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ABSTRACT

Georgios Theodoros Kalampokis, M.Sc. in Data and Computer Systems Engineering,
Department of Computer Science and Engineering, School of Engineering, University
of Ioannina, Greece, July 2021

Thesis Title: A Method to Establish Taxa of Schema Evolution

Advisor: Panos Vassiliadis, Professor

Software evolution is related to either the fix of any errors in the original or previous
design of the software or the demand of the users to have additional features in the
software. However, for the software to continue to be functional and viable, it needs
to keep track of the new requirements. To achieve this, mostly, apart from the up-
dates in the software, new information needs to be added. Schema evolution refers
to the change of the internal structure of the database, either in terms of changes of
the tables, or the attributes of the schema. The impact of this evolution on the entire
software, that is built around the schema, is very big which makes it very important
to find out how schemata evolve over time, as well as to extract some patterns related
to their evolution.

Historically, due to the absence of datasets, only with the appearance of open-source
software, was, the conduction of studies on schema evolution, made feasible. Re-
cently, in bibliography the biggest study related to the schema evolution, has been
conducted, with 195 schemata that were studied, in which, families of schemata
(taxa) were extracted, by observing the way that schema evolves.

In this Thesis, we continue this research, and we proceed to the assessment of the
taxa that were proposed. Moreover, we observe how the schema evolves over time
as well as the measurements that are related to this evolution. The main question
we seek to answer is: Assuming a taxon is given, what are the characteristics of the

projects that belong to it and vice versa. Moreover, a question that arises is whether
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we could find a centroid to each taxon, which would represent its characteristics.
Finally, based on the answers that were derived from the study of the previous
questions, we group the taxa in larger groups, which we call super taxa, and demon-
strate a more clean separation of the evolutionary behavior of their projects. We also
study heartbeat, activity, duration for the super taxa and report our findings, along

with the identification of centroids for each super taxon.
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EKTETAMENH NEPIAHWYH

I'epytog Bebdwpog Kohopmdxng, A M.Z. otn Mnyoavixy AeSopévwy xot Y'moloytL-
oTXWY ZOOTNUATWY, Tunpo Myyovixdy H/Y xow [TAnpopoptxng, [ToAvteyvixn ZxoAn,
[Mavemotiuio Iwavvivwy, IovAtog 2021

Tithog AratpLPng: Mébodog xabopLopod takewy oynudtwy Baocwy dedouévwy, e
Béion v eEENEN TOLG

EmpAénwv: Baotieradng Movoryid g, Kobnyntig

H eEEAEN Tou Aoytopixod opopd eite T SLépHwon TLYOY CEOALETWY GTOV OEYLXO
7 TTPONYOVUEVO OYESLUGUO TOV AOYLOWULXOV, ELTE TNV OTTALTNOY] TWY YENOTWY YLO TEO-
obeta YoPoxTELOTIXA GTO AOYLoULXO. Q0TOCO0, TTPOXELLEVOL TO AOYLOWULXO YO CLVE-
xloet va lvo Aettovpytxd xol PLidotio, TEETEL vor Topox0AoLOEL TG Véeg amaTy)-
oclg. I var emmitevyfel awtd, Tig TTEPLOGATEPES POPEG, EXTOG OO TLS EVNILEQWOELG
TOL AoylouLxol, TPETeL vor tpoatefoly véeg tAnpopopies. H eEEALEN Tov oyuatog
OVOPEPETAL OTNY OAAXYY] TNG E0WTEPXNG OouNS NG Pdong dedouévwy, elte ota
TAXLOLOL AAOLYWY OTOUG TUVOXES ELTE OTA YOEAXTNELOTIXE TOL oYNULoTog. O ovTi-
XTUTTOG TG EEEMEYS avTNg elval TTOAD LEYEAOG G OAOXANPO TO AOYLOULXO, TO OTTOLO
elvor XTLoUEVO YOPW oTtd TO OYNUA, TTOAYUO TTOL X HLETE TTOAD oNUOVTIXO VoL ovoi-
xoAOPoLUE TOY TPOTO LE TOV OTIOLO EEEAGOOVTOL TO OYNULOTO UE TNV TTEEOSO TOL
¥xpovou, xobwe xow vo eEdyovpe optopévar potiBa ov oxetilovtot pe v eEEAEN
TOUG.

lotopud, AoYw TN amovsiog CLYOAWY SESOUEVWY, UOVO UE TNV EUPEVLON TOL AOYL-
OULXOD OVOLXTOD XWOLXA EYLVE EQLXTN 1] OLEEAYWYY] UEAETWY Yl TNV EEEMLEY TWY
oxnuatwy. Ipdéopata, ot BLBAtoypapio, deEnyin n peyohdtepn peAétn mov €xel
Tporypotomotniel Toté oxeTind pe TNy €EEALEN Ty oxMudtwy, pue 195 oyuota Tov
LEAETNONXOY %Ol OTNY OTola, UEAETWYTOS TOV TPOTO UE TOV OTOLO EEEAOOETOL TO

OYALOL VTV TV €pYwY, eERYOnoay owovéveltee oynudrtwy (taxa).
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21Ny Topovoo epYaaia, cLVEYLLOVIE TNV TTPOOTTAOELOL LT XOL XAVOLUE OELOAGYTMOY
OVTWY TWVY OLXOYEVELWY TTOL TTEOTAONKOY. ETLTAL0V, Torpatnpod e g eEeAiooeTol
TO OYNUOL LE TNY TTAEODO TOL YPOVOL XABWG XL TTOLA ELVOL TOL YOPOXTNOLOTLXA TTOL
oyetilovtor pe avt) Ty eEEANEY. To xOpLo epwTRuo. ToL BEAOLIE VO TTOVTNOOVLE
elvat, oy dobel pLor oxoyévetla, ToLa Vol T YAEOXTNELOTIXA TWY €QYWY TTOV OV~
XO0LY OE aVTO, oL avTioTPoPo. ETLTAE0y, évar ep®TNUor TOL TTPOXVTTEL Elval av Oa
pumopovoape vo Bpodue éva xevTpoeLdEg Lo xdbe owxoyéveta, To omoio Ho avtimpo-
OWTEVEL TO YOLPOXTNPLOTIXA TG EXAOTOTE OLXOYEVELOGS. TEAOG, ue Bdon TG ToPoTy)-
PNoELS TTOL TPOEXVYOY ATO TN LEAETY TWV TTPONYOVUEV®Y EQWTNUATMY, OULXIOTTOL-
OVUE TLG OLXOYEVELEG OE UEYOADTEQES OUGDES, TLG OTOlEG OTtoXaAOVUE “‘super taxa”,
%o ETULOELXVOOVUE (UL TILO OOPT OLEXELON TNG EEEALXTLXNG OLUTIEPLPOPAS TWY OYT-
wétwy touvg. Emtiong, ueAetdye to heartbeat, v Spootnotdtytor xow Ty SLAPXELA TV
super taxa xol oVOQEPOVUE T EVPNUOTA LOG, OXETIXE HE TNV eEaxpiBwon xevTpo-

g3y YLow x&be taxon.



CHAPTER 1

INTRODUCTION

1.1 Goals

1.2 Thesis Structure

In the first section of this chapter, we present a brief description of our work and
refer to the main directions and the main purpose of our research. In the second

section of this chapter, we refer to the structure of this Thesis.

1.1 Goals

Many information systems, to meet market needs, use databases to store, manage,
update, and recover data. A relational database consists of tables that are related to
each other. A table has fields and records. All the tables of a database including
their fields, their records as well as, their constraints, form the schema of the data-
base.

As already mentioned, papers related to schema evolution exist and have done some
important steps towards the discovery of behaviors and patterns in schema evolu-
tion. Nevertheless, the problem is that all the previous studies have been conducted
on a small scale, up to a dozen of projects, and cannot ensure that the conclusions
apply in general.

In [12], the author, taking advantage of a big number of open-source projects, con-
ducted the largest study, that has ever been conducted in schema evolution and

presented families of schemata based on the stats of the projects. The study aimed
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to answer the following research questions: (a) Is schema evolution extensively pre-
sent? (b) Can we extract families, ("taxa" as in biology) of schemata, with respect to
the way they evolve over time? (¢c) What are the quantitative characteristics of schema
evolution and how do they perform for different taxa? The author observed ditferent
types of schema evolution, so for this reason he introduced the concept of taxa, which
are families of schemata with similar schema evolution. More specifically, the author
presented 6 taxa of schema evolution for the domain of Free Open Source Software
(FOSS) projects, which were extracted based on the activity and the heartbeat rate
of the projects.

In this Thesis, we study in detail, the stats of every project for each one of these taxa,

presented in [12], and we attempt to answer the following questions:

i) If given a taxon, can we say specific information about its values as well as its charac-

teristics? ”’

After observing the stats of the projects and the plots for each taxon, we realized that
there are some measurements, which are mostly related to the heartbeat and the
activity, that can give us specific information about the schema evolution, during the
lifetime of the projects.

Specifically, the characteristics of each taxon can be synopsized as follows:

Frozen taxon
e Zero total activity
e Up to 1 active commits

e Zero schema evolution

ALMOST_FROZEN:
e A few active commits (up to 4 active commits)
e Small total activity

e Most of the projects do not have new tables during their schema evolution

FocusedShot_n_Frozen:
o A few active commits (up to 4 active commits)

e Small to high total activity

12



e Nearly half of the projects of this taxon have one commit with new tables

during their schema evolution

MODERATE:
e Moderate to several number of active commits (up to 23 active commits)
e Small to medium total activity

e Nearly 25% of the projects have several upward steps of evolution

FocusedShot_n LOW:
e Moderate number of active commits (up to 11 active commits)
e Medium to high total activity

e Nearly 25% of the projects have several upward steps of evolution.

ACTIVE:
e Several number of active commits (up to 64 active commits)
e Very high total activity

e Nearly 50% of the projects have several upward steps of evolution.

ii) Can we give a “centroid” characteristic project of each taxon?

Considering the fact that the taxa presented in [12] were extracted mostly based on
the activity and the heartbeat of the projects, in later section we present a project per
taxon as a centroid project, including its measurements, and compare it to the general
behavior of the taxon. This project represents the characteristics of each taxon with
respect to the way its schema evolves and is defined by using measurements related

to the heartbeat and the activity of the projects.
iii) Can we do better than the existing taxonomy?

After having observed the stats and the plots of all the measurements and especially
of those that are related to the heartbeat and the activity of the projects, in Chapter
3, we came up with the idea of merging the similar taxa into larger groups, which

we call super taxa, and present them extensively in Chapter 4.
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1.2 Thesis Structure

This Thesis consists of 5 sections. Its structure is as follows:

In Section 2, we present the related work and the background of this Thesis.

In Section 3, we discuss the procedure that was followed for the assessment of the
taxa, which were presented in [12], and present the results and the conclusions that
we end up with.

In Section 4, we examine the possibility of deriving super taxa, by grouping similar
taxa into larger groups and discuss the benefits of this procedure.

In Section 5, we discuss the conclusions and the results of this Thesis and also, we

refer to potential future work.
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CHAPTER 2

RELATED WORK

2.1 Case Studies of Schema Evolution
2.2 Overview of the paper “Schema Evolution Profiles from the Study of 195

Free Open Source Software Projects”

In the first section of this chapter, we refer to related research that has been done in
this specific area, emphasizing how the interest in this area was grown, as well as
on the achievements over time. In the second section, we make a quick overview of
the paper “Schema Evolution Profiles from the Study of 195 Free Open-Source Soft-

ware Projects”, since this Thesis is an extension of this study.

2.1 Case Studies of Schema Evolution

Sjeberg in his paper [7] conducted a study for measuring modifications to database
schemata and their consequences. To accomplish that, the author built a thesaurus
tool to monitor the evolution of a large, industrial database application — a health
management system (HMS). The thesaurus assists in keeping track of the use of
names in the HMS application and reports to user information such as which actions,
classes, functions, macros, etc. are defined and where they are used, which fields and
relations, this query or update function refers to, etc. It does not perform any changes
or conversions itself but instead, it indicates where changes probably have to be

done. Finally, the author reports how the schema changed, and concludes that even
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a small change to the schema may have major consequences for the rest of the

application code.
Specifically, the author’s findings can be summarized as follows:

e At the beginning of the development, almost all changes were additions.

e After the system went into production use, there was no diminution in the
number of changes, but the additions and deletions were more nearly in bal-
ance.

e Every relation has been modified throughout the examination period.

e During the period of examination of HMS, there was a 139% increase in the

number of relations and a 274% growth in the number of fields.

Curino, Moon, Tanca, and Zaniolo in their paper [2] present an in-depth analysis of
the evolution of the Wikipedia database and its schema, which was short in time,
but intense in terms of growth and evolution. In the context of their study, the
authors performed a macro and micro classification of the schema changes and then
they measured the effect of the changes on applications, by observing the success
rate of the query execution among different schema versions.

The main findings of this study are condensed as follows:

e Throughout the analysis, the number of tables increased from 17 to 34 (100%
increase) and the number of columns from 100 to 242 (142%).

e Regarding the table/column lifetime as well as the number of revisions per
month, each table lasted 103.3 versions (60.4% of the total DB history) and
columns lasted 97.17 versions on average (56.8% of the total DB history). The
peak of the most revisions per month was spotted in the middle of the
timeframe that the database was examined.

e Interestingly, it was noticed that there were two main groups of tables and
columns: “short-living” and “long-living”.

e Only a small fraction (about 22%) of the queries, designed to run on old

schema versions, were still valid throughout the schema evolution.

16



e The authors, in order to provide a fine-grained analysis of the types of change
the schema has been subjected to, exploited Schema Modification Operators
(SMOs) as a pure classification instrument. SMO’s syntax is similar to that of
SQL, DDL, and provides a concise way to describe typical modifications of a
database schema and the corresponding data migration. The authors found
that the most used SMOs were “ADD COLUMN” and “DROP COLUMN”.

e The results of the study showed that MediaWiki has undergone a very inten-
sive schema evolution, as a result of the cooperative, multi-party, open-source

development, and administration.

Lin’s and Neamtiu’s research [4] aimed to identify challenges and solutions associ-
ated with the collateral evolution of application programs and databases. The authors
define, the situation when the format expected by the data client is different from
the format provided by the data server, which may have unexpected behavior, as
collateral evolution.

To identify which the most frequent table changes are, the authors performed a schema

evolution study on two real-world widely used applications Mozilla and Monotone.

e The author’s research has revealed that the most frequent table-level modifi-
cations are interval changes to the schema of existing tables, followed by table
additions, table deletions, and table renaming.

e Regarding the attributes of the tables, most of the changes were additions and

deletions.

Afterwards, the authors’ purpose was to find out how the application code remains
synchronized with the new schema version. To accomplish that, Mozilla and Monotone
were examined, to inspect how these two applications deal with the schema changes.

e Monotone used a centralized routine to check whether collateral evolution has
occurred, and inform the user whether the database is usable, or if migration
is required, etc.

e Mozilla had two main approaches to cope with schema changes: The first
mechanism (Version-oblivious evolution) simply ignores the collateral evolu-
tion problem and assumes that, if a database exists, its schema version matches
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the schema version of the application, which may result in unexpected errors.
The second approach (Bidirectional schema migration) determines, before ac-
cessing the database, both the version X of the application and the version Y
of the database schema, and then perform the schema migration, which can

be either an upgrade or a downgrade.

