
Deep Clustering Based on Implicit Likelihood
Maximization

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Georgios Vardakas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina October 2021



Examining Committee:

• Aristidis Likas, Professor, Department of Computer Science & Engineering,
University of Ioannina (Supervisor)

• Konstantinos Blekas, Professor, Department of Computer Science & Engineer-
ing, University of Ioannina

• Christophoros Nikou, Professor, Department of Computer Science & Engineer-
ing, University of Ioannina



Dedication

Dedicated to my family for its unconditional support throughout all the years of my
studies.



Acknowledgements

I would like to express my gratitude to my supervisor, Professor Aristeidis Likas, for
the valuable guidance, patience, and trust he showed me through all our collaboration.
He was more than eager to provide me with his knowledge on the subject while
making helpful suggestions all over this work. His guidance, support, and expertise
have been only some of the ways through which he has shaped my first steps in
research.

I would also like to thank my old friend and fellow student Ilias Kleftakis for his
valuable help in our undergraduate studies and his assistance in setting the machine
in which the experiments took place. Furthermore, I would like to thank my close
friend and fellow student Spyros Tzimas for our discussions and the quality cooper-
ation in our undergraduate studies. Finally, I want to thank my old friend Grigoris
Papigiotis for his unconditional support and scientific discussions about Machine
Learning and its applications in Astrophysics.

I would also like to thank my family for their unconditional support and love
throughout the years. My mother, Athena, brother and sister Konstantinos and Eleni-
Anastasia, who always supported me, and my father, Thomas, who taught me to
demand more of myself. Moreover, I wish to thank my close friends Giannis, Sokratis,
Sotiris, Theodore, and Christodoulos for their support and understanding.

Last but not least, I owe a special thanks to Evgenia Lampropoulou. She showed
admirable care, support, and patience throughout all the undergraduate and post-
graduate years of my studies and was enthusiastic about discussing numerous parts
of it.



Abstract

Georgios Vardakas, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, October 2021.
Deep Clustering Based on Implicit Likelihood Maximization.
Advisor: Aristidis Likas, Professor.

Deep Learning is a type of machine learning and artificial intelligence that imitates
how the human brain can learn. It is one of the essential elements of data science,
which includes statistics and predictive modeling. Although DL started mainly for
supervised tasks, lately, it has found success in several unsupervised learning fields,
like clustering, dimensionality reduction, etc. Clustering belongs to unsupervised ma-
chine learning and is defined as a process of assigning objects to groups so that the
data share common characteristics. Therefore, the main goal of clustering is for ob-
jects belonging to the same group to be similar (or related) to each other and differ
(or not be related) to objects in different groups. This way, clustering explores the
data and aims to find (hidden) structures in them. At the same time, clustering is
one of the most challenging problems in the field of machine learning.

In this master’s thesis, we study Deep Clustering methods. Deep clustering is a
new promising area of clustering algorithms that emerged in recent years. The main
goal of Deep Clustering is to create clustering algorithms merged with Deep Learn-
ing methods to exploit their representational power. Τherefore, in this thesis, we will
clearly describe the new machine learning area of Deep Clustering and why it is con-
sidered promising. Afterward, we will present two Deep Clustering algorithms that
were studied. The first Deep Clustering algorithm that we will discuss is the Cluster-
Gan, which makes use of a modified Generative Adversarial Networks’ architecture
in order to cluster the data in latent space Z. The second Deep Clustering method
that we will present is our contribution, and it is based on a generative Deep Neural



Network model that is trained by Implicit Likelihood Maximization (IMLE). IMLE
provides an effective way of maximizing the likelihood of the model indirectly. The
Deep Clustering methodology that is based on IMLE also clusters the data in the
latent space. Finally, we will analyze the experiments that took place and present the
experimental results.

Keywords: machine learning, deep learning, deep neural networks, generative data
models, implicit models, implicit maximum likelihood estimation, IMLE, generative
adversarial network, GANs, clustering, deep clustering, ClusterGan.



Ε Π

Γεώργιος Βαρδάκας, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-
των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, Οκτώβριος 2021.
Βαθιά Ομαδοποίηση Βασισμένη στην Έμμεσης Μεγιστοποίησης της Πιθανοφάνειας.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

Η βαθιά μάθηση είναι ο τομέας της μηχανικής μάθησης που βασίζεται στην εκ-
παίδευση νευρωνικών δικτύων μεγάλου βάθους (deep neural networks). Παρά το
γεγονός ότι η βαθιά μάθηση εφαρμόζεται κυρίως σε προβλήματα μάθησης με επί-
βλεψη, πρόσφατα αρχίσει να χρησιμοποιείται για διάφορα προβλήματα χωρίς επί-
βλεψη, όπως είναι η ομαδοποίηση, η μείωση διάστασης κ.λπ. Η ομαδοποίηση ανήκει
στην κατηγορία προβλημάτων μηχανικής μάθησης χωρίς επίβλεψη, και ορίζεται ως
την διαδικασία ανάθεσης αντικειμένων (δεδομένων) σε ομάδες, ώστε αυτά να έχουν
κοινά χαρακτηριστικά. Ο κύριος στόχος της ομαδοποίησης είναι τα αντικείμενα που
ανήκουν στην ίδια ομάδα να είναι περισσότερο όμοια μεταξύ τους και να διαφέρουν
με αντικείμενα άλλων ομάδων.

Στην παρούσα μεταπτυχιακή διπλωματική εργασία, μελετάμε μεθόδους βαθιάς
ομαδοποίησης. Κύριος στόχος της βαθιάς ομαδοποίησης είναι η κατασκευή μεθόδων
ομαδοποίησης, οι οποίες χρησιμοποιούν βαθιά μάθηση έτσι ώστε να εκμεταλλευ-
τούν την ικανότητα που παρουσιάζουν τα βαθιά νευρωνικά δίκτυα στο να μετασχη-
ματίζουν αποδοτικά τα δεδομένα σε μη γραμμικούς χώρους. Θα παρουσιάσουμε
τους δύο βασικούς αλγορίθμους που μελετήθηκαν. Ο πρώτος αλγόριθμος βαθιάς
ομαδοποίησης που θα παρουσιάσουμε είναι το ClusterGan, το οποίο κάνει χρήση
μίας τροποποιημένης αρχιτεκτονικής παραγωγικών δικτύων ανταγωνιστικής μάθη-
σης (GANs) με στόχο την ομαδοποίηση των δεδομένων. Η δεύτερη μεθοδολογία που
θα παρουσιαστεί αποτελεί δική μας συνεισφορά, και βασίζεται σε ένα παραγωγικό
νευρωνικό δίκτυο το οποίο εκπαιδεύεται μέσω έμμεσης μεγιστοποίησης της πιθα-



νοφάνειας (IMLE). Αξίζει να σημειωθεί ότι η έμμεση μεγιστοποίηση της πιθανοφά-
νειας είναι μία αξιόλογη μέθοδος για την εκπαίδευση παραγωγικών δικτύων στην
οποία θα επικεντρωθούμε και θα μελετήσουμε στην παρούσα εργασία. Η μέθοδος
βαθιάς ομαδοποίησης η οποία βασίζεται στην έμμεση μεγιστοποίηση της πιθανο-
φάνειας έχει την δυνατότητα να ομαδοποιεί τα δεδομένα στο επίπεδο εισόδου του
μοντέλου. Τέλος, θα παρουσιάσουμε τα πειράματα που που πραγματοποιήθηκαν
και θα αναλύσουμε τα πειραματικά αποτελέσματα.

Λέξεις Κλειδιά: μηχανική μάθηση, βαθιά μάθηση, βαθιά νευρωνικά δίκτυα, παρα-
γωγικά μοντέλα δεδομένων, έμμεσα μοντέλα, έμμεση μεγιστοποίηση της πιθανοφά-
νειας, παραγωγικά ανταγωνιστικά δίκτυα, ομαδοποίηση, βαθιά ομαδοποίηση.
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Chapter 1

Introduction

1.1 Machine Learning

1.2 Generative Models

1.3 Data Clustering

1.4 Thesis Contribution

1.5 Thesis Outline

1.1 Machine Learning

As soon as electronic computers came into use in the 1950s and 1960s, researchers
have wondered if it was possible to program them, to learn and improve automati-
cally by experience. Ιf that was possible, the impact would be dramatic, not only in
computer science but also in every field of science in general. This question gave birth
to Machine Learning (ML). Learning is one of the most fundamental requirements for
any type of intelligent behavior, and this is a common belief among the researchers.
We can define ML as the field of computer science that aims, as its name implies, to
create intelligent machines that automatically improve with experience by the use of
data. Therefore, ML is one of the major branches of artificial intelligence (AI), and
indeed, it is one of the most rapidly developing subfields of AI research [5].

From the very beginning, three main branches of machine learning emerged. Clas-
sical work in symbolic learning is described by E. B. Hunt [6], in statistical methods
by N. J. Nilsson [7], as well in neural networks by F. Rosenblatt [8]. Through the years,

1



all three branches developed advanced methods [9]: statistical or pattern recognition
methods, such as the k-nearest neighbors, discriminant analysis, Bayesian classifiers,
inductive learning of symbolic rules, such as top-down induction of decision trees,
decision rules, and induction of logic programs, artificial neural networks, such as
the multilayered feed-forward neural network with backpropagation learning, the
Kohonen’s self-organizing network, and the Hopfield’s associative memory.

The origin of machine learning in its modern sense is usually more associated
with the name of the psychologist F. Rosenblatt from Cornell University, who, based
on ideas about the work of the human nervous system, created a group that built
a machine for recognizing the letters of the alphabet Rosenblatt [10]. The machine,
called the ”Ρerceptron” by its creator, used both analog and discrete signals, and it
also included a threshold element that converted analog signals into discrete ones. It
is considered the first artificial neural network (ΑΝΝ), and it was invented in 1958
by F. Rosenblatt. This work became the prototype of modern artificial (deep) neural
networks (DNNs) that are used today.

Over the years, at the same time with machine learning research, vast advance-
ments in computer hardware took place. As a result the Central Processing Units
(CPUs) and Graphics Processing Units (GPUs) became computationally powerful.
The rapid technology improvement and the creation of the Internet gave birth to the
enormous data databases required for ML methodologies. Under these conditions,
the DNNs methodologies became more commonly used. Today DNNs methodologies
became powerful and can solve complex problems like computer vision, speech recog-
nition, natural language processing, machine translation, bioinformatics, drug design,
medical image analysis, material inspection, and board game programs, where they
have produced results not only comparable to expert human performance but in some
cases surpassing it too [11, 12, 13].

In figure 1.1 we present the Ρerceptron. The Perceptron algorithm consists of only
a single neuron. At the first layer of the Perceptron neural network (input layer), the
algorithm expects the d dimensional input data. Τhen each entry xi is multiplied with
its corresponding weight wi. The w0 weight is called bias, and it is always multiplied
by the number one. In the summation unit, the perceptron computes the following
equation 1.1.

u(x) = w0 +
d∑

i=1

xiwi (1.1)

2



Afterward, the total sum passes through the activation function ϕ(u), defined as fol-
lows:

ϕ(u) =

1, if u(x) > 0

-1, otherwise
(1.2)

Finally, at the output level the perceptron output equals to o = ϕ(u).

1

x1

x2

xd

w0

w1

w2

wd

Σ ϕ o

Inputs Weights Summation Activation Output

Figure 1.1: F. Rosenblatt’s Perceptron.

In figure 1.2 we present a type of modern feedforward Deep Neural Network
architecture which is called Multilayer Perceptron (MLP), which contains three hidden
layers. The MLP consists of multiple layers which are fully connected, meaning that
each node in one layer connects with a specific weight wij to every node in the
following layer. It is called MLP because each node in the hidden layers and the
output layer is a Perceptron with a non-linear activation function. In the input layer,
the MLP expects the d dimensional input data. Thus, the input data pass through
each network layer from the input layer to the output layer.
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Input Layer Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

Figure 1.2: Modern Deep Neural Network architecture with multiple layers.

The valuable information is hidden in the network weights. In the case of Percep-
tron, in order to learn the optimal weights (or parameters) for the 2-class classification
problem, it is necessary to train the Perceptron using data examples as an input to
the algorithm. The Perceptron is a linear classifier and converges when all the in-
puts are classified correctly. This means that if the training set is linearly separable,
then the Perceptron is guaranteed to converge [14] but if not then, the Perceptron
will not converge, and the learning process will fail. In algorithm 1.1 we present the
Perceptron’s learning procedure.

In the case of feed-forward DNNs, in order to learn the optimal weights (or param-
eters) for the multiclass classification problem, more advanced learning procedures are
required. Backpropagation is a widely used algorithm for training these kinds of deep
architectures. In fitting a DNN, backpropagation computes the gradient of the loss
function with respect to the weights of the whole network for a single input-output
example. Furthermore, backpropagation is efficient and avoids the direct computa-
tion of the gradient with respect to each weight individually. This efficiency makes it
feasible to use gradient-based methods for training DNNs and updating their weights
in order to minimize the loss function. Some of the most popular gradient-based
algorithms are gradient descent, and its variants such as stochastic gradient descent
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[15, 16]. The backpropagation algorithm works by computing the gradient of a loss
function with respect to each weight by the chain rule, computing the gradient one
layer at a time, iterating backward from the last layer to avoid redundant calculations
of intermediate terms in the chain rule.
The Perceptron Learning Algorithm follows 1.1:

Algorithm 1.1 Perceptron Learning Algorithm
Require: P ← inputs with label 1.
Require: N ← inputs with label 0.
Require: η > 0, which is defines the learning rate.
Ensure: Initialize w randomly.
1: while not converage do
2: Pick random x ∈ P ∪N

3: if x ∈ P and wTx < 0 then
4: w ← w + ηx

5: end if
6: if x ∈ N and wTx ≥ 0 then
7: w ← w − ηx

8: end if
9: end while
10: return w

1.2 Generative Models

1.2.1 Types of Generative Models

It is useful to distinguish between two types of probabilistic models, the prescribed
models and the implicit models [17]. On the one hand, the direct probability models
are those that provide a precise parametric specification qθ(x) of the distribution of
an observed random variable x and define a log-likelihood function log qθ(x) with
parameters θ. Traditional models of machine learning and statistics are like this. On
the other hand, implicit probabilistic models define a stochastic process that directly
generates data, but the function qθ(x) is not easy to define.

