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ABSTRACT 
 

 

Georgios Theodoros Kalampokis, M.Sc. in Data and Computer Systems Engineering, 

Department of Computer Science and Engineering, School of Engineering, University 

of Ioannina, Greece, July 2021 

Thesis Title: A Method to Establish Taxa of Schema Evolution 

Advisor: Panos Vassiliadis, Professor 

 

Software evolution is related to either the fix of any errors in the original or previous 

design of the software or the demand of the users to have additional features in the 

software. However, for the software to continue to be functional and viable, it needs 

to keep track of the new requirements. To achieve this, mostly, apart from the up-

dates in the software, new information needs to be added. Schema evolution refers 

to the change of the internal structure of the database, either in terms of changes of 

the tables, or the attributes of the schema. The impact of this evolution on the entire 

software, that is built around the schema, is very big which makes it very important 

to find out how schemata evolve over time, as well as to extract some patterns related 

to their evolution. 

Historically, due to the absence of datasets, only with the appearance of open-source 

software, was, the conduction of studies on schema evolution, made feasible. Re-

cently, in bibliography the biggest study related to the schema evolution, has been 

conducted, with 195 schemata that were studied, in which, families of schemata 

(taxa) were extracted, by observing the way that schema evolves. 

In this Thesis, we continue this research, and we proceed to the assessment of the 

taxa that were proposed. Moreover, we observe how the schema evolves over time 

as well as the measurements that are related to this evolution. The main question 

we seek to answer is: Assuming a taxon is given, what are the characteristics of the 

projects that belong to it and vice versa. Moreover, a question that arises is whether 
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we could find a centroid to each taxon, which would represent its characteristics. 

Finally, based on the answers that were derived from the study of the previous 

questions, we group the taxa in larger groups, which we call super taxa, and demon-

strate a more clean separation of the evolutionary behavior of their projects. We also 

study heartbeat, activity, duration for the super taxa and report our findings, along 

with the identification of centroids for each super taxon.  
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ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ  
 

Γεώργιος Θεόδωρος Καλαμπόκης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογι-

στικών Συστημάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, 

Πανεπιστήμιο Ιωαννίνων, Ιούλιος 2021 

Τίτλος Διατριβής: Μέθοδος καθορισμού τάξεων σχημάτων βάσεων δεδομένων, με 

βάση την εξέλιξή τους 

Επιβλέπων: Βασιλειάδης Παναγιώτης, Καθηγητής 

 

Η εξέλιξη του λογισμικού αφορά είτε τη διόρθωση τυχόν σφαλμάτων στον αρχικό 

ή προηγούμενο σχεδιασμό του λογισμικού, είτε την απαίτηση των χρηστών για πρό-

σθετα χαρακτηριστικά στο λογισμικό. Ωστόσο, προκειμένου το λογισμικό να συνε-

χίσει να είναι λειτουργικό και βιώσιμο, πρέπει να παρακολουθεί τις νέες απαιτή-

σεις. Για να επιτευχθεί αυτό, τις περισσότερες φορές, εκτός από τις ενημερώσεις 

του λογισμικού, πρέπει να προστεθούν νέες πληροφορίες. Η εξέλιξη του σχήματος 

αναφέρεται στην αλλαγή της εσωτερικής δομής της βάσης δεδομένων, είτε στα 

πλαίσια αλλαγών στους πίνακες είτε στα χαρακτηριστικά του σχήματος. Ο αντί-

κτυπος της εξέλιξης αυτής είναι πολύ μεγάλος σε ολόκληρο το λογισμικό, το οποίο 

είναι χτισμένο γύρω από το σχήμα, πράγμα που καθιστά πολύ σημαντικό να ανα-

καλύψουμε τον τρόπο με τον οποίο εξελίσσονται τα σχήματα με την πάροδο του 

χρόνου, καθώς και να εξάγουμε ορισμένα μοτίβα που σχετίζονται με την εξέλιξή 

τους. 

Ιστορικά, λόγω της απουσίας συνόλων δεδομένων, μόνο με την εμφάνιση του λογι-

σμικού ανοικτού κώδικα έγινε εφικτή η διεξαγωγή μελετών για την εξέλιξη των 

σχημάτων. Πρόσφατα, στη βιβλιογραφία, διεξήχθη η μεγαλύτερη μελέτη που έχει 

πραγματοποιηθεί ποτέ σχετικά με την εξέλιξη των σχημάτων, με 195 σχήματα που 

μελετήθηκαν και στην οποία, μελετώντας τον τρόπο με τον οποίο εξελίσσεται το 

σχήμα αυτών των έργων, εξήχθησαν οικογένειες σχημάτων (taxa). 



 

x 

Στην παρούσα εργασία, συνεχίζουμε την προσπάθεια αυτή και κάνουμε αξιολόγηση 

αυτών των οικογενειών που προτάθηκαν. Επιπλέον, παρατηρούμε πώς εξελίσσεται 

το σχήμα με την πάροδο του χρόνου καθώς και ποια είναι τα χαρακτηριστικά που 

σχετίζονται με αυτή την εξέλιξη. Το κύριο ερώτημα που θέλουμε να απαντήσουμε 

είναι, αν δοθεί μια οικογένεια, ποια είναι τα χαρακτηριστικά των έργων που ανή-

κουν σε αυτό, και αντίστροφα. Επιπλέον, ένα ερώτημα που προκύπτει είναι αν θα 

μπορούσαμε να βρούμε ένα κεντροειδές για κάθε οικογένεια, το οποίο θα αντιπρο-

σωπεύει τα χαρακτηριστικά της εκάστοτε οικογένειας. Τέλος, με βάση τις παρατη-

ρήσεις που προέκυψαν από τη μελέτη των προηγούμενων ερωτημάτων, ομαδοποι-

ούμε τις οικογένειες σε μεγαλύτερες ομάδες, τις οποίες αποκαλούμε “super taxa”, 

και επιδεικνύουμε μια πιο σαφή διάκριση της εξελικτικής συμπεριφοράς των σχη-

μάτων τους. Επίσης, μελετάμε το heartbeat, τη δραστηριότητα και την διάρκεια των 

super taxa και αναφέρουμε τα ευρήματα μας, σχετικά με την εξακρίβωση κεντρο-

ειδών για κάθε taxon.  
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CHAPTER 1          

INTRODUCTION 

1.1 Goals 

1.2 Thesis Structure 

 

 

In the first section of this chapter, we present a brief description of our work and 

refer to the main directions and the main purpose of our research. In the second 

section of this chapter, we refer to the structure of this Thesis.  

1.1 Goals  

Many information systems, to meet market needs, use databases to store, manage, 

update, and recover data. A relational database consists of tables that are related to 

each other. A table has fields and records. All the tables of a database including 

their fields, their records as well as, their constraints, form the schema of the data-

base.  

As already mentioned, papers related to schema evolution exist and have done some 

important steps towards the discovery of behaviors and patterns in schema evolu-

tion. Nevertheless, the problem is that all the previous studies have been conducted 

on a small scale, up to a dozen of projects, and cannot ensure that the conclusions 

apply in general.  

Ιn [12], the author, taking advantage of a big number of open-source projects, con-

ducted the largest study, that has ever been conducted in schema evolution and 

presented families of schemata based on the stats of the projects. The study aimed 
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to answer the following research questions: (a) Is schema evolution extensively pre-

sent? (b) Can we extract families, ("taxa" as in biology) of schemata, with respect to 

the way they evolve over time? (c) What are the quantitative characteristics of schema 

evolution and how do they perform for different taxa? The author observed different 

types of schema evolution, so for this reason he introduced the concept of taxa, which 

are families of schemata with similar schema evolution. More specifically, the author 

presented 6 taxa of schema evolution for the domain of Free Open Source Software 

(FOSS) projects, which were extracted based on the activity and the heartbeat rate 

of the projects. 

In this Thesis, we study in detail, the stats of every project for each one of these taxa, 

presented in [12], and we attempt to answer the following questions: 

i) If given a taxon, can we say specific information about its values as well as its charac-

teristics?”  

After observing the stats of the projects and the plots for each taxon, we realized that 

there are some measurements, which are mostly related to the heartbeat and the 

activity, that can give us specific information about the schema evolution, during the 

lifetime of the projects.  

Specifically, the characteristics of each taxon can be synopsized as follows: 

Frozen taxon 

• Zero total activity 

• Up to 1 active commits 

• Zero schema evolution 

ALMOST_FROZEN:  

• A few active commits (up to 4 active commits) 

• Small total activity 

• Most of the projects do not have new tables during their schema evolution 

FocusedShot_n_Frozen: 

• A few active commits (up to 4 active commits) 

• Small to high total activity 
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• Nearly half of the projects of this taxon have one commit with new tables 

during their schema evolution 

MODERATE: 

• Moderate to several number of active commits (up to 23 active commits) 

• Small to medium total activity  

• Nearly 25% of the projects have several upward steps of evolution 

FocusedShot_n_LOW: 

• Moderate number of active commits (up to 11 active commits) 

• Medium to high total activity 

• Nearly 25% of the projects have several upward steps of evolution. 

ACTIVE: 

• Several number of active commits (up to 64 active commits) 

• Very high total activity  

• Nearly 50% of the projects have several upward steps of evolution. 

 

ii) Can we give a “centroid” characteristic project of each taxon? 

Considering the fact that the taxa presented in [12] were extracted mostly based on 

the activity and the heartbeat of the projects, in later section we present a project per 

taxon as a centroid project, including its measurements, and compare it to the general 

behavior of the taxon. This project represents the characteristics of each taxon with 

respect to the way its schema evolves and is defined by using measurements related 

to the heartbeat and the activity of the projects. 

iii) Can we do better than the existing taxonomy? 

After having observed the stats and the plots of all the measurements and especially 

of those that are related to the heartbeat and the activity of the projects, in Chapter 

3, we came up with the idea of merging the similar taxa into larger groups, which 

we call super taxa, and present them extensively in Chapter 4. 
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1.2 Thesis Structure  

This Thesis consists of 5 sections. Its structure is as follows: 

In Section 2, we present the related work and the background of this Thesis.  

In Section 3, we discuss the procedure that was followed for the assessment of the 

taxa, which were presented in [12], and present the results and the conclusions that 

we end up with. 

In Section 4, we examine the possibility of deriving super taxa, by grouping similar 

taxa into larger groups and discuss the benefits of this procedure. 

In Section 5, we discuss the conclusions and the results of this Thesis and also, we 

refer to potential future work.  
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CHAPTER 2          

RELATED WORK 

2.1 Case Studies of Schema Evolution 

2.2    Overview of the paper “Schema Evolution Profiles from the Study of 195  

        Free Open Source Software Projects” 

 

In the first section of this chapter, we refer to related research that has been done in 

this specific area, emphasizing how the interest in this area was grown, as well as 

on the achievements over time. In the second section, we make a quick overview of 

the paper “Schema Evolution Profiles from the Study of 195 Free Open-Source Soft-

ware Projects”, since this Thesis is an extension of this study. 

2.1 Case Studies of Schema Evolution 

Sjøberg in his paper [7] conducted a study for measuring modifications to database 

schemata and their consequences. To accomplish that, the author built a thesaurus 

tool to monitor the evolution of a large, industrial database application – a health 

management system (HMS). The thesaurus assists in keeping track of the use of 

names in the HMS application and reports to user information such as which actions, 

classes, functions, macros, etc. are defined and where they are used, which fields and 

relations, this query or update function refers to, etc. It does not perform any changes 

or conversions itself but instead, it indicates where changes probably have to be 

done. Finally, the author reports how the schema changed, and concludes that even 



 

16 

 

a small change to the schema may have major consequences for the rest of the 

application code.   

Specifically, the author's findings can be summarized as follows: 

• At the beginning of the development, almost all changes were additions. 

• After the system went into production use, there was no diminution in the 

number of changes, but the additions and deletions were more nearly in bal-

ance. 

• Every relation has been modified throughout the examination period. 

• During the period of examination of HMS, there was a 139% increase in the 

number of relations and a 274% growth in the number of fields.  

 

 

Curino, Moon, Tanca, and Zaniolo in their paper [2] present an in-depth analysis of 

the evolution of the Wikipedia database and its schema, which was short in time, 

but intense in terms of growth and evolution. In the context of their study, the 

authors performed a macro and micro classification of the schema changes and then 

they measured the effect of the changes on applications, by observing the success 

rate of the query execution among different schema versions. 

The main findings of this study are condensed as follows: 

• Throughout the analysis, the number of tables increased from 17 to 34 (100% 

increase) and the number of columns from 100 to 242 (142%).  