Although table and attribute changes are under application program developers’
control, the developers face changes they have little control over, like the database
file format. The reason why this happens is that DBMS producers often modity the
database file format to offer improved performance, reduce storage size, or imple-
ment a new standard. The authors carried out a database format evolution study over the
complete lifetime of three major DBMSs (SQLite, MySQL, PostgreSQL).
Compatibility errors could occur due to different versions of DBMS. MySQL and
PostgreSQL face this challenge by backing up the existing data, “dump" the DB
contents to a SQL script containing the commands needed to recreate all the database
records from scratch, upgrade the DBMS, and run the script to recreate and populate
the database at the new format.
Regarding the format changes of each DBMS, they are as follows:
e MySQL over its 14-year existence has had 5 file format changes.
e PostgreSQL over its entire 14-years lifetime has had 21 file format changes.
e SQLite over its 9 years lifetime, has changed the file format 13 times. Though
only 3 of those were incompatible file format changes. It seemed to be much
more user-friendly. Seamless file format conversion mechanisms used in

SQLite should be adopted by other DBMS producers as well.

Wu’s and Neamtiu’s research [13], focused on schema evolution for embedded da-
tabases. The goal of the authors’ work was to find a way that would permit safe,
dynamic schema updates to embedded databases (EDs).

The main contributions and results of this research were the following;:

An approach for extracting ED schemas and detecting schema evolution. The first step
towards this goal was to understand how ED schemas evolve. So firstly, the authors

created a tool (SCVD) that automates schema extraction and schema evolution
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analysis for EDs. Using SCVD, developers can compare old and new applications to
find out when and how to correctly migrate an ED from the old schema to the new

schema. Regarding the SCVD architecture, it consists of 3 stages:

e In the first stage, the system tracks the release history of an application (source
code history extractor).

e In the second stage, it extracts the database schemas embedded in the appli-
cation (schema extractor). More specifically, it takes as input a list of versions
or tags and downloads a corresponding list of source code versions the au-
thors want to analyze.

e In the third stage, it compares the schemas and produces a tally of schema
evolution results (schema differencing module). This module is based on

mysqldiff, an open-source schema migration assistant.

A study of ED schema evolution of four popular applications over more than 18 cumulative
years.

To understand how EDs evolve in practice, the authors used the aforementioned
tool (SCVD) to perform a schema evolution study covering a cumulative 18 years of
evolution, on four popular open-source programs: Firefox, Monotone, BiblioteQ, and
Vienna. The authors’ study focused on the table- and attribute-level changes that
affect update safety. More specifically, the table changes that were examined were
the SMOs "CREATE TABLE" and "DROP TABLE" and the attribute changes were
the following: "ADD COLUMN", "DROP COLUMN", "Type Change", "Init Change",
"Key Change". The results, after summing up the changes across all the applications,

were the following;:

e The most frequent operations were ADD COLUMN (32.5%), Type Changes
(24.3%), DROP COLUMN (19.3%), DROP TABLE (14.9%), and CREATE
TABLE (6.1%). After having observed the previous results, the authors found
out that table and column additions/deletions are more important than sup-
porting changes to column types, initializers, and key status.

e The authors also measured the frequency and timing of schema changes for

each project. It was observed that schemas tend to change more in the
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beginning, and the database structure stabilizes over time because later ver-
sions have fewer changes. For that reason, the authors suggested that on-the-
fly schema updates are necessary, especially at the beginning of a program’s

lifetime.

Qiu, Li, and Su in their paper [6] paid attention on how schema-changes impact

code and performed a large-scale empirical study on ten popular database applica-

tions to gain insight into how schemas and application code co-evolve. In particular,

the authors studied the applications’ long-time evolution histories from their respec-

tive repositories, to understand 1) if database schemas evolve frequently and significantly,

2) how schemas evolve, and, 3) how they impact application code.

Firstly, the authors provided a method that describes their analysis process over the

schema and data changes. The method consists of the following steps:

Locate schema file: The first step extracts the schema files. The authors man-
ually trace the schema files even if their locations or names have been modi-
fied.

Extract DB revisions: The second step identifies DB revisions, which are re-
visions (commits) that contain modifications to schema files.

Extract valid DB revisions: Filter DB revisions and keep only those that the
authors were interested in.

Extract atomic changes: After having identified the valid DB revisions for
each project, the authors extract all schema changes by manually comparing
schema files of contiguous valid DB versions.

Co-change analysis: Analysis of the real impact caused by these atomic schema
changes by mining a project’s version control history. The authors use a da-
tabase application’s co-change history to estimate the application code area,

affected by a schema change.
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After applying the first two steps of the previous method, the authors came up with

the following results:

The ratio of valid over total revisions fell mostly in the 50-90% range.
Compared to other projects, Joomla had a much lower ratio because DMLs
were involved in the same schema file with DDLs, making data-sensitive
changes cover a large fraction of invalid revisions.

The average number of atomic changes per valid revision fell mostly in the

2-7 range.

Finally, the authors considering the previous analysis provided answers and conclu-

sions to the following questions.

"How frequently and extensively do schemas evolve? " The authors, to answer this ques-

tion, had to do the following steps:

Firstly, for each stable release/year, the authors calculated the average number
of valid DB revisions/atomic schema changes.

Secondly, it was measured how extensively schemas change, by examining the
trend on schema size changes. The authors collected the number of tables/col-

umns in each valid revision to see how much schemas evolve.

To facilitate a more precise evaluation, the authors used two metrics, Growth Rate
(GR) and Change Rate (CR):

GR = (#Added Elements - #Deleted Elements) / Initial Elements

CR = (#Added Elements + #Deleted Elements) / Initial Elements

The main results were the following;:

Schemas evolve frequently: On average 65 atomic schema changes occurred
per release, and 90 atomic schema changes occurred per year across the ten
projects.

The size of schemas in most projects grew significantly: The GR of tables in
60% of the projects exceeded 100%; the CR of tables in 90% of projects ex-
ceeded 100%.
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e Columns evolve in a way that is very similar to the one of the tables.

"How do database schemas evolve?" The main results that the authors came up with

were the following;:

e At the low-level, add table, add column, and change column datatype were
the most frequent atomic change types.

e The data also confirmed that referential integrity constraints (such as foreign
key and trigger) and procedures (such as stored procedure) are rarely used
in practice.

e Addition and change accounted for most of the schema evolution.

"How much application code has co-changed with a schema change?" To answer this
question, the authors selected uniformly a random 10% (146) of the valid DB revi-
sions from the total 1,464 valid DB revisions and manually analyzed the co-changed

information.

The main results, that the authors ended up with, were the following:

e Their detailed manual study on schema and code co-change history revealed
that more than 70% of all valid DB revisions contained effective co-change
information, and among these, over 70% have precisions over 80%.

e Schema changes impacted code greatly. For an atomic schema change, devel-
opers needed to change about 10~100 LoC on average. For a valid DB revi-
sion, which typically contains 25 atomic changes, developers needed to change

about 100~1000 LoC.

Skoulis, Vassiliadis, and Zarras [8] during their research performed a large-scale
study on the database evolution of large open-source projects and checked the va-
lidity of Lehman’s laws on properties like size, growth, and amount of change per
version. More specifically, the authors isolated databases of eight projects that ap-
peared to be alive. For each dataset, the authors gathered its schema versions, and

then used their tool Hecate to get the differences between the two subsequent
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committed versions and measures such as the size of the schema, the total number

of changes for each transition from a version to the next, or the growth assessed as

the difference in the size of the schema between subsequent versions.

The main conclusions that the authors ended up with are the following:

All projects, with only one exception, had schema changes throughout their
lifetime. Database schema evolution happened in discrete time slots and was-
n’t a continuous process. The authors concluded that the Law of Continuing Change
partially holds.

The evolution of the database schema appeared to obey the behavior of a feedback-
based mechanism.

Referring to the evolution of size, it was noticed that the schemas follow three
fundamental behaviors. In all schemas, exist periods of increase, especially at
the beginning of their lifetime or after a large drop in the schema size. More-
over, there were versions with drops in schema size. Those drops were typi-
cally sudden and steep and usually took place in short periods of time. Also,
in all schemas, there were periods where the size remained stable. In terms
of schema growth, change was small. Tables’ growth was mostly ranged in
small values. Also, the same behavior was noticed for the attributes’ growth.
Considering those, the authors concluded that change does not follow the pattern of
baseline smooth growth of Lehman.

Even though all data sets demonstrated the tendency to grow over time, in
all schemas, there were periods of stability where the size of schema did not
change, so the authors concluded that the Law of Continuing Growth holds.

The Law of Conservation of Organizational Stability does not hold, since there was

no constant growth in any of the projects.

Vassiliadis, Zarras, and Skoulis [10] focused on how properties associated with

schema evolution such as life duration, or the number of updates of a table are

related to observable table properties like the number of attributes or the time of

birth of a table. The authors provided answers and conclusions to the following

questions:
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"Which tables eventually survive, and which ones are deleted? "
According to the authors, the tables can be segregated to the following families:

o Wide survivors: Tables with small schema sizes can have various lifetime du-
rations and tables with larger schema sizes live longer.

e Entry level removals: Newly born tables tend to be quickly removed with a few
or no updates observed.

e Old timers: It was noticed that old age tables are rarely removed.

"What is the impact of the lifetime of a table on schema size and vice versa?"

Intending to answer this question, the authors computed the duration for each table
in each dataset. To get a normalized measure, the duration of each table was divided

by the duration of its database.
Specifically, the author’s results and conclusions can be summarized as follows:

e It was observed that long-lived tables tend to appear at the beginning of the
database and survive till the end.

e A 26.11 % fraction of tables that appeared at the beginning of the database,
survived until the end.

e Nearly half of the tables (approx. 47 %) were small tables with less than 5
attributes.

e The tables with 5 to 10 attributes were approximately one-third of the tables’
population and the wide tables with more than 10 attributes were approxi-
mately 17 % of the tables.

e The datasets with less evolutionary activity were the ones concentrating outlier
values.

e Tables with small schema sizes can have arbitrary durations, whereas tables
with larger schema sizes last long.

e Small schema size does not necessarily mean short duration. Nonetheless, ta-
bles with 10 or more attributes have high chances of surviving.

e Tables at old age are rarely removed.
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"How is table schema size and duration related to its update potential?"

The authors after observing the relation of a table’s schema size at its birth with the
amount of change the table undergoes, concluded the following two main clusters.
The first cluster consists of small size tables with a small amount of change and the
second cluster is divided into two subcategories: (i) Medium schema size tables with
medium to large amount of changes and (ii) Tables with large schema size with

small to medium amount of change.

Additional conclusions that the authors ended up with are as following:

e Considering the table updates, large size tables seem to have fewer possibilities
of growth, in contradiction with medium size tables which can carry more
information.

o Tables with small lifetimes are subject to small changes, while tables with
medium duration undergo small or medium change, and, long-lived tables
demonstrate all kinds of change behavior.

o Tables with the highest average transitional update, are born early, live long,

and have consequently a large amount of total update.

Panos Vassiliadis and Apostolos V. Zarras in their research paper [11] aimed to
discover patterns and behaviors that are tightly related to the survival or the
death of the tables of a database. For the purposes of their study, the authors
used their tool Hecate, to the schema files of 8 open-source projects, to get
measures such as the total number of changes it went through and the change
rate. After having examined the graphs, which included measurements, men-
tioned above, the authors deduce the following facts:

o "Dead" tables tend to have a short lifetime, which makes sense, because the earlier

a table is removed, the smaller the cost of maintaining the surrounding code is.
e On contrary to the "dead" tables, "survivor" tables usually have high durations.

o Probably the most important finding of the authors was "The electrolysis pattern’.
This pattern states that tables, which die, are usually tables with small or

medium lifetimes and undergo fewer changes. In contradiction, tables that
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survive, usually present medium or big durations and have the tendency,

to undergo a greater number of changes, the longer they live.

o Finally, the authors suggest that the developers try keeping the development of
the, related to the tables, code as restrained as possible, preferably encapsulated

via views, that will hide the changes from the application code.

2.2 Overview of the paper “Schema Evolution Profiles from the

Study of 195 Free Open Source Software Projects”

The author, in [12], conducted the largest study, that has ever been conducted in
schema evolution, and after collecting a big number of open-source projects, he pre-
sented families of schemata based on the way they evolve throughout their develop-
ment lifetime. For the generation of the datasets, the author queried the GitHub
Activity Data dataset from Google Cloud BigQuery, for repositories that had .sql files.
Then, the author filtered original repositories, with more than O stars and more than
1 contributor and finally, after discarding projects with just a single commit, ended
up with 195 projects, with at least an extra commit. Once the histories of these 195
projects were collected, The author proceeded to the automatic extraction of changes
in the lifetime of projects by using a tool called Hecate. These changes involve table
and attribute birth and removal, as well as data type and PK (Primary Key) changes.
The last step was the production, of stats and charts for each project, which were
used for the extraction of the taxa.

The taxa that emerged at the end of this study [12] are as follows:

e (0_FROZEN: Projects with completely frozen schema histories and with zero
change at the logical level. (totalActivity = 0)

o 1 _ALMOST_FROZEN: Projects with histories of very small change, typically
with few intra-table attribute modifications. (At most 4 active commits, to-

talActivity <= 10 updated attributes).
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1_FocusedShot_n_FROZEN: Projects with almost frozen histories but with a
single spike of change (not necessarily small) and almost no other change (At
most 4 active commits, totalActivity > 10 updated attributes).
2_MODERATE: Projects with histories of moderate evolution, without spec-
tacular changes, but rather small deltas spread throughout their lives.
3_FocusedShot_n_LOW: Projects with evolution similar to the moderate one
but also with a pair of spikes on their activity.

4_ACTIVE: Projects with a significant amount of change both as intra-table

change and in terms of table generation and eviction.
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CHAPTER 3

PROFILING AND EVALUATION OF THE EXISTING

TAXONOMY OF SCHEMA EVOLUTION

3.1  Data and Statistics Extraction from “HeraclitusFire”
3.1.1 Atomic Schema Attributes
3.1.2 Monthly Schema Attributes
3.1.3 Summary Schema Attributes
3.2  Testing of Extracted Data
3.3  Correlations of Attributes
3.3.1 Kendall Metric
3.3.2 Correlations
3.3.3 Most Important Attributes
3.4  Data Profiling
3.5  Behavior and patterns per taxon
3.6 Centroids and characteristics per taxon
3.7 Assessment of existing taxa and validity metrics
3.7.1 Cohesion and Separation metrics

3.7.2 Silhouette Coefficient

This chapter critically assesses the taxa presented in [12], through a detailed analysis.
To achieve this analysis, some new data and statistics needed to be extracted from

the taxa. In the first section of this chapter, an overview of the tool “HeraclitusFire”
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as well as the data and statistics, that were extracted and added as information to
“HeraclitusFire”, are presented. In the second section of this chapter, the main tests
that were added to “HeraclitusFire” are reported, to make sure that every infor-
mation added to the project was valid, as well as to test most of the use cases related
to the schema evolution of the input. Afterwards, the third section discusses the
correlations of the attributes. More specifically, firstly the metric that was used to
compute the correlations of the attributes is presented, then the computed correla-
tions are presented, and at the end of this section, based on this correlation matrix,
the most important attributes are extracted. In the fourth section, a profiling of the
most important attributes, including their histograms, is provided. In the fifth sec-
tion, we discuss about patterns and characteristics for each taxon. Then, in the sixth
section, we present a centroid-project for each taxon, that represents the characteris-
tics of the respective taxon. Finally, in the last section we proceed to the assessment
of the existing taxa, presented in [12], by using some validity metrics from the area

of clustering.