The implicit generative models use a latent variable z ∈ Rm that they sample
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from a prior distribution and they transform it with a deterministic function Gθ

(Rm → Rd) making use of the θ parameters. DNNs usually implement this kind of
implicit generative model. In general, implicit generative models define the following
marginal probability:

qθ(x) =
∂

∂x1

. . .
∂

∂xd

∫
{Gθ(z)≤x}

q(z)dz; x = Gθ(z
′
); z

′ ∼ q(z) (1.3)

where q(z) is a latent variable that provides the external source of randomness, and
the relation 1.3 defines the transformed density as the derivative of the cumulative
distribution function. When the function Gθ is well defined so that it is invertible, or
for its dimensions, it holds that m = d with easy characteristic roots, we use the rule
for transformations of probability distributions.

It is interesting to develop more general and flexible implicit generative models
where the G is a non-linear function with d > m dimensions, defined by deep neural
networks. In this case, the integral 1.3 is very difficult to calculate, and attempting
to reduce this to a closed-form expression is hopeless. Evaluating it numerically
is also challenging since the domain of integration could consist of an exponential
number of disjoint regions, and numerical differentiation is ill-conditioned [3]. Even
in direct generative models, the integral 1.3 is challenging to calculate. However, in
the case of implicit generative models, the lack of the likelihood term reduces the
available options for learning the model. In implicit generative models, this difficulty
has created the need for methods that go beyond the lack of the likelihood difficulty
1.3, or they avoid the problem by being likelihood-free.

1.2.2 Implicit Generative Models

In this thesis, two types of implicit generative models are studied. The first is the
implicit maximum likelihood estimation model (IMLE) [3] while the second one
is the generative adversarial network (GANs) [2]. Both of them are used for data
generation and can be used for data clustering. We name the first model, which
used IMLE for deep clustering, Deep Clustering Based on IMLE, while the second
one which uses GANs is the ClusterGan [1]. Both of these generative approaches are
implicit models, often referred to as generative models. On the one hand, the method
of IMLE [3] is based on the idea that in the area where there are training examples,
the density of the model’s probability distribution should be high. On the other hand,
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GANs [2] implement a learning process based on the distinction between real and
generated (fake) data through two competing networks. In both cases, these models
are trained without the formulation of a likelihood term.

1.3 Data Clustering

Organizing data into sensible groups is one of the most fundamental ways for under-
standing and learning. Clustering is one type of unsupervised learning and is defined
as a process of assigning objects to groups, i.e., dividing data into subsets, clusters,
as they are known in the literature [18, 19, 20], so that the data share common
characteristics. Therefore, the main goal of clustering is for objects belonging to the
same group to be similar (or related) to each other, as well as to differ (or not be
related) to objects in other groups [21]. This way, clustering explores the data and
aims to find (hidden) structures in them. At the same time, clustering is one of the
most challenging problems in the field of ML. This is because clustering does not
use category labels that tag objects with prior identifiers, i.e., class labels, and this
is why it is categorized as an unsupervised learning problem. Clustering has been
studied in many areas such as machine learning, data mining, pattern recognition,
image analysis, data compression, computer graphics, information retrieval, statistics,
and bioinformatics. It is also applicable in other fields of science, such as biology,
psychology, and medicine [22, 23].

In a more mathematical formulation, clustering can be described as follows: Sup-
pose a set of n data points X = {x1, x2, ..., xn} be the dataset, where xi ∈ Rd, and a
k-clustering of X is defined as the partition of X into k clusters {C1, C2, ..., Ck}, so
that the following three conditions are satisfied:

• Ci ̸= ∅, i = 1, ..., k

•
k∪

i=1

Ci = X

• Ci ∩ Cj = ∅, i ̸= j, i, j = 1, ..., k

In addition, the data points contained in a cluster Ci are more similar to each other
and less similar to the data points of the other clusters [24].

In many applications, the concept of a cluster is abstract [21]. To understand the
difficulty better in defining the composition of a cluster, let us emphasize at the figure
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1.3. The example shows 20 points and three different ways of clustering them. In the
figure 1.3(b) and 1.3(d) we see the separation of the data into two and six groups
respectively. It can also be argued that the points form four groups as shown in figure
1.3(c). Τherefore, it is evident that the definition of a group is vague, and grouping
depends on the nature of the data and the purpose of the analysis.

Evaluating the performance of clustering is also a tough question. This is because
clustering aims at uncovering hidden structures of the data and defining an opti-
mization criterion seems a non-trivial task. If the underlying data structure does not
obey the optimization criterion, then the clustering algorithm will probably fail [25].
For instance, in figure 1.4, we can clearly see that although the correct number of
clusters was selected, the k-means algorithm completely failed to capture the internal
structure of the data, since the solution returned has no quality value.

Figure 1.3: Data clustering into two, four and six clusters.
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Figure 1.4: K-means fails to cluster rings.

1.3.1 Clustering Framework

Typically the clustering process includes the following [20]:

• Pattern representation: it refers to the number of classes, the number of avail-
able patterns, and the number, type, and scale of the features available to the
clustering algorithm. Optionally includes feature extraction and/or selection.

• Proximity measure: definition of a pattern proximity measure that is appro-
priate to the data domain. The similarity of the data points is calculated with
some distance metric. The most common distance metric is Euclidean Distance.

• Clustering procedure: the most common clustering output is hard or fuzzy
partition of the dataset. Hard clustering category divides the data into groups,
and each data point belongs to one cluster. On the other hand, a fuzzy clustering
divides every data point into all data clusters with a degree of membership.

• Evaluation: all clustering algorithms will generate some data clustering, but this
does not mean that the solution given is representative of the dataset. For this
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reason, the data themselves must be first evaluated and then the algorithm and
its results.

1.3.2 K-means Algorithm

Clustering has a long and rich history in a variety of scientific fields. One of the most
popular and straightforward clustering algorithms, k-means, was first published in
1955. The k-means algorithm is one of the simplest and yet one of the most effec-
tive clustering procedures [21]. It belongs to the category of centroid-based clustering
methods, which means that every cluster is characterized and represented by a cen-
tral vector (centroid). Data points close to these vectors are assigned to the respective
clusters. As an input k-means algorithm expects the dataset and the number of clus-
ters (k clusters). The main goal of the algorithm is to define k centroids, one for each
of the k clusters. Every data point is then assigned to its nearest centroid, and then
each cluster centroid is updated based on the new points assigned to the cluster.
This iterative 2-step procedure is repeated until none of the data points can change
clusters or equivalently, all the centroids remain unchanged. Even though k-means
was proposed over 50 years ago and many other algorithms have been proposed
since then, K-means is still widely used. This reveals the difficulty in designing a
general-purpose clustering algorithm, and the ill-posed problem of clustering [23].

Let’s assume X = {x1, ..., xn} be the dataset, where xi ∈ Rd, then clustering the
dataset into K clusters C1, ..., CK aims to separate the dataset in order to optimize
a clustering criterion. To evaluate the clustering quality, the sum of the squared
Euclidean distances is used between each data point xi and the centroid mk of the
subset Ck which contains xi. This criterion is called clustering error, and is one of the
most common criteria for evaluating clustering. It depends on the centroids m1, ...,mk:

E(m1, ...,mk) =
N∑
i=1

K∑
k=1

I(x ∈ Ck)||xi −mk||2 (1.4)

where I(x) = 1 if x is true and 0 otherwise [26]. K-means performs the clustering
procedure by optimizing the clustering error. If we had to choose between differ-
ent data clusterings (supposing the same number of clusters) of a specific dataset,
choosing the one with the lowest clustering error would be optimal. Minimizing this
objective function is known to be an NP-hard problem even when k is equal to two
(k = 2) [27]. Thus k-means, which is a greedy algorithm, typically converges to a
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local minimum.
It is worth mentioning that the k-means algorithm is used in a wide range of

applications for its simplicity and also for its speed. However, a significant drawback
of the method is the dependence on the initialization of the cluster centers. Therefore,
in terms of performance, k-means does not guarantee that it will converge on the
optimal solution in terms of clustering error. For this reason, solutions that approach
the optimal are usually achieved after multiple runs of the algorithm with different
initializations of the centers. Next we present the k-means algorithm:

Algorithm 1.2 k-means
Require: Dataset D = {(xn)}, xn = (xn1, ..., xnd)

T , n = 1, ..., N , where N is the number
of data, d is the dimentionality of data, and K is the selected number of clusters.

Ensure: Random initialization of the M centroids, with every centroid Oj to be a
vector µj = (µj1, ..., µjd)

T which contains the coordinates of the center of its cluster.

1: t← 1

2: while true do
3: while xn

i unchecked in xn do
4: Compute the Euclidean distance d(xn

i , µm) of xn
i from all centroids µm.

5: Assert xn
i data point to Oj cluster which its µj centroid is the nearest, meaning

that: d(xn
i , µj) = min

K
d(xn

i , µK).
6: end while
7: For every cluster j compute the new centroid µj(t+ 1) as the mean of its data

points.
8: if any of the centroid vectors µj changed then
9: t← t+ 1

10: else
11: Return the centroids µj.
12: Finish.
13: end if
14: end while
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1.4 Thesis Contribution

Deep Clustering is a new promising area of clustering algorithms that emerged in
recent years. The main goal of Deep Clustering is creating clustering methodologies
merged with DNNs architectures to exploit their representational power. Τherefore,
in this thesis, we will focus onf the new machine learning area of Deep Clustering
and why it is considered promising. Afterward, we will present two Deep Clustering
algorithms that were studied. The first Deep Clustering algorithm that we will discuss
is the ClusterGan [1], which makes use of a modified GANs’ [2] architecture in order
to cluster the data in latent space Z. The second Deep Clustering method that we
will present is our contribution, and it is based on a generative DNN model that is
trained by Implicit Likelihood Maximization (IMLE) [3]. IMLE is a creative way of
maximizing the likelihood of the data indirectly. The Deep Clustering methodology
based on IMLE also clusters the data in the latent space. Finally, we will analyze the
experiments that took place and present the experimental results.

1.5 Thesis Outline

The following is a brief description of the structure of the next chapters:

• Chapter 2: Presentation of the relatively new area of ML, Deep Clustering.
Αdditionally, a general Deep Clustering framework is described in detail.

• Chapter 3: Detailed description of the first model of the study, the ClusterGan
[1], which performs deep clustering based on an adversarial learning scheme.

• Chapter 4: Detailed presentation of generative model training based on Implicit
Maximum Likelihood Estimation (IMLE) [3].

• Chapter 5: Detailed presentation of the proposed Deep Clustering method that
is based on IMLE [3].

• Chapter 6: Description of the experimental procedures that took place and anal-
ysis of experimental results.

• Chapter 7: Overview of the thesis and proposals for future research and im-
provements on Deep Clustering.
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Chapter 2

Deep Clustering

2.1 Introduction

2.2 Deep Clustering Framework

2.3 Deep Neural Network Architecture

2.4 Deep Features

2.5 Non-Clustering Loss

2.6 Clustering Loss

2.7 Combining The Losses

2.8 Cluster Updates

2.9 Performance Evaluation Metrics

2.1 Introduction

Deep Learning (DL) is a powerful tool, which can learn rich and useful data rep-
resentations from big data collections without relying heavily on human-engineered
features [12, 28]. Many deep neural networks (DNNs) architectures rely primarily
on the unsupervised learning stage, referred to as unsupervised pretraining (e.g., au-
toencoders). As a result, DNNs can learn better deep representations/features of the
data. It is known that this methodology drastically improves the results of supervised
learning tasks.

Although DL started mainly for supervised tasks, lately, it has found success in
several unsupervised learning fields, like clustering, dimensionality reduction, etc. One
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of the main reasons why clustering with deep learning is a beneficial and interesting
methodology is the fact that it has exploited the representational power of DNNs for
preprocessing clustering inputs to improve the quality of clustering results. Using
DNNs in this way, we can transform the data into more cluster-friendly spaces. This
can be achieved due to their inherent property of highly nonlinear transformations.
Existing popular clustering methods, such as k-means or spectral clustering, use
either raw or linear transformed data. However, this would be insufficient when we
are dealing with most datasets that have complex statistical properties.

Clustering has not always been the primary goal of DL, but since DL can provide
rich and robust deep representation, it is reasonable to apply it in the clustering field
[29, 30]. For simplicity of description, we will refer to clustering methods with DL
as Deep Clustering in this thesis. More specifically, we can define deep clustering as a
family of clustering methods that adopt DNNs to learn cluster-friendly representations
[30].

