorithms with respect

to the discovery of common patterns in the lives of database schemata.

38

How do we measure the effectiveness of our algorithms? For each schema history of

our corpus, we execute each algorithm, and, in each case, the result is a Phase Series,

i.e., a summary of the schema’s life in phases. Each phase has a duration and label

representing its angle in the cumulative schema evolution chart. Each transition is

also characterized by its angle-related label.

We can produce various signatures for each Phase Series as a text string. For exam-

ple, we can have the following degrees of detail in the signature: (a) both label and

duration for phases, label for transitions, (b) only labels for both phases and transi-

tions, (c) only phase labels. We will employ the following terminology:

− P(.) denotes phases and T(.) denotes transitions

− Labels: M=single point, F=Flat, L=Low, R=Regular, S=Steep

− P(x:d) denotes a phase with a label of x and a duration of d

For example, for the whiteTulip project, we can have the following signatures, with

increasing level of conciseness as shown in the table 4.3:

Conciseness Algo Signature

Full SLM P(F:2)-T(R)-P(M:1)-T(S)-P(M:1)-T(F)-P(F:2)-T(S)-

P(M:1)-T(F)-P(F:2)-T(L)-P(M:1)

SLM+ P(F:2)-T(R)-P(M:1)-T(S)-P(F:3)-T(S)-P(F:3)-T(L)-P(M:1)

MABS P(L:3)-T(S)-P(F:3)-T(S)-P(L:4)

Labels-only SLM P(F)-T(R)-P(M)-T(S)-P(M)-T(F)-P(F)-T(S)-P(M)-T(F)-

P(F)-T(L)-P(M)

SLM+ P(F)-T(R)-P(M)-T(S)-P(F)-T(S)-P(F)-T(L)-P(M)

MABS P(L)-T(S)-P(F)-T(S)-P(L)

Labels-

phases

SLM P(F)-T()-P(M)-T()-P(M)-T()-P(F)-T()-P(M)-T()-P(F)-

T()-P(M)

SLM+ P(F)-T()-P(M)-T()-P(F)-T()-P(F)-T()-P(M)

MABS P(L)-T()-P(F)-T()-P(L)

Table 4.3 Signatures for white tulip

The goal of our algorithms, and hence, the method to evaluate their effectiveness, is

to produce signatures that are as few and accurate, as possible.

4.2.2 Same Label Merge variants

The algorithm Same Label Merge (SLM) and its extension that merges flat transitions

into their preceding phases, which we call SLM+ for short, takes the most detailed

39

approach to signature production. We will restrict discussion to SLM+ as it is a

straightforward extension of SLM.

Effectiveness

MSL+ produces (a) 120 signatures with full annotation, (b) 74 when duration is

removed and (c) 64 signatures with labels only for the phases. Once we sort them

for popularity in the corpus, the first 15 of them cover 76% of the corpus and include

all the signatures with 0 and 1 transitions (See Table 4.4).