• Regarding the table/column lifetime as well as the number of revisions per 

month, each table lasted 103.3 versions (60.4% of the total DB history) and 

columns lasted 97.17 versions on average (56.8% of the total DB history). The 

peak of the most revisions per month was spotted in the middle of the 

timeframe that the database was examined. 

• Interestingly, it was noticed that there were two main groups of tables and 

columns: “short-living” and “long-living”.  

• Only a small fraction (about 22%) of the queries, designed to run on old 

schema versions, were still valid throughout the schema evolution. 



 

17 

 

• The authors, in order to provide a fine-grained analysis of the types of change 

the schema has been subjected to, exploited Schema Modification Operators 

(SMOs) as a pure classification instrument. SMO’s syntax is similar to that of 

SQL, DDL, and provides a concise way to describe typical modifications of a 

database schema and the corresponding data migration. The authors found 

that the most used SMOs were “ADD COLUMN” and “DROP COLUMN”.  

• The results of the study showed that MediaWiki has undergone a very inten-

sive schema evolution, as a result of the cooperative, multi-party, open-source 

development, and administration.  

 

Lin’s and Neamtiu’s research [4] aimed to identify challenges and solutions associ-

ated with the collateral evolution of application programs and databases. The authors 

define, the situation when the format expected by the data client is different from 

the format provided by the data server, which may have unexpected behavior, as 

collateral evolution.   

To identify which the most frequent table changes are, the authors performed a schema 

evolution study on two real-world widely used applications Mozilla and Monotone.  

• The author's research has revealed that the most frequent table-level modifi-

cations are interval changes to the schema of existing tables, followed by table 

additions, table deletions, and table renaming. 

• Regarding the attributes of the tables, most of the changes were additions and 

deletions.   

Afterwards, the authors’ purpose was to find out how the application code remains 

synchronized with the new schema version. To accomplish that, Mozilla and Monotone 

were examined, to inspect how these two applications deal with the schema changes. 

• Monotone used a centralized routine to check whether collateral evolution has 

occurred, and inform the user whether the database is usable, or if migration 

is required, etc. 

• Mozilla had two main approaches to cope with schema changes: The first 

mechanism (Version-oblivious evolution) simply ignores the collateral evolu-

tion problem and assumes that, if a database exists, its schema version matches 
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the schema version of the application, which may result in unexpected errors. 

The second approach (Bidirectional schema migration) determines, before ac-

cessing the database, both the version X of the application and the version Y 

of the database schema, and then perform the schema migration, which can 

be either an upgrade or a downgrade. 

Although table and attribute changes are under application program developers' 

control, the developers face changes they have little control over, like the database 

file format. The reason why this happens is that DBMS producers often modify the 

database file format to offer improved performance, reduce storage size, or imple-

ment a new standard. The authors carried out a database format evolution study over the 

complete lifetime of three major DBMSs (SQLite, MySQL, PostgreSQL).  

Compatibility errors could occur due to different versions of DBMS. MySQL and 

PostgreSQL face this challenge by backing up the existing data, “dump" the DB 

contents to a SQL script containing the commands needed to recreate all the database 

records from scratch, upgrade the DBMS, and run the script to recreate and populate 

the database at the new format.  

Regarding the format changes of each DBMS, they are as follows: 

• MySQL over its 14-year existence has had 5 file format changes. 

• PostgreSQL over its entire 14-years lifetime has had 21 file format changes. 

• SQLite over its 9 years lifetime, has changed the file format 13 times. Though 

only 3 of those were incompatible file format changes.  It seemed to be much 

more user-friendly. Seamless file format conversion mechanisms used in 

SQLite should be adopted by other DBMS producers as well. 

 

Wu’s and Neamtiu’s research [13], focused on schema evolution for embedded da-

tabases. The goal of the authors' work was to find a way that would permit safe, 

dynamic schema updates to embedded databases (EDs).  

The main contributions and results of this research were the following: 

 

An approach for extracting ED schemas and detecting schema evolution. The first step 

towards this goal was to understand how ED schemas evolve. So firstly, the authors 

created a tool (SCVD) that automates schema extraction and schema evolution 
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analysis for EDs. Using SCVD, developers can compare old and new applications to 

find out when and how to correctly migrate an ED from the old schema to the new 

schema. Regarding the SCVD architecture, it consists of 3 stages:  

• In the first stage, the system tracks the release history of an application (source 

code history extractor). 

• In the second stage, it extracts the database schemas embedded in the appli-

cation (schema extractor). More specifically, it takes as input a list of versions 

or tags and downloads a corresponding list of source code versions the au-

thors want to analyze. 

• In the third stage, it compares the schemas and produces a tally of schema 

evolution results (schema differencing module). This module is based on 

mysqldiff, an open-source schema migration assistant. 

 

A study of ED schema evolution of four popular applications over more than 18 cumulative 

years.  

To understand how EDs evolve in practice, the authors used the aforementioned 

tool (SCVD) to perform a schema evolution study covering a cumulative 18 years of 

evolution, on four popular open-source programs: Firefox, Monotone, BiblioteQ, and 

Vienna. The authors' study focused on the table- and attribute-level changes that 

affect update safety. More specifically, the table changes that were examined were 

the SMOs "CREATE TABLE" and "DROP TABLE" and the attribute changes were 

the following: "ADD COLUMN", "DROP COLUMN", "Type Change", "Init Change", 

"Key Change". The results, after summing up the changes across all the applications, 

were the following:  

• The most frequent operations were ADD COLUMN (32.5%), Type Changes 

(24.3%), DROP COLUMN (19.3%), DROP TABLE (14.9%), and CREATE 

TABLE (6.1%). After having observed the previous results, the authors found 

out that table and column additions/deletions are more important than sup-

porting changes to column types, initializers, and key status.  

• The authors also measured the frequency and timing of schema changes for 

each project. It was observed that schemas tend to change more in the 
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beginning, and the database structure stabilizes over time because later ver-

sions have fewer changes. For that reason, the authors suggested that on-the-

fly schema updates are necessary, especially at the beginning of a program's 

lifetime. 

 

 

Qiu, Li, and Su in their paper [6] paid attention on how schema-changes impact 

code and performed a large-scale empirical study on ten popular database applica-

tions to gain insight into how schemas and application code co-evolve. In particular, 

the authors studied the applications’ long-time evolution histories from their respec-

tive repositories, to understand 1) if database schemas evolve frequently and significantly, 

2) how schemas evolve, and, 3) how they impact application code. 

 

Firstly, the authors provided a method that describes their analysis process over the 

schema and data changes. The method consists of the following steps:  

• Locate schema file: The first step extracts the schema files. The authors man-

ually trace the schema files even if their locations or names have been modi-

fied. 

• Extract DB revisions: The second step identifies DB revisions, which are re-

visions (commits) that contain modifications to schema files. 

• Extract valid DB revisions: Filter DB revisions and keep only those that the 

authors were interested in. 

• Extract atomic changes: After having identified the valid DB revisions for 

each project, the authors extract all schema changes by manually comparing 

schema files of contiguous valid DB versions. 

• Co-change analysis: Analysis of the real impact caused by these atomic schema 

changes by mining a project’s version control history. The authors use a da-

tabase application’s co-change history to estimate the application code area, 

affected by a schema change. 
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After applying the first two steps of the previous method, the authors came up with 

the following results: 

• The ratio of valid over total revisions fell mostly in the 50-90% range. 

• Compared to other projects, Joomla had a much lower ratio because DMLs 

were involved in the same schema file with DDLs, making data-sensitive 

changes cover a large fraction of invalid revisions. 

• The average number of atomic changes per valid revision fell mostly in the 

2-7 range. 

 

Finally, the authors considering the previous analysis provided answers and conclu-

sions to the following questions. 

"How frequently and extensively do schemas evolve?" The authors, to answer this ques-

tion, had to do the following steps: 

• Firstly, for each stable release/year, the authors calculated the average number 

of valid DB revisions/atomic schema changes.  

• Secondly, it was measured how extensively schemas change, by examining the 

trend on schema size changes. The authors collected the number of tables/col-

umns in each valid revision to see how much schemas evolve. 

 

To facilitate a more precise evaluation, the authors used two metrics, Growth Rate 

(GR) and Change Rate (CR): 

GR = (#Added Elements - #Deleted Elements) / Initial Elements 

CR = (#Added Elements + #Deleted Elements) / Initial Elements 

 

The main results were the following:  

• Schemas evolve frequently: On average 65 atomic schema changes occurred 

per release, and 90 atomic schema changes occurred per year across the ten 

projects.  

• The size of schemas in most projects grew significantly: The GR of tables in 

60% of the projects exceeded 100%; the CR of tables in 90% of projects ex-

ceeded 100%. 
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• Columns evolve in a way that is very similar to the one of the tables. 

 

"How do database schemas evolve?" The main results that the authors came up with 

were the following: 

• At the low-level, add table, add column, and change column datatype were 

the most frequent atomic change types. 

• The data also confirmed that referential integrity constraints (such as foreign 

key and trigger) and procedures (such as stored procedure) are rarely used 

in practice.  

• Addition and change accounted for most of the schema evolution. 

 

"How much application code has co-changed with a schema change?" To answer this 

question, the authors selected uniformly a random 10% (146) of the valid DB revi-

sions from the total 1,464 valid DB revisions and manually analyzed the co-changed 

information. 

The main results, that the authors ended up with, were the following: 

• Their detailed manual study on schema and code co-change history revealed 

that more than 70% of all valid DB revisions contained effective co-change 

information, and among these, over 70% have precisions over 80%. 

• Schema changes impacted code greatly. For an atomic schema change, devel-

opers needed to change about 10~100 LoC on average. For a valid DB revi-

sion, which typically contains 25 atomic changes, developers needed to change 

about 100~1000 LoC. 

 

 

Skoulis, Vassiliadis, and Zarras [8] during their research performed a large-scale 

study on the database evolution of large open-source projects and checked the va-

lidity of Lehman's laws on properties like size, growth, and amount of change per 

version. More specifically, the authors isolated databases of eight projects that ap-

peared to be alive. For each dataset, the authors gathered its schema versions, and 

then used their tool Hecate to get the differences between the two subsequent 
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committed versions and measures such as the size of the schema, the total number 

of changes for each transition from a version to the next, or the growth assessed as 

the difference in the size of the schema between subsequent versions. 

 

The main conclusions that the authors ended up with are the following: 

• All projects, with only one exception, had schema changes throughout their 

lifetime. Database schema evolution happened in discrete time slots and was-

n't a continuous process. The authors concluded that the Law of Continuing Change 

partially holds. 

• The evolution of the database schema appeared to obey the behavior of a feedback-

based mechanism. 

• Referring to the evolution of size, it was noticed that the schemas follow three 

fundamental behaviors. In all schemas, exist periods of increase, especially at 

the beginning of their lifetime or after a large drop in the schema size. More-

over, there were versions with drops in schema size. Those drops were typi-

cally sudden and steep and usually took place in short periods of time. Also, 

in all schemas, there were periods where the size remained stable. In terms 

of schema growth, change was small. Tables' growth was mostly ranged in 

small values. Also, the same behavior was noticed for the attributes' growth. 

Considering those, the authors concluded that change does not follow the pattern of 

baseline smooth growth of Lehman. 

• Even though all data sets demonstrated the tendency to grow over time, in 

all schemas, there were periods of stability where the size of schema did not 

change, so the authors concluded that the Law of Continuing Growth holds. 

• The Law of Conservation of Organizational Stability does not hold, since there was 

no constant growth in any of the projects. 

 

Vassiliadis, Zarras, and Skoulis [10] focused on how properties associated with 

schema evolution such as life duration, or the number of updates of a table are 

related to observable table properties like the number of attributes or the time of 

birth of a table. The authors provided answers and conclusions to the following 

questions: 
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"Which tables eventually survive, and which ones are deleted?"  

According to the authors, the tables can be segregated to the following families:  

• Wide survivors: Tables with small schema sizes can have various lifetime du-

rations and tables with larger schema sizes live longer. 

• Entry level removals: Newly born tables tend to be quickly removed with a few 

or no updates observed. 

• Old timers: It was noticed that old age tables are rarely removed.  

 

"What is the impact of the lifetime of a table on schema size and vice versa?"  

Intending to answer this question, the authors computed the duration for each table 

in each dataset. To get a normalized measure, the duration of each table was divided 

by the duration of its database.  

Specifically, the author's results and conclusions can be summarized as follows: 

• It was observed that long-lived tables tend to appear at the beginning of the 

database and survive till the end. 