2.2 Deep Clustering Framework

The most successful methods in deep clustering follow the same principles: represen-
tation learning using DNNs and using these representations as input for the clustering
procedure. A general framework for deep clustering requires to define the following
[31]:

• Deep Neural Network Architecture

• Deep Features used for Clustering

• Non-Clustering Loss

• Clustering Loss

• Method of combining the losses

• Cluster Updates
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2.3 Deep Neural Network Architecture

In most deep clustering methods, the main part of the DNN is used to transform the
inputs into a latent representation used for clustering. The following DNN architec-
tures have previously been used for this goal:

• Multilayer Perceptron (MLP): type of feedforward network, consisting of at
least one hidden layer of neurons with no linear activation function, such that
the output of every layer is the input to next one [32].

• Convolutional Neural Network (CNN): was inspired by the biological process,
where the connectivity pattern between neurons follows the organization of the
animal visual cortex. CNN is an MLP explicitly designed to recognize regular-
grid data such as images with a high degree of invariance to translation, scaling,
skewing, and other forms of distortion [33, 12].

• Deep Belief Network (DBN): is a probabilistic generative graphical model that
is composed of multiple layers of stochastic, latent variables, which learn to
extract a deep hierarchical representation of the input data [34]. It is composed
of several stacked Restricted Boltzmann Machines (RBM) [35], such that the
hidden layer of each sub-network serves as the visible layer of the next sub-
network [36, 31].

• Generative Adversarial Network (GAN): the architecture of two competing
neural network models, the generator (G) and the discriminator (D), that engage
in a zero-sum game. The G learns a distribution of interest to produce samples.
The D aims to distinguish between real and generated samples. Competition in
this game drives both networks to improve at their tasks until the generated
samples are indistinguishable from the real data [2].

• Variational Autoencoder (VAE): a generative model that learns the data dis-
tribution performing dimensionality reduction. Its architecture consists of three
main parts, the encoder network, the latent space, and the decoder network
[37].
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2.4 Deep Features

Making use of the DNN architecture, the (deep) features that are used for clustering
can be taken from one or more layers of the DNN:

• One layer: in this case, only one layer of the DNN is used to extract the deep
features. Usually is beneficial because of its low dimensionality.

• Several layers: refers to the case where the deep features are extracted from
a combination of the outputs of several layers. This way, the representation
is richer and allows the embedded space to represent more complex semantic
representations, which are capable of yielding better results in the similarity
computation [38].

2.5 Non-Clustering Loss

The non-clustering loss comes purely from learning a deep representation of the data
using DL methods, and it is independent of the clustering part of the procedure.
Some possible options for non-clustering losses are [31]:

• Absence of non-clustering loss: in this case, the network model is only con-
strained by the clustering loss. The absence of a non-clustering loss can result
in worse representations or even collapsing clusters [39].

• Reconstruction loss: in the case of selecting an autoencoder as DNN architecture,
then the non-clustering loss is the reconstruction loss. Usually the reconstruction
loss is a distance measure dAE(xi, x̂i) between the input xi to the autoencoder
and the corresponding reconstruction x̂i = f(xi). The most common formulation
of this is the mean squared error of the two variables:

L(xi, f(xi)) = dAE(xi, f(xi)) =
n∑
i

||xi − f(xi)||2 (2.1)

where n is the number of data, xi is the input and f(xi) is the autoencoder
reconstruction.

• Implicit maximum likelihood loss: is the loss used in the current thesis in
order to maximize the likelihood of the proposed model. The main goal of this
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loss is to maximize the likelihood of the model overcoming the challenges of the
direct likelihood maximization when the underlying machine learning model
used is a DNN [3]. The implicit maximum likelihood loss follows:

L(xi, x̃
θ
i ) =

n∑
i

||xi − x̃θ
i ||22 (2.2)

where n is the number of data, xi is the i-th data point and x̃θ
i is the nearest

sample (from m samples generated by the DNN model) to the i-th data point,
using a distance metric (most common is the Euclidean distance). An extensive
analysis of implicit maximum likelihood estimation is described in chapter 4.

• The min-max loss: if the model of choice is a GAN architecture [2] then the
non-clustering loss function is the following:

L(D,G) = min
G
max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]
(2.3)

• Additional information about data can be used as a non-clustering loss in order
to extract meaningful features, even if the extra information is not suitable for
the clustering procedure.

2.6 Clustering Loss

Clustering loss functions guide the networks to learn cluster-friendly representations
of the input data. Therefore such functions are called clustering loss functions [29, 30,
31]. There are two kinds of clustering losses where we can call the first one principal
clustering loss and the second one auxiliary clustering loss [30].

• Principal Clustering Loss: after DNN training with this type of clustering loss,
the clusters can be obtained directly, which means that this type of clustering loss
functions contain the cluster centroids and the data clustering. Some examples
of those type of clustering losses includes k-means loss [24], cluster assignment
hardening loss [40], agglomerative clustering loss [41], cluster classification loss
[1, 42], nonparametric maximum margin clustering [43] etc.

• Auxiliary Clustering Loss: this category of clustering loss enforces the DNN to
learn a more clustering-friendly representation, but on the contrary, it is not able
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to provide clustering solutions directly. This means that deep clustering methods
that use auxiliary clustering loss require running a clustering method after the
training of the DNN to obtain the clusters. Some of the auxiliary clustering
losses used in deep clustering are locality-preserving loss [44], which enforces
the DNN to preserve the local property of data embedding, group sparsity loss
[44], which exploits block diagonal similarity matrix for representation learning,
etc.

2.6.1 Principal Clustering Loss

The following are some options for principal clustering loss functions [30]:

• No clustering loss: Even if a DNN is trained only with non-clustering losses,
the extracted deep features can be used for clustering after its training. For
example, a DNN can transform the input data into a lower representation space,
performing dimensionality reduction. Such a transformation could be beneficial
for the clustering sometimes, but using a clustering loss usually yields better
results [40, 39].

• K-means loss: k-means loss or clustering error, enforces the new representation
to be cluster-friendly [39]. We already analyzed the clustering error and its
equation 1.4. Minimizing clustering error with respect to the DNN parameters
ensures that the distance between each data point and its assigned cluster center
will be small. Τhen, applying k-means would result in better clustering quality.

• Agglomerative clustering loss: Agglomerative clustering merges two clusters
with maximum affinity (or similarity) in each step until some stopping criterion
is fulfilled [45].

• Cluster classification loss: Cluster assignments obtained during cluster updates
can be used as “mock” class labels for a classification loss in an additional net-
work branch in order to encourage meaningful feature extraction in all network
layers [1, 42].

2.6.2 Auxiliary Clustering Loss

Some options for auxiliary clustering loss functions follows [30]:

18



• Locality-preserving loss: this loss target is to ensure the locality of the clusters
by pushing nearby data points together [44]. The mathematical formulation is
the following:

Llp =
∑
i

∑
j∈Nk(i)

s(xi, xj)||f(xi)− f(xj)||2 (2.4)

where Nk(i) is the set of k nearest neighbors of the data point xi, s(xi, xj) is
a similarity measure between the points xi and xj , and f(·) is the nonlinear
transformation implemented by a DNN.

• Group sparsity loss: it is inspired by spectral clustering. In this methodology,
the block diagonal similarity matrix is exploited for representation learning [46].
Group sparsity is itself an effective feature selection method. As an example, in
[44] the hidden units were divided into G groups, where G is the assumed
number of clusters. When given a xi the obtained representation has the form
{f g(xi)}Gg=1. Thus the loss can be defined as follows:

Lgs =
N∑
i=1

G∑
g=1

λg||f g(xi)|| (2.5)

where {λg}Gg=1 are the weights to sparisity groups, defined as

λg = λ
√
ng (2.6)

where ng is the group size and λ is a constant.

2.7 Combining The Losses

Let’s suppose that a clustering and a non-clustering loss fuction is used in a deep
clustering procedure. It is important to have a method of combining these two losses
effectively. The most common way of achieving that is the following formulation:

L(θ) = αLc(θ) + (1− α)Ln(θ) (2.7)

where Lc(θ) is the clustering loss, Ln(θ) is the non-clustering loss, and α ∈ [0, 1] is a
constant specifying the weighting between the two-loss functions. α is an additional
hyperparameter for the DNN training. It is possible for α to change during the DNN
training phase under some schedule. Scheduling methods to adjust α during training
are expressed as [30]:
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• Joint training: α is set to a constant value (0 < α < 1) and the DNN training is
affected by both loss functions simultaneously.

• Variable schedule: α varies during the training phase based on a chosen sched-
ule. For example, α can start with a low value and gradually can be increased
in every training epoch.

• Pre-training, fine-tuning: at the first stage, α is set to be 0, and the DNN is
trained using the non-clustering loss only. In the second stage, α is set to be one,
and the DNN is retrained using only the clustering loss. This way, the DNN can
be fine-tuned for clustering. Training the DNN with the clustering error only
for long enough can lead to worse clustering results.

2.8 Cluster Updates

One common categorization of clustering methods is into hierarchical and partitional
(centroid-based) approaches [20]. Hierarchical clustering aims to build a hierarchy
of clusters and data points. On the other hand, partitional clustering groups the data
and creates cluster centers. This way, metric relations are used to assign each data
point into the cluster with the most similar center [31].

In the field of deep clustering, the two most dominant methods that have been
used are Agglomerative clustering combined with DL [45], which is a hierarchical
clustering method, and k-means combined with DL [40, 39, 47, 42], which falls into
the category of partitional clustering.

If a centroid-based method is used during the DNN training, the clusters and the
centroids are updated. The two most common methodologies for updating clusters
and centroids are expressed as [31]:

• Jointly updated with the network model: Cluster assignments are formulated
as probabilities. In this case, they can be included as parameters of the network
and optimized via back-propagation.

• Alternatingly updated with the network model: Clustering assignments are
updated in a separate step than the one where the network model is updated
[40, 45].
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2.9 Performance Evaluation Metrics

In order to evaluate the results of the deep clustering methods, two standard super-
vised evaluation metrics are extensively used in the literature. These are the metrics
used in this thesis and assume that a ground truth clustering is available. For all
algorithms, the number of clusters is set to the number of ground-truth categories
[30].

The first supervised metric is Clustering Accuracy (ACC):

ACC = max
m

n∑
i=1

I(yi = m(ci))

n
(2.8)

where I(x) = 1 if x is true and 0 otherwise, yi is the ground-truth label, ci is the
cluster assignment generated by the deep clustering algorithm, and m is a mapping
function which ranges over all possible one-to-one mappings between assignments
and labels. This metric finds the best matching between cluster assignments from
a clustering method and the ground truth. The optimal mapping function can be
efficiently computed by the Hungarian algorithm [48].

The second one is Normalized Mutual Information (NMI) [49]:

NMI(Y,C) =
I(Y,C)

1
2
[H(Y ) +H(C)]

(2.9)

where Y denotes the ground-truth labels, C denotes the clusters labels, I is the mutual
information metric and H the entropy.
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Chapter 3

ClusterGAN

3.1 Introduction

3.2 GANs

3.3 ClusterGan

3.1 Introduction

Generative Adversarial Networks (GANs) [2] are systems based on a min-max strat-
egy where two networks are competing with each other in a zero-sum game. The
first network, the generator (G), generates data and the second one, the discrimina-
tor (D), discriminates between fake and real data. GANs have obtained remarkable
success in many unsupervised learning tasks, and unarguably, clustering is an impor-
tant unsupervised learning problem. Additionally, the latent space of GANs provides
dimensionality reduction and gives rise to novel applications. For example, perturba-
tions in the latent space could be used to determine adversarial examples that further
help build robust classifiers [50]. Compressed sensing using GANs [51] relies on find-
ing a latent vector that minimizes the reconstruction error for the measurements.
Generative compression is yet another application involving the GAN latent space
[52]. In this chapter, we will first present the main framework of GANs. Αfterwards,
we will introduce the ClusterGan [1], a deep clustering methodology that is based on
GANs architecture and makes use of the generator’s latent space and also an addi-
tional network, the Encoder (E), to cluster the data via an unsupervised classification
manner.
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3.2 GANs

GANs [2] aim to match the real data distribution through implicit sampling and si-
multaneously provide a mapping from a latent space Z to the input space X . In
order to achieve that the generator creates samples x = G(z, θg), where usually z

corresponds to z ∼ N (0, σ2I). Τhen its adversary, the discriminator D, tries to distin-
guish between real data and synthetic ones constructed by the generator, computing
the output D(x, θd), which is the probability of each sample to be real. Μore specif-
ically, the generator’s objective is to maximize the discriminator’s error while the
discriminator aims to minimize it. This iterative process ends when the discriminator
can no longer distinguish the real from the fake samples. Hence, the objective function
of the complete network is the following:

min
G
max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.1)

where pdata represents the distribution of real data, pz represents the prior probability
distribution of noise (usually a Gaussian distribution) which G uses to generate fake
data, x and z represent the samples from each corresponding space, Ex and Ez repre-
sent the expected log-likelihood from the different outputs of both real and generated
samples, D outputs a real number between 0 and 1 representing the probability for
data being real (D(x)→ 1) or fake (D(x)→ 0) and finally the G function outputs the
generated samples.

Figure 3.1: Basic GAN architecture and operation.

Figure 3.1 shows the architecture as well as the operation of a typical GAN. Initially,
as an input to the generator’s network, we introduce some random noise (usually
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sampled from a Gaussian distribution), and as an output, we obtain a fake sample.
The discriminator’s network takes as input real samples (from the actual dataset)
and fake samples created by the generator. Finally, the discriminator’s output is a
real number ∈ (0, 1) that assigns the category of the image as real (D(x)→ 1) or fake
(D(x)→ 0).