3.1 Data and Statistics Extraction from “HeraclitusFire”

Firstly, let’s take a look at the tools, that were used in terms of this research. “Her-
aclitusFire” is a tool that, given the history of a relational database schema, auto-
matically produces visualizations and statistical tests for patterns of schema evolu-
tion. As input to “HeraclitusFire” is given the output of “Hecate”, which is a tool
that, given a folder with the snapshots of the DDL files as input that include the
CREATE TABLE statements of the databases, produces transitions from one snap-
shot ("version") to its next, along with statistics on the types of changes. The data
and statistics produced by “HeraclitusFire”, were used in our detailed analysis. How-
ever, these data were not enough for the goals of this research, because it was im-
portant to automatically extract stats like continuous evolution and progressive evo-
lution, so that more attributes and statistics were added. In the following three sub-
sections, the specific measures of evolution that were added to “HeraclitusFire” by
category are mentioned, with a description of their meanings. The new information

after being calculated is stored in the appropriate CSV file.
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3.1.1 Atomic Schema Attributes

Regarding the atomic transition information, having taken into consideration the
total activity of each commit of a project, the following attributes, in Table 3.1, that

characterize it, were added.

Table 3.1 Atomic Schema Attributes with their descriptions

Attribute Description
active A commit is called active if its total activity is greater than 0.
y A commit is called turf if it is active, and its total activity is
tur,
less than 15.
reed A commit is called reed if its total activity is greater than 15.

These metrics were essential for the computation of the monthly and the summary
schema stats, which will be discussed in the next subsections. The attributes turf and
reed, explain the evolution in a better way because they distinguish the small from

the big evolutions of schemas.

3.1.2 Monthly Schema Attributes

The usage of the month as a time unit was convenient in our case, in terms of the
study as well as the visualization of the new data. These monthly measurements
provide a continuous regular timeseries, where no value is missing. In monthly stats,
the first month includes not only the commits of that month, but also the initial commit of
the project (v0). As far as the monthly schema additions are concerned, the new

attributes for each month are presented in Table 3.2.

Table 3.2 Monthly Schema Attributes with their descriptions

Attribute Description

reeds The number of commits that are reeds.
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The number of reeds divided by the number of active com-

reedRatioAComm
mits.
) The number of reeds divided by the number of total com-
reedRatioTComm
mits.
activityDueToReeds | Sum of the total activities of all commits that are reeds.
turfs The number of commits that are turfs.
) The number of turfs divided by the number of active com-
turfRatioAComm
mits.
) The number of turfs divided by the number of total com-
turfRatioTComm
mits.
activityDueToTurfs | Sum of the total activities of all commits that are turfs.
activeCommits The number of active commits.
) ) ) The number of active commits divided by the number of
activeCommitRatio

total commits.

3.1.3 Summary Schema Attributes

The taxa presented in [12] were produced on the basis of summary information that

separates the initial commit (vO) from the rest, which means that the measures of

the initial commit (vO) are not being taken into consideration for the calculation of

the summary stats. Regarding the summary stats, that involve aggregate measure-

ments for the entire life of a schema, the following attributes, in Table 3.3 were

added:
Table 3.3 Summary Schema Attributes with their descriptions
Attribute Description
reeds The total number of commits of the project that are reeds.
Equal with reeds if the first commit is a turf, or (reeds —
reedsPostV 0

1) if the first commit is a reed.
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The number of reeds divided by the number of active

reedRatioAComm
commits.
The number of reeds divided by the number of total com-
reedRatioTComm
mits.
activityDueToReeds | Sum of the total activities of all commits that are reeds.
o Equal with activityDueToReeds if the first commit is a turf,
activityDueT oReed - o
or (activityDueToReeds — total ActivityV0) if the first com-
sPostV0
mit is a reed.
turfs The total number of commits of the project that are turfs.
Equal with turfs if the first commit is a reed, or (turfs —
turfsPostV 0
1) if the first commit is a turf.
The number of turfs divided by the number of active
turfRatioAComm
commits.
The number of turfs divided by the number of total com-
turfRatioTComm
mits.
activityDueToTurf | Sum of the total activities of all commits that are turfs.
o Equal with activityDueToTurf it the first commit is a reed,
activityDueT oTurf- o
or (activityDueToTurf — total ActivityV0) if the first commit
PostVO
is a turf.
activeCommits The number of active commits.
activeCommitRate- | The total number of active commits divided by the total
PerMonth number of months the project is alive.
The total number of commits divided by the total number
commit Rate PerMonth
of months the project is alive.
The total number of active commits divided by the total
activeCommitRatio

number of commits.

3.2 Testing of Extracted Data

After the calculation and storage of the data, before their preprocessing, their validity

had to be verified. Also, it was very crucial to be confirmed that the changes had

not affected the general functionality of the project. To accomplish that, a multitude
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of tests for the most important use cases was generated. Moreover, the validity of
the extracted data, of five more schemas of projects, was tested, and “truth” files with
the expected valid data results were created. The most important use cases for this

research, which were tested, are the following:

e loadData
o extractMonthlySchemaStats

e extractSchemaLevelInfo

To confirm that the abovementioned use cases are working properly, their tests on
5 more projects were conducted. Finally, every test for each one of the six projects
was fired, and it was realized that everything was working properly and that the

calculated data were equal to the expected valid ones.

3.3 Correlations of Attributes

To evaluate the taxa presented in [12], the similarity of the objects of each cluster as
well as the degree of separation between the clusters needed to be examined. The
attributes were too many to process, so a subset of attributes needed to be selected,
by discarding the most correlated attributes. In this section, an overview of the metric
that was used, to compute the correlations of the attributes, is provided. Also, the
correlations that were computed, as well as the most important attributes that were

resulted according to the correlations, are presented.

3.3.1 Kendall Metric

For the calculation of the correlations of the data, the Kendall’s Tau Coefficient for-

mula [3] was used which is as follows:

where:
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ne : number of concordant pairs
ng : number of discordant pairs

n : number of observations

The reason why Kendall’s Tau Coefficient was chosen, is because the sample was
small so its complexity O(n*2) was not discouraging. Besides, Kendall’s Tau Coeffi-
cient manages the outliers effectively because this coefficient is computed based on

the rankings of the values, instead of the values themselves.

The steps that need to be done, before using the formula, are as follows:

e C(Calculate the number of observations.
e Compute the rankings for both of the attributes we want to observe their
correlation.
e Then for every pair of ranks (x1, y1) and (x2, y2)
o If the pair (x1, y1) and (x2, y2) has the property that

sgn(x2 - x1) = sgn(y2 - y1)
-1 : x<0

where sgn x = { 0 : x= 0}
1 : x>0

then, that pair is marked as concordant pair (C)

o Else if the pair (x1, y1) and (x2, y2) has the property that
sgn(x2 - x1) = - sgn(y2 - y1)
then that pair is marked as discordant pair (D)

e Finally, count the number of concordant pairs (n.) and the number of dis-

cordant pairs (ny) and apply the formula.

35



[Ell:o 10 0T0 STO LFO S5O EVG L0 ST0 SO0 L00 600 EFC- L00 00 660 PO  LZ0 620 910 X0 $TC L0 EC0  £ZC  LFO STO STC 00 IO L0C £F0 L00 OI0 900 600 SO0 600 900 OTC- STC- 900 L0T 900 oReYHWIWO)ANAIY
£00 L00  E0C0 TOC- OG- 900 (00 €00 SO0 00 TGO TIO OIG S60 L0 90 500 EIO SIO T0C 610 90 00 S00 500 E0C €00 500 TG OT0 IIO L00 IT0 600 SO0 E0C 600 £00 L00 8O- SO IS0 yluopageieNIwo)
LT0 5TO  STO SIO £00 T0 $I0 EI0 500 SO0 E0C- STO IIO OTO STO S¥0  STO 0Z0 EE0 OTG  [Z0 5¥0  LI0 5TO TIO L1'G Tr0 700 STG STO 10 EL0 510 5TO 500 00 00 500 00 IO ESO 650 YuopIRgRIEYLIWO)INPY

0Z0 00 LI0 150 650 v0'G- ST v50 S0 e0 [ICMMeso  :so [EjJoso svo [Ifjeso  ss0 IR 50 950 oso ﬂmva EEllos o [Ellseo tzo ss0 s [Oleso 1£0 LEO SHWIWO)IAPY|
S0 400 5TO SE0  TED 60T TG LEO LED SEO [l 840 550 50 550 I¥0 030 350 80 170 650 950 [ERNEED S50 Ty 50 LED STO LED BTO [SENTED bED EED OAIS0HINLOIBNAAYAIY
om0 sto 250 TTO 570 LEO BED STD SED IS0 080 ZH0  ES0  SED  EED TS0 T¥0  THO 50 50 550 170 750 L5 150 SE0 150 LEO ES0 0T0 GO0 070 500 150 570 ET0 LTD Jnio1anaAuADY
S50 100 STO ET0 TED RO LE0 [y0 UG- 920 e £0- TUO- 520 5TO 600 ETO 600 SO0 00 00 600 ZTO  OT0  TTO 900 10 OF0 OO [0 3T0 000 8500 100 B00 [0 670 STO- ZT0- 200 S00 500 00 wwoyloneyynt
€10 20¢ E00 90 60 LED (20 Gv0 TTC- 04O I8C- 00T 0TC- £y0- OT0 860 600~ STO TI0 §10 L0 900G 960~ TG~ 500 800 E0G- 860 100 00 900 OI% 500 600G E60- GEO [EC- 620 SEO- 500 800 00 900 wwojvoneyynt
10 900 510 ¥E0  OED STC- {T0- 9EQ FEQ ZE0 8BS0  s¥0  S¥O 60 GE0 9EC 950 £v0 o [Esso EEEjsto 5o sse 650 60 250 SE® €20 SE0 20 [EEllseo Le0 950 OAFsOdsHNL
500 600 ET0 IS0 SE0 ZEQ TIC TT0 vEQ TE0 wo Efllsse EEEEM e EOEEN o sso IEIEEElsto tso sso 850 T€0 BE0 EE0 9¥0 HTO $TO STO 0A¥SOdspIYeLANaARAPY
100 500 00 60 ZE0  ITO 9TC- OKO- 00 [I0 650 0 50 $E0 050 &0 O0vO O¥0 £v0 ZEQ 9EC 050 IS0 S50 IO I50 £5C O¥O [s0 50 080 150 #50 €20 570 57O spaayoranghynmpy
600 E0C 500 Y00~ €00 STO- Iy TSG- ITC- LZ0- 8TO 650 500 (T0  &T0  5TO &I0 20 ST0  STC STO IZG  5TO STO ITO 500 SO0 [00 200 510 OO ET0 600 620 EZ0 LLO IEQ IL'0- GO0 60T 50T wwo)yoneypsay
£10- 200 200 STO 610 LEC E90- 00T (L0 OO 120 050 OrC 500 600 STO IO 5T0 (0 500 500 ITG 500 200 500 00 100 00 500 OID 500 600 00 OFO LF0 X0 SEO SO0 E00 L0 50T wwoyyoneypsay
00 TTO ST0  ¥50 LEO  HEO EElse EEE s sso ERleso  eso sto 150 85¢ 750 ELNNNCENMECTIEELtE0 TEC G50 EED BY0 2O HT0 HZ0 OA150dSpaay
00 0T IO B0 LD STO 550 50 750 [l TS0 150 150 550 G50 IO 50 550 050 S50 550 50 £50 090 50 LSO 950 B0 EZO ETO ETO spasy
600 500 OT0  EED VED  SEO ZE0 (70 OFD L0 OT0 400 TH0 LE0 60 160 9T0 TZ0 570 [00 IF0 00 S0 0ZO0 EOG- EZO EGC LZ0 IIO $TO 5TO onessumIsay
s10 cro szo  [ERENSo s00 e 550 tso [EEllse o soo ERNsso ST BLO. 6LO 8D €50 580 1L0 70 o050 sso Elieso  [EMleso EEH o oo ov0 260 250 TrO ETO &TO 13RI ARHANARYIYIEIOL
[20 90 S50 $50 80 O¥0 €10 600G ¥50 GEQ €50 +EO 610 600 ¥S0 WO L20 00T  [ESONNES0 EXl o 50 9T0 8ED ¥5'0 80 (50 S50 b0 S50 620 [0 620 £20 SEO 9S00 HO0- E0T- YIUO 12421 HANNIOY IIVIEIOL
620 £00 STO {50 vSO  Ir0 600 5Te- 5+0 s£0 Eglere sto sto e ofo EcoT 650 €0 0L 290 £70 00 70 600 tSO 0 €00 TE0 ¥T0 9E0 IO 0TO 0T0 HUWIWO) 12431 YARNPYIYIZIOL
910 cvo oo [EENEs0  £50 500 TTe 6v0 w0 [Egiero 670 TTO ?«S S50 ez oo+ 1o 500 s30 020 (B0 120 LY 560 10 ¥E0 IE0 80 8O 0T0 170 103413 23e0u0u e
TTo ST0 EE0 050 £F0  SEQ (00 FIC- 660 SEQ 950 0O IO £T0 950 SO OTO sr0 €20 80 sco 290 veo TT0 50 250 170 S50 90 S5O 9r0 LE0 STO LZ0 9T0 960 SO0 SO0 800 Yuo I g31eyouRU e
+20 W00 oro 550 w00 10 950 ceo EGllcve Ste ¢ro 850 IS0 0 550 RS b90 150 BT0 850 15C OvO 650 9¥0 650 850 STO £2C ETO 5TO ED TE0 ITO 1T0 W) 3 e jeySoURUS RN
LT0 610 LT0 150 600 s0'0- 950 tso [EEIlev0 516 sco [Ecso Tro B L0 oro 90 cot g, oE0 80 FF sto ovo 5o [EEeso  [EENvsc T60 20 Tv0 6T0 £50 ZIO LT0 BT0O 1eaksagajeyuoisuedxy
€20 5E0 550 Tr0 TI0 500 €50 050 150 IED TG 360 50 550 LEQ w0 250 G806 ccr w0 130 L ero 820 vo 50 WO 090 b¥O os0 610 TED TT0 BEO SOT- $OC 20T YuomIadaIeyuOpsUEdG
20 100 (10 THO OT0 TT'0- TvD 8E0 650 95D ZZO TTO BSO &0 THO &30 080 o5 o 0o T 650 LX) 600 EE0 £50 £50 B0 50 070 £E0 0 LED STO LT0 LD NWWoI3d1eYusISUELT
ro 500 510 150 tro soo- GEleso A T 550 6£0 SO 80 190 650 |01 T8O 610 150 550 190 50 TE® T¥O ZED 650 OEO ZEO ZED AynpYIIvEIoLeI0L.
510 w00 10 50 900 800 550 60 (IR 250 [ 650 570 150 (CUMERRIN -z 0 RN 550 [CXMl6s0 [ERH|650 £ ZE0 SEO 20 S0 ZED ZEO TED aaueuauRNzIoL

w0 oro sto  EEJEE s s soo o

S50 50 820 750 0F0 850 STO 620 L0
910 0z¢ 720 €10 600 10 OTO FID 600 600 800 TT0 00 800 800
sr0 870 SEQ  TF0 98¢ Tr0 SE0 670 TEQ 6C0 8F0 SE0 LEQ 90
050 050 050 150 LED TEC 660 SEQ S50 TED STO L0
50 650 Ty 050 OvD 620 EE0 IED 080 EL0 670 IO

