

A Study of Schema & Software Co-evolution for

Relational Databases in Free Open-Source Projects

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Fation Shehaj

in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN ADVANCED COMPUTER SYSTEMS

University of Ioannina

School of Engineering

Ioannina 2021

Examining Committee:

• Panos Vassiliadis, Professor, Department of Computer Science and

Engineering, University of Ioannina (Supervisor)

• Nikolaos Mamoulis, Associate Professor, Department of Computer Science

and Engineering, University of Ioannina

• Apostolos Zarras, Associate Professor, Department of Computer Science and

Engineering, University of Ioannina

DEDICATION

To my family.

ACKNOWLEDGEMENTS

First of all, I would like to offer my special thanks to Professor Panos Vassiliadis,

my research supervisor, for his precious guidance and the collaboration we had.

Moreover, I wish to thank my parents for all the support and encouragement they

offered me throughout my study.

i

CONTENTS

CHAPTER 1 Introduction 1

1.1 Goals... 1

1.2 Structure of the Thesis .. 2

CHAPTER 2 Related Work 3

2.1 Case Studies of Schema and Software Co-Evolution 3

2.2 Comparison to the State of the Art ..7

CHAPTER 3 Manual analysis of schema and code co-evolution 9

3.1 EvolutionChartExporter ...10

 3.1.1 Introduction to EvolutionChartExporter10

 3.1.2 How it works, it’s Architecture and Design10

 3.1.3 Testing of EvolutionChartExporter ...12

3.2 Manual analysis of randomly selected projects from GitHub......................13

 3.2.1 In-depth study of ALMOS_FROZEN projects15

 3.2.2 In-depth study of FOCUSED-SHOT_n_FROZEN projects 23

 3.2.3 In-depth study of MODERATE project 37

3.3 Results and findings from deep investigation ... 49

CHAPTER 4 Cumulative analysis of schema and code co-evolution 55

4.1 Cumulative analysis and algorithm ... 56

 4.1.1 Introduction to cumulative analysis ... 56

 4.1.2 Algorithm of cumulative analysis ... 57

 4.1.3 A comment on the generation of Monthly Schema Stats 58

4.2 Expanding of EvolutionChartExporter.. 59

 4.2.1 How EvolutionChartExporter computes and visualize the

cumulative activity of the projects ... 59

 4.2.2 Testing the cumulative analysis of EvolutionChartExporter 63

4.3 Answering the research questions ... 63

ii

 4.3.1Research question 1: What percentage of the projects demonstrates

a "hand-in-hand" schema and source code co-evolution? 64

 4.3.2Research question 2: how premature is schema evolution

completion? .. 73

CHAPTER 5 Conclusion and Future Work 79

5.1 Conclusions .. 79

5.2 Future work ... 80

iii

LIST OF FIGURES

Figure 3.1 Bar chart exported from EvolutionChartExporter (a) the exported image

from the EvolutionChartExporter and (b) the format of the input file……………11

Figure 3.2 Taxa of Schema Evolution for FOSS Projects [4]………………………………12

Figure 3.3 Schema and src commits for joomla-platform-categories, the image

produced from the first version of ECE…………………………………………………..17

Figure 3.4 Schema and src commits for tld-list, the image produced from the first

version of ECE…………………………………………………………………………………..19

Figure 3.5 Schema and src commits for gowebapp, the image produced from the

first version of ECE…………………………………………………………………………….23

Figure 3.6 Schema and src commits for acl, image produced from the first version

of ECE……………………………………………………………………………………………..31

Figure 3.7 Schema and src commits for silex-simpleuser, the image produced from

the first version of ECE……………………………………………………………………….36

Figure 3.8 Schema and src commits for osm-comments-parser, the image produced

from the first version of ECE……………………………………………………………….49

Figure 3.9 Analysis of schema changes per project and their impact on source

code…………………………………………………………………………………………………51

Figure 3.10 Grouped schema changes and their impact on source

code…………………………………………………………………………………………………52

Figure 4.1 EvolutionChartExporter flowchart………………………………………………..60

Figure 4.2 Class diagram of EvolutionChartExporter………………………………………61

Figure 4.3 Line chart image of the cumulative analysis exported from the

EvolutionChartExporter………………………………………………………………………62

Figure 4.4 File format of the exported cumulative file…………………………………….62

Figure 4.5 Line charts were "hand-in-hand" co-evolution is applied for the taxa: (a)

FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)

MODERATE, (e) FocusedShot n LOW, (f) ACTIVE………………………………….65

Figure 4.6 Line charts were "hand-in-hand" co-evolution is not applied for the taxa:

(a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)

MODERATE, (e) FocusedShot n LOW, (f) ACTIVE…………………………………66

iv

Figure 4.7 "hand-in-hand" co-evolution for ±5% range for the taxa: (a) FROZEN,

(b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d) MODERATE, (e)

FocusedShot n LOW, (f) ACTIVE………………………………………………………….68

Figure 4.8 Overall "hand-in-hand" co-evolution for ±5% range: (a) Overall bar chart,

(b) Table with each taxon and overall…………………………………………………….69

Figure 4.9 "hand-in-hand" co-evolution for ±10% range for the taxa: (a) FROZEN,

(b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d) MODERATE, (e)

FocusedShot n LOW, (f) ACTIVE………………………………………………………….70

Figure 4.10 Overall "hand-in-hand" co-evolution for ±10% range: (a) Overall bar

chart, (b) Table with each taxon and overall……………………………………………72

Figure 4.11 When (in %) each project reached a specific schema activity for the taxa:

(a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)

MODERATE, (e) FocusedShot n LOW, (f) ACTIVE………………………………….75

Figure 4.12 Overall counting of when each project reached a specific schema activity:

