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ABSTRACT

Iro Spyrou, M.Sc. in Data and Computer Systems Engineering, Department of Com-
puter Science and Engineering, School of Engineering, University of loannina, Greece,
2022.

Team Formation with Mutual Respect.

Advisor: Panayiotis Tsaparas, Associate Professor.

The Team Formation problem in Social Networks [1], asks for a team of experts
that covers the skill requirements of a collaborative task, while having low commu-
nication cost, as this is computed over the social network that connects the experts.
The communication cost captures the quality of the team, that is, the ability of the
experts to work together. Several extensions of this work have been considered, with
different team quality measures, or different team design criteria.

In this work, we consider an extension of the Team Formation problem, where
team quality is measured as the respect between the team members. Given a directed
graph for each skill, which captures the respect relationships between experts, we
want to create a team where each skill is assigned an expert and the overall respect
that the assigned experts receive from the team members is maximized. The respect
maximization problem is NP-hard, and a variety of Greedy heuristics have been pro-
posed for solving it [2]. In our work, we propose an Integer Quadratic Programming
(IQP) formulation, and we provide an alternative heuristic algorithm for the respect
maximization problem.

We then consider a variation of the aforementioned problem, where respect is
antisymmetric. This means that if there is positive respect from expert u to expert v
for some skill, then there is equal but negative disrespect from expert v to expert u. If
expert u is assigned to this skill, adding expert v to the team will impact negatively

the quality of the team.
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We first consider a special case of this problem, where the antisymmetric respect
values are derived by a scored ranking of the experts. In this case, we show that
the respect maximization problem can be reduced to the maximum weight matching
problem, which can be solved optimally (using the Hungarian algorithm), or approx-
imately (using a Greedy algorithm) in polynomial time. Building on this observation,
we propose a landmark-based algorithm for the general case that reduces to the
ranking case.

We implemented and evaluated our algorithms on real datasets against existing
baselines. For the general respect maximization problem, our IQP heuristic produces
teams with higher respect, albeit with higher computational cost. For the antisymmet-
ric case, for the ranking case, the Greedy algorithm produces solutions very close to
the optimal Hungarian algorithm. For the general case, the landmark heuristics per-
form comparably with the IQP solution and other Greedy approaches, while having

lower computational cost.
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EXTETAMENH IIEPIAHWH

Hopody Emdpov, AM.Z. otn Mrnyavixn Asdopévwy xor YTTOAOYLOTIXWDY ZLOTNUATWY,
Tunuo Mypyovixdy H/Y o TTAnpopopixne, [loAvteyvixy XyoAy, lavertotiuio lwov-
vivowy, 2022.

Anprovpyia Opadwy pe ApotPaio Zefaouo.

EmBAénwv: [avoyidtng Toandpog, Avarminpwtig Kabnynte.

H ovyxpdtmon opddwy eivor éva mpoPAnuo mov avtipetwmiletol o Stépopa
reptBarrovta (.. exmaidevoy, spyooio, GOAnoy, TaLyvidia) Yiow TV eTiTELEN EVOC
xovol otéyov. Eivor duwe onuovtind tor PEAN (Lo OUddos Vo UTTopovy yo ou-
VEQYOOTOVY TO XOAOTEPO dLVATO. LULVETWGS, TlheTar To TEOPANUe TG Anuiovpyiog
Opadwy oe Kowvwvixa Aixtuo [1], To omoio Aaufdvel vTOPN TLG XOLVWVLXES OYE-
OELG TWV LTTOPNPLWY UEAWDY XaTd TNy dnutovpYia Toue. IIto ouyxexpipéva, dobévtog
EVOG HOLYWYLXOD OLXTOOL EQYOLOUEVWY, TO OTTOLO ATTELXOVILEL TLG KOLVWVLXES OYEOELS
TOUG, TWY OEELOTNTWY TOLG oL EVOG CUAAOYLXOD EQYOV, TO OTIOLO ATTALTEL EVoL GOVOAO
OcELoTNTwY Yo v Stexmepaiwon Tov, aTdyog elval v dnulovpyio piog ouéddag €p-
Yolouevwy, To LEAN NG oTolag Bor xoAbTTTOLY TLG ATt TNoELS OEELOTNTWY TOL EQYOL
xor Oa €xovy younAd xdéotog emixowvwviog. To xdotog emixotvwviog vToroyiletot
Baoel TOL XKOLYWYLXOD ILXTVOL %ol INAWVEL TNV TOLOTNTOL TNG ORAdAS, ONAXDN TNV
LXOVOTNTO TV UEADY Vo cLYEPYTTOVUY. 'Extote €yovy eEetaotel TOAES eTEXTAOELS
TOU TTPOXELUEVOL TTPOBANULATOG, LE OLOUPOPETLXES UETPLXES TNG TTOLOTNTOG TWY OULASWY
17 OLOPOPETLXA XOLTNPLOL OYESLATUOD TWVY OUAOWY.

XNy Topodoo EQYOOLOl LEAETAUE Ulor ETTEXTOON TOL TEOPANUOTOS AnpLovpyiog
Opadwy, 6mov 1 TOLOTNTO TWY OUASWY UETPATOL WG TPOG TOV CEBAOUO UETOED
TOWY LEADY pLag opadas. AobévTog evog GUANOYLXOV €QYOU, YLOL TYY OAOXANPWGY TOV
OTTOLOL ALTTOULTOVVTOL CUYXEXPLUEVES OEELOTNTEG, o VOGS xatevhuvdpevov YPAPoL
Yoo xébe amartodpeyn SekLdtnTar, 0 omolog amelxovilel Tig oy€oelg oePaool pe-

TaED TWY €pYalOUEVWY, 0TOY0G oG elval v dnpLovpyior piog opddog, 0tov oe xdbe
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ocklottar avartifeton évag epyoldUeEVOs, LEYLOTOTTOLOYTOS TOV GUVOAMXO OeBoopO
oL AopLBavovy ot pyaldpovy Tov €xovy avatebel oc xdabe dekldtnTar amd To LTTS-
Aottor L€AY NG opddag. Ot dLopopeg Touv TPORBANUOTOS LEYLOTOTTONONS oeBoo.oV
KLE TO YeEWVXO TPORBANUa Anurovpyiog Ouddwy eivor Tweg to TEOPANua eEetdleton
w¢g TEOPRANUa avabeong xot oyt wg TEOPANU &AL, dNAadT aTtonTeiToL aXELPWS
évog epyolopevog Lo piae SELOTTO XL €vag EQYRLOUEVOG UTTOPEL YO avoAdfBet LdVO
ula deEtdtntar Tov €pyov. Extdg avtol, To %xotvwvind 3{XTLO TOL YENOLUOTOLELTOL
Yioe TV eEaywy Twv oxéocwy elval xatevbuvduevo, To omolo onuaivel 4Tl oL oyE-
oelg dev elval amapoltnro apolPoteg, xal eivol Stopopetixd yLoe xdbe deELotnTa,
ONAWYOVTOG TTWG OL OXETELS OEBAOULOD EEXQTWYTOL XOL ATl TNy OeELOTNTH TNV OTToloK
apopd. To TpéBAnua g peyLtotoToinong oeBaopob €xel optotel oto [2], dTov amo-
dewxvieTal 0Tl v ToAvTAOXOT T Tov elvor NP-Hard xot mpoteiveton pior moixtAio
EVLPLOTIXWY OAYOoPLOLWY Yo TNV emtiAvon tov. EmimAéoy, opilovy xow emtAbovy pio
VTOTEPLTTTWOY] TOL TTPOPANULATOG LEYLOTOTOINONG oePaapod, doHévtog uLog xatdto-
Eng twv gpyalopevwy Yo xabe deEldtnTa, avti evdg xovwytxol dtxtiov. LTy SN
nog epyooio mpoteivovpe pio Stortvmwon Integer Quadratic Programming (IQP) xow
TIOPEYOVUE EVAY EVOANAXTIXO €LPELOTIXO aAYOELOUO YLor TO TEOPANUO TN UEYLOTO-
Toinong oeBacob.