00 ITO ETO 670 650 950 €00 OTC- 10 oro EEsso 0o 850 w0 es0 10 s£0 0s© 150 2o ozo @0 £ro 50 Szo TTO T
oro wo o s 150 %00 00 &0 v0 ovo w00 [Elleso 250 RS0 svo s00 o 050 6v0 L£0 tzo 0vO STO £50 %O §TO 620 SURRIGELYMSULIMVIEIOL
300 TT0 5T0 050 150 LED TOO 60°C- 650 LED [kx £10 600 [EXls50 (00 850 KO 850 PTO 9E0 050 150 720 070 20 5TO0 KO 520 2TO 2TO SuoI13[3a3|qeLjeI0]
500 50 sto IS0 E50 500 e 00 200 [l es0 550 [ S50 50 oro o 50 050 [£0 TZ0 WO STO S$O L2 BTO 620 suopasuR|gelfeIol
S00- SO0 $¥00 6EDQ LEO O0ZO0 LI'C- OE0- SEO 620 0EO0 BED 090 0Z0 I¥0 620 TE0 SEQ L0 SZTO TFO OED EEC EF0 LEO WO TT0 SEQ LEC OFO €50 610 ETO E£20 PUISINY
600 €00 100 T0 520 800 $T0 LEC EEC L£0 TEQ 5O E0O- OE0 120 E20 TE® S20 EC0  £Z0 6T0 020 TEQ ZE® §20 600 620 IEQ 620 02O 2c0 10 8T0 610 eIy
900 600 800 6E0 LEO OT0 SO 620C SEO £20 6T0 GEC £SO EZO O¥0 620 TEOC #EO (IO ETO0 TH0 TEC EEC TH0 SEO K0 600 IED GEC BED €20 250 910 610 610 pu3sajqel

OT0- £0C $00  6T0 STO 600 TZO- SEC TEQ SE0 £E0 950 ECC- ZEQ L0 FTO IE0 970 $TC 600 10 0 ZE0 IE0 OFC 800 620 SEC IEQ €20 se0 sro sro w0 weIgsaiqeL,

sto wo w00 RS0 w0 soo EEREEIore V0 TTOS0C 650 S0 20 250 SE0 SE0 B0 S0 SE0 50 BEO L0 650 450 G50 170 G50 S50 090 0 o),
00 Ge- 90 CEO 10 SCO SO0 WO SE0 L0 GTO  EZO GO STO O IO IO 00 ETO WO SO0 IC0 10 SO0 STO OF0 CEG STO L0 GEO TEO 970 STO sieapuopeIng
[0 ST TS0 0 bEO  SC0 500 D0 LFO Y0 PTO IO GDG 00 PO FLO L0 STO 00 OO OF0 00 IO £10 500 £10 50 TE0 &0 500 L0 SO L0 T sro sro o spuouopeing

950 S0 6T0 TEO 6C0 TTO 6T0 FEO 610 €U0 LT0 E50 skequiuogeing

300 ISC- 650 L0 EE0  LTO 500 300 S50 EE0 STO  SI0 SO0 0C- 570 ECO STO EL0  EO0 0T0 120 %00 IT0  ET0 00 E10  IE0 TED 670 300

zr ez “FEEF £R3£3§¢ £ FF FRITIFF T §f 23 sL£33gg§E gz 2 F§FI FTH R iTcESeigodrgE 53 gd3sx ¥ § & BN
FEfEf "E5f £E3E9% if f§3§3%1 1 @ *TEEE i g S§If 57 i 2§ 5 5 sité: # & B 3 = F5 5

TR 11 31713 z 2532587 8F B 5 E 13r 3 g Ap3E-E

Fi33:a 53 3"FT§ 8 gy 8378788 & § &b EE 3EF: of: T3 iEs s § 0 B EEE : EZ L E2E & - S S £
[ S 2 8 24 $E £ § &3 4 Fi $F FPE3EF o:E i gz 3; %48 § § ¥ I fE i E g Ed g & 2 g g ¢
i Esd EE R SoF E: £4 £05 &2 i 03 iF GiEiE ofE o2 §82 2% ¢ P 5= § 3is o F3 0 L% L s s 3
LN T N By & § fE ° k@ g2 §¢ B ¢8 §E P § § ¢ P B F 3 § 1% ERN | L 1

3.3.2 Correlations
After following the aforementioned steps for every pair of our attributes, all the

correlations are presented in Figure 3.1.

Figure 3.1 Kendall’s Tau correlations of data
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In Figure 3.1, the symmetric table of correlations for every pair of attributes is pre-
sented. Pairs of attributes with correlation values greater equal than 0.6 represent
correlated attributes, while other pairs with correlation values less or equal than

-0.6 represent anticorrelated attributes.
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Figure 3.2 Network graph with high correlations between attributes as edges

Figure 3.2 shows all the attributes with their correlations as a graph representation.
More specifically, it presents a network, with the attributes as nodes, and the high
positive correlations (greater than 0.6) as edges, where the closer the nodes are to

each other, the higher the correlation between them is.

3.3.3 Most Important Attributes

Since the number of attributes was very big to process, a procedure was followed to
determine the most important attributes. Taking Figures 3.1, 3.2 into consideration,

the steps of that procedure are as follows:
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First of all, the attribute (TotalTotal AttrActivity) was determined from the start to be

one of the most important attributes, because of its high significance. The attribute

(ResizingRatio), since it was not highly correlated with any other attribute, was

marked as significant.

Squares of green values declare a big correlation between the respective pairs of

attributes. So, for each such green square, a single attribute was determined to be

one of the most important.

Green Square (DurationInDays, DurationInMonths, DurationInYears)
These attributes were highly correlated. DurationInMonths was determined

to be one of the most important attributes.

The following green squares are associated with specific “activity functions”,
so since TotalTotal AttrActivity was the most general “activity measure”, only
this was added to the most significant attributes.

o Green Square (TablesStart, TablesEnd, AttrsStart, AttrsEnd).

o Green Square (TotalTableInsertions,  TotalTableDeletions,  Total At-
trInsWithTableIns, Total AttrbDel WithTableDel).

o Green Square (TotalExpansion, TotalMaintenance, TotalTotal AttrActivity,
ExpansionRatePerCommit,  ExpansionRatePerMonth, ExpansionRate-
PerYear, MantainanceRatePerCommit, MantainanceRatePerMonth, Man-
tainanceRatePerYear, TotalActivityRatePerCommit, TotalActivityRatePer-
Month, Total ActivityRatePerYear).

These attributes (Total AttrInjected, Total AttrEjected, Total AttrWithTypeUpd, To-
talAttrInPKUpd) did not form a green square but were associated with specific

“activity functions” so we decided to keep none of them.

As far as these attributes (Reeds, ReedsPostV0, ReedRatioAComm, ReedRati-
oTComm, ActivityDueToReeds, ActivityDueToReedsPostVO) are concerned, they
are associated with the same metric. The attributes Reeds, ReedsPostV0, and
ActivityDueToReedsPostV0O seemed to be highly correlated with most of the

attributes, while ReedRatioAComm, ReedRatioTComm had close to zero
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correlation with the main attribute TotalTotalAttrActivity, so in the end, only
the ActivityDueToReeds attribute was marked as significant.

o These attributes (Turfs, TurfsPostV0, TurfRatioAComm, TurfRatioTComm, Ac-
tivityDueToTurf, ActivityDueToTurfPostV0), refer to the same metric. Since Ac-
tivityDueToReeds was chosen in the previous step, the attributes Activi-
tyDueToTurf, ActivityDueToTurfPostV0O were instantly discarded, and then,
based on the correlation matrix, the attributes Turfs and TurfRatioTComm were
marked as significant.

e Finally, concerning these attributes (ActiveCommits, ActiveCommitRatePer-
Month, CommitRatePerMonth, ActiveCommitRatio), the attribute ActiveCommits
was highly correlated with most of the attributes, so it was instantly discarded.
The ActiveCommitRatePerMonth and CommitRatePerMonth attributes seemed to
be highly correlated, so we decided to keep only CommitRatePerMonth. The

attribute ActiveCommitRatio was also marked as significant.

After discarding the less important attributes according to the correlation matrix in
Figure 3.1, the attributes that finally were marked as important are presented in

Figure 3.3.

s 2 e 5 S 2 £
= S = g s g€ B
o ° 3 e Zw = 25 0
=R = 2 = 2o P £ 0 9
ES =% B 28 € £¢ €2 2%
35 f°F 2 8% 2 fe 8& E¢%
DurationlnMonths 0.24 0.34 0.05 -0.55 -0.07
TotalTotalAttrActivity 0.58 0.11
Resizingratio 0.14 0.32
ActivityDueToReeds 0.24 0.17
Turfs 0.34

TurfRatioTComm 0.05
CommitRatePerMonth -0.55
ActiveCommitRatio -0.07

Figure 3.3 Most Important attributes
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3.4 Data Profiling

In this section, we profile all the attributes of Figure 3.3 that were marked as signif-
icant. More specifically, for every attribute, the minimum value, the maximum value,
the average, the standard deviation, are computed and a histogram plot is provided.
Before performing data profiling, having observed the values of the dataset, two

e AN 1Y

projects (“opencart”, “cgrates”) of the dataset seemed to have extremely outlier val-
ues. Due to that, we have decided not to take these outliers into account to prevent
them from affecting the results of the assessment of the existing taxa.

Therefore, in all our subsequent results we work with only 193 of the 195 projects.
Figure 3.4 consists of a table with the data profiling metrics of the most important

attributes. Figures 3.5 — 3.12 present the histograms of these attributes.

m Min | Max | Average | Median | StdDevP | Count | NullCount D(;Ztl:::t
DurationInMonths 1 100 15.61 8.00 19.13 193 0 53
TotalTotalAttrActivity 0 1267 57.34 10.00 137.61 193 0 78
Resizingratio 0.085 | 6.5 1.34 1.00 0.92 193 0 52
ActivityDueToReeds 0 1665 104.30 27.00 218.42 193 0 92
Turfs 0 57 5.05 2.00 8.88 193 0 26
TurfRatioTComm 0 1 0.47 0.50 0.30 193 0 48
CommitRatePerMonth | 0.03 12 1.74 1.00 1.98 193 0 78
ActiveCommitRatio 0.09 1 0.68 0.71 0.25 193 0 47

Figure 3.4 Data Profiling Metrics for 193 projects

40



DurationlnMonths Histogram

140
120
100
>
S 80
ﬂJ
3
g
b 60
40
20
o
(-0.15, 0.46] (1.07, 1.68] (2.29, 2.90] (3.51, 4.12]
[-0.76,-0.15] (0.46, 1.07] (1.68, 2.29] (2.90, 3.51] (4.12,4.73]
DurationinMonths
Figure 3.5 Histogram of DurationInMonths
TotalTotal AttrActivity Histogram
180
160
140
> 120
$ 100
3
g 80
“ 60
40
20
0 B
D 9 9N m Y Y RN w9 9N = T
— o0 =t o o ~ o0 =t o [¥+] o~ a wn — ~ o
S © 4 &N N ™M ®m < w»nm o on 8 6 ~ o 6 o
N o g o o oM o 119 o~ o o o 9 «HG 9o o
4+ 4 ® ¥ © W N ®W % O W N @ ;n oA I~
2 2 € &4 o o oo £ o yuoy 8 8 s 8 B
TotalTotalAttrActivity
Figure 3.6 Histogram of TotalActivity
Resizingratio Histogram
160
140
120
& 100
5
3 80
o
W
L 60
40
20
0
O S R~ S 5 S~ > ~ 5 S . ~
Lo A N - - A T R 4
O Y O N N N Ay v Wy g
S N AR S N A S A 4
RS S A A SN

Resizingratio
Figure 3.7 Histogram of ResizingRatio
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Figure 3.10 Histogram of TurfRatioTComm
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CommitRatePerMonth Histogram
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Figure 3.11 Histogram of CommitRatePerMonth
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Figure 3.12 Histogram of ActiveCommitRatio

3.5 Behavior and patterns per taxon

In this section, we discuss the behavior and the patterns, that were observed for the
studied measurements, and we support any conclusions with extra visual represen-
tations.

Regarding the schema update period, as shown in Figure 3.13, every taxon seems to
have projects with both short and big periods of updates. However, moving from the
frozen to the active class, the schema update period becomes bigger and bigger, the percent-

ages of short periods are decreasing, and the percentages of longer periods are increasing.
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The explanations of the labels, presented in Figure 3.13, are as follows:

e 0_UpTol0Days: Projects with schema update period in the range [0 — 10]
days.

e 1_11To180D: Projects with schema update period in the range [11 — 180] days.

e 2 06To12M: Projects with schema update period in the range [181 — 365]
days.

e 3_13To36M: Projects with schema update period in the range [366 — 1095]
days.

e 4 LONG: Projects with schema update period greater than 1095 days (3

years).

0_UpTo10Days 1_11To130D 2_06Tol12M 3_13To36M 4_LONG
0_FROZEM

0_UpTo10Days 1_11To130D 2_06To12M 3_13To36M 410
1_ALMOST_FROZEN I
0_UpTo10Days 1_11To130D 2_06Tol2M 3_13To36M 4_LONG
1_FocusedShot_n_FROZEM
0_.. 1_11To180D 2_08To12M 3_13To36M 4_LONG
2_MODERATE
0_Up... 1_11To180D 2_06To12M 3_13To36M 4_LONG
3_FocusedShot_n_LOW
1_11To180D 2_06Tol2M  3_13Ta36M 4_LONG

4_ACTIVE

0 10 20 30 40 50 60 70 80 90 100
X2 50.65 (p=0.000, dof=20)

Figure 3.13 Schema Line Update Period Plot

Considering Figure 3.14, which represents the schema line volume of change per
taxon, it seems like the behavior of each taxon is discrete.