(a) Overall bar chart, (b) Table with each taxon and overall………………………77

v

LIST OF TABLES

Table 3.1 Commits related to schema for the joomlatools/joomla-platform-categories

project………………………………………………………………………………………………15

Table 3.2 Commits related to the schema for the umpirsky/tld-list project………….18

Table 3.3 Commits related to the schema for the josephspurrier/gowebapp project..19

Table 3.4 Commits related to the schema for the accgit/acl project……………………24

Table 3.5 Commits related to schema for the jasongrimes/silex-simpleuser project…32

Table 3.6 Commits related to schema for the mapbox/osm-comments-parser project

……………………………………………………………………………………………………….37

Table 3.7 Reasons schema changes happen to each project………………………………52

Table 3.8 When schema commits happened to each project…………………………….53

Table 3.9 Who made schema commits to each project…………………………………….54

vi

LIST OF ALGORITHMS

Algorithm 4.1 Computation of cumulative percentage……………………………………..57

Algorithm 4.2 Computation of "hand-in-hand" co-evolution……………………………64

Algorithm 4.3 Computation of 80-20 rule, and more………………………………………74

vii

ABSTRACT

Fation Shehaj, M.Sc. in Data and Computer Systems Engineering, Department of

Computer Science and Engineering, School of Engineering, University of Ioannina,

Greece, June 2021

A Study of Schema & Software Co-evolution for Relational Databases in Free Open-

Source Projects

Advisor: Panos Vassiliadis, Professor

In this dissertation, we attempt to study and make an analysis on the co-evolution

of the database schema and source code. Studying the co-evolution is especially

important as it can identify patterns on how the code development can impact the

schema evolution, with the purpose to help designers and developers spend less time

modifying the storage and processing system for the provided information. Also,

through this study, the potential effects on software maintenance that would emerge

from the dependence of the source code and the database schema can be reduced or

even improve the performance of the software and potentially the development time.

The key question of this thesis is: Is there a correlation on how the evolution of a

software source code affects the evolution of the database schema, and if so, can we

categorize them? To answer this question, we used data from the commit history of

three hundred and fifty (350) projects, collected with the help of the GitHub

platform. The projects were divided into six categories, these categories are: frozen,

almost frozen, focused shot & frozen, moderate, focused shot & low and active.

First, we made an extensive, manually (non-automated) analysis of six randomly

selected projects. We tried to understand how the code and the database schema

evolve simultaneously and find possible patterns. We also developed software that

uses the data files from GitHub to visualize the code and database changes in real-

time using bar charts to help us identify possible patterns.

Finally, to draw more derailed conclusions, as we are not interested in all types of

changes in a SQL file, but only those that affect the schema of the database, we used

files that contained more information about the history of changes in the database,

to export diagrams with the cumulative changes for each program. This tool,

viii

incorporated in the previous one, is made to the standards of the Heraclitus tool

(GitHub: HeraclitusFire) and has also the ability to export these graphs into a web

format to better summarize the information.

ix

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ

Φατιόν Σέχαϊ, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημάτων,

Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο

Ιωαννίνων, Ιούνιος 2021

Μελέτη της Συν-εξέλιξη του Σχήματος και του Κώδικα για Σχεσιακές Βάσεις

Δεδομένων σε Ανοιχτού Κώδικα Έργα.

Επιβλέπων: Παναγιώτης Βασιλειάδης, Καθηγητής

Σε αυτή την διπλωματική εργασία επιχειρούμε να κάνουμε μια μελέτη και ανάλυση

στην συν-εξέλιξη του σχήματος της βάσης δεδομένων και του πηγαίου κώδικα. Η

μελέτη αυτής της συν-εξέλιξης είναι ιδιαίτερα σημαντική καθώς μπορεί να

εντοπίσει μοτίβα στον τρόπο με τον οποίο η ανάπτυξη του κώδικα μπορεί να

επηρεάσει την εξέλιξη του σχήματος, με σκοπό να βοηθήσει τους σχεδιαστές και

προγραμματιστές να αφιερώνουν λιγότερο χρόνο για την τροποποίηση του τρόπου

αποθήκευσης και επεξεργασίας της παρεχόμενης πληροφορίας. Επίσης, μέσω αυτής

της μελέτης μπορούν να μειωθούν οι πιθανές συνέπειες στην συντήρηση του

λογισμικού που θα προκύπταν λόγο της εξάρτηση του κώδικα και του σχήματος

της βάσης δεδομένων ή ακόμα και να βελτιωθεί η απόδοση του λογισμικού και

ενδεχομένως του χρόνου ανάπτυξης του.

Το βασικό ερώτημα αυτής της διπλωματικής εργασίας είναι: Υπάρχει κάποια

συσχέτιση στον τρόπο που η εξέλιξη του πηγαίου κώδικα ενός λογισμικού

επηρεάζει την εξέλιξη της βάσης δεδομένων, και αν ναι, μπορούμε να τα

κατηγοριοποιήσουμε; Για να απαντήσουμε την συγκεκριμένη ερώτηση,

χρησιμοποιήσαμε δεδομένα από το ιστορικό των αλλαγών από τριακόσια πενήντα

(350) προγράμματα (projects), που συλλέχθηκαν με την βοήθεια της πλατφόρμας

του GitHub. Τα έργα (προγράμματα) χωρίστηκαν σε έξι κατηγορίες, συγκεκριμένα:

frozen, almost frozen, focused shot & frozen, moderate, focused shot & low and

active.