"Enterta Oewpovpe pla mopodhoyn to mpoovapepbévtog mpolBAuatog, dmou o
oePBaopdc eivor avTioVUUETEIXO0G. ALTE anualivel Twg dy LTTAEYEL DeTindg oeBaouds
ot TOV €QYULOUEVO U TTPOG TOV EQYOLOUEVO U YLt XATTOLOL OEELOTNTO, TOTE LTTAPYEL
lon aAAG apvnTixy) acéfeta N EAdewhn oefaouod amd Tov epyYaldUevo v TEOG TOV
gpYoLouevo u. Ay o epyalduevog u avartebel o vty TNy SekLdTnTor, TOTE M TTEOTHTUN
TOL ¥ OTNY OUADO, OE xATOLO OAAY OeELOTNT, Dot eTtnpedoeL opVNTLXE TNV TTOLHTNTO
NG OUad oG,

Apyxéd Bewpovpe pla etdinn mTeplTTwon ToL TEORANUKTOG, OTTOV OL AVTLOLUULETOL-
x€¢ TLég oePoopob eEayovtol amd pio Bobporoynuévy xatataby Twy epYalOpevmy.
Y auTNY TNV TEPITTWO, SElXVOLE GTL TO TEOPANUA TNG LEYLOTOTIOLNOY S OEBooLOV
umopel voo avoybel oe mpdfAnua maximum weight matching, to omolo pmopel vo
AOel Bértiota (pe v yp7on Tov Hungarian akyopiBpov), 1 mpooeyytotixd (Le tnv
YONom evig Greedy aiyopiBp.ov) oe moAvwvvuLxd xpdévo. Bdoel awthg g Toporth-
pnovg mpoteivovpe oAyopLtbuo pe opdonua, DoTEPO OO UEAETN SLEPOPWY TEPOTIWY
Yto TV BEATLOTN ETULAOYY] 0POOTLWY, YLO TNV YEVLXY] TEPLTTTWOY] TOV TTPOPANULATOG, TO

OTTOLO OVAYETOL OTYY TEPLTTWON NG xataTaEys. Emimpoctétwg, mpoteivovpe mo-
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POANXLYES XATTOLWY EVPLOTIXWY aAY0PLO®Y oL omoiol éxovy mpotabel oto [2] yio
™V ETLAVGY] TOL VEOL TIPOPRAULOTOG UE aVTLoLUUETOIXO oePoopd. Télog, eEetdoape
TNV EQAOUOYT TOL €LPELOTLXOL aAyopibuov Bdoet tng StatdTtwong 1QP, Tov omolo
TPOTEIVOLPLE YL TO YEVIXO TTPOBANUO UEYLOTOTOINOYS TEBAOUOD.

YAomooope ol aELOAOYNoOE TOVG oAYopLlOuoLG pog o TEAYULOTIXE GOVOAX
OEO0UEVWY EVAVTL LTTUEYOVTIWY UEAETWY 1 oAyopiBuwy. ot To Yevind TEoBAnuo peyt-
oToTolnog oePacpob, o evpLotixds ahyopLtbuog IQP Topdyel opddeg pe vhnAdTEPO
oeBoopl, EXovTog OUWG LEYAAVTEQPO LDTTOAOYLOTIXO X00TOG. [t TNV avTLoLUKETOLXN
TEPLTTTWON, YL TNV TEPITTWON UE TNV XATATAEY], TOHPATNEOVUE Ttwg 0 Greedy on-
YopLOpog mopdiyel Aoetg TOAD xovtd o awtég Tov Hungarian aAyoptbuov. I'a tny
YEVIXN TEPITTWON UE YOPAPO, OL gLELOTLXOL oAYopLOuoL pe tar opdonuar arodidovy
Topopota e v AVon tou [QP xot Twv GAAWY €LELOTIXWY TTPOCEYYIOEWY, EYOVTUG

XOUNAOTEQO LTTOAOYLOTLXO XOGTOG.



CHAPTER 1

INTRODUCTION

1.1 Thesis Contributions

1.2 Thesis Roadmap

Team formation is a problem faced in varying settings for the accomplishment of a
common goal. Typically, a good team is one that employs the best experts for the
skills required for the task at hand [3, 4]. However teams should not be created
based solely on the expertise of the people involved, but also take into account their
personal relations (often referred to as “team chemistry”), as both are important to
ensure that the team will work efficiently.

The problem of Team Formation in Social Networks was defined in [1] in order
to combine the importance of expertise and personal relations of the team members
during the creation of a team. More specifically, given a collaborative task, requiring
a certain skill-set to be completed, an undirected weighted social network of workers,
that captures their social relations, and their skills, the goal is the creation of a team of
workers covering the skills required for the task while minimizing the communication
cost among team members. The communication cost is calculated on the induced
subgraph of the chosen workers and measures the ability of the workers to cooperate
effectively. Several extensions of this work have been considered, with different team
quality measures [5, 6, 7, 8, 9, 10], or different team design criteria [11, 12, 13, 14].

The Team Formation problem, as defined above, extracts all personal relations over

a single undirected graph and assumes tasks that don’t require a specific structure



for the team. But the reality is, that personal relations aren’t always reciprocal and
depend on different criteria, while teams cooperate better if each member has specific
responsibilities. The work in [2] considered an alternative setting where skills are
assigned to workers and there are respect relationships between the workers rather
than compatibility relations. They defined the MaxMutualRespect problem, where given
a task with specific skill requirements and a directed social network capturing the
respect relations between the workers for each of the required skills, we want to create
a team by assigning each skill to a single worker, such that we maximize the respect
the workers receive from the remaining team members with respect to the skill they
have been assigned to. Having a graph for every skill shows that while one worker
may be highly respected in a certain field, doesn’t mean that he enjoys the same
amount of respect in a different field. The fact that the edges in these graphs are
directed depicts that relationships are not necessarily mutual. They also define the
MaxRankingRespect problem, a special case of the MaxMutualRespect problem, where
the respect relations are derived over rankings. The MaxMutualRespect problem has
been proven to be NP-hard, while the complexity of the MaxRankingRespect problem
is unresolved.

This thesis extends the work of [2] in two ways. First, we propose an Integer
Quadratic Programming (IQP) formulation for the MaxMutualRespect problem, pro-
viding an alternative heuristic algorithm. Our formulation is general enough to be
used for all variants of the problem.

Subsequently, we consider a variation of the MaxMutualRespect problem, where
respect is antisymmetric. This means that if a worker v has respect for worker v in a
skill, then worker v will have equal but negative disrespect for worker v. If worker u
is assigned to the skill, then adding worker v to the team has a negative effect on the
team. For example, this could be the case when a v is senior, or more experienced
on the skill than worker u. We define MaxMutual AntisymmetricRespect to denote this
variant of the problem.

We first consider the MaxRankingAntisymmetricRespect problem, a special case, where
the antisymmetric respect values are derived over a ranking, and show that it can
be reduced to the maximum weight matching problem. This problem can now be
solved optimally with the use of the Hungarian algorithm, or approximately with
the use of a Greedy algorithm in polynomial time. Note that the complexity of the

corresponding problem in [2] was left unresolved.



We then consider the general case where the antisymmetric respect values are de-
rived over a general respect graph. Inspired by the work on landmark-based distance
estimation (e.g., see [15]), we propose a landmark-based algorithm for this case, and
we show that the algorithm reduces to solving the MaxRankingAntisymmetricRespect
problem. We consider different strategies for selecting landmarks, and we evaluate
them experimentally. We also propose variations of some of the heuristic algorithms
defined in [2] and examine the application of the IQP heuristic algorithm for this
case.

Our proposed algorithms have been implemented and evaluated using real datasets
against existing baselines. For the MaxMutualRespect problem, the heuristic IQP algo-
rithm assigns teams with higher respect score, while for the MaxRankingRespect prob-
lem solutions with maximum respect are found, though in both cases with higher
computational cost. We thus confirm that our formulation can compute a higher
respect score than the current heuristics.

For the asymmetric respect case, for the MaxRankingAntisymmetricRespect prob-
lem we observe that the Greedy algorithm creates teams very close to those of the
Hungarian algorithm, while having smaller cost. For the general MaxMutual Antisym-
metricRespect problem we observe that our landmark-based algorithm’s performance
is close to that of the IQP heuristic algorithm’s and that of the other heuristics, while

having lower computational cost.

1.1 Thesis Contributions
In summary in this thesis we make the following contributions:

e We present a novel Integer Quadratic Programming formulation for the Max-
MutualRespect problem. We evaluate it experimentally, and we demonstrate that

it achieves higher score than existing heuristics, albeit at a higher cost.

* We propose a novel variant of the MaxMutualRespect problem where respect is
antisymmetric. We show that for the ranking case of our problem we can find

the optimal solution in polynomial time.

* We propose a landmark-based algorithm for the general antisymmetric case,

which utilizes the algorithms for the ranking case to find a solution. We evaluate

3



different approaches for selecting the landmarks.

* We evaluate our algorithms on real datasets, and we compare against existing

baselines.

1.2 Thesis Roadmap

The outline of this thesis is as follows:

¢ In Chapter 1 we introduced the problem we study in the thesis.

In Chapter 2 we present previous work related to the problem we examine

¢ In Chapter 3 we define our problem, and we propose an IQP heuristic algorithm.

We evaluate our algorithm against existing heuristics.

e In Chapter 4 we define the antisymmetric respect problem, and we propose
algorithms for the different cases of the problem. We evaluate our algorithms

experimentally.

¢ Chapter 5 contains our conclusions on this work.



CHAPTER 2

ReELATED WORK

The Team Formation problem in Social Networks was first defined in [1], where given
a set of workers, a task and an undirected graph depicting the compatibility between
the workers, the goal is to find a subset of workers that covers the skills required for
the task, while inducing a subgraph with low communication cost. They examine two
variations for the communication cost function, one being the diameter of the induced
subgraph, the other being the minimum spanning tree on the induced subgraph.

Since then, the Team Formation problem has been studied, examining more vari-
ations of the communication cost formulation and introducing new requirements.
In [5] and [6] density-based measures are proposed as communication cost func-
tions, while in [7] the computational complexity of different measures is evaluated.