3.2.1 GANs Algorithm

The complete training algorithm of GANs is presented below:

Algorithm 3.1 Minibatch stochastic gradient descent training of generative adversar-
ial nets. The number of steps k update the discriminator is a hyperparameter.[2]
1: iteration← 1

2: while iteration ≤ ITERATIONS do
3: t← 1

4: while t < T do
5: Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pg(z).
6: Sample minibatch of m examples {x(1), ..., x(m)} from data generating distri-

bution pdata(x).
7: Update the discriminator by ascending its stochastic gradient:

∇θd

1

m

m∑
i=1

[
logD(x(i)) + log(1−D(G(z(i))))

]
. (3.2)

8: t← t+ 1

9: end while
10: Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pg(z).
11: Update the generator by descending its stochastic gradient:

∇θg

1

m

m∑
i=1

log(1−D(G(z(i)))). (3.3)

12: iteration← iteration+ 1

13: end while

The gradient-based updates can use any standard gradient-based learning rule. The
most popular choice is the Adam optimizer [16].
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3.3 ClusterGan

The ClusterGan [1] is a clever way of using the GANs [2] methodology in order for
achieving data clustering. In this section, we will present the main algorithmic ideas
used in ClusterGan [1]. They are categorized as:

• Sampling prior: a mixture of discrete and continuous latent variables is used,
which is able to create clusters more naturally in the latent space.

• Architecture: besides the Generator and the Discriminator network, the En-
coder network is added, which is responsible for the clustering procedure. The
Encoder provides an inverse-mapping from the space X to the embedded latent
space Z , E : X → Z.

• Loss function: jointly train the GAN along with the Encoder’s inverse-mapping
network with a clustering-specific loss. Therefore, the distance geometry in the
projected space reflects the distance-geometry of the latent variables z.

3.3.1 Sampling prior

The first step of modifying the vanilla GAN [2] to improve the quality of clustering in
the latent space is a better sampling prior distribution as input to the generator, which
can create clusters more naturally in the latent space. Μore specifically, as an input to
the generator’s network, ClusterGan [1] utilizes a mixture of discrete and continuous
latent variables to create a non-smooth geometry in the latent space. This is a useful
property so that the constructed clusters in the latent space will be strictly separated
from each other. This could be possible if we sample from a prior that consists of
normal random variables cascaded with one-hot encoded vectors. To be more precise
the latent variable is defined as z = (zn, zc) where zn ∼ N (0, σ2I) and the latent vector
zc is sampled by an one-hot distribution of K elements (K is the number of clusters).
In addition, the standard deviation σ is chosen in such a way that the one-hot vector
provides sufficient signal to the ClusterGan [1] training that leads to each mode only
generating samples from a corresponding class in the original data. More specifically,
σ should be set to a small value like σ = 0.10 so that for each dimension of the normal
latent variables, zn,j ∈ (−0.6, 0.6) << 1.0 ∀j holds with high probability. The choice of
small value for standard deviation σ is crucial so that the clusters constructed in the
latent space Z of the generator network will not overlap but remain separated.
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3.3.2 Architecture

The ClusterGan [1] contains the typical GAN architecture and an additional network
named Encoder. Μore specifically, the first network is the Generator which is re-
sponsible for generating fake samples based on the training data (G : z → Xg), the
second network is Discriminator which classifies each sample as real, drawn from
the dataset (D : X → 1), or fake, created by the Generator (D : X → 1). The En-
coder is a third network that does not exist in vanilla GAN [2] architecture setups
like the Generator and the Discriminator. The Encoder’s addition is crucial for the
clustering procedure, as its main function is to explicit inverse-map each generated
(fake) sample from its original space back to the latent variable space (E : Xg → ẑ),
in order to obtain the latent variables ẑ given the data samples. This seems no easy
task since the inverse-mapping problem creates a non-convex search space because
the Generator’s (mathematical) model is being implemented as a neural network and
can provide different embeddings in the Z space based on initialization. Using the
encoder network to explicit inverse-map the generated samples solves the problem
efficiently. Τhrough this procedure, the encoder network can cluster the samples in an
unsupervised classification manner. For the purpose of understanding ClusterGan’s
methodology better, in figure (3.2) we mainly present ClusterGan’s architecture and
its basic operation. As an input the generator takes z = (zn, zc) and creates fake
samples xg. The zc part of the latent variable refers to the clustering procedure. The
Discriminator as input receives the real (Xr) and the fake (Xg) samples and out-
puts their probability of being real data. Simultaneously the Encoder receives the
generated sample and projects it back to the latent space.

Figure 3.2: ClusterGan Architecture [1].
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3.3.3 Loss function

The ClusterGan’s loss function is a mixture of losses that contains the GANs’ loss that
targets the data generation and the clustering loss that aims at the data clustering.
The objective function of the complete ClusterGan network is the following:

min
θG ,θE

max
θD

E
x∼Pr

x

q(D(x)) + E
z∼Pz

q(1−D(G(z)))+

βn E
z∼Pz

||zn − E(G(zn))||22 + βc E
z∼Pz

H(zc, E(G(zc)))
(3.4)

where H(., .) is the cross-entropy loss, which is defined as H(X) = −
∑
x

p(x) log(p(x)).
The relative magnitudes of the regularization coefficients βn and βc enable a flexible
choice to vary the importance of preserving the discrete and continuous portions of
the latent code, where q(.) is the quality function, given as q(x) = log(x) for vanilla
GAN [2], and q(x) = x for Wasserstein GAN (WGAN) [53]. More specifically, the
first two terms of the loss function equation 3.4 which are E

x∼Pr
x

q(D(x)) + E
z∼Pz

q(1 −
D(G(z))) constitute the vanilla GANs’ loss. The GANs’ loss is necessary to Cluster-
Gan’s methodology for the data generation procedure. Without this part of Clus-
terGan’s loss function, the data generation would not be possible setting the whole
clustering procedure to fail. This is due to the fact that in order for the ClusterGan’s
method to produce a good quality data clustering in z latent space, it first must
be able to generate samples. The last two terms of the loss function (equation 3.4),
βn E

z∼Pz

||zn−E(G(zn))||22+βc E
z∼Pz

H(zc, E(G(zc))), contain the clustering loss. The first part
of the clustering loss, βn E

z∼Pz

||zn−E(G(zn))||22, acts as a regularization of the continuous
portion zn of the latent space. This ensures the reversibility of the continuous portion
zn of the latent space given a sample E : G(zn)→ zn. The second part of the clustering
error loss, βc E

z∼Pz

H(zc, E(G(zc))), the discrete portion of the latent code. Its main goal
is for all the mappings of points that belong in the same class in X space to have
the same one-hot encoding when embedded in Z space. This regularization is the
most important part to succeed in data clustering in the latent space. We can think
of other variations of the regularization that map E(G(z)) to be close to the centroid
of the respective cluster. For instance ||E(G(z))−µc(i)||22, in a similar way as K-Means.

3.3.4 ClusterGan Algorithm

The complete training algorithm of ClusterGan is presented below:
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Algorithm 3.2 Minibatch stochastic gradient descent training of ClusterGan [1].
1: iteration← 1

2: while iteration < ITERATIONS do
3: t← 1

4: while t < T do
5: Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior Pz ,

where z = (zn, zc).
6: Sample minibatch of m examples {x(1), ..., x(m)} from data generating distri-

bution Px.
7: Update the discriminator by ascending its stochastic gradient:

∇θD

1

m

m∑
i=1

[
q(D(x(i))) + q(1−D(G(z(i))))

]
. (3.5)

8: t← t+ 1

9: end while
10: Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior Pz , where

z = (zn, zc).
11: Update the generator by descending its stochastic gradient:

∇θG

1

m

(
−

m∑
i=1

q(D(G(z(i)))) + βn

m∑
i=1

||z(i)n − E(G(z(i)n ))||22 + βc

m∑
i=1

H(z(i)c , E(G(z(i)c )))

)
.

(3.6)

12: Update the encoder by descending its stochastic gradient:

∇θE

1

m

(
βn

m∑
i=1

||z(i)n − E(G(z(i)n ))||22 + βc

m∑
i=1

H(z(i)c , E(G(z(i)c )))

)
. (3.7)

13: iteration← iteration+ 1

14: end while

The gradient-based updates can use any standard gradient-based learning rule. The
most popular choice is the Adam optimizer [16].
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Chapter 4

Implicit Maximization of Likelihood

4.1 Introduction

4.2 Imle Definition

4.3 Imle Algorithm

4.4 Nearest Neighbor Search

4.5 Imle Analysis

4.6 Implementing IMLE with a DNN

4.1 Introduction

Consider a model distribution that maximizes the likelihood of the data. The like-
lihood is the product of densities evaluated at all data points, so the model density
should be high at each data point. The mathematical formulation of the likelihood
function is given by:

L(θ) =
n∏

i=1

p(xi; θ) (4.1)

where xi is a random sample from a distribution that depends on unknown param-
eters θ with probability density function p(xi; θ). Suppose that we cannot observe the
model distribution directly as a closed-form function, but instead, we can only ob-
serve independent and identically distributed (i.i.d.) samples drawn from the model.
Because the density at the data points is high, most samples are expected to lie near
the data points. Therefore, a natural objective is to minimize the distance from each
data point to the nearest sample [3].
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4.2 Imle Definition

Suppose a given set of n data points x1, . . . , xn and some unknown parameterized
probability distribution Pθ with density pθ. In addition, it is also possible to draw
independent and identically distributed (i.i.d.) samples from Pθ. Let x̃θ

1, . . . , x̃θ
m be

i.i.d. samples from Pθ, where m ≥ n. For each data point xi, we define a random
variable Rθ

i to be the distance between xi and the nearest sample. More precisely,

Rθ
i := min

j∈[m]
||x̃θ

j − xi||22 (4.2)

where [m] denotes {1, ...,m}.
The implicit maximum likelihood estimator θ̂IMLE [3] is defined as:

θ̂IMLE := argmin
θ

ERθ
1,...,R

θ
n

[
n∑

i=1

Rθ
i

]
= argmin

θ
Ex̃θ

1,...,x̃
θ
m

[
n∑

i=1

min
j∈[m]
||x̃θ

j − xi||22

]
(4.3)

4.3 Imle Algorithm

The Implicit Maximum Likelihood Estimator (IMLE) [3] procedure is outlined in
Algorithm 4.1. For input the algorithm takes the dataset D = {xi}ni=1 and a sampling
mechanism for the implicit model Pθ with unknown parameters θ. First, we initialize
the θ parameters of the model to random values. In each outer iteration, we draw m

i.i.d. samples from the current model Pθ. Then we randomly select a batch of data
points from the dataset and find the nearest sample from each data point. In each
inner iteration, a standard iterative optimization algorithm is used, like stochastic
gradient descent (SGD) [15], to minimize a sample-based version of the IMLE [3]
objective.
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Algorithm 4.1 Implicit maximum likelihood estimation (Imle) procedure [3]
Require: The dataset D = {xi}ni=1 and a sampling mechanism for the implicit model

Pθ.
Ensure: Initialize θ to a random vector.
1: t← 0

2: while t < T do
3: Draw i.i.d. samples x̃θ

1, . . . , x̃θ
m from Pθ.

4: Pick a random batch S ⊆ {1, ..., n}
5: σ(i)← argminj ||x̃θ

j − xi||22, ∀i ∈ S

6: l← 0

7: while l < L do
8: Pick a random mini-batch (mini-batch) S̃ ⊆ S

9: θ ← θ − n∇θ(
n

|S̃|
∑

i∈S̃ ||x̃θ
σ(i) − xi||22)

10: l← l + 1

11: end while
12: t← t+ 1

13: end while
14: return θ

In order to fully understand how the IMLE [3] algorithm works, we will analyze
each major algorithmic step with a two-dimensional example. The basic idea can be
summarized as follows. In every training epoch:

• Draw m i.i.d. samples from the current model Pθ.

• Find the nearest sample from each data point.

• Minimize the IMLE [3] objective function 4.3.

A representation of a two-dimensional example is shown in the following figures:
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(a) (b)

(c)

Figure 4.1: 4.1a The data points are represented by squares and the samples by circles.
4.1b For each data point the nearest sample is found. 4.1c Minimize the IMLE [3]
objective 4.3.

4.4 Nearest Neighbor Search

In order to apply the IMLE algorithm [3], it is necessary to solve a nearest neighbor
search problem at each iteration. This means that the scalability of the method de-
pends on the ability to find the nearest neighbors quickly. This is considered to be a
complex problem, especially in high dimensions. However, due to recent advances in
nearest neighbor search algorithms [54, 55], which avoid the curse of dimensionality
in time complexity that often arises in nearest neighbor search, this is no longer the
case.

It is worth noting that the use of Euclidean distance is not a significant limitation
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of the algorithm. A variety of distance metrics are either exactly or approximately
equivalent to Euclidean distance in some non-linear embedding space. The theoretical
guarantees are inherited from the Euclidean case. This encompasses popular distance
metrics used in the literature, like the Euclidean distance between the activations of
a neural net, which is often referred to as a perceptual similarity metric [56, 57] and
the method can be easily extended to use these metrics.