• A 26.11 % fraction of tables that appeared at the beginning of the database, 

survived until the end. 

• Nearly half of the tables (approx. 47 %) were small tables with less than 5 

attributes. 

• The tables with 5 to 10 attributes were approximately one-third of the tables' 

population and the wide tables with more than 10 attributes were approxi-

mately 17 % of the tables. 

• The datasets with less evolutionary activity were the ones concentrating outlier 

values. 

• Tables with small schema sizes can have arbitrary durations, whereas tables 

with larger schema sizes last long.  

• Small schema size does not necessarily mean short duration. Nonetheless, ta-

bles with 10 or more attributes have high chances of surviving. 

• Tables at old age are rarely removed. 
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"How is table schema size and duration related to its update potential?"  

The authors after observing the relation of a table’s schema size at its birth with the 

amount of change the table undergoes, concluded the following two main clusters. 

The first cluster consists of small size tables with a small amount of change and the 

second cluster is divided into two subcategories: (i) Medium schema size tables with 

medium to large amount of changes and (ii) Tables with large schema size with 

small to medium amount of change.   

Additional conclusions that the authors ended up with are as following: 

• Considering the table updates, large size tables seem to have fewer possibilities 

of growth, in contradiction with medium size tables which can carry more 

information. 

• Tables with small lifetimes are subject to small changes, while tables with 

medium duration undergo small or medium change, and, long-lived tables 

demonstrate all kinds of change behavior. 

• Tables with the highest average transitional update, are born early, live long, 

and have consequently a large amount of total update. 

 

Panos Vassiliadis and Apostolos V. Zarras in their research paper [11] aimed to 

discover patterns and behaviors that are tightly related to the survival or the 

death of the tables of a database. For the purposes of their study, the authors 

used their tool Hecate, to the schema files of 8 open-source projects, to get 

measures such as the total number of changes it went through and the change 

rate. After having examined the graphs, which included measurements, men-

tioned above, the authors deduce the following facts: 

• "Dead" tables tend to have a short lifetime, which makes sense, because the earlier 

a table is removed, the smaller the cost of maintaining the surrounding code is. 

• On contrary to the "dead" tables, "survivor" tables usually have high durations. 

• Probably the most important finding of the authors was "The electrolysis pattern". 

This pattern states that tables, which die, are usually tables with small or 

medium lifetimes and undergo fewer changes. In contradiction, tables that 
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survive, usually present medium or big durations and have the tendency, 

to undergo a greater number of changes, the longer they live. 

• Finally, the authors suggest that the developers try keeping the development of 

the, related to the tables, code as restrained as possible, preferably encapsulated 

via views, that will hide the changes from the application code.  

 

2.2 Overview of the paper “Schema Evolution Profiles from the 

Study of 195 Free Open Source Software Projects” 

The author, in [12], conducted the largest study, that has ever been conducted in 

schema evolution, and after collecting a big number of open-source projects, he pre-

sented families of schemata based on the way they evolve throughout their develop-

ment lifetime. For the generation of the datasets, the author queried the GitHub 

Activity Data dataset from Google Cloud BigQuery, for repositories that had .sql files. 

Then, the author filtered original repositories, with more than 0 stars and more than 

1 contributor and finally, after discarding projects with just a single commit, ended 

up with 195 projects, with at least an extra commit. Once the histories of these 195 

projects were collected, The author proceeded to the automatic extraction of changes 

in the lifetime of projects by using a tool called Hecate. These changes involve table 

and attribute birth and removal, as well as data type and PK (Primary Key) changes. 

The last step was the production, of stats and charts for each project, which were 

used for the extraction of the taxa.  

The taxa that emerged at the end of this study [12] are as follows: 

• 0_FROZEN: Projects with completely frozen schema histories and with zero 

change at the logical level. (totalActivity = 0)  

• 1_ALMOST_FROZEN: Projects with histories of very small change, typically 

with few intra-table attribute modifications. (At most 4 active commits, to-

talActivity <= 10 updated attributes). 
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• 1_FocusedShot_n_FROZEN: Projects with almost frozen histories but with a 

single spike of change (not necessarily small) and almost no other change (At 

most 4 active commits, totalActivity > 10 updated attributes). 

• 2_MODERATE: Projects with histories of moderate evolution, without spec-

tacular changes, but rather small deltas spread throughout their lives. 

• 3_FocusedShot_n_LOW: Projects with evolution similar to the moderate one 

but also with a pair of spikes on their activity. 

• 4_ACTIVE: Projects with a significant amount of change both as intra-table 

change and in terms of table generation and eviction. 
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CHAPTER 3          

PROFILING AND EVALUATION OF THE EXISTING 

TAXONOMY OF SCHEMA EVOLUTION 

3.1     Data and Statistics Extraction from “HeraclitusFire” 

 3.1.1 Atomic Schema Attributes 

 3.1.2 Monthly Schema Attributes 

 3.1.3 Summary Schema Attributes 

3.2     Testing of Extracted Data 

3.3     Correlations of Attributes 

         3.3.1 Kendall Metric 

         3.3.2 Correlations  

         3.3.3 Most Important Attributes  

3.4     Data Profiling 

3.5     Behavior and patterns per taxon 

3.6  Centroids and characteristics per taxon 

3.7  Assessment of existing taxa and validity metrics 

          3.7.1 Cohesion and Separation metrics  

          3.7.2 Silhouette Coefficient 

 

This chapter critically assesses the taxa presented in [12], through a detailed analysis. 

To achieve this analysis, some new data and statistics needed to be extracted from 

the taxa. In the first section of this chapter, an overview of the tool “HeraclitusFire” 
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as well as the data and statistics, that were extracted and added as information to 

“HeraclitusFire”, are presented. In the second section of this chapter, the main tests 

that were added to “HeraclitusFire” are reported, to make sure that every infor-

mation added to the project was valid, as well as to test most of the use cases related 

to the schema evolution of the input. Afterwards, the third section discusses the 

correlations of the attributes. More specifically, firstly the metric that was used to 

compute the correlations of the attributes is presented, then the computed correla-

tions are presented, and at the end of this section, based on this correlation matrix, 

the most important attributes are extracted. In the fourth section, a profiling of the 

most important attributes, including their histograms, is provided. In the fifth sec-

tion, we discuss about patterns and characteristics for each taxon. Then, in the sixth 

section, we present a centroid-project for each taxon, that represents the characteris-

tics of the respective taxon. Finally, in the last section we proceed to the assessment 

of the existing taxa, presented in [12], by using some validity metrics from the area 

of clustering. 

3.1 Data and Statistics Extraction from “HeraclitusFire” 

Firstly, let’s take a look at the tools, that were used in terms of this research. “Her-

aclitusFire” is a tool that, given the history of a relational database schema, auto-

matically produces visualizations and statistical tests for patterns of schema evolu-

tion.  As input to “HeraclitusFire” is given the output of “Hecate”, which is a tool 

that, given a folder with the snapshots of the DDL files as input that include the 

CREATE TABLE statements of the databases, produces transitions from one snap-

shot ("version") to its next, along with statistics on the types of changes. The data 

and statistics produced by “HeraclitusFire”, were used in our detailed analysis. How-

ever, these data were not enough for the goals of this research, because it was im-

portant to automatically extract stats like continuous evolution and progressive evo-

lution, so that more attributes and statistics were added. In the following three sub-

sections, the specific measures of evolution that were added to “HeraclitusFire” by 

category are mentioned, with a description of their meanings. The new information 

after being calculated is stored in the appropriate CSV file. 
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3.1.1 Atomic Schema Attributes  

Regarding the atomic transition information, having taken into consideration the 

total activity of each commit of a project, the following attributes, in Table 3.1, that 

characterize it, were added. 

 

Table 3.1 Atomic Schema Attributes with their descriptions 

Attribute Description 

active A commit is called active if its total activity is greater than 0. 

turf 
A commit is called turf if it is active, and its total activity is 

less than 15. 

reed A commit is called reed if its total activity is greater than 15. 

 

These metrics were essential for the computation of the monthly and the summary 

schema stats, which will be discussed in the next subsections. The attributes turf and 

reed, explain the evolution in a better way because they distinguish the small from 

the big evolutions of schemas. 

 

3.1.2 Monthly Schema Attributes 

The usage of the month as a time unit was convenient in our case, in terms of the 

study as well as the visualization of the new data. These monthly measurements 

provide a continuous regular timeseries, where no value is missing. In monthly stats, 

the first month includes not only the commits of that month, but also the initial commit of 

the project (v0). As far as the monthly schema additions are concerned, the new 

attributes for each month are presented in Table 3.2. 

Table 3.2 Monthly Schema Attributes with their descriptions 

Attribute Description 

reeds The number of commits that are reeds. 
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reedRatioAComm 
The number of reeds divided by the number of active com-

mits. 

reedRatioTComm 
The number of reeds divided by the number of total com-

mits. 

activityDueToReeds Sum of the total activities of all commits that are reeds. 

turfs The number of commits that are turfs. 

turfRatioAComm 
The number of turfs divided by the number of active com-

mits. 

turfRatioTComm 
The number of turfs divided by the number of total com-

mits. 

activityDueToTurfs Sum of the total activities of all commits that are turfs. 

activeCommits The number of active commits. 

activeCommitRatio 
The number of active commits divided by the number of 

total commits. 

 

 

3.1.3 Summary Schema Attributes 

The taxa presented in [12] were produced on the basis of summary information that 

separates the initial commit (v0) from the rest, which means that the measures of 

the initial commit (v0) are not being taken into consideration for the calculation of 

the summary stats. Regarding the summary stats, that involve aggregate measure-

ments for the entire life of a schema, the following attributes, in Table 3.3 were 

added: 

Table 3.3 Summary Schema Attributes with their descriptions 

Attribute Description 

reeds The total number of commits of the project that are reeds. 

reedsPostV0 
Equal with reeds if the first commit is a turf, or (reeds – 

1) if the first commit is a reed. 
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reedRatioAComm 
The number of reeds divided by the number of active 

commits. 

reedRatioTComm 
The number of reeds divided by the number of total com-

mits. 

activityDueToReeds Sum of the total activities of all commits that are reeds. 

activityDueToReed-

sPostV0 

Equal with activityDueToReeds if the first commit is a turf, 

or (activityDueToReeds – totalActivityV0) if the first com-

mit is a reed. 

turfs The total number of commits of the project that are turfs. 

turfsPostV0 
Equal with turfs if the first commit is a reed, or (turfs – 

1) if the first commit is a turf. 

turfRatioAComm 
The number of turfs divided by the number of active 

commits. 

turfRatioTComm 
The number of turfs divided by the number of total com-

mits. 

activityDueToTurf Sum of the total activities of all commits that are turfs. 

activityDueToTurf-

PostV0 

Equal with activityDueToTurf if the first commit is a reed, 

or (activityDueToTurf – totalActivityV0) if the first commit 

is a turf. 

activeCommits The number of active commits. 

activeCommitRate-

PerMonth 

The total number of active commits divided by the total 

number of months the project is alive. 

commitRatePerMonth 
The total number of commits divided by the total number 

of months the project is alive. 

activeCommitRatio 
The total number of active commits divided by the total 

number of commits. 

3.2 Testing of Extracted Data 

After the calculation and storage of the data, before their preprocessing, their validity 

had to be verified. Also, it was very crucial to be confirmed that the changes had 

not affected the general functionality of the project. To accomplish that, a multitude 
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of tests for the most important use cases was generated. Moreover, the validity of 

the extracted data, of five more schemas of projects, was tested, and “truth” files with 

the expected valid data results were created. The most important use cases for this 

research, which were tested, are the following: 

• loadData  

• extractMonthlySchemaStats 

• extractSchemaLevelInfo 

 

To confirm that the abovementioned use cases are working properly, their tests on 

5 more projects were conducted.  Finally, every test for each one of the six projects 

was fired, and it was realized that everything was working properly and that the 

calculated data were equal to the expected valid ones. 

3.3 Correlations of Attributes 

To evaluate the taxa presented in [12], the similarity of the objects of each cluster as 

well as the degree of separation between the clusters needed to be examined. The 

attributes were too many to process, so a subset of attributes needed to be selected, 

by discarding the most correlated attributes. In this section, an overview of the metric 

that was used, to compute the correlations of the attributes, is provided. Also, the 

correlations that were computed, as well as the most important attributes that were 

resulted according to the correlations, are presented. 