Signature Count of

projects #transitions

P(M) 39 0

P(F)-T()-P(M) 33 1

P(F) 24 0

P(M)-T()-P(M) 15 1

P(F)-T()-P(F) 7 1

P(F)-T()-P(F)-T()-P(M) 6 2

P(M)-T()-P(F) 4 1

P(M)-T()-P(L) 4 1

P(M)-T()-P(F)-T()-P(M) 4 2

P(F)-T()-P(R) 2 1

P(M)-T()-P(M)-T()-P(M) 2 2

P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M) 2 5

P(M)-T()-P(F)-T()-P(M)-T()-P(F)-T()-P(F)-T()-P(M) 2 5

P(F)-T()-P(L) 1 1

P(F)-T()-P(S) 1 1

P(F)-T()-P(M)-T()-P(M) 1 2

P(F)-T()-P(M)-T()-P(F) 1 2

P(M)-T()-P(F)-T()-P(R) 1 2

P(M)-T()-P(L)-T()-P(M) 1 2

P(F)-T()-P(F)-T()-P(F) 1 2

P(M)-T()-P(F)-T()-P(F) 1 2

P(F)-T()-P(F)-T()-P(F)-T()-P(F) 1 3

P(M)-T()-P(M)-T()-P(F)-T()-P(F) 1 3

P(M)-T()-P(F)-T()-P(M)-T()-P(M) 1 3

P(F)-T()-P(F)-T()-P(F)-T()-P(L) 1 3

P(M)-T()-P(M)-T()-P(M)-T()-P(L) 1 3

P(M)-T()-P(F)-T()-P(L)-T()-P(M) 1 3

P(F)-T()-P(L)-T()-P(M)-T()-P(L) 1 3

40

P(M)-T()-P(M)-T()-P(F)-T()-P(L) 1 3

P(M)-T()-P(S)-T()-P(F)-T()-P(M) 1 3

P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F) 1 4

P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F) 1 4

P(M)-T()-P(F)-T()-P(M)-T()-P(M)-T()-P(M) 1 4

P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M) 1 4

P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(R) 1 4

P(F)-T()-P(F)-T()-P(L)-T()-P(F)-T()-P(M) 1 4

P(M)-T()-P(F)-T()-P(L)-T()-P(M)-T()-P(M) 1 4

P(M)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(L) 1 4

P(F)-T()-P(M)-T()-P(F)-T()-P(F)-T()-P(M) 1 4

P(M)-T()-P(M)-T()-P(M)-T()-P(F)-T()-P(R) 1 4

P(F)-T()-P(F)-T()-P(F)-T()-P(R)-T()-P(L)-T()-P(M) 1 5

P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M) 1 5

P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M)-T()-P(L) 1 5

P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M) 1 6

P(M)-T()-P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(L)-T()-

P(M) 1 6

P(F)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(F)-T()-P(F)-T()-

P(M) 1 6

P(M)-T()-P(R)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(R)-T()-

P(L)-T()-P(L) 1 7

P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M)-T()-

P(F)-T()-P(F) 1 7

P(F)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(L)-T()-P(L)-T()-

P(M)-T()-P(F)-T()-P(M) 1 8

P(M)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(S)-T()-P(F)-T()-

P(F)-T()-P(F)-T()-P(M) 1 8

P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M)-T()-P(S)-

T()-P(R)-T()-P(M) 1 8

P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M)-T()-P(F)-T()-

P(F)-T()-P(F)-T()-P(R) 1 8

P(F)-T()-P(F)-T()-P(F)-T()-P(M)-T()-P(M)-T()-P(L)-T()-

P(L)-T()-P(R)-T()-P(F)-T()-P(F)-T()-P(M) 1 10

P(F)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(M)-T()-

P(M)-T()-P(M)-T()-P(M)-T()-P(L)-T()-P(M) 1 10

P(M)-T()-P(F)-T()-P(F)-T()-P(M)-T()-P(M)-T()-P(R)-T()-

P(F)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(M) 1 10

41

P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-

T()-P(F)-T()-P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M) 1 12

P(M)-T()-P(M)-T()-P(M)-T()-P(F)-T()-P(F)-T()-P(M)-T()-

P(F)-T()-P(F)-T()-P(L)-T()-P(M)-T()-P(F)-T()-P(L)-T()-

P(M) 1 12

P(F)-T()-P(F)-T()-P(M)-T()-P(S)-T()-P(M)-T()-P(M)-T()-

P(R)-T()-P(M)-T()-P(L)-T()-P(M)-T()-P(F)-T()-P(F)-T()-

P(F)-T()-P(F)-T()-P(M) 1 14

P(M)-T()-P(M)-T()-P(M)-T()-P(F)-T()-P(R)-T()-P(L)-T()-

P(M)-T()-P(L)-T()-P(F)-T()-P(M)-T()-P(M)-T()-P(F)-T()-

P(F)-T()-P(F)-T()-P(F) 1 14

P(M)-T()-P(M)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(F)-T()-

P(F)-T()-P(M)-T()-P(L)-T()-P(F)-T()-P(F)-T()-P(F)-T()-

P(F)-T()-P(F)-T()-P(F)-T()-P(M) 1 15

P(F)-T()-P(L)-T()-P(R)-T()-P(F)-T()-P(M)-T()-P(M)-T()-

P(L)-T()-P(L)-T()-P(F)-T()-P(F)-T()-P(M)-T()-P(R)-T()-

P(S)-T()-P(F)-T()-P(M)-T()-P(L)-T()-P(F)-T()-P(F)-T()-

P(M)-T()-P(M) 1 19

P(M)-T()-P(M)-T()-P(L)-T()-P(F)-T()-P(M)-T()-P(L)-T()-

P(F)-T()-P(L)-T()-P(F)-T()-P(M)-T()-P(F)-T()-P(M)-T()-

P(M)-T()-P(F)-T()-P(F)-T()-P(S)-T()-P(F)-T()-P(F)-T()-

P(M)-T()-P(F) 1 19

P(M)-T()-P(M)-T()-P(L)-T()-P(S)-T()-P(F)-T()-P(M)-T()-

P(F)-T()-P(F)-T()-P(F)-T()-P(M)-T()-P(F)-T()-P(F)-T()-

P(M)-T()-P(L)-T()-P(M)-T()-P(R)-T()-P(F)-T()-P(L)-T()-

P(M)-T()-P(R)-T()-P(F)-T()-P(M)-T()-P(M)-T()-P(L)-

T()-P(M)-T()-P(M)-T()-P(L)-T()-P(F)-T()-P(L)-T()-P(L)-

T()-P(R)-T()-P(L)-T()-P(F)-T()-P(M)-T()-P(M)-T()-

P(M)-T()-P(M)-T()-P(L)-T()-P(M)-T()-P(M) 1 39

P(M)-T()-P(M)-T()-P(R)-T()-P(M)-T()-P(F)-T()-P(M)-T()-

P(F)-T()-P(M)-T()-P(F)-T()-P(M)-T()-P(M)-T()-P(F)-T()-

P(M)-T()-P(F)-T()-P(M)-T()-P(M)-T()-P(M)-T()-P(M)-

T()-P(S)-T()-P(M)-T()-P(M)-T()-P(L)-T()-P(L)-T()-P(F)-

T()-P(L)-T()-P(F)-T()-P(F)-T()-P(F)-T()-P(M)-T()-P(M)-

T()-P(R)-T()-P(S)-T()-P(L)-T()-P(F)-T()-P(F)-T()-P(M)-

T()-P(M)-T()-P(M)-T()-P(S)-T()-P(M) 1 39

Table 4.4 Phase-Label-Only Signatures of Phase Series, their frequency, and their

transitions for MSL+.

42

Taxa and signatures

Taxa behave differently with respect to the signatures -- in particular, differently

with respect to the number of transitions that signatures contain. Observe Figure 4.1,

clearly depicting the different groups of taxa with respect to their signatures.

Figure 4.1 Transition ranges and taxa for MSL+

The first group contains the family of frozen taxa. Frozen projects, by definition,

contain no transitions. Almost frozen have mostly one transition and frequently zero.

Practically, this means that their change does not spread in more than one month in

most cases. The same applies with Focused Shot and Frozen.

The second group contains the family of moderately active taxa. Moderate and Fo-

cused Shot and Low are two taxa with similar amount of change, albeit difference

in how clustered the change is in different commits. In terms of monthly change,

however, they prove to be quite similar, mostly having more than 2 transitions.

However, the moderate taxon includes several projects with longer phase series and

number of transitions (see Figure 4.2).

Finally, the third group includes the Active projects, which typically have longer

lives and several phases.

43

Figure 4.2 Breakdown of projects in taxa and number of transitions for MSL+

4.2.3 Merge All But Steep

In this subsection, we will examine the Merge All but Steep Algorithm (MABS)

effectiveness.

Effectiveness

MABS produces (a) 101 signatures with full annotation, (b) 44 when duration is

removed and (c) 44 signatures with labels only for the phases. This is because all

the remaining Transitions will be steep, so they'll have one label variant anyway.

Once we sort them for popularity in the corpus, the first 15 of them cover 85.12%

of the corpus and include all the signatures with 0 and 1 transitions (See Table 4.5).

Signature

of

Projects #transitions

P(L) 61 0

P(M) 39 0

P(F) 24 0

P(F)-T()-P(M) 12 1

P(L)-T()-P(L) 6 1

P(F)-T()-P(F) 4 1

P(F)-T()-P(F)-T()-P(M) 4 2

P(R) 3 0

P(M)-T()-P(L) 3 1

P(M)-T()-P(F) 2 1

P(R)-T()-P(L) 2 1

P(F)-T()-P(F)-T()-P(F)-T()-P(L) 2 3

44

P(F)-T()-P(R)-T()-P(L)-T()-P(M) 2 3

P(F)-T()-P(L) 1 1

P(F)-T()-P(S) 1 1

P(L)-T()-P(F) 1 1

P(L)-T()-P(M) 1 1

P(M)-T()-P(R) 1 1

P(F)-T()-P(F)-T()-P(F) 1 2

P(L)-T()-P(F)-T()-P(L) 1 2

P(L)-T()-P(L)-T()-P(L) 1 2

P(L)-T()-P(L)-T()-P(M) 1 2

P(L)-T()-P(R)-T()-P(L) 1 2

P(M)-T()-P(F)-T()-P(F) 1 2

P(M)-T()-P(F)-T()-P(M) 1 2

P(M)-T()-P(L)-T()-P(L) 1 2

P(M)-T()-P(L)-T()-P(M) 1 2

P(L)-T()-P(F)-T()-P(F)-T()-P(M) 1 3

P(L)-T()-P(F)-T()-P(L)-T()-P(M) 1 3

P(L)-T()-P(L)-T()-P(F)-T()-P(M) 1 3

P(L)-T()-P(R)-T()-P(L)-T()-P(L) 1 3

P(M)-T()-P(F)-T()-P(L)-T()-P(L) 1 3

P(M)-T()-P(R)-T()-P(L)-T()-P(L) 1 3

P(F)-T()-P(F)-T()-P(L)-T()-P(F)-T()-P(M) 1 4

P(F)-T()-P(L)-T()-P(R)-T()-P(L)-T()-P(M) 1 4

P(L)-T()-P(F)-T()-P(L)-T()-P(L)-T()-P(L) 1 4

P(F)-T()-P(F)-T()-P(L)-T()-P(L)-T()-P(L)-T()-P(M) 1 5

P(F)-T()-P(F)-T()-P(L)-T()-P(L)-T()-P(S)-T()-P(M) 1 5

P(L)-T()-P(L)-T()-P(L)-T()-P(R)-T()-P(F)-T()-P(L) 1 5

P(M)-T()-P(L)-T()-P(L)-T()-P(F)-T()-P(L)-T()-P(L)-

T()-P(F)

1 6

P(M)-T()-P(L)-T()-P(L)-T()-P(L)-T()-P(R)-T()-P(L)-

T()-P(L)

1 6

P(M)-T()-P(R)-T()-P(F)-T()-P(L)-T()-P(F)-T()-P(L)-

T()-P(L)-T()-P(F)-T()-P(F)

1 8

P(L)-T()-P(R)-T()-P(R)-T()-P(L)-T()-P(R)-T()-P(L)-

T()-P(R)-T()-P(L)-T()-P(L)-T()-P(R)

1 9

P(M)-T()-P(L)-T()-P(S)-T()-P(L)-T()-P(L)-T()-P(L)-

T()-P(L)-T()-P(L)-T()-P(L)-T()-P(R)

1 9

Table 4.5 Phase-Label-Only Signatures of Phase Series, their frequency, and their

transitions for MABS.

45

Taxa and signatures

Similarly to the MSL variants, in this case taxa also behave different with respect to

the signatures, and in particular, with respect to the number of transitions that sig-

natures contain. Observe Figure 4.1, clearly depicting the different groups of taxa

with respect to their signatures.

Figure 4.3 Transition ranges and taxa for MABS

The first group contains the family of frozen taxa. As already mentioned, frozen

projects contain no transitions by definition. Almost Frozen, Focused Shot and Fro-

zen have mostly one transition and frequently zero.