The labels that are presented in Figure 3.14, were produced based on BD where:
BD = tablelnsertions + tableDeletions

More specifically the meanings of the labels in Figure 3.14 are as follows:
e O0_NONE: BD =0
e 1 SMALL: BD in the range [1 — 2]
e 2 _MODERATE: BD in the range [3 - 10]

e 3_HIGH: BD > 11
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As in Figure 3.13, so in Figure 3.14, moving from the frozen to the active class, it
seems that the more active a project is, the bigger the percentage of the high volume of

changes and the smaller the percentage of the low volume of changes is.

0_NONE
0_FROZEN

0_NONE 1_SMALL

1_ALMOST_FROZEN |
0_NONE 1_SMALL 2_MODERATE 3_HIGH
1_FocusedShot_n_FROZEN
0_NONE 1 SMALL 2_MODERATE
2_MODERATE
O_NO... 1_SMALL 2_MODERATE 3_HIGH
3_Focusedshot_n_LOW ]

0N 2M. 3_HIGH
4_ACTIVE

0 10 20 30 40 50 60 70 80 ag 100
%2 245,02 (p=0.000, dof=15)

Figure 3.14 Schema Line Volume of Change Plot

Concerning active commits, we report their breakdown in the different taxa in Fig-
ure 3.15. As mentioned before, a commit is active if its total activity is greater than

0. So, the total number of those commits is the active commits.

Table 3.4 presents the percentages of the active commit classes per taxa where:

e (O_NONE : Active commits = 0

e 1 TOO_FEW : Active commits in the range [1 - 3]

e 2 FEW : Active commits in the range [4 - 10]
e 3_MODERATE : Active commits in the range [11 - 15]
e 4 SEVERAL . Active commits > 15
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Table 3.4 Taxa and Active Commits classes

1_TOO 3_MODER-
Taxon 0_NONE 2_FEW 4 SEVERAL
_FEW ATE
0_FROZEN 100%
1_ALMOST_FROZEN 66% | 34%
1_FocusedShot_n_Fro-
44% | 56%
7zen
2. MODERATE 76% 24%
3_FocusedShot n_LOW 100%
4 ACTIVE 14% 86%

After observing the values of Table 3.4, we conclude that the active commits separate
well the taxa, except for the medium activity classes that are not only separated by the active
commits, but also by the amount and concentration of change.

Taking Figure 3.15 and Table 3.5 into consideration, the taxa are clearly different
concerning the active commits, where the range of the active commits, increases,

while moving from the frozen to the active class.

46



0_FROZEM: 1 £0.0 0_FROZEM: 1 £0.0
I |
| |
1 1
1_ALMOST_FROZEM: 2.43 £0.6 1_ALMOST_FROZEM: 2.43 £ 0.6
[} I
I9 Ih
23 13
1_FocusedShot_n_FROZEM: 2,80 £0.7 1_FocusedShot_n_FROZEN: 2,80 £0.7
| |
d l
23 23
3_FocusedShot_n_LOW: 7.30 £ 1.7 3_FocusedShot_n_LOW: 7.30 £ 1.7
| |
. 3
— — =
6 7.50 8 6 7.50 8
2_MODERATE: 9.55 £5.0 2_MODERATE: 9.55 £ 5.0
| |
] s
68 10 68 10

4_ACTIVE: 44.86 £ 53.1
|

| | |
17 28 49

0 50 100

Figure 3.15 BoxPlot of Active Commits

Table 3.5 Active Commits stats per taxon

Taxon Min | Q1 | Median | Mean | Q3 | Max | IQR | STDEV
Frozen 1 1 1 1 1 1 0 0
ALMOST_FROZEN 2 2 2 2.43 3 4 1 0.64
FocusedShot_n_FROZEN | 2 2 3 2.8 3 4 1 0.76
MODERATE 5 6 8 9.55 | 10 | 23 4 5.11
FocusedShot n LOW 5 5] 7.5 7.3 8 11 2 1.72
ACTIVE 8 | 16 22 29.25 | 425 | 64 | 26.5| 18.20

Concerning the turfs and the total activity, we present their breakdown in the dif-
ferent taxa in Figures 3.16 and 3.17 and the measurements per taxon in Tables 3.5
and 3.6 respectively. As already mentioned, a commit is called turf when it is active

and its total activity is less than 15.

47



0_FROZEM: 0.47 £0.5
|

t

I
01

1 FocusedShaot_n_FROZEM: 1.28 £ 1.2
|

'
A1y
012

1 ALMOST_FROZEN: 1.89 £0.9

=
rl
12

3_FocusedShot_n_LOW: 4.80 £ 1.7
|
8

115
356

2_MODERATE: 8,52 £ 4.8
|
._'_

BN
579

4_ACTIVE: 36,55 £47.1

3_FocusedShot_n_LOW: 4.80 £ 1.7
|

0_FROZEN: 0.47 £0.5

2
114
356

2_MODERATE: 8.52 £ 4.8
|

—_

111
579

|
0

18.50

20

Figure 3.16 BoxPlot of Turfs
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Table 3.6 Turfs stats per taxon

100 120

Taxon

Mi

Q1

Media

n

Mea

n

Q3

Ma | IQR | STDE

Frozen

0

0.47

1 1 0.51

ALMOST_FROZEN

2

1.89

4 1 0.89

FocusedShot n FROZE
N

1.28

1.21

MODERATE

8.52

22 4 4.90

FocusedShot n LOW

4.8

8 3 1.70

ACTIVE

18

23

32.

22.7 | 17.62
57 5
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Figure 3.17 BoxPlot of Total Activity

Table 3.7 Total Activity stats per taxon

Taxon

Mi

n

Q1

Media

n

Mean

Ma

Q3 IQR

X

STDE

Frozen

0

ALMOST_FROZEN 1

3.62

10

2.78

FocusedShot n_ FROZ | 11

EN

17

23

45.64

31 383 | 14

76.62

MODERATE 1

16

23

30

37 88 |21

19.19

FocusedShot n LOW 27

50.

71

105.1

131 | 315 | 80.5

84.91

ACTIVE
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249

335.9

361. | 126 | 184.

275.68
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In Figures 3.16 and 3.17, turfs and total activity are depicted, respectively. Observe
that both turfs and total activity are increasing while moving from the frozen towards

the active class. So, the families of schemata in these two plots can be easily recog-

nized.
1_FocusedShot_n_FROZEN: 29i48 +29.0
| | : |
3_FocusedShot_n_LOWV: 35,25 £ 22,9
| : |
| | : |
-EI 20 40 60 80 100 IZEI_
Figure 3.18 BoxPlot of Project Update Period (months)
Table 3.8 Project Update Period stats per taxon
Taxon MIN MAX AVERAGE MEDIAN STDEV
. 0_FROZEN 1 80 35.26 30.5 21.69
Project —
Update 1 ALMOST_FROZEN 0 155 38.68 31 34.06
Period ™ UsedShot_n_FROZEN 1 116 29.48 22 29.61
(Months)
2_MODERATE 1 126 43.03 40 31.39
3 _FocusedShot_n_LOW 0 94 35.25 37.5 23.54
4 ACTIVE 6 198 61.3 48.5 44.46
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Figure 3.19 BoxPlot of Schema Update Period (months)

Table 3.9 Schema Update Period stats per taxon

Taxon MIN MAX | AVERAGE | MEDIAN | STDEV
0_FROZEN 1 69 8.24 1 15.07

Schema -
Update 1_ALMOST_FROZEN 1 99 11.98 6 16.34
Period ™" UsedShot_n_FROZEN 1 46 9.28 2 12.36

(Months)

2_MODERATE 1 100 23.62 20 23.73
3_FocusedShot_n_LOW 1 57 21.05 17.5 19.7
4_ACTIVE 3 84 30.75 26 21.15

In Figures 3.18 and 3.19, the plots of the project update period and the schema
update period are presented, respectively. Observe Figure 3.18 and Table 3.8: The
update periods of the projects of all families, except for the active class, seem to be
big and very similar. More specifically, considering also the values presented in Table
3.9 as well as Figure 3.19, observe that none of the families of the projects is inactive
and that they simply just have different schema evolution profiles.

To get a deeper insight of the Schema Update Period (SUP), Figure 3.20 presents
the breakdown per SUP class and taxon. Active taxa are biased towards longer

Schema Update Periods, Moderate and FS-Low are mostly biased towards medium
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SUP ranges, whereas "frozen land" is mostly oriented to small SUP periods (with the

prominent exception of some Almost Frozen projects, that have almost frozen SUPs
between 1 and 3 years.

Breakdown per SUP

Class and Taxon

#projects

20

15
10

0-To-10Days

11-To-1800

6-To-12M

/1:

i /L/‘,
€
{ Alny ot
@1 ALMOST FROZEN 0 05y e ~“FRO,,,
@1 ALMOST_FROZEN £ P &N
~R0zgy, 2EN Taxon
@1 FocusedShot n FROZEN

2 MODERATE

Vs
13-To-36M

mO_FROZEN MoreThan36M

@ 3_FocusedShot_n_LOW

] ~‘0»»\k TIVE

Figure 3.20 3D Column-Plot of Schema Update Period: The left axis demonstrates
the Schema Update Period, organized in labeled intervals, the right axis demon-
strates the taxon and the height of each bar demonstrates the frequency, i.e. the

number of projects of a specific taxon with a specific SUP interval.

In Figure 3.21 a short overview of the patterns of the evolution of the schema line

i.e., the number of tables over time, per taxon is presented.

We classify the patterns of schema line evolution as follows:

e O FLAT . Zero schema evolution

e Single Rise : A single step of evolution, upwards

e Multi-Step Rise : Several upward steps, like a staircase
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e Drop : Drop of the number of tables over time.

e Turbulent & DoUndo : Mix of Up’s and Down’s and DoUndo commits

According to Figure 3.21, observe that as the activity increases, more steps of evolu-
tion are observed and the pattern of zero evolution decreases. However, 52% of the
total of all projects, belongs to the pattern of zero evolution. In Figure 3.22 we present a
line plot with the patterns per taxon. As in Figure 3.21 so in Figure 3.22, observe

how the evolution is increasing while moving from the frozen to the active class.

More specifically:

e In the 0_FROZEN class all projects have zero schema evolution, as expected.

e For the 1_ ALMOST_FROZEN class, 75% of O_FLAT means that most of the
projects in this class, during their evolution, did not have new tables.

e In the 1_FocusedShot_ n_FROZEN class, 52% of Single Rise means that nearly
half of the projects of this class had one commit with new tables.

e In the 2 MODERATE and 3_FocusedShot_n_LOW classes, nearly 25% of the
projects seem to have several upward steps of evolution.

e Finally, in the 4_ACTIVE class, 50% of the projects seem to have several
upward steps of evolution, on the contrary to only 9% of projects with zero

schema evolution.

Multi Turbulent
Single Step & Grai
0_FLAT Rise Rise Drop DoUndo Total Taxon
100% 100% O0_FROZEN
75% ‘\\ 18% 5% 2% 100% 1_ALMOST FROZEN
\52\% 4% 8% 100% 1_FocusedShot_n_FROZEN
10% P, 7% 17% 1007 2_MODERATE
\\1 100% 3 FocusedShot_n_LOW
9% 9% 50% 14% 18% 100% 4 ACTIVE
52% 12% 5% 9% 100% Grand Total

Figure 3.21 Patterns of schema evolution per taxon
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Figure 3.22 Patterns Line Plot

Finally, in Figure 3.23, a decision tree, for the taxa on the basis of attributes To-
talActivity, ActiveCommits, Reeds, ActiveCommitRatio, is presented.
The steps for the generation of the decision tree presented in Figure 3.23 are as
follows:
e We have calculated the Z-scores from the actual values of the attributes by
following the procedure explained in Method A.
e Then, we used the produced Z-scores to the Orange tool, which produced the

decision tree of Figure 3.23.

To get a deeper insight into the decision tree, a translation of the Z-scores of the
attributes is reported in Table 3.10. In the decision tree, a taxon is marked as well-
configured, if all parts of the taxon are on the same leaf of the decision tree, which
means that the attributes separate the taxa well and the taxa are distinct. For in-
stance, the 0_FROZEN, 1_ALMOST _FROZEN, and 1_FocusedShot n_ FROZEN clas-
ses seem to be well-configured. On the other hand, the 2. MODERATE and 3_Fo-
cusedShot_n_LOW classes seem like they have been misclassified and their merge
into a bigger class can be examined. Moreover, it is also noticed that, in this config-
uration of classes, some projects belong in 3_FocusedShot_ n_LOW and their total

activity is so big that they fit with the 4 ACTIVE class.
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Figure 3.23 Decision Tree of the taxa as reported by the Orange tool

Table 3.10 Translations of Z-scores to the actual values

Attribute Z-score Actual Value
ActiveCommits -0.25 4
-0.42 0
TotalTotal Attr Activity -0.34 10
0.22 88
Reeds -0.25 1
ActiveCommitRatePerMonth -0.57 0.36

3.6 Centroids and characteristics per taxon

In this section, we discuss if we could define a project of each taxon as a centroid-
project, that would represent the characteristics and the behavior of the respective
taxon. The taxa presented in [12], were extracted mostly based on the activity and
the heartbeat of the projects. For this reason, to define the centroid project per taxon,
we decided to take into account only activity and heartbeat measures (totalActivity,

Reeds, Turfs, ActiveCommits).

Before we proceed to the calculation of the centroid-project, firstly we calculate the
Z-scores for all the measurements of the dataset, which allow us to compare scores
that are from different samples (in our case different taxa that may have different

means and standard deviations).
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The steps of the procedure, for the calculation of the centroid-project within each

taxon are as follows:

e For each taxon, we calculate the average value for all the measurements of
interest.

e For each project we calculate the distances between every such measurement
and its average.

e We sum up all the distances, that we calculated on the previous step, per
project.

e Finally, we find the smallest of the sums of the previous step. The smallest

sum represents the sum of the distances of the project, whose measures are

closer to the average measures of the respective taxon.

After following the aforementioned procedure, we ended up with the following re-
sults, as presented in Table 3.11, where for each taxon the actual values as well as

the Z-scores, in parenthesis, are reported.