The existence of personnel cost besides communication cost is considered in var-
ious works. In [8] and [9] combined cost functions are proposed, while the authors
of [10] apply a budget to the personnel cost and strive to create teams that can cover
multiple tasks.

Even distribution of the task among the team members, meaning no one is over-
loaded or singled-out, is studied in [11], [12] and [13]. At the same time [12] and [13]
examine online Team Formation, as does [14]. Online Team Formation means that
the tasks arrive successively, instead of them all being available from the beginning,
and upon each task arrival a team fulfilling the requirements is created.

More variations of the requirements are studied, such as the inclusion of a des-

ignated team leader in [16] and [17], the diversity of the team members in [18],



and a combination of several design criteria in [19] where a submodular function is
proposed.

In [20] the Team Formation problem is studied on signed social networks, where
workers can also have negative relationships, making them non-compatible. The goal
here is to create compatible teams, covering the skill requirements and minimizing
communication cost.

The Team Formation problem is also examined in different setting, such as online
games in [21] and [22]. Both works propose different evaluation criteria for the teams,
with respect to the setting.

In the aforementioned publications the Team Formation problem is a set-cover
problem, though our work focuses on the Team Formation problem as an assignment
problem. Previous works studying the Team Formation problem as an assignment
problem include [23] and [2]. In [23] the teams created must have a certain structure
based on a given template in the form of a graph. This structure ensures hierarchies
among the team members. The objective is to assign workers to the roles of the
template while minimizing the communication cost along the template edges.

Our work is an extension of the work presented in [2]. In this case a social net-
work in the form of a directed graph is provided for each skill of the task, denoting
the respect relationships of the workers for the specified skill. Note that the graphs
in this case are directed, meaning that respect relations are not necessarily mutual.
Each skill of the given task gets assigned one worker, forming a team, where instead
of minimizing communication cost, the objective is to maximize respect score among
the workers across the different skills. To solve the problem various heuristic algo-
rithms are proposed. The authors also define a special case of the problem, based
on an ordered ranking of the workers instead of a graph, and propose a polynomial
algorithm which finds teams of maximum respect if such a team exists, as well as ap-
proximation algorithms. In our work we propose an Integer Quadratic Programming

formulation to solve this problem and define a variation of it.



CHAPTER 3

INTEGER QUADRATIC PROGRAMMING

3.1 Problem Definition
3.2 An Integer Quadratic Programming Formulation

3.3 Experiments

In this Chapter we formally define the Respect Maximization problem that was fist
considered in [2]. We then show how the optimization problem can be formulated
as an Integer Quadratic Program. We provide experiments comparing our algorithm

with those in [2].

3.1 Problem Definition

We now define two variants of the respect maximization problem defined in [2].

We are given directed graph G* = (X, E*), for each skill s, where X denotes the
set of workers and the graph denotes the respect relationships between the workers.
Every directed edge (z;,z;) € E° denotes that z; respects z; for skill s. Our goal is
to create teams of workers F' C X where each skill is assigned to one worker and
a worker can occupy only one skill. The team F' produced should have maximum
respect possible.

Specifically, a skill assignment is defined as an injective function f : § — X, where

f(7) is the worker assigned to skill i € S. F' = f(S) denotes the selected team of experts

7



covering set of skills S. The respect R;(f) that worker f(i) receives is computed by
the number of outgoing edges in graph G’ to the other workers in the assignment

and is defined as:

Ri(f) = |{(f(i),u) € E":u € Fu# f(i)}| (3.1)

The total respect for an assignment is given by the sum of the respect values of

each of the workers assigned and defined as:

R(f) =) Ri(f) (3.2)

€S

The RespectMaximization problem can now be defined.

Problem 1 (RespectMaximization). Given a set of workers X, a set of skills S and respect

graphs G* = (X, E"),Yi € S, find an assignment f : S — X, that maximizes R(f).

A natural way to derive respect relationships between the workers for a skill is
via a ranking of the workers. The ranking defines a pecking order where those lower
in the ranking respect those higher in the ranking.

The ranking case can be easily captured by our general definition. Given a ranking,
we can create a respect graph as follows. Let P’ denote the ranking for skill i € S.
For every worker, the value P'[z] is the position of worker z in the ranking of skill
i. The lower the value of P'[z] the higher the worker is in the ranking. A worker in
a ranking P’ respects all workers above him in the ranking. The graph G* produced
by P places an edge (v,u) for all pairs of nodes where P'[u] > P[v].

We use MaxRankingRespect to refer to this special case of RespectMaximization. We

will consider this problem separately in our algorithms and experiments.

3.2 An Integer Quadratic Programming Formulation

The goal of this section is to formulate algorithms to solve the RespectMaximization
and MaxRankingRespect problems using Quadratic Programming (QP) [24]. A QP
optimizes a quadratic function using equality, inequality and bound constraints. An
Integer Quadratic Program (IQP) only has discrete variables in the model.

We have n workers X and k skills S. For each skill s we have a graph G* that

denotes the respect relationships between the workers. We assume that a directed

8



edge (z;,x;) between two workers denotes that x; respects x; (or, ; commands the
respect of z;).

Our goal is to find an assignment f : S — X that maximizes the respect of the
team. The respect is defined as the sum over all skills, of the outgoing edges from
the worker assigned to the skill to the remaining members of the team. Let /" be the
team of assigned workers. Without loss of generality we assume that f(j) = x;. Let

A’ denote the adjacency matrix of graph G7. The respect for skill j is now computed

as:
Ri(f) =) Alxj, i, (3.3)
z,€F
where A’[z;,2;] = 1 means that an edge (z;,z;) exist in GY, thus z; respects z; for
skill ;.

The total respect is defined as:

R(f) =) Ri(f) (3.4)

Let f denote an n-dimensional binary vector that defines the set F, where f; =1

if x; € I and zero otherwise. Then we can write:

R;(f) = Az, f, (3.5)
where A7[z;,:] denotes the z;-row of the matrix A’. Since f denotes the position
Vx; € F, the inner product of Equation 3.5 gives the sum of the existing edges
(z;,7;),Vz; € F in G, as does Equation 3.3.

Also let f be an n-dimensional one-hot vector that defines the assignment of f

for skill j, where f/(i) = 1 when f(j) = x; and zero everywhere else. Note that:
k
Ry(f) =F"AE = F'AF, (3.6)
i=1

where the inner product £/" 47 gives Ai[z;,:], and Equation 3.6 follows directly from

Equation 3.5.

Therefore: -
R(f) =3 ¢ Af (3.7)
j=1 i=1
We can write this in a standard quadratic form. We use x = [f*; f?;- - : %] to denote

the (n x k)-dimensional vector that is defined as the stacking of the f/ vectors. Also
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we define the (n x k) x (n x k) matrix M as follows:

Al Al ... Al
A2 A2 . A2
M = (3.8)
We can see that:
R(f) =x"Mx, (3.9)

Note that xTM = [F17A  + 2742 4. + 7 Ak 1T A L 2742 o 4 f57 AR, and
each section of the vector is equal to the sum of £/ A7Vj € S. Accordingly, x” Mx
gives the sum of respect over the complete assignment as defined in 3.7.

We observe that x’ Mx = x! MTx, as shown below:

X Mx = [ A+ 2T P AR T A 2T AT T AR
B TA T A T AR
= [AMfzr, ] + APlwg, ] 4o+ Al ]y Al 4+ A%[zg, )
oo ARy, s Al F APy, ] - 4 AR, <]x
= [AYwy, 21] + A2[zg, 2y) + - -+ A¥[mp, 21] + Alwy, 20] + AP [, 29]+

oo Ay, o] + 4 Ay, ] + APlo, ] 4 -+ Az, 2], (3.10)

and:

XM x = [T AT 2T AT A2 2T A2 T T
BT AR T A T AR g
= (AT, )+ A o, ) 4o+ A [, s A )+ AT [+ -+ APT [y, s
o A [z AR ] 44 AR [y, X

i

= [AlT[achxl] + AIT[JIQ,.Il] + -+ AlT[l’k, $1] + A2T[$1,LL’2] + AZT[JIQ,JIQ]—F
NS AQT[xk, To] + -+ AkT[xl,xk] + AkT[xg,a:k] +- AkT[xk, i),
(3.11)

where we can see that x” Mx and x” M”x are sums over the same values, as A’[z;, z;] =

AjT[JZZ‘, Ij].
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We can now define a symmetric matrix P as follows:

_A1+<A1)T A4 (AT A4 (AR
AQ + (AI)T A2 + (AQ)T . AQ + (Ak)T
P=M+M"= (3.12)

Since x" Mx = x" MTx, we know that x’ Px = 2R(f), and can now define our
integer quadratic program satisfying the symmetry requirements.

We thus have the following integer quadratic program:

maximize x! Px
X

subject to x; € {0,1}, i=1,...,nx k

inﬂ- =1, j=1,...,k (Every skill is assigned a worker)
=1

k
Z x;1; <1, i=1,...,n (Every worker is assigned to at most one skill)
7=1

(3.13)

3.3 Experiments

3.3.1 Datasets

Dataset for RespectMaximization problem

As in [2], we study the RespectMaximization problem on real data generated from
academic citation networks. In this setting the workers are scientists, and the skills
are scientific fields. The respect graph for each scientific field is based on citations. An
edge (z;,vy;) € E' means that author z; has published a paper in field ¢ and author y;
has a publication citing that paper.