The second group contains the family of moderately active taxa, which are moderate

and Focused Shot and Low which have similar amount of change and similar sig-

natures, mostly having more than 2 transitions. The difference this time is that Fo-

cused Shot and Low have more projects of 2 transitions, whereas Moderate have

more projects of 3 Transitions (see Figures 4.3 and 4.4).

Finally, the third group includes the Active projects, which typically have longer

lives and several phases.

46

Figure 4.4 Breakdown of projects in taxa and number of transitions for MABS.

4.3 Efficiency Assessment

In this subsection, we discuss the efficiency of the studied algorithms in terms of

execution time. The goal is to assess the amount of time needed to execute our

algorithms with respect to the length and the history of a project.

4.3.1 Same Label Merge Algorithms

APPENDIX A shows the results of execution time of the Same Labels Merge Algo-

rithm for each project. For each project, we have also included its taxa and duration

of months (in other words number of lines in the initial data files). In the sequel,

we detail the patterns of behavior that we have observed.

Projects with a single line in the input file. All of the projects that had one line of

data, or in other words, lasted less than a month, have the least processing time from

all of the other projects. That is because the algorithm never processed that data;

since datasets like that contain one month of data, there is just one phase available

and there’s no series to iterate. Examples like that are on top of the table.

Unexpected time execution behavior. Another pattern that is noticeable is that Frozen

and Almost Frozen datasets may have needed more time to be executed than Mod-

erate or Active Projects, even if the duration of all is similar. An example like that is

the project “mapbox__mode-mbtiles” (Almost Frozen) and “mozilla__tls-observa-

tory” (Moderate).

47

Figure 4.5 "mapbox__mode-mbtiles” and “mozilla__tls-observatory” stats.

Both of these projects lasted 32 months (32 initial Phases), however “map-

box__mode-mbtiles” needed almost more than 3 times the time “mozilla__tls-obser-

vatory” needed to be executed. That is because the first project needed a lot of

merging processes to be done. A lot more Atomic Measurements were needed to be

appended in one Phase.

This can also be seen by the graphs in Figures 4.4 and 4.5.

Figure 4.6 Post Processing Same Labels Algorithm Graph for the "mapbox__mode-

mbtiles" project

48

Figure 4.7 Post Processing Same Labels Algorithm Graph for the "mozilla__tls-ob-

servatory" project

We observe that, while both projects had a lot of similar Phases that could be merged,

the first project keeps merging almost throughout its entire duration. The second

project has noticeably less merges. So, the duration of a project is not an absolute

indicator of how long the merging process can last, however it does play a small

factor; more Phases require more iterations and checks.

49

Figure 4.8 Average time (μs) taken to execute algorithm for projects that lasted 1,

10, 20, 30, 41, 51, 63, 72, 85, 99, 100 and 105 months

The effect of schema update period on execution time. In figure 4.8, we observe the

behavior of the execution time as a function of the schema update period. In the

horizontal axis we depict the number of months the evolution of each schema and

on the vertical axis, the execution time in microseconds. We chose schemata whose

histories were close to a multiple of 10 months. Each label in the horizontal axis

represents all the schemata of the corpus with this duration; the corresponding value

in the vertical axis is the average execution time for all the projects that pertain to

the respective duration in months.

In the same figure, we observe patterns that further prove the points suggested. First

of all, projects that lasted one month have very minimum execution time in average.

As already mentioned, the algorithm was never executed for these projects.

Projects of longer duration required extra time. The initial execution time does not

depend linearly over the number of Phases; however, the number of merges does

require extra execution time. We notice projects of big duration that have small

execution time and others that took longer. For example, projects that lasted 99

months had a longer execution time in average, than ones that lasted 85 or 100

months.

50

Figure 4.9 Average time (μs) taken to execute each algorithm for projects that

lasted 1, 10, 20, 30, 41, 51, 63, 72, 85, 99, 100 and 105 months

In figure 4.9, we observe that the post-processed same label algorithm did not take

longer than the naive one. The case of the project that lasted 99 months is interesting,

as it appears that the naive algorithm required a lot of execution time, while the

post-processed one required only a small fraction of time.

Most of the other projects required some time for the execution of the post-processed

algorithm. In all of these cases the execution time is a lot shorter than the naive

algorithm's execution time. That is because of the nature of the histories of the

schemata and the algorithms. There were a lot of months with no change in activity

for a lot of these projects, and this means that those initial Phases needed to be

merged into one. That was all processed during the Naive Similar Label Merge Al-

gorithm. The second algorithm, reiterated the new PhaseSeries, only to eliminate any

stray Flat Transitions, so, by default, there would not be as many merges to be made.

0

50

100

150

200

250

300

350

400

1 10 20 30 41 51 63 72 85 99 100 105

Ex
ec

u
ti

o
n

 t
im

e
(m

ic
ro

se
c)

Duration in months

Average execution time per schema history
size for each algorithm (microsec)

Post Processed
SL Merge
Naïve SL Merge

51

4.3.2 Merge All but Steep Algorithm

Figure 4.10 Average time (μs) taken to execute the Merge All But Steep Algorithm

for projects that lasted 1, 10, 20, 30, 41, 51, 63, 72, 85, 99, 100 and 105 months

In the figure 4.10, we observe the behavior of the execution time as a function of the

schema update period. In the horizontal axis we lay the number of months the

evolution of each schema and on the vertical axis, the execution time in microsec-

onds. For this algorithm, we also chose schemata whose histories were close to a

multiple of 10 months.

In the same figure, we notice that projects that lasted one month have very minimum

execution time in average, just like in the previous experiments.

Projects of longer duration required extra time. Similarly, as in figure 4.6, for this

algorithm there were projects that lasted 99 months had a longer execution time in

average, than ones that lasted 85, 100 or 105 months.

3

40

147

117

78

262

89

170

88

338

87
105

0

50

100

150

200

250

300

350

400

1 10 20 30 41 51 63 72 85 99 100 105Ex
ec

u
ti

o
n

 t
im

e
(m

ic
ro

se
c)

Duration in months

Average execution time per schema history size
for the Merge All but Steep algorithm (microsec)

52

Figure 4.11 Average time (μs) taken to execute each Algorithm for projects that

lasted 1, 10, 20, 30, 41, 51, 63, 72, 85, 99, 100 and 105 months

In Figure 4.11, we stack the execution time of each algorithm on top of each other

so that we can compare the execution times between the algorithms. In this case we

notice that the MABS algorithm requires more execution time than the MSL+ algo-

rithm (Post Processed Same Label Merge). That is a logical result, as the MSL+

algorithm merges only the Flat leftovers of MSL, whereas MABS merges everything

else that is not Steep (Low, Regular).

4.4 Correlation between Schema Duration and Merges

In this subsection, we demonstrate the correlation of the number of merges of a

signature with the number of lines of the input files – equivalently the duration of

the schema update period.

0

50

100

150

200

250

300

350

400

1 10 20 30 41 51 63 72 85 99 100 105Ex
ec

u
ti

o
n

 t
im

e
(m

ic
ro

se
c)

Duration in months

Average execution time per schema history size
for each algorithm (microsec)

Merge All But Steep
Merge

Post Processed SL Merge

Naïve SL Merge

53

Figure 4.12 Correlation between merges and duration executing MSL.

In Figure 4.12, using the results of MSL, we examine the correlation of (a) the

number of lines of the input files (i.e., the duration of the schema update period)

and (b) the number of merges. We observe that they are very closely correlated. The

Pearson correlation is 94% and their scatterplot is almost a straight line (with few

exceptions). Thus, we cannot really discern the effect of merges from the effect of

the number of lines in the execution time.

In any case, we isolated a small range of values, where the number of lines is between

63 and 72, having different number of merges and studied the effect on time. The

results depicted in Fig. 4.13 are inconclusive.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
M

er
ge

s

Duration in Months

MERGES OVER #LINES

54

Figure 4.13 Average time (μs) taken per number of merges executing MSL.

Similar results are produced when using the MABS algorithm. In this case the Pear-

son correlation is 99%.

Figure 4.14 Correlation between merges and duration executing MABS.