4.5 Imle Analysis

It turns out that the IMLE method is equivalent to the maximum likelihood estimator
(MLE) under some conditions [3]. Α simple hypothesis will be presented below to
show why this is the case. For simplicity, let’s consider the special case where there is
a single data point x1 and we generate a single sample x̃θ

1. Consider the total density
of Pθ inside a sphere of radius t centered at x1 as a function of t. This function will
be defined as F̃ θ(t) (figure 4.2). On the one hand, if the density in the neighborhood
of x1 is high, then x̃θ

1 would grow rapidly as t increases. On the other hand, if the
density in the neighborhood of x1 is low, then F̃ θ(t) would grow slowly (figure 4.3).
So, maximizing likelihood is equivalent to making F̃ θ(t) grow as fast as possible.
Therefore, we can maximize the area with respect to the function F̃ θ(t) (figure 4.4),
or equivalently, minimize the area considering 1 − F̃ θ(t) function (figure 4.5). F̃ θ(t)

function can be interpreted as the cumulative distribution function (CDF) of the
Euclidean distance between x1 and x̃θ

1, where x̃θ
1 is a random variable that will be

denoted as R̃θ. The function R̃θ is non-negative (as it counts distance), so its expected
value comes from the following integral:

E[R̃θ] =

∫ ∞

0

Pr(R̃θ > t)dt =
∫ ∞

0

(1− F̃ θ(t))dt (4.4)

which is exactly the area under the function 1 − F̃ θ(t) mentioned above. Therefore,
in order to maximize the likelihood of the data point x1, we can minimize E[R̃θ], or
minimizing the expected distance between the data point and a random sample.

33



In figure (4.2) we present the model’s distribution. The vertical bar denotes the data
point x1. We also define a random variable ||x̃θ

1 − x1||2, that indicates the Euclidean
distance of sample x̃θ

1 from the data point x1. The cumulative distribution function
Pr(|| x̃θ

1 − x1 ||2≤ t) increases as t increases. We expect by construction this function
to grow rapidly. This is accomplished by moving the sample x̃θ

1 closer to the data
point x1.

Figure 4.2: Probability density of the model Pθ.

In figure (4.3) we present the graph of the cumulative distribution function Pr(||
x̃θ
1 − x1 ||2≤ t) as a function of distance t. More specifically, the left graph represents
the cumulative distribution function which is slowly increasing, indicating that the
probability of the area around the data point x1 is small. Finally, in the right graph,
we notice that the cumulative distribution function increases rapidly, which means
that the probability of the area around the data point x1 is high.

Figure 4.3: Cumulative distribution function as a function of distance.
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The likelihood is maximized when the cumulative distribution function increases
rapidly. To achieve this, we need to increase the area under the curve of the cumulative
distribution function.

Figure 4.4: Maximizing the cumulative distribution function (1st way).

Alternatively, we can reduce the area above the curve of the cumulative distribution
function, because 1 − Pr(|| x̃θ

1 − x1 ||2≤ t) = Pr(|| x̃θ
1 − x1 ||2> t) holds. This area is

equal to the expected value as
∫∞
0

Pr(|| x̃θ
1 − x1 ||2> t)dt = E[||x̃θ

1 − x1||2], as for any
non-negative random variable the following definition holds: E[x] =

∫∞
0

Pr(x > t)dt.

Figure 4.5: Maximizing the cumulative distribution function (2nd way).
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4.6 Implementing IMLE with a DNN

In order to implement the IMLE [3] method by the use of a DNN model, we are
going to use the following framework.

• Initially, as an input to the DNN, we will define a random vector z of d dimension,
sampled from the normal distribution (z ∼ N(0, I)).

• We define the hidden neurons of the DNN according to the type of training
examples. For image synthesis, for example, the optimal choice is to use a
Deconvolutional DNN.

• Finally, we define the output level, depending on the type of examples we want
to generate. We also make sure that the output layer of the network has the
same dimension as the training examples.

The hidden layers of the DNN generative model define a function Tθ that maps
the z random vector from the latent space to the y output space.

Figure 4.6: Generation of fake images by the use of IMLE [3].
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Chapter 5

Deep Clustering Based on IMLE

5.1 Introduction

5.2 Cluster-Friendly Sampling Prior

5.3 Two-Stage Nearest Neighbor Search

5.4 The Encoder’s Network

5.5 The Objective Function

5.6 The proposed method

5.1 Introduction

Generative models that DNNs implement, like GANs [2] and VAE [37], require a
random noise vector z as an input to their latent space to generate samples. The z

random noise vector is usually sampled by the normal distribution as z ∼ N (0, I).
The same is true for the IMLE [3] methodology discussed in Chapter 4. Although
this procedure works fine for the generative process, it fails when used for clustering
purposes at the DNNs’ latent space. In figure 5.1, we present this problem in a two
dimensional latent space example. The figure shows the input-output correspondence
of a neural network that has learned to produce samples from five different clusters
from the MNIST [58] corresponding the handwritten numbers 0, 1, 2, and 4. Each
different color corresponds to a different cluster, dots with the blue color correspond
to the zero cluster, dots with the pink color correspond to the one cluster etc.
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In addition, another main disadvantage of this method is that producing a gener-
ated sample from a specific cluster is complicated. For example, let us suppose that we
generate a batch of samples by the generator’s model. In order to do that, we sample
a batch of random vectors from the Gaussian distribution (z ∼ N (0, I)), and then we
give them as input to the generative network. The problem emerges when verifying
if the generated sample belongs to the cluster of samples we wished to generate. This
procedure repeats until we successfully generate samples from the targeted cluster.
If this is not true, then this procedure must be repeated. This problem exists because
there is no prior knowledge of which areas of the latent space Z are responsible for
creating samples from the respective cluster by the model.

Figure 5.1: Input-output correspondence of a generative neural network. The 2-
dimensional input is represented by z0, z1. Τhe different colors represent the category
of the generated sample produced by the neural network for the respective input
(z0, z1).

In this chapter, we will present the essential algorithmic steps and modifications
that took place in order to cluster the data in the latent space Z of the generator’s
DNN model by the use of IMLE [3]. First, we present a brief presentation of the main
algorithmic ideas that we will extensively discuss in the next sections:

• A more cluster-friendly sampling prior.

38



• A new nearest neighbor searching algorithm, the two-stage nearest neighbor
search.

• An additional DNN, the Encoder, which is responsible for clustering the data
in the latent space Z.

• An updated objective function that consists of clustering and generative (non-
clustering) losses.

5.2 Cluster-Friendly Sampling Prior

Even though the vallina sampling prior cannot create discrete clusters in the latent
space Z , it appears that the model is learning to generate similar samples (of the same
category) in nearby areas at the latent space Z. However, the areas that correspond
to each category are not distinct and as a result, they overlap to each other. Τhis
observation becomes clear in the figure 5.1. This means that the generator’s model,
implemented by a DNN, has an internal property of clustering the samples, meaning
that similar samples are correspond to nearby areas of latent space. We will use this
property of the generator’s DNN to cluster data in the latent space Z.

5.2.1 Mixture of Gaussians Distribution

In order to confirm whether the generator’s model can cluster the data at the latent
space, the first idea is to replace the sampling prior of the z random vector with a
more cluster-friendly prior. More specifically:

• The sampling of z will not be performed from the Gaussian distribution N (0, I),
but from a mixture of Gaussians distribution and every componenti of this
distribution will be denoted as follows N (µi, σ

2I). We chose σ2 to be common
for all the Gaussian components.

• The µi and σ2 hyperparameters are selected appropriately, so that the samples
from each component do not overlap with each other.

• The number of the Gaussian components must be set equal to the number of
clusters which is specified by the user.
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• Each Gaussian component has the same prior probability to be selected for
sampling.

In figure 5.2 samples from a mixture of Gaussians distribution with four components.
All Gaussians components have the same σ2 which is equal to one. We selected the
centers of the four Gaussians components as follows, µ1 = (0, 0), µ2 = (9, 0), µ3 = (0, 9),
and µ4 = (9, 9). It is easy to identify which samples were produced by each Gaussian
component.

Figure 5.2: Samples generated by a a mixture of Gaussians distribution.

The following procedure is used to generate samples using the mixture of Gaus-
sians distribution during the training phase of the generator’s model. Suppose S

denotes the total number of samples, and the number of Gaussian components is
denoted by g. Algorithm 5.1 describes the data generation procedure corresponding
to a mixture of Gaussians distribution:
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Algorithm 5.1 Generating samples through a mixture of Gaussians distribution.
Require: Sampling mechanism from a mixture Gaussians distribution and the gen-

erator’s model Tθ.
Ensure: Every Gaussian component has the same prior probability to be selected for

sampling which is equal to 1

g
.

1: t← 0

2: samples← ∅

3: while t < T do
4: With probability equal to 1

g
, select one of g Gaussian components. Suppose that

gi is selected with N(µi, σ
2I).

5: Sample a random vector zi for the selected Gaussian component gi denoted as
zi ∼ N(µi, σ

2I).
6: samples← samples ∪ {Tθ(zi)}
7: t← t+ 1

8: end while
9: Return the generated samples

Figure 5.3 presents the results that were generated while using algorithm 5.1 for
sampling the z random vectors as an input to the generator’s model. The training
data belong to two clusters, and they are selected from the MNIST [58] (28x28
handwritten images). They consist of the handwritten numbers zero and one. We
selected the z inputs to be two-dimensional for graphical representation purposes.
Both Gaussian components have the same σ2 which is equal to one but different µ.
More specifically, for the first Gaussian we set µ0 = (0, 0) and for the second µ1 = (0, 9).
Figure 5.3a shows that with this method, the model can cluster the training data in the
z latent space (input layer). However, it is not certain that the clustering will always
be successful, as shown in figure 5.3b. This experiment shows that the generator’s
DNN trained by the IMLE method can cluster the data successfully in the latent space
by using a more cluster-friendly sampling prior.
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(a) (b)

Figure 5.3: 5.3a Training results using a mixture of Gaussians distribution resulting in
successful clustering. 5.3b Training results using a mixture of Gaussians distribution
resulting in unsuccessful clustering.

5.2.2 Mixture of Discrete and Continuous Latent Variables

Even though the previous sampling method is suitable for clustering in the latent
space Z , its main disadvantage is the considerable number of hyperparameters. More
precisely, for every Gaussian component, it is required to set its µ and σ2 and afterward
double-check that the samples from each Gaussian component do not overlap with
each other. In order to overcome this problem, we utilized the ClusterGans’ sampling
prior [1] we described in section 3.3.1 which is a suitable and clever method to avoid
this kind of problem. More specifically, as input to the generator, we utilize a mixture
of discrete and continuous latent variables to create a non-smooth geometry in the
latent space. This is a useful property so that the constructed clusters in the latent
space will be strictly separated from each other. To do that, we sample from a prior
that consists of normal random variables cascaded with one-hot encoded vectors. To
be more precise the latent variable is defined as z = (zn, zc) where zn ∼ N (0, σ2I) and
the latent vector zc is sampled by an one-hot distribution of K elements (K is the
number of clusters). We select σ equal to a small value like σ = 0.10 so that for each
dimension of the normal latent variables, zn,j ∈ (−0.6, 0.6) << 1.0 ∀j holds with high
probability. The choice of small value for standard deviation σ is crucial so that the
clusters constructed in the latent space Z of the generator network will not overlap
but remain separated.
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5.3 Two-Stage Nearest Neighbor Search

We increased the number of Gaussian components, utilizing a mixture of discrete
and continuous latent variables, in order to have at least one Gaussian component for
each different data cluster. This way, the generator has the opportunity to assert in
each Gaussian component samples from a distinct cluster. However, we still face the
same problem in the clustering procedure. The generators’ model has much flexibility
(implemented by a DNN), and at the learning phase, one Gaussian component may
attract samples belonging to different clusters, as we already presented in figure 5.3b.

The following major algorithmic change we propose concerns how the IMLE
selects the nearest generated sample for each real data example. It should be noted
that the sampling prior to our method is a mixture of discrete and continuous latent
variable (subsection 5.2.2). We recall that the IMLE algorithm searches for the nearest
generated sample to each real data example in the entire set of generated samples.
This works perfectly for the data generation procedure. However, it can create major
problems to clustering in latent space Z because each Gaussian component can attract
more than one cluster from the dataset, counterproductively to clustering.

In order to overcome this problem, we have modified the nearest neighbor search
into a two-stage procedure. Let us suppose that we generated samples (a mixture of
discrete and continuous latent variables) from each Gaussian component. Then we
group the generated samples based on the Gaussian component that are sampled
from. By the use of each samples’ grouping, we compute the ”synthetic” centroids,
which means that the samples of each Gaussian component generate a synthetic
centroid. This way, the number of synthetic centroids is equal to the number of
Gaussian components. Thus, in the first stage of the nearest neighbor search, we find
the nearest synthetic centroid for each real data example. In the second stage, for
every data example, we execute a nearest neighbor search on the set of generated
samples, which computed by the nearest synthetic centroid. More specifically, the
detailed steps of this procedure are the following:

• Step 1: Generation of synthetic samples using the generator network during the
training procedure using a mixture of discrete and continuous latent variables
as described subsection 5.2.2.

• Step 2: Computation of the centroid of each Gaussian component. The centroid
is computed by the mean value of the synthetic samples produced by that
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particular Gaussian component.

• Step 3: In this step we execute the first stage of the two-stage nearest neighbor
search. For each data example, search for the nearest synthetic centroid.

• Step 3: In this step we execute the second stage of the two-stage nearest neighbor
search. For every data example, we execute a nearest neighbor search on the
set of generated samples, which computed by the nearest synthetic centroid to
it.

Algorithm 5.2 describes the two-step nearest neighbor search.

Algorithm 5.2 The two-step nearest neighbor search algorithm.
Require: Mixture of discrete and continuous latent variable sampling mechanism and

the generator’s model Tθ.
1: Generation of S synthetic samples drawn from g Gaussian components using the
mixture of discrete and continuous latent variable sampling mechanism.

2: Computation of the C centroids of the Gaussians components.
3: For each data example xi find the nearest centroid Cj.
4: For each data example xi find the nearest synthetic sample sk under the constraint
that sk ∩ Cl = ∅,∀l ̸= j.

5: Return the nearest synthetic samples for each data example.