Specifically, the following scientific fields on Compute Science are considered: Ar-
tificial Intelligence (AI), Neural Networks (NN), Natural Language Processing (NLP),
Robotics, Data Mining (DM), Algorithms, Data Bases (DB), Theory, Signal Processing
(SP), Computer Networking (CN), Information Retrieval (IR), Wireless Networks and
Mobile Computing (Wireless), Software Engineering (SE), High-Performance Comput-
ing (HPC), Distributed and Parallel Computing (DPC) and Operating Systems (OS).
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With the use of publicly available resources ! the top-tier conferences for each field are
found. Then the DBLP dataset? is used to extract the set of publications and authors
belonging to these conferences, and the citation networks for the different fields are
created. For noise-reduction purposes, all self-loops were removed from the graphs,
and authors with less than 5 incoming or outgoing edges were iteratively pruned.

The following six teams are considered:

1. Team 1 is an Al & Applications team requiring scientists from the fields Al, NN,
NLP and Robotics

2. Team 2 is a Data & Analysis team requiring scientists from the fields DM,

Algorithms, DB and Theory
3. Team 3 requires scientists from all fields in Teams 1 and 2

4. Team 4 is a Systems team requiring scientists from the fields SE, HPC, DPC and
oS

5. Team 5 is a Networks team requiring scientists from the fields SP, CN, IR and

Wireless

6. Team 6 requires scientists for all fields in Teams 4 and 5

Dataset for MaxRankingRespect problem

The MaxRankingRespect problem is studied using the NBA dataset?, as in [2], which
contains individual basketball player statistics for different NBA seasons, for a range
of basic statistics such as points, assists rebounds etc., to more advanced performance
metrics such as value over replacement. The same data for the seasons 2010 - 2017
is used, as are the same 11 performance metrics that they consider important in
assembling a basketball team: STL, AST, FT, BLK, FG, TRB, 2P, 3P, DBPM, OBPM
and VORP, whose description can be read in*. In our setting these performance metrics
correspond to skills, while the players correspond to workers. The set of players is
pruned so as to keep the ones that have payed in at least one third of the games

of the season, and have played at least 15 minutes per game. A ranking over these

'https://dl.acm.org/ccs/ces_flat.cfm
https://www.aminer.cn/data/?nav=openData#Citation
Shttps://www.kaggle.com/datasets/drgilermo/nba-players-stats
“https://www.basketball-reference.com/about/glossary.html

12



performance metrics is created by sorting the players in decreasing order of the metric
value.
In this case we consider every season 2010 - 2017 as a team, each of them having

as skills the 11 performance metrics mentioned above.

3.3.2 Algorithms

As our problems have been previously defined and solved in [2], we will evaluate
our IQP formulation against the best performing algorithms presented there. For the
RespectMaximization problem we will compare with the RandGreedy algorithm, while
for the MaxRankingRespect problem will compare to the AllCandidates algorithm. We

describe these two algorithms in detail below.

RandGreedy

The RandGreedy algorithm computes an initial score value for each skill-worker pair

as:
s(i,x) = degl,(x) + k% Z degg, (), (3.14)

where deg/,;(x) denotes the outgoing edges of worker z in graph G’ and degg,(x)
denotes his incoming edges. The intuition is that high out-degree deg/, (x) in graph
G' means that worker z is highly respected for skill 7, while high average in-degree
deg;(x) for the remaining skills means that worker z has on average high respect
for the other workers in the other skills.

It then selects a skill uniformly at random and makes the assignment of the
skill-worker pair with the highest score value. RandGreedy proceeds in an iterative
manner, computing an updated score value for each skill-worker pair given the partial

assignment F as follows:

sp(i,7) = deggi[pu{x}](x) + {(x, f(5)) € Ej: f(j) # 0}
1 _
M- j:%@ deggpy\m (%),

(3.15)

where f(j) = () denotes an unassigned skill and G[F| denotes the induced subgraph
of the set /7 C V. A skill-worker pair (i,z) receives high score if worker x is highly
respected by the assigned workers in F' for skill ¢, worker = has high respect for the

workers assigned to other skills, and has high average respect for the unassigned
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workers in the unassigned skills. The terms in the above values are normalized to be
in the same scale. At each iteration, a skill is selected uniformly at random, and the
skill-worker pair with the highest score value is assigned. This iterative selection step
is repeated until all skills have been assigned a worker. The RandGreedy algorithm is

repeated ¢t = 50 times and the assignment with the highest score is reported.

AllCandidates

The AllCandidates algorithm is an algorithm for the MaxRankingRespect problem. Given
the set of rankings for each skill, it exhaustively considers each possible skill-worker
pair (i,x) € S x X as a first assignment. For each of the first assignments, it then
proceeds by selecting a skill uniformly at random and assigning the highest ranked
worker that has not been assigned. The assignment with the highest score is reported.

If a solution with maximum respect score exists, the AllCandidates algorithm has
been shown in [2] to always find it. Consequently, we examine if our IQP_MaxRespect

algorithm will also be able to find such a solution.

IQP_MaxRespect

To bring our IQP formulation to algorithm form we used the CVXPY open source
Python-embedded modeling language, combined with the GUROBI solver. We refer
to this algorithm as the IQP_MaxRespect algorithm.

3.3.3 Results

Results for RespectMaximization problem

Figure 3.1a shows the score of the IQP_MaxRespect algorithm with the DBLP dataset
next to the score achieved by the RandGreedy algorithm. We can see that in most cases
the IQP_MaxRespect algorithm outperforms the RandGreedy algorithm, and in the other
cases it achieves the same score. We can therefore conclude that the IQP_MaxRespect
algorithm does offer an advantage.

In Figure 3.1b the execution times of the IQP_MaxRespect algorithm and the Rand-
Greedy algorithm are shown side by side. We observe that whilst IQP_MaxRespect
performs greatly in regards to the score, the efficiency is substantially worse than the

RandGreedy algorithm in regards of the execution time. A time limit of 6 hours had to
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Figure 3.1: Respect score and runtime analysis comparison of IQP_MaxRespect and

RandGreedy algorithms.

be applied in order to obtain results for Teams 1 - 4 for the IQP_MaxRespect algorithm,
otherwise the algorithm terminated unexpectedly without returning results.

Figures 3.2a and 3.2b show the average respect score and runtime values over
all teams for each algorithm. We can see that our IQP_MaxRespect algorithm per-
forms better overall with respect to the score, while with respect to the runtime the
RandGreedy algorithm is much more efficient.

The workers selected for each team by the IQP_MaxRespect algorithm with the
DBLP dataset can be seen in Table 3.1 in comparison to the experts selected by the
RandGreedy algorithm. Rows 2 and 10 denoted as Top contain the scientists with the
highest number of citations in each field, presented for calibration. We observe that
for Teams 1, 2, 4 and 5, in most cases IQP_MaxRespect assigns different experts than
RandGreedy does, and also that it never assigns the most cited author in any field. An
interesting case is Team 2 where the IQP_MaxRespect algorithm produces a team that
seems intuitively more appropriate than that of RandGreedy. However, for Team 6 the
assignments of IQP_MaxRespect and RandGreedy have most experts in common, but
assigned to different fields, the same goes for Team 3 where the two algorithms have

some assignments in common and a few of the same experts assigned to different

fields.
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Table 3.1: Teams produced by the IQP_MaxRespect algorithm with the DBLP dataset.

Al NN NLP Robotics DM Algorithms DB Theory
Top J.Lafferty G.Hinton E.Hovy V.Kumar C.Aggarwal A.Goldberg R.Agrawal M.Szegedy
RandGreedy W.Burgard A.Ng J.Pineau S.Thrun - - -
Team1
1QP_MaxRespect H.Lee ANg C.Manning D.Fox - - -
Team? RandGreedy - - - D.Srivastava | S.Muthukrishnan | M.Hadjieleftheriou | N.Koudas
eam
I1QP_MaxRespect - - - P.S.Yu S.Muthukrishnan A.Gionis P.Indyk
Team3 RandGreedy M.Jordan | B.Mirzasoleiman Q.Yang W.Wang A Krause | A.Badanidiyuru C.Guestrin A Karbasi
eam?
IQP_MaxRespect | A.Krause | B.Mirzasoleiman A.Singla J.Vondrk C.Guestrin | A.Badanidiyuru T.Joachims A.Karbasi
SE HPC DPC 0s SP CN IR Wireless
Top G.Rothermel I.Foster L.Ni M.Kaashoek G.Giannakis D.Towsley C.Buckley J.Polastre
RandGreedy R.Gupta D.Panda Q.Gao Y.Zhou - - -
Team4
1QP_MaxRespect R.Iyer W.Kramer Z.Kalbarczyk | A.Arpaci-Dusseau - - -
RandGreedy B B B C.Zhang R.Zhang B.Li Q.Zhang
Team5
1QP_MaxRespect - - - R.Zhang Y.Chen ].Zhang Q.Zhang
T 6 RandGreedy B.Li J.Wu Y.Liu Z.Yang J.Han M.Li J.Cao X.Li
eam
1QP_MaxRespect Z.Yang J.-Wu M.Li J.Liu Z.Li X.Li J.Han Y.Liu

Results for MaxRankingRespect problem

In Figure 3.3a the respect score achieved by the IQP_MaxRespect algorithm with the

NBA dataset is compared to the score achieved by the AllCandidates algorithm. It is

easily observed that the IQP_MaxRespect algorithm produces teams with the same

respect score as the AllCandidates algorithm, which is the maximum score possible,

despite assigning different workers.