0

50

100

150

200

250

16 36 45 60 68

Ex
ec

u
ti

io
n

 t
im

e
(μ

s)

Number of merges

Execution Time (μs) per number of Merges

0

20

40

60

80

100

120

0 20 40 60 80 100 120

N
u

m
b

er
 o

f
M

er
ge

s

Duration in Months

MERGES OVER #LINES

55

Figure 4.15 Average time (μs) taken per number of merges executing MABS, using

the same projects as in figure 4.13.

4.5 State Diagrams

In this subsection, we present the state diagrams that can are derived from our

experiments.

Figure 4.16 A state diagram. The first circle indicates the birth, the big round cir-

cles indicate Phases and their loops, the return to the same state. The arrows that

connect the Phases are the Transitions. A circle without a loop is a Monadic point.

The double circle indicates the end.

0

50

100

150

200

250

60 61 62 63 68

Ex
ec

u
ti

io
n

 t
im

e
(μ

s)

Number of merges

Execution Time (μs) per number of Merges

56

In the subsection, of the Efficiency Assessment we derived a few signatures for a

good percentage of the total projects:

− MSL+ produced 15 signatures which cover 76% of the (See Table 4.4).

− MABS produced 15 signatures which cover 82.56% of the corpus (See Table

4.5).

In order to portray types of state diagrams that are derived from the aforementioned

experiment, we take the top 5 signatures for each algorithm that make up:

− 60% of the projects using MLS+.

− 72.82% of the projects using MABS.

Signature of MLS+ Count of projects #transitions

P(M) 39 0

P(F)-T()-P(M) 33 1

P(F) 24 0

P(M)-T()-P(M) 15 1

P(F)-T()-P(F) 7 1

Table 4.6 First 5 Phase-Label-Only Signatures of Phase Series, their frequency, and

their transitions for MSL+.

The resulting state diagrams for MSL+ are the following in figures 4.16-4.20:

Figure 4.17 MSL+: P(M)

57

Figure 4.18 MSL+: P(F)-T()-P(M)

Figure 4.19 MSL+: P(F)

Figure 4.20 MSL+: P(M)-T()-P(M)

58

Figure 4.21 MSL+: P(F)-T()-P(F)

Signature # of Projects #transitions

P(L) 61 0

P(M) 39 0

P(F) 24 0

P(F)-T()-P(M) 12 1

P(L)-T()-P(L) 6 1

Table 4.7 First 5 Phase-Label-Only Signatures of Phase Series, their frequency, and

their transitions for MABS.

The resulting state diagrams for MABS are the following in figures 4.21-4.25:

Figure 4.22 MABS: P(L)

59

Figure 4.23 MABS: P(M)

Figure 4.24 MABS: P(F)

Figure 4.25 MABS: P(F)-T()-P(M)

60

Figure 4.26 MABS: P(L)-T()-P(L)

In figures 4.17-4.26 we notice that the label of the Phase can be Flat, Regular, or

Low and we observe that there are no Steep instances. Monadic Points do not include

loops as they are a single point. Regarding the loops of the Phases which are marked

with (?), the Phases can contain one or more Atomic Measurements, which means

that in the state diagram representation, they can return to the same state. In the

general case, the label of the Phase that has been produced by merging several other

phases into one, can be different, depending on the algorithm.

− For the MSL, the resulting label, is the label of the continuous merged phases.

− For the MSL+, the resulting label is the label of the continuous merged phases,

plus Flat Phases.

− For the MABS algorithm, the resulting label could be any label, depending on

the project, although it can never be Steep.

Regarding the Transitions and their labels:

− For the MSL, the surviving label can be anything.

− For the MSL+, a transition label will never be Flat.

− For the MABS algorithm, a transition label can only be Steep.

61

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

5.2 Future Work

5.1 Conclusions

In this Section, we discuss the conclusions of the thesis. Given a set of 195 publicly

available corpus of schema evolution histories from Free Open-Source Projects, we

organized the history of corpus' projects in monthly quanta as time units and assess

change via a cumulative metric of monthly change. Given this data we created a

PhaseSeries, which consisted of Atomic Measurements, Phases and Transitions. In

more detail, Atomic Measurements consist of the cumulative of the time progress

percentage (x) and the cumulative evolution activity percentage (y). A Phase includes

one or more of these Atomic Measurements. A Transition is the bridge that connects

two neighboring Phases which, means that it connects two different sequences of

contiguous Atomic Measurements of the schema. The difference between them, can

be labeled by the rate of change given the time, which is calculated by the angle that

is created between the Phases. So, depending on the degrees of the angle, it can be

characterized as:

o FLAT: φ<=0 degrees - no change of rate during the transition

o LOW: 0<φ<= 30 degrees - a small change of rate during the transition

o REGULAR: 30<φ<=60 degrees - a normal change of rate during a transition

62

o STEEP: 60<φ degrees - a significant change of rate during a transition

Our goal was to create shorter PhaseSeries that maintain the most important changes

during schema evolution without losing a lot of accuracy, meaning without omitting

important information.

To achieve that, we introduced a few algorithms that aimed in merging Transitions,

given a similarity metric. The first algorithm we introduced is called “Similar Labels

Merge” and its goal is to iterate each pair of neighboring Phases that exist in neigh-

boring Transitions and check if the newer Transition can be merged with the previ-

ous one. The Transitions can be merged only if their labels are the same. The out-

come of this algorithm is a new PhaseSeries with no repeating neighboring Transi-

tions. The issue that we observed from executing our first algorithm is that many

Flat Transitions remained in the PhaseSeries. A Flat Transition implies no change

during the evolution, so there is no reason to keep instances like that in the

PhaseSeries. That is why we introduced a new algorithm, that basically processes

the outcome of the previous algorithm and merges all Flat Transitions and is called

Merge Same Labels+. Our final algorithm, which is called Merge All but Steep is

merging all the remaining Transitions that are not Steep. In this way we keep the

most “important” changes in our PhaseSeries.

In order to portray the resulting PhaseSeries, we introduced the “signatures”, i.e.,

series of symbols that portray the Phases, Transitions and occationally the duration

and labels. These help us understand and research the outcomes of the algorithms

a lot easier.

After the creation and execution, we ran a couple of experiments to test the efficiency

and effectiveness of the algorithms. Regarding the effectiveness we grouped the pro-

jects by the different signatures concluded that each algorithm reduces the number

of different signatures and the more “active” the evolutions was during a project, the

more transitions it has, thus having a higher chance of acquiring a bigger signature.

Regarding the efficiency, we noticed that the very first algorithm is the most “re-

source-heavy” out of the three and that is because a lot of merges have to happen

during the initial examination, especially on inactive projects with a lot of duration.

Another thing we concluded from these experiments is that the time taken to execute

the algorithms is not related to the duration of the projects.

Finally, we extracted examples of state diagrams that derived from this research.

63

5.2 Future Work

In this thesis we examined 3 algorithms that merge Transitions based on the simi-

larity of labels, or category of labels.

Another approach to this could be to examine the resulting labels of the Phases

additionally to the Transitions. The Phases can include one or more Atomic Meas-

urements, so potentially the Phase could be labelled in order to be examined during

the merging process. Another merging condition that could be added could be the

examination of a duration of a Phase in comparison with the project duration or

given a set expected percentage of change rate.

Another idea would be to completely omit the comparison between Transitions and

only compare the Phases. The Transitions could be created as the outcome of an

algorithm like that.

Finally, another approach could be a bit more complex method, which could require

the computation of the cost that is created during the merging process. While keep-

ing any of the examined or discussed merging conditions intact, this new condition

could potentially help find the balance between having a lot of Transitions, or in

other words a lot of accuracy and losing some accuracy by omitting some Transi-

tions.

As for the creation of the state diagrams, a lot more details could be added, and

deeper research could be conducted, in order to extract various categories.

64

REFERENCES

[1] Belady, L.A., Lehman, M.M.: A model of large program development. IBM Sys-

tems Journal 15(3), 225–252, 1976.

[2] Lehman, M.M., Ramil, J.F., Wernick, P., Perry, D.E., Turski, W.M.: Metrics and

laws of software evolution - the nineties view. In: 4th IEEE International Soft-

ware Metrics Symposium (METRICS 1997), p. 20, 1997.