Table 3.11 Centroid-Project per taxon

Taxon Centroid- Total Reeds | Turfs Active
Project Activ- Com-
ity mits
Frozen dammnpoet __yiicart 0 1 0 1
(-0.42) | (-0.25) | (-0.57) | (-0.55)
ALMOST_FROZEN Ru-
byMoney__money 3 ! 2 3
o (-0.39) | (-0.25) | (-0.34) | -0-35)
FocusedShot_n_FROZE | accgit__acl 31 2 1 3
N (-0.19) | (0.22) | (-0.46) | (-0.35)
MODERATE mapbox__osm- 34 1 9 10
comments-parser | (-0.17) | (-0.25) | (0.44) | (0.33)
FocusedShot_ n_ LOW anchorcms__an- 125 2 6 8
chor-cms (0.49) | (0.22) | (011 | (0.14)
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ACTIVE pods-frame- 352 9 21 30

work__pods (2.14) | (3.54) | (1.80) | (2.29)

The characteristics of each taxon compared to the values of the centroid-project are

reported below:

Frozen Taxon Characteristics (Centroid-Project: damnpoet__yiicart)

Zero total activity

- total Activity (damnpoet__yiicart) = O

o Just one active commit (Either a reed or a turf)

- activeCommits(damnpoet__yiicart) = 1

Almost Frozen Taxon Characteristics (Centroid-Project: RubyMoney__money-rails)

At most 3 active commits (Mix of turfs and reeds)
- activeCommits(RubyMoney__money-rails) = 3
Small total activity (less than 10 updated attributes)

- total Activity(RubyMoney__money-rails) = 3

FocusedShot_n_FROZEN Taxon Characteristics (Centroid-Project: accgit__acl)

At most 3 active commits (Mix of turfs and reeds)

- activeCommits(accgit__acl) = 3

Medium to high total activity (More than 10 updated attributes and less than
383 updated attributes)

- total Activity(accgit__acl) = 31

Moderate Taxon Characteristics (Centroid-Project: mapbox__osm-comments-parser)

More than 4 active commits (Mix of turfs and reeds)
- activeCommits(mapbox__osm-comments-parser) = 10
Medium total activity (More than 10 and less than 88 updated attributes)

- total Activity(mapbox__osm-comments-parser) = 34
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FocusedShot_n LLOW Taxon Characteristics

(Centroid-Project: anchorcms__anchor-cms)

More than 4 active commits (Mix of turfs and reeds)
- activeCommits(anchorcms__anchor-cms) = 8
High total activity (more than 27 and less than 315 updated attributes)

- total Activity(anchorcms__anchor-cms) = 125

Active Taxon Characteristics (Centroid-Project: pods-framework__pods)

Very high total activity (more than 111 and less than 1268 updated attributes)
- total Activity(pods-framework__pods) = 352
More than 7 active commits (Mix of turfs and reeds)

- activeCommits(pods-framework__pods) = 30

Considering the values of the centroid-projects and especially the total activity and the active

commits, the taxa are distinguished from each other. However, observe that the active

commits of the centroid-projects reveal the possibility of deriving larger groups, which will

be discussed further in later sections.

3.7 Assessment of existing taxa and validity metrics

In this section, we assess the taxa presented in [12] in terms of their validity, with

the calculation of some validity metrics from the area of clustering. Afterwards, we

present some plots to observe visually and discuss the quality of the clusters.

3.7.1 Cohesion and Separation metrics

The validity metrics, that were used, are as follows:

Cohesion: This metric [9] measures how closely related are the objects within
the same cluster. Intuitively, cohesion means that members of a group are
similar. A lower within-cluster variation is an indicator of good compactness,

which means that the lower the cohesion is, the better the clustering is.
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Cohesion (SSE) can be computed by the following formula:

SSE =z Z(x — m;)?

i X€C;
where:
XE ( : Every element in C; cluster.
m; : Centroid of i cluster.

More specifically, (x — m;)? is the distance of each element of a cluster from
the centroid of the cluster. The lower the distance is, the lower the variation
in the cluster is, which means that the more similar the elements of the cluster
to one another are. The sum of the distances of all the elements of cluster i is
the cohesion of cluster i and the sum of the cohesions of all the clusters is the

total cohesion.

e Separation: This metric [9] measures how distinct or well-separated a cluster
is from other clusters. The bigger the separation is the better the clustering is,

because it means that the clusters have fewer common characteristics.

Separation (BSS) can be computed by the following formula:

BSS = Y IG| (m—m;)?

l

where:

C; : Number of elements of i cluster.
m : Mean value of the whole dataset.
m; : Mean value of i cluster.

More precisely, (m —m;)? is the distance of the mean of a cluster i from the mean

value of the whole dataset. The number of elements of i cluster (C;) is used as a
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weight in the aforementioned formula so that the larger the cluster is, the more
significant its impact on the separation is. The multiplication of (C;) with the
(m —m;)? distance is called the separation of cluster i, and the sum of the separations
of all the clusters is the total separation. The bigger the separations of the clusters

are, the more distinct the clusters are.

The abovementioned validity metrics were computed for many combinations of at-

tributes, where the most worth mentioning groups of attributes are the following;:

e Group A: TotalTotalAttrActivity, ResizingRatio, DurationInMonths.
e Group B: TotalTotalAttrActivity, Turfs, ActivityDueToReeds.
e Group C: TotalTotalAttrActivity, Turfs.

e Group D: TotalTotalAttrActivity, Turfs, ActiveCommits.

For the computation of the cohesion and separation metrics presented in Figure
3.24, the Z-scores of the attributes were used instead of the actual values. For each
group, the cohesion and separation metrics per taxon are presented, as well as their
total values. This procedure aims to find out, which attributes seem to determine the taxa

the best way, in terms of their in-cluster variation and their separation.
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| Group | Class Size SSE BSS
0 _FROZEN 34 20.49 15.51
1_ALMOST_FROZEN 65 51.25 17.97
1_FocusedShot_n_FROZEN | 25 47.43 3.91

A 2_MODERATE 29 105.47 12.91
3_FocusedShot_n_LOW 20 62.42 5.52

4 ACTIVE 20 138.89 97.22

Total (All Classes) 193 425.95 153.05

0_FROZEN 34 73.80 14.93
1_ALMOST_FROZEN 65 6.73 25.37
1_FocusedShot_n_FROZEN | 25 18.81 5.03
B 2_MODERATE 29 11.50 7.22
3_FocusedShot_n_LOW 20 12.30 2.98

4 ACTIVE 20 197.82 202.50

Total (All Classes) 193 320.96 258.04

0_FROZEN 34 0.11 14.92
1_ALMOST_FROZEN 65 0.66 18.10
1_FocusedShot_n_FROZEN 25 7.89 4.67
I 2 _MODERATE 29 9.05 5.57
3_FocusedShot_n_LOW 20 7.93 2.43

4 ACTIVE 20 151.03 163.63

Total (All Classes) 193 176.67 209.33

0_FROZEN 34 0.11 25.04
1_ALMOST_FROZEN 65 0.91 28.79
1_FocusedShot_n_FROZEN 25 8.02 8.09
D 2_MODERATE 29 16.03 8.02
3_FocusedShot_n_LOW 20 8.47 2.53

4 ACTIVE 20 211.18 261.82

Total (All Classes) 193 244.72 334.28

After observing Figure 3.24, which presents the cohesion and separation metrics for

the groups of attributes, the conclusions about the taxa presented in [12] are as

follows:

e The values of cohesion and separation in Groups A and B show that neither
the resizing of the projects caused by the commits, nor the duration of the
commits, nor the activity due to big commits, seem to have been taken into
consideration for the extraction of the taxa. The values of cohesion and sepa-

ration of Groups A and B are worse than Groups C and D, which makes sense

Figure 3.24 Cohesion and Separation Metrics
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since the classification of the taxa was made according to the total activity and
the active commits of the projects.

The SSE in the “4_ACTIVE” class seems to remain high in all groups. This
variation can be explained because this class consists either of projects that
have a big amount of small active commits or of projects that have fewer
active commits but bigger ones.

Regarding the size of the 1_ALMOST_FROZEN class, the value of separation
in all groups is big compared to the other classes, which is logical, due to the
fact that separation, as already mentioned, is proportional to the size of the
cluster.

In all groups, the values of the metric separation are not that high, but this
seems not to be a problem, since the taxa, as shown in Figure 3.25, seem to

be distinct.

. ® 0_FROZEN
X 1_ALMOST_FROZEN
¥ 1_Focussdshot_n_FROZEN
- + 2_MCOERATE
® 4_ACTIVE
* Other

0_FROZEN

© 1_ALMOST_FROZEN
1_FocusedShot_n_FROZEN
2_ MOCERATE
3_FocusedShot_n_LOW

© 4 ACTIVE

ol [T

[l 1 H E] O 5 B 7 8 B
TotalTotalatirActvity

Figure 3.25 ScatterPlot: TotalTotalActivity - ActiveCommits
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3.7.2 Silhouette Coefficient

To get a deeper insight into the quality of the clustering of projects to taxa, the

“Orange” tool, which is an open-source data visualization and analysis tool, was used

to plot the silhouette scores of each project of each class.

o Silhouette coefficient: The silhouette value [1] is a measure of how similar an
object is to its cluster (cohesion) compared to other clusters (separation). The
silhouette ranges from —1 to +1, where a high value indicates that the object
is well matched to its cluster and poorly matched to neighboring clusters. If
most objects have a high value, then the clustering configuration is appropri-

ate. If many points have a low or negative value, then the clustering configu-

ration may have too many or too few clusters.

Silhouette score can be computed by the following formula:

Silhouette Score =

where:

a
b

The averages of the silhouette scores per taxon of the aforementioned groups are
presented in Table 3.12. Also, the visualization of all the silhouette scores for the

aforementioned groups is presented in Table 3.13.

The average distance between each point within a cluster.

b—a

max (a, b)

The average distance between all clusters.

Table 3.12 Averages of Silhouette scores per taxon

03
02
01

01
0.2

04

(Group A) Averages of Silhouette Scores per taxon

= 0_FROZEN B 1_ALMOST_FROZEN
1_FocusedShot_n_FROZEN m 2_MODERATE

3 FocusedShot_n_LOW  m4_ACTIVE

(Group B) Averages of Silhouette Scores per taxon

.
m0_FROZEN H1_ALMOST_FROZEN

1_Focusedshot_n_FROZEN m 2_MODERATE

W3 FocusedShot_n_LOW W 4_ACTIVE

(Group C) Averages of Silhouette Scores per taxon

= 0_FROZEN = 1_ALMOST_FROZEN

hot_n_FROZEN = 2_MODERATE

(Group D) Averages of Silhouette Scores per taxon

= 0_FROZEN = 1_ALMOST_FROZEN

ot_n_FROZEN m 2_MODERATE

W3 FocusedShot_n_LOW W 4_ACTIVE
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As shown in Figure 3.25 the clusters are distinct, but their distance is not that big,
which is the reason why the silhouette values in the silhouette plots, presented in
Tables 3.12 and 3.13, are not that good, because the silhouette coefficient is based
on the average distance between all clusters (b). However, things are getting better
in groups B, C, and D, which makes sense, considering the fact that the taxa pre-
sented in [12] were extracted based on the active commits, the total activity, and the
reeds of the projects as shown in the decision tree in Figure 3.26. Having said all
this, the question, that naturally follows is, whether we could find a better solution
to clustering these projects.

As a summary of the plots, the metrics, the patterns and the decision tree that we
explored in this chapter, we noticed that the taxa 0_FROZEN, 1_ALMOST_FROZEN,
and 1 _FocusedShot n_ FROZEN have similar behavior in terms of their schema
growth with zero to minimum schema evolution. Moreover, the taxa 2. MODERATE
and 3_FocusedShot n_ LOW also are similar to each other with medium schema
evolution. Finally, the taxon 4_ACTIVE is different from all the other taxa and in-
cludes projects with very active commits and many schema changes. These similar-
ities in schema evolution between some taxa, that we observed, are the reason why
we came up with the idea that merging these similar taxa into larger groups (super

taxa) would probably make sense and give us some good results.

Project has
less than 4

Total Activity is...

Total Activity is...

zero attr' <=1( attr's more than 90 attr's

Almost ocused Shot Focused Shot
CFmen> (FYOZBH> and Frozan> (Moderate ) ( Active )

Figure 3.26 Decision Tree presented in [12]
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CHAPTER 4

EXAMINATION OF THE RELATIONSHIP BETWEEN

SUPER TAXA AND SCHEMA MEASUREMENTS

4.1  The possibility of deriving super taxa

4.2 Super taxa and Heartbeat

4.3  Super taxa and Activity

4.4 Super taxa and Table-Level Activity Measurements
4.5  Super taxa and Durations

4.6  Centroids and characteristics per super taxon

4.7  Summary of findings

In this chapter, in order to address the research opportunity detected in Chapter 3,
we introduce the notion of super taxa, which are generalizations of the taxa presented
in [12] and were generated by the merge of similar taxa into larger groups. After-
wards, we discuss how these super taxa are related to the heartbeat, the activity, the
table-level activity measurements, as well as the durations. At the end of this chapter,

we summarize our findings.
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4.1 The possibility of deriving super taxa

As already mentioned in the previous chapter, the data and the plots provide a hint
that it is possible that there is room for abstracting into super taxa by merging similar
taxa into larger groups. The idea behind the generation of super taxa remains the
same as in the original taxa in [12], meaning that they are also based on the evolu-
tionary activity of the projects. In this chapter, we merge taxa with similar behavior
into bigger ones, as shown in Table 4.1, to make them more distinct and see what
the outcome is. With that being said, the super taxa that were produced, along with

the rationale of their derivation, are as follows:

Table 4.1 Table of Super Taxa with their characteristics

Super-
Taxa Super-Taxon Characteristics
taxon
e Low total activity in av-
e (O0_FROZEN
erage.
Cold e 1 ALMOST FROZEN
e At most 4 active com-
e 1 FocusedShot n. FROZEN .
mits.
e More than 4 active com-
e 2 MODERATE mits.
Mild
e 3 FocusedShot n LOW e Majority of projects has
less equal than 3 reeds.
e More than 4 active com-
mits.
Hot e 4 ACTIVE
e Majority of projects has
more than 3 reeds.
e 0_COLD

This super taxon was generated by the merge of 0_FROZEN, 1_AL-
MOST _FROZEN, and 1 FocusedShot n. FROZEN classes. The individual
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classes were determined to be merged, because of their small, in average, total
activity, as well as their small number of active commits. Regarding the child
taxa, the 0_FROZEN taxon consisted of projects with zero total activity, the
1_ALMOST_FROZEN taxon consisted of projects with small total activity and
a small number of active commits and the 1_FocusedShot_ n_FROZEN taxon
consisted of projects with a small number of active commits but higher total
activity, which was caused by a couple of focused-shot big commits. Never-
theless, these taxa are very similar to each other and their common line is
their “cold” behavior (zero to a few active commits), and this is the reason we

decided to group them in the same super taxon.

e 1 MILD
This super taxon was produced by the combination of 2. MODERATE and
3_FocusedShot_n_LOW original classes. These two taxa were determined to
be merged due to their medium to high activity. As far as the child taxa are
concerned, the 2 MODERATE taxon consists of projects with medium total
activity and a medium number of active commits, and the 3_Fo-
cusedShot_n_LOW consists of projects with medium to high total activity and
a medium number of active commits. However, the medium activity of the

projects in these taxa led us to group them in the 1_MILD super taxon.

e 2 HOT
This super taxon 2_HOT is the same as the original 4 ACTIVE taxon, which
differs a lot from the other taxa and consists of projects with extremely high
activity during their lifecycle. For this reason, we decided to let this taxon the

same as the original 4_ACTIVE taxon.