Αρχικά, κάνουμε μια εκτεταμένη, μη αυτοματοποιημένη ανάλυση σε έξι τυχαία

επιλεγμένα προγράμματα, προσπαθώντας να καταλάβουμε τον τρόπο που

εξελίσσεται ο κώδικας και το σχήμα βάσης ταυτόχρονα και να βρούμε πιθανά

μοτίβα. Επίσης, αναπτύξαμε ένα λογισμικό που χρησιμοποιεί τα αρχεία με το

x

ιστορικό δεδομένων από το GitHub, για να οπτικοποιήσουμε σε διαγράμματα

μπάρας τις αλλαγές στον κώδικα και τη βάση στον χρόνο, ώστε να μας βοηθήσει

να εντοπίσουμε πιθανά μοτίβα.

Στην συνέχεια, για να εξάγουμε πιο λεπτομερή συμπεράσματα, καθώς δεν μας

ενδιαφέρουν όλες οι αλλαγές σε ένα SQL αρχείο, αλλά μόνο όσες επηρεάζουν το

σχήμα της βάσης, χρησιμοποιήσαμε αρχεία που περιείχαν περισσότερη πληροφορία

για το ιστορικό αλλαγών στην βάση δεδομένων, για να εξάγουμε διαγράμματα με

τις σωρευτικές αλλαγές για κάθε πρόγραμμα. Το εργαλείο αυτό, ενσωματώθηκε

στο προηγούμενο, έγινε στα πρότυπα του εργαλείου Ηράκλειτος (GitHub:

HeraclitusFire) και έχει την δυνατότητα να εξάγει τα γραφήματα αυτά σε

διαδικτυακή μορφή για καλύτερη σύνοψη της πληροφορίας.

1

CHAPTER 1

 INTRODUCTION

1.1 Goals

1.2 Structure of the Thesis

1.1 Goals

The life cycle of each product includes a series of changes, there is no doubt about

that. A software product is not an exception to that maintenance process. The reasons

for those changes usually aim to fix potential problems and faults or extend the

product's features. Almost every software product consists of a database. Due to the

increase of functionalities the source code usually becomes more dependent on the

database. This entails a sequence of changes and modifications to the database,

usually causing schema changes. The terms schema and software co-evolution refer

to those changes.

So far, there is a limited number of studies on this topic. That indicates the difficulty

of analyzing the schema and software co-evolution due to the unavailability of a

large number of open-source projects, with a database and the history in the correct

form, without gaps, to allow us to establish a solid conclusion. The importance of

studying the schema and software co-evolution can be realized if we consider the

problems that can be occurred due to the software changes, without the proper

database changes, leading to failures, information loss or even retrieving the wrong

information. To help the product maintenance or database evolution, it is critical to

identify potential patterns. In this way, we can eliminate all these effects caused by

2

the source code and database dependence, and possibly reduce the time and effort

required or even optimize the product.

Our approach to the topic consists of the research and the tools created to assist it.

First, we tried to better understand how schema and software co-evolve doing a

manual analysis of six randomly selected projects from our data. After that, we

automate the process of analyzing the history activity of software and schema. We

created a new tool that we named Evolution Chart Exporter, using the HeraclitusFire

(on GitHub) as a reference for the line and bar chart exporters. With this tool, we

were able to visualize the changes in each commit to the source code and database

and also visualize the cumulative activity for the project and the schema changes

over time.

In our research, we decided to answer two main questions.

 Research Question 1: What percentage of the projects demonstrates a "hand-

in-hand" co-evolution, where the schema evolution heartbeat closely follows

the heartbeat of the project?

 Research Question 2: What percentage of projects demonstrates the 80-20

rule reported in the literature [3], i.e., 80% of the schema evolution activity

was obtained in the first 20% of the time?

In Chapter 4 we analyze and answer these two questions. We present the process

and the algorithms we used to reach these findings.

1.2 Structure of the Thesis

This thesis consists of o four chapters. The contents of each chapter can be

summarized as follows. In Chapter 2, we analyze and highlight some of the most

significant work, done to contribute to the topic of schema co-evolution with code

and we explain how our work differentiates from the others. In Chapter 3, we made

a manual analysis on schema and code co-evolution for six randomly selected

projects. We also created a tool to help us visualize the number of files changed in

each commit for the project’s life. In this chapter, we introduced six questions and

we tried to answer them. In Chapter 4, we created a tool to compute the cumulative

activity for each project using files with more information on what changed in each

schema commit.

3

CHAPTER 2

 RELATED WORK

2.1 Case Studies of Schema and Software Co-Evolution

2.2 Comparison to the State of the Art

This chapter presents the research work that has been previously done in schema

and software co-evolution and what has been achieved by the efforts in the literature.

The interest in this field has been extremely small in the last decades. In the first

subsection of this Chapter, we review the previous efforts and report on their results.

In the second subsection, we demonstrate a brief comparison of our work and the

studies of the first section.

2.1 Case Studies of Schema and Software Co-Evolution

In 2009, Dien-Yen Lin and Iulian Neamtiu [1] focused their research on the collateral

evolution of applications and databases. The authors use the term collateral evolution

to designate the lack of consistency when database and application code do not

coexist in sync. In this context, the authors define a formula for collateral evolution.

To understand the formula, we will define some parameters the authors used. First,

the authors used D to denote the data and F(D) to denote the data format.

Furthermore, the authors used Fc(D,X) to denote the expected format by client C,

version X and Fs(D,Y) to denote the format provided by the server S, version Y.

4

Now we can introduce the formula authors defined, let X and Y be the data client

and server versions that result from collateral evolution. Let Fc(D,X) be the format

expected by client C and let Fs(D,Y) be the format provided by the server S. The

collateral evolution is potentially incorrect if Fc(D,X) ≠ Fs(D,Y). The authors used two

open-source projects, Mozilla and Monotone to study co-evolution and identify

changes to database schemas. Next, the authors studied the evolution of data format

in three major database management systems, SQLite, MySQL and PostgreSQL. The

main findings of this study are condensed as follows:

● The most frequent modifications are database schema changes followed by

additions and deletions of tables or attributes.