 

3.3.1 Kendall Metric 

For the calculation of the correlations of the data, the Kendall's Tau Coefficient for-

mula [3] was used which is as follows: 

 

𝜏 =  
𝑛𝑐 −  𝑛𝑑

𝑛(𝑛 − 1)/2
 

 

where: 
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𝑛𝑐 : number of concordant pairs 

𝑛𝑑 : number of discordant pairs 

n : number of observations 

 

 

The reason why Kendall’s Tau Coefficient was chosen, is because the sample was 

small so its complexity O(n^2) was not discouraging. Besides, Kendall’s Tau Coeffi-

cient manages the outliers effectively because this coefficient is computed based on 

the rankings of the values, instead of the values themselves.   

 

The steps that need to be done, before using the formula, are as follows: 

• Calculate the number of observations. 

• Compute the rankings for both of the attributes we want to observe their 

correlation. 

• Then for every pair of ranks (x1, y1) and (x2, y2)  

o If the pair (x1, y1) and (x2, y2) has the property that 

sgn(x2 - x1) = sgn(y2 - y1)  

where 𝑠𝑔𝑛 𝑥 =  {
−1 : 𝑥 < 0
0 : 𝑥 = 0
1 : 𝑥 > 0

} 

then, that pair is marked as concordant pair (C) 

 

o Else if the pair (x1, y1) and (x2, y2) has the property that 

sgn(x2 - x1) = - sgn(y2 - y1)  

then that pair is marked as discordant pair (D) 

• Finally, count the number of concordant pairs (𝑛𝑐) and the number of dis-

cordant pairs (𝑛𝑑) and apply the formula. 
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3.3.2 Correlations 

After following the aforementioned steps for every pair of our attributes, all the 

correlations are presented in Figure 3.1. 

 

 

Figure 3.1 Kendall’s Tau correlations of data 
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In Figure 3.1, the symmetric table of correlations for every pair of attributes is pre-

sented. Pairs of attributes with correlation values greater equal than 0.6 represent 

correlated attributes, while other pairs with correlation values less or equal than  

-0.6 represent anticorrelated attributes.  

 

 

 

 

Figure 3.2 Network graph with high correlations between attributes as edges 

 

 

Figure 3.2 shows all the attributes with their correlations as a graph representation. 

More specifically, it presents a network, with the attributes as nodes, and the high 

positive correlations (greater than 0.6) as edges, where the closer the nodes are to 

each other, the higher the correlation between them is. 

 

3.3.3 Most Important Attributes 

Since the number of attributes was very big to process, a procedure was followed to 

determine the most important attributes. Taking Figures 3.1, 3.2 into consideration, 

the steps of that procedure are as follows: 
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First of all, the attribute (TotalTotalAttrActivity) was determined from the start to be 

one of the most important attributes, because of its high significance. The attribute 

(ResizingRatio), since it was not highly correlated with any other attribute, was 

marked as significant. 

Squares of green values declare a big correlation between the respective pairs of 

attributes. So, for each such green square, a single attribute was determined to be 

one of the most important. 

 

• Green Square (DurationInDays, DurationInMonths, DurationInYears) 

These attributes were highly correlated. DurationInMonths was determined 

to be one of the most important attributes. 

• The following green squares are associated with specific “activity functions”, 

so since TotalTotalAttrActivity was the most general “activity measure”, only 

this was added to the most significant attributes. 

o Green Square (TablesStart, TablesEnd, AttrsStart, AttrsEnd). 

o Green Square (TotalTableInsertions, TotalTableDeletions, TotalAt-

trInsWithTableIns, TotalAttrbDelWithTableDel). 

o Green Square (TotalExpansion, TotalMaintenance, TotalTotalAttrActivity, 

ExpansionRatePerCommit, ExpansionRatePerMonth, ExpansionRate-

PerYear, MantainanceRatePerCommit, MantainanceRatePerMonth, Man-

tainanceRatePerYear, TotalActivityRatePerCommit, TotalActivityRatePer-

Month, TotalActivityRatePerYear). 

• These attributes (TotalAttrInjected, TotalAttrEjected, TotalAttrWithTypeUpd, To-

talAttrInPKUpd) did not form a green square but were associated with specific 

“activity functions” so we decided to keep none of them. 

• As far as these attributes (Reeds, ReedsPostV0, ReedRatioAComm, ReedRati-

oTComm, ActivityDueToReeds, ActivityDueToReedsPostV0) are concerned, they 

are associated with the same metric. The attributes Reeds, ReedsPostV0, and 

ActivityDueToReedsPostV0 seemed to be highly correlated with most of the 

attributes, while ReedRatioAComm, ReedRatioTComm had close to zero 
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correlation with the main attribute TotalTotalAttrActivity, so in the end, only 

the ActivityDueToReeds attribute was marked as significant. 

• These attributes (Turfs, TurfsPostV0, TurfRatioAComm, TurfRatioTComm, Ac-

tivityDueToTurf, ActivityDueToTurfPostV0), refer to the same metric. Since Ac-

tivityDueToReeds was chosen in the previous step, the attributes Activi-

tyDueToTurf, ActivityDueToTurfPostV0 were instantly discarded, and then, 

based on the correlation matrix, the attributes Turfs and TurfRatioTComm were 

marked as significant. 

• Finally, concerning these attributes (ActiveCommits, ActiveCommitRatePer-

Month, CommitRatePerMonth, ActiveCommitRatio), the attribute ActiveCommits 

was highly correlated with most of the attributes, so it was instantly discarded. 

The ActiveCommitRatePerMonth and CommitRatePerMonth attributes seemed to 

be highly correlated, so we decided to keep only CommitRatePerMonth. The 

attribute ActiveCommitRatio was also marked as significant. 

 

 

After discarding the less important attributes according to the correlation matrix in 

Figure 3.1, the attributes that finally were marked as important are presented in 

Figure 3.3. 

 

 

Figure 3.3 Most Important attributes 
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3.4 Data Profiling 

In this section, we profile all the attributes of Figure 3.3 that were marked as signif-

icant. More specifically, for every attribute, the minimum value, the maximum value, 

the average, the standard deviation, are computed and a histogram plot is provided. 

Before performing data profiling, having observed the values of the dataset, two 

projects (“opencart”, “cgrates”) of the dataset seemed to have extremely outlier val-

ues. Due to that, we have decided not to take these outliers into account to prevent 

them from affecting the results of the assessment of the existing taxa.  

Therefore, in all our subsequent results we work with only 193 of the 195 projects. 

Figure 3.4 consists of a table with the data profiling metrics of the most important 

attributes. Figures 3.5 – 3.12 present the histograms of these attributes. 

 

 

Figure 3.4 Data Profiling Metrics for 193 projects 
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Figure 3.5 Histogram of DurationInMonths 

 

 

Figure 3.6 Histogram of TotalActivity 

 

Figure 3.7 Histogram of ResizingRatio 
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Figure 3.8 Histogram of ActivityDueToReeds 

 

 

Figure 3.9 Histogram of Turfs 

 

Figure 3.10 Histogram of TurfRatioTComm 
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Figure 3.11 Histogram of CommitRatePerMonth 

 

 

Figure 3.12 Histogram of ActiveCommitRatio 

 

3.5 Behavior and patterns per taxon 

In this section, we discuss the behavior and the patterns, that were observed for the 

studied measurements, and we support any conclusions with extra visual represen-

tations. 

Regarding the schema update period, as shown in Figure 3.13, every taxon seems to 

have projects with both short and big periods of updates. However, moving from the 

frozen to the active class, the schema update period becomes bigger and bigger, the percent-

ages of short periods are decreasing, and the percentages of longer periods are increasing. 
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The explanations of the labels, presented in Figure 3.13, are as follows: 

• 0_UpTo10Days: Projects with schema update period in the range [0 – 10] 

days.  

• 1_11To180D: Projects with schema update period in the range [11 – 180] days. 

• 2_06To12M: Projects with schema update period in the range [181 – 365] 

days.  

• 3_13To36M: Projects with schema update period in the range [366 – 1095] 

days. 

• 4_LONG: Projects with schema update period greater than 1095 days (3 

years).  

 

Figure 3.13 Schema Line Update Period Plot 

 

 

 

 

Considering Figure 3.14, which represents the schema line volume of change per 

taxon, it seems like the behavior of each taxon is discrete.   

The labels that are presented in Figure 3.14, were produced based on BD where: 

BD = tableInsertions + tableDeletions 

More specifically the meanings of the labels in Figure 3.14 are as follows: 

• 0_NONE: BD = 0 

• 1_SMALL: BD in the range [1 – 2] 

• 2_MODERATE: BD in the range [3 - 10] 

• 3_HIGH: BD ≥ 11 
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As in Figure 3.13, so in Figure 3.14, moving from the frozen to the active class, it 

seems that the more active a project is, the bigger the percentage of the high volume of 

changes and the smaller the percentage of the low volume of changes is. 

 

 

Figure 3.14  Schema Line Volume of Change Plot 

 

 

 

Concerning active commits,  we report their breakdown in the different taxa in Fig-

ure 3.15. As mentioned before, a commit is active if its total activity is greater than 

0. So, the total number of those commits is the active commits.  

 

 

 

Table 3.4 presents the percentages of the active commit classes per taxa where: 

• 0_NONE  : Active commits = 0    

• 1_TOO_FEW  : Active commits in the range [1 - 3]  

• 2_FEW  : Active commits in the range [4 - 10] 

• 3_MODERATE : Active commits in the range [11 - 15] 

• 4_SEVERAL  : Active commits > 15 
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Table 3.4 Taxa and Active Commits classes 

Taxon 0_NONE 
1_TOO

_FEW 
2_FEW 

3_MODER-

ATE 
4_SEVERAL 

Grand To-

tal 

0_FROZEN 1 00% 0% 0% 0% 0% 100% 

1_ALMOST_FROZEN 0% 66% 34% 0% 0% 100% 

1_FocusedShot_n_Fro-

zen 
0% 44% 56% 0% 0% 100% 

2_MODERATE 0% 0% 0% 76% 24% 100% 

3_FocusedShot_n_LOW 0% 0% 0% 1 00% 0% 100% 

4_ACTIVE 0% 0% 0% 1 4% 86% 100% 

Grand Total 17% 28% 18% 23% 13% 100% 

 

 

After observing the values of Table 3.4, we conclude that the active commits separate 

well the taxa, except for the medium activity classes that are not only separated by the active 

commits, but also by the amount and concentration of change. 

Taking Figure 3.15 and Table 3.5 into consideration, the taxa are clearly different 

concerning the active commits, where the range of the active commits, increases, 

while moving from the frozen to the active class.  
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Figure 3.15 BoxPlot of Active Commits 

 

Table 3.5 Active Commits stats per taxon 

Taxon Min Q1  Median Mean Q3 Max IQR STDEV 

Frozen 1 1 1 1 1 1 0 0 

ALMOST_FROZEN 2 2 2 2.43 3 4 1 0.64 

FocusedShot_n_FROZEN 2 2 3 2.8 3 4 1 0.76 

MODERATE 5 6 8 9.55 10 23 4 5.11 

FocusedShot_n_LOW 5 6 7.5 7.3 8 11 2 1.72 

ACTIVE 8 16 22 29.25 42.5 64 26.5 18.20 

 

Concerning the turfs and the total activity, we present their breakdown in the dif-

ferent taxa in Figures 3.16 and 3.17 and the measurements per taxon in Tables 3.5 

and 3.6 respectively. As already mentioned, a commit is called turf when it is active 

and its total activity is less than 15. 
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Figure 3.16 BoxPlot of Turfs 

 

Table 3.6 Turfs stats per taxon 

Taxon Mi

n 

Q1  Media

n 

Mea

n 

Q3 Ma

x 

IQR STDE

V 

Frozen 0 0 0 0.47 1 1 1 0.51 

ALMOST_FROZEN 1 1 2 1.89 2 4 1 0.89 

FocusedShot_n_FROZE

N 0 0 1 1.28 2 4 2 

1.21 

MODERATE 3 5 7 8.52 9 22 4 4.90 

FocusedShot_n_LOW 2 3 5 4.8 6 8 3 1.70 

ACTIVE 

0 

9.7

5 18 23 

32.

5 57 

22.7

5 

17.62 
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Figure 3.17 BoxPlot of Total Activity 

 

 

Table 3.7 Total Activity stats per taxon 

Taxon Mi

n 

Q1  Media

n 

Mean Q3 Ma

x 

IQR STDE

V 

Frozen 0 0 0 0 0 0 0 0 

ALMOST_FROZEN 1 1 3 3.62 5 10 4 2.78 

FocusedShot_n_FROZ

EN 

11 17 23 45.64 31 383 14 76.62 

MODERATE 11 16 23 30 37 88 21 19.19 

FocusedShot_n_LOW 27 50.

