
Recognition and Navigation of a mobile robot by
fusing laser and camera information

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Spyridon Syntakas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2021



Examining Committee:

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina (Advisor)

• Kostas Vlachos, Assist. Professor, Department of Computer Science and Engi-
neering, University of Ioannina

• Konstantinos D. Blekas, Professor, Department of Computer Science and En-
gineering, University of Ioannina



DEDICATION

To my family
and in loving memory of my Grandmother.



ACKNOWLEDGEMENTS

I would like to thank both my supervisor Prof. Aristidis Likas and co-supervisor Asst.
Prof. Kostas Vlachos for their noble guidance and support with full encouragement
and motivation over the course of this thesis and their generous sharing of knowledge
during their graduate courses. Their levels of patience, multidisciplinary knowledge
and ingenuity is something I am grateful for and a constant inspiration for future
scientific research and accomplishment.

I would also like to express my sincere gratitude to all the members of the Dept.
of Computer Science and Engineering that through teaching and knowledge sharing
over the course of my graduate studies have contributed to my development as an
engineer.

Above all else, I am heartfelt grateful to my parents and my grandmother for their
inexhaustible support, love and motivation, not only over the course of this thesis but
for every step taken towards it. Without their care and engagement, non of this could
have been possible.



TABLE OF CONTENTS

List of Figures iii

List of Tables vi

List of Algorithms vii

Abstract viii

Εκτεταμένη Περίληψη x

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Approach and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminary Concepts 4
2.1 Data Fusion and Sensory Data . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Laser Scanner – LiDAR . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Vision Sensor - Camera . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Density based Clustering - DBSCAN . . . . . . . . . . . . . . . . 16
2.2.2 Supervised Learning - Artificial Neural Networks . . . . . . . . . 20
2.2.3 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Image Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Linear Classifier and ANN for Image Classification . . . . . . . . 30

2.4 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



2.4.2 Convolutional Neural Networks for Image Classification . . . . . 35
2.5 Autonomous Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.1 Artificial Potential Fields . . . . . . . . . . . . . . . . . . . . . . . 47

3 The proposed approach 51
3.1 Method Explanatory Analysis . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Object Localization . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.2 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.3 Autonomous Navigation . . . . . . . . . . . . . . . . . . . . . . . 62
3.1.4 Potential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.5 P-Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.1 Pioneer 3-DX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Sensor Frames Transformations and Synchronization of Sensory

Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.3 Camera Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.2.4 DBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.5 ResNet18 and Recognition . . . . . . . . . . . . . . . . . . . . . . 70

4 Experimental Results 71
4.1 Proof of concept - Perception and Navigation System Application . . . 75
4.2 Perception System Real Time Object Detection Cases . . . . . . . . . . . 79

5 Conclusion 88
5.1 Comparison to state of the art YOLO approach . . . . . . . . . . . . . . 88
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 91

ii



LIST OF FIGURES

2.1 Laser Scanner working principle. . . . . . . . . . . . . . . . . . . . . . . 6
2.2 A rotating mirror case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 2D and 3D point cloud of a cube . . . . . . . . . . . . . . . . . . . . . . 8
2.4 2D Point cloud represented in Gazebo . . . . . . . . . . . . . . . . . . . 9
2.5 3D Point cloud represented in Gazebo . . . . . . . . . . . . . . . . . . . 9
2.6 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Checkerboard - Zhang’s Method . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.9 DBSCAN pictorial intuition . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.10 Perceptron pictorial representation . . . . . . . . . . . . . . . . . . . . . 21
2.11 Non linear activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.12 Biological analogy of neuron to perceptron . . . . . . . . . . . . . . . . 23
2.13 Data separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.14 Graph representation of an Artificial Neural Network . . . . . . . . . . 24
2.15 Graph representation of an Artificial Neural Network . . . . . . . . . . 25
2.16 Computer Vision tasks block diagram . . . . . . . . . . . . . . . . . . . 29
2.17 Grey scale Image flattened to vector . . . . . . . . . . . . . . . . . . . . 30
2.18 Linear Classifier for Image Recognition . . . . . . . . . . . . . . . . . . 30
2.19 Image content inferred from a Linear Classifier . . . . . . . . . . . . . . 31
2.20 Learned weights visualization . . . . . . . . . . . . . . . . . . . . . . . . 31
2.21 Image passed to a two layer ANN. . . . . . . . . . . . . . . . . . . . . . 32
2.22 Convolutional Neural Network Architecture. . . . . . . . . . . . . . . . . 33
2.23 2 dimensional discrete convolution. . . . . . . . . . . . . . . . . . . . . 35
2.24 Convolution operation on a 3 dimensional tensor . . . . . . . . . . . . . 35
2.25 ReLU activation function. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.26 Max Pooling operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii



2.27 ResNet Block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.28 Residual Neural Network architecture. . . . . . . . . . . . . . . . . . . . 43
2.29 Yolov3 model localization. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.30 Detector Output Log-space Transform. . . . . . . . . . . . . . . . . . . . 45
2.31 YOLOv3 model Architecture. . . . . . . . . . . . . . . . . . . . . . . . . 46
2.32 Pictorial Representation of Total field given two obstacles. . . . . . . . . 48
2.33 Local Minima as minimum distances detected by the laser scanner. . . 50

3.1 Block Diagram of the Proposed Detection Method . . . . . . . . . . . . 52
3.2 Laser Coordinate System. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Point Cloud angular perspective in simulation. . . . . . . . . . . . . . . 54
3.4 Point cloud layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Clustered Point cloud - Object Cluster Correspondence . . . . . . . . . . 56
3.6 Object Localization from 3D world to 2D Image plane. . . . . . . . . . 57
3.7 Object Localization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 Simulation world - Point cloud clustering. . . . . . . . . . . . . . . . . . 59
3.9 Image with 3 bounding boxes . . . . . . . . . . . . . . . . . . . . . . . . 60
3.10 The three cropped images used for inference. . . . . . . . . . . . . . . . 60
3.11 Proposed Bounding Box and Label - Cumulative Voting Schema . . . 62
3.12 Point cloud layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.13 The Pioneer 3-DX vanilla version. . . . . . . . . . . . . . . . . . . . . . 65
3.14 Differential Drive Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . 66
3.15 NVIDIA Jetson TX2 kit . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.16 The LMS200 laser range scanner . . . . . . . . . . . . . . . . . . . . . . 67
3.17 LMS200 Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.18 Pioneer 3-DX with Jetson TX2 and LMS200 . . . . . . . . . . . . . . . 68
3.19 Intrinsic Parameters - Camera Calibration . . . . . . . . . . . . . . . . . 69

4.1 Frames of the 3-DX Robot - Real World Application. . . . . . . . . . . 72
4.2 Frames of the 3-DX Robot - Simulation. . . . . . . . . . . . . . . . . . . 73
4.3 Real world experiment scenarios - ROS Computation Graph . . . . . . . 74
4.4 Gazebo - ROS Computation Graph . . . . . . . . . . . . . . . . . . . . . 74
4.5 World State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Path followed until goal pose. . . . . . . . . . . . . . . . . . . . . . . . . 76
4.7 Actual path using Odometry Position Data . . . . . . . . . . . . . . . . 77

iv



4.8 Environmental Sensor Measurement. . . . . . . . . . . . . . . . . . . . . 77
4.9 Trajectory for X. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.10 Trajectory for Υ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.11 Trajectory for Ζ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.12 Detection of a chair in the laboratory environment. . . . . . . . . . . . 80
4.13 Detection of oscilloscope in the laboratory. . . . . . . . . . . . . . . . . . 80
4.14 Detection of a potted plant in the faculty’s corridor. . . . . . . . . . . . 80
4.15 Detection of a carton in the laboratory environment. . . . . . . . . . . . 81
4.16 Detection of a door in the faculty’s corridor. . . . . . . . . . . . . . . . 81
4.17 Detection of chair in the faculty’s corridor. . . . . . . . . . . . . . . . . 81
4.18 Detection of table in the faculty’s coffee room. . . . . . . . . . . . . . . 82
4.19 Detection of chairs in the laboratory environment. . . . . . . . . . . . . 82
4.20 Detection of desk in the faculty’s coffee room. . . . . . . . . . . . . . . 82
4.21 Detection of monitor in the laboratory. . . . . . . . . . . . . . . . . . . . 83
4.22 Case of a chair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.23 Case of a desk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.24 Case of a Keyboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.25 Oscilloscope case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.26 Joystick & Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.27 Space heater & Wardrobe . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.28 A single pot & many pots case . . . . . . . . . . . . . . . . . . . . . . . 86
4.29 Two door cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



LIST OF TABLES

3.1 Enhanced Point cloud data set with point distance information. . . . . 54
3.2 Data set of projected Point Cloud - Point, pixel correspondence. . . . . 56
3.3 Clustered Point cloud data set for K objects surrounding the robot. . . 57
3.4 Clustered Point cloud data set for K objects surrounding the robot. . . 58
3.5 Example of Cumulative Voting schema . . . . . . . . . . . . . . . . . . . 61
3.6 Cumulative scores of proposed labels. . . . . . . . . . . . . . . . . . . . 61

vi



LIST OF ALGORITHMS

2.1 Pseudocode for the Original Sequential DBSCAN Algorithm . . . . . . . 19

vii



ABSTRACT

Spyridon Syntakas, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, 2021.
Recognition and Navigation of a mobile robot by fusing laser and camera information.
Advisor: Aristidis Likas, Professor.

Robotic navigation, motion planning and robotic perceprion are fields of great im-
portance in robotics that are nowadays greatly enhanced by the advances in Artificial
Intelligence. Through the usage of sensory modalities and Machine Learning tech-
niques, the robots have a sensory experience of the surrounding environment. Of great
importance in robotic perception is the field of robotic vision and especially its appli-
cations in solving the task of object detection, which gives mobile robots the ability
to interact in various ways with objects of interest in the surrounding environment.

The objective of this thesis is the study, design, and implementation of a method
that solves the problem of object detection by fusing laser and camera information,
in comparison to most approaches that solve the problem using a single sensory
modality. This is accomplished by solving the sub problems of object detection, i.e.,
object localization and object recognition, in different spaces using different sensory
modalities . In the proposed method, object localization takes place in the 3D world
surrounding the robot, by segmenting the point cloud given by a 2D laser scanner
attached to the robot. By clustering the point cloud using DBSCAN, the position and
the 2D layout of objects in the detection range of the 2D laser scanner are obtained
as areas of high point density. By projecting the clusters on the image plane of the
camera sensor via a Direct Linear Transformation and having the sensors calibrated,
the localization of the object is transferred from the 3D world to the 2D plane of
the digital image and proposed bounding boxes are obtained. Given the proposed
bounding boxes recognition is achieved with the usage of a Convolutional Neural

viii



Network, i.e., a pretrained ResNet, that focuses recognition on the image location of
the object and labels are assigned to the corresponding box. The above detection
system is used combined with a navigation schema that uses the Potential Fields
method in such a way that the robot interacts with detected objects of interest, while
is autonomously navigates.

The proposed method that solves the problem of object detection as well as the
combinatoric application of both the detection and the navigation system, has been
implemented in ROS (Robotic Operating System) and applied and tested both in
simulation, using Gazebo, as well as in real case scenarios using the mobile robot
Pioneer 3-DX.

ix



ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Σπυρίδων Συντάκας, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστη-
μάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, 2021.
Αναγνώριση και Πλοήγηση ρομπότ κινητής βάσης συνδυάζοντας πληροφορία από
laser και κάμερα.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

H πλοήγη ρομπότ, η σχεδίαση κίνησης και η ρομποτική αντίληψη αποτελούν από τα
πιό σημαντικά πεδία έρευνας και εφαρμογών της Ρομποτικής, όπου σήμερα βελτιώ-
νονται κατα κόρον από την ραγδαία εξέλιξη και έντονη ερευνητική δραστηριότητα
στο πεδίο της Τεχνητής Νοημοσύνης. Μέσω της χρήσης αισθητήρων και εφαρμό-
ζοντας τεχνικές Μηχανικής Μάθησης, τα ρομπότ έχουν μια αισθητηριακή εμπειρία
του περιβάλλοντος. Αντικείμενο κύριας σημασίας στη ρομποτική αντίληψη, αποτελεί
αυτό της ρομποτικής όρασης και κυρίως η εφαρμογή του στην επίλυση του προβλή-
ματος της ανίχνευσης αντικειμένων, που δίνει σε κινητά ρομπότ τη δυνατότητα να
αλληλεπιδρούν με διάφορους τρόπους με αντικείμενα ενδιαφέροντος στον περιβάλ-
λοντα χώρο. Η επίλυση του προβλήματος της ανίχνευση αντικειμένων μεταβιβάζεται
στην επίλυση δύο υποπροβλημάτων, αυτό του εντοπισμού αντικειμένων και αυτό
της αναγνώρισης αντικειμένων.

Σκοπός αυτής της διπλωματικής εργασίας είναι η μελέτη, ο σχεδιασμός και η
εφαρμογή μιας μεθόδου που λύνει το πρόβλημα της ανίχνευσης αντικειμένων συν-
δυάζοντας ετερογενείς πληροφορίες προερχόμενες από λέιζερ και κάμερα, σε αντί-
θεση με τις περισσότερες προσεγγίσεις που χρησιμοποιούν ως μοναδικό αισθητήριο
αυτό της κάμερας. Η προτεινόμενη προσέγγιση επιλύει τα δυο υποπροβλήματα
της ανίχνευσης αντικειμένων σε διαφορετικούς χώρους χρησιμοποιώντας δύο δια-
φορετικά ετερογενή αισθητήρια. Η επίλυση του υποπροβλήματος του εντοπισμού
αντικειμένων λαμβάνει χώρα στον πραγματικό περιβάλλοντα κόσμο του ρομπότ

x



μέσω laser. Το ρομπότ μέσω του laser αντιλαμβλανεται και τις τρείς διαστάσεις του
περιβάλλοντος εργασίας του και μέσω ομαδοποίησης του point cloud που προέρ-
χεται από τον 2D laser αισθητήρα με χρήση του αλγορίθμου DBSCAN αποκτώνται
ομάδες (clusters) σημείων του point cloud ως περιοχές υψηλής πυκνότητας σημείων
που αντιστοιχούν τόσο στην θεση όσο και σε 2D αναπαραστάσεις εντοπισθέντων
αντικειμένων. Προβάλλοντας τα clusters στην εικόνα της κάμερας, αφού έχει προη-
γηθεί βαθμονόμηση των δυο αισθητήρων, ο εντοπισμός του αντικειμένου μεταφέρε-
ται από τον πραγματικό κόσμο στην δισδιάστατη εικόνα, όπου γνωρίζοντας πλεον
την σχετική θέση των αντικειμένων προτείνονται bounding boxes. Δεδομένων των
bounding boxes το πρόβλημα της αναγνώρισης επιλύεται με την χρήση συνελικτικών
νευρωνικών δικτύων, συγκεκριμένα ενός προεκπαιδευμένου δικτύου τύπου ResNet,
που εστιάζει την αναγνώριση στις περιοχές ενδιαφέροντος της εικόνας εντός των
προτεινόμενων bounding boxes και αναθέτοντας ταμπέλες στα αντίστοιχα κουτιά.
Το προτεινόμενο σύστημα εντοπισμού συνδυάζεται με ένα σύστημα πλοήγησης που
αναπτύχθηκε βασιμένο στην μεθοδο των Τεχνητών Δυναμικών Πεδίων, και ο συν-
δυασμός των οποίων επιτρέπει στο ρομπότ να αλληλεπιδρά με εντοπισθέντα αντι-
κείμενα ενδιαφέροντος με την μορφη αισθητηριακών μετρήσεων, καθώς πλοηγείται
αυτόνομα στο άγνωστο δυναμικό περιβάλλον εργασίας.