[3] Lehman, M.M., Fernandez-Ramil, J.C.: Rules and Tools for Software Evolution

Planning and Management. In: Software Evolution and Feedback: Theory and

Practice. John Wiley and Sons Ltd. (2006) ISBN-13: 978-0-470-87180-5.

[4] Dag Sjøberg. Quantifying Schema Evolution. Information and Software Technol-

ogy, 35(1), pp. 35-44, January 1993

[5] Zhenchang Xing and Eleni Stroulia. Analyzing the Evolutionary History of the

Logical Design of Object-Oriented Software, IEEE Transactions on Software En-

gineering, Vol 13, No 10, October 2005

[6] Marios Fokaefs, Rimon Mikhaiel, Nikolaos Tsantalis, Eleni Stroulia and Alex Lau.

An Empirical Study on Web Service Evolution. IEEE International Conference

on Web Services, (ICWS) 2011, Washington DC, USA, July 4-9, 2011, 2011

[7] Dong Qiu, Bixin Li, Zhendong Su. An Empirical Analysis of the Co-evolution of

Schema and Code in Database Applications. ESEC/FSE ’13, 2013.

[8] Hamed Shariat Yazdi, Mahnaz Mirbolouki, Pit Pietsch, Timo Kehrer and Udo

Kelter. Analysis and Prediction of Design Model Evolution Using Time Series.

CAiSE 20124 WorkShops, LNBIP 178, pp. 1-15, 2014.

65

[9] Skoulis, I., Vassiliadis, P., Zarras, A.: Open-source databases: within, outside, or

beyond Lehman’s laws of software evolution? In: Jarke, M., Mylopoulos, J., Quix,

C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.

LNCS, vol. 8484, pp. 379–393. Springer, Heidelberg, 2014.

[10] Panos Vassiliadis, Apostolos Zarras, Ioannis Skoulis. How is Life for a Table in

an Evolving Relational Schema? Birth, Death & Everything in Between. 34th

International Conference on Conceptual Modeling (ER 2015). 19-22 October

2015, Stockholm, Sweden.

[11] Panos Vassiliadis , Apostolos V. Zarras , Ioannis Skoulis. Gravitating to Rigidity:

Patterns of Schema Evolution -and its Absence- in the Lives of Tables. Infor-

mation Systems, Volume 63, January 2017, Pages 24-46, ISSN 0306-4379,

doi:10.1016/j.is.2016.06.010.

[12] Wenjie Hu, Yang Yang, Ziqiang Cheng, Carl Yang, Xiang Ren. Time-Series Event

Prediction with Evolutionary State Graph. Arxiv, available at

https://arxiv.org/abs/1905.05006, doi: 10.48550/ARXIV.1905.05006, Last up-

date: 2020.

[13] Panos Vassiliadis. Profiles of Schema Evolution in Free Open Source Software

Projects. 37th IEEE International Conference on Data Engineering (ICDE '21),

Chania, Crete, Greece, 19-22 April 2021.

[14] Schema Biographies: https://www.cs.uoi.gr/~pvassil/projects/schemaBiog-

raphies/info.html

66

APPENDIX A

 DURATION OF SAME LABEL MERGE+

FOR EACH ICDE 2021 DATABASE

Project TAXON #months
Sum of Dura-
tion (ns)