5 

71 105.1

5 

131 315 80.5 84.91 

ACTIVE 112 177 249 335.9 361.

5 

126

7 

184.

5 

275.68 
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In Figures 3.16 and 3.17, turfs and total activity are depicted, respectively. Observe 

that both turfs and total activity are increasing while moving from the frozen towards 

the active class. So, the families of schemata in these two plots can be easily recog-

nized. 

 

 

Figure 3.18 BoxPlot of Project Update Period (months) 

 

Table 3.8 Project Update Period stats per taxon 

Project 
Update 
Period 

(Months) 

 

Taxon MIN MAX AVERAGE MEDIAN STDEV 

0_FROZEN 1 80 35.26 30.5 21.69 

1_ALMOST_FROZEN 0 155 38.68 31 34.06 

1_FocusedShot_n_FROZEN 1 116 29.48 22 29.61 

2_MODERATE 1 126 43.03 40 31.39 

3_FocusedShot_n_LOW 0 94 35.25 37.5 23.54 

4_ACTIVE 6 198 61.3 48.5 44.46 
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Figure 3.19 BoxPlot of Schema Update Period (months) 

 

Table 3.9 Schema Update Period stats per taxon 

Schema 
Update 
Period 

(Months) 

 

Taxon MIN MAX AVERAGE MEDIAN STDEV 

0_FROZEN 1 69 8.24 1 15.07 

1_ALMOST_FROZEN 1 99 11.98 6 16.34 

1_FocusedShot_n_FROZEN 1 46 9.28 2 12.36 

2_MODERATE 1 100 23.62 20 23.73 

3_FocusedShot_n_LOW 1 57 21.05 17.5 19.7 

4_ACTIVE 3 84 30.75 26 21.15 

 

 

In Figures 3.18 and 3.19, the plots of the project update period and the schema 

update period are presented, respectively. Observe Figure 3.18 and Table 3.8: The 

update periods of the projects of all families, except for the active class, seem to be 

big and very similar. More specifically, considering also the values presented in Table 

3.9 as well as Figure 3.19, observe that none of the families of the projects is inactive 

and that they simply just have different schema evolution profiles. 

To get a deeper insight of the Schema Update Period (SUP), Figure 3.20 presents 

the breakdown per SUP class and taxon. Active taxa are biased towards longer 

Schema Update Periods, Moderate and FS-Low are mostly biased towards medium 



 

52 

 

SUP ranges, whereas "frozen land" is mostly oriented to small SUP periods (with the 

prominent exception of some Almost Frozen projects, that have almost frozen SUPs 

between 1 and 3 years. 

 

 

 

Figure 3.20 3D Column-Plot of Schema Update Period: The left axis demonstrates 

the Schema Update Period, organized in labeled intervals, the right axis demon-

strates the taxon and the height of each bar demonstrates the frequency, i.e. the 

number of projects of a specific taxon with a specific SUP interval. 

 

In Figure 3.21 a short overview of the patterns of the evolution of the schema line, 

i.e., the number of tables over time, per taxon is presented.  

We classify the patterns of schema line evolution as follows: 

 

• 0_FLAT   : Zero schema evolution  

• Single Rise   : A single step of evolution, upwards 

• Multi-Step Rise  : Several upward steps, like a staircase 
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• Drop    : Drop of the number of tables over time. 

• Turbulent & DoUndo : Mix of Up’s and Down’s and DoUndo commits 

 

According to Figure 3.21, observe that as the activity increases, more steps of evolu-

tion are observed and the pattern of zero evolution decreases. However, 52% of the 

total of all projects, belongs to the pattern of zero evolution. In Figure 3.22 we present a 

line plot with the patterns per taxon. As in Figure 3.21 so in Figure 3.22, observe 

how the evolution is increasing while moving from the frozen to the active class.   

 

More specifically: 

• In the 0_FROZEN class all projects have zero schema evolution, as expected. 

• For the 1_ALMOST_FROZEN class, 75% of 0_FLAT means that most of the 

projects in this class, during their evolution, did not have new tables.   

• In the 1_FocusedShot_n_FROZEN class, 52% of Single Rise means that nearly 

half of the projects of this class had one commit with new tables. 

• In the 2_MODERATE and 3_FocusedShot_n_LOW classes, nearly 25% of the 

projects seem to have several upward steps of evolution. 

• Finally, in the 4_ACTIVE class, 50% of the projects seem to have several 

upward steps of evolution, on the contrary to only 9% of projects with zero 

schema evolution. 

 

 

Figure 3.21 Patterns of schema evolution per taxon 
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Figure 3.22 Patterns Line Plot 

 

Finally, in Figure 3.23, a decision tree, for the taxa on the basis of attributes To-

talActivity, ActiveCommits, Reeds, ActiveCommitRatio, is presented.  

The steps for the generation of the decision tree presented in Figure 3.23 are as 

follows: 

• We have calculated the Z-scores from the actual values of the attributes by 

following the procedure explained in Method A. 

• Then, we used the produced Z-scores to the Orange tool, which produced the 

decision tree of Figure 3.23. 

To get a deeper insight into the decision tree, a translation of the Z-scores of the 

attributes is reported in Table 3.10. In the decision tree, a taxon is marked as well-

configured, if all parts of the taxon are on the same leaf of the decision tree, which 

means that the attributes separate the taxa well and the taxa are distinct. For in-

stance, the 0_FROZEN, 1_ALMOST_FROZEN, and 1_FocusedShot_n_FROZEN clas-

ses seem to be well-configured. On the other hand, the 2_MODERATE and 3_Fo-

cusedShot_n_LOW classes seem like they have been misclassified and their merge 

into a bigger class can be examined. Moreover, it is also noticed that, in this config-

uration of classes, some projects belong in 3_FocusedShot_n_LOW and their total 

activity is so big that they fit with the 4_ACTIVE class. 
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Figure 3.23 Decision Tree of the taxa as reported by the Orange tool 

 

Table 3.10 Translations of Z-scores to the actual values 

Attribute Z-score Actual Value 

ActiveCommits -0.25 4 

TotalTotalAttrActivity 

-0.42 0 

-0.34 1 0 

0.22 88 

Reeds -0.25 1  

ActiveCommitRatePerMonth -0.57 0.36 

3.6 Centroids and characteristics per taxon 

In this section, we discuss if we could define a project of each taxon as a centroid-

project, that would represent the characteristics and the behavior of the respective 

taxon. The taxa presented in [12], were extracted mostly based on the activity and 

the heartbeat of the projects. For this reason, to define the centroid project per taxon, 

we decided to take into account only activity and heartbeat measures (totalActivity, 

Reeds, Turfs, ActiveCommits). 

 

Before we proceed to the calculation of the centroid-project, firstly we calculate the 

Z-scores for all the measurements of the dataset, which allow us to compare scores 

that are from different samples (in our case different taxa that may have different 

means and standard deviations). 
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The steps of the procedure, for the calculation of the centroid-project within each 

taxon are as follows: 

• For each taxon, we calculate the average value for all the measurements of 

interest. 

• For each project we calculate the distances between every such measurement 

and its average. 

• We sum up all the distances, that we calculated on the previous step, per 

project. 

• Finally, we find the smallest of the sums of the previous step. The smallest 

sum represents the sum of the distances of the project, whose measures are 

closer to the average measures of the respective taxon. 

 

After following the aforementioned procedure, we ended up with the following re-

sults, as presented in Table 3.11, where for each taxon the actual values as well as 

the Z-scores, in parenthesis, are reported. 

Table 3.11 Centroid-Project per taxon 

Taxon Centroid-  

Project 

Total 

Activ-

ity 

Reeds Turfs Active 

Com-

mits 

Frozen damnpoet__yiicart 0 

(-0.42) 

1 

(-0.25) 

0 

(-0.57) 

1 

(-0.55) 

ALMOST_FROZEN Ru-

byMoney__money

-rails 

3 

(-0.39) 

1 

(-0.25) 

2 

(-0.34) 

 

3 

(-0.35) 

 

FocusedShot_n_FROZE

N 

accgit__acl 31 

(-0.19) 

2 

(0.22) 

1 

(-0.46) 

3 

(-0.35) 

MODERATE mapbox__osm-

comments-parser 

34 

(-0.17) 

1 

(-0.25) 

9 

(0.44) 

10 

(0.33) 

FocusedShot_n_LOW anchorcms__an-

chor-cms 

125 

(0.49) 

2 

(0.22) 

6 

(0.11) 

8 

(0.14) 
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ACTIVE pods-frame-

work__pods 

352 

(2.14) 

9 

(3.54) 

21 

(1.80) 

30 

(2.29) 

 

 

The characteristics of each taxon compared to the values of the centroid-project are 

reported below: 

 

Frozen Taxon Characteristics (Centroid-Project: damnpoet__yiicart) 

• Zero total activity  

- totalActivity(damnpoet__yiicart) = 0 

• Just one active commit (Either a reed or a turf)  

- activeCommits(damnpoet__yiicart) = 1 

 

Almost Frozen Taxon Characteristics (Centroid-Project: RubyMoney__money-rails) 

• At most 3 active commits (Mix of turfs and reeds)  

- activeCommits(RubyMoney__money-rails) = 3 

• Small total activity (less than 10 updated attributes)  

- totalActivity(RubyMoney__money-rails) = 3 

 

FocusedShot_n_FROZEN Taxon Characteristics (Centroid-Project: accgit__acl) 

• At most 3 active commits (Mix of turfs and reeds) 

- activeCommits(accgit__acl) = 3 

• Medium to high total activity (More than 10 updated attributes and less than 

383 updated attributes) 

- totalActivity(accgit__acl) = 31 

 

Moderate Taxon Characteristics (Centroid-Project: mapbox__osm-comments-parser) 

• More than 4 active commits (Mix of turfs and reeds) 

- activeCommits(mapbox__osm-comments-parser) = 10 

• Medium total activity (More than 10 and less than 88 updated attributes) 

- totalActivity(mapbox__osm-comments-parser) = 34 
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FocusedShot_n_LOW Taxon Characteristics  

(Centroid-Project: anchorcms__anchor-cms) 

• More than 4 active commits (Mix of turfs and reeds) 

- activeCommits(anchorcms__anchor-cms) = 8 

• High total activity (more than 27 and less than 315 updated attributes) 

- totalActivity(anchorcms__anchor-cms) = 125 

 

Active Taxon Characteristics (Centroid-Project: pods-framework__pods) 

• Very high total activity (more than 111 and less than 1268 updated attributes) 

- totalActivity(pods-framework__pods) = 352 

• More than 7 active commits (Mix of turfs and reeds) 

  - activeCommits(pods-framework__pods) = 30 

 

 

Considering the values of the centroid-projects and especially the total activity and the active 

commits, the taxa are distinguished from each other. However, observe that the active 

commits of the centroid-projects reveal the possibility of deriving larger groups, which will 

be discussed further in later sections. 

3.7 Assessment of existing taxa and validity metrics 

In this section, we assess the taxa presented in [12] in terms of their validity, with 

the calculation of some validity metrics from the area of clustering. Afterwards, we 

present some plots to observe visually and discuss the quality of the clusters. 

 

3.7.1 Cohesion and Separation metrics 

The validity metrics, that were used, are as follows: 

• Cohesion: This metric [9] measures how closely related are the objects within 

the same cluster. Intuitively, cohesion means that members of a group are 

similar. A lower within-cluster variation is an indicator of good compactness, 

which means that the lower the cohesion is, the better the clustering is. 
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Cohesion (SSE) can be computed by the following formula: 

SSE = ∑ ∑ (𝑥 −  𝑚𝑖)2

𝑥∈𝐶𝑖𝑖

 

where: 

x ∈  𝐶𝑖  : Every element in 𝐶𝑖 cluster. 

𝑚𝑖   :  Centroid of i cluster. 

More specifically, (𝑥 −  𝑚𝑖)2 is the distance of each element of a cluster from 

the centroid of the cluster. The lower the distance is, the lower the variation 

in the cluster is, which means that the more similar the elements of the cluster 

to one another are. The sum of the distances of all the elements of cluster i is 

the cohesion of cluster i and the sum of the cohesions of all the clusters is the 

total cohesion. 

• Separation: This metric [9] measures how distinct or well-separated a cluster 

is from other clusters. The bigger the separation is the better the clustering is, 

because it means that the clusters have fewer common characteristics. 

Separation (BSS) can be computed by the following formula: 

𝐵𝑆𝑆 =  ∑|𝐶𝑖| (𝑚 − 𝑚𝑖)2

𝑖

 

 

where: 

𝐶𝑖  :  Number of elements of i cluster. 

m :  Mean value of the whole dataset. 