Η προτεινόμενη μέθοδος για την επίλυση του προβλήματος του εντοπισμού αντι-
κειμένων από το ρομπότ καθώς και η συνδυαστική εφαρμογή της με το σύστημα
πλοήγησης που αναπτύχθηκε, υλοποιήθηκε με χρήση του ROS (Robotic Operating
System) και εφαρμόστηκε και ελέγθηκε τόσο στο περιβάλλον προσομοίωσης Gazebo
όσο και σε πραγματικές συνθήκες στο ρομπότ Pioneer 3-DX.

xi



CHAPTER 1

INTRODUCTION

1.1 Motivation

1.2 Approach and Contribution

1.3 Thesis Structure

1.1 Motivation

Robotic navigation and motion planning is a field of great importance in robotics
that is nowadays greatly enhanced by the advances in Artificial Intelligence and In-
telligent Perception. Through the usage of sensory modalities and Machine Learning
techniques, the robots have a sensory experience of the surrounding environment.
Like humans, robots rely heavily on vision to perceive the environment and the ad-
vances in sensory technology together with Deep Learning enable the robot’s ability
to visually perceive and sense the workspace. Robotic Vision is a core concept in
robotic navigation. Analysis of visual data is tied to a lot of mobile robotic applica-
tions, alongside point clouds and laser data, which are traditionally used in motion
planning. Of great importance, in the field of robotic vision, is the task of object de-
tection which gives mobile robots the ability to interact in various ways with points
of interest in the surrounding environment. The advances in object detection by the
usage of Deep Learning gave birth to state-of-the-art models like YOLO, that provide
real time object detection with high accuracy capable of reinforcing reliability in nav-
igation while requiring only visual data in the form of images, captured by camera
sensors.

1



Although the state-of-the-art models have shaped and revolutionized the task of
object detection, the difficulty in training these models to new and large datasets, the
difficulty to create new datasets for specific applications and the existence of various
other sensors attached to robots give space to new approaches.

1.2 Approach and Contribution

The objective of this thesis is the study, design, and implementation of such an ap-
proach, that initially solves the problem of object detection by breaking it to its two
core sub problems, that of object localization and object recognition via fusion of laser
and camera information in a serial manner. A navigation system is also implemented
that achieves autonomous navigation, while the robot perceives the surrounding en-
vironment and interacts with it using the proposed detection system.

In the proposed method the two sub problems of object detection are solved in
different spaces using different sensory modalities. Object localization takes place in
the 3D world surrounding the robot, instead of the image plane as in state-of-the art
models, by segmenting the point cloud given by a 2D laser scanner attached to the
robot. By clustering the point cloud using DBSCAN areas of high point density, i.e.,
the clusters, represent individual objects. Thus, information about the location and
width of surrounding objects in the 3D world is perceived by the mobile robot and
by projecting the clusters on the image plane of the camera sensor, the localization
of the object is transferred from the 3D world that took place, to that of the digital
image. With knowledge of the location of the object on the image plane, essentially
via the laser scanner, the second core component of detection, i.e., recognition, can
be achieved with the usage of pretrained CNNs that are focusing recognition on the
image location of the object, i.e., recognizing the object that is represented by the 2d
cluster on the image plane. CNNs such as ResNet are trained on huge datasets, like the
ImageNet, and are capable of recognizing hundreds of objects with high accuracy and
fast speed of inference. In addition to the already huge number of classes they have
been trained on, new classes can be easily added via transfer learning and fine-tuning.

The number of classes as well as the convenience of flexible fine tuning and
transfer learning are the advantages of the proposed method compared to state-of-
the-art detection techniques, like YOLO. In addition, the classification of the detected

2



object is enhanced with distance information provided by the laser scanner, making
the control of the robot a lot more convenient in the case of Visual servoing.

The proposed object detection system, that combines laser and camera information,
is applied, and tested to a real robot, the Pioneer 3-DX, as well as in simulation. With
software developed in the ROS ecosystem, the robot perceives and navigates through
dynamic workspace. As proof of concept, using the method of Potential Fields, the
robot dynamically moves towards a given goal, by incrementally defining a free path,
and interacts with objects of interest that are detected by the proposed system.

1.3 Thesis Structure

This thesis consists of 5 chapters. Chapter 2 is dedicated to a detailed analysis of all the
theoretical background that is related to the proposed method and implementation.
The concepts discussed have to do with Sensory Data and Sensor Fusion, Machine
and Deep Learning for Sensory Data Analysis and Autonomous Navigation of mobile
robots.

In Chapter 3 the proposed Perception and Navigation System is presented. The
Chapter focuses on both a explanatory analysis of the proposed method as well as
on the details of the implementation.

Chapter 4 contains the experimental results obtained mainly from real world sce-
narios but also from simulation environments. The Chapter starts with a real world
detection case for the mobile robot while it autonomously navigates and ends with a
summary of real time object detection cases from several workspaces.

The last Chapter, 5 presents the conclusion of this thesis as well as future work
proposals.

3



CHAPTER 2

PRELIMINARY CONCEPTS

2.1 Data Fusion and Sensory Data

2.2 Machine Learning

2.3 Image Classification

2.4 Convolutional Neural Networks

2.5 Autonomous Navigation

Perception (from the Latin perceptio, meaning gathering or receiving) refers to the
act of organization, identification, and interpretation of sensory information that leads
to sensory understanding of the environment [1]. Perception in living organisms is
achieved via signals that travel through the nervous system, which result from the
sensory system of the brain reacting to sensory modalities. The advances in hardware
and sensory technology in the recent years gave computers the ability to mimic the
way the human perception in achieved [2].

Machine perception is the capability of data organization, identification and in-
terpretation achieved by computer systems and machines in a way that mimics the
sensory experience of the environment that a human brain can receive. In most cases
a computer system or a machine receive and respond to their environment through
attached hardware. The signals and sensory data, that a machine perceives through
its hardware is processed and comprehended nowadays mainly through the usage
of Artificial Intelligence algorithms and approaches. Machine perception is limited in

4



comparison to General AI in a way that it does not aim to full consciousness and
intentional behavior of the machine but restricts the goal of perception to that of
simple sentience. Thus, the aim of machine perception is that of subjective sensing
and not that of self-awareness and subjective thought[3], [4].

In robotics, perception is the system that enables the robot to perceive, understand
and make inferences about the surrounding environment. The most important com-
ponent of robotic perception as a system is sensory data processing and modeling,
which is essentially modeling of the surrounding environment. Through the interpre-
tation of stimulus modalities, a robot can understand the surrounding environment
and have a sensory experience of it. Commonly, Machine and Deep Learning tech-
nics are used to achieve the environmental modeling and infer based on the received
data. That gives access to the required information that becomes the input to complex
control systems which gives the robot the ability to interact with its environment [5],
[6].

Given the above, its easily understood that the main difference between perception
as a concept in AI in comparison to robotic systems is that a robot makes actions
in the real world.The key component of robotic perception, the one that enables the
inference based on sensory data and signals is no other than Machine Learning. The
advances in Machine and specifically in Deep Learning are these that make robotic
perception an applicable and reliable system and a mandatory aspect of modern
robotics. Before the analysis focuses on machine learning algorithms it’s important
to understand where the data come from, the sensory modalities, their representation,
and the corresponding sensors. So, the first topic that is analyzed in this thesis and
one of the key components of the application is that of sensory data aggregation and
fusion.

2.1 Data Fusion and Sensory Data

Data Fusion is the process of combining and integrating data from multiple sources to
enhance information and accuracy of measurements taken by using each data source
specific asset. When the data come from sensors, then the term Sensor Fusion is used.
Thus, sensor fusion, a subset of information fusion, is the process of combining data
derived from similar or heterogeneous sensors to obtain information that is more

5



accurate than the information derived from sensors as individuals [7]. In the case
that the data are derived from heterogeneous sensory modalities the term Multi-
modal sensor fusion is used. Multi-modal data are a key concept in perception of
the environment for both humans and robots. In the case of robots, the two most
common sensors are laser scanners, more specifically LiDAR, and cameras. These are
also the two sensors that are used in the presented application. By combining the
information received by the laser scanner and the camera, the proposed detection
system is achieved.

2.1.1 Laser Scanner – LiDAR

Laser Scanners – using LiDAR technology – measure distance with respect to the
frame of the sensor and are a key component in robotic perception and navigation,
obstacle avoidance, feature extraction, and SLAM. In the context of the proposed
application laser scanners can be also used to enhance object detection.

Figure 2.1: Laser Scanner working principle.

There are different types of laser scanners but typically all of them emit a laser
beam which is reflected from an object surface back to the sensor and, depending on
the method used, the distance of the reflecting surface is calculated [8].

Time‐Of‐Flight

In Time-Of-Flight (TOF) distance measurement technique a laser pulse is send by the
sensor that is reflected by an object surface with a frequency of few GHz. The emitted
time and received time from the reflection is measured and the distance between the
sensor frame and the object detected is computed as:

d =
c

2∆t
(2.1)

6



where d denotes the distance between the sensor frame and the object detected, c is
the speed of light (the laser pulse is most of times infrared) and ∆t denotes the time
between laser pulses emission and receival.

Phase – Shift Principle

The second technique that is used to calculate the distance of a reflective surface from
the laser sensors frame is that of phase shift distance measurement. A modulation
frequency and a phase shift between a reference and a return signal is used and the
distance of the reflective surface is given as:

d =
c

2f

ϕ

2π
(2.2)

where f denotes the modulation frequency and ϕ the phase difference between the
reference and return signal. The laser pulse is often steered using moving mirrors.
The laser beam is deflected by the usage of rotating or non-rotating mirrors but in a
lot of cases other deflecting elements, such as prisms, can be used.

The robot used in this thesis has attached a laser scanner with rotating mirrors. To
control the motion of scanning, a motor with a rotary encoder and a control driver
is used to rotate the deflecting mirror in the desired frequency so that acceptable
measurements are taken with respect to the application [9].

Using the above configuration, the laser beams basically correspond to lines in the
span of two bases vectors of the sensor frame. In the case of this thesis a mobile robot
with a 2D laser scanner with rotting mirrors intuitively emits beams in a hyper plane
parallel to the ground and depending on the angle and range of the reflected beams,
the distance of all detected objects is measured via TOF.

Point Cloud

Each point in the 3-dimensional space can be described by Cartesian coordinates
[X,Y, Z] with respect to the sensor frame or any other frame via corresponding trans-
formations.

The set of points of the 3D space, Pi = P1,P2,P3, . . . ,Pn, with n ∈ N and Pi =

[Xi, Yi, Zi] that correspond to the points on the objects where the laser beam got
reflected, i.e., the points where the laser hit the object, are called a point cloud.This
< X,Y,Z > data set represents the shape of the surrounding environment.

7



Figure 2.2: A rotating mirror case

Figure 2.3: 2D and 3D point cloud of a cube

In the general case, point clouds are data sets or collections of points that rep-
resent 3-dimensional shapes. They are the simplest form of a 3D model in a way
that the plotted pictorial representation of the point-cloud in R3 is the 3D model
of the corresponding object. Sometimes other data is stored alongside the [Xi, Yi, Zi]

coordinates of each point such as color or intensity, making the point clouds more
informative.

In the case of this thesis the point clouds that are created by the laser scanner
are 2-dimensional as result of the degrees of freedom of the sensor joint. The point

8



clouds created via the measurements of the laser scanner determine the exact Carte-
sian position of the points on the reflective objects detected, giving a 2-dimensional
representation of the robots surrounding environment.

Figure 2.4: 2D Point cloud represented in Gazebo

Note, that by giving one more degree of freedom to the 2D scanner construction
of 3D point clouds is possible, although not used in the context of this thesis.

Figure 2.5: 3D Point cloud represented in Gazebo

Point clouds created by the laser scanner of a robot can be used to extract infor-
mation about the surrounding environment and have many applications in robotic
perception and navigation, some of which are used in the proposed application.

2.1.2 Vision Sensor ‐ Camera

Cameras are optical instruments that measure the intensity of light reflected to them
by an object. As complex visual systems, they are composed of many parts such as
the lens, the shutter, the sensor, processing digital circuits and many more. Two types
of sampling is done by a camera, a spatial sampling of light intensity by the sensor
and a temporal sampling using the shutter.

The light that is reflected by an object is focused by the camera lens onto a surface
of the sensor, which is called the image plain. That is where photosensitive elements

9



transform the light into a digital image. Most of the sensors used by cameras are
based in the photoelectric effect of semiconductors with the most used and known
sensors being CCD and CMOS. No further analysis will be done to the differences
between the two technologies with respect to the objective of this thesis. The one
thing they have in common thought, is that of an element called pixel, that is the
photosensitive element mentioned before, that transforms the EM energy of the light
to electrical signals, which are later digitized into an image [10].

The model of a camera and the image formation can be approximated by the
pinhole camera model with central projection [11].

Figure 2.6: Pinhole Camera Model

If x describes the 2-dimensional pixel coordinates in the image plane, i.e., [x, y],
and X describes the [X,Y, Z] Cartesian coordinates of a point in the world frame,
then a transformation exists between x and X that maps the 3D point to the 2D pixel
as:

x = PX (2.3)

with P being the projection matrix. In the most general case, there are 4 coordinate
systems that transformations take place. These are:

• World coordinate system Sw where Xw = [X,Y, Z]T

• Camera coordinate system Sk where kX = [kX,k Y,k Z]T

• Image plain coordinate system Sc where cp = [cx,c y]T

10



• Sensor plain coordinate system Ss where sp = [sx,c y]T

The projection matrix P describes a chain of transformations between the 4 coor-
dinate systems [12], [13], [14].

The first transformation is the one that describes the position and orientation
of the camera with respect to the world frame. For the given point it’s a 3D to
3D (R3 → R3) transformation from the world frame to the camera frame. It can be
described as a translation of the center of projection point, i.e., the cameras coordinate
system origin, and a rotation giving the orientation of the camera. By denoting the
rotation as R and the center of projection as Xo the transformation matrix is written
in homogeneous coordinates as:

kHw =

R −RXo

0T 1

 (2.4)

thus, kXw = kHwXw.
The application of this transformation requires the knowledge of the 6 parameters

that are used to describe the position and the orientation of the camera frame with
respect to the world frame. These parameters are called the extrinsic parameters of
the camera. The above transformation is invertible.

The parameters that are used to compute the coordinates of the pixel, where the
point from the camera frame will be projected on the 2D image plane, are called the
intrinsic parameters. One particular parameter is called focal length. Focal length is
a distance parameter, referring to distance from the camera origin to the image plain,
describing the magnification properties of the lens and is used in the perspective
transformation which maps the 3D point on to the image plane. If the focal length
is denoted f then in homogeneous coordinates the cp pixel’s location on the image
plane is described by the transformation:

cOk =


−f 0 0 0

0 −f 0 0

0 0 1 0

 (2.5)

thus, cp =c Ok
kXw. The above transformation is expressed in distance metric units

and the minus sign in front of the f parameter is a mathematical representation of
the upside-down appearance of an object on the image plane due to the pinhole
model. To ease computations a virtual image plane is used positioned before the lens

11



thus the minus sign can be avoided. cOk =


f 0 0 0

0 f 0 0

0 0 1 0

 is called frontal perspective

transformation and cK =


f 0 0

0 f 0

0 0 1

 is called the ideal camera matrix.
The units used in the digital image is that of pixels, corresponding to the spatial

sampling done by the photosensitive elements and they represent an intensity of light
at each discrete point. The unit in the image plane represents physical measurements
of distance thus a change in the per unit system must be made. Parameters ax and
by correspond to the change of units in each of the two axes of the image plane.
Considering square pixels ax = by, but to retain generality we denote fx = axf and
fy = byf .

Thus, now cOk =


fx 0 0 0

0 fy 0 0

0 0 1 0

 and the camera matrix is cK ′ =


fx 0 0

0 fy 0

0 0 1


The above transformation applies to the ideal camera. In reality the image plain and
the sensor plain differ by a translation described by the translation vector [cx, cy]

T ,
because the principal point and the origin of the 2D sensor coordinate frame are not

the same. This translation is described through the transformation: sHc =


1 0 cx

0 1 cy

0 0 1


The perspective transformation matrix is combined with the translation with respect
to the principle point and form the Calibration Matrix also called a Camera matrix:

K = sHc
cK ′ =


fx 0 cx

0 fy cy

0 0 1

 which is the camera or calibration matrix.
Any point P = [X,Y, Z]T in the world frame can be transformed to the corre-

sponding pixel cp = [x, y]T using the formula in homogeneous coordinates:

cp = K kHw P (2.6)

where K contains the intrinsic and kHw the extrinsic parameters. Note that this trans-
formation is not reversible, as the depth information is lost. Another intrinsic param-
eter is called sheer compensation. For digital cameras sheer compensation is typically
zero so it is not used with respect to the transformation. The mapping from 3D world

12



frame coordinates to pixels in the image plane is called a Direct Linear Transforma-
tion (DLT), and has eleven degrees of freedom. The six are given from the extrinsic
matrix, i.e., the rotation and translation of the camera frame with respect to the world
frame. The other 5 are given by the intrinsic matrix. They depend on the camera’s
manufacturing and are unique for each sensor and camera.