5.3.1 Training the Generator

In order to train the generator network and cluster the training data, we utilize the
centroids that are computed from the synthetic samples as described in algorithm
5.2. The main training steps to achieve that are presented below:

• Compute the cluster synthetic centroids and find the nearest sample to each
data example using the training algorithm 5.2.

• Assign each training data point to the cluster whose synthetic centroid is nearest
to it.

• Update the generator network parameters using the IMLE update procedure.
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It is worth mentioning that this method is iterative, and the clusters tend to
improve as the training proceeds. Furthermore, it is worth mentioning that as the
training epochs are executed, the clustering error is minimized. The complete training
algorithm, which makes use of the IMLE model and the two-stage nearest neighbor
search, is presented in Algorithm 5.3.

Algorithm 5.3 Clustering via the IMLE model and two-stage nearest neighbor search.
Require: Two-step nearest neighbor search algorithm 5.2.
1: t← 1

2: while t < T do
3: Computation of the synthetic centroids C and of the set of nearest synthetic

samples S̃ to data examples X using the two-stage nearest neighbor search
algorithm 5.2.

4: Creation of data clusters by assigning each data example xi to the cluster whose
synthetic centroid cj is nearest to it.

5: Update the generator’s parameters: θ ← θ − η∇θ(
n

|S̃|
||S̃ − X||22), where S̃, X

matrices.
6: t← t+ 1

7: end while
8: Return the data clusters.

5.3.2 Similarities with k-means

At this point, it is evident that the algorithm 5.3 has many similarities with the k-
means algorithm. Both algorithms are iterative, and they tend to get better clustering
results by each iteration. In the table 5.1 we present some of the main similarities
of those two clustering procedures. It could be argued that the proposed approach
can be considered as an enhancement of k-means that is able to accommodate more
complex data.
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Table 5.1: Similarities of the k-means algorithm and the modified IMLE algorithm.

k-means Μodified IMLE

Iterative Algorithm True True

Random Initialization Centroids Generator’s parameters

Clustering Error Direct Minimization Implicit Minimization

Updating the
Cluster Centroids

Direct Centroids Updates Updating the
Generator’s Parameters

Operates on the Original
Data Space

True True

5.4 The Encoder’s Network

Even though we can achieve clustering already with the proposed algorithm 5.3,
this algorithm operates in the original data space without fully utilizing the transfor-
mational abilities the DNNs can provide. Therefore, in order to make use of useful
deep features and the representational power of DNNs, we have modified the vanilla
architecture of the IMLE [3] by adding a second network, the Encoder. The En-
coder’s network is used similarly as in the ClusterGan algorithm [1], which has been
described in subsection 3.3.2, in order to assist in clustering.

Thus the proposed method contains two networks, the Generator, and the Encoder.
Μore specifically, the Generator is responsible for generating synthetic samples based
on the training data. As input, the Generator expects some random vector which is
sampled by a mixture of discrete and continuous distribution (subsection 5.2.2). The
Generator is a transformation from the latent space Z to data space X , G : Z → X.
The Encoder takes as input a generated sample Xg and its primary functionality is
to map it from data space X back to latent space Z , E : X → Z. Thus, using the
Encoder is an efficient way to train in an unsupervised classification manner to cluster
the input data. For the purpose of better understanding the new IMLE Generators-
Encoder methodology, in figure 5.4 we present its architecture and its basic operation.
As an input the generator G takes z which is a mixture of discrete and continuous
random variable, z = (zn, zc) and creates synthetic samples Xg. The Encoder receives
the synthetic sample Xg and inverse-maps it back to the Z latent space, producing a
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latent vector ẑ.

z G Xg E ẑ

Figure 5.4: IMLE Generator-Encoder Architecture.

5.5 The Objective Function

The objective function used to train the network contains a part from the generative
process and a part from the clustering procedure. As we already analyzed in chapter
2, the deep clustering objective function consists of a clustering and a non-clustering
loss. It is should be noted that, with the symbol x̃(i)

θG
= GθG(z(i)) we denote the generated

sample which is closest to the data example xi as found by the two-stage nearest neighbor
search.

The part of the objective function that concerns the generative process (non-
clustering loss), is the IMLE [3] error which is equal to

n∑
i=1

||GθG(z(i)) − x(i)||22 =

n∑
i=1

||x̃(i)
θG
−x(i)||22. Furthermore, we have added a generative loss term that makes use of

the Encoder’s extracted deep features. More specifically, we input each real data and
each closest generated sample found by the two-stage nearest neighbor into the En-
coder’s network. Then, we extract the deep feature representation that the Encoder
computed at its hidden layers. Using the deep feature representation of each data
and of its closest sample we construct the following loss term,

n∑
i=1

||EθE(GθG(z(i)))f −

EθE(x(i))f ||22 =
n∑

i=1

||EθE(x̃
(i)
θG
)f−EθE(x(i))f ||22. The reason for that additional generational

term is that in order to classify complex data, it is necessary to extract complex fea-
tures. This is a procedure usually done automatically by DNN architectures and yield
satisfactory results. Because the Encoder’s model is trained in an unsupervised clas-
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sification manner, we make of the deep representation features constructed through
its training. It is worth mentioning that the Generator outputs generated samples
that resemble random noise at the beginning of its training. These kinds of generated
samples seem reasonable because the Generator is untrained at this stage of the train-
ing. These two error terms aim to improve these outputs by implicitly maximizing
the model’s likelihood by using the original image space and the embedded one that
is constructed by the Encoder.

The rest part of the objective function terms, the clustering loss terms, aims to
train the Encoder’s DNN to inverse-map the generated samples Xg back to the latent
space, ẑ = EθE(Xg) which equals to ẑ = EθE(GθG(z)). In this way, the trained Encoder
is clustering the data based on the zc part, meaning the discrete part of the random
variable z, which encodes the cluster or equivalently the Gaussian component that
created the sample. Finally we added two additional terms to the objective func-
tion 5.1. The first term,

n∑
i=1

||z(i)n − EθE(GθG(z
(i)
n ))||22, is responsible for inverse-mapping

the zn part of the z random noise which is sampled from the Gaussian distribution
zn ∼ N (0, σ2Idn), and acts as a regularization of the continuous portion zn of the
latent space. This ensures the reversibility of the continuous portion zn of the latent
space given a sample E : G(zn) → zn. The second term,

n∑
i=1

H(z(i)c , EθE(GθG(z
(i)
c ))), is

responsible for inverse-mapping the zc part of the z random noise which is sampled
by one-hot distribution, where H(., .) is the cross-entropy loss, which is defined as
H(X) = −

∑
x

p(x) log(p(x)). Finally, the last term is responsible for training the En-
coder to cluster the data, via an unsupervised classification procedure meaning that
for all the mappings of points that belong in the same class in X space to have the
same one-hot encoding when embedded in Z space. This regularization is the most
critical part for a successful data clustering in the latent space Z.

The final objective function goes beyond simple distances in data space. It can
capture complex and perceptually important properties of data through the mixture
of losses in data and feature spaces [57]. The final objective function 5.1 is presented
below:

J(θG, θE) = α

n∑
i=1

||GθG(z(i))− x(i)||22 + αf

n∑
i=1

||EθE(GθG(z(i)))f − EθE(x(i))f ||22

+βn

n∑
i=1

||z(i)n − EθE(GθG(z(i)n ))||22 + βc

n∑
i=1

H(z(i)c , EθE(GθG(z(i)c )))

(5.1)
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where the α, αf , βn, and βc are regularization hyperparameters.

5.6 The proposed method

It is time to put everything together and combine all the necessary algorithmic steps to
develop the final deep clustering method, which is based on IMLE. It should be noted
that at this point, we already defined the Generator’s and Encoder’s DNNs model,
and we obtained the training dataset. The steps of the complete training algorithm
are presented below:

• Create a batch of generated samples xg by Generator’s model, using as input a
mixture of discrete and continuous latent variables z = (zn, zc).

• Input all the generated samples xg to the Encoder’s model and compute as
output we have the inverse-mapping of the generated samples ẑg.

• For each data example xi
r search the nearest generated sample xi

g with the use
of the two stage nearest neighbor algorithm 5.3.

• For each data example xi
r and its nearest sample xi

g extract their deep feature
representation, by the use of the Encoder’s network.

• Compute the gradients of the objective function 5.1 using of Adam optimizer
[16] (or any other gradient based learning rule), and back-propagate them in
order to minimize the objective function.

Αfter the end of the learning process, we have obtained the trained Generator’s
model, which can generate samples, and the trained encoder’s model that clusters
the input data. The complete training algorithm of the deep clustering method is
presented in Algorithm 5.4.
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Algorithm 5.4 Deep Clustering Based on IMLE
Require: Setting the hyperparameters α, αf , βn, βc.
1: t← 1

2: while t ≤ T do
3: Sample minibatch of m noise samples {z(1), ..., z(m)} from mixture of discrete

and continuous noise prior Pz , where z = (zn, zc).
4: Sample minibatch of m generated samples {x(1)

g , ..., x
(m)
g } from the Generator’s

model GθG(z).
5: Inverse map the generated samples Xg using the Encoder model EθE(Xg) to

obtain {ẑ(1), ..., ẑ(m)}.
6: For the data examples Xr find the nearest samples Xns

g with the two-stage
nearest neighbor search.

7: Update z to only contain the priors of the nearest samples Xns
g .

8: For each data example x
(i)
r and nearest sample xnsi

g extract their deep feature
representation x

(i)
f and EθE(GθG(z(i)))f respectively, by the use of the Encoder’s

network.
9: Update the generator by descending its stochastic gradient:

∇θG

1

m

(
α

n∑
i=1

||x(i) − GθG(z(i))||22 + αf

n∑
i=1

||EθE(GθG(z(i)))f − EθE(x(i))f ||22

+βn

m∑
i=1

||z(i)n − EθE(GθG(z(i)n ))||22 + βc

m∑
i=1

H(z(i)c , EθE(GθG(z(i)c )))

) (5.2)

10: Update the encoder by descending its stochastic gradient:

∇θE

1

m

(
αf

n∑
i=1

||EθE(GθG(z(i)))f − EθE(x(i))f ||22 + βn

m∑
i=1

||z(i)n − EθE(GθG(z(i)n ))||22

+βc

m∑
i=1

H(z(i)c , EθE(GθG(z(i)c )))

)
(5.3)

11: t← t+ 1

12: end while
13: Return the Generator and the Encoder.

The gradient-based updates can use any standard gradient-based learning rule. The
most popular choice is the Adam optimizer [16].
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Chapter 6

Experiments

6.1 Datasets

6.2 Hyperparameter and Architecture Details

6.3 Experiments

6.4 Image Generation

6.5 Dimensionality Reduction

6.6 Training Procedure

6.1 Datasets

In our experiments, we included different datasets with several data complexities and
data types. We used famous datasets that are commonly utilized to benchmark various
image processing systems and machine learning algorithms. The datasets used are
the following:

• The MNIST [58] is a dataset consisting 60,000 samples for training and 10,000
samples for testing. Each sample is a 28× 28 grayscale image containing hand-
written digits associated with a label from ten classes. We also used a simpler
version of the MNIST dataset that contains four of the total ten classes. The
selected classes are Zero, One, Two, and Three.

• The Fashion-MNIST [60] is a dataset consisting 60,000 samples for training and
10,000 samples for testing. Each sample is a 28×28 grayscale image containing
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a fashion product associated with a label from ten classes. We can say that
Fashion-MNIST is a more complicated version of the MNIST dataset. We also
merged some categories which were similar to form a separate 5-class dataset.
The five groups were as follows : {Tshirt/Top, Dress}, {Trouser}, {Pullover, Coat,
Shirt}, {Bag}, {Sandal, Sneaker, Ankle Boot}.

• The Pendigits [61] is a dataset consisting of 10992 writing samples from 44
different writers, in total 10992 written samples. Each sample is a 1× 16 vector,
containing pixel coordinates associated with a label from ten classes. We also
defied two additional datasets. The first one contains only the odd numbers,
and the second only the even numbers of the Pendigits dataset.

• The Synthetic dataset is generated from a mixture of Gaussians with four com-
ponents. Each generated sample is 1× 2 vector (2 dimensional). We generated
100 points from each Gaussian component so that the total number of samples
equals 400.

It is worth mentioning that we did not use the complete datasets, but we sampled a
small subset randomly from each of them to create a smaller version of each dataset.
We ensured that every data class had the same number of training data points in-
cluded. The subsets that we created from each dataset are the following:

• MNIST [58]: which 50 data points sampled for each of the total ten classes (in
total 500 training data).

• MNIST, 4 Classes [58]: which 50 data points sampled for each of the four
selected classes (in total 250 training data).

• Fashion-MNIST [60]: which 50 data points sampled for each of the total ten
classes (in total 500 training data).

• Fashion-MNIST, 5 Classes [60]: which 100 data points sampled for each of the
total five classes (in total 500 training data).

• Pendigits [61]: which 200 data points sampled for each of the total ten classes
(in total 2000 training data).

• Pendigits, Odd Numbers [61]: which 400 data points sampled for each of the
total five classes (in total 2000 training data).
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• Pendigits, Even Numbers [61]: which 400 data points was sampled for each of
the total five classes (in total 2000 training data).