𝑚𝑖 : Mean value of i cluster. 

More precisely, (𝑚 − 𝑚𝑖)2 is the distance of the mean of a cluster i from the mean 

value of the whole dataset. The number of elements of i cluster (𝐶𝑖) is used as a 
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weight in the aforementioned formula so that the larger the cluster is, the more 

significant its impact on the separation is. The multiplication of (𝐶𝑖) with the 

(𝑚 − 𝑚𝑖)2 distance is called the separation of cluster i, and the sum of the separations 

of all the clusters is the total separation. The bigger the separations of the clusters 

are, the more distinct the clusters are. 

The abovementioned validity metrics were computed for many combinations of at-

tributes, where the most worth mentioning groups of attributes are the following: 

 

• Group A: TotalTotalAttrActivity, ResizingRatio, DurationInMonths. 

• Group B: TotalTotalAttrActivity, Turfs, ActivityDueToReeds. 

• Group C: TotalTotalAttrActivity, Turfs. 

• Group D: TotalTotalAttrActivity, Turfs, ActiveCommits. 

 

 

For the computation of the cohesion and separation metrics presented in Figure 

3.24, the Z-scores of the attributes were used instead of the actual values. For each 

group, the cohesion and separation metrics per taxon are presented, as well as their 

total values. This procedure aims to find out, which attributes seem to determine the taxa 

the best way, in terms of their in-cluster variation and their separation. 
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Figure 3.24 Cohesion and Separation Metrics 

 

After observing Figure 3.24, which presents the cohesion and separation metrics for 

the groups of attributes, the conclusions about the taxa presented in [12] are as 

follows: 

• The values of cohesion and separation in Groups A and B show that neither 

the resizing of the projects caused by the commits, nor the duration of the 

commits, nor the activity due to big commits, seem to have been taken into 

consideration for the extraction of the taxa. The values of cohesion and sepa-

ration of Groups A and B are worse than Groups C and D, which makes sense 
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since the classification of the taxa was made according to the total activity and 

the active commits of the projects. 

• The SSE in the “4_ACTIVE” class seems to remain high in all groups. This 

variation can be explained because this class consists either of projects that 

have a big amount of small active commits or of projects that have fewer 

active commits but bigger ones. 

• Regarding the size of the 1_ALMOST_FROZEN class, the value of separation 

in all groups is big compared to the other classes, which is logical, due to the 

fact that separation, as already mentioned, is proportional to the size of the 

cluster.  

• In all groups, the values of the metric separation are not that high, but this 

seems not to be a problem, since the taxa, as shown in Figure 3.25, seem to 

be distinct. 

 

 

Figure 3.25 ScatterPlot: TotalTotalActivity - ActiveCommits 
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3.7.2 Silhouette Coefficient 

To get a deeper insight into the quality of the clustering of projects to taxa, the 

“Orange” tool, which is an open-source data visualization and analysis tool, was used 

to plot the silhouette scores of each project of each class.  

• Silhouette coefficient: The silhouette value [1] is a measure of how similar an 

object is to its cluster (cohesion) compared to other clusters (separation). The 

silhouette ranges from −1 to +1, where a high value indicates that the object 

is well matched to its cluster and poorly matched to neighboring clusters. If 

most objects have a high value, then the clustering configuration is appropri-

ate. If many points have a low or negative value, then the clustering configu-

ration may have too many or too few clusters. 

Silhouette score can be computed by the following formula: 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑆𝑐𝑜𝑟𝑒 =  
𝑏 − 𝑎

max (𝑎, 𝑏)
 

where: 

a : The average distance between each point within a cluster. 

b : The average distance between all clusters.  

The averages of the silhouette scores per taxon of the aforementioned groups are 

presented in Table 3.12. Also, the visualization of all the silhouette scores for the 

aforementioned groups is presented in Table 3.13.  

Table 3.12 Averages of Silhouette scores per taxon 
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Table 3.13 Silhouette Plots (Upper Left: Group A, Upper Right: Group B,  

Bottom Left: Group C, Bottom Right: Group D) 
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As shown in Figure 3.25 the clusters are distinct, but their distance is not that big, 

which is the reason why the silhouette values in the silhouette plots, presented in 

Tables 3.12 and 3.13, are not that good, because the silhouette coefficient is based 

on the average distance between all clusters (b). However, things are getting better 

in groups B, C, and D, which makes sense, considering the fact that the taxa pre-

sented in [12] were extracted based on the active commits, the total activity, and the 

reeds of the projects as shown in the decision tree in Figure 3.26. Having said all 

this, the question, that naturally follows is, whether we could find a better solution 

to clustering these projects. 

As a summary of the plots, the metrics, the patterns and the decision tree that we 

explored in this chapter, we noticed that the taxa 0_FROZEN, 1_ALMOST_FROZEN, 

and 1_FocusedShot_n_FROZEN have similar behavior in terms of their schema 

growth with zero to minimum schema evolution. Moreover, the taxa 2_MODERATE 

and 3_FocusedShot_n_LOW also are similar to each other with medium schema 

evolution. Finally, the taxon 4_ACTIVE is different from all the other taxa and in-

cludes projects with very active commits and many schema changes. These similar-

ities in schema evolution between some taxa, that we observed, are the reason why 

we came up with the idea that merging these similar taxa into larger groups (super 

taxa) would probably make sense and give us some good results. 

 

 

Figure 3.26 Decision Tree presented in [12] 
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CHAPTER 4          

EXAMINATION OF THE RELATIONSHIP BETWEEN 

SUPER TAXA AND SCHEMA MEASUREMENTS  

4.1 The possibility of deriving super taxa 

4.2 Super taxa and Heartbeat 

4.3 Super taxa and Activity 

4.4 Super taxa and Table-Level Activity Measurements 

4.5 Super taxa and Durations 

4.6 Centroids and characteristics per super taxon 

4.7 Summary of findings 

 

 

In this chapter, in order to address the research opportunity detected in Chapter 3, 

we introduce the notion of super taxa, which are generalizations of the taxa presented 

in [12] and were generated by the merge of similar taxa into larger groups. After-

wards, we discuss how these super taxa are related to the heartbeat, the activity, the 

table-level activity measurements, as well as the durations. At the end of this chapter, 

we summarize our findings. 
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4.1 The possibility of deriving super taxa 

As already mentioned in the previous chapter, the data and the plots provide a hint 

that it is possible that there is room for abstracting into super taxa by merging similar 

taxa into larger groups. The idea behind the generation of super taxa remains the 

same as in the original taxa in [12], meaning that they are also based on the evolu-

tionary activity of the projects. In this chapter, we merge taxa with similar behavior 

into bigger ones, as shown in Table 4.1, to make them more distinct and see what 

the outcome is. With that being said, the super taxa that were produced, along with 

the rationale of their derivation, are as follows: 

 

Table 4.1 Table of Super Taxa with their characteristics 

Super-

taxon 
Taxa Super-Taxon Characteristics 

Cold 

• 0_FROZEN 

• 1_ALMOST_FROZEN 

• 1_FocusedShot_n_FROZEN 

• Low total activity in av-

erage. 

• At most 4 active com-

mits. 

Mild 
• 2_MODERATE 

• 3_FocusedShot_n_LOW 

• More than 4 active com-

mits. 

• Majority of projects has 

less equal than 3 reeds. 

Hot • 4_ACTIVE 

• More than 4 active com-

mits. 

• Majority of projects has 

more than 3 reeds. 

 

 

• 0_COLD 

This super taxon was generated by the merge of 0_FROZEN, 1_AL-

MOST_FROZEN, and 1_FocusedShot_n_FROZEN classes. The individual 
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classes were determined to be merged, because of their small, in average, total 

activity, as well as their small number of active commits. Regarding the child 

taxa, the 0_FROZEN taxon consisted of projects with zero total activity, the 

1_ALMOST_FROZEN taxon consisted of projects with small total activity and 

a small number of active commits and the 1_FocusedShot_n_FROZEN taxon 

consisted of projects with a small number of active commits but higher total 

activity, which was caused by a couple of focused-shot big commits. Never-

theless, these taxa are very similar to each other and their common line is 

their “cold” behavior (zero to a few active commits), and this is the reason we 

decided to group them in the same super taxon. 

 

• 1_MILD 

This super taxon was produced by the combination of 2_MODERATE and 

3_FocusedShot_n_LOW original classes. These two taxa were determined to 

be merged due to their medium to high activity. As far as the child taxa are 

concerned, the 2_MODERATE taxon consists of projects with medium total 

activity and a medium number of active commits, and the 3_Fo-

cusedShot_n_LOW consists of projects with medium to high total activity and 

a medium number of active commits. However, the medium activity of the 

projects in these taxa led us to group them in the 1_MILD super taxon. 

 

• 2_HOT 

This super taxon 2_HOT is the same as the original 4_ACTIVE taxon, which 

differs a lot from the other taxa and consists of projects with extremely high 

activity during their lifecycle. For this reason, we decided to let this taxon the 

same as the original 4_ACTIVE taxon. 

 

Figure 4.1 presents how the original taxa presented in [12] are merged and produce 

the super taxa. 
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Figure 4.1 Super Taxa 

4.2 Super taxa and Heartbeat 

In this section, we refer to the relation between the super taxa and all the attributes 

and metrics that are related to the heartbeat. 

 

 

Figure 4.2 Scatter Plot of Reeds – Turfs 
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Reeds - Turfs 

As far as the reeds and turfs are concerned, their relationship with the super taxa is 

presented in Figure 4.2.  

Observe Figure 4.2: Regarding reeds and turfs, the super taxa seem to be well con-

figured with a few exceptions in 1_MILD and 2_HOT classes.  

The number of reeds, in Figure 4.3 seems to distinguish well the 2_HOT class from 

the two other classes, but not the 0_COLD class from the 1_MILD class. On the other 

hand, regarding the number of turfs, in Figure 4.4, the taxa seem to be distinct from 

each other, which makes sense, since the classification is based on the active commits, 

so, moving from the 0_COLD to the 2_HOT class, the number of active commits is 

obviously increasing. 

 

 

Figure 4.3 BoxPlot of Reeds 

 

 

Figure 4.4 BoxPlot of Turfs 
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Active Commits 

The number of active commits, as shown in Figure 4.5, increases while moving from 

the 0_COLD class to the 2_HOT class, as expected. Especially, 0_COLD seems to be 

totally distinct from the other classes, in terms of the number of active commits, 

which makes sense, because 0_COLD class has zero to few active commits, by def-

inition.  

 

 

Figure 4.5 BoxPlot of Active Commits 

 

 

 

 

Reed – Turfs (Ratios) 

In Figures 4.6 and 4.7 we present the ratio of turfs to active commits and the ratio 

of reeds to active commits. In Figure 4.6, we surprisingly observe that the 0_COLD 

has the biggest ratio of reeds to active commits. This can be explained by the small 

number of active commits that the 0_COLD class has, which makes its reeds ratio 

seem high. Regarding the ratio of turfs to active commits, as shown in Figure 4.7, 

the 1_MILD class has the highest ratio of turfs to active commits.   

Similar behavior with the aforementioned ratios we observe at the ratio of turfs to 

the total commits and the ratio of reeds to the total commits in Figures 4.8 and 4.9. 
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Figure 4.6 BoxPlot of ReedRatioAComm 

 

 

 

Figure 4.7 BoxPlot of TurfRatioAComm 

 

 

 

Figure 4.8 BoxPlot of ReedRatioTComm 
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Figure 4.9 BoxPlot of TurfRatioTComm 

 

 

Active Commits (Ratio) 

In Figure 4.10 we can see the relationship between the percentage of active commits 

to total commits and the super taxa. As we move from the cold to the hot class the 

ratio of active commits increases, as expected.  

 

 

 

 

Figure 4.10 BoxPlot of ActiveCommitRatio 

 

 

Summary of Heartbeat 

In Table 4.2 we report the averages of some measures related to the heartbeat of the 

projects. The more active a taxon is, the bigger the number of the active commits, reeds 

and turfs it has. On the other hand all ratios seem to be close for the different taxa. 
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Table 4.2 Averages of some measures related to heartbeat per taxon 

Measure 0_COLD 1 _MILD 2_HOT 

Reeds 1.00 2.00 6.00 

Turfs 1.00 7.00 23.00 

Active Commits 2.00 9.00 29.00 

ActiveCommitRatio 0.66 0.72 0.73 

ReedRatioAComm 0.39 0.22 0.29 

TurfRatioAComm 0.61 0.78 0.71 

ReedRatioTComm 0.23 0.15 0.22 

TurfRatioTComm 0.43 0.57 0.52 

 

 

Finally, to get a better intuition about how the heartbeat is related to the super taxa, 

we present in Figure 4.11 a decision tree, which was produced, given all the attributes 

that are related to the Heartbeat as input, by the Orange tool.  