Camera Calibration

Finding the location of a pixel in the image that corresponds to a 3D point in the real
world requires knowledge of the intrinsic and the extrinsic parameters of the camera.
These parameters are not always available, especially the intrinsic parameters, which
depend on the camera manufacturing and are in a way unique for each camera.
Given the fact that there is access to the images the camera captures, there is a way
to infer these parameters from the taken images. This problem of estimating the
intrinsic and extrinsic parameters of a camera is called camera calibration. There are
11 parameters to be estimated, as the projection from world coordinate to image plane
is a transformation with 11 degrees of freedom.

Camera calibration uses images with simple patterns and known dimensions,
with most common being the checkerboard with known square dimensions. By
defining the word coordinate origin on the upper left corner of the image, i.e., the
printed checkerboard, and knowing the height and width of the squares, the points
P = [X,Y, Z]T with respect to the word frame are known. We can also find the
corresponding pixels on the image, thus we have pairs of (p,P). The most com-
mon technique for image calibration is named Zhang’s Method which uses planar
checkerboards [15].

Figure 2.7: Checkerboard - Zhang’s Method

The corresponding projections of these points in the image plain, thus the pixel

13



values p = [x, y]T can be described by the transformation explained above. For the
ith pixel pi a transformation that describes the homography can be written as:

pi =

x
y

 = M


X

Y

Z

 = K kHw P = K[r1 r2 r3 t]


X

Y

0

1

 = K[r1 r2 t]


X

Y

1

 =

H P = [h1
T h2

T h3
T ]P

where M is the 3 x 4 camera matrix, containing the 11 parameters. This homography
reduces the degrees of freedom of the intrinsic matrix K by two as the rotation matrix
is orthonormal so:

r1T r2 = 0

r1T r1 = r2T r2

 =⇒

 h1
T (K−1)Th2 = 0

h1
T (K−1)TK−1h1 = h2

T (K−1)TK−1h2

From the above equations is inferred that matrix (K−1)TK−1 reduces its degrees of
freedom by two with each (p,P) projection.
B = (K−1)TK−1 is a symmetric matrix, thus it can be represented by the parameter
vector b = [b11 b12 b22 b13 b23 b33]

T

By denoting: vij =



hi1hj1

hi1hj2 + hi2hj1

hi2hj2

hi3hj1 + hi1hj3

hi3hj2 + hi2hj3

hi3hj3


=⇒ hi

TBhj = vij
Tb and we can infer:

 v12
T

v11
T − v22

T

b =

0
0

 (2.7)

Thus the matric H that contains the 11 parameters is calculated. The above is
Zhang’s Method for camera calibration which gives estimations of the intrinsic and
extrinsic parameters of a camera. The actual application of the Zhang’s Method will
be further analyzed in the last chapter as it is used to calibrate the camera of the
robot.

The sensory data that are used in this thesis and their corresponding sensors have
been described in the prior paragraphs. What follows is the approach used to model

14



the environment using those data in a way that object detection will be applicable
and robot navigation can be achieved. In the following sub chapter the theory of
the algorithms used to model and analyze the data is presented with respect to the
application. Besides the mathematical aspect an effort is made to describe the intuition
behind the presented methods.

2.2 Machine Learning

Machine Learning is a subfield of computer science and an application of Artificial
Intelligence which Arthur Samuel, a pioneer in machine learning formally defines as
a field of study that gives computers the ability to learn without being explicitly programmed.

Machine Learning is linked and rooted to domains such as Pattern Recognition,
Computational Statistics while also having strong ties with Numerical Optimization.
The distinguishing component of machine learning in comparison to traditional data
analysis and modeling techniques, that discover hidden knowledge or structure from
data and identify patterns within given data sets, is that of learning. So, in a deeper
sense machine learning can be seen as the study of algorithms that improve themselves
automatically and learn by the usage of data making them capable of predictions and
inference based on the given data as well as allowing generalization on previously
unknown information. By learning based on sensory data from the robots perception
system, algorithms can precisely model the robots surrounding environment and
allow the robot to navigate autonomously by enhancing its control [16]. Machine
learning algorithms can be categorized as follows based on intuition and results [17],
[18]:

• Supervised Learning: Given a set of data in the form of < X = {xi, ti}, i =

1, 2, ..N > where xi, ti are respectively input/features and desired output/label, a
function is learned inductively and thus a model is constructed that can make
predictions and generalize on new data

• Unsupervised Learning: Given an unlabeled data set < X = {xi}, i = 1, 2, ..N >

the algorithms learn the hidden patterns in the unlabeled data and using that
learned hidden structure they categorize the data into clusters, i.e., groups of
similar data

15



• Reinforcement Learning: Algorithms, also called intelligent agents, learn with
respect to the dynamic environment they interact with, in order to maximize a
cumulative reward.

Due to the algorithms that are used in this thesis, only Unsupervised Learning
and Supervised Learning will be analyzed further. More specifically, the Unsupervised
Learning algorithm that is used belongs to the category of Density based clustering
methods. The Supervised Learning algorithms that are used belong to a subset of
machine learning that grew, in performance and applicability, in recent years and is
that of Deep Learning.

Deep Learning is based on artificial neural networks and representation learning.
In the field of visual perception, which is a key component of this thesis, a specific
type of Neural Network is used – the Convolutional Neural Network.

2.2.1 Density based Clustering ‐ DBSCAN

Clustering is the action of dividing data points to groups based on similarity, in
a manner that data points that end up in the same group are more similar than
data points that end up in other groups. Based on the approach, clustering can
be model-free (partitioning), hierarchical, similarity-based and model-based. Model
based clustering algorithms can be categorized further into three distinct groups of
algorithms based on the clustering model:

• Connectivity based clustering

• Centroid-based clustering

• Density-Based clustering

Figure 2.8: Clustering

16



Further analysis will focus on Density based clustering, because that approach is
used in the application described in this thesis.

Density based Clustering

According to density-based clustering, clusters are defined as areas of higher density
separated by lower density areas. In other words, cluster is a region of high density
that surrounds similar points and is separated from other clusters with regions of
minimum variance. Comparing this type of clustering to the other categories, it excels
in detecting clusters with arbitrary shapes, does not require prior knowledge on the
number of clusters and has a notion of noise. These advantages of Density based
clustering are used in extent in the proposed detection system and the versatility on
applicability is one of the reasons this type of clustering was chosen for the application.

DBSCAN

DBSCAN is a popular clustering algorithm which requires only two parameters – ε
and minPts. DBSCAN model is based on minimum density level estimation, using a
threshold for the number of neighbors, minPts, within the radius ε of a point. Based
on these two hyperpameters DBSCAN classifies all points in a data set as core points,
density reachable points or noise [19], [20].

• A point p that has more than minPts neighbors with respect to the radius ϵ is
considered as a core point.

• If a point p belongs to the neighborhood Nϵ(q) of point q and q is a core point,
then point p is called directly density-reachable from q. That’s a non-symmetric
relation.

• If q is a core point and p is a non-core point that is directly density reachable
from q, p is called a boarder point.

• If a path p1, ..., pn exists, with p1 = p and pn = q, where each pi+1 is directly
density reachable from pi, then point q is density-reachable from p.

• Two points that are density-reachable from point p are called density – con-
nected. That’s a symmetric relation.

17



• A point o that is neither a core-point nor a boarder point is called noise or
outlier.

Given a dataset and hyperparameters ϵ and minPts, a cluster S must satisfy two
conditions:

1. Given a point p ∈ S, if a point q is density-reachable from p, then q ∈ S.

2. All points within a cluster must be density – connected.

Intuitively, if p is a core-point, then all reachable points from p form a cluster. This
can be clearly understood from the figure below: The circles around the points denote

Figure 2.9: DBSCAN pictorial intuition

the radius ϵ. minPts is set to 4 and the arrows correspond to density reachability from
point A. Point A is a core point and points B, C are boarder points both satisfying
density reachable definition. Point N is considered an outlier, or a noise point, because
it is not density reachable with respect to point A.

The pseudocode for the Original Sequential DBSCAN Algorithm is given in Algo-
rithm 2.1. DBSCAN run time complexity is O(n2) and it depends on how many times
RANGEQUERY is called. In the most simple and naive implementation RANGE-
QUERY is called once for each point and it checks the distance of one point from all
other n-1 points in the dataset, thus the O(n2) complexity. By using R*-three in the
RANGEQUERY, average time complexity can be reduced to O(nlogn) since by having
a small ϵ-neighborhood range, on average querying for neighbors has to traverse a

18



Algorithm 2.1 Pseudocode for the Original Sequential DBSCAN Algorithm
Require: DS : dataset, ϵ : radius,minPts : Density threshold, dist : Distance function

1: for each p ∈ DS do
2: if label(p) ̸= undefined then
3: continue

4: end if
5: Neighbors N ← RANGEQUERY(DS, dist, p, ϵ)

6: if |N | < minPts then
7: label(p)← Noise

8: continue

9: end if
10: c← next cluster label

11: label(p)← c

12: Seed set S ← N\{p}
13: for each q ∈ S do
14: if label(q) = Noise then
15: label(q)← c

16: end if
17: if label(q) ̸= undefined then
18: continue
19: end if
20: Neighbors N ← RANGEQUERY(DS, dist, q, ϵ)

21: label(q)← c

22: if |N | < minPts then
23: continue
24: end if
25: end for
26: S ← S ∪N

27: end for

19



small amount of paths in the tree, but there is no guaranty that this will always be
the case.

2.2.2 Supervised Learning ‐ Artificial Neural Networks

In machine learning, Supervised learning is the action of learning a function f(.) that
maps an input to an output, based on prior knowledge of input-output pairs, called a
data set [21]. The data set consists of examples each having a set of features/attributes,
with one of them being the label/class which characterizes the example. An example
is typically represented as a vector and the corresponding label. So a data set can
be denoted as < X = {(xn, yn), n = 1, 2, 3, ..N} > with xn ∈ Rd and yn being the
corresponding label. The labeled data set, the one that based on its examples the
function in learned, is called the training set. The inferred function f(.) acts as a
model or a procedure that given an input vector, consisting of the attributes, predicts
the class attribute so ∀xn ∈ X∃f(xn) = yn.

The objective of supervised learning, is inferring such a function that can classify
and predict previously unseen examples with high accuracy, also called as achieving
generalization. In comparison to unsupervised learning, which objective is to find
hidden structure and patterns in an unlabeled data set, supervised learning intuitively
can be seen as the task that best approximates association between input and output
with respect to the prior knowledge of the labeled features.

There are many supervised learning algorithms and even more applications. With
respect to the objective of this thesis, further analysis will focus on Deep Learning
and more specifically on Convolutional Neural Networks (CNNs on ConvNets) for
image recognition and detection. Before that though, a summary analysis will be
done on Artificial Neural Networks, starting from the single node perceptron, so that
an intuition of the methods and technics used can be made before further analysis is
done to CNNs.

2.2.3 Perceptron

Perceptron is an algorithm for supervised learning of binary classifiers. The algorithm
was invented by Frank Rosenblat and is considered to be the first generation of
Artificial Neural Networks. It is actually a single neuron. As a binary classifier, it is a
function that given an input vector of features assigns either the label +1 or -1 on the

20



given vector. More specifically perceptron is a linear model, so it bases the prediction
on a linear prediction function and a set of weights corresponding to each input
vector feature. So, the problem that the perceptron algorithm solves can be written
as follows.

Given a training dataset < X = {xn, yn}∀xn ∈ Rd, yn ∈ {−1,+1}, n = 1, 2, 3, ..., N >

estimate the weights - parameters w;w0 of the linear model such that

∀n ∈ N → yn(w
Txn + w0) ≥ 0

The approach of the perceptron algorithm for solving the above problem is the
following and is called the Perceptron criterion:

• If the xn is correctly classified, which corresponds to yn(w
Txn + w0) ≥ 0, zero

action are taken

• If xn is incorrectly classified, which corresponds to yn(w
Txn + w0) < 0 , then

−yn(wTxn + w0) is the contribution of the xn example to the cumulative error.

The weighted sum, a linear combination of the features, is passed through an
activation function, which in the simplest case can be a step function, i.e., sign(.). A
step function has a discontinuity thus is non-differentiable, but still fits the solution
of the simple problem.

Figure 2.10: Perceptron pictorial representation

The Perceptron Criterion Function is constructed as

E(w) = −
∑
xn∈M

yn(w
Txn + w0) (2.8)

21



where M = {xn : yn(w
Txn + w0) < 0} and is minimized if {w,w0} is a solution

vector.
If no examples are misclassified, then the criterion function evaluates zero. The

weights are updated as:

wnew = wold + nynxn (2.9)

wnew
0 = wold

0 + nyn (2.10)

repeatedly until convergence or until a threshold of maximum updates is reached,
where n is the learning rate.

Note that a different activation function than the step function, for example a sig-
moid can be applied after the linear transformation. The sigmoid being a continuous
nonlinearity, in comparison to the step activation function, makes the overall function
of the perceptron differentiable and that is enabling new approaches to training and
learning the weights w.

Figure 2.11: Non linear activation

So the perceptron unit computation is now written as

f(xn) = ϕ(w0 + wTxn) (2.11)

where ϕ(α) = 1
1+exp−λα Using as an error function, now called also a loss function, the

sum-of-least squares,

E(w) =
1

2

N∑
n=1

(f(xn)− yn)
2 (2.12)

the vector w that minimizes E(w) is the solution to the classification problem.

22



So actually, the classification problem is reduced to finding w : min{E(w)} which is
solved via gradient descent and the weights are repeatedly updated until convergence
as:

wnew = wold − n
∂E

∂w
(2.13)

Due to a biological analogy, a perceptron unit is commonly called a neuron, or in
the context of a neural networks as it will be explained below, is also called a node.
Biologically, even though the analogy is a simplification which adds a lot of restrictions
to the ways of Neural Network intuition, the output of a neuron on the synapse is a
signal that is the result of the input signals of its dendrites.

Figure 2.12: Biological analogy of neuron to perceptron

From a geometrical standpoint, perceptron tries to find a hyperplane that separates
the input data, thus classifying them.

Figure 2.13: Data separation

A single perceptron, being a linear model unit, cannot separate non-linear sepa-
rable data, for example cannot solve the XOR problem. For non-linearly separable
data a combination of perceptron units solves the problem.

23



2.2.4 Artificial Neural Networks

By stacking perceptron units we can create linear layers, which are actually lin-
ear functions that apply linear transformations on the input vectors xn ∈ Rd to an
output vector xout ∈ Ro where o and d spaces can be of different dimension, i.e.,
dim(d) ̸= dim(o). The biological analogy is that, of a set of neurons having their
dendrites connected to the same input signals. The firing of a biological neuron is
mimicked by the addition of a non-linearity after the linear transformation, such as
the sigmoid that the sum of products of the vectors with the corresponding weights
is passed. Mathematically, by having nonlinear activation functions after the linear
transformation is what enables a combination of linear layers to infer any kind of
function, even non-convex ones. Note that non-linearities in most cases are contin-
uous, thus differentiable, that also makes the network function differentiable with
interesting training methods applicable. An Artificial Neural Network is a network
consisting of layers of connected perceptron units. Layers are characterized as input,
output and hidden layer.

Figure 2.14: Graph representation of an Artificial Neural Network

• Input layer: The first layer of the network. Its nodes take the values of the input
vector.

• Output Layer: Last layer of the network. It has one node for each value of the
network output. In the case of binary classification or regression there is only
one unit and K-units in the case of K-classification problem.

24



• Hidden layer: Layers between the Input and Output layer. The values of these
nodes are learned via training using an algorithm called backpropagation.

The number of hidden layers in a network is called the depth of the network –
thus the term deep learning. The number of nodes in a layer is called the width of
the layer.

Except of the input layer, all other neurons use a nonlinear activation function.
Between the input and output layer there should be at least one hidden layer but
there can be many more hidden layers, depending on the complexity of problem to
be solved.

A Multi Layer Perceptron (MLP) is a feed-forward neural network, which means
that nodes are connected in an acyclic graph with no connections between neurons
in the same layer, fully connected neurons between consecutive layers and the com-
putations are done sequentially.