aiyi__go-user 2_MODERATE 1 6700

APTrust__exchange 1_ALMOST_FROZEN 1 4840

azzlack__Sentinel.OAuth 0_FROZEN 1 4820

colbygk__ARS 1_ALMOST_FROZEN 1 7400

dneustadt__majima 1_ALMOST_FROZEN 1 4300

eldersantos__winston-post-
gre 1_ALMOST_FROZEN 1 6440

EricDepagne__Astrodb
1_FocusedShot_n_FRO-

ZEN 1 5680

fastpress__fastpress
1_FocusedShot_n_FRO-

ZEN 1 5160

goproj__note 0_FROZEN 1 7660

ichthus-soft__bible-api 0_FROZEN 1 3700

jasdel__harvester 3_FocusedShot_n_LOW 1 3200

jessemillar__stalks 1_ALMOST_FROZEN 1 3800

jingweno__jqplay 1_ALMOST_FROZEN 1 5300

jmcneese__bitmasked 0_FROZEN 1 3200

knightliao__disconf 0_FROZEN 1 3520

leapp-to__prototype 1_ALMOST_FROZEN 1 6880

mbilbille__jpnforphp 0_FROZEN 1 1100

mgilangjanuar__slimedoo 1_ALMOST_FROZEN 1 960

mozilla__ichnaea 0_FROZEN 1 1120

protosam__hostcontrol 0_FROZEN 1 1000

purefn__hipbot 1_ALMOST_FROZEN 1 1000

remind101__empire 1_ALMOST_FROZEN 1 980

67

RichMercer__ContentMe-
tadata 0_FROZEN 1 980

rill-event-sourcing__rill 0_FROZEN 1 920

rogeriopvl__nodo 0_FROZEN 1 1020

royzhao__prot-coderun
1_FocusedShot_n_FRO-

ZEN 1 1100

rvadym__languages 1_ALMOST_FROZEN 1 960

saltzm__yadi 0_FROZEN 1 1060

shiftcurrency__shift 1_ALMOST_FROZEN 1 1140

skarllot__netpaper 1_ALMOST_FROZEN 1 1240

starbs__yeh 0_FROZEN 1 1140

taskrabbit__empujar 0_FROZEN 1 920

theskyinflames__bpulse-go-
client 0_FROZEN 1 960

tracer__tracer 1_ALMOST_FROZEN 1 1120

travis-ci__jupiter-brain 1_ALMOST_FROZEN 1 1280

UlricQin__beego-blog 1_ALMOST_FROZEN 1 980

wanlitao__HangfireExten-
sion 1_ALMOST_FROZEN 1 1100

webinverters__win-with-
logs 1_ALMOST_FROZEN 1 920

webnuts__post_json
1_FocusedShot_n_FRO-

ZEN 1 980

ankitjain28may__registra-
tion-module 1_ALMOST_FROZEN 2 63060

archan937__cached_record
1_FocusedShot_n_FRO-

ZEN 2 92380

curt-labs__GoSurvey 3_FocusedShot_n_LOW 2 43420

flynn__flynn-subdomainer 1_ALMOST_FROZEN 2 38460

HXLStandard__hxl-proxy 0_FROZEN 2 48920

jadekler__git-go-d3-con-
certsap

1_FocusedShot_n_FRO-
ZEN 2 37080

jaybennett89__thorium-go 2_MODERATE 2 32760

jgauffin__griffin.mvccontrib 0_FROZEN 2 34400

joyplus__o2oadmin 3_FocusedShot_n_LOW 2 39380

JRonak__OnlineJudge
1_FocusedShot_n_FRO-

ZEN 2 41280

liujianping__scaffold
1_FocusedShot_n_FRO-

ZEN 2 37220

magnus-lycka__gocddash
1_FocusedShot_n_FRO-

ZEN 2 35160

marmelab__comfygure 0_FROZEN 2 38220

mattinsler__work-it 1_ALMOST_FROZEN 2 35820

milogert__ocdns 3_FocusedShot_n_LOW 2 33700

mozilla-services__autograph 1_ALMOST_FROZEN 2 28420

68

mukatee__pypro
1_FocusedShot_n_FRO-

ZEN 2 22460

NPRA__EmissionCalcula-
torLib

1_FocusedShot_n_FRO-
ZEN 2 20780

schimmy__shorty 1_ALMOST_FROZEN 2 22660

spaceboats__busbus 3_FocusedShot_n_LOW 2 20640

teresko__palladium 1_ALMOST_FROZEN 2 20860

Terry-Mao__gopush-cluster
1_FocusedShot_n_FRO-

ZEN 2 19840

thesues__catkeeper 1_ALMOST_FROZEN 2 22020

voxpelli__node-connect-pg-
simple 0_FROZEN 2 21880

zphalcon__phalcon-tip 0_FROZEN 2 21900

devture__silex-user-bundle
1_FocusedShot_n_FRO-

ZEN 3 46020

EPICPaaS__appmsgsrv 4_ACTIVE 3 37780

georgringer__logging 1_ALMOST_FROZEN 3 45460

h2oai__steam 3_FocusedShot_n_LOW 3 42120

keybase__node-client 3_FocusedShot_n_LOW 3 41280

leighmacdonald__php_rbac 0_FROZEN 3 36780

marssa__footprint 0_FROZEN 3 45540

soapboxsys__ombudslib 2_MODERATE 3 22020

williamespindola__field
1_FocusedShot_n_FRO-

ZEN 3 26940

yiier__forum 1_ALMOST_FROZEN 3 26620

ZachBergh__spark-mysql-
protocol 2_MODERATE 3 22540

Attendly__maillist 2_MODERATE 4 93000

byteball__byteballcore 2_MODERATE 4 46560

MorpheusXAUT__eveauth 2_MODERATE 4 51380

ranaroussi__qtpylib 2_MODERATE 4 26480

scherersoftware__cake-wiki 1_ALMOST_FROZEN 4 32420

seatgeek__djjob 1_ALMOST_FROZEN 4 27660

wskm__deruv 2_MODERATE 4 27840

senecajs__seneca-postgres-
store 1_ALMOST_FROZEN 5 31460

DevMine__repotool 1_ALMOST_FROZEN 6 50160

dotkernel__frontend 1_ALMOST_FROZEN 6 49660

IamBc__abc 2_MODERATE 6 43440

magikcypress__slim-boot-
boilerplate 0_FROZEN 6 48440

SalesforceEng__cucumber-
metrics 1_ALMOST_FROZEN 6 25660

snakerflow__snakerflow
1_FocusedShot_n_FRO-

ZEN 6 31280

69

CityGrid__twonicorn 3_FocusedShot_n_LOW 7 69380

damnpoet__yiicart 0_FROZEN 7 75940

HaliteChallenge__Halite-II 4_ACTIVE 7 48120

the42__ogdat 1_ALMOST_FROZEN 7 25780

cartalyst__sentry 2_MODERATE 8 54920

dburry__indexed_search
1_FocusedShot_n_FRO-

ZEN 8 66380

sqlectron__sqlectron-core 1_ALMOST_FROZEN 8 51920

comforme__comforme 2_MODERATE 9 58580

enova__prodder 1_ALMOST_FROZEN 9 62820

nats-io__nats-streaming-
server 2_MODERATE 9 34700

outbrain__orchestrator 0_FROZEN 9 41820

hurad__hurad 3_FocusedShot_n_LOW 10 43520

neos__flow-development-
collection 1_ALMOST_FROZEN 10 41280

nooku__joomla-todo 4_ACTIVE 10 25700

pw-press__web-project 3_FocusedShot_n_LOW 10 28580

thewhitetulip__Tasks 2_MODERATE 10 28800

webadmin87__rzwebsys7
1_FocusedShot_n_FRO-

ZEN 10 34220

atomjump__loop-server 1_ALMOST_FROZEN 11 147160

conceptsandtrain-
ing__libtree 1_ALMOST_FROZEN 11 93620

duythien__blog
1_FocusedShot_n_FRO-

ZEN 11 52220

jalkoby__squasher 0_FROZEN 11 51200

openzipkin__zipkin 1_ALMOST_FROZEN 11 44020

RiotingNerds__sails-hook-
audittrail 0_FROZEN 11 42920

SeldonIO__seldon-server 1_ALMOST_FROZEN 11 50100

twitter__zipkin 1_ALMOST_FROZEN 11 44100

AA-ALERT__frbcatdb 4_ACTIVE 12 148360

jaredbeck__paper_trail-sina-
tra 1_ALMOST_FROZEN 12 60900

blueriver__MuraCMS 1_ALMOST_FROZEN 14 147600

dlds__yii2-mlm
1_FocusedShot_n_FRO-

ZEN 14 69140

hugodias__cakegallery 1_ALMOST_FROZEN 14 74380

accgit__acl
1_FocusedShot_n_FRO-

ZEN 15 220420

foodcoopshop__foodcoop-
shop 4_ACTIVE 15 69720

processone__ejabberd 4_ACTIVE 15 37960

etsy__mixer 1_ALMOST_FROZEN 16 81640

70

symfony__security-acl 0_FROZEN 16 72640

vzex__dog-tunnel 1_ALMOST_FROZEN 16 55780

builderscon__octav 4_ACTIVE 17 75980

matthewfranglen__post-
gres-elasticsearch-fdw 0_FROZEN 17 74100

prooph__pdo-snapshot-
store 0_FROZEN 17 63340

RubyMoney__money-rails 1_ALMOST_FROZEN 17 42820

enova__landable 4_ACTIVE 18 65720

portrino__px_hybrid_auth 0_FROZEN 18 68300

jasongrimes__silex-sim-
pleuser

1_FocusedShot_n_FRO-
ZEN 19 85940

guardian__alerta 1_ALMOST_FROZEN 20 183140

joomlatools__joomla-plat-
form-categories 1_ALMOST_FROZEN 20 94340

gem__oq-engine
1_FocusedShot_n_FRO-

ZEN 21 58100

jcoppieters__cody 1_ALMOST_FROZEN 21 59820

joomlatools__joomla-plat-
form-finder 1_ALMOST_FROZEN 21 48240

lisong__code-push-server 2_MODERATE 21 55080

mapbox__osm-comments-
parser 2_MODERATE 21 90440

rolfvreijdenberger__izzum-
statemachine 1_ALMOST_FROZEN 21 49500

bgentry__que-go 0_FROZEN 23 172060

josephspurrier__gowebapp 1_ALMOST_FROZEN 23 74520

n2n__page 1_ALMOST_FROZEN 23 61380

3ev__tev_label
1_FocusedShot_n_FRO-

ZEN 24 804260

joomlatools__joomla-plat-
form 4_ACTIVE 24 66260

quickapps__cms 4_ACTIVE 25 43500

lamassu__lamassu-scripts 3_FocusedShot_n_LOW 26 60840

mem__padron 1_ALMOST_FROZEN 26 123400

n2n__rocket 3_FocusedShot_n_LOW 27 51020

TalkingData__OWL-v3 3_FocusedShot_n_LOW 27 42580

brettkromkamp__topic_db 3_FocusedShot_n_LOW 28 90000

joomlatools__joomla-plat-
form-content 1_ALMOST_FROZEN 28 92500

lamassu__lamassu-admin 2_MODERATE 28 80040

umpirsky__tld-list 1_ALMOST_FROZEN 28 78420

mozilla-services__go-
bouncer 1_ALMOST_FROZEN 29 78260

neocogent__sqlchain 2_MODERATE 29 95700

71

pinterest__teletraan 4_ACTIVE 29 39400

gousiosg__github-mirror 2_MODERATE 30 98680

scorelab__Bassa 2_MODERATE 31 49820

chill117__express-mysql-
session 1_ALMOST_FROZEN 32 158920

mapbox__node-mbtiles 1_ALMOST_FROZEN 32 126220

mozilla__tls-observatory 2_MODERATE 32 40220

imsamurai__cakephp-task-
plugin 2_MODERATE 33 87100

kronusme__dota2-api 3_FocusedShot_n_LOW 34 63960

arnoldasgudas__Hang-
fire.MySqlStorage 4_ACTIVE 35 143280

studygolang__studygolang 4_ACTIVE 35 56060

ironsmile__httpms 1_ALMOST_FROZEN 36 184620

spring-projects__spring-so-
cial 1_ALMOST_FROZEN 37 119780

energine-cmf__energine 4_ACTIVE 38 77060

TwitchScience__rs_ingester 3_FocusedShot_n_LOW 38 71920

BotBotMe__botbot-bot
1_FocusedShot_n_FRO-

ZEN 41 291840

mozilla__mig 2_MODERATE 41 53180

teaminmedias-
pluswerk__ke_search 2_MODERATE 41 51100

MDSLab__s4t-iotronic-
standalone 4_ACTIVE 42 102960

gugoan__economizzer 3_FocusedShot_n_LOW 43 76480

imbo__imbo 2_MODERATE 46 86100

tstack__lnav
1_FocusedShot_n_FRO-

ZEN 47 127420

blabla1337__skf-flask 4_ACTIVE 48 147160

tronsha__cerberus 4_ACTIVE 48 67240

benoitletondor__TwitterBot 2_MODERATE 49 120940

anchorcms__anchor-cms 3_FocusedShot_n_LOW 51 218780

GoBelieveIO__im_service 3_FocusedShot_n_LOW 53 95820

aimeos__aimeos-typo3 2_MODERATE 54 446100

pods-framework__pods 4_ACTIVE 55 59400

shouldbee__reserved-
usernames 0_FROZEN 56 171620

alextselegidis__easyappoint-
ments 3_FocusedShot_n_LOW 57 244960

tpolecat__doobie 1_ALMOST_FROZEN 63 86600

intelliants__subrion 4_ACTIVE 66 90080

symphonycms__symphony-2 2_MODERATE 68 64140

shopware__shopware 0_FROZEN 69 214260

cgrates__cgrates 4_ACTIVE 72 110680

72

torrentpier__torrentpier 4_ACTIVE 85 78560

simplepie__simplepie 1_ALMOST_FROZEN 99 334180

nawork__nawork-uri 2_MODERATE 100 75420

opencart__opencart 4_ACTIVE 105 80600

Table 6.1 Sum of execution time needed for the Same Label Merge+ algorithm in

relation to the taxa and months taken for each project

73

APPENDIX B

 DURATION OF MERGE ALL BUT STEEP

ALGORITHM FOR EACH ICDE 2021 DATA-

BASE

Project TAXON #months

Avg Sum of Dura-
tion Α0+Α1+Α2
(ns)