● Concerning the problem of data and software co-evolution, the database

schema and source code does not always evolve in sync. To avoid conflicts

with database and source code, Mozilla uses two methods, the first mechanism

is to ignore the collateral problem and assume that if a database exists, then

the schema version and the schema version of the app are in sync. The second

solution is to determine the versions of the application and database, perform

the schema migration and then access the database. On the other hand, in

Monotone, the authors encounter the collateral evolution problem with the

use of a centralized routine. The authors investigated table additions and

deletions and found “orphan” and useless tables that take up space.

● A different problem that the authors investigate is the file format that a

database management system produces. DBMS producers often change the

file format from one version to another for reasons like performance or storage

size. The most common way for dealing with problems that may show up is

to dump the database into a batch file of SQL commands and recreate the

database with the use of the new DBMS.

In 2011, Shengfeng Wu and Iulian Neamtiu [2] presented their work on schema

evolution analysis for embedded databases and proposed a system to automatically

extract embedded database schemas and source code with the purpose to

automatically compute the schema evolution. The authors studied the evolution

5

within eighteen years of four popular applications containing embedded databases.

The key findings of their study are outlined in the list below.

● A high frequency of table and attribute deletions denotes that embedded

databases are more prone to restructuring, rather than continuous growth.

● The early stages in schemas tend to have a higher number of changes, while

the later versions include few changes and the database stabilizes over time.

● The embedded databases have a lower change rate than the enterprise-class

databases.

In 2013, Dong Qiu, Bixin Li and Zhendong Su [3] made an empirical analysis for

the co-evolution of schema and code in database applications. The authors used ten

popular open-source projects for their study and posed three research questions to

answer how schemas and code co-evolve. These are:

● How frequently and extensively do database schemas evolve? This question

helps to understand whether they intensively evolve during an app’s

development and maintenance process.

● How do database schemas evolve? This question helps to understand what

schema change types usually occur in practice.

● How much application code has co-changed with a schema change? This

question helps to understand the real impact on application code. We are also

6

interested in whether certain schema change types tend to have more impact

on code than others.

The steps authors used to extract the information from project repositories and

answer these questions can be synopsized as follows:

● Locate schema files. Extract the schema files, most files have the .sql suffix

although some projects specify schema information using embedded SQL

statements (e.g. PHP files).

● Extract DB revisions. Identify DB revisions (commits) that contain

modifications to schema files, if a schema file is among the changed files of

revision i, then i is a DB revision.

● Extract valid DB revisions. Filter those revisions containing only related

schema changes.

● Extract atomic changes. Authors extract all schema changes by manually

comparing schema files of contiguous valid DB revisions.

● Co-change analysis. Analyze and calculate the real impact that has been

triggered by these atomic schema changes.

The authors analyzed how information is present in evolution history. Suppose R is

the set of valid DB revisions and 𝐶 represent all committed changes in the r revision,

r is the current one under analysis. Then 𝑆𝐶 are the schema changes and 𝐶𝐶are

the code changes, both are subsets of the 𝐶. The 𝑅𝐶 is the actual code changes

7

caused by 𝑆𝐶. 𝐶𝐶 and 𝑅𝐶 both can be empty, on the contrary to the 𝑆𝐶. The

authors introduce four possible co-change situations:

● (S1) 𝐶𝐶 =⊘ and 𝑅𝐶 ≠⊘.

● (S2) 𝐶𝐶 =⊘ and 𝑅𝐶 =⊘.

● (S3) 𝐶𝐶 ≠⊘ and 𝐶𝐶 ∩ 𝑅𝐶 ≠⊘.

● (S4) 𝐶𝐶 ≠⊘ and 𝐶𝐶 ∩ 𝑅𝐶 =⊘.

The findings of this process are outlined in the subsequent list:

● Database schemas evolve at a high rate during their lifecycle, on average 90

atomic schema changes per year. Also, the variety of their changes follows a

similar distribution in all ten projects.

● In most of the projects, their schema size approaches 80% of their maximum

value within the first 20% of their lifetimes.

● Schema changes urge considerable code modifications. Some change types

trigger more code changes than others.

● More schema changes happened in a small number of tables and nearly half

of schema tables did not change.

● Additions of tables or columns and datatype changes are the most frequent

changes at the low – level of change categories.

● Co-change analyses can be crucial to automate database application evolution.

Moreover, the authors suggest three functionalities that a tool like this should

have.

2.2 Comparison to the State of the Art

In the previous section, we tried to present the most relevant work made until now

in the schema and software co-evolution. We attempted to give a synopsis of the

contribution of each work, leading us to a better understanding of the mechanism

8

that determines how schema and software co-evolve. In our work we analyze this

mechanism in a big dataset, using 350 projects and their history, we tried to

understand how both, schema and code co-evolve and locate patterns. We also made

the first steps to automate the process creating tools to visualize the history activity

for each project.

9

CHAPTER 3

 MANUAL ANALYSIS OF SCHEMA AND CODE CO-

EVOLUTION

3.1 EvolutionChartExporter

3.1.1 Introduction to EvolutionChartExporter

3.1.2 How it works, its Architecture and Design

3.1.3 Testing of EvolutionChartExporter

3.2 Manual analysis of randomly selected projects from GitHub

3.2.1 In-depth study of ALMOS_FROZEN projects

3.2.2 In-depth study of FOCUSED-SHOT_n_FROZEN projects

3.2.3 In-depth study of MODERATE project

3.3 Results and findings from deep investigation

In this chapter, for a better understanding of schema and source code co-evolution,

we choose to make a deeper analysis of six randomly selected projects and manually

examined the history of the commits for these projects. We will present to you our

findings, the schema changes and the triggered code changes. Finally, we will cite

our findings from our deep analysis of the six projects and we will explain how this

study helped us further with our study. We are going to present you also a tool we

created to examine visually the occurrence of code and schema changes over time,

we named that tool EvolutionChartExporter (ECE). Finally, we tried to locate

patterns from the projects.