Mathematically, there is a little difference between the single node perceptron
explained in the previous section and the MLP case, in terms of how the models are
trained and how they infer.

Figure 2.15: Graph representation of an Artificial Neural Network

• il as the ith neuron in the layer l

• u
(l)
i as the total input of the ith neuron in the layer l

• y
(l)
i as the corresponding output

• w
(l)
ij as the weight parameter of connection between neuron jl−1 to neuron il

25



• w
(l)
i0 as the bias

• φl(.) as the activation function of layer l

• dl as the number of neurons in layer l

• H as the depth of the network

then a forward pass, i.e., the calculation of the output layer with respect to input
data, of a network with vectorial input data with d components and p outputs is
described as follows:

• For the input layer y(0)i = xi and y
(0)
0 = x0 = 1.

• For the hidden layers the total input of the ith neuron of the layer h is calculated
as:

u
(h)
i =

dh−1∑
j=1

w
(h)
ij y

(h−1)
j + w

(h)
i0 , i = 1, 2, 3, ..., dh

and the output of the i-th neuron in the layer h is:

y
(h)
j = φh(u

(h)
i ), i = 1, 2, 3, ..., dh

and
y
(h)
0 = 1

• As for the total output, the inferred value is oi = y(H+1), i = 1, ..p.

The network acts a function that performs a mapping from Rd to Rp , with respect
to the training data set, though which the weight parameters {wij, wi0} of the function
are learned.

By applying linear transformations and by passing the weighed linear combina-
tions to nonlinearities sequentially from layer to layer, the inferred function of the
network can solve complex problems with high dimensionality. The algorithm that
enables the training of such neural networks so the weights are obtained is called
backpropagation.

Given a training data set < D = {(xn, ln)}, n = 1, 2, 3,…, N >, where xn =

(xn1, xn2, xn3,…, xnd) is the vector of features of each example and ln the assigned
pre-known continuous value, which is a regression problem, and given a specific
MPL architecture, as far as the depth d and width of each layer, o(xn;w) denotes
the output vector of the MLP after the forward pass of the input vector xn , with
w = {wij;wi0}.

26



Training

As done in the simple single node perceptron, a loss function is defined and via
optimization, the learned weights are obtained [18]. The loss function that is used
is again that of sum-of-least squares, and by denoting the target values vector as
t = (t1, t2,…, tn) ∈ RN , the loss function is written as:

E(w) =
1

2

N∑
n=1

(o(xn, w)− tn)
2 (2.14)

Once again by finding the weights w = {wij;wi0} that solve the min{E(w)} opti-
mization problem gives the learned parameters of the MLP.

Gradient descent, or a more efficient version called stochastic gradient decent, can
be used so that the weights can be obtained through the already known iterative
application using one example from training set at a time ,or a batch of them in the
case of stochastic gradient descent:

wnew = wold − n∇E(wold) (2.15)

The gradients, that must be computed to apply the iterative formula, are obtained
using an algorithm called backpropagation. In detail description of the backpropa-
gation algorithm falls out the topic of this thesis. Intuitively thought, after a forward
pass is done for an input vector x, an error is obtained based in the output, i.e., the
inferred predicted value - and the actual value of the input x. That error flows back-
wards to the network - a backward pass- and by applying the chain rule backwards,
layer by layer, starting from the last layer, the gradients of the error function with
respect to each layers weights and bias are computed. So, using the iterative update
formula, until convergence or a max threshold, the total learned parameters of the
network are computed. There are many more details about MLP and Neural Nets but
with respect to the topic of this thesis, no further analysis will be done In the context
of this thesis classification is the main task of the network. A different loss function
than the sum-of-squared-errors is used, and a specific activation function is applied
most of the times in the last hidden layer. So, SoftMax activation and Categorical
cross entropy loss function will be briefly presented below.

27



SoftMax activation

The SoftMax function takes as input a vector x = [x1, x2,…, xn] ∈ RN and applies a
normalization so that the output is a vector consisting of N probabilities proportional
to the exponentials of the input vector components. By normalizing the input vector
components into a probability distribution over N possible outcomes, the output
describes a categorical distribution, also known as the Boltzmann distribution [18],
[22]. After the application of SoftMax to a vector all its components are bounded
between [0, 1]. By denoting SoftMax as σ:

σ(x) = exp xi∑N
j=1 exp xj

, i = 1, 2, 3, ..., N , ∀x = [x1, x2, ..., xn] ∈ RN (2.16)

SoftMax is used as the activation function of the last linear layer for K – class
classification problems. It takes as input the networks last layer output in the form of
the vector x, consisting of K linear transformations with respect to the weights, and
outputs the probability of the ith class prediction as:

P (y = i|x) = exp xTwi∑K
j=1 exp xTwK

(2.17)

Thus, by applying the SoftMax activation function we get a probability distribution
of the predictions for the K-classes in the training dataset.

Categorical Cross Entropy

Categorical cross entropy is used as a loss function in multinomial classification prob-
lems. The function calculates the difference between two discrete probability distri-
butions and specifically between the probability distribution of predictions and the
one-hot encoded vector representation of the actual class [18], [22]. Formally, this is
written, for each example of the dataset, as:

loss = H(yi, ŷi) = −
K∑
i=1

yi log ŷi (2.18)

where yi corresponds to the ith index value of the one hot encoded vector, ŷi corre-
sponds to the ith index value of the networks output.

Categorical cross entropy is well combined with SoftMax activation function. Soft-
Max activation function makes the output of the network a categorical distribution of
the K-classes. One hot encoded representation of an example is a discrete probability
distribution thus the difference between the two can be computed with cross entropy.

28



2.3 Image Classification

Image classification is the task of categorizing and labeling groups of pixels within
an image or the entire image itself based on its content. Simply put, it is the problem
of assigning a class label to an image. As a problem of Computer Vision it falls in
the general category of problems known as object recognition, 2.16. The two other
main problems of object recognition is that of object localization and that of object
detection. Object localization involves putting a bounding box around an object on a
digital image, whereas object detection combines image classification and localization
and puts a label on the bounding box, classifying its contents [23].

Figure 2.16: Computer Vision tasks block diagram

In this thesis an approach is used such as that image detection is achieved by
fusing data from laser scanner, i.e., object localization, and assigning a label thought
image classification of the bounded area.

So further analysis will focus on image classification, and specifically achieving
classification with Convolutional Neural Networks (CNN). Before that, in order that
the importance of CNNs in image classification accuracy is made clear, a small intro-
duction is made by using Linear classifier and MLPs for the task [24]. Where they
fail is where the ConvNets shine.

29



2.3.1 Linear Classifier and ANN for Image Classification

An image could be used as input to an MLP by flattening the 2d tensor that the
image is represented through (assuming a greyscale image) and by training an MLP
on a labeled image data set, an MLP classifier of images would seem possible.

Figure 2.17: Grey scale Image flattened to vector

There are many issues with respect to the above - specifically due to spatial struc-
ture information on images and the importance of it in classification, which in this
case is lost and not taken into account - and that can be easily seen, by training
a simple linear classifier like the perceptron on an image data set.The Figure 2.18
below pictorially describes such a classifier.

Figure 2.18: Linear Classifier for Image Recognition

For simplicity assuming there are only 4 pixels in the image, a flattened tensor

30



of the image passed to f(x,W ) that is a 3-class linear classifier, would look like in
figure 2.19.

Figure 2.19: Image content inferred from a Linear Classifier

The weight matrix W is 4x3 matrix due to 4 pixels and 3 classes in this simplified
example. Each row is intuitively a learned template for each one of the three classes.
Thus, classification of images using linear classifiers is similar to template matching.
The dot product of each row with the flattened pixels, give a similarity score of the
template with the given image. The 3x1 bias, acts as an offset that correspond to class
independence.

What the linear classifier is really doing can be seen, by visualizing the learned
templates – weights - as images, by reshaping the rows of the W matrix to tensors
of size equal to the images fed to the linear classifier. That pictorially can be seen on
the Figure 2.20.

Figure 2.20: Learned weights visualization

As it is now clear, the linear classifier only learns one template per class. That

31



template tries to average all different variations of the image of the same class on the
training dataset and that results to bad classification accuracy on complex images.

By using MLP - thus stacking linear layers acting as linear classifiers followed
by non-linearities in the form of activation functions - we can have the hidden layer
weights be intermediate templates trying to match the details that the single linear
classifier template averages and fails to take advantage of.

Figure 2.21: Image passed to a two layer ANN.

Intuitively the output of the dot product of the templates – row vectors- of W1

with the flattened image vector, which corresponds to a similarity of the image with
the template, is further fed to the next layer which tries to enhance template matching
further, computing the similarity with the row vector templates of W2. An approach
like this, although it gives insight of how an image classifier would work, does not
make use of the spatial structure of an image and the correlations between adjacent
pixels. That is the where the idea of the convolution and Convolutional Neural Net-
works (CNN) comes into play and spatial and temporal dependencies of images are
taken into account. The next chapter will make use of the ideas used in MLP such
like backpropagation and optimization of the loss function, and with the addition
of convolutional layers, image classifiers that use images spatial information will be
explained.

2.4 Convolutional Neural Networks

Convolutional Neural Network (CNN) [25] is a type of Artificial Neural Network spe-
cializing in processing and classifying grid-like topology data, making it perfectly
fitted for image classification. CNNs revolutionized fields like Computer Vision, where

32



Figure 2.22: Convolutional Neural Network Architecture.

prior to deep learning approaches, the preprocessing of imagery data was hand-made
and mandatory before passing the images as input to the image recognition algo-
rithms, while CNNs require minimum preprocessing as the network acts as feature
extractor, using filters that are learned via training. These filters, also called con-
volution kernels, using the mathematical operation of convolution, extract features
from the images, by sliding in a way along these features and providing responses
named feature maps. The use of convolution kernels also reduces dramatically the
number of computations needed to be done in order to successfully do the task of
image classification especially in huge data sets. A CNN actually uses a system like
the Multilayer Perceptron which has been altered with the addition of the convolu-
tion operation and redesigned for spatial data reservation and reduced processing
requirements. Key role in the CNN algorithm is that of Convolution [24], [22], [26].

2.4.1 Convolution

Convolution is a mathematical operation between two functions f(t) and g(t), com-
monly signals, denoted by the * symbol, that derives a third function as [27]:

f ∗ g(t) =
∫ ∞

−∞
f(τ)g(t− τ) dτ (2.19)

That is the definition of continuous 1-dimensional convolution which is calculated
as the integral of the multiplication between the first signal and the reversed and
translated in time second signal.

Convolution is a really important operation in signal processing and one of the
most important concepts of electrical engineering. That is because the output signal
of a system that is linear time invariant is the convolution of the input to the system
with the impulse response, which is a function of time that describes the dynamic
system[28].

33



The discrete version of the convolution, which is an operation on two discrete
time signals is defined by the integral,

f ∗ g[n] =
∞∑

k=−∞

f [k]g[n− k] (2.20)

So, convolution of two discrete signals is done by multiplying and accumulating
the values of the overlapping samples of the fist signal with the flipped version of the
second signal, which is the impulsive response.

Moving from one dimension to the n-dimensional space, the concept of convo-
lution, both continuous and discrete can be applied to n signals spanning among
n mutually perpendicular dimensions, or simply put having n-dimensional signals,
thus multidimensional convolution is defined.

One of the most used cases of multi-dimensional convolution is that performed
on 2-dimensional discrete spatial signals. Such a signal is the digital image, that is
represented as a 2d tensor and in the field of both image processing and deep learning,
2D discrete convolution plays a really important role. The way the 2-dimensional
discrete convolution is performed is the same as in the case of the one dimension,
with the difference that the impulsive response signal is flipped twice. The impulsive
response signal is called convolution kernel or filter in the case of 2D convolutions.
Mathematically, 2D convolution on images can be defined as:

y[i, j] =
∞∑

m=−∞

∞∑
n=−∞

h[m,n]x[i−m, j − n] (2.21)

where x is the input image that the convolution is performed, h is the filter and
y is the output image. The kernel, usually having a lot smaller dimensions that the
input image, is placed in every spatial possible location over the input image and
multiplication and accumulation of the overlapping values is performed in every
position. A pictorial example is given in Figure 2.23.

Images are commonly defined in the RGB Color space, thus are defined as 3d
tensors. Convolution is performed is each one of the 2D tensor of the corresponding
color channels with a 2D filter, outputting three 2-dimensional tensors. The 2D tensors
are accumulated into a single value.

2D convolutions in a key concept in image classification and computer vision in
general. It’s the changing factor in neural networks that makes them have amazing

34



Figure 2.23: 2 dimensional discrete convolution.

Figure 2.24: Convolution operation on a 3 dimensional tensor .

performance on data where spatial or temporal information exists as convolution
retains that information intact.

2.4.2 Convolutional Neural Networks for Image Classification

CNNS [22], [29] use the concept of 2-dimentional discrete convolution and create
Convolution layers. The structure of a CNN layer is that of a 3-dimentional grid
structure, which has height, width, and depth. The spatial dimensions of one layer
are dependent on the spatial dimensions of the previous layer and this dependency
relationship is important to be preserved among grid structures because the convo-
lution operation depends on these relationships. The depth-dimension corresponds
to the number of channels in each layer and is a dimensionality of the 3D tensor
that represents the transformed data in each layer. For the input layer and assuming
RGB color space, the depth is equal to 3, as many as the channels of the input image
data. For the hidden layers the depth is equal to the number of feature maps.

A CNN acts like an MLP in the way the data flows through the network and the

35



way it is trained, i.e., via backpropagation, but the big difference is that of spatial
connection between consecutive layers. The common types of layers in a CNN are the
convolution layers, the pooling layers and the non-linear activation layer, commonly
ReLU. After the stacks of convolutional and pooling layers which as a total are also
called the feature extractor, a fully connected or dense network is attached which
maps the input images to classes as in an feed forward architecture, using commonly
SoftMax and categorical cross entropy at the output.

The input data, which in this case are images, are represented as 3-dimetional ten-
sors. The two dimensions are containing the spatial structure and properties between
pixels and the third dimension is distinguishing these relationships for each one of
the 3 channels. For the input layer the properties represented in the 3-d tensor (the
RGB image) are the intensities of each color. For the hidden layers, which have depth
dimension > 3, the values of the pixels in the 3-d tensors represent other properties
such as edges or shapes that were extracted from specific spatial parts of the image.
By denoting H,W, d as height Width and depth of layer, the lth layer has an input of

Hl ×Wl × dl

All convolution layers have this 3-dimensional structure, with the input layer
having a predefined dimensionality with respect to the image data and always d=3.
All hidden layers maintain the 3D structure but the values of the individual dl 2-
dimensional tensors are no longer pixel intensities but represent specific features
extracted through the convolution operation. For the hidden layers, the individual
2D tensors are called feature maps or activation maps.

The learned parameters of the Convent’s are called kernels or filters. They are
3-dimensional tensors with height and width a lot smaller than of the corresponding
layer and depth equal to that of the corresponding layer. So by denoting the height
and width of the kernel as K the 3D structure of a kernel of the lth layer can be
described by

Kl ×Kl × dl

The discrete convolution operation that takes place, slides the 3D kernel through
the layer placing it at each possible position and calculates the dot product between
the Kl ×Kl × dl values of the kernel with the Kl ×Kl × dl proportion of the image
at each position. Each position the filter takes in the current layer corresponds to
a feature in the next layer. Thus the number of possible position of a filter in the

36



current layer defines two of the dimensions of the 3D tensor of the next layer. That
is the next layers height and width. These dimensions can be calculated as:

Hl+1 = Hl −Kl + 1 (2.22)

Wl+1 = Wl −Kl + 1 (2.23)

The depth of the next layer depends on the number of filters used in the current
layer. Every kernel gives through the convolution operation each own feature map,
of which the next layer consists of. The number of kernels used in each layer is
something to be taken under consideration as the kernels are the learnable parameters
of the network. Each kernel, though the convolution operation, tries to identify and
extract a spatial pattern in the part of the image that the dot product is calculated.
Thus, by using many kernels the convolutional layer can recognize many spatial
patterns and extract many features, but the complexity of the model increases as the
learnable parameters increase.