6.2 Hyperparameter and Architecture Details

For the training of the ClusterGan [1] and the IMLE based model, we used the
Adam optimizer [16]. We selected as Adams’ [16] hyperparameters the following,
η = 1e − 4, β1 = 0.5, β2 = 0.99 for all datasets. In every experiment, we execute 500
training epochs with a batch size equal to 64. It is worth mentioning that for the
better comparison of the ClusterGan [1] with the IMLE based model, we chose both
methods to share common architectures for the Generator and Encoder networks.
For the sake of simplicity, we will present their architectures for each dataset in the
same table. Of course, the Discriminator network concerns only the ClusterGan’s [1]
architecture. The dimension of zc is the same as the number of data clusters in each
dataset. The networks use ReLU activations, Leaky ReLU activations (leak = 0.2) and
Batch Normalization (BN). Next, we present the architectural details for training the
deep clustering methods to each different dataset.

Synthetic Data. We used zn = 10 and zc = 4 the same number as the number
of classes in this dataset.

Table 6.1: The Generator’s, Encoder’s and Discriminator’s architecture for the Syn-
thetic dataset.

Generator Encoder Discriminator

z = (zn, zc) ∈ R14 Input X ∈ R2 Input X ∈ R2

FC 256, LReLU, BN FC 256, LReLU, BN FC 256, LReLU, BN

FC 256, LReLU, BN FC 256, LReLU, BN FC 256, LReLU, BN

FC 2, Sigmoid FC 14, linear for ẑn and Softmax for ẑc FC 1, Sigmoid

53

https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits


Pendigits Data, Odd Numbers. We used zn = 10 and zc = 5 the same number as the
number of classes in this dataset.

Table 6.2: The Generator’s, Encoder’s and Discriminator’s architecture for the
Pendigits dataset with only odd numbers.

Generator Encoder Discriminator

z = (zn, zc) ∈ R15 Input X ∈ R16 Input X ∈ R16

FC 256, LReLU, BN FC 256, LReLU, BN FC 256, LReLU, BN

FC 256, LReLU, BN FC 256, LReLU, BN FC 256, LReLU, BN

FC 16, Sigmoid FC 15, linear for ẑn and Softmax for ẑc FC 1, Sigmoid

Pendigits Data, Even Numbers. We used zn = 10 and zc = 5 the same number as
the number of classes in this dataset.

Table 6.3: The Generator’s, Encoder’s and Discriminator’s architecture for the
Pendigits dataset with only even numbers.

Generator Encoder Discriminator

z = (zn, zc) ∈ R15 Input X ∈ R16 Input X ∈ R16

FC 256, LReLU, BN FC 256, LReLU, BN FC 256, LReLU, BN

FC 256, LReLU, BN FC 256, LReLU, BN FC 256, LReLU, BN

FC 16, Sigmoid FC 15, linear for ẑn and Softmax for ẑc FC 1, Sigmoid

Pendigits Data. We used zn = 10 and zc = 10 the same number as the number of
classes in this dataset.

Table 6.4: The Generator’s, Encoder’s and Discriminator’s architecture for the Pendig-
its dataset.

Generator Encoder Discriminator

z = (zn, zc) ∈ R20 Input X ∈ R16 Input X ∈ R16

FC 256, LReLU, BN FC 256, LReLU, BN FC 256, LReLU, BN

FC 256, LReLU, BN FC 256, LReLU, BN FC 256, LReLU, BN

FC 16, Sigmoid FC 20, linear for ẑn and Softmax for ẑc FC 1, Sigmoid
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MNIST and Fashion-MNIST. We used zn = 10 and zc = 10 the same number as the
number of classes in these datasets.

Table 6.5: The Generator’s, Encoder’s and Discriminator’s architecture for the MNIST
and Fashion-MNIST datasets.

Generator Encoder Discriminator

z = (zn, zc) ∈ R20 Input X ∈ R28×28 Input X ∈ R28×28

512, 1× 1 upconv.,
1 stride, ReLU, BN

64, 4× 4 upconv.,
2 stride, LReLU

64, 4× 4 conv.,
2 stride, LReLU

512, 1× 1 upconv.,
1 stride, ReLU, BN

128, 4× 4 upconv.,
2 stride, LReLU

128, 4× 4 conv.,
2 stride, LReLU

256, 7× 7 upconv.,
1 stride, ReLU, BN

FC 1024, LReLU FC 1024, LReLU

128, 4× 4 upconv., 2 stride,
1 padding, ReLU, BN

FC 20, linear for ẑn
and Softmax for ẑc

FC 1, Sigmoid

1, 4× 4 upconv., 2 stride,
1 padding, Sigmoid

- -

MNIST, 4 Classes. We used zn = 10 and zc = 4 the same number as the number of
classes in these datasets. We choose the numbers zero, one, two and three.
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Table 6.6: The Generator’s, Encoder’s and Discriminator’s architecture for the MNIST
datasets with four classes.

Generator Encoder Discriminator

z = (zn, zc) ∈ R14 Input X ∈ R28×28 Input X ∈ R28×28

512, 1× 1 upconv.,
1 stride, ReLU, BN

64, 4× 4 upconv.,
2 stride, LReLU

64, 4× 4 conv.,
2 stride, LReLU

512, 1× 1 upconv.,
1 stride, ReLU, BN

128, 4× 4 upconv.,
2 stride, LReLU

128, 4× 4 conv.,
2 stride, LReLU

256, 7× 7 upconv.,
1 stride, ReLU, BN

FC 1024, LReLU FC 1024, LReLU

128, 4× 4 upconv., 2 stride,
1 padding, ReLU, BN

FC 14, linear for ẑn
and Softmax for ẑc

FC 1, Sigmoid

1, 4× 4 upconv., 2 stride,
1 padding, Sigmoid

- -

Fashion-MNIST, 5 Classes. We used zn = 10 and zc = 5 the same number as the
number of classes in these datasets. We choose the numbers zero, one, two and three.

Table 6.7: The Generator’s, Encoder’s and Discriminator’s architecture for the
fashion-MNIST datasets with five classes.

Generator Encoder Discriminator

z = (zn, zc) ∈ R15 Input X ∈ R28×28 Input X ∈ R28×28

512, 1× 1 upconv.,
1 stride, ReLU, BN

64, 4× 4 upconv.,
2 stride, LReLU

64, 4× 4 conv.,
2 stride, LReLU

512, 1× 1 upconv.,
1 stride, ReLU, BN

128, 4× 4 upconv.,
2 stride, LReLU

128, 4× 4 conv.,
2 stride, LReLU

256, 7× 7 upconv.,
1 stride, ReLU, BN

FC 1024, LReLU FC 1024, LReLU

128, 4× 4 upconv., 2 stride,
1 padding, ReLU, BN

FC 15, linear for ẑn
and Softmax for ẑc

FC 1, Sigmoid

1, 4× 4 upconv., 2 stride,
1 padding, Sigmoid

- -
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6.3 Experiments

In this section, we will present the experiments that took place. First, it is necessary
to mention that, Deep Clustering methodologies rely heavily on the random initial-
ization of the DNNs’ parameters, as with every other DL method. Therefore, it was
necessary to perform every experiment at least 30 times. Afterward, we collected the
experimental results and applied statistical analysis to obtain conclusions. Using this
methodology, we can avoid edge case scenarios to the experimental results caused by
bad initializations.

We executed a variety of experiments with different algorithmic setups, and in
table 6.8 we explain the different algorithm choices we made to execute the following
experiments. Throughout the experiments the ClusterGans’ hyperparameters where
set to default values which are βn = 10 and βc = 10. Additionally, we present the
hyperparameters for each algorithmic variation of the methods based on IMLE [3]
in table 6.9. We chose βn to equal zero in the IMLE based methods because it did
not make any significant difference to the clustering results.

Table 6.8: Presentation of different algorithmic variations used.

Algorithm
Prior

Distribution
Clustering
Method

N.N. search Encoder Deep
Feautures

Simple IMLE Mixture of Gaussian Samples’
Centroid

Simple No No

IMLE 2-s N.N Mixture of Gaussian Samples’
Centroid

Two-Stage No No

IMLE-Encoder Mixture of districrete
and continuous

Encoder Two-Stage Yes No

IMLE-Encoder
Centroid

Mixture of districrete
and continuous

Samples’
Centroid

Two-Stage Yes No

Final
IMLE-Encoder

Mixture of districrete
and continuous

Encoder Two-Stage Yes Yes

Final
IMLE-Encoder
Centroid

Mixture of districrete
and continuous

Samples’
Centroid

Two-Stage Yes Yes
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Table 6.9: Presentation of the hyperparameters selection for each algorithm.

Algorithm α αf βc βn

Simple IMLE 1.0 0.0 0.5 0.0

IMLE 2-s N.N. 1.0 0.0 0.5 0.0

IMLE-Encoder 1.0 0.0 0.5 0.0

IMLE-Encoder Centroid 1.0 0.0 0.5 0.0

Final IMLE-Encoder 1.0 0.5 0.5 0.0

Final IMLE-Encoder Centroid 1.0 0.5 0.5 0.0

In tables 6.10, 6.11 we compare the clustering algorithms based on the accuracy
(ACC) and normalized mutual information (NMI) metrics. Based on these two ta-
bles, some empirical conclusions can be drawn when comparing the Deep Clustering
method based on IMLE to ClusterGan. More specifically, the Deep Clustering method
based on IMLE and its variations performs better at most datasets than ClusterGan.
More specifically, the IMLE based method outperforms ClusterGan at the Synthetic,
the MNIST (with ten and with four classes), the Fashion-MNIST (with ten and with
five classes). The two algorithms had similar results in the Pendigits dataset and in
the Pendigits dataset with only the odd digits. The ClusterGan was able to yield better
results only at the Pendigits dataset with the even digits. Additionally, in Tables 6.12
to 6.27, we present more detailed statistical information about the algorithms that
are based on the IMLE that had the most promising experimental results for each
dataset separately.
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Table 6.10: Comparison of clustering metrics across datasets.

Dataset Algorithm ACC NMI

Synthetic

Simple IMLE
IMLE 2-s N.N
IMLE-Encoder

IMLE-Encoder Centroid
F. IMLE-Encoder

F. IMLE-Encoder Centroid
ClusterGAN

0.4
1
1
1
1
1
0.96

0.1
1
1
1
1
1
0.91

MNIST

Simple IMLE
IMLE 2-s N.N
IMLE-Encoder

IMLE-Encoder Centroid
F. IMLE-Encoder

F. IMLE-Encoder Centroid
ClusterGAN

0.44
0.5
0.51
0.51
0.51
0.51
0.25

0.37
0.44
0.44
0.43
0.44
0.44
0.12

MNIST
4 Classes

Simple IMLE
IMLE 2-s N.N
IMLE-Encoder

IMLE-Encoder Centroid
F. IMLE-Encoder

F. IMLE-Encoder Centroid
ClusterGAN

0.6
0.84
0.81
0.81
0.81
0.8
0.53

0.34
0.64
0.61
0.61
0.61
0.61
0.25

Fashion-MNIST

Simple IMLE
IMLE 2-s N.N
IMLE-Encoder

IMLE-Encoder Centroid
F. IMLE-Encoder

F. IMLE-Encoder Centroid
ClusterGAN

0.52
0.56
0.57
0.57
0.55
0.56
0.27

0.49
0.52
0.54
0.54
0.51
0.52
0.16
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Table 6.11: Comparison of clustering metrics across datasets.

Dataset Algorithm ACC NMI

Fashion-MNIST
5 Classes

Simple IMLE
IMLE 2-s N.N
IMLE-Encoder

IMLE-Encoder Centroid
F. IMLE-Encoder

F. IMLE-Encoder Centroid
ClusterGAN

0.6
0.66
0.7
0.68
0.66
0.67
0.44

0.38
0.48
0.53
0.51
0.49
0.49
0.13

Pendigits

Simple IMLE
IMLE 2-s N.N
IMLE-Encoder

IMLE-Encoder Centroid
F. IMLE-Encoder

F. IMLE-Encoder Centroid
ClusterGAN

0.66
0.7
0.71
0.7
0.71
0.71
0.71

0.65
0.66
0.68
0.67
0.67
0.67
0.68

Pendigits
Odd Numbers

Simple IMLE
IMLE 2-s N.N
IMLE-Encoder

IMLE-Encoder Centroid
F. IMLE-Encoder

F. IMLE-Encoder Centroid
ClusterGAN

0.65
0.76
0.76
0.76
0.76
0.76
0.76

0.48
0.57
0.57
0.57
0.57
0.57
0.57

Pendigits
Even Numbers

Simple IMLE
IMLE 2-s N.N
IMLE-Encoder

IMLE-Encoder Centroid
F. IMLE-Encoder

F. IMLE-Encoder Centroid
ClusterGAN

0.87
0.87
0.88
0.87
0.87
0.88
0.96

0.66
0.77
0.79
0.78
0.78
0.79
0.89
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Synthetic Dataset

Table 6.12: Statistical analysis of the Accuracy on Synthetic Data.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 1.0 1.0 0.0 1.0 1.0

IMLE-Encoder Centroid 1.0 1.0 0.0. 1.0 1.0

IMLE-Encoder 1.0 1.0 0.0 1.0 1.0

F. IMLE-Encoder Centroid 1.0 1.0 0.0 1.0 1.0

F. IMLE-Encoder 1.0 1.0 0.0 1.0 1.0

Table 6.13: Statistical analysis of the NMI on Synthetic Data.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 1.0 1.0 0.0 1.0 1.0

IMLE-Encoder Centroid 1.0 1.0 0.0. 1.0 1.0

IMLE-Encoder 1.0 1.0 0.0 1.0 1.0

F. IMLE-Encoder Centroid 1.0 1.0 0.0 1.0 1.0

F. IMLE-Encoder 1.0 1.0 0.0 1.0 1.0

MNIST Dataset

Table 6.14: Statistical analysis of the Accuracy on MNIST dataset.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.5 0.5 0.03 0.44 0.59