10

3.1 EvolutionChartExporter

3.1.1 Introduction to EvolutionChartExporter

The main reason we decided to create the EvolutionChartExporter tool is to visualize

how much code and schema changes have been committed over time. To create the

EvolutionChartExporter tool, we used as reference the chart exporter source code

from HeraclitusFire. Firstly, we will make a brief explanation of how this tool works.

In the next subsection, we will deeply analyze the EvolutionChartExporter, what are

its imports and how we extracted these files needed and what are the exports of this

tool. We will also introduce you to the design of the EvolutionChartExporter. In the

section that will follow, we will mention the tests we made to evaluate this tool. As

we mentioned, we collected the commit history for 350 projects from GitHub. Having

this amount of data is unable to select manually which projects we are going to

investigate further. Using EvolutionChartExporter, we are able to have a quick view

of each project's commit history.

3.1.2 How it works, its Architecture and Design

As we mentioned, we used HeraclitusFire as a base to create our tool. HeraclitusFire

has the ability to create different types of charts. For our needs, we used the bar

exporter. The specific thing about this chart exporter is the ability to plot bars above

and below the x-axis. We used the x-axis for the time and the y axis for the number

of changed files in a commit. Above the x-axis, we plotted the number of changed

source code files and below the x-axis, we plotted the number of .sql changed files.

The y-axis counts the changes made. Figure 3.1 below shows an example: (a) the

exported image from the EvolutionChartExporter and (b) the format of the input

file.

11

For our study, we separate the 350 projects into six taxa. The taxa we created were

the following, Frozen, Almost Frozen, Focused Shot and Frozen, Moderate, Focused

Shot and Low and Active. The algorithm used to classify the 350 projects was firstly

introduced in [4] and is shown in Figure 3.2.

Figure 3.2 Taxa of Schema Evolution for FOSS Projects [4]

For each of these projects, we created .tsv files, from the commit history GitHub

provides. The .tsv files consist of 4 columns, Date - Author - NumAffectedFiles -

Contains .sql. Date contains the date of a specific commit in GitHub, Author shows

the username of the person that made the commit. The next column,

NumAffectedFiles contains the number of all files committed. Finally, the Contains

.sql column indicates how many of them were SQL files. It has to be noted that the

(a) (b)

Figure 3.1 Bar chart exported from EvolutionChartExporter (a) the exported image
from the EvolutionChartExporter and (b) the format of the input file

12

third column is a superset containing the fourth column. These files are used from

ECE as input.

In our first attempt, we draw a bar for each commit of the .tsv file. This approach

had two problems. First, for projects with a lot of commits, the exported bar chart

was chaotic and second, it does not give the exact sense of how the project was

maintained over time. We also wanted to monitor the abstention of commits and so

on the absence of maintenance. To solve these problems, we decided to add a new

feature to ECE. Using our existing .tsv files, the ECE can create new .tsv files that

in each row have summed up all the commits for each month. In addition, for

months with no commits, it adds zero lines. The new exported images are based on

these new .tsv files. Next, to make it easier for the user to understand for each

commit how many were code changes and how many of them were SQL changes,

we plot above the x-axis only the number of source code changed, which means that

these are no more a superset containing the number of SQL files changed. Above

the x-axis, we plot only the number of SQL files changed.

Finally, to make it easier to check, compare and find patterns from the visual history

of the projects, we decided to add to the ECE the ability to create a .html file for

each taxon with all images.

3.1.3 Testing of EvolutionChartExporter

To use the EvolutionChartExporter tool and be sure that the exported bar charts are

correct, we made two types of tests, first, we implemented two unit tests and second,

we made visual tests for the exported images.

The unit tests we made were:

1. To check that the sum of commits for each month is correct. This JUnit test

is implemented in the SumTest.java class in the test package of ECE.

2. To check that the months with zero commit have a zero value for the source

code and SQL changes. This JUnit test is implemented in the

AddZerosTest.java of the same package.

The way we implemented both these two tests is: First, we manually created files

with all the possible extreme and bad cases we thought and believed could happen.

After that, we manually created the files with the expected results from these tests

13

and the files we mentioned. In the end, we confirmed the equality from the expected

files and the produced file results from the ECE to check the correctness of these

Java classes.

The second type of test was to examine produced images visually. We made this

type of test because the only way to check if the exported images correspond to the

history from the .tsv files was by the eye. We randomly selected some of our projects

and checked if the exported images correspond to the .tsv files. We also made this

test to the exported images from our test .tsv files.

After all these tests we can say with confidence that ECE works properly and is safe

to use for similar research.

3.2 Manual analysis of randomly selected projects from GitHub

In this subsection, we present our manual examination of six randomly selected

projects. We selected some projects from different taxa for a deeper investigation to

better understand the code and schema coevolution. We selected three projects from

the Almost Frozen taxon, two from Focused Shot and Frozen taxon and one from

moderate. The reason we choose these three taxa is that the more active is a taxon,

there are more commits and schema changes to examine. For the same reason, we

decided to examine three projects from the first taxon and only one from the third.

As we will see, the last project had a huge difference in the commits required to

examine compared to the projects from the first taxon. We expected and noticed that

the number of commits to examining was increasing rapidly from one taxon to the

other. We believe that to do that process multiple times for the next taxa is almost

impossible.

Below, for each project we selected, we will place a table and make some cases and

conclusions we came to, from our deep analysis. Each table has 6 columns. The first

four columns are the same as the .tsv file. The next two columns show the state

before and after the code and the schema changes.