If we denote:

• Tensor W (p,q) = [w
(p,q)
ijk ] as the pth filter in the qth layer, where i, j, k are the

positions of the height width and depth of the filter

• Tensor H(q) = [h
(q)
ijk] the feature map of the qth layer

the convolution operation performed that maps layer q to layer q + 1 is written as:

h
(l+1)
ijp =

Kl∑
r=1

Kl∑
n=1

dl∑
k=1

w
(p,l)
rnk hi+r−1,j+n−1,k (2.24)

∀i ∈ 1, 2, 3, ..., Hl −Kl + 1,∀j ∈ 1, 2, 3, ..,Wl −Kl + 1,∀p ∈ 1, 2, 3, ..., dl

The convolutions performed by the first layers of the network are recognizing
simple shapes and patterns and as the data is passed through the network and spa-
tially reshaped respecting the spatial dimensionality connections of the convolutions,
the later layers of the network detect more complex features. Thus, the convolutional
layers act as a feature extractor really similar to that of human vision, where sets of
neurons are activated when certain shapes are in the visual field. Recognition and
construction of complex shapes and patterns is in a way hierarchical. That hierarchal
engineering is one of the most important aspects of neural networks.

37



Three important properties are present in the convolutional layers due to the
operation of convolution, and these are sparse interactions, parameters sharing and
equivariant representations.

Sparse interaction is achieved by using filters with dimensions of height and width
much smaller than that of the corresponding layer. In addition to the intuitive use
of small kernel size in order to extract smalls patterns in digital images, the usage of
such kernels results in reducing the number of connections between the input and
output layer, resulting in reducing the overall number of parameters. That lowers
the models number of computations to infer which makes the model more memory
efficient and increases the generalization.

Parameter sharing, also known as tied weights, refers to the fact that a specific
weight in the filter is used in all the possible positions that can spatially be placed
with respect to the layer its applied. So the weights are shared by all the neurons in
a feature map. During training, tied weights, result to a filter updating its weight via
backpropagation with respect to the hole 3d-tensor that is applied. That means that
even though a kernel is extracting features in a small spatial region of the image (or
3D tensor for hidden layers) by taking every possible position and computing the dot
product with the same weight over all the image, the filter is not learned for every
specific position it was placed but with respect to the images as whole.

Equivariant representation means that Convnets are equivariant with respect to
linear translation, though they are not equivariant with respect to scaling and dis-
tortion. If f(g(x)) = g(f(x)) then we say that f(.) is equivariant with respect to g(.).
If g(.) is a linear translation, then the function that is produced through convolution
is equivariant to g(.). Intuitively that means that by shifting spatially the input in a
convolutional layer, the output is equally shifted.

Detector Stage ‐ Non Linearity

After the convolution layer, as in the case of MLP, a non-linearity is applied. The
operation of convolution creates a weighted linear combination of the spatial inputs,
so convolution layers are basically performing linear transformations. In order to
enhance networks expressiveness so that it can represent any function, just as in the
MLP case, non-linearities are applied. That way the mappings between layers achieve
the desired complexity to model the given data.

The most common non-linear activation function used in CNNs is ReLU. Rectified

38



Linear Unit is the ramp function:

f(x) = x+ = max(0, x) (2.25)

with x being the product of the convolution operation.

Figure 2.25: ReLU activation function.

In the context of CNNs ReLU applies a threshold to the Hl ×Wl × dl values in
the layer, which are then fed forward to the next layer. ReLU is a big improvement,
in terms of speed and accuracy of the network, compared to activation functions like
the sigmoid or tanh. The speed of ReLU also enhances the speed of training making
it effective as the networks becomes deeper and the number of parameters increases.

Pooling Layer

Pooling is an operation that takes place in small regions of the image, or the feature
map if it refers to a hidden layer , denoted as Pl × Pl . The Pooling operation is
performed in each 2d-tensor corresponding to the dl activations maps. For every
Pl × Pl value only the maximum is returned. That approach is called max pooling.

So pulling lowers the height and width dimensions of the activation maps and
leave the depth unchanged. The intuition of pooling is described by what is called
translation invariance. Two images that contain similar shapes and patterns may have
these same patterns occur in different locations of the image. Translation invariance

39



Figure 2.26: Max Pooling operation.

is what gives the network the ability to classify such images with the same label. So
basically, by the use of pooling, even if an images feature or shape pattern is translated
in a small manner the activation maps remain relatively the same.

Pooling layers are not used after every convolution + ReLU combination. In fact
only few pooling layers are enough, because the reduction in spatial dimensions of
the 3d tensors that they do with respect to height and width are such, that the tensors
would reduce to tiny dimensions fast.

CNN Training

By combining Convolutional Layers followed by ReLU activations and adding max-
pooling layers every once in a while, the feature extractor part of the CNN is complete.
There are many more things one could study with CNN such Local response Normal-
ization, data augmentation to avoid overfitting, but they fall out of the scope of this
thesis. After the Feature Extractor part in a CNN always follows a fully connected
neural network (Dense), that is similar to an MLP. The last layer of the feature extrac-
tor flattens the feature maps to single vector, which represents the input image after
all the transformations, and is fed through the fully connected linear layer. The Dense
network using a SoftMax in most cases, outputs a probability distribution over all the
classes, and the label is assigned to the image that the network is more confident.

Both the weights of the fully connected network and the kernels that are used
to extract features via convolution are the learnable parameters of the CNN and
are obtained via backpropagation. Both the convolution operation, that is a linear
transformation over a small region of the tensor, as well as the ReLU are continuous
and differentiable, so backpropagation is applicable.

In general, training of CNNs uses the same general methods used by MLP [18],

40



with the basic algorithm being that of backpropagation. A loss function is calculated
by feeding the network with data from a training dataset. By solving the minimization
problem of finding the kernels and the weights that minimize the loss function over
the hole training dataset, the model parameters are given. The minimization is done
with gradient descent, or other optimization methods such stochastic gradient descent
or Adam, which use an iterative update of the filters and weights using gradients at
each layer until convergence. The gradients of the kernels with respect to the loss
function are calculated though backpropagation as in the case of MLPs. One problem
though that comes with training (one that occurs when training CNNs or networks
with many layers in general) is that of the gradient flow. Two of the most common
problems, regarding gradient flow, are that of vanishing gradients and exploding
gradients.

The weights of a network are updated iteratively and proportionally to the partial
derivative of the error function with respect to the weight. When the gradient is
reduced to a really small value, the weight update is close to zero, so basically the
training process stop. The application of the chain rule makes the computation of
the gradients of the fist layers of the network to be a multiplication of really small
values. That makes the weight updates on early layers impossible, so the training is
either really slow or it stops as a whole. This seems like the gradients vanish in the
first layers, thus the name of vanishing gradients.

An inversely proportional problem is that’s of the exploding gradients. Large
value of the error function cause gradients to take unacceptable large values and as
the error propagates backwards the training becomes unstable and unreliable due to
large changes in the weights via the iterative updates.

Although these problems can be solved in many cases via batch normalization,
still the training of deep neural network architectures may fail due to problems in
convergence during the optimization process. One way to counter this is by using
ResNets, an architecture that is used in this thesis application for inference, so a small
analysis follows.

Residual Neural Network

An specific CNN architecture that is used in the application described in this thesis
is the ResNet [22]. ResNet is the 2015 Imagenet winner with top-error 3.6%. More
specifically to achieve that performance, an ensemble of ResNets was used, each with

41



152 layers. Networks with such depth are generally difficult to train, and in the
time of the network’s creation the tools available where not many. The problems of
vanishing gradients and exploding gradients that appear in backpropagation while
gradients flow between layers, are solved sufficiently with batch normalization, weight
regularization, gradient clipping etc.

The main problem of training deep architectures is that of convergence during
the optimization process. Networks tend to have low accuracy and the creation of
the Residual Neural Network solved that by adding skip connections as a concept.
Although hierarchy is very important concept in neural networks, the addition of
skipped connections overcomes the problem of convergence during optimization, by
giving alternative paths to the data flowing through the network. The idea is given
pictorially in the Figure 2.27.

Figure 2.27: ResNet Block.

As its obvious, instead of the standard flow between layer l and l + 1, the input
of layer l is also fed to the layer l + r, where r > 1. That way the input of the
layer l + r + 1 is not F (x), but H(x) = F (x) + x. By the usage of padding that
keeps the spatial dimensionality intact, now backpropagation has alternative paths
to flow the error backwards and compute the gradients, which solves the problem
of convergence. Also, these alternate paths are used in forward feed, so the network
decides the feature maps used for inference depending on the input.

The above block is called the residual block and is the distinguishing characteristic
of Residual Neural Nets, whose general abstract architecture of the feature extractor
can be seen in the Figure 2.28.

In the context of this thesis a pretrained Residual Neural Network is used to
achieve recognition of small areas of an input image, where the laser proposes that
an object of interest is located.

42



Figure 2.28: Residual Neural Network architecture.

YOLOv3

The YOLO (You Only Look Once) [30], [31] approach for object detection in images
is an algorithm that is applied only once to the full image. Object detection in YOLO
is solved as a regression task that provides class probabilities for detected images. In
comparison to previous approaches that apply an image detection model several times
at various regions of the image, the predictions of YOLO model are fast since only a
single forward propagation through a neural network, i.e., a CNN, is needed for each
image. The CNN infers the bounding boxes as well as the labels simultaneously. Thus,
for the training of the CNN, a loss function is used that is defined using contributions
of both the bounding boxes accuracy and the classification accuracy. The current
version is YOLOv5 but in this thesis the YOLOv3 model is used and further described.

The YOLO model divides the image into an S×S grid of cells and simultaneously
predicts bounding boxes and class probabilities for each cell. The cells detect objects
that are included in them. If the center of an object falls into a receptive field of the
cell, this cell is responsible for detecting that object. For each grid cell, the parameters
of B bounding boxes are predicted along with confidence scores indicating the con-
fidence of object inclusion in the corresponding box. Moreover for each cell, K class
conditional probabilities are computed that are used to assign a class label to the cell
object. Since four parameters are used to specify a bounding box location, the total
number of outputs that YOLO provides for an input image is equal to S∗S∗(B∗5+K).

43



Figure 2.29: Yolov3 model localization.

The YOLOv3 model uses anchor boxes as prior knowledge of the bounding boxes
dimensions. Anchor boxes are representative bounding boxes obtained by clustering
the bounding boxes of the training set into B clusters using k-means. The centroid box
of each cluster is considered as an anchor. Anchors are actually log-space transforms
which can be intuitively seen as offsets to prior defined default bounding boxes, i.e,
the anchors. YOLO v3 has three anchors, which results in the prediction of three
bounding boxes per cell.

Bounding box parameters are predicted using regression . If a cell is offset from
the top left corner of the image by (cx, cy) then each one of the B bounding boxes
for this cell is defined by predicting four coordinates tx, ty, tw, th. If the bounding box
anchor has width pw and height ph, then the coordinates of the predicted bounding
box will be,

bx = σ(tx) + cx (2.26)

by = σ(ty) + cy (2.27)

bw = pw etw (2.28)

bh = ph e
th (2.29)

The probability of an object belonging to a specific bounding box is described
by the objectness score. As a convolutional backbone, YOLOv3 uses Darknet-53.

44



Figure 2.30: Detector Output Log-space Transform.

YOLOv3 uses logistic regression to predict the objectness score of a bounding box.
In additon, YOLOv3 uses the sum-of-squared-error loss method as the error for the
bounding box predictions. For object class predictions, the network uses the Binary
Cross-Entropy error function. YOLOv3 makes use of the Non-Maximum Suppression
technique in order to get rid of the unnecessary bounding boxes that are predicted,
so that we eventually have only one bounding box for each object. A threshold is
also defined, based on which boxes with objectness score lower than the threshold
are ignored. YOLOv3 also uses prediction among different scales by downsampling
the input image. At each scale, each cell predicts 3 bounding boxes using 3 anchors,
making the total number of anchors used a total of 9.

A pictorial application of the YOLO model is described in the Figure 2.31.

2.5 Autonomous Navigation

As mentioned before, the difference between robot perception and machine percep-
tion is than in the case of the robots the goal is interaction with the surrounding
environment though their sensory experience. By feeding the inferred information of
the perception system to control systems, the robots can gain the autonomy to inter-
act with the surrounding world. One specific control system that can use the inferred
information is the motion control system. Of great importance in the field of robotics
is that of navigation of mobile robots, that in modern applications utilizes the percep-
tion systems inference in order to achieve autonomy in navigation through motion

45



Figure 2.31: YOLOv3 model Architecture.

planning. The space that the robots is assumed to operate is called the workspace.
In the case of this thesis application workspace is the R3 and denoted as W . The
workspace contains obstacles, that need to be avoided. By denoting the space of the
ith obstacle as WOi

, the free workspace is given as Wfree = W −
⋃
WOi

To plan the motion of a mobile robot[32], [11], [33], its pose must be explicitly
specified in most of the cases. The space of all possible poses of the robot is called the
configuration space C. Configuration spaces topologically are k-dimensional differ-
entiable manifolds enhanced with a local property. Every configuration of the robot,
i.e., the position and orientation, is denoted as q and is defined by n-parameters,
where n is the dimensions of the configuration space. The most common type of
such spaces are Euclidean spaces that are locally diffeomorphic. So, configuration
spaces are k-dimensional manifolds that are locally diffeomorphic.

The subset of C that the robot can move and be positioned freely is called Free
Configuration Space Cfree, and the space that is resulting from configurations q of the
robot that collide with obstacles in the working space is called the Obstacle configu-
ration space denoted as Cobstacle , i.e., Cfree = C − Cobstacle.

Motion planning as a problem, takes place in the configuration space and refers to
obtaining a trajectory c(t) between the robots current configuration qstart and a given
goal configuration denoted as qgoal. By calculating the derivatives of c(t) with respect
to time, velocities and accelerations can be calculated thus actions can be taken so
that the robot follows the trajectory from qstart to qgoal following a curve in the C

46



space called a path.
Given the above, for a robot to move from qstart to qgoal following a free path, the

C space must be expressed and represented explicitly. Although applicable in many
cases, in multi-dimensional or even in non – Euclidean spaces the representation of
the configuration space can by quite challenging. Thus, there are methods that define
the free path incrementally as the robot operates in an online manner. One such
method that is used in this thesis is called Potential Functions. Another name that
gives more intuition is that of Artificial Potential Fields.

2.5.1 Artificial Potential Fields

A potential function is a differentiable function U : Rn → R that describes an Artificial
Potential Field U [33]. The returning value of the function is scalar that represents
the potential energy U(q) at each q configuration of the robot. The gradient of the
potential is a force, the negative of which points at a direction of locally minimal
potential energy. By calculating the gradient of the potential function at each point
in the configuration space a vector field is generated.

∀q ∈ Cspace ∃ ∇U(q) =
[
∂U(q)
∂q1

, ∂U(q)
∂q2

, ..., ∂U(q)
∂qn

]
(2.30)

The robot, that is in reality a neutral charged rigid body, can be viewed as a
positive charged particle in a magnetic field defined by the potential function, where
the goal position is negative charged. This way the vectors given by the gradients
in each point in the manifold are magnetic forces, that pull the robot towards the
goal i.e., the positive robot is attracted by the oppositely charged goal. Given there
are obstacles in the workspace of the robot, they are represented as positive charged
entities that repel the identically charged robot.

U(q) = Uattractive(q) + Urepulsive(q) (2.31)

F (q) = −∇U(q) = −∇Uattractive(q)−∇Urepulsive(q) =
[
dU
dx

, dU
dy

]T
(2.32)

Where [x, y] define the robots coordinates with respect to a world frame. By ignor-
ing the dynamics of such a system, the gradients can be seen as velocity vectors and
by defining the potential function in a manner that the goal position has minimum

47



Figure 2.32: Pictorial Representation of Total field given two obstacles.

potential, i.e. ∇qgoal = 0, following the negative velocity at each point the robot will
reach its goal. The path is obtained through the simple but effective optimization
method of gradient descent.

The potential function is defined as a non-flat function with non-singular Hessian
at qgoal so the minimum at goal is isolated. From any given qstart the robot, following
the negative gradient, will head towards a path of decreasing potential and will stop
at a local minima where ∇q = 0. If the only minima of the function is the one at the
goal, then the robot successfully stops at the desired goal location, where the gradient
vanishes. In many situations there are local minima different than the critical point at
the qgoal, so one fault of the above intuition is the existence of local minima different.

Below are the definitions of the potential functions and the corresponding deriva-
tives describing the vector field used in this thesis.