Figure 3.3b shows the comparison of the execution time of the IQP_MaxRespect

algorithm and the AllCandidates algorithm for the NBA dataset. We can see that the

IQP_MaxRespect algorithm has a very long execution time compared to the AllCandi-

dates algorithm. In this case, too, a time limit of 6 hours had to be applied in order
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Figure 3.3: Respect score and runtime analysis comparison of IQP_MaxRespect and

AllCandidates algorithms.

Table 3.2: Teams produced by the IQP_MaxRespect algorithm with the NBA dataset

for seasons 2010 - 2013.

2010 2011 2012 2013
IQP_MaxRespect | AllCandidates | IQP_MaxRespect | AllCandidates | IQP_MaxRespect | AllCandidates | IQP_MaxRespect | AllCandidates
STL C.J.Watson E.Watson 0.].Mayo D.Fisher C.Delfino M.Conley C.Brewer T.Allen
AST J.Calderon J.Calderon E.Watson J.Calderon B.Udrih S.Nash J.Tinsley E.Turner
FT C.Landry K.Lowry M.Williams R.Sessions J.Crawford K.Bryant T.Hansbrough D.DeRozan
BLK C.Andersen C.Andersen W.Chandler J.McGee K.Seraphin S.Ibaka B.Biyombo R.Hibbert
FG 0.J.Mayo K.Martin C.Villanueva M.Beasley T.Prince R.Westbrook A.Afflalo J.Smith
TRB E.Okafor J.Noah K.Brown K.Humphries U.Haslem D.Howard R.Evans 0.Asik
2P A .Bargnani N.Krstic S.Young D.DeRozan G.Henderson B.Griffin J.Thompson C.Boozer
3P R.Butler Q.Richardson G.Neal M.Belinelli R.Foye J.Terry C.Butler B.Gordon
DBPM T.Thomas M.Camby A.McDyess K.Thomas B.Wallace M.Camby A.Bogut A.Bogut
OBPM G.Arenas G.Arenas B.Miller L.Williams J.Bayless D.Wade W.Chandler A.].Price
VORP A Kirilenko B.Wallace M.Dunleavy S.Jackson R.Allen J.Noah J.Butler T.Duncan

to obtain an assignment for every season with the IQP_MaxRespect algorithm.

In Figures 3.4a and 3.4b the average respect score and runtime over all teams is

shown. We can see that with respect to the score the difference between the algorithms

is minimal, while with respect to the runtime the difference is substantial.

Tables 3.2 and 3.3 show the teams assigned by the IQP_MaxRespect algorithm

for the NBA dataset next to the teams produced by the AllCandidates algorithm. We

observe that the teams assigned by each algorithm differ vastly for every season.
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Figure 3.4: Average respect score and runtime analysis comparison of

IQP_MaxRespect and AllCandidates algorithms.

Table 3.3: Teams produced by the IQP_MaxRespect algorithm with the NBA dataset
for seasons 2014 - 2017.

2014 2015 2016 2017
IQP_MaxRespect | AllCandidates | IQP_MaxRespect | AllCandidates | IQP_MaxRespect | AllCandidates | IQP_MaxRespect | AllCandidates
STL | K.Caldwell-Pope R.Rubio B.Knight T.Ariza C.Brewer R.Rubio K.Caldwell-Pope P.Beverley
AST A Rivers J.Wall D.Schroder J.Wall S.Mack R.Rondo D.Collison R.Rondo
FT D.Williams J.Harden J.Green D.Cousins A.Goodwin D.DeRozan D.Gallinari J.Embiid
BLK R.Kelly S.Ibaka D.Cunningham R.Gobert D.Cunningham H.Whiteside K.Porzingis K.O0’Quinn)
FG 0.].Mayo C.Anthony G.Green L.Aldridge G.Henderson C.J.McCollum C.J.McCollum E.Turner
TRB Z.Pachulia D.Jordan L.Scola D.Jordan B.Portis A.Drummond C.Capela B.Biyombo
2P C.Kaman B.Griffin M.Speights N.Vucevic T.J.Warren K.A.Towns H.Barnes K.Faried
3P M.Teletovic K.Thompson T.Ross K.Thompson B.McLemore J.R.Smith K.Thompson W.Ellington
DBPM A Kirilenko A.Bogut K.Bazemore A.Bogut L.Nance A.Bogut M.Muscala L.Nogueira
OBPM N.Robinson C.Paul J.Clarkson K.Lowry C.Landry C.Anthony B.Beal J.Lin
VORP C.J.Watson J.Noah M.Dunleavy M.Gasol C.Frye D.Green B.Griffin A.Iguodala
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CHAPTER 4

ANTISYMMETRIC RESPECT

4.1 Problem Definition
4.2 The Ranking Case
4.3 The General Case

4.4 Experiments

4.1 Problem Definition

In this chapter we define a variation of the RespectMaximization problem, based on

having antisymmetric respect R;; = —Rj;,

where R;; denotes the amount of respect
worker j has for worker i. The concept of antisymmetric respect is based on the idea
that if worker j has respect for worker ¢, then a hierarchy exists between them, in
which 7 is higher than j, and worker i will have negative respect for worker j, since
he is beneath him in the hierarchy.

We define this variation of the problem as follows. Given a set of n workers X,
a task requiring a set of £ skills S and an antisymmetric respect matrix 7', for each
skill s, create a team of workers F' C X, where each skill is assigned a worker and
the total respect of the team is maximized.

An antisymmetric matrix 7" has the property that 77 = —T, and T'[x,y] = —Ty, x|
for each z,y in the bounds of 7. More specifically, a respect matrix 7° for skill i

is of size n x n and contains the respect values for each pair of workers, such that

T'z,y] = Ryy.
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For this variation too, we define a skill assignment as an injective function f :
S — X, where f(i) = x; is the worker assigned to skill i. We let /' = f(S5) denote the
selected team of experts. The respect R'(f) that worker f(i) receives from his team

members is defined as:

R(f) =Y Ry, (4.1)

Tj er

Therefore, the total respect for an assignment is:

R(f) = Z RI(f) (4.2)

The problem can be broken into two cases based on the input on which the respect

matrix is derived from, a ranking case and a general case.

4.2 The Ranking Case

In the ranking case, we assume that for each skill i, every worker = has a weight
W:. The weights give a partial or full order of the workers. We define the amount of

respect that worker y has for worker = with respect to skill 7 as:
R, =W,-W, (4.3)

If instead of weights we are given a ranked order of the nodes for skill 7, then we
derive these weights as a decreasing function of the position of x in the ranking of 1,
Wi = n — rank’(z). We refer to this problem as the MaxRankingAntisymmetricRespect
problem.
We observe that in this case the respect for skill j is computed as:
Bn=3 i, - wi]

= kW), =) Wi (4.4)

r,€F
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Consequently, the total respect of an assignment f is computed as:

k
R(f) =D R(f) (4.5)
j=1
]k k
=> kWL =Y > Wl (4.6)
j=1 j=1 z,eF
k k
=> kWL =S wl (4.7)
j=1 z;eF j=1
k
= KWL= Wi (4.8)
T;€F z;€F j=1
k
= > kWi - ngi] (4.9)
z;€F j=1
= > V(i) (4.10)
z,€F

The value V (i, ;) = [kW; - Zle Wg} is the contribution to the respect value
of f for assigning z; to skill ;. Note that the function V (i, z) is independent of the
rest of the assignment, and depends only on the pair (i,z). Therefore, we can now
approach the problem as a Maximum Weight Bipartite Matching problem [25].

In a Maximum Weight Bipartite Matching problem, given a bipartite graph G =
(V, E) and a weight function w : E — R, we are called to find a matching of maximum
weight where the weight of matching M is given by w(M) =" ., w(e).

For our problem, given a bipartite graph G = (N, E), where N = (X + 5), with
bipartition (X, .S), the weight function is w(i, ;) = V (i, z;), where i is a skill in S and
x; is a worker in X. Our goal is to find a matching M with maximum weight, which
is given by: w(M) = ; . ycn w(i, z;).

The maximum weight bipartite matching problem can be solved optimally in poly-
nomial time using the Hungarian method, or approximately using a greedy approach.

We now describe these two algorithms below.