For all the projects presented, we manually examined their commits. As the projects

come with too many commits, we checked only the commits with a schema change

and we decided to use a ‘window’ of ±3 commits from each schema change commit

to observe the impact of those database changes on the source code. Also, we

14

examined all commits with the word fix or bug to see if it was a schema change that

triggered the bug. This approach may lose some commits to source code related to

the schema changes but decreased the time required to do the process dramatically.

Next, in the tables, we show all the commits related to the schema changes and the

commits made to the code to match these schema changes. We show also the

commits triggered from a previous schema change to make fixies to the source code.

We don't present here the commits related only to the code as we are interested in

schema and source code coevolution.

Annotations:

When there are no changes from one commit to another, we will write no change.

When this is written to the code, it means that in this commit, there were no changes

to the code related to the database changes. So, the code related to the database is

the same as the previous commit. For example, if a certain commit changed the way

a function computes an algorithmic result, we are not interested in that. When we

write no change to the DB, it means that in this commit the developers changed only

the code (src part) related to the database (usually these commits are a bug fix). The

‘no change’ refers always to the previous commit we present in the table and not the

previous commit made to the GitHub project.

For each project, we tried to answer six core questions. These questions are:

1) What kind of changes happened to the schema and at the src to sync with

schema evolution?

2) Why did these changes happen, for example, comments made to each commit?

3) When does schema evolution take place?

4) Where in the code/src is the impact of schema evolution and where is the

maintenance effort located?

5) How do people change the schema and maintain the source code?

6) Who is related to the DB/src changes?

15

3.2.1 In-depth study of ALMOS_FROZEN projects

First, we selected three projects randomly from the ALMOST_FROZEN taxon.

These projects are:

1) joomlatools/joomla-platform-categories

2) umpirsky/tld-list

3) josephspurrier/gowebapp

1) joomlatools__joomla-platform-categories

About this project:
The project is a category extension for Joomlatools Platform (Joomlatools Platform is
a modern Joomla stack that helps you get started with the best development tools
and project structure). The description of the project is from GitHub. Joomla
Categories is open-source software licensed under the GPLv3 license. The project
uses PHP 7.0 and MySQL 5. The project started in 2015 and it was active for 3+
years, there are 63 commits made. The owner of the repository is the Joomlatools
organization with 6 people and 47 repositories on GitHub.

Table 3.1 Commits related to the schema for the joomlatools/joomla-platform-
categories project

Date
YYYY-MM-
DD

Who #Src
upd
ates

#SQ
L
upda
tes

State before State after

2015-07-08
03:42:35
+0200

Johan 55 2 DB
No DB

DB
Create 2 .sql files
(create table/drop
table #__categories).
1 table with 27 values.

CODE
No Code

CODE
55 source code files.
Raw Queries
embedded.

16

2015-07-11
00:51:48
+0200

Johan 1 3 DB
No change

DB
- Rename
install.mysql.sql to
install.sql (file
renaming).
- Delete
uninstall.mysql.sql file
and create
uninstall.sql.
- Remove #__ prefix
from database table
names.

CODE
No change

CODE
Change references to
the new file names.

2017-02-08
11:44:42
+0800

Allan 53 1 DB
No change

DB
Change sizes and
encryption, e.g.
- varchar(255) to
varchar(400)
- utf8 to utf8mb4
- utf8_bin to
utf8mb4_bin

CODE
No change

CODE
- Change names,
indentation,
comments (2 md files
not changed).
- Refactor code.
- New embedded SQL
queries.

The removal of #__ prefix from table names (2015-07-11 commit) for the joomla-
platform-categories cost no changes in the source code. This project is a part of the
joomla-platform. After the manual search, we found that Joomla replaces the prefix,
the commit was to match the ‘parent’ project. The source code is still using the
prefix #__ for raw queries and uses the public static function getAssociations to get
an array of associations between database tables and #__tableName.
1) What: Mostly code refactor.
2) Why: 1 was the initial commit and 2 commits with changes to match the
joomla changes and joomlatools repository.

17

3) When: 2 commits at the beginning of the repository’s life and 1 at the end.
4) Where: Commits related to com_category, it contains 7 packages and 3 files
(commits were made to resource and controller packets and the 3 files).
5) How: Data type changes and renames.
6) Who: See the second column for more.

Johan: 2/3 (one was the initial commit)
Allan: 1/3

Figure 3.3 Schema and src commits for joomla-platform-categories, the image
produced from the first version of ECE

2) umpirsky__tld-list

About this project:

This project is a huge list of all top-level domains (TLD) in all data formats. There

is not much source code. The available formats are: Text - JSON - YAML - XML -

HTML - CSV - SQL - MySQL - PostgreSQL - SQLite - PHP. The project started in

2016 and it was active for 2+ years, there are 12 commits made. The owner of the

repository is Saša Stamenković with 226 repositories, 361 followers and 277 stars on

GitHub.

18

Table 3.2 Commits related to the schema for the umpirsky/tld-list project

Date
YYYY-MM-
DD

Who #Src
upd
ates

#SQ
L
upda
tes

State before State after

2016-01-16
15:05:46
+0100

umpir
sky

13 3 DB
No DB

DB
Creates 1 table(the
same 3 times) in 3
SQL files (MySQL,
PostgreSQL, SQLite)
Inserts all tld
domains

CODE
No Code

CODE
Same values in other
formats (PHP, txt,
JSON, HTML, etc)

2016-11-03
16:26:27
+0300

M 7 3 DB
No change

DB
Insert more values

CODE
No change

CODE
Insert the same values
to no SQL format files

2018-02-27
19:56:16
+0100

Saša 8 3 DB
No change

DB
Insert more values
(delete some)

CODE
No change

CODE
Insert/delete the same
values to no SQL
format files

2018-04-15
17:03:30
+0200

Saša 8 3 DB
No change

DB
Insert more values
(delete some)

CODE
No change

CODE
Insert/delete the same
values to no SQL
format files

1) What: Insert new values, in different formats.