Attractive potential field and Attractive Force

Uattractive(q) =
1

2
Kattractive

∣∣∣q− qgoal

∣∣∣2 (2.33)

Fattractive = −∇Uattractive = −Kattractive

∣∣∣q− qgoal

∣∣∣ (2.34)

where q,qgoal are the configurations of the robot at the current position and at goal
position in the form of vectors, thus

∣∣∣q− qgoal

∣∣∣ is the distance of the robot measured
from the goal. Kattractive is the gain of the field which can be seen as the gain of the
controller.

Uattractive is defined in a way that is continuously differentiable and monotonically
increasing as the distance from goal increases. Thus, as the value of the gradient
decreases as the goal is reached by the mobile robot.

48



Repulsive potential field and Repulsive Force

For the kth obstacle the potential is given as

Uk
repulsive(q) =

 1
2
Krepulsive

(
1

|q−qk|
− 1

ρ

)2

, if |q− qk| < ρ

0, if |q− qk| ≥ ρ
(2.35)

where q, qk correspond to the configurations of the robot at the current position and
the configuration of the kth obstacle in the form of vectors, thus |q−qk| is the distance
of the robot from the kth obstacle. Krepulsive is the gain of the repulsive potential and
ρ is a threshold distance that limits and nullifies the effect of the repulsive potential.

The total repulsive potential that corresponds to all the obstacles detected by the
robot is given as,

Urepulsive(q) =
N∑
k=1

Uk
repulsive(q) (2.36)

The repulsive force that corresponds to the kth obstacle is,

F k
repulsive(q) = −∇Uk

repulsive(q) = Krepulsive

(
1

|q−qk|
− 1

ρ

) 1

|q− qk|2
q− qk

|q− qk|
, if |q− qk| ≤ ρ

(2.37)
and the resultant repulsive force applied to the robot is given as

Frepulsive(q) =
N∑
k=1

F k
repulsive(q) (2.38)

Thus the resultant force of the total potential filed is given by the resultant of
Fattractive(q) and Frepulsive(q) as:

F (q) = Fattractive(q) + Frepulsive(q) (2.39)

By using the resultant force F (q) of the total field as a control law of the motion
of the robot, given a goal configuration the robot will follow the gradient descending
to the qgoal.

The calculation of repulsive potential and its gradient require knowledge of the
distance of all obstacles surrounding the robot that can affect it, i.e., |q − qk|≤ρ, via
repulsive forces. The required distances can be obtained by using sensory informa-
tion of range sensors, such as a laser scanner. For each obstacle the laser scanner

49



detects its minimum distance from the robot, that is the required information for the
computation of forces.

Thus, for k obstacles detected, the k local minima of the sensitized distances are
the required information for repulsive force computation.

Figure 2.33: Local Minima as minimum distances detected by the laser scanner.

The biggest advantage of this method, as a navigation technique, is that no prior
knowledge is required about the robots workspace. Thus, no map of the workspace
is required.

50



CHAPTER 3

THE PROPOSED APPROACH

3.1 Method Explanatory Analysis

3.2 Implementation Details

Object detection traditionally uses images as the data, based on which, the task is
performed. Both the localization of the object on the image, that is concluded with
the placement of a bounding box around the objects extent, as well as the recognition
of the object, that is concluded by labeling the contents of the bounding box, the
combination of which follows through the task of object detection, are achieved using
only the image of a camera sensor as input.

Instead of using a single sensory modality, the proposed method fuses two sensors,
a range sensor, i.e., a 2D laser scanner and a camera, which not only follows thought
the task of object detection but enhances the label with range information.

An important note is that every joint of a robot as well as the attached sensors,
all have a coordinate system attached to them, referred also as the frame of the joint
or the corresponding sensor. Every point of interest in the 3D world can be referred
to any of the coordinate systems. Coordinate systems of the robot joints are always
in 3D, and are right-handed, with X forward, Y left, and Z up. Between the different
coordinate systems exist homogeneous transformations, so that the coordinates of a
point with known coordinates referred to one frame can be obtained for every other
frame.

51



3.1 Method Explanatory Analysis

The method developed in this thesis performs the task of object detection by solving
the two embedded sub problems in the detection task, i.e., object localization and
object recognition, using two distinctly heterogeneous sensors, in two different spaces
by fusing the sensory data in serial manner.

Figure 3.1: Block Diagram of the Proposed Detection Method

The laser scanner is the sensor that achieves the object localization task, initially
in the 3D world surrounding the robot. The located object is projected using the
camera parameters to the 2D image plane of the camera sensor. With knowledge
of the location of the object on the image plane, bounding boxes are proposed, so
recognition is achieved for the image area bounded by the box and corresponding
labels are obtained using a ConvNet and a voting schema.

3.1.1 Object Localization

The sensor that is mainly responsible for the localization task is the 2D laser scanner,
that gives the location of an object in the 3D world and with auxiliary usage of the
camera parameters the location is projected on the camera image.

52



(a) Cylindrical Coordinates of point P. (b) Laser frame.

Figure 3.2: Laser Coordinate System.

The data that the laser scanner initially provides is given as corresponding Eu-
clidean distances and angles of the vectors between the laser frame and the points
on the object surfaces that the laser beams are reflected from, i.e., (r, θ). That data is
transformed into the point cloud data set [X,Y, Z] that corresponds to a 2D represen-
tation of the environment surrounding the robot. That is a Cylindrical to Cartesian
coordinate system transformation, that for a point P = (r, θ) is given as:

X = r cos θ (3.1)

Y = r sin θ (3.2)

Z = Zc (3.3)

The coordinate Zc in the Z-axis is a constant scalar equal to the height of the laser
sensor measured from the ground, in the case where the hyperplane that the X,Y base
vectors span is parallel to the ground, as in the case of this thesis. Thus, the point
cloud is represented as a data set denoted as PCL, where PCL =< {X,Y,Z} >, and
it is made more informative with the addition of the Euclidean distance parameter of
each point referenced from the laser frame. So depending on the sampling frequency
of the sensor, a data set is formed as PCL =< {X,Y,Z, r} > containing all the points
detected by the laser scanner.

By plotting the distance r of each point against its corresponding Y-coordinate
with respect to the laser frame, an approximation of the layout of the surrounding
detected environment is obtained.

The state of the perceived environment given in Figure 3.3 is depicted in Figure
3.4.

With the knowledge of the intrinsic and extrinsic parameters of the camera that
is attached to the robot, each point of the point cloud can by projected on the digital

53



Table 3.1: Enhanced Point cloud data set with point distance information.

X Y Z Distance

X1 Y1 Z1 r1

X2 Y2 Z2 r2

X3 Y3 Z3 r3

... ... ... ...

XN YN ZN rN

(a) Gazebo Corridor Simulation (b) RViz Point cloud representation

Figure 3.3: Point Cloud angular perspective in simulation.

image of the camera. That projection transfers the point cloud from the 3D world to
the 2D image plane.

The extrinsic parameters are obtained from the pose of the camera with respect
to the laser frame. It is generally given as a translation and a rotation as described in
2.1.2 but in the case of this thesis only a translation is performed given the relative
poses of the laser and camera sensors. A transformation is performed between the
camera and laser data frame, so that the [X,Y, Z] of each point now refers to the
camera frame, denoted as [cX,c Y,c Z].


cX

cY

cZ

 =


X

Y

Z

− TT

54



Figure 3.4: Point cloud layout

with denoting the translation vector.
The intrinsic parameters of the camera are obtained via calibration of the camera

using the Zhang’s method explained in 2.1.2. By use of the computations described
in Chapter 2 or simply using the computations described in equations (3.4),(3.5)
for each translated point, the corresponding pixel coordinate px,p y on the 2D image
plane is obtained for the point cloud as:

px = widthimage − (
cY ∗ fx

X
+ cx) (3.4)

py = heightimage − (
cZ ∗ fy

X
+ cy) (3.5)

By performing the above, the PCL data set is now in the form of the Table 3.2:
The < {cY, cr} >, i.e, the data corresponding to Y-coordinate and distance of the

PLC =< {X,Y,Z, r} > data set with respect to the camera frame, are passed to
the density based clustering algorithm called DBSCAN. Note that the rate that the
data are passed to the DBSCAN algorithm is defined by the sampling rate of the
laser scanner. DBSCAN also serves as a filter of the laser sensor by labeling noisy
measurement points as outliers. Pictorially, the application of DBSCAN on the point
cloud that corresponds to the word state represented in Figure 3.3, when passed the
< {cY, cr} > data, is given in the Figure 3.5 the follows.

55



Table 3.2: Data set of projected Point Cloud - Point, pixel correspondence.

cX cY cZ Distance px py

cX1
cY1

cZ1
cr1

px1
py1

cX2
cY2

cZ2
cr2

px2
py2

cX3
cY3

cZ3
cr3

px3
py3

... ... ... ... ... ...
cXN

cYN
cZN

crN
pxN

pyN

Figure 3.5: Clustered Point cloud - Object Cluster Correspondence

Each of the clusters represents an object, thus by clustering the < {cY, cr} > data,
each point of the data set is assigned a label that corresponds to a distinct object in
the robots environment. Points that belong to the same cluster provide a 2D model
layout of an object in the robot’s detected workspace. As seen in the table 3.3 the
pixel coordinates are now labeled according to the objects that they belong.

By clustering the point cloud using < {cY, cr} > data , object localization is per-
formed in the 3D world surrounding the robot. With the projection of objects on the
2D image plane, the corresponding pixel coordinates of all objects detected in the 3D
world are known. Essentially what happens is that by performing DBSCAN in the
initial [X,Y, Z] point cloud information, labeled pixels corresponding to objects are

56



Table 3.3: Clustered Point cloud data set for K objects surrounding the robot.

cX cY cZ Distance px py Label/Object
cX1

cY1
cZ1

cr1
px1

py1 0

cX2
cY2

cZ2
cr2

px2
py2 0

cX3
cY3

cZ3
cr3

px3
py3 0

cX4
cY4

cZ4
cr4

px4
py4 1

cX5
cY5

cZ5
cr5

px5
py5 1

... ... ... ... ... ... ...
cXN

cYN
cZN

crN
pxN

pyN K

(a) Projection of point cloud on Image (b) Clustering of the projected point

cloud - Labeled Pixels

Figure 3.6: Object Localization from 3D world to 2D Image plane.

obtained. This way the object localization in the image plain is performed in the 3D
world surrounding the robot.Note that distance information is also available.

With knowledge of the location and the width of the objects in pixels on the
image space a bounding box can be placed with a rough approximation of the height,
which due to the 2D laser scanner is not an available dimension. A good case of box
placement can be seen on the Figure 3.7

A choice made for the proposed implementation is to focus only on the object that
is closest to the robot. So from now on the analysis will be with respect to the cluster
with the closest distance.

The absence of the objects height information, thus the exact location of the bound-

57



Table 3.4: Clustered Point cloud data set for K objects surrounding the robot.

px py Label/Object Distance
px1

py1 0 r1
px2

py2 0 r2
px3

py3 0 r3
px4

py4 1 r4
px5

py5 1 r5

... ... ... ...
pxN

pyN K rN

(a) Isolated cluster corresponding to

detected object

(b) Bounding Box with distance in-

formation

Figure 3.7: Object Localization.

ing box is solved using an approximation with information coming from the CNN
that performs the task of recognition. The intuition of the above as well as the object
recognition solution is further discussed in the subsection that follows.

3.1.2 Object Recognition

By clustering the point cloud and projecting it to the image plane using the Direct
Liner Transformation the location of the objects on the image plane is obtained. The
known dimension of the object is that of the width as a result of the 2D laser scanner.
In order to make an assumption about the objects height, a Convolutional Neural
Network is used that in addition to the recognition task, approximates intuitively the

58



missing height dimension.

(a) (b)

Figure 3.8: Simulation world - Point cloud clustering.

More specifically two voting methods have been used, the details each one of which
follows. Both methods start with the same approach. By focusing on the closest object
,i.e., cluster, to the robot and using the width in pixels known from the localization
task, three bounding boxes are drawn around the objects extent, with increasing
height dimension as seen in the Figure 3.9.

The imagery content of each box is isolated from the rest of the image by crop-
ping the image in the boxes perimeter. Thus, three images are created, one for each
corresponding box.

The three images are resized in the specific size, that the CNN used, is trained on.
The CNN that is chosen is the ResNet18, trained on the ImageNet data set, for reasons
that will be explained in the Section 3.2.

Cumulative Box voting schema

The three resized images, that depict the boxes imagery content, are forward passed
to the pretrained ResNet18. For each one of the three, 1000 class probabilities are
inferred. The top 5 class probabilities of each image, i.e., the 5 that the network is more
confident about, are the ones that the proposed method uses via the following voting
schema. In the following the three boxes and three images are used interchangeably.
Essentially, each one of the three boxes proposes 5 labels. A map data structure is
used with the labels as keys, as in Tables 3.5, 3.6. As value for each label/key, a score

59



Figure 3.9: Image with 3 bounding boxes

(a) (b) (c)

Figure 3.10: The three cropped images used for inference.

is used in the form of a scalar, computed as the total sum of the corresponding label’s
probabilities among the three boxes. The label with the highest value/score is chosen
as the label for the detected object. The box that proposed the chosen label with the
highest probability is the chosen box, that is drawn around the objects extent. That
way, the missing height information is approximated through voting of feasible boxes.

Simple voting schema

A simpler voting schema is used with similar effectiveness that avoids the usage of
the map data structure making the final inference a bit faster. In this schema, once

60



Table 3.5: Example of Cumulative Voting schema

(a) 1st Box Top5 Inferred Labels

Label % Probability

traffic light 64.87
loudspeaker 23.44
oscilloscope 1.94
digital clock 0.96
cassette player 0.74

(b) 2nd Box Top5 Inferred Labels

Label % Probability

loudspeaker 72.32
traffic light 5.04
switch 4.05
face powder 2.13
lipstick 1.99

(c) 3rd Box Top5 Inferred Labels

Label % Probability

traffic light 71.67
loudspeaker 13.30
spotlight 1.57
switch 1.14
knee pad 0.77

Table 3.6: Cumulative scores of proposed labels.

Label Score

traffic light 141.58
loudspeaker 109.06
switch 5.19
face powder 2.13
lipstick 1.99
oscilloscope 1.94
spotlight 1.57
digital clock 0.96
knee pad 0.77
cassette player 0.74

again the three resized images, cropped on the boxes perimeter, are forward passed
to the pretrained ResNet18. Each one of the three, proposes as label the one with
the highest probability among the 1000. Of the three labels, the one with the highest

61



Figure 3.11: Proposed Bounding Box and Label - Cumulative Voting Schema

probability is chosen as the correct label together with the corresponding box, that is
in the end drawn around the objects extend.

3.1.3 Autonomous Navigation

As a proof of concept for the proposed detection system, motion planning is achieved
using odometry data, i.e., data from motion sensors that are used to estimate the
robot’s pose over time. The proposed approach to motion planning achieves au-
tonomous navigation without prior knowledge of the robot’s workspace and is based
mainly on the Artificial Potential Fields method. The robot is given a goal position
and orientation and navigates through the unknown environment by updating a free
path incrementally until the goal pose is reached, by the use of velocity commands as
a control law. While the robot navigates, if the proposed perception system detects an
object of interest that is predefined by the application, the robot stops and interacts
with the object in the simplest form by capturing a photo.

Together with the Potential Fields, a simple P-controller is designed, the veloc-
ity commands of which are used when a certain distance threshold is exceeded.The
distance threshold is a hyperparamater that represents the closed Euclidean distance

62



an obstacle can be detected from the robot, so that a swapping between the two con-
trollers,i.e, P-controler and Potential Fields can occur. By defining it as Dthreshold the
swapping between Potential Fields and P-control is described as below:

Velocity Controller =

 Potential Functions, if Dthreshold ≤ d

P − Controler if Dthreshold > d

where d denotes the robot’s distance from the closest obstacle.
The swapping between the Potential Functions and the P-Controller is a choice

made so that the navigation becomes more adaptive and responsive depending on the
obstacles configuration. The gains of both the Potential Functions and the P-Controller
are obtained through trail and chosen fitting the application.

As derived from the Potential functions equations, the attractive potential acts as
a P-Controller in the case when no obstacle is in the near distance. The existence
of a single gain, i.e., that of the attractive field, so that the robot behaves smoothly
both in the case of only an attractive force and also in the case of a resultant from
attractive and repulsive forces, creates some inconvenience to the velocity commands,
that affect the smooth and continuous movement of the robot.