4.2.1 Algorithms
Hungarian

The Hungarian method is commonly used to solve linear assignment problems op-

timally. For this method we created the Humngarian based on [26]. The Hungarian
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receives as input the weights derived over the ranking and computes the score values
V (i, z;) for each skill-worker pair. Given these values the Hungarian creates a matrix
P of size n x k, where each row represents a worker z, each column a skill 7, and
each cell contains the value V (i, z;), which is the benefit of assigning worker z to skill
. The Hungarian method can only be applied to square matrices, thus matrix P is
modified by adding rows or columns as needed and the empty cells are filled with
the minimum value of matrix . Now matrix P contains the benefit of assigning any
worker to any skill and is called a profit matrix. The Hungarian method, though,
works by minimizing the cost of an assignment, therefore Hungarian creates a cost
matrix C. Matrix C is of size n x n and is a product of matrix P, C' = max(P) — P.

The Hungarian proceeds by modifying matrix C' according to the following steps, as
described in [27]:

1. Subtract minimum of each row from all elements in respective row and subtract

minimum of each column from all elements in respective column.

2. Draw minimum number of horizontal and vertical lines to cover all zeros in the

matrix.
(a) Let N denote the number of lines needed and n denote the order of matrix
C. If N =n, an optimal assignment can be made. Continue to step 5.
(b) If N < n, continue with next step.
3. Find the smallest element = in C, that is not covered by lines, and subtract it

from all elements not covered and add it to elements at intersection points of

lines.
4. Repeat steps 2 & 3 until N = n.

5. Examine rows successively and find row containing a single zero element and
mark the zero. Examine the column of marked zero and cross any zero found.

Repeat until all rows have been examined, then repeat for all columns.

(a) If no unmarked or uncrossed zero is left, an optimal solution has been
found and corresponds to the workers and skills at the rows and columns

of the marked zeros.

(b) If unmarked or uncrossed zeros are left, continue with next step.
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6. Randomly mark an unmarked and uncrossed zero and cross remaining zeros

in its row and column.

(a) If no unmarked or uncrossed zero is left, an optimal solution has been
found and corresponds to the workers and skills at the rows and columns

of the marked zeros.

(b) If unmarked or uncrossed zeros are left, repeat current step until no more

zeros are left.

MatchingGreedy

For the greedy approach we created the MatchingGreedy algorithm, whose outline can
be seen in Algorithm 4.1. MatchingGreedy receives as input the weights derived by
the ranking, computes the score values V' (i,z;) for each skill i and each worker z,
stores them in a list B as tuples in the form of (score, worker, skill), and sorts them
in a descending order based on the score value. The MatchingGreedy algorithm keeps
a dictionary F' that stores the assignments of workers to skills it makes, and lists W
and S containing the workers and skills assigned respectively. The first assignment
of the algorithm is the first value V' (i, z;) in the sorted list. For each following value
V(i,x;) in the list we examine if skill ¢ has already been assigned a worker and if
worker z has already been assigned a skill. If both of those statements are false,
MatchingGreedy assigns worker z to skill ¢ and moves on to the next value. If any of
those statements is true, it moves on to the next value without making an assignment.
The algorithm terminates when each skill has been assigned a worker or when the
end of the list has been reached. The greedy approach may not always accomplish an
optimal assignment due to assigning workers to skills as it encounters them without

being able to change them later on if they find a better assignment later on.

4.3 The General Case

We now consider a more general case where the respect matrix is computed as follows.
The input is, again, a directed graph G, for each skill. We define the respect for a

pair of workers z,y for a skill ¢ as:
R;y :dz(x7y) _dl(,ij)’ (411)
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Algorithm 4.1 MatchingGreedy

Input: A dictionary W containing the weight of each worker in each skill.

Output: Assignment F.

10:
11:
12:
13:
14:
15:
16:

B < compute_score(W)
sort B in descending order (key: score)
Fe{)
W1l
S 1l
for tuple(score, worker, skill) in B do
if worker not in W and skill not in S then
add tuple to F
add worker to W
add skill to S
end if
if length of F' = number of skills then
break
end if
end for

return F

where function d' denotes the shortest-path distance between the two workers in the

graph. Intuitively, a large distance from z to y implies that z is “higher” than y and

thus commands more respect. If there is no path from z to y in the graph, then the

distance is zero. To define the respect between the two nodes, we take the difference of

their distances in the graph. If the distance from worker x to worker y is greater than

the distance from worker y to worker z for skill ¢, then x commands more respect

from y than y demands from z, and thus R, is positive, while R}, is negative.

We refer to this problem as the MaxMutual AntisymmetricRespect problem.
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4.3.1 Algorithms

Landmark Algorithms

In this section, we propose a landmark-based method for the MaxMutual Antisymmet-
ricRespect problem, aiming to reduce the general case to the MaxRankingAntisymmet-
ricRespect problem.

Landmarks have been used to estimate distances between nodes in a graph (e.g.,
see [15]). The idea is that given a landmark node ¢, we precompute the distance
from ¢ to all other nodes in the graph, and we estimate the distance between two
nodes z,y as d(x,y) = d(z, () +d(¢,y). Multiple landmarks are used for more accurate
estimation.

In our problem, if for a pair of nodes z,y we had a perfect landmark, such that,
d(z,y) = d'(x,0) + d'({,y) and d'(y,z) = d'(y,¢) + d'({,z), then it would hold that
R., = R., — R;,. If this idealized landmark worked for all pairs of nodes in the
graph, then we could assign to each node a weight W! = R!, and our problem would
reduce to the MaxRankingAntisymmetricRespect problem.

This idealized landmark does not exist, but we build on this idea to propose the
following landmark-based heuristic algorithm. First, select a landmark ¢’ for each
skill 7. Use this landmark to compute the respect R’ of the landmark ¢’ to all nodes
in the graph. Use these values as the weights W = R’ , and apply the MatchingGreedy
and Hungarian algorithms.

We examine three different ways of choosing the landmark.

1. LowLandmark: the worker with the lowest out-degree is assigned as landmark
¢. Choosing the worker that is least respected by others for a skill as landmark
is based on the idea that in a ranked order of the workers with regard to their
incoming respect, such a worker would be placed at the bottom of the ranking.
Then the distance from other workers to the landmark looks similar to the
weight assigned to workers in the case where we are given a ranked order, as
described in 4.2.

2. RandomLandmark: a worker is chosen uniformly at random to be assigned as
landmark ¢. The RandomLandmark variation is repeated ¢ = 100 times and the

assignment with the highest score is reported.

3. AverageRandomLandmark: initially a set L of ¢ = 100 landmarks are chosen uni-
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Ri . . . .
—Z“f L, This is a more efficient variant of the

formly at random and W! =

random landmark selection, since we need to run the algorithm only once.

IQP_MaxRespect

For the MaxMutualAntisymmetricRespect problem, the IQP_MaxRespect algorithm de-
fined in 3.3.2 can be applied, by replacing adjacency matrix A, with respect matrix
T.

Greedy

Additionally, based on the algorithms developed in [2] for their definition of the
MaxMutualRespect problem, we created our version of the Greedy and RandGreedy
algorithms. The Greedy algorithm initially assigns a score to every skill-worker pair,
and makes the assignment with the highest score. For each next assignment an
updated score value is computed, based on the already assigned workers, and the
assignment with the highest score is made. The initial score value for a skill < and a

worker x is computed as follows:

s(i,x) = > R;erﬁ > > R, (4.12)

yeX yte JES#i yeX ya
where a high value in the first part of the above equation means that worker z is
highly respected for skill ¢, and a high value in the second part of the equation means
that worker z has high average respect for the remaining workers in the remaining
skills. After the initial assignment is made, the updated score value for a skill : and

a worker z is computed as:

: ; , 1
sp(i,r) = Z R, + Z Rg’x+k:—|F|

y=f(j)eF y=f(j)eF,jes

> Rl (413

3:1(4)=0.3#4,5€S,y=F(5)

where a high value in the first part of the equation means that worker z is highly
respected for skill i by the workers already assigned to team F, a high value in the
second part that worker x highly respects the workers assigned to team £ for their
corresponding skills, and a high value in the third part means worker x has high
average respect for the unassigned workers in the unassigned skills. The terms in the

above values are normalized to be in the same scale.
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Figure 4.1: Comparison of algorithms for the MaxRankingAntisymmetricRespect

problem.

RandGreedy

The RandGreedy algorithm computes the score the same way as Greedy, but instead of
selecting the pair (7, z) with the highest score for each assignment, it selects a skill
i € S: f(i) = 0 uniformly at random, and then assigns the pair (i, 2) with the highest
score value. RandGreedy is repeated t = 50 times and the assignment with the highest

score is reported.

4.4 Experiments

4.4.1 Experiments for MaxRankingAntisymmetricRespect

To solve the MaxRankingAntisymmetricRespect problem, the same dataset as in 3.3.3 is
being used.

Figure 4.1a shows the performance of the MatchingGreedy and the Hungarian al-
gorithms. We observe that in most cases the assignment given by MatchingGreedy
achieves the same score as the Hungarian assignment, which is the maximum score,
except for the seasons 2010 and 2017.

In Figure 4.1b we compare the performance of MatchingGreedy and Hungarian

regarding their running time. As expected, MatchingGreedy is more efficient achieving
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Figure 4.2: Comparison of the average values of the algorithms for the

MaxRanking AntisymmetricRespect problem.

Table 4.1: Teams produced by the Hungarian algorithm.