 

Figure 4.11 Decision Tree – Heartbeat 

 

We can clearly conclude that the super taxa are highly related to the heartbeat of the 

projects. More specifically, projects with less or equal than 4 active commits automat-

ically belong to the 0_COLD super taxon. Additionally, projects with more than 4 

active commits, belong to 1_MILD super taxon, if they have less or equal than 3 

reeds, whereas if they have more than 3 reeds they belong to the 2_HOT super 
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taxon. Exceptions at the aforementioned rules are 4 misclassified projects out of 193, 

meaning 2% (Three projects that were supposed to be in 1_MILD super taxon, are 

misclassified to the 2_HOT super taxon, and one project that was supposed to be in 

the 2_HOT super taxon, is misclassified to the 1_MILD super taxon). Taking into 

account the percentages of the well-classified projects per taxon (100% for 0_COLD, 

94.1% for 1_MILD, and 94.4% for 2_HOT), there is no doubt, that the heartbeat is 

a crucial factor for the discrimination of the taxa. 

4.3 Super taxa and Activity 

In this section, we discuss the relation between the super taxa and all the attributes 

and metrics, that are related to the activity of the projects.  

Regarding the total activity, as shown in Figure 4.12, the super taxa are well sepa-

rated from each other. The concentration of the values at each taxon shows that, moving 

from the 0_COLD to the 2_HOT class the total activity increases. However, there are a 

few outliers at the 0_COLD class with high total activity. These outliers in the tax-

onomy of [12] belonged to the 1_FocusedShot_n_FROZEN taxon, which contained 

projects with a small number of active commits (less than 4) and total activity greater 

than 10. 

 

 

 

Figure 4.12 BoxPlot of Total Activity 
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The relationship of total maintenance to the super taxa, as shown in Figure 4.13, is 

similar to the relationship of the taxa to total activity. Observe that the more active the 

class is, the more maintenance it goes through, which makes sense. 

 

 

Figure 4.13 BoxPlot of TotalMaintenance 

In Figure 4.14 the plot presents the relation between the total expansion and the 

super taxa. Observe that the taxa are a lot more distinct from each other than with 

respect to the other activity measures, which indicates that total expansion is a good 

taxon discriminator. 

 

 

Figure 4.14 BoxPlot of TotalExpansion 

 

Figures 4.15 and 4.16 show how the total attributes that are injected and ejected, are 

related to the super taxa. Observe that these figures, especially the total attributes 

injected which relates well to expansion as a discriminator, separate well the taxa, as 

well as the fact that, moving from the 0_COLD to the 2_HOT class, the number of 

injections-ejections are increasing. 
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Figure 4.15 BoxPlot of TotalAttrInjected 

 

 

Figure 4.16 BoxPlot of TotalAttrEjected 

 

 

 

In Figures 4.17, 4.18, and 4.19 we present the plots of the rates per commit of total 

activity, total maintenance, and total expansion, respectively. The rates mentioned 

above, for every commit, look very similar to each other. At the same time, they all show 

an increase as we move from the 0_COLD class to the 2_HOT class. 
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Figure 4.17 BoxPlot of TotalActivityRatePerCommit 

 

 

 

Figure 4.18 BoxPlot of MaintenanceRatePerCommit 

 

 

Figure 4.19 BoxPlot of ExpansionRatePerCommit 
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In Figures 4.20, 4.21, and 4.22, observe the corresponding plots for the same ratios 

per year. All these representations suggest that the taxa are clearly different concern-

ing these activity metrics, and as the taxon becomes more active, all the related 

measures increase: the mean, the median, the IQR, and the range of these metrics. 

 

 

 

 

Figure 4.20 BoxPlot of TotalActivityRatePerYear 

 

 

 

Figure 4.21 BoxPlot of MaintenanceRatePerYear 
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Figure 4.22 BoxPlot of ExpansionRatePerYear 

 

It is a very important fact that there is a consistency to the plots that were presented, 

according to the discrimination of the taxa, which means that all the examined attributes, 

related to the activity, agree with the taxonomy. 

 

In Table 4.3 we report some measures related to the activity of the projects. Consid-

ering the activity of the projects, the measures show that the taxa are distinct among each 

other. 

 

 

Table 4.3 Averages of some activity-measures per taxon 

Measure 0_COLD 1 _MILD 2_HOT 

TotalAttrInjected 1.00 10.00 35.00 

TotalAttrEjected 0.00 5.00 20.00 

TotalExpansion 4.00 35.00 175.00 

TotalMaintenance 7.00 26.00 161.00 

TotalTotalAttrActivity 11.00 61.00 336.00 

TotalAttrActivityRatePerCommit 2.61 5.24 11.44 

TotalAttrActivityRatePeryear 8.00 34.00 154.00 
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Finally, to get a deeper understanding of how the activity is related to the super 

taxa, let’s take a look at the decision tree, which was generated by the Orange tool, 

presented in Figure 4.23. At first glance, observe that this decision tree is not as 

simple and straightforward as the one we observed in Figure 4.11, which was pro-

duced from the heartbeat metrics. This is because there are more misclassified pro-

jects in this decision tree. More specifically, there are 20 misclassified projects out of 193, 

meaning 10% (Most of the misclassified, meaning 7%, are projects that belong to the 

1_MILD class and have been misclassified either to the 0_COLD class or to the 2_HOT 

class). Ideally, we would like the 0_COLD leaves to be at the left, the 1_MILD at the 

center and the 2_HOT at the right, side of the tree.    

 

Figure 4.23 Decision Tree – Activity 
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4.4 Super taxa and Table-Level Activity Measurements 

In this section, we will discuss the relevance between the super taxa and the table-

level activity. 

Figures 4.24 and 4.25 present, how the taxa are separated, based on the metrics 

Tables@Start and Tables@End.  

The concentration of the values in taxa shows that the taxa are distinct.  However, 

it is interesting to highlight that there are a few projects in the 0_COLD class with 

the biggest number of tables. This means, that the number of tables of the projects 

in these cases, is neither related to the activeness of the projects nor to the super 

taxa. 

 

 

 

 

Figure 4.24 BoxPlot of Tables@Start 
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Figure 4.25 BoxPlot of Tables@End 

 

 

Observe Figures 4.26 and 4.27: The more active the taxon is, the bigger the number of 

the tables that are inserted is, which verifies the assumption that, the activity of a taxon is 

related to the number of the table operations. 

 

 

 

Figure 4.26 BoxPlot of TotalTableInsertions 

 

 



 

85 

 

 

Figure 4.27 BoxPlot of TotalTableDeletions 

 

 

In Figure 4.28 the relationship between the resizing ratio of the projects and the 

super taxa is presented. It seems that the resizing ratio neither discretizes the taxa nor is 

related to the evolution of the projects. 

 

 

Figure 4.28 BoxPlot of ResizingRatio 

 

In Figure 4.29 we present the schema line volume of change plot. 

As already mentioned, the labels that are presented in Figure 4.29, were produced 

based on BD where: 

BD = tableInsertions + tableDeletions 

 

The meanings of the labels in Figure 4.29 are as follows: 
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• 0_NONE: BD = 0 

• 1_SMALL: BD in the range [1 – 2] 

• 2_MODERATE: BD in the range [3 - 10] 

• 3_HIGH: BD ≥ 11 

 

 

Figure 4.29 Schema Line Volume of Change Plot - Super Taxa 

 

It is even more clear now with the super taxa that, the more active a taxon is, the 

bigger the percentage of the high volume of changes and the smaller the percentage of the 

low volume of changes, is. 

 

In Table 4.4, some table-level measures are reported per taxon. As the number of the 

insertions and deletions increases, so does the activeness of the project. The change of the 

size of the projects, as already mentioned does not play any role both in the evolution of 

schema and the discretization of the taxa.  

 

Table 4.4 Averages of some table-level measures per taxon 

Taxon 0_COLD 1 _MILD 2_HOT 

#Tables@Start 8.00 9.00 24.00 

#Tables@End 8.00 10.00 29.00 

TotalTableInsertions 1.00 4.00 22.00 

TotalTableDeletions 1.00 2.00 16.00 

Resizingratio 1.14 1.70 1.68 

BD 1.00 6.00 38.00 

 

In Figure 4.30, we present the decision tree, which was generated by the Orange 

tool, based on the attributes TotalTableInsertions, TotalTableDeletions, Tables@Start, 

Tables@End. Again, observe that the taxa are distinct, with a couple of misclassified 
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exceptions. More precisely, there are 44 misclassified projects out of 193, meaning 22% 

(Most of the misclassified, meaning 18%, are projects that belong to the 1_MILD class and 

have been misclassified either to the 0_COLD class or to the 2_HOT class). Moreover, the 

number of tables that a project has at the beginning does not seem to be an indicator of its 

further activity. Nevertheless, the number of tables that are inserted is proportional to the 

activeness of the projects. 

 

 

Figure 4.30 Decision Tree - Table Level Activity 

 

4.5 Super taxa and Durations 

In this section, we study how the lifetime duration of the projects is related to the 

super taxa. In Figure 4.31, we present the plot of the schema duration of the projects, 

in months, per taxon and in Table 4.5 we present the stats of the schema update 

period per class.  
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Figure 4.31 BoxPlot of Schema Update Period (months) 

 

 

The concentration of the values is similar for all the taxons. The 1_MILD class overlaps 

both the 0_COLD and the 2_HOT class, which shows that the activity is due to the nature 

of the project. Because of that, there are 1_MILD projects with schema update period less 

than the average of the 0_COLD’s ones and bigger than the average of the 2_HOT’s ones. 

These conclusions can also be confirmed after observing the values of the Table 4.5 

and the Figure 4.32, where the explanations of the labels are as follows: 

• 0_UpTo10Days: Projects with schema update period in the range [0 – 10] 

days.  

• 1_11To180D: Projects with schema update period in the range [11 – 180] days. 

• 2_06To12M: Projects with schema update period in the range [181 – 365] 

days.  

• 3_13To36M: Projects with schema update period in the range [366 – 1095] 

days. 

• 4_LONG: Projects with schema update period greater than 1095 days (3 

years).  

 

 

 

Figure 4.32 BoxPlot of Schema Update Period Class 
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Table 4.5 Schema Update Period stats per class 

Schema 

Update 

Period 

(Months) 

CLASS MIN MAX AVERAGE MEDIAN STDEV 

0_COLD 1 99 10.41 3 15.25 

1_MILD 1 100 22.57 20 21.99 

2_HOT 3 84 30.75 26 21.15 

 

 

Observe Figure 4.33 and Table 4.6: It seems that the project update period is not neces-

sarily proportional to the activity of the projects. All classes seem to have similar project 

update periods.  

 

 

 

Figure 4.33 BoxPlot of Project Update Period (Months) 

 

Table 4.6 Project Update Period stats per class 

Project 

Update 

Period 

(Months) 

CLASS MIN MAX AVERAGE MEDIAN STDEV 

0_COLD 0 155 35.89 28.5 30.22 

1_MILD 0 126 39.86 40 28.44 

2_HOT 6 198 61.30 48.5 44.46 
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With that being said about the duration metrics, we conclude that the activeness of a taxon 

is more related to the schema update periods, rather than the project update periods. However, 

none of them can be considered as an absolute taxon indicator. 

 

4.6 Centroids and characteristics per super taxon 

In this section we define a centroid for each super taxon and then we discuss the 

characteristics of super taxa. 

For the computation of the centroids, we followed the same procedure as in chapter 

3. In Table 4.7 we present the centroid-project of each taxon including its actual 

measures as well as its Z-scores, in parenthesis. 