IMLE-Encoder Centroid 0.51 0.52 0.03 0.4 0.57

IMLE-Encoder 0.51 0.52 0.03 0.4 0.55

F. IMLE-Encoder Centroid 0.71 0.71 0.03 0.66 0.78

F. IMLE-Encoder 0.71 0.71 0.03 0.66 0.79

61



Table 6.15: Statistical analysis of the NMI on MNIST dataset.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.44 0.44 0.03 0.38 0.51

IMLE-Encoder Centroid 0.43 0.45 0.04 0.31 0.49

IMLE-Encoder 0.44 0.44 0.04 0.32 0.50

F. IMLE-Encoder Centroid 0.44 0.44 0.03 0.39 0.50

F. IMLE-Encoder 0.44 0.43 0.04 0.33 0.52

MNIST Dataset, 4 Classes

Table 6.16: Statistical analysis of the Accuracy on MNIST dataset with 4 classes.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.84 0.87 0.06 0.64 0.89

IMLE-Encoder Centroid 0.81 0.85 0.09 0.59 0.91

IMLE-Encoder 0.81 0.81 0.1 0.59 0.92

F. IMLE-Encoder Centroid 0.81 0.86 0.09 0.59 0.89

F. IMLE-Encoder 0.8 0.86 0.1 0.56 0.91

Table 6.17: Statistical analysis of the NMI on MNIST dataset with 4 classes.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.64 0.67 0.07 0.42 0.70

IMLE-Encoder Centroid 0.61 0.1 0.38 0.31 0.76

IMLE-Encoder 0.61 0.63 0.1 0.38 0.77

F. IMLE-Encoder Centroid 0.61 0.65 0.08 0.39 0.69

F. IMLE-Encoder 0.61 0.67 0.1 0.33 0.73
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Fashion-MNIST Dataset

Table 6.18: Statistical analysis of the Accuracy on Fashion-MNIST.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.56 0.55 0.03 0.5 0.63

IMLE-Encoder Centroid 0.57 0.58 0.03 0.5 0.64

IMLE-Encoder 0.57 0.56 0.03 0.5 0.64

F. IMLE-Encoder Centroid 0.56 0.56 0.03 0.5 0.63

F. IMLE-Encoder 0.55 0.55 0.04 0.45 0.63

Table 6.19: Statistical analysis of the NMI on Fashion-MNIST dataset.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.52 0.52 0.02 0.48 0.56

IMLE-Encoder Centroid 0.54 0.54 0.03 0.44 0.58

IMLE-Encoder 0.54 0.55 0.03 0.45 0.60

F. IMLE-Encoder Centroid 0.53 0.53 0.02 0.48 0.57

F. IMLE-Encoder 0.51 0.52 0.03 0.42 0.57

Fashion-MNIST Dataset, 5 Classes

Table 6.20: Statistical analysis of the Accuracy on Fashion-MNIST with 5 classes.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.66 0.66 0.02 0.62 0.7

IMLE-Encoder Centroid 0.68 0.67 0.02 0.62 0.73

IMLE-Encoder 0.7 0.68 0.03 0.63 0.79

F. IMLE-Encoder Centroid 0.66 0.67 0.02 0.61 0.71

F. IMLE-Encoder 0.67 0.67 0.03 0.6 0.73
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Table 6.21: Statistical analysis of the NMI on Fashion-MNIST with 5 classes.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.48 0.5 0.05 0.39 0.56

IMLE-Encoder Centroid 0.51 0.50 0.04 0.39 0.59

IMLE-Encoder 0.53 0.52 0.04 0.42 0.60

F. IMLE-Encoder Centroid 0.49 0.49 0.03 0.42 0.57

F. IMLE-Encoder 0.49 0.49 0.03 0.39 0.56

Pendigits

Table 6.22: Statistical analysis of the Accuracy on Pendigits.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.7 0.71 0.03 0.64 0.76

IMLE-Encoder Centroid 0.7 0.7 0.03 0.61 0.76

IMLE-Encoder 0.71 0.7 0.03 0.61 0.76

F. IMLE-Encoder Centroid 0.71 0.71 0.03 0.66 0.78

F. IMLE-Encoder 0.71 0.71 0.03 0.66 0.79

Table 6.23: Statistical analysis of the NMI on Pendigits.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.66 0.66 0.03 0.6 0.71

IMLE-Encoder Centroid 0.67 0.66 0.03 0.6 0.72

IMLE-Encoder 0.67 0.67 0.03 0.6 0.71

F. IMLE-Encoder Centroid 0.67 0.67 0.02 0.63 0.71

F. IMLE-Encoder 0.67 0.68 0.02 0.63 0.72
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Pendigits, Odd Numbers

Table 6.24: Statistical analysis of the Accuracy on Pendigits with odd numbers.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.76 0.76 0.009 0.75 0.78

IMLE-Encoder Centroid 0.76 0.76 0.007 0.75 0.78

IMLE-Encoder 0.76 0.76 0.009 0.75 0.79

F. IMLE-Encoder Centroid 0.76 0.76 0.01 0.75 0.79

F. IMLE-Encoder 0.76 0.76 0.01 0.74 0.79

Table 6.25: Statistical analysis of the NMI on Pendigits with odd numbers.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.57 0.56 0.02 0.55 0.62

IMLE-Encoder Centroid 0.57 0.57 0.01 0.55 0.6

IMLE-Encoder 0.57 0.57 0.02 0.55 0.64

F. IMLE-Encoder Centroid 0.57 0.56 0.02 0.55 0.60

F. IMLE-Encoder 0.57 0.56 0.02 0.54 0.62

Pendigits, Even Numbers

Table 6.26: Statistical analysis of the Accuracy on Pendigits with even numbers.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.87 0.88 0.05 0.64 0.91

IMLE-Encoder Centroid 0.88 0.89 0.03 0.8 0.92

IMLE-Encoder 0.88 0.89 0.03 0.8 0.92

F. IMLE-Encoder Centroid 0.87 0.89 0.04 0.71 0.92

F. IMLE-Encoder 0.87 0.89 0.04 0.72 0.91
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Table 6.27: Statistical analysis of the NMI on Pendigits with even numbers.

Algorithm Mean Median St. Dev. Min Max

IMLE 2-s N.N 0.77 0.78 0.04 0.6 0.81

IMLE-Encoder Centroid 0.79 0.79 0.03 0.7 0.83

IMLE-Encoder 0.79 0.79 0.03 0.7 0.83

F. IMLE-Encoder Centroid 0.78 0.79 0.04 0.68 0.82

F. IMLE-Encoder 0.78 0.79 0.04 0.68 0.83

6.4 Image Generation

We utilized the Generator in order to cluster the data in the latent space. We can
also use the trained Generator to generate synthetic samples that look similar to the
training data. We except that if the clustering was successful, the trained Generator
would assign each data cluster to exactly one Gaussian component. In figure 6.1 we
present the synthetic samples created by the Generator, which is trained at the MNIST
with four clusters. The samples of the first image (a) are created by the first Gaussian
component, of the second image (b) from the second component, etc. In figure 6.1
we also present the synthetic samples created by the Generator, which is trained at
the fashion-MNIST with five clusters, and the samples are created the same way we
already explained. Thus, we can conclude that successful data clustering can also
result in successful synthetic samples clustering at the latent space of the Generator
as well.

As we already presented in figure 5.1, the latent space in a traditional IMLE with
Gaussian latent distribution enforces that different classes are continuously scattered
in the latent space. In order to demonstrate interpolation at the latent space, we
sampled the latent vector zc by a one-hot distribution, and we used a linear com-
bination of it to interpolate across the clusters. More specifically, we fixed the zn in
two latent vectors with different zc components, we defined z

(1)
c and z

(2)
c and then

we interpolated with the one-hot encoded part to give rise to new latent vectors
z = (zn, µz

(1)
c + (1−µ)z(2)c ), µ ∈ [0, 1]. While these vectors have never been sampled

during the training process, we observed a smooth inter-class interpolation. As Fig-
ure 6.3 illustrates, we observed a nice transition from one digit to another at MNIST
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dataset as well as across different classes in Fashion-MNIST. This demonstrates that
our IMLE based approach learns a smooth manifold even on the untrained directions
of the discrete-continuous distribution.

(a) (b)

(c) (d)

Figure 6.1: Digits generated from distinct modes (MNIST with four classes).
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(a) (b) (c)

(d) (e)

Figure 6.2: Digits generated from distinct modes (Fashion-MNIST with five classes).

Figure 6.3: Latent Space Interpolation: MNIST (left) and Fashion-MNIST (right).
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6.5 Dimensionality Reduction

After training, the Encoder network can cluster the data and reduce their dimension-
ality by mapping it to the latent space. To verify the quality of the dimensionality
reduction the Encoder can achieve, we will apply TSNE [4] to the Encoder’s output
to lower its manifold to the two-dimensional space. Figure 6.4 presents the two-
dimensional projection of the Fashion-MNIST dataset with five classes, and figure
6.5 presents the two-dimensional projection of the MNIST dataset with four classes.
We can note that the different clusters are projected separated areas of the two-
dimensional space, which declares the Encoder’s dimensionality reduction quality.
Finally, we can see in figures 6.6, 6.7 that the Encoder was able to provide a dimen-
sionality reduction of such good quality for the Synthetic data that every data cluster
belongs to a different area in the two-dimensional space without any cluster overlap.

Figure 6.4: Lowering Encoder’s output manifold, using TSNE [4] at Fashion-MNIST
dataset with five classes.
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Figure 6.5: Lowering Encoder’s output manifold, using TSNE [4] at MNIST dataset
with four classes.

Figure 6.6: Lowering Encoder’s output manifold, using TSNE [4] (perplexity=10) at
Synthetic dataset with four classes.
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Figure 6.7: Lowering Encoder’s output manifold, using TSNE [4] (perplexity=30) at
Synthetic dataset with four classes.

6.6 Training Procedure

As figure 6.8 (a) illustrates, during the IMLE based model training, we can see that
the Accuracy and the NMI metrics tend to improve but not monotonically since
fluctuations exist. The same is true for the clustering error (figure 6.8 (b)). It worth
noting that the best clustering is not necessarily the one with the minimum clustering
error, especially when the training data are complex like images.
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(a)

(b)

Figure 6.8: (a) Accuracy and normalized mutual information metrics based on cen-
troid and encoder (b) Clustering error per epoch.
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Chapter 7

Epilogue

7.1 Conclusion

7.2 Suggestions for Future Work

7.1 Conclusion

In this thesis, we studied clustering using deep neural networks (called deep clus-
tering) and proposed a new deep clustering method, the Deep Clustering based on
IMLE. The method is based on IMLE approach, which is a technique of maximizing
the likelihood of the model without including any likelihood term in the objective
function. The experimental results show that the Deep Clustering based on IMLE
can generate synthetic samples using a generators network with a minimum number
of training data. As we observed using image datasets, the generated samples are of
good quality since they resemble the training data. Additionally, the created manifold
provides a very smooth inter-class interpolation. Furthermore, using the encoder net-
work, we can perform data clustering at the latent space and provide an exceptional
method of dimensionality reduction.

7.2 Suggestions for Future Work

As seen from the experimental results, we can achieve reasonable performance with
our current implementation. However, there is a lot of reasearch work to be done:
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• Conduct experiments with the complete dataset to evaluate the IMLE based
method’s full potential. Additional experiments can take place with different
image datasets.

• Ιt is interesting to experiment with a pre-trained Generator and Encoder to
determine if the results will improve. Pre-training is a common tactic in Deep
Learning and tends to have better results than random initialization of the pa-
rameters. For example, many Deep Clustering methods use pre-training DNNs
in order to get better results [39, 42, 43, 44, 62].

• It is worth examining more hyperparameters setups in order to fine-tune the
existing model.

• Performing experiments with more complex training schedules. For example,
at the beginning of the model’s training, the generative loss could have greater
value from the clustering loss. Then, the generative loss could start decaying as
the training continues, and the clustering loss to stat rising.

• It would be interesting to execute experiments with more sophisticated deep
features and take advantage of the complex deep features the Encoder DNN
can compute.

• It is worth mentioning that the whole procedure can occur in the Encoder’s
deep feature space. It would be interesting to experiment with the transformed
training data from the data space Xr to the Encoder’s deep feature space Xf

r .
After that we could find the centroids Cf

xs
which are constructed by the deep

features of the samples Xf
s and then finding the nearest sample xf

sj
to each

training data xf
ri
.

• We executed experiments with more Gaussian components than the number of
clusters in the data, and they had promising results. It would be interesting to
train the model with more Gaussian components. Then, as the training pro-
ceeds, we could decrease the Gaussian components until their number equals
the desirable number of clusters.

• It is worth studying for a convergence criterion to determine when the to stop
learning.
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Appendix A

Software requirements

The thesis code was written in Python [63] programming language. The following
are the necessary python libraries used to implement the program.

• PyTorch [64] is an open-source machine learning framework. PyTorch is an
exceptionally useful and flexible libraries for the constructing and training of
artificial neural network architecture.

• Numpy [65] library is fundamental package for scientific computing with Python.
Numpy is essential for scientific computations and matrices’ creation and ma-
nipulation.

• Scikit-learn [66] is a simple and efficient library that contains tools for machine
learning, data analysis, and scientific computations.

• SciPy [67] is an open-source library used for mathematics, science, and engi-
neering.

• Pandas [68] is a fast, powerful, flexible, and easy to use open-source data anal-
ysis and manipulation tool.

• Matplotlib [69] is a comprehensive library for creating static, animated, and
interactive visualizations.
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