2010 2011 2012 2013 2014 2015 2016 2017
STL C.J.Watson D.Fisher | C.Singleton R.Rubio P.Pressey S.Larkin T.J.McConnell | T.J.McConnell
AST C.Duhon J.Flynn B.Udrih J.Tinsley K.Marshall S.Blake S.Blake S.Rodriguezl
FT J.Bayless | C.Maggette | C.Magette | T.Hansbrough | R.Stuckey N.Young S.Muhammad | S.Muhammad
BLK | ]J.Anthony E.Udoh | B.Biyombo | B.Biyombo E.Udoh B.Biyombo J.Henson J.Grant
FG C.Kaman | D.DeRozan | D.DeRozan | D.DeRozan C.Boozer T.Parker D.Rose Z.Randolph
TRB U.Haslem R.Evans U.Haslem R.Evans 0.Asik 0.Asik 0.Asik T.Chandler
2P T.Parker | J.J.Hickson L.Scola K.Seraphin E.Kanter C.Boozer J.Okafor D.Rose
3P P.Stojakovic J.Jones S.Novak S.Novak M.Teletovik | T.Hardaway | H.Thompson T.Daniels
DBPM | T.Ratliff | E.Dampier | A.Biedrins A.Bogut R.Turiaf S.Dalembert J.Noah [.Mahinmi
OBPM | N.Robinson B.Davis J.Bayless J.Calderon J.J.Redick | S.Muhammad C.Landryl J.J.Barea
VORP | B.Wallace | J.Anthony | M.Ginobili J.Kidd A.Bogut A.Bogut A.Bogut L.Nogueira

a running time of 1ms, while Hungarian is noticeably slower.

Figures 4.2a and 4.2b show the average respect score value and the average
runtime value over all teams respectively. We can see that with respect to the score the
two algorithms perform very closely, while with respect to the runtime MatchingGreedy
is much more efficient than Hungarian.

Tables 4.1 and 4.2 show the assignments created by the Hungarian and Match-
ingGreedy algorithms respectively. We can observe that for the years 2011 - 2016 the
assignments made by each algorithm are identical, while for the years 2010 and 2017
they differ for the roles FG and 2P, which we have highlighted in yellow for easier

recognition.
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Table 4.2: Teams produced by the MatchingGreedy algorithm.

2010 2011 2012 2013 2014 2015 2016 2017
STL C.J.Watson D.Fisher | C.Singleton R.Rubio P.Pressey S.Larkin T.J.McConnell | T.J.McConnell
AST C.Duhon J.Flynn B.Udrih J.Tinsley K.Marshall S.Blake S.Blake S.Rodriguezl
FT J.Bayless C.Maggette | C.Magette | T.Hansbrough | R.Stuckey N.Young S.Muhammad | S.Muhammad
BLK J.Anthony E.Udoh | B.Biyombo | B.Biyombo E.Udoh B.Biyombo J.Henson J.Grant
FG A.Stoudemire | D.DeRozan | D.DeRozan | D.DeRozan C.Boozer T.Parker D.Rose D.Rose
TRB U.Haslem R.Evans U.Haslem R.Evans 0.Asik 0.Asik 0.Asik T.Chandler
2P C.Kaman J.J.Hickson L.Scola K.Seraphin E.Kanter C.Boozer J.Okafor Z.Randolph
3P P.Stojakovic J.Jones S.Novak S.Novak M.Teletovik | T.Hardaway | H.Thompson T.Daniels
DBPM T.Ratliff E.Dampier | A.Biedrins A.Bogut R.Turiaf S.Dalembert J.Noah [.Mahinmi
OBPM N.Robinson B.Davis J.Bayless J.Calderon J.J.Redick | S.Muhammad C.Landryl J.J.Barea
VORP B.Wallace J.Anthony | M.Ginobili J.Kidd A.Bogut A.Bogut A.Bogut L.Nogueira

4.4.2 Experiments for MaxMutual AntisymmetricRespect

To solve the MaxMutualAntisymmetricRespect problem, we use the same dataset as
in 3.3.3.

For the MaxMutualAntisymmetricRespect problem we first compare the LowLand-
mark, RandomLandmark and AverageRandomLandmark variations using the Matching-
Greedy and Hungarian algorithms. Table 4.3 shows the assignments made by the land-
mark variations paired with the algorithms for the MaxRankingAntisymmetricRespect
problem. We observe that MatchingGreedy and Hungarian make vary similar assign-
ments for each variation. We also observe that often the same worker is assigned to a
specific skill across different landmark variations, especially for the RandomLandmark
and AverageRandomLandmark variations.

In Figure 4.3a the performance of all variation-algorithm pairs is shown. It is easily
noticeable that the RandomLandmark variation performs best, for both algorithms used.
Between the two algorithms though, it might seem surprising that the MatchingGreedy
algorithm performs slightly better, since one would expect it to perform worse than
Hungarian, due to its greedy nature. This happens because these algorithms use an
approximation of the score to give an assignment, and given the assignment, the real
score is computed, based on which they are evaluated. The AverageRandomLandmark
variation performs slightly worse for both algorithms used, even though in some
cases it gets very close to the performance of the RandomLandmark variation, while the
LowLandmark variation performs poorly compared to the others.

Figure 4.3b shows the runtime analysis comparison for the LowLandmark, Ran-

domLandmark and AverageRandomLandmark variations using the MatchingGreedy and
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Figure 4.3: Comparison of landmarks variations using the MatchingGreedy and Hun-

garian algorithms.

Hungarian algorithms. We observe that overall all landmark variations paired with
the MatchingGreedy algorithm perform better than the Hungarian algorithm. Specif-
ically, the LowLandmark and AverageRandomLandmark variations combined with the
MatchingGreedy algorithm are very efficient, having execution times of less than a sec-
ond. The longer execution time of the RandomLandmark variation is explained by the
number of ¢ = 100 times the algorithm is repeated.

In Figures 4.4a and 4.4b the average respect score and runtime over all teams for
each variation is shown. We observe that with respect to the score overall the Ran-
domLandmark variation performs best, paired either with the MatchingGreedy or the
Hungarian algorithm. Between, the two algorithms MatchingGreedy performs slightly
better in this case. With respect to the runtime, we can see that overall the Matching-
Greedy algorithm performs more efficiently.

Next we compare the best performing landmark variation-algorithm pair with the
other algorithms for the MaxMutual AntisymmetricRespect problem. In Table 4.4 the as-
signments made by the RandomLandmark variation combined with the MatchingGreedy
algorithm are shown, along with the assignments made by the IQP_MaxRespect, Greedy
and RandGreedy algorithms. We observe that the assignments by the IQP_MaxRespect
algorithm and the RandGreedy algorithm are very similar and even identical in the
case of Team 2, Team 4 and Team 5. The assignments made by the RandomLandmark

variation paired with the MatchingGreedy algorithm have some skill-worker pairs in
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Figure 4.4: Comparison of the average values of the landmarks variations using the

MatchingGreedy and Hungarian algorithms.

common with the assignments made by the IQP_MaxRespect algorithm, while the
assignments made by the Greedy algorithm are the most different from the others.

In Figure 4.5a the performance of the RandomLandmark variation paired with
MatchingGreedy algorithm is shown compared to the IQP_MaxRespect, Greedy and
RandGreedy algorithms. The results show that the IQP_MaxRespect algorithm per-
forms best, slightly surpassing the RandGreedy algorithm, which also performs very
good. The combination of the RandomLandmark variation with the MatchingGreedy al-
gorithm performs quite close to the RandGreedy algorithm, while the Greedy algorithm
performs slightly worse overall.

In Figure 4.5b the runtime analysis of the RandomLandmark variation combined
with MatchingGreedy algorithm is shown compared to the IQP_MaxRespect, Greedy and
RandGreedy algorithms. The Greedy algorithm and the pairing of the RandomLandmark
variation with MatchingGreedy algorithm perform the best, followed by the RandGreedy
algorithm. The IQP_MaxRespect algorithm performs quite poorly regarding the exe-
cution time, reaching the time limit of six hours that was applied in most cases.

Figures 4.6a and 4.6b show the average respect score and runtime over all teams
respectively. We observe that with respect to the score, the algorithms perform quite
closely, with the IQP_MaxRespect performing the best. With respect to the runtime
we see that the differences between the algorithms are more prominent, with the

combination of RandomLandmark and MatchingGreedyhaving the lowest runtime.
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Table 4.3: Teams produced by the landmark variations combined with the algorithms

for the MaxRankingAntisymmetricRespect problem.