Table 4.7 Centroid-project per super taxon 

Taxon 
Centroid- 

Project 

Total 

Activity 
Reeds Turfs 

Active 

Commits 

Cold yiier__forum 
7 

(-0.37) 

1 

(-0.25) 

1 

(-0.46) 

2 

(-0.45) 

Mild 
jasdel__har-

vester 

55 

(-0.02) 

2 

(0.22) 

6 

(0.11) 

8 

(0.14) 

Hot 
pods-frame-

work__pods 

352 

(2.14) 

9 

(3.54) 

21 

(1.80) 

30 

(2.29) 

 

The characteristics of each taxon compared to the values of the centroid-project are 

reported below: 

 

Cold Taxon Characteristics (Centroid-Project: yiier__forum) 

• Zero to high total activity with range from 0 to 382 

- totalActivity(yiier__forum) = 7 

• At most 3 active commits (Mix of turfs and reeds) 

- activeCommits(yiier__forum) = 2 
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Mild Taxon Characteristics (Centroid-Project: jasdel__harvester) 

• More than 4 active commits (Mix of turfs and reeds) 

- activeCommits(jasdel__harvester) = 8 

• Medium to high total activity  

- totalActivity(jasdel__harvester) = 55 

 

Hot Taxon Characteristics (Centroid-Project: pods-framework__pods) 

• Very high total activity (more than 111 and less than 1268 updated attributes) 

- totalActivity(pods-framework__pods) = 352 

• More than 7 active commits (Mix of turfs and reeds) 

  - activeCommits(pods-framework__pods) = 30 

 

 

Considering the values of the centroid-projects the taxa are clearly distinguished from each 

other. Moving from the cold to the hot taxon, both the total activity and the number of 

active commits noteworthy increase. 

 

4.7 Summary of findings 

In this chapter, after the observations we made in chapter 3 about the similarities of 

some taxa, we decided to merge these similar taxa into larger groups and observe 

what results we get. Our conclusions and findings are summarized as follows: 

• Regarding Schema Heartbeat: 

Reeds, Turfs, and Active Commits distinguish well the super taxa. This con-

clusion was extracted by the observation of the box plots, where the values 

for each taxon are distinct as well as from the scatter plot of reeds and turfs, 

where each taxon forms distinct color regions. Moreover, we observed in the 

decision tree that the taxa can be defined easily only by using the attributes 

Active Commits and Reeds. 

• Regarding Activity: 
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As already mentioned, the hotter the projects are, the bigger the general ac-

tivity of the projects is. As we observed in the box plots, all activity measures 

and especially totalActivity, totalExpansion, and totalAttrsInjected are good 

taxon discriminators and confirm the assumption that the activity of the pro-

jects increases as we move from the cold to the hot super taxon. Additionally, 

in the decision tree, the areas of each super taxon are distinct; specifically, the 

cold land is on the left side of the tree, the mild land is on the center of the 

tree and the hot land is on the right side of the tree. 

• Regarding Table-Level Activity Measurements: 

We observed that the resizing ratio is not an indicator of how active a taxon 

is. The tables@Start and tables@End measures are bigger when moving to the 

hot class, but still, there are some exceptions and cannot discriminate the taxa 

alone. The measures totalTableInsertions and totalTableDeletions are bigger 

when we refer to the hot taxon projects than to the cold super taxon and 

discriminate the taxa well. We also observed in the schema line plot, that the 

more active a taxon is, the bigger the percentage of the high volume of changes 

and the smaller the percentage of the low volume of changes, is. 

• Regarding Duration: 

We observed that both the project duration and the schema duration, cannot 

discriminate the taxa, alone. We highlighted that the values of schema update 

period for each taxon are very close to each other. This indicates that the 

activity is due to the nature of the project and is not necessarily proportional 

to the schema update period of it. Additionally, the project update period is 

not necessarily proportional to the activity of the projects, as we observed that 

all classes had similar project update periods. 
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CHAPTER 5          

CONCLUSIONS AND FUTURE WORK 

In this thesis, we studied in great detail the schema evolution of 193 projects, as well 

as we assessed the taxonomy of schema evolution which was produced in [12].  

Firstly, we presented HeraclitusFire, the tool which we used in our analysis, as well 

as some new data and statistics that were added as information because they were 

necessary for our further research. Afterwards, since the metrics that were extracted 

were too many to handle, we observed the correlations of them and ended up with 

the most important attributes, by discarding the most correlated ones. Then we in-

troduced the taxonomy presented in [12] and proceeded to the evaluation of this 

taxonomy with the assistance of a few validity clustering metrics. Finally, after ob-

serving similar behaviors among some taxa, in chapter 4 we merged them to see 

how this new taxonomy is related to the heartbeat, the activity, the table-level 

measures, and the duration of the projects. 

 

Concerning the taxa of [12] we can report that: 

• Regarding the schema update period, every taxon seems to have projects with both 

short and big periods of updates. However, moving from the frozen to the active 

taxon, the schema update period becomes bigger and bigger, the percentages of short 

periods are decreasing, and the percentages of longer periods are increasing. 

• The more active a taxon is, the bigger the percentage of the high volume of changes 

in the schema line and the smaller the percentage of the low volume of changes is. 
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• The active commits separate well the taxa, except for the medium activity classes that 

are not only separated by the active commits, but also by the amount and concen-

tration of change. 

• Turfs and total activity are good taxon discriminators and proportional to the active-

ness of the taxon. 

• The update periods of the projects of all families, except for the active class, seem to 

be big and very similar. 

• Considering the values of the centroid-projects and especially the total activity and 

the active commits, the taxa are distinguished from one another. 

• The validity metrics were better for groups consisting of attributes related to the 

heartbeat and the activity of the projects. 

 

Concerning the possibility of defining super taxa on the basis of the taxa of [12] we 

can report that: 

• Reeds, Turfs, and Active Commits distinguish the super taxa well. 

• The super taxa can be discriminated easily on grounds of a decision tree which is 

defined only by using the attributes Active Commits and Reeds. 

• The more active a super taxon is, the bigger the number of the active commits, reeds 

and turfs it has. On the other hand, all ratios seem to be close for the different super 

taxa. 

• All the activity measures and especially totalActivity, totalExpansion, and totalAt-

trsInjected are good super taxon discriminators and confirm the assumption that the 

activity of the projects increases as we move from the cold to the hot super taxon. 

• In the decision tree that was produced by activity measurements, the areas of each 

super taxon are distinct. 

• The resizing ratio is not an indicator of how active a taxon is. 
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• Regarding the schema update period, the activity is due to the nature of the projects. 

• Project update period is not related to the activity. 

 

 

In the future, it is possible to explore, which percentage of the projects per taxon 

abides by patterns like progressive reduction of activity, intense spikes of activity, 

commits of massive maintenance, commits of zero maintenance, etc, and see if the 

taxa can predict the patterns. Also, it is possible to define for each pattern, the 

property values that each project needs to fulfill. Then, one can check if intersections 

of these properties can be used as discriminators to create taxa, and observe which 

taxa are created after applying them. 
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APPENDIX A         

  NORMALIZATION METHODS 

 

A.1 Method A: Z-Scoring 

A.2 Method B: SAX (Symbolic Aggregate approXimation) 

 

A.1  Method A: Z-Scoring 

A Z-score is a numerical measurement that describes a value's relationship to the 

mean of a group of values. If a Z-score is 0, it indicates that the data point's score 

is identical to the mean score. Z-scores may be positive or negative, with a positive 

value indicating the score is above the mean and a negative score indicating it is 

below the mean. 

Standardizing a dataset involves rescaling the distribution of values so that the mean 

of observed values is 0 and the standard deviation is 1. Standardization assumes 

that dataset values fit a Gaussian distribution (bell curve) with a well-behaved mean 

and standard deviation. Even if this expectation is not met, time-series data can still 

be standardized, but may not get reliable results. To standardize the data, the mean 

and standard deviation of the data series are required. They can be calculated by 

the following math formulas: 

 

• 𝜇 =  
𝑠𝑢𝑚(𝑥𝑖)

𝑐𝑜𝑢𝑛𝑡(𝑥𝑖)
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where μ is the Mean of data series, 𝑠𝑢𝑚(𝑥𝑖) is the Sum of all values and 𝑐𝑜𝑢𝑛𝑡(𝑥𝑖) 

is the Count of all values. 

• 𝜎 =  √
∑(𝑥𝑖−𝜇)

2

𝑐𝑜𝑢𝑛𝑡(𝑥𝑖)
  

where σ is the Standard Deviation of data series. 

Finally, the new standardized value, for each value of the data series, can be com-

puted, with the following math formula: 

𝑧 =  
𝑦 − 𝜇

𝜎
 

where z is the new standardized value (also known as Z-score). 

 

A.2 Method B: SAX (Symbolic Aggregate approXimation) 

According to [5] paper, even though many symbolic representations of time series 

have been introduced over the past decades, they all suffer from two fatal flaws. 

Firstly, the dimensionality of the symbolic representation remains the same with the 

original data, and as a result, virtually all data mining algorithms scale poorly with 

dimensionality. Secondly, although distance measures can be defined on the symbolic 

approaches, these distance measures have little correlation with distance measures 

defined on the original time series.   

SAX is a transformation method to convert a numeric sequence (time series) to a 

symbolic representation. More specifically, it is about the transformation of a time 

series to a sequence of symbols with a predefined length and alphabet. The produced 

string’s length is less than the original series’ length. Firstly, data is being trans-

formed into the Piecewise Aggregate Approximation (PAA) representation, and then 

the PAA representation is symbolized into a discrete string. Sax representation is 

very robust to wandering baseline and outliers and can be computed incrementally. 

 

Unlike other representations Sax representation of time series allows: 
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• Lower bounding of Euclidean distance 

• Lower bounding of the DTW distance 

• Dimensionality Reduction 

• Numerosity Reduction 

 

In general, the technique consists of the following steps: 

• Compute the Piecewise Aggregate Approximation (PAA) of the time series. 

• Compute the lookup table for the given alphabet, assuming that the values of 

the time series are normally distributed. 

• Transform the generated PAA of the time series to a symbolic sequence by 

using the lookup table. 

 

To the following subsections, an extending analysis of the steps of SAX representa-

tion takes place. 

 

A.2.1 Normalization of Data 

Before the transformation of the data series into the PAA representation, normaliza-

tion of data is required.  

Normalization is a rescaling of the data from the original range so that all values are 

within the range of 0 and 1. To normalize the data, the maximum and the minimum 

value that exists in the data series, are necessary. Afterwards, each value of the time 

series can be normalized by using the following math formula:  

𝑦 =  
𝑥 − 𝑚𝑖𝑛

max − 𝑚𝑖𝑛
   

where x is each value of the time series and y is the new normalized value. 

 

A.2.2 PAA Representation  

After the normalization of the data, the computation of the Piecewise Aggregate 

Approximation (PAA) of the data series, is ready to take place. PAA (Piecewise 

Aggregate Approximation) corresponds to downsampling of the original time series, 



 

101 

 

and, in each segment (segments have fixed size), the mean value is retained. The 

basic idea behind the algorithm is to reduce the dimensionality of the input time 

series by splitting them into equal-sized segments which are computed by averaging 

the values in these segments. Before proceeding to the computation of the PAA, the 

number of equal-sized segments must be defined. One of the most important ad-

vantages of PAA is that provides dimensionality reduction.  

Assuming a time series Y=Y1, Y2,…, Yn of length (n) to be split or reduced into a 

series X=X1, X2,…, Xm where m≤nm≤n, the overall equation describing the elements 

in the reduced series can be summed up by the formula: 

𝑋�̅̇� =  
𝑚

𝑛
 ∗ ∑ 𝑥𝑗

(n/M)⋅i

j=n/N(i−1)+1

 

 

The above equation provides the mean of the elements in the equi-sized frame which 

makes up the vector of the reduced dimensional series. Nonetheless, there are im-

mediate special cases: 

• m=n: The reduced series is an exact copy of the original sequence. 

• m=1: The reduced series is the mean of the original sequence. 

The second case is a special case where the result is a piecewise constant approxi-

mation. Unlike the normal case, where the original input vector is split into frames 

and the mean of the values in the frame is computed, in this case, the reduced series 

is the mean of the original sequence. 

 

A.2.3 Discretization 

The final stage of SAX is discretization. In SAX, discretization of time series is the 

process where the numeric PAA representation is transformed into a symbolic rep-

resentation. It is desirable to have a discretization technique that will produce sym-

bols with equiprobability. The steps for the discretization are as following: 
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• Firstly, the alphabet that is going to be used for the generation of the symbolic 

representation must be declared.  

• Next, given that the normalized time series have a highly Gaussian distribu-

tion, the “breakpoints”, that will produce a predefined number of equal-sized 

areas under the Gaussian curve, must be determined.  

Definition 1 Breakpoints: Breakpoints are a sorted list of numbers B = β1, ..., 

βa−1 such that the area under a N(0, 1) Gaussian curve from βi to βi+1 = 1/a 

(β0 and βa are defined as −∞ and ∞, respectively). 

 

Using these breakpoints, a lookup table with symbols is being created. 

 

• Finally, for the transformation of the PAA representation into the symbolic 

representation, taking into consideration the lookup table, a symbol to each 

value of the PAA representation is assigned. 
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