Figure 4.1 presents how the original taxa presented in [12] are merged and produce

the super taxa.
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0_coLD 1_MILD 2_HOT

‘ O0_FROZEN ‘ ‘ 1_ALMOST_FROZEN

’ 1_FocusedShot_n_FROZEN ‘ 2_MODERATE‘ ‘3_Facused5hot_n_LOH" 4_ACTIVE ‘

Figure 4.1 Super Taxa

4.2 Super taxa and Heartbeat

In this section, we refer to the relation between the super taxa and all the attributes

and metrics that are related to the heartbeat.
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Figure 4.2 Scatter Plot of Reeds — Turfs
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Reeds - Turfs

As far as the reeds and turfs are concerned, their relationship with the super taxa is
presented in Figure 4.2.

Observe Figure 4.2: Regarding reeds and turfs, the super taxa seem to be well con-
figured with a few exceptions in 1_MILD and 2_HOT classes.

The number of reeds, in Figure 4.3 seems to distinguish well the 2_HOT class from
the two other classes, but not the 0_COLD class from the 1_MILD class. On the other
hand, regarding the number of turfs, in Figure 4.4, the taxa seem to be distinct from
each other, which makes sense, since the classification is based on the active commits,
so, moving from the 0_COLD to the 2_HOT class, the number of active commits is

obviously increasing.

0_COLD: 0.73 £0.7
|

—_—

| |
1] 1

1 MILD: 1.63 £ 1.1
|

| |
1 2

2 HOT:6.25+£3.2
1

T
[} [} 1
4 5.50 8

0 2 4 6 8 10 16
ANOVA: 148.631 (p=0.000, N=193)

Figure 4.3 BoxPlot of Reeds

0_COLD: 1.38 £1.1
|
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[
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1 MILD: 7 £4.3
1

[ |
5 & -3
2 HOT: 23+17.2
1

Il ~

0 10 20 30 40 60
ANOVA: 113.780 (p=0.000, N=193)

Figure 4.4 BoxPlot of Turfs
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Active Commits

The number of active commits, as shown in Figure 4.5, increases while moving from
the 0_COLD class to the 2_HOT class, as expected. Especially, 0_COLD seems to be
totally distinct from the other classes, in terms of the number of active commits,
which makes sense, because 0_COLD class has zero to few active commits, by def-

inition.

0_CoLp: 1.|11 +0.9
=
[
1.2 3
L_MILD: 8.63 4.2

_.—|—
| [
6 8 9
2_HOT: ZQI.ZE +17.7

i 10 20 30 40 50 70
ANOVA: 169.965 (p=0.000, N=193)

Figure 4.5 BoxPlot of Active Commits

Reed — Turfs (Ratios)

In Figures 4.6 and 4.7 we present the ratio of turfs to active commits and the ratio
of reeds to active commits. In Figure 4.6, we surprisingly observe that the 0_COLD
has the biggest ratio of reeds to active commits. This can be explained by the small
number of active commits that the 0_COLD class has, which makes its reeds ratio
seem high. Regarding the ratio of turfs to active commits, as shown in Figure 4.7,
the 1_MILD class has the highest ratio of turfs to active commits.

Similar behavior with the aforementioned ratios we observe at the ratio of turfs to

the total commits and the ratio of reeds to the total commits in Figures 4.8 and 4.9.
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1 MILD: 0.2178 £0.151
|

ANOVA: 5.089 (p=0.007, N=193)

Figure 4.6 BoxPlot of ReedRatioAComm

0_COLD: 0.6110 +0.382
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| |
0.4150 0.67 1.00

2_HOT: 0.7135 £0.201
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|
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ANOVA: 5.145 (p=0.007, N=183)

Figure 4.7 BoxPlot of TurfRatioAComm

1 MILD: 0.1490 +0.110

| | |
0.07 0.11 0.22

0_COLD: 0.2308 +0.252
|

| | |
0.00 0.1350 0.50

2_HOT: 0.2195 £0.186
|
i e a—

| | |
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0.00 0.20 0.40 0.60 0.80 1.00
ANOVA: 2.466 (p=0.088, N=193)

Figure 4.8 BoxPlot of ReedRatioTComm
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0_COLD: 0.4305 £0.330
|

| |
0.1350 0.50 0.67

2_HOT: 0.5160 £0.211

0.40 0.5250 0.70

1_MILD: 0.5692 +0.192
|

1
0.43 0.56 0.71

0.00 0.20 0.40 0.60 0.80 1.00
ANOVA: 4.178 (p=0.017, N=193)

Figure 4.9 BoxPlot of TurfRatioTComm

Active Commits (Ratio)

In Figure 4.10 we can see the relationship between the percentage of active commits
to total commits and the super taxa. As we move from the cold to the hot class the

ratio of active commits increases, as expected.

0_COLD: 0.6614 £ 0.286
|

0.50 0.67 1.00

1_MILD: 0.7167 0,157
|

0.61 0.72 081
2_HOT: 0.7345 £0.201
|
| | |
0.6950 0.81 0.88
0.10 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

ANOVA: 1.303 (p=0.274, N=183)

Figure 4.10 BoxPlot of ActiveCommitRatio

Summary of Heartbeat

In Table 4.2 we report the averages of some measures related to the heartbeat of the
projects. The more active a taxon is, the bigger the number of the active commits, reeds

and turfs it has. On the other hand all ratios seem to be close for the different taxa.
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Table 4.2 Averages of some measures related to heartbeat per taxon

Measure 0_COLD 1_MILD 2 _HOT

Reeds 1.00 2.00 6.00

Turfs 1.00 7.00 23.00

Active Commits 2.00 9.00 29.00
ActiveCommitRatio 0.66 0.72 0.73
ReedRatioAComm 0.39 0.22 0.29
TurfRatioAComm 0.61 0.78 0.71
ReedRatioTComm 0.23 0.15 0.22
TurfRatioTComm 0.43 0.57 0.52

Finally, to get a better intuition about how the heartbeat is related to the super taxa,
we present in Figure 4.11 a decision tree, which was produced, given all the attributes

that are related to the Heartbeat as input, by the Orange tool.

0_COLD
64.2%, 123/193

ActiveCommits

<4 >4
0_COLD i MILD
100%, 124/124 71.0%, 49/69 o
Reeds
<3 =3

2_HOT
94.4%, 17/18

Figure 4.11 Decision Tree — Heartbeat

We can clearly conclude that the super taxa are highly related to the heartbeat of the
projects. More specifically, projects with less or equal than 4 active commits automat-
ically belong to the 0_COLD super taxon. Additionally, projects with more than 4
active commits, belong to 1_MILD super taxon, if they have less or equal than 3

reeds, whereas if they have more than 3 reeds they belong to the 2_HOT super
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taxon. Exceptions at the aforementioned rules are 4 misclassified projects out of 193,
meaning 2% (Three projects that were supposed to be in 1_MILD super taxon, are
misclassified to the 2_HOT super taxon, and one project that was supposed to be in
the 2 HOT super taxon, is misclassified to the 1_MILD super taxon). Taking into
account the percentages of the well-classified projects per taxon (100% for 0_COLD,
94.1% for 1_MILD, and 94.4% for 2_HOT), there is no doubt, that the heartbeat is

a crucial factor for the discrimination of the taxa.

4.3 Super taxa and Activity

In this section, we discuss the relation between the super taxa and all the attributes
and metrics, that are related to the activity of the projects.

Regarding the total activity, as shown in Figure 4.12, the super taxa are well sepa-
rated from each other. The concentration of the values at each taxon shows that, moving
from the O_COLD to the 2_HOT class the total activity increases. However, there are a
few outliers at the 0_COLD class with high total activity. These outliers in the tax-
onomy of [12] belonged to the 1_FocusedShot_ n_ FROZEN taxon, which contained
projects with a small number of active commits (less than 4) and total activity greater

than 10.

0_COLD: 11.10 £ 38.0
|
b
029

1 MILD: 60.67 £66.1

_

Aol |
213 89

2_HOT: 335.90 +268.7

0 200 400 600 1200
ANOVA: 93.990 (p=0.000, N=193)

Figure 4.12 BoxPlot of Total Activity
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The relationship of total maintenance to the super taxa, as shown in Figure 4.13, is
similar to the relationship of the taxa to total activity. Observe that the more active the

class is, the more maintenance it goes through, which makes sense.

0_COLD: 6.87 £34.0
]

_._'_
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1/ MILD: 1‘6 +33.6

¢ |
512 32

2_HOT: 180.70 + 170.9

|
4% a5 205,50

o 100 200 300 400 600 800
ANOVA: 49.513 (p=0.000, N=193)

Figure 4.13 BoxPlot of TotalMaintenance

In Figure 4.14 the plot presents the relation between the total expansion and the
super taxa. Observe that the taxa are a lot more distinct from each other than with
respect to the other activity measures, which indicates that total expansion is a good

taxon discriminator.

0_COLD: 4.23 £8.0
|

_._|_
=R
015

1 MILD: 34.67 +35.8
I

—_—
Il
1322 33

2_HOT: 175.20 = 115.7
|

} ~
T

|
89 139.50 229

0 100 200 300 500
ANOVA: 141.679 (p=0.000, N=193)

Figure 4.14 BoxPlot of TotalExpansion

Figures 4.15 and 4.16 show how the total attributes that are injected and ejected, are
related to the super taxa. Observe that these figures, especially the total attributes
injected which relates well to expansion as a discriminator, separate well the taxa, as
well as the fact that, moving from the O_COLD to the 2_HOT class, the number of
injections-ejections are increasing.
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Figure 4.15 BoxPlot of TotalAttrInjected
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Figure 4.16 BoxPlot of TotalAttrEjected

In Figures 4.17, 4.18, and 4.19 we present the plots of the rates per commit of total
activity, total maintenance, and total expansion, respectively. The rates mentioned
above, for every commit, look very similar to each other. At the same time, they all show

an increase as we move from the O_COLD class to the 2_HOT class.
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Figure 4.17 BoxPlot of TotalActivityRatePerCommit
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Figure 4.18 BoxPlot of MaintenanceRatePerCommit
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Figure 4.19 BoxPlot of ExpansionRatePerCommit
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In Figures 4.20, 4.21, and 4.22, observe the corresponding plots for the same ratios
per year. All these representations suggest that the taxa are clearly different concern-
ing these activity metrics, and as the taxon becomes more active, all the related

measures increase: the mean, the median, the IQR, and the range of these metrics.
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Figure 4.20 BoxPlot of TotalActivityRatePerYear
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Figure 4.21 BoxPlot of MaintenanceRatePerYear
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Figure 4.22 BoxPlot of ExpansionRatePerYear

It is a very important fact that there is a consistency to the plots that were presented,
according to the discrimination of the taxa, which means that all the examined attributes,

related to the activity, agree with the taxonomy.

In Table 4.3 we report some measures related to the activity of the projects. Consid-

ering the activity of the projects, the measures show that the taxa are distinct among each

other.
Table 4.3 Averages of some activity-measures per taxon
Measure 0_COLD 1_MILD 2_HOT
TotalAttrInjected 1.00 10.00 35.00
TotalAttrEjected 0.00 5.00 20.00
TotalExpansion 4.00 35.00 175.00
TotalMaintenance 7.00 26.00 161.00
TotalTotal Attr Activity 11.00 61.00 336.00
TotalAttrActivityRatePerCommit 2.61 5.24 11.44
Total AttrActivityRatePeryear 8.00 34.00 154.00
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Finally, to get a deeper understanding of how the activity is related to the super
taxa, let’s take a look at the decision tree, which was generated by the Orange tool,
presented in Figure 4.23. At first glance, observe that this decision tree is not as
simple and straightforward as the one we observed in Figure 4.11, which was pro-
duced from the heartbeat metrics. This is because there are more misclassified pro-
jects in this decision tree. More specifically, there are 20 misclassified projects out of 193,
meaning 10% (Most of the misclassified, meaning 7%, are projects that belong to the
1_MILD class and have been misclassified either to the O0_COLD class or to the 2_HOT
class). Ideally, we would like the 0_COLD leaves to be at the left, the 1_MILD at the
center and the 2_HOT at the right, side of the tree.

=

b
e EIY

Figure 4.23 Decision Tree — Activity
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4.4 Super taxa and Table-Level Activity Measurements

In this section, we will discuss the relevance between the super taxa and the table-
level activity.

Figures 4.24 and 4.25 present, how the taxa are separated, based on the metrics
Tables@Start and Tables@End.

The concentration of the values in taxa shows that the taxa are distinct. However,
it is interesting to highlight that there are a few projects in the 0_COLD class with
the biggest number of tables. This means, that the number of tables of the projects
in these cases, is neither related to the activeness of the projects nor to the super

taxa.
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Figure 4.24 BoxPlot of Tables@Start
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Figure 4.25 BoxPlot of Tables@End

Observe Figures 4.26 and 4.27: The more active the taxon is, the bigger the number of
the tables that are inserted is, which verifies the assumption that, the activity of a taxon is

related to the number of the table operations.
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Figure 4.26 BoxPlot of TotalTableInsertions
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Figure 4.27 BoxPlot of TotalTableDeletions

In Figure 4.28 the relationship between the resizing ratio of the projects and the
super taxa is presented. It seems that the resizing ratio neither discretizes the taxa nor is

related to the evolution of the projects.
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Figure 4.28 BoxPlot of ResizingRatio

In Figure 4.29 we present the schema line volume of change plot.
As already mentioned, the labels that are presented in Figure 4.29, were produced

based on BD where:

BD = tablelnsertions + tableDeletions

The meanings of the labels in Figure 4.29 are as follows:
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0_NONE: BD =0

1_SMALL: BD in the range [1 — 2]
2_MODERATE: BD in the range [3 - 10]
3_HIGH: BD > 11

nnnnnn

¥4 168.00 (p=0.000, dof=5)

Figure 4.29 Schema Line Volume of Change Plot - Super Taxa

It is even more clear now with the super taxa that, the more active a taxon is, the
bigger the percentage of the high volume of changes and the smaller the percentage of the

low volume of changes, is.

In Table 4.4, some table-level measures are reported per taxon. As the number of the
insertions and deletions increases, so does the activeness of the project. The change of the
size of the projects, as already mentioned does not play any role both in the evolution of

schema and the discretization of the taxa.

Table 4.4 Averages of some table-level measures per taxon

Taxon 0_COLD 1_MILD 2_HOT
#Tables@Start 8.00 9.00 24.00
#Tables@End 8.00 10.00 29.00

TotalTablelnsertions 1.00 4£.00 22.00

TotalTableDeletions 1.00 2.00 16.00
Resizingratio 1.14 1.70 1.68

BD 1.00 6.00 38.00

In Figure 4.30, we present the decision tree, which was generated by the Orange
tool, based on the attributes TotalTableInsertions, TotalTableDeletions, Tables@Start,

Tables@End. Again, observe that the taxa are distinct, with a couple of misclassified
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exceptions. More precisely, there are 44 misclassified projects out of 193, meaning 22 %

(Most of the misclassified, meaning 18%, are projects that belong to the 1_MILD class and
have been misclassified either to the O_COLD class or to the 2_HOT class). Moreover, the

number of tables that a project has at the beginning does not seem to be an indicator of its

further activity. Nevertheless, the number of tables that are inserted is proportional to the

activeness of the projects.