Al NN NLP Robotics DM Algorithms DB Theory
LowLandmarks L.Chen M.Wang Y.Chen Y.Zhang - - - -
MatchingGreedy RandomLandmarks A.I.Rudnicky J.Wang | C.Cerisara T.Chen - - - -
Teami AverageRandomLandmarks Y.Wang J.Wang | C.Cerisara | I.Noda - - - -
LowLandmarks L.Chen J.Wang Y.Chen | G.Z.Grudic - - - -
Hungarian RandomLandmarks A.ILRudnicky J.Wang | C.Cerisara | T.Chen - - - -
AverageRandomLandmarks Y.Wang J.Wang | C.Cerisara I.Noda - - - -
LowLandmarks - - - - S.Zilles M.Purohit M.Tang A.Nichterlein
MatchingGreedy RandomLandmarks - - - - D.P.Miranker B.D.Sullivan Y.Shavitt R.Bredereck
Team? AverageRandomLandmarks - - - - D.P.Miranker M.Karppa | D.S.Papailiopoulos | R.Bredereck
LowLandmarks - - - - K.M.Hammouda | A.Zelikovsky A Faria A .Nichterlein
Hungarian RandomLandmarks - - - - D.P.Miranker B.D.Sullivan A.Stupar A .Nichterlein
AverageRandomLandmarks - - - - D.P.Miranker Y.Kohonen | D.S.Papailiopoulos | R.Bredereck
LowLandmarks S.Parthasarathy | H.Cheng R.Liu R.Motwani W.K.Wong Y.Wang K.Sun A.Das
MatchingGreedy RandomLandmarks Y.Cheng S.Pandey X.Li T.Jebara W.K.Wong D.Agarwal H.Zhang J.Langford
Team3 AverageRandomLandmarks | T.Roughgarden | S.Pandey | Qiang Li Qian Li Y.Aumann X.Li H.Zhang A.Das
LowLandmarks S.Parthasarathy | H.Cheng J.Chen | R.Motwani W.K.Wong C.V.Jawahar K.Sun A.Das
Hungarian RandomLandmarks Y.Cheng S.Pandey X.Li K.P.Sycara W.K.Wong D.Agarwal H.Zhang J.Langford
AverageRandomLandmarks | T.Roughgarden | S.Pandey | Qiang Li Qian Li Y.Aumann X.Li H.Zhang A.Das
SE HPC DPC 0s SP CN IR Wireless
LowLandmarks K.Razavi R.Prodan Z.Li W.Dong - - - -
MatchingGreedy RandomLandmarks F.Zhang R.Prodan Z.Li W.Dong - - - -
AverageRandomLandmarks F.Zhang R.Prodan Z.Li W.Dong - - - -
Teams LowLandmarks J.Li R.Prodan | Z.Prodan | W.Dong - - - -
Hungarian RandomLandmarks F.Zhang R.Prodan Z.Li W.Dong - - - -
AverageRandomLandmarks F.Zhang R.Prodan Z.Li W.Dong - - - -
LowLandmarks - - - - Y.Gao J.Li Q.Zheng L.M.Kaplan
MatchingGreedy RandomLandmarks - - - - Y.Chen Y.Li Y.Zhang R.Zhang
Teams5 AverageRandomLandmarks - - - - J.Liu H.Li Y.Zhang L.M.Kaplan
LowLandmarks - - - - J.Liu J.Li Q.Zheng L.M.Kaplan
Hungarian RandomLandmarks - - - - Y.Chen Y.Li Y.Zhang R.Zhang
AverageRandomLandmarks - N - - J.Liu H.Li Y.Zhang L.M.Kaplan
LowLandmarks C.Wang Y.Li Yu.Zhang Q.Yang W.Zhang Yi.Zhang B.Zhang W.Li
MatchingGreedy RandomLandmarks C.Wang Y.Li L.Zhang X.Li R.Zhang Yi.Zhang Ya.Zhang W.Li
Teamé AverageRandomLandmarks C.Wang Yu.Zhang | L.Zhang Q.Yang R.Zhang Yi.Zhang Y.Li Y.Yang
LowLandmarks C.Wang Y.Li Yu.Zhang Q.Yang W.Zhang Yi.Zhang B.Zhang W.Li
Hungarian RandomLandmarks Y.Li Ya.Zhang | L.Zhang X.Li R.Zhang Yi.Zhang C.Wang W.Li
AverageRandomLandmarks C.Wang Y.Li L.Zhang Q.Yang R.Zhang Yi.Zhang Yu.Zhang Y.Yang
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Table 4.4: Teams produced by the algorithms for the MaxMutualAntisymmetricRe-

spect problem.

Al NN NLP Robotics DM Algorithms DB Theory
RandomLandmarks + MatchingGreedy | A.I.Rudnicky | J.Wang C.Cerisara T.Chen - - - -
Team1 RespectMaximization A.I.Rudnicky D.Wu C.Cerisara W.Wei N = - -
Greedy Y.Wang Y.Zhao C.Cerisara T.Chen - - - -
RandGreedy K.Komatani D.Wu C.Cerisara W.Wei - - - -
RandomLandmarks + MatchingGreedy - - - - D.P.Miranker | B.D.Sullivan | Y.Shavitt | R.Bredereck
Team2 RespectMaximization - - - - D.P.Miranker | B.D.Sullivan J.Liu A .Nichterlein
Greedy - - - - Q.He J.Kohonen A.Stupar | R.Bredereck
RandGreedy - - - - D.P.Miranker | B.D.Sullivan J.Liu A .Nichterlein
RandomLandmarks + MatchingGreedy Y.Cheng S.Pandey X.Li T.Jebara W.K.Wong | D.Agarwal | H.Zhang | ].Langford
Team3 RespectMaximization T.Roughgarden Y.Li M.LJordan L.Zhang C.Chen D.Agarwal | H.Zhang | J.Langford
Greedy S.Mannor S.Pandey T.Huang T.Jebara G.Li YWang J.Vondrk A Karbasi
RandGreedy A K.Jain Y.Li Q.Li T.Roughgarden | Y.Aumann D.Agarwal Y.Chen J.Langford
SE HPC DPC 0s SP CN IR Wireless
RandomLandmarks + MatchingGreedy F.Zhang R.Prodan Z.Li W.Dong - - - -
Teama RespectMaximization F.Zhang R.Prodan | B.Balasubramanian W.Dong N = - -
Greedy F.Zhang R.Prodan | B.Balasubramanian W.Dong - - - -
RandGreedy F.Zhang R.Prodan | B.Balasubramanian W.Dong - - - -
RandomLandmarks + MatchingGreedy - - - - Y.Chen Y.Li Y.Zhang R.Zhang
Team5 RespectMaximization - - - - K.Wang Y.Li Y.Zhang D.Wang
Greedy - - - - H.Chen H.V.Poor Y.Zhang | L.M.Kaplan
RandGreedy - - - - K.Wang Y.Li Y.Zhang D.Wang
RandomLandmarks + MatchingGreedy C.Wang Y.Li L.Zhang X.Li R.Zhang Yi.Zhang Ya.Zhang W.Li
Team6 RespectMaximization Ya.Zhang J.Wang L.Zhang Y.Li R.Zhang Yi.Zhang | Yu.Zhang W.Li
Greedy Ya.Zhang H.Wang L.Zhang Y.Li R.Zhang Yi.Zhang | Yu.Zhang Y.Yang
RandGreedy Ya.Zhang H.Wang L.Zhang Y.Li R.Zhang Yi.Zhang | Yu.Zhang W.Li
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CHAPTER DO

CONCLUSION

5.1 Future Work

In this thesis we studied and extended a variation of the Team Formation prob-
lem [1], the RespectMaximization problem, that has been previously defined in [2]. The
RespectMaximization problem takes into consideration the fact that social relations are
not always reciprocal and may vary depending on the criteria. It also incorporates
the concept of respect between workers, which is to be maximized in the assigned
teams.

Our contribution to that work is the proposition of an IQP formulation of the
RespectMaximization problem, and the heuristic algorithm that solves it. We showed
that our algorithm achieves the assignment of teams with higher respect score than
previous algorithms, albeit with much higher computational cost. Our heuristic algo-
rithm was also applied to the MaxRankingRespect problem, where the assigned teams
were of maximum respect, but the high computational cost renders our algorithm
unnecessary in this case, since we do not gain in any aspect.

Thereafter, we introduce a variation of the RespectMaximization problem, with anti-
symmetric respect, and implement polynomial algorithms to solve it. For the ranking
case we showed that our MatchingGreedy algorithm performs very close to the Hungar-
ian algorithm. For the general case we showed that our heuristic landmark algorithm
performs very efficiently compared to the IQP and other heuristic algorithms, as-

signing teams with respect score close to that of the other algorithms, with lower
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computational cost.

5.1 Future Work

In the future it would be interesting to explore the IQP formulation with respect to
the ranking case more deeply, in order to obtain a more efficient IQP program that
does not have such high computational cost.

Additionally, studying more variations of landmark selection in a graph for the
MaxMutual AntisymmetricRespect problem, could lead to improving the effectiveness of
this approximation approach. The incorporation of more than one landmark could
also improve the ability to approximate the true respect score value.

An extension of the RespectMaximization problem worth considering is the intro-
duction of the concept of respect to the Template-Driven Team Formation (TDTF)
problem defined in [23]. In the TDTF problem, the teams wanted to accomplish a
task have a certain structure with a hierarchy among the workers. Incorporating the
concept of respect so that the workers lower in the hierarchy respect those above
them would make the problem even more realistic.

Lastly, we suggest the examination of a case, where given a task, the subgraph
induced over the assigned workers should be a Directed Acyclic Graph (DAG). Such

a DAG creates a hierarchy among the workers based on their respect relationships.
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