aiyi__go-user 2_MODERATE 1 6980

APTrust__exchange 1_ALMOST_FROZEN 1 5100

azzlack__Sentinel.OAuth 0_FROZEN 1 5020

colbygk__ARS 1_ALMOST_FROZEN 1 7640

dneustadt__majima 1_ALMOST_FROZEN 1 4540

eldersantos__winston-post-
gre 1_ALMOST_FROZEN 1 6680

EricDepagne__Astrodb
1_FocusedShot_n_FRO-

ZEN 1 5920

fastpress__fastpress
1_FocusedShot_n_FRO-

ZEN 1 5400

goproj__note 0_FROZEN 1 7900

ichthus-soft__bible-api 0_FROZEN 1 3920

jasdel__harvester 3_FocusedShot_n_LOW 1 3460

jessemillar__stalks 1_ALMOST_FROZEN 1 4020

jingweno__jqplay 1_ALMOST_FROZEN 1 5520

jmcneese__bitmasked 0_FROZEN 1 3560

knightliao__disconf 0_FROZEN 1 3780

leapp-to__prototype 1_ALMOST_FROZEN 1 6940

mbilbille__jpnforphp 0_FROZEN 1 1140

mgilangjanuar__slimedoo 1_ALMOST_FROZEN 1 1000

mozilla__ichnaea 0_FROZEN 1 1160

74

protosam__hostcontrol 0_FROZEN 1 1080

purefn__hipbot 1_ALMOST_FROZEN 1 1020

remind101__empire 1_ALMOST_FROZEN 1 1060

RichMercer__ContentMe-
tadata 0_FROZEN 1 1060

rill-event-sourcing__rill 0_FROZEN 1 1000

rogeriopvl__nodo 0_FROZEN 1 1060

royzhao__prot-coderun
1_FocusedShot_n_FRO-

ZEN 1 1140

rvadym__languages 1_ALMOST_FROZEN 1 1020

saltzm__yadi 0_FROZEN 1 1060

shiftcurrency__shift 1_ALMOST_FROZEN 1 1220

skarllot__netpaper 1_ALMOST_FROZEN 1 1320

starbs__yeh 0_FROZEN 1 1220

taskrabbit__empujar 0_FROZEN 1 960

theskyinflames__bpulse-go-
client 0_FROZEN 1 1020

tracer__tracer 1_ALMOST_FROZEN 1 1140

travis-ci__jupiter-brain 1_ALMOST_FROZEN 1 1360

UlricQin__beego-blog 1_ALMOST_FROZEN 1 1020

wanlitao__HangfireExten-
sion 1_ALMOST_FROZEN 1 1160

webinverters__win-with-
logs 1_ALMOST_FROZEN 1 940

webnuts__post_json
1_FocusedShot_n_FRO-

ZEN 1 1000

ankitjain28may__registra-
tion-module 1_ALMOST_FROZEN 2 88120

archan937__cached_record
1_FocusedShot_n_FRO-

ZEN 2 119700

curt-labs__GoSurvey 3_FocusedShot_n_LOW 2 79380

flynn__flynn-subdomainer 1_ALMOST_FROZEN 2 48820

HXLStandard__hxl-proxy 0_FROZEN 2 49160

jadekler__git-go-d3-con-
certsap

1_FocusedShot_n_FRO-
ZEN 2 52720

jaybennett89__thorium-go 2_MODERATE 2 43240

jgauffin__griffin.mvccontrib 0_FROZEN 2 34660

joyplus__o2oadmin 3_FocusedShot_n_LOW 2 48540

JRonak__OnlineJudge
1_FocusedShot_n_FRO-

ZEN 2 50920

liujianping__scaffold
1_FocusedShot_n_FRO-

ZEN 2 46240

magnus-lycka__gocddash
1_FocusedShot_n_FRO-

ZEN 2 43600

marmelab__comfygure 0_FROZEN 2 38280

75

mattinsler__work-it 1_ALMOST_FROZEN 2 35900

milogert__ocdns 3_FocusedShot_n_LOW 2 41960

mozilla-services__autograph 1_ALMOST_FROZEN 2 28480

mukatee__pypro
1_FocusedShot_n_FRO-

ZEN 2 22480

NPRA__EmissionCalcula-
torLib

1_FocusedShot_n_FRO-
ZEN 2 20820

schimmy__shorty 1_ALMOST_FROZEN 2 22720

spaceboats__busbus 3_FocusedShot_n_LOW 2 28300

teresko__palladium 1_ALMOST_FROZEN 2 28280

Terry-Mao__gopush-cluster
1_FocusedShot_n_FRO-

ZEN 2 28520

thesues__catkeeper 1_ALMOST_FROZEN 2 28020

voxpelli__node-connect-pg-
simple 0_FROZEN 2 21920

zphalcon__phalcon-tip 0_FROZEN 2 21960

devture__silex-user-bundle
1_FocusedShot_n_FRO-

ZEN 3 55560

EPICPaaS__appmsgsrv 4_ACTIVE 3 51960

georgringer__logging 1_ALMOST_FROZEN 3 54440

h2oai__steam 3_FocusedShot_n_LOW 3 71280

keybase__node-client 3_FocusedShot_n_LOW 3 49340

leighmacdonald__php_rbac 0_FROZEN 3 36820

marssa__footprint 0_FROZEN 3 45560

soapboxsys__ombudslib 2_MODERATE 3 26920

williamespindola__field
1_FocusedShot_n_FRO-

ZEN 3 31260

yiier__forum 1_ALMOST_FROZEN 3 31340

ZachBergh__spark-mysql-
protocol 2_MODERATE 3 30620

Attendly__maillist 2_MODERATE 4 114720

byteball__byteballcore 2_MODERATE 4 71300

MorpheusXAUT__eveauth 2_MODERATE 4 57820

ranaroussi__qtpylib 2_MODERATE 4 36380

scherersoftware__cake-wiki 1_ALMOST_FROZEN 4 42180

seatgeek__djjob 1_ALMOST_FROZEN 4 34060

wskm__deruv 2_MODERATE 4 32880

senecajs__seneca-postgres-
store 1_ALMOST_FROZEN 5 56280

DevMine__repotool 1_ALMOST_FROZEN 6 59500

dotkernel__frontend 1_ALMOST_FROZEN 6 60320

IamBc__abc 2_MODERATE 6 62640

magikcypress__slim-boot-
boilerplate 0_FROZEN 6 48480

76

SalesforceEng__cucumber-
metrics 1_ALMOST_FROZEN 6 33240

snakerflow__snakerflow
1_FocusedShot_n_FRO-

ZEN 6 38540

CityGrid__twonicorn 3_FocusedShot_n_LOW 7 120880

damnpoet__yiicart 0_FROZEN 7 76180

HaliteChallenge__Halite-II 4_ACTIVE 7 55420

the42__ogdat 1_ALMOST_FROZEN 7 30820

cartalyst__sentry 2_MODERATE 8 85720

dburry__indexed_search
1_FocusedShot_n_FRO-

ZEN 8 79000

sqlectron__sqlectron-core 1_ALMOST_FROZEN 8 58380

comforme__comforme 2_MODERATE 9 71800

enova__prodder 1_ALMOST_FROZEN 9 70440

nats-io__nats-streaming-
server 2_MODERATE 9 46640

outbrain__orchestrator 0_FROZEN 9 41880

hurad__hurad 3_FocusedShot_n_LOW 10 51420

neos__flow-development-
collection 1_ALMOST_FROZEN 10 47920

nooku__joomla-todo 4_ACTIVE 10 32700

pw-press__web-project 3_FocusedShot_n_LOW 10 39280

thewhitetulip__Tasks 2_MODERATE 10 34600

webadmin87__rzwebsys7