More specifically, the gain of the attractive potential when acting by itself, tends to
be such, that the velocity commands reduce to zero as the robot approaches the goal
configuration prior to reaching the goal position. To solve that, a swap to the simple
P-Controller with a higher gain than the attractive field’s, is done, so that the robot
has a faster response. The use of the higher gain P-Controller also makes the robot’s
motion control more responsive throughout the navigation.

3.1.4 Potential Functions

The approach used, follows exactly the functions and intuition described in ??. The
difference in the developed controller is that the aperture angle of the laser scanner
that is responsible for detecting the closest distance from any obstacle, is divided in
to three discrete sectors as seen in Figure 3.12 . For each sector, the closest detected
distance is used as the parameter in the repulsive force equation ??.

Thus, at maximum, three repulsive forces are acting on the robot originating from
the three obstacles detected, one from each sector. The potential fields method is
activated as the control law that gives the velocity commands, when the configuration
of at least one obstacle falls within the red denoted circular area with the green

63



Figure 3.12: Point cloud layout

circumference in Figure 3.12. The velocity commands are given with respect to the
resultant force that acts on the robot from the potential field over time. The magnitude
of the robot’s linear velocity is proportional to the magnitude of the resultant force
and the angular velocity tries to minimize the error between the current yaw,given
by the odometry, and the desired direction given by the resultant force vector angle
at each point. The robots velocity u = [ux, uy]

T is given as:

q̇ =


ẋ

ẏ

θ̇

 = u = −k∇U(q) = −k


∂U
∂x

∂U
∂y

∂U
∂θ

 (3.6)

3.1.5 P‐Controller

When no obstacles fall in the threshold area, the robot moves toward the goal con-
figuration using a P-controller. Specifically, the velocity commands are given by the
controller in a way resulting to a linear velocity with a magnitude proportional to the
distance of the robot from the given goal and a angular velocity that is proportional to
the difference of the current and desired orientation, i.e., the yaw. Both the distance
from the goal configuration as well as the yaw of the robot is given by the odometry.

64



3.2 Implementation Details

The proposed detection system was implemented using ROS and tested in simulation
using the Gazebo simulator, as well as using the Pionner 3-DX robot in the laboratory
and other dynamic environments.

3.2.1 Pioneer 3‐DX

The Pioneer 3-DX is a two-wheel two-motor differential drive robot created by Adept
Technology Inc. The vanilla version of the robot, prior to any modifications or at-
tachments can be seen in the Figure 3.13 below.

(a) (b) (c)

Figure 3.13: The Pioneer 3-DX vanilla version.

As a differential drive robot it has three degrees of freedom (DOF) and with the
usage of actuators on the two wheels only the two DOF are controllable making
the robot non-holonomic. Assuming knowledge of the left and right wheel velocities
Vl, Vr with respect to the ground and the Instantaneous Center of Curvature (ICC) the
kinematics of the 3-DX robot is described from the kinematics of differential drive
robots.

The linear velocity v and the angular velocity ω of the robot is calculated as:

v =
Vl + Vr

2
(3.7)

ω =
Vl − Vr

W
(3.8)

where W denotes the distance between the robot’s wheels.

65



Figure 3.14: Differential Drive Kinematics.

The distance between the robot’s base frame and the ICC , denote as R, is calcu-
lated as:

R =
W

2

Vl + Vr

Vl − Vr

(3.9)

Having knowledge of R and the robot’s current pose q = [x, y, θ]T the ICC is
calculated as:

ICC =

x−R sin θ
y +R cos θ

 (3.10)

Assuming that the robot has moved with constant wheel velocities for ∆t the new
pose is given as q′ = [x′, y′, θ′]T :


x′

y′

θ′

 =


cosω∆t − sinω∆t 0

sinω∆t cosω∆t 0

0 0 1



x− ICCx

y − ICCy

θ

+


ICCx

ICCy

ω∆t

 (3.11)

Figure 3.15: NVIDIA Jetson TX2 kit

The 3-DX robot used in this thesis has been modified with the integration of the
NVIDIA Jetson TX2 Module that acts as the computational unit of the robot, see

66



Figure 3.15. TX2 development kit is built around an NVIDIA Pascal-family GPU
with 256 NVIDIA CUDA cores and is loaded with 8 GB of memory and 59.7 GB/s
of memory bandwidth.

The module has an CMOS camera attached to it that is used as the main camera of
the application. More specifically, it is a CMOS 5 megapixel (2592 x 1944) image sensor
with OmniBSI-2TM technology that supports images sizes of 5 Mpixel, EIS1080p,
1080p, 720p, VGA, QVGA and has a maximum transfer rate of 30 fps for 5 Mpixel,
EIS1080p, 1080p sizes. The scan mode is progressive with lens size of 1/4” and non-
linear lens chief ray angle of 29.7◦. The image area is 3673.6 μm x 2738.4 μm with
pixel size of 1.4 μm x 1.4 μm.

Figure 3.16: The LMS200 laser range scanner

The robot is also integrated with a 2D laser scanner sensor, specifically the LMS
200 manufactured by SICK AG , see Figure 3.16. It is a short range, i.e., Max. range
with 10 % reflectivity at 10 m, infrared(905 nm), 2D laser scanner with 180◦ aperture
angle and adjustable angular resolution of 0.25◦, 0.5◦ and 1◦ at 75 Hz. The angular
resolution used in this thesis is that of 0.5◦.

(a) Dimensional Drawing (b) Operating Range

Figure 3.17: LMS200 Details.

67



3.2.2 Sensor Frames Transformations and Synchronization of Sen‐

sory Data

The Pioneer 3-DX after the modifications and attachments of the TX2 module and
the LMS200 range scanner can be seen in the Figure 3.18 bellow. The laser frame
and camera frame relative position is also denoted.

Figure 3.18: Pioneer 3-DX with Jetson TX2 and LMS200

A transformation between the two frames is applicable via a translation that is
described by the vector T = [0, 0.015, 0.591]T . The value zero in the first index corre-
sponds to a really small translation in the x axis that is omitted.

Using that translation every point P of the point cloud can be transformed to the
coordinated system of the camera.

On key factor for precise detection using fusion of the camera and laser data is that
of data synchronization. The data that are fused must represent the exact same state
of the surrounding world. Given the fact that the two sensors have different sampling
frequencies and the starting time of their operation differs, the synchronization is
achieved with the use of timestamps provided by the ROS message representation of
the sensory data. That way it is ensured that the fused data correspond to the same
state.

3.2.3 Camera Calibration

The calibration of the camera was done using the camera_calibration ROS package
of the image_pipeline. The package uses the OpenCV camera calibration API and a

68



Figure 3.19: Intrinsic Parameters - Camera Calibration

planar checkerboard.
The checkerboard used was a A4 with 25mm squares, 8x6 vertices, 9x7 squares.

By positioning the checkerboard in some specific configurations captured by the cam-
era sensor, the camera_calibration package, produces the intrinsic parameters of the
camera that are used in the projection of the point cloud on the image plain. The ex-
trinsic parameters are known from the vector T that describes the translation between
the laser and the camera frame.

3.2.4 DBSCAN

The pointcloud data is published with a frequency of 30Hz using a ROS service
that transforms the laser sensor data from the (r, θ) Cylindrical coordinates to that
of [X,Y, Z] Cartesian coordinates. The pointcloud is further transformed so that it
corresponds to the camera frame.

The DBSCAN algorithm that is used to cluster the Point Cloud in the one imple-
mented by the sci-kit learn toolkit. Compered to the original DBSCAN implementation
that is discussed in sector 2.2.1, the sci-kit learn provided implementation is using a
variation but still in the concept of the same theoretical cluster model. It first materi-
alizes all neighborhoods (which yields worst-case quadratic memory), then performs
the cluster expansion in a “vectorized” way on the core points only.

The choice of ϵ and minPTS, corresponding to eps and min_samples hyperpa-
rameters is dove via trail and error for the specific application. These two hyperpa-
rameters are of great importance to the overall reliability of the detection system and

69



are chosen appropriately for the specific application, considering that the point cloud
shape depends greatly on the robot’s environment. So based on the data of the point
cloud and the distance metric that is used, which is the Euclidean, the ϵ and minPTS
hyperparameters were chosen, fitting the application.

One of the main reasons DBSCAN algorithm was chosen over other clustering
algorithms for this specific application is that it does not require prior knowledge of
the number of clusters in the point cloud. In addition to that, DBSCAN has good
clustering capabilities on data sets with arbitrary cluster shapes and its speed of
inference matches the desired speed of the detection system.

3.2.5 ResNet18 and Recognition

The ResNet18 is the chosen CNN for the task of object detection. It is pretrained on
the ImageNet dataset, thus capable of recognizing 1000 classes. The choice of the
ResNet18, instead of other architectures and pretrained CNNs on the same data set,
was based a balance between speed of inference and accuracy in recognizing specific
classes of interest, such as doors. Deeper networks have better accuracy but the speed
of inference does not match the applications requirements.

The chosen framework that is used for the task of recognition is the PyTroch
open source machine learning framework. Torchvision, a library that is part of the
PyTorch project provides model architectures, including the ResNet18 and common
image transformations for computer vision. Such image transformation are performed
on the cropped images that correspond to the bounding boxes imagery content.

After the projection of the closest cluster on the image plane, the known dimension
of the object is the width as discussed in section 3.1.4. The height is proposed with
arbitrary dimensionality and chosen as a side product of the ResNet18 inference.
The cropped image is transformed the same way the ImageNet data set images are
transformed prior to the ResNet training. More specifically the three images are resized
as 256 x 256 images, transformed to torch tensors and normalized with mean =

[0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. After the transformation the three
images are stacked into a batch which is transferred to the GPU. The pretrained
ResNet model is also transferred to the GPU, thus the inference can be done using
CUDA operations further enhancing the speed and making use of the Jetson TX2
computational power.

70



CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Proof of concept ‐ Perception and Navigation System Application

4.2 Perception System Real Time Object Detection Cases

The proposed perception system was tested thoroughly both in simulation and in
real dynamic environments. The behavior of the robot was almost identical in the
simulation and the real world scenarios making the simulation a great debugging and
controlled testing environment with applicable optimization in the real workspace.
The implementation of the proposed system is done using ROS and is tested in
Gazebo simulation scenarios as well as in the laboratory environment and the faculty’s
corridors and parking place.

The main difference between the simulation and the real world application comes
from the fact that the interface for the Pioneer 3-DX robot, in the case of the real
world application, comes from the RosAria node which is implemented on the open
source ARIA library. Information from the robot base, main joint transformations,
and velocity and acceleration control, is implemented via the RosAria node. The node
publishes ROS topics providing data received from the robot’s embedded controller
by ARIA and sets desired commands originating from other nodes [34]. The ROS
interface for the laser and camera sensors also comes from corresponding nodes that
act as drivers and provide the topics that the sensory data is available and updated
based on the sampling frequency of each sensor.

71



In the Gazebo simulation environment, the Pioneer 3-DX robot is modeled using
URDF files that describe the exact robot used in this thesis. The URDF files used,
were initially created by Rafael Berkvens and modified by Mario Serna Hernández.
The URDF files where further modified in order to be adapted to the specific robot
used in this thesis which has been upgraded with the addition of the Jetson TX2.
Further more a simulated enviroment has been build specificly for the prosposed
application using Gazebo in order for testing to applicable.

Thus, in the case of the real world application the joint transformations are de-
scribed internally by the RosAria node while in the Gazebo simulation case, the
transformations are explicitly described using the URDF files, resulting to a more
complex frame tree, although it is referring to the exact same robot with the same
behavior. The comparison of the two can be seen in the Figures 4.1, 4.2 below. Note
that in the real world application, the camera frame transform with respect to the
laser is taken care in the implemented nodes related to detection, thus it can not be
depicted by the ROS tf debugging tools.

view_frames Result

odom

base_link

Broadcaster: /RosAria
Average rate: 10.199 Hz

Most recent transform: 1632928075.600 ( 0.004 sec old)
Buffer length: 4.902 sec

laser

Broadcaster: /sicklms
Average rate: 9.585 Hz

Most recent transform: 1632928075.510 ( 0.093 sec old)
Buffer length: 4.799 sec

Recorded at time: 1632928075.603

Figure 4.1: Frames of the 3-DX Robot - Real World Application.

72



Figure 4.2: Frames of the 3-DX Robot - Simulation.

73



The ROS computation graph corresponding to the combination of nodes used
synergetically from both the navigation and perception systems, is obtained by the
rqt_common_plugins ROS package and is depicted in the Figure 4.3. The graph de-
scribes in detail the sequence of computations and the dependencies between nodes
within the same system as well as between nodes of the two distinct systems. The
computation graph of Figure 4.3 is the one corresponding to the real world ap-
plication and is thus corresponding also to the experiment that is described in the
followings sections .

Figure 4.3: Real world experiment scenarios - ROS Computation Graph

Note that a similar Computation Graph can be obtained for the Gazebo simulation
environment, which can be seen in the Figure 4.4. It is describing exactly the same
computation sequence and dependencies with respect to the navigation and percep-
tion system as the one in the Figure 4.3. It is referenced here as a proof that the
simulation scenarios that were implemented for this thesis were really close to the
real world application.

Figure 4.4: Gazebo - ROS Computation Graph

74



4.1 Proof of concept ‐ Perception and Navigation System Applica‐

tion

Using the navigation system described in subsection 3.1.3, as a proof of concept sce-
nario, the detection of an object of interest using the proposed detection system was
accomplished in the laboratory environment. The robot has no information about
its workspace and it must navigate dynamically adapting its path to the environ-
ment using the laser range scanner data. The robot has to navigate autonomously
to a given known goal pose, avoiding obstacles and if a given object of interest is
detected by the perception system, the robot stops and interacts with it in the from
of capturing a image with a labeled bounding box enclosing the object of interest.
Thus, the interaction of the robot with the environment falls in the general case of
interaction through environment sensor measurements, thus not changing the state of
the environment, in comparison to control actions that change the state of the world
[35]. The captured image is a proof of concept, that the proposed perception system
behaves as described, achieving real time object detection while the robot navigates
autonomously and dynamically in an unknown workspace.

The object of interest in this experiment is an oscilloscope randomly placed in the
laboratory’s floor, with the robot having no information of the oscilloscope’s pose.
As obstacles, carton boxes are placed on the laboratory’s floor with poses and config-
urations unknown to the robot. The robot is given a goal pose in the form of [X,Y, θ]

with X,Y denoting the Cartesian Coordinates of the goals position and θ denoting
the yaw with respect to a coordinate system coinciding with the robot’s coordinate
system at the initial position prior to any movement, i.e. a world coordinate system
also coinciding with the odometry coordinate frame. The state of the environment
can be seen in the Figure 4.5.

The robot is given a goal pose at [X,Y, θ] = [5, 5.2, 15◦] as seen in the Figure
4.5 and using the odometry data, i.e., data from motion sensors that determine the
robot’s change in position relative to the world frame, the robot navigates using as
a control law, velocity commands derived by the proposed navigation system until
it reaches the goal pose. If the proposed detection system perceives an oscilloscope
while navigating, then the robot stops for 10 seconds, captures an image and then
continues navigating dynamically until the goal pose is reached.

The path that the robot follows in this scenario, can be seen from a perspective in

75



Figure 4.5: World State.

Figure 4.6: Path followed until goal pose.

the Figures 4.6 represented by the green and white line.The odometry data from the
robot’s motion sensory system give the actual path by plotting Y coordinate versus
the corresponding X coordinate with respect to the world frame and is given in figure
4.7.

The robot, while dynamically navigating , detects the oscilloscope by the use of
the proposed perception system, when the point cloud cluster representing the os-
cilloscope is the one closest to the robot, at a distance of exactly 1.19 meters. The
captured image is depicted in Figure 4.8 and is a proof of correct functionality.

The time interval of 10 seconds that the robot is motionless, as expected by the

76



Figure 4.7: Actual path using Odometry Position Data

(a) Image Captured-Object Detection. (b) Object Perceived-Motionless State

Figure 4.8: Environmental Sensor Measurement.

experiments design, when the object of interest is perceived, as well as all the overall
motion of the robot can be seen in the diagrams of position and speed trajectories,
plotted in Figures 4.9, 4.10,4.11.

The time interval between 22.758−32.500 seconds, i.e., 9.742 seconds, that both the
linear and the angular velocity of the differential drive robot is zero, is the approximate
10 second interval that the robot is motionless in order for the environmental sensor
measurement to take place, as required.