2) Why: To include more tld domains.

19

3) When: Commits made at the beginning-middle-end of the project life.

4) Where: Almost in all the files.

5) How: No schema changes.

6) Who: See the second column for more.

umpirsky: - 1/4 (one was the initial commit)

M: -1/4

Saša: - 2/4

Figure 3.4 Schema and src commits for tld-list, the image produced from the
first version of ECE

3) josephspurrier__gowebapp

About this project:
This project is a basic MVC (Model-view-controller) Web Application in Go. The
web app has a public home page, authenticated home page, login page, register page,
about page, and a simple notepad to demonstrate the CRUD operations, the
description of the project is from GitHub (screenshots included on GitHub). The
project started in 2015 and it was active for 2 years, there are 71 commits made. The
owner of the repository is Joseph Spurrier with 50 repositories, 153 followers and
657 stars on GitHub.

Table 3.3 Commits related to the schema for the josephspurrier/gowebapp
project

Date
YYYY-MM-
DD

Who #Sr
c

#SQ
L

State before State after

20

upd
ates

upda
tes

2015-06-28
20:57:10 -
0400

Joseph 34 1 DB
No DB

DB
First commit
CREATE TABLE
user_status
CREATE TABLE user

CODE
No Code

CODE
First commit
Add code

2015-07-04
02:00:09 -
0400

Joseph 18 1 DB
No change

DB
Change path without
file changes.
database/database.sql
→ config/database.sql

CODE
No change

CODE
Changes to DB
connection

2015-07-16
16:34:09 -
0400

Joseph 0 1 DB
No change

DB
Update column sizes
INT(10) to
TINYINT(1)
INT(1) to TINYINT(1)

CODE
No change

CODE
Update sizes in the
code also.
In Go language from
int to uint32 or uint8.

2015-07-26
16:58:36 -
0400

Joseph 6 2 DB
No change

DB
Change the default
database to use SQLite
(from MySQL to
SQLite)
Rename database
(webframework =>
gowebapp)
Add SQLite
configuration file

21

CODE
No change

CODE
Add SQLite driver
Change
models/structures/SQL
ite case

2016-01-31
21:33:31 -
0500

Joseph 4 1 DB
No change

DB
Remove SQLite, set
MySQL again as the
main DBMS

CODE
No change

CODE
Remove SQLite config
file
Remove SQLite case
Add Bolt/Mongo DBs
(as embedded GO
files)

2016-04-24
11:09:13 -
0400

Joseph 15 0 DB
No change

DB
No DB changes

CODE
No change

CODE
Updated variables
names according to
Lint (even db
names/models)

2016-04-26
01:55:51 -
0400

Joseph 1 0 DB
No change

DB
No DB changes

CODE
return
u.ObjectId.Hex()

CODE
Fixing bug
return
u.ObjectID.Hex()

2016-04-26
02:59:18 -
0400

Joseph 16 1 DB
No change

DB
CREATE TABLE note
(6 var)

CODE
No change

CODE
Add note controller
(CRUD)
Delete unused models
(one model/user.go
for all three DBs)

22

2017-05-15
22:21:09 -
0700

Shane 1 1 DB
SET
storage_engine =
InnoDB;

DB
SET
default_storage_engine
= InnoDB;
to allow latest MySQL
to work

CODE
No change

CODE
Change the absolute
file path to relative

1) What: Code refactoring, change default dbms (x2 times), fix typos (e.g. 2016-

04-26 commit), create a new table.

2) Why: Refactoring code and adding more information into the new table.

3) When: Uniformly DB commits into project’s life.

4) Where: Usually commit changes to SQL files and all source code files

using/related to it. There were also bug fixes into 2 files. When there were commits

into the 2 SQL files, there were also commits to 4 specific src files. Sometimes, there

were massive changes to files into model, controller, route and shared packages (e.g.

when a new table was created).

5) How: Change default DBMS and add 1 table.

6) Who: See the second column for more.

 Joseph: 8/9 (one was the initial commit)

23

 Shane: 1/9

Figure 3.5 Schema and src commits for gowebapp, the image produced from the
first version of ECE

3.2.2 In-depth study of FOCUSED-SHOT_n_FROZEN projects

Secondly, we selected three projects randomly from the FOCUSED-

SHOT_n_FROZEN taxon.

These projects are:

1) accgit/acl

2) jasongrimes/silex-simpleuser

4) accgit__acl

About this project:

The project is a simple management of users' permissions. The project is written in

JavaScript, PHP, Latte and CSS. The project started in 2017 and it was active for 2

24

years, there are 271 commits made. The owner of the repository is Zdeněk Papučík

with 5 repositories, 5 followers and 27 stars on GitHub.

Table 3.4 Commits related to the schema for the accgit/acl project

Date
YYYY-MM-
DD

Who #Sr
c
upd
ates

#SQ
L
upda
tes

State before State after

2017-05-23
13:08:53
+0200

Zdeně
k

28 1 DB
No DB

DB
First commit
CREATE TABLE
privileges (2 var)
CREATE TABLE
resources (2 var)
CREATE TABLE
roles (3 var)
CREATE TABLE
permissions(5 var)
Foreign keys to first 3
tables
CREATE TABLE
users (4 var)
CREATE TABLE
access (3 var)
Foreign keys to users,
roles
--- Also
Insert in all tables
default values.
DROP TABLE IF
EXISTS for all 6
tables (in case of an
update)

CODE
No Code

CODE
First commit
Add code basically in
PHP
Include raw queries
into php files for each
table (ORM).