1_FocusedShot_n_FRO-

ZEN 10 36780

atomjump__loop-server 1_ALMOST_FROZEN 11 167540

conceptsandtrain-
ing__libtree 1_ALMOST_FROZEN 11 109620

duythien__blog
1_FocusedShot_n_FRO-

ZEN 11 57700

jalkoby__squasher 0_FROZEN 11 51440

openzipkin__zipkin 1_ALMOST_FROZEN 11 49900

RiotingNerds__sails-hook-
audittrail 0_FROZEN 11 42980

SeldonIO__seldon-server 1_ALMOST_FROZEN 11 56700

twitter__zipkin 1_ALMOST_FROZEN 11 49080

AA-ALERT__frbcatdb 4_ACTIVE 12 183840

jaredbeck__paper_trail-sina-
tra 1_ALMOST_FROZEN 12 69240

blueriver__MuraCMS 1_ALMOST_FROZEN 14 163360

dlds__yii2-mlm
1_FocusedShot_n_FRO-

ZEN 14 74240

hugodias__cakegallery 1_ALMOST_FROZEN 14 83000

accgit__acl
1_FocusedShot_n_FRO-

ZEN 15 261160

77

foodcoopshop__foodcoop-
shop 4_ACTIVE 15 100760

processone__ejabberd 4_ACTIVE 15 53340

etsy__mixer 1_ALMOST_FROZEN 16 92720

symfony__security-acl 0_FROZEN 16 72720

vzex__dog-tunnel 1_ALMOST_FROZEN 16 61560

builderscon__octav 4_ACTIVE 17 101060

matthewfranglen__post-
gres-elasticsearch-fdw 0_FROZEN 17 74160

prooph__pdo-snapshot-
store 0_FROZEN 17 63380

RubyMoney__money-rails 1_ALMOST_FROZEN 17 54780

enova__landable 4_ACTIVE 18 83440

portrino__px_hybrid_auth 0_FROZEN 18 68380

jasongrimes__silex-sim-
pleuser

1_FocusedShot_n_FRO-
ZEN 19 91460

guardian__alerta 1_ALMOST_FROZEN 20 192840

joomlatools__joomla-plat-
form-categories 1_ALMOST_FROZEN 20 101260

gem__oq-engine
1_FocusedShot_n_FRO-

ZEN 21 63660

jcoppieters__cody 1_ALMOST_FROZEN 21 67500

joomlatools__joomla-plat-
form-finder 1_ALMOST_FROZEN 21 59660

lisong__code-push-server 2_MODERATE 21 65240

mapbox__osm-comments-
parser 2_MODERATE 21 97460

rolfvreijdenberger__izzum-
statemachine 1_ALMOST_FROZEN 21 55300

bgentry__que-go 0_FROZEN 23 172420

josephspurrier__gowebapp 1_ALMOST_FROZEN 23 79920

n2n__page 1_ALMOST_FROZEN 23 66580

3ev__tev_label
1_FocusedShot_n_FRO-

ZEN 24 843760

joomlatools__joomla-plat-
form 4_ACTIVE 24 78860

quickapps__cms 4_ACTIVE 25 47920

lamassu__lamassu-scripts 3_FocusedShot_n_LOW 26 65920

mem__padron 1_ALMOST_FROZEN 26 128100

n2n__rocket 3_FocusedShot_n_LOW 27 61980

TalkingData__OWL-v3 3_FocusedShot_n_LOW 27 53840

brettkromkamp__topic_db 3_FocusedShot_n_LOW 28 102020

joomlatools__joomla-plat-
form-content 1_ALMOST_FROZEN 28 97720

lamassu__lamassu-admin 2_MODERATE 28 86820

78

umpirsky__tld-list 1_ALMOST_FROZEN 28 81200

mozilla-services__go-
bouncer 1_ALMOST_FROZEN 29 85500

neocogent__sqlchain 2_MODERATE 29 99680

pinterest__teletraan 4_ACTIVE 29 48460

gousiosg__github-mirror 2_MODERATE 30 116600

scorelab__Bassa 2_MODERATE 31 54020

chill117__express-mysql-
session 1_ALMOST_FROZEN 32 184480

mapbox__node-mbtiles 1_ALMOST_FROZEN 32 131740

mozilla__tls-observatory 2_MODERATE 32 61760

imsamurai__cakephp-task-
plugin 2_MODERATE 33 100000

kronusme__dota2-api 3_FocusedShot_n_LOW 34 74180

arnoldasgudas__Hang-
fire.MySqlStorage 4_ACTIVE 35 171780

studygolang__studygolang 4_ACTIVE 35 70620

ironsmile__httpms 1_ALMOST_FROZEN 36 189640

spring-projects__spring-so-
cial 1_ALMOST_FROZEN 37 123460

energine-cmf__energine 4_ACTIVE 38 93720

TwitchScience__rs_ingester 3_FocusedShot_n_LOW 38 75480

BotBotMe__botbot-bot
1_FocusedShot_n_FRO-

ZEN 41 299140

mozilla__mig 2_MODERATE 41 79100

teaminmedias-
pluswerk__ke_search 2_MODERATE 41 76140

MDSLab__s4t-iotronic-
standalone 4_ACTIVE 42 118720

gugoan__economizzer 3_FocusedShot_n_LOW 43 86020

imbo__imbo 2_MODERATE 46 94000

tstack__lnav
1_FocusedShot_n_FRO-

ZEN 47 129900

blabla1337__skf-flask 4_ACTIVE 48 220880

tronsha__cerberus 4_ACTIVE 48 73980

benoitletondor__TwitterBot 2_MODERATE 49 134640

anchorcms__anchor-cms 3_FocusedShot_n_LOW 51 261720

GoBelieveIO__im_service 3_FocusedShot_n_LOW 53 109280

aimeos__aimeos-typo3 2_MODERATE 54 504680

pods-framework__pods 4_ACTIVE 55 73560

shouldbee__reserved-
usernames 0_FROZEN 56 171660

alextselegidis__easyappoint-
ments 3_FocusedShot_n_LOW 57 344100

tpolecat__doobie 1_ALMOST_FROZEN 63 89320

79

intelliants__subrion 4_ACTIVE 66 113180

symphonycms__symphony-2 2_MODERATE 68 75400

shopware__shopware 0_FROZEN 69 214280

cgrates__cgrates 4_ACTIVE 72 169820

torrentpier__torrentpier 4_ACTIVE 85 88200

simplepie__simplepie 1_ALMOST_FROZEN 99 338000

nawork__nawork-uri 2_MODERATE 100 87120

opencart__opencart 4_ACTIVE 105 105220

Table 6.2 Sum of execution time needed for the Merge All but Steep algorithm in

relation to the taxa and months taken for each project

SHORT BIOGRAPHICAL SKETCH

Christina Trialoni is a M.Sc. graduate student at the Department of Computer Sci-

ence and Engineering (CSE) of the University of Ioannina, Greece. She is currently

employed as a Software Developer, by Natech S.A., a company which creates soft-

ware for financial purposes, in Ioannina. Her research interests lie in the area of

Databases and Software Engineering.