77



Figure 4.9: Trajectory for X.

Figure 4.10: Trajectory for Υ.

78



Figure 4.11: Trajectory for Ζ.

4.2 Perception System Real Time Object Detection Cases

The results of the application of the proposed object detection system can be seen in
the rest of the section. The photos are taken in real time while the robot navigates
in the corresponding work spaces, some using the autonomous navigation system
discussed in 3.1.3 and some via remote control of the robot motion system for testing
purposes.

Note that for the below detected objects, no changes have been done in the class
label names of the ImageNet data set in order to fit the specific objects that can be
found in a University faculty, thus the labels have a lot of generality.

The Figures 4.12 - 4.21, give a layout representation of the clustered point cloud
along with the detected object.

79



Figure 4.12: Detection of a chair in the laboratory environment.

Figure 4.13: Detection of oscilloscope in the laboratory.

Figure 4.14: Detection of a potted plant in the faculty’s corridor.

80



Figure 4.15: Detection of a carton in the laboratory environment.

Figure 4.16: Detection of a door in the faculty’s corridor.

Figure 4.17: Detection of chair in the faculty’s corridor.

81



Figure 4.18: Detection of table in the faculty’s coffee room.

Figure 4.19: Detection of chairs in the laboratory environment.

Figure 4.20: Detection of desk in the faculty’s coffee room.

82



Figure 4.21: Detection of monitor in the laboratory.

In all cases detection is focused on the closest object to the robot and the DB-
SCAN algorithm successfully segments the point cloud so that the closest object can
be successfully labeled. The Figures 4.22, 4.23, 4.24 give a more abstract pictorial
representation of the proposed system, giving a perspective view of the full point
cloud representing the detected environment.

Figure 4.22: Case of a chair.

83



Figure 4.23: Case of a desk.

Figure 4.24: Case of a Keyboard.

Some cases of detected object of interest captured can be seen in Figures 4.25,
4.26,4.27, 4.28 and 4.29.

84



Figure 4.25: Oscilloscope case.

(a) Joystick case (b) Car case

Figure 4.26: Joystick & Car

85



(a) Space heater case. (b) Wardrobe case.

Figure 4.27: Space heater & Wardrobe

(a) Single pot. (b) Many pots.

Figure 4.28: A single pot & many pots case

86



(a) Door case. (b) An other door case.

Figure 4.29: Two door cases

87



CHAPTER 5

CONCLUSION

5.1 Comparison to state of the art YOLO approach

5.2 Future Work

The application of sensor fusion to achieve accuracy in object detection is a challenging
and multidisciplinary task. Given the nature of a robot that navigates autonomously in
a dynamic environment and acts on it, the complexity of the task is further enhanced.

Given the analysis discussed in the previous chapters and the experimental results,
it is concluded that in many cases and different scenarios the proposed perception
system achieves its goal and the robot navigates autonomously in a dynamic envi-
ronment while it interacts with objects of interest. The fusion of 2D-laser and camera
information successfully completes in most cases the task of real time object detection
and distance evaluation. The proposed voting schema gives an intuition of the objects
height dimension , even if the height dimension of an object is not directly inferrable
from the point cloud. The proposed perception system has also some limitations as
described in the following sub sectors.

5.1 Comparison to state of the art YOLO approach

The first clear advantage of the proposed detection system compared to YOLOv3 is
the ability to detect 1000 objects in comparison to YOLO that in most cases is trained

88



to detect 80 objects. That is a direct advantage coming from the fact that the CNNs
that can be used as the backbone for the recognition in the detection system, i.e.,
the ResNet18 in the specific implementation, are trained on the ImageNet data set, in
comparison to YOLO that is trained mainly on the COCO data set.

A second advantage of the proposed detection system is the easiness and conve-
nience in adding more classes and retraining the CNN models, adapting the detection
system to many different and specialized use cases. Transfer learning and fine tun-
ing of pretrained models, available in many framworks, is an easy task compared to
retraining or fine tuning the YOLOv3 approach in order to detect new objects and
make the YOLO approach applicable in specialized applications.

The third advantage of the proposed approach comes from the fusion of the
laser with the camera sensor, that gives accurate information of the detected objects
distance from the robot. That particular advantage over YOLO enables Visual Servoing
directly from the fused information, which enhances the interaction with the perceived
surrounding environment and increases the reliability.

A disadvantage, though, of the specific perception system stems from the limita-
tions of the 2-D laser scanner. The point cloud of the closest object that is produced
lacks of height dimension. The proposed voting system tries to accommodate the
missing information, but in comparison to the YOLO approach, the bounding boxes
of the proposed system a lot of times fail to include the object with respect to the
height dimension. That bottlenecks severely in many cases the accuracy in detection.
Sensor synchronization also adds additional challenges and limits the reliability.

In terms of real time detection speed comparison, given the specific hardware
specs used in this thesis, the proposed system is a lot faster that YOLOv3 but a bit
slower than the tiny YOLO model.

5.2 Future Work

The proposed perception system, as it is, with the use of transfer learning can be
adapted in theory to any specialized application. Following the intuition of the pro-
posed perception and navigation system, a lot of space is given to new approaches,
especially in the fusion application part, some of which are described below.

First and foremost, the use of a 3D LIDAR sensor will greatly enhance the accuracy

89



in object localization from the point cloud and can enable more specialized approaches
to point cloud segmentation and clustering using deep learning.

Another approach of the fusion of the two sensors can be accomplished using
more complex methods. Fusing the data prior to the final inference, i.e. early fusion,
and using the fused data as input to an inference model can enhance the reliability
of the system in terms of data synchronization.

As far as the navigation approach used in this thesis, a combination of advanced
SLAM techniques enhanced by the use of the detection system in terms of Visual
Servoing, can increase the applicability of the system as a whole, in many complex
dynamic environments and enable the robots accurate and reliable interaction with
the workspace.

90



BIBLIOGRAPHY

[1] D. Schacter, D. T. Gilbert, and D. M. Wegner, Psy-
chology (2nd Edition). New York: Worth, 2011. [Online]. Avail-
able: http://www.amazon.com/Psychology-Daniel-L-Schacter/dp/1429237198/
ref=sr_1_1?s=books&ie=UTF8&qid=1313937150&sr=1-1

[2] Wikipedia contributors, “Perception — Wikipedia, the free encyclopedia,” 2004,
[Online; accessed 10-August-2021]. [Online]. Available: https://en.wikipedia.
org/wiki/Perception#cite_note-2

[3] M. J. A. Lynn Abbott, Ruoxi Jia. Machine perception research - ece - virginia
tech. [Online]. Available: https://ece.vt.edu/research/area/perception

[4] M. Tatum. What is machine perception? [Online]. Available: https://www.
easytechjunkie.com/what-is-machine-perception.htm

[5] A. Serov, “Subjective reality and strong artificial intelligence,” CoRR, vol.
abs/1301.6359, 2013. [Online]. Available: http://arxiv.org/abs/1301.6359

[6] C. Premebida, R. Ambrus, and Z.-C. Marton, “Intelligent robotic perception
systems,” in Applications of Mobile Robots, E. G. Hurtado, Ed. Rijeka: IntechOpen,
2019, ch. 6. [Online]. Available: https://doi.org/10.5772/intechopen.79742

[7] Wikipedia contributors, “Sensor fusion,” 2004, [Online; accessed 05-August-
2021]. [Online]. Available: https://en.wikipedia.org/wiki/Sensor_fusion

[8] C. Suchocki, “Comparison of time-of-flight and phase-shift tls intensity data
for the diagnostics measurements of buildings,” Materials, vol. 13, no. 2, 2020.
[Online]. Available: https://www.mdpi.com/1996-1944/13/2/353

[9] C. Ye and J. Borenstein, “Characterization of a 2d laser scanner for mobile
robot obstacle negotiation,” in Proceedings 2002 IEEE International Conference

91

http://www.amazon.com/Psychology-Daniel-L-Schacter/dp/1429237198/ref=sr_1_1?s=books&ie=UTF8&qid=1313937150&sr=1-1
http://www.amazon.com/Psychology-Daniel-L-Schacter/dp/1429237198/ref=sr_1_1?s=books&ie=UTF8&qid=1313937150&sr=1-1
https://en.wikipedia.org/wiki/Perception#cite_note-2
https://en.wikipedia.org/wiki/Perception#cite_note-2
https://ece.vt.edu/research/area/perception
https://www.easytechjunkie.com/what-is-machine-perception.htm
https://www.easytechjunkie.com/what-is-machine-perception.htm
http://arxiv.org/abs/1301.6359
https://doi.org/10.5772/intechopen.79742
https://en.wikipedia.org/wiki/Sensor_fusion
https://www.mdpi.com/1996-1944/13/2/353


on Robotics and Automation (Cat. No.02CH37292), vol. 3, 2002, pp. 2512–2518
vol.3.

[10] E. Optics. Imaging electronics 101: Understanding cam-
era sensors for machine vision applications. [Online].
Available: https://www.edmundoptics.com/knowledge-center/application-notes/
imaging/understanding-camera-sensors-for-machine-vision-applications/

[11] P. Corke, Robotics, Vision and Control Fundamental Algorithms In MATLAB® Sec-
ond, Completely Revised, Extended And Updated Edition, ser. Springer Tracts in
Advanced Robotics. Springer International Publishing, 2017, vol. 118.

[12] C. Stachniss. Camera parameters – extrinsics and intrinsics. [Online]. Available:
https://www.ipb.uni-bonn.de/

[13] S. S. Kenji Hata. Cs231a: Computer vision, from 3d reconstruction to
recognition. [Online]. Available: https://web.stanford.edu/class/cs231a/

[14] Wikipedia contributors, “Direct linear transformation,” 2004, [Online; ac-
cessed 02-August-2021]. [Online]. Available: https://en.wikipedia.org/wiki/
Direct_linear_transformation

[15] T. V. Haavardsholm, I. Dyrdal, T. Opsahl, and R. Smestad. Maskinsyn (machine
vision) - university of oslo. [Online]. Available: https://www.uio.no/studier/
emner/matnat/its/nedlagte-emner/UNIK4690/v18/lectures/lecture_01/

[16] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.

[17] B. Caramiaux and A. Tanaka, “Machine learning of musical gestures: Principles
and review,” 2013. [Online]. Available: http://research.gold.ac.uk/id/eprint/14645

[18] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[19] A. Gunawan, “A faster algorithm for dbscan,” 2013.

[20] E. Schubert, J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, “Dbscan revisited,
revisited: Why and how you should (still) use dbscan,” ACM Trans. Database
Syst., vol. 42, pp. 19:1–19:21, 2017.

92

https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications/
https://www.edmundoptics.com/knowledge-center/application-notes/imaging/understanding-camera-sensors-for-machine-vision-applications/
https://www.ipb.uni-bonn.de/
https://web.stanford.edu/class/cs231a/
https://en.wikipedia.org/wiki/Direct_linear_transformation
https://en.wikipedia.org/wiki/Direct_linear_transformation
https://www.uio.no/studier/emner/matnat/its/nedlagte-emner/UNIK4690/v18/lectures/lecture_01/
https://www.uio.no/studier/emner/matnat/its/nedlagte-emner/UNIK4690/v18/lectures/lecture_01/
http://research.gold.ac.uk/id/eprint/14645


[21] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Pren-
tice Hall, 2010.

[22] C. Aggarwal, Neural Networks and Deep Learning: A Textbook. Springer, 2018.
[Online]. Available: https://books.google.gr/books?id=AsTswQEACAAJ

[23] M. Shinozuka and B. Mansouri, “4 - synthetic aperture radar and remote sensing
technologies for structural health monitoring of civil infrastructure systems,”
in Structural Health Monitoring of Civil Infrastructure Systems, ser. Woodhead
Publishing Series in Civil and Structural Engineering, V. M. Karbhari and
F. Ansari, Eds. Woodhead Publishing, 2009, pp. 113–151. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9781845693923500049

[24] F. F. Li. Convolutional neural networks for visual recognition. [Online].
Available: http://cs231n.stanford.edu/

[25] Wikipedia contributors, “”convolutional neural network”,” 2004, [Online;
accessed 17-August-2021]. [Online]. Available: https://en.wikipedia.org/wiki/
Convolutional_neural_network

[26] J. Brownlee. A gentle introduction to object recognition with
deep learning. [Online]. Available: https://machinelearningmastery.com/
object-recognition-with-deep-learning/

[27] G. K. Karagiannidis, Telecommunication Systems. Tziolas, 2009.

[28] A. Gjendemsjø and et al, Information and Signal Theory, ser. Science Textbooks
Books. free-ebooks, 2014.

[29] A. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey,
G. Kendrick, and R. B. Fisher, “Chapter 21 - deep learning for coral
classification,” in Handbook of Neural Computation, P. Samui, S. Sekhar, and
V. E. Balas, Eds. Academic Press, 2017, pp. 383–401. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128113189000211

[30] A. Likas and G. Theofanis, “Multiyolo: Learning new yolo categories without
full retraining,” 2020.

93

https://books.google.gr/books?id=AsTswQEACAAJ
https://www.sciencedirect.com/science/article/pii/B9781845693923500049
http://cs231n.stanford.edu/
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://www.sciencedirect.com/science/article/pii/B9780128113189000211


[31] G. Karimi. Introduction to yolo algorithm for object de-
tection. [Online]. Available: https://www.section.io/engineering-education/
introduction-to-yolo-algorithm-for-object-detection/

[32] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics Modelling, Planning
and Control, ser. Advanced Textbooks in Control and Signal Processing. Springer-
Verlag London, 2009.

[33] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki,
and S. Thrun, “Principles of robot motion: Theory, algorithms and implemen-
tations.”

[34] R. W. contributors. Rosaria package summary. [Online]. Available: http:
//wiki.ros.org/ROSARIA

[35] T. Sebastian, B. Wolfram, and F. Dieter, Probabilistic
robotics. Cambridge, Mass.: MIT Press, 2005. [Online]. Avail-
able: http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?
v=glance&n=283155&n=507846&s=books&v=glance

94

https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/
https://www.section.io/engineering-education/introduction-to-yolo-algorithm-for-object-detection/
http://wiki.ros.org/ROSARIA
http://wiki.ros.org/ROSARIA
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance
http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance&n=283155&n=507846&s=books&v=glance


SHORT BIOGRAPHY

Spyridon Syntakas was born in Ioannina,Greece and since 2017 holds a Diploma in
Electrical and Computer Engineering from the Department of Electrical and Com-
puter Engineering of the Polytechnic School of Aristotle University of Thessaloniki.
After fulfilling the compulsory military service as a private in Research and Infor-
matics Corps in 2019, he enrolled in the Graduate Program of the Department of
Computer Science and Engineering of University of Ioannina, and is persuiting a
MSc Degree entitled ”Data and Computer Systems Engineering”. Since July 2021, he
is a PhD candidate at the Department of Computer Science and Engineering with
research topics in the broad scientific fields of Robotics and Artificial Intelligence. His
specific research interests are Intelligent Perception focusing on Machine and Deep
learning approaches, Automated Control of Robotic Systems and Analysis and Fusion
of sensory data. He is a member of the Technical Chamber of Greece, making him a
licensed Engineer.


	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Motivation
	Approach and Contribution
	Thesis Structure

	Preliminary Concepts
	Data Fusion and Sensory Data
	Laser Scanner – LiDAR
	Vision Sensor - Camera

	Machine Learning
	Density based Clustering - DBSCAN
	Supervised Learning - Artificial Neural Networks
	Perceptron
	Artificial Neural Networks

	Image Classification
	Linear Classifier and ANN for Image Classification

	Convolutional Neural Networks
	Convolution
	Convolutional Neural Networks for Image Classification

	Autonomous Navigation
	Artificial Potential Fields


	The proposed approach
	Method Explanatory Analysis
	Object Localization
	Object Recognition
	Autonomous Navigation
	Potential Functions
	P-Controller

	Implementation Details
	Pioneer 3-DX
	Sensor Frames Transformations and Synchronization of Sensory Data
	Camera Calibration
	DBSCAN
	ResNet18 and Recognition


	Experimental Results
	Proof of concept - Perception and Navigation System Application
	Perception System Real Time Object Detection Cases 

	Conclusion
	Comparison to state of the art YOLO approach
	Future Work

	Bibliography
	Short Biography