<1

<4
0_coLD
76.7%, 122/159

0_COLD
63.6%, 123/195

TotalTableInsertions
m— >4
2_HOT
58.3%, 21/36

TotalTableInsertions TotalTableInsertions

0_coLb
87.9%, 109/124

Tables@End

%

62.9%, 22/35

Tables@End

>1 <16 > 16
1_MILD 1_MILD 2_HOT
61.9%, 13/21 93.3%, 14/15
Tables@End TotalTableInsertions
<13 >13

1_MILD 2_HOT

84.6%, 11/13 o 75.0%, 6/8

Tables@End Tables@End

>33

2_HoT
100%, 4/4

<33
1_MILD
50.0%, 2/4

<4 >4
0_coLb &
33.3%, 1/3

Figure 4.30 Decision Tree - Table Level Activity

4.5 Super taxa and Durations

In this section, we study how the lifetime duration of the projects is related to the

super taxa. In Figure 4.31, we present the plot of the schema duration of the projects,

in months, per taxon and in Table 4.5 we present the stats of the schema update

period per class.
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Figure 4.31 BoxPlot of Schema Update Period (months)

The concentration of the values is similar for all the taxons. The 1_MILD class overlaps
both the O_COLD and the 2_HOT class, which shows that the activity is due to the nature
of the project. Because of that, there are 1_MILD projects with schema update period less
than the average of the O0_COLD’s ones and bigger than the average of the 2_HOT’s ones.
These conclusions can also be confirmed after observing the values of the Table 4.5

and the Figure 4.32, where the explanations of the labels are as follows:

e 0_UpTo10Days: Projects with schema update period in the range [0 — 10]
days.

e 1 11To180D: Projects with schema update period in the range [11 — 180] days.

e 2_06To12M: Projects with schema update period in the range [181 — 365]
days.

e 3_13To36M: Projects with schema update period in the range [366 — 1095]
days.

e 4 _LONG: Projects with schema update period greater than 1095 days (3

years).

||||||||
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3_13T036M

Figure 4.32 BoxPlot of Schema Update Period Class
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Table 4.5 Schema Update Period stats per class

Schema

Update

Period
(Months)

CLASS MIN MAX AVERAGE | MEDIAN STDEV
0_COLD 1 99 10.41 3 15.25
1_MILD 1 100 22.57 20 21.99
2_HOT 3 84 30.75 26 21.15

Observe Figure 4.33 and Table 4.6: It seems that the project update period is not neces-

sarily proportional to the activity of the projects. All classes seem to have similar project

update periods.
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Figure 4.33 BoxPlot of Project Update Period (Months)

Table 4.6 Project Update Period stats per class

200

Project

Update

Period
(Months)

CLASS MIN MAX AVERAGE | MEDIAN STDEV
0_COLD 0 155 35.89 28.5 30.22
1_MILD 0 126 39.86 40 28.44
2_HOT 6 198 61.30 48.5 44.46
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With that being said about the duration metrics, we conclude that the activeness of a taxon
is more related to the schema update periods, rather than the project update periods. However,

none of them can be considered as an absolute taxon indicator.

4.6 Centroids and characteristics per super taxon

In this section we define a centroid for each super taxon and then we discuss the
characteristics of super taxa.

For the computation of the centroids, we followed the same procedure as in chapter
3. In Table 4.7 we present the centroid-project of each taxon including its actual

measures as well as its Z-scores, in parenthesis.

Table 4.7 Centroid-project per super taxon

Centroid- Total Active
Taxon Reeds Turfs
Project Activity Commits
7 1 1 2
Cold yiier__forum
(-0.37) | (-0.25) | (-0.46) (-0.45)
jasdel__har- 55 2 6 8
Mild
vester (-0.02) | (0.22) | (0.11) (0.14)
H pods-frame- 352 9 21 30
ot
work__pods (2.14) | (3.54) | (1.80) (2.29)

The characteristics of each taxon compared to the values of the centroid-project are

reported below:

Cold Taxon Characteristics (Centroid-Project: yiier__forum)
e Zero to high total activity with range from O to 382
- total Activity (yiier__forum) = 7
o At most 3 active commits (Mix of turfs and reeds)

- activeCommits(yiier__forum) = 2
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Mild Taxon Characteristics (Centroid-Project: jasdel__harvester)
e More than 4 active commits (Mix of turfs and reeds)
- activeCommits(jasdel__harvester) = 8
e Medium to high total activity
- total Activity(jasdel__harvester) = 55

Hot Taxon Characteristics (Centroid-Project: pods-framework__pods)
e Very high total activity (more than 111 and less than 1268 updated attributes)
- total Activity(pods-framework__pods) = 352
e More than 7 active commits (Mix of turfs and reeds)

- activeCommits(pods-framework__pods) = 30

Considering the values of the centroid-projects the taxa are clearly distinguished from each
other. Moving from the cold to the hot taxon, both the total activity and the number of

active commits noteworthy increase.

4.7 Summary of findings

In this chapter, after the observations we made in chapter 3 about the similarities of
some taxa, we decided to merge these similar taxa into larger groups and observe

what results we get. Our conclusions and findings are summarized as follows:
e Regarding Schema Heartbeat:

Reeds, Turfs, and Active Commits distinguish well the super taxa. This con-
clusion was extracted by the observation of the box plots, where the values
for each taxon are distinct as well as from the scatter plot of reeds and turfs,
where each taxon forms distinct color regions. Moreover, we observed in the
decision tree that the taxa can be defined easily only by using the attributes

Active Commits and Reeds.

e Regarding Activity:
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As already mentioned, the hotter the projects are, the bigger the general ac-
tivity of the projects is. As we observed in the box plots, all activity measures
and especially totalActivity, totalExpansion, and totalAttrsInjected are good
taxon discriminators and confirm the assumption that the activity of the pro-
jects increases as we move from the cold to the hot super taxon. Additionally,
in the decision tree, the areas of each super taxon are distinct; specifically, the
cold land is on the left side of the tree, the mild land is on the center of the

tree and the hot land is on the right side of the tree.
Regarding Table-Level Activity Measurements:

We observed that the resizing ratio is not an indicator of how active a taxon
is. The tables@Start and tables@End measures are bigger when moving to the
hot class, but still, there are some exceptions and cannot discriminate the taxa
alone. The measures totalTableInsertions and totalTableDeletions are bigger
when we refer to the hot taxon projects than to the cold super taxon and
discriminate the taxa well. We also observed in the schema line plot, that the
more active a taxon is, the bigger the percentage of the high volume of changes

and the smaller the percentage of the low volume of changes, is.
Regarding Duration:

We observed that both the project duration and the schema duration, cannot
discriminate the taxa, alone. We highlighted that the values of schema update
period for each taxon are very close to each other. This indicates that the
activity is due to the nature of the project and is not necessarily proportional
to the schema update period of it. Additionally, the project update period is
not necessarily proportional to the activity of the projects, as we observed that

all classes had similar project update periods.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we studied in great detail the schema evolution of 193 projects, as well
as we assessed the taxonomy of schema evolution which was produced in [12].

Firstly, we presented HeraclitusFire, the tool which we used in our analysis, as well
as some new data and statistics that were added as information because they were
necessary for our further research. Afterwards, since the metrics that were extracted
were too many to handle, we observed the correlations of them and ended up with
the most important attributes, by discarding the most correlated ones. Then we in-
troduced the taxonomy presented in [12] and proceeded to the evaluation of this
taxonomy with the assistance of a few validity clustering metrics. Finally, after ob-
serving similar behaviors among some taxa, in chapter 4 we merged them to see
how this new taxonomy is related to the heartbeat, the activity, the table-level

measures, and the duration of the projects.

Concerning the taxa of [12] we can report that:

e Regarding the schema update period, every taxon seems to have projects with both
short and big periods of updates. However, moving from the frozen to the active
taxon, the schema update period becomes bigger and bigger, the percentages of short

periods are decreasing, and the percentages of longer periods are increasing.

o The more active a taxon is, the bigger the percentage of the high volume of changes

in the schema line and the smaller the percentage of the low volume of changes is.
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o The active commits separate well the taxa, except for the medium activity classes that
are not only separated by the active commits, but also by the amount and concen-

tration of change.

o Turfs and total activity are good taxon discriminators and proportional to the active-

ness of the taxon.

o The update periods of the projects of all families, except for the active class, seem to

be big and very similar.

o Considering the values of the centroid-projects and especially the total activity and

the active commits, the taxa are distinguished from one another.

o The wvalidity metrics were better for groups consisting of attributes related to the

heartbeat and the activity of the projects.

Concerning the possibility of defining super taxa on the basis of the taxa of [12] we

can report that:
® Reeds, Turfs, and Active Commits distinguish the super taxa well.

o The super taxa can be discriminated easily on grounds of a decision tree which is

defined only by using the attributes Active Commits and Reeds.

o The more active a super taxon is, the bigger the number of the active commits, reeds
and turfs it has. On the other hand, all ratios seem to be close for the different super

taxa.

o All the activity measures and especially totalActivity, totalExpansion, and total At-
trsInjected are good super taxon discriminators and confirm the assumption that the

activity of the projects increases as we move from the cold to the hot super taxon.

o In the decision tree that was produced by activity measurements, the areas of each

super taxon are distinct.
o The resizing ratio is not an indicator of how active a taxon is.
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e Regarding the schema update period, the activity is due to the nature of the projects.

e Project update period is not related to the activity.

In the future, it is possible to explore, which percentage of the projects per taxon
abides by patterns like progressive reduction of activity, intense spikes of activity,
commits of massive maintenance, commits of zero maintenance, etc, and see if the
taxa can predict the patterns. Also, it is possible to define for each pattern, the
property values that each project needs to fulfill. Then, one can check if intersections
of these properties can be used as discriminators to create taxa, and observe which

taxa are created after applying them.
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APPENDIX A

NORMALIZATION METHODS

A1 Method A: Z-Scoring
A.2  Method B: SAX (Symbolic Aggregate approXimation)

A.1 Method A: Z-Scoring

A Z-score is a numerical measurement that describes a value’s relationship to the
mean of a group of values. If a Z-score is 0, it indicates that the data point’s score
is identical to the mean score. Z-scores may be positive or negative, with a positive
value indicating the score is above the mean and a negative score indicating it is
below the mean.

Standardizing a dataset involves rescaling the distribution of values so that the mean
of observed values is 0 and the standard deviation is 1. Standardization assumes
that dataset values fit a Gaussian distribution (bell curve) with a well-behaved mean
and standard deviation. Even if this expectation is not met, time-series data can still
be standardized, but may not get reliable results. To standardize the data, the mean
and standard deviation of the data series are required. They can be calculated by
the following math formulas:

sum(x;)

[ ] =
count(x;)
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where p is the Mean of data series, sum(x;) is the Sum of all values and count(x;)

. o= ,Z(xi—li)z
count(x;)

where o is the Standard Deviation of data series.

is the Count of all values.

Finally, the new standardized value, for each value of the data series, can be com-

puted, with the following math formula:

where z is the new standardized value (also known as Z-score).

A.2 Method B: SAX (Symbolic Aggregate approXimation)

According to [5] paper, even though many symbolic representations of time series
have been introduced over the past decades, they all suffer from two fatal flaws.
Firstly, the dimensionality of the symbolic representation remains the same with the
original data, and as a result, virtually all data mining algorithms scale poorly with
dimensionality. Secondly, although distance measures can be defined on the symbolic
approaches, these distance measures have little correlation with distance measures
defined on the original time series.

SAX is a transformation method to convert a numeric sequence (time series) to a
symbolic representation. More specifically, it is about the transformation of a time
series to a sequence of symbols with a predefined length and alphabet. The produced
string’s length is less than the original series’ length. Firstly, data is being trans-
formed into the Piecewise Aggregate Approximation (PAA) representation, and then
the PAA representation is symbolized into a discrete string. Sax representation is

very robust to wandering baseline and outliers and can be computed incrementally.

Unlike other representations Sax representation of time series allows:
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e Lower bounding of Euclidean distance
e Lower bounding of the D'TW distance
e Dimensionality Reduction

e Numerosity Reduction

In general, the technique consists of the following steps:
e Compute the Piecewise Aggregate Approximation (PAA) of the time series.
e Compute the lookup table for the given alphabet, assuming that the values of
the time series are normally distributed.
e Transform the generated PAA of the time series to a symbolic sequence by

using the lookup table.

To the following subsections, an extending analysis of the steps of SAX representa-

tion takes place.

A.21 Normalization of Data

Before the transformation of the data series into the PAA representation, normaliza-
tion of data is required.

Normalization is a rescaling of the data from the original range so that all values are
within the range of 0 and 1. To normalize the data, the maximum and the minimum
value that exists in the data series, are necessary. Afterwards, each value of the time

series can be normalized by using the following math formula:

X —min

y:

max — min

where x is each value of the time series and y is the new normalized value.

A.2.2 PAA Representation

After the normalization of the data, the computation of the Piecewise Aggregate
Approximation (PAA) of the data series, is ready to take place. PAA (Piecewise

Aggregate Approximation) corresponds to downsampling of the original time series,
100



and, in each segment (segments have fixed size), the mean value is retained. The
basic idea behind the algorithm is to reduce the dimensionality of the input time
series by splitting them into equal-sized segments which are computed by averaging
the values in these segments. Before proceeding to the computation of the PAA, the
number of equal-sized segments must be defined. One of the most important ad-
vantages of PAA is that provides dimensionality reduction.

Assuming a time series Y=Y1, Y2,..., Yn of length (n) to be split or reduced into a
series X=X1, X2,..., Xm where m<nm<n, the overall equation describing the elements

in the reduced series can be summed up by the formula:

(n/M)-i
* X

_ m
z J
j=n/N(i—-1)+1

The above equation provides the mean of the elements in the equi-sized frame which
makes up the vector of the reduced dimensional series. Nonetheless, there are im-

mediate special cases:

e m=n: The reduced series is an exact copy of the original sequence.

e m=1: The reduced series is the mean of the original sequence.

The second case is a special case where the result is a piecewise constant approxi-
mation. Unlike the normal case, where the original input vector is split into frames
and the mean of the values in the frame is computed, in this case, the reduced series

is the mean of the original sequence.

A.2.3 Discretization

The final stage of SAX is discretization. In SAX, discretization of time series is the
process where the numeric PAA representation is transformed into a symbolic rep-
resentation. It is desirable to have a discretization technique that will produce sym-

bols with equiprobability. The steps for the discretization are as following:
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Firstly, the alphabet that is going to be used for the generation of the symbolic

representation must be declared.

Next, given that the normalized time series have a highly Gaussian distribu-
tion, the “breakpoints”, that will produce a predefined number of equal-sized

areas under the Gaussian curve, must be determined.

Definition 1 Breakpoints: Breakpoints are a sorted list of numbers B = f31, ...,
Ba—1 such that the area under a N(0, 1) Gaussian curve from Bi to Bi+1 = 1/a

(B0 and Pa are defined as — and o, respectively).
Using these breakpoints, a lookup table with symbols is being created.
Finally, for the transformation of the PAA representation into the symbolic

representation, taking into consideration the lookup table, a symbol to each

value of the PAA representation is assigned.
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