25

2017-06-02
07:12:44
+0200

Zdeně
k

2 1 DB
INSERT INTO
`access` (`id`,
`role`, `user`)
VALUES
(NULL, 3, 1);

DB
INSERT INTO `access`
(`id`, `role`, `user`)
VALUES
(NULL, 2, 1);

CODE
No change

CODE
Rename some classes
and files.
Changes not related to
inserted values.
Interesting fact that
the cache.access was
renamed to cache.acl -
> see commit 2017-
07-31 access table is
renamed to acl.

2017-06-29
12:20:48
+0200

Zdeně
k

0 1 DB
No change

DB
Remove all DROP
TABLE IF EXISTS

CODE
No change

CODE
No change

2017-07-27
10:47:59
+0200

Zdeně
k

0 1 DB
INSERT INTO
`resources` (`id`,
`name`) VALUES
(NULL,
'Web:Web'),
(NULL,
'Web:Login'),
(NULL,
'Admin:Admin');

DB
INSERT INTO
`resources` (`id`,
`name`) VALUES
(NULL, 'Web:Web'),
(NULL, 'Web:Login');

Removes one default
value

CODE
No change

CODE
No change

2017-07-27
13:11:00
+0200

Zdeně
k

1 1 DB
No change

DB
INSERT INTO
`resources` (`id`,
`name`) VALUES
(NULL, 'Web:Web'),
(NULL, 'Web:Login'),

26

(NULL,
'Admin:Admin');

INSERT INTO `roles`
(`id`, `name`, `parent`)
VALUES
(NULL, 'guest', 0),
(NULL, 'member', 1),
(NULL, 'admin', 1);

Inserted one default
value in each table

CODE
// Admin role that
can do everything.
 $acl-
>addRole(self::RO
LE_ADMIN);
 $acl-
>allow(self::ROLE
_ADMIN,
Security\Permissi
on::ALL,
Security\Permissi
on::ALL);

CODE
// Admin role that can
do everything.

deletes one line in file
acl/Authorizator.php

$acl-
>allow(self::ROLE_AD
MIN,
Security\Permission::
ALL,
Security\Permission::
ALL);

2017-07-27
13:12:00
+0200

Zdeně
k

0 1 DB
INSERT INTO
`roles`(`id`,
`name`, `parent`)
VALUES
(NULL, 'guest',
0),
(NULL, 'member',
1),
(NULL, 'admin',
1);

DB
INSERT INTO `roles`
(`id`, `name`, `parent`)
VALUES
(NULL, 'guest', 0),
(NULL, 'member', 1),
(NULL, 'admin', 2);

Last was 1

CODE
No change

CODE
No change

2017-07-27
13:13:02
+0200

Zdeně
k

0 1 DB
INSERT INTO
`access` (`id`,

DB

27

`role`, `user`)
VALUES
(NULL, 2, 1);

INSERT INTO `access`
(`id`, `role`, `user`)
VALUES
(NULL, 3, 1);
(view 2017-06-02
commit)

CODE
Xlo change

CODE
Xlo change

2017-07-31
11:31:57
+0200

Zdeně
k

17 0 DB
No change

DB
No change

CODE
No change

CODE
Rename all ‘id’ to
‘xxxxId’ for the next
commit (xxxx refers to
table’s name).

2017-07-31
12:09:40
+0200

Zdeně
k

0 1 DB
Delete TABLE
access (3 var)
Renames
CREATE TABLE
`privileges` (
`id` int(11)...
CREATE TABLE
`resources` (
`id` int(11)...
CREATE TABLE
`roles` (
`id`int(11)...
CREATE TABLE
`users` (
`id`int(11)...
CREATE TABLE
`users` (
`id` int(11)...

DB
CREATE TABLE acl
(3 var)
Actually, rename
access to acl
Move permissions
TABLE on top of the
file.
Change id in INSERT
for default values
from NULL to
number 1,2..

Renames
‘id’ -> ‘****Id’
CREATE TABLE
`privileges` (
 `privilegeId`
unsigned...
CREATE TABLE
`resources` (
 `resourceId`
unsigned...
CREATE TABLE
`roles` (
 `roleId` unsigned ...

28

CREATE TABLE
`users` (
 `userId` int(11)
unsigned ...

CODE
No change

CODE
No change. Variable
names in sync from
the previous commit.

2017-08-01
07:04:03
+0200

Zdeně
k

0 1 DB
No change

DB
Rearrange CREATE
TABLE
‘permissions’ and
‘acl’
Add them both in the
end of the file

CODE
No change

CODE
No change

2017-08-01
07:04:03
+0200

Zdeně
k

0 1 DB
INSERT INTO
`privileges`
(`privilegeId`,
`name`) VALUES
(1, 'default');

DB
Fix indentation (add
tabs)
Make id in INSERT
null from number,
e.g.,
INSERT INTO
`privileges`
(`privilegeId`, `name`)
VALUES
(NULL, 'default');

CODE
No change

CODE
No change

2017-08-03
08:31:52
+0200

Zdeně
k

0 1 DB
No change

DB
Commit just to add 1
tab

CODE
No change

CODE
No change

2017-08-03 Zdeně 0 1 DB DB

29

08:33:40
+0200

k (NULL,
'Admin:Admin'),
(NULL,
'Web:Login'),
(NULL,
'Web:Web');

INSERT INTO
`resources`
(`resourceId`, `name`)
VALUES
(NULL, 'Web:Web'),
(NULL, 'Web:Login'),
(NULL,
'Admin:Admin');
Rearrange...

CODE
No change

CODE
No change

2017-09-19
07:14:50
+0200

Zdeně
k

1 1 DB
INSERT INTO
`privileges`
(`privilegeId`,
`name`) VALUES
(NULL, 'default');

DB
INSERT INTO
`privileges`
(`privilegeId`, `name`)
VALUES
(NULL, ':all'),
(NULL, 'default');

:all was not a default
value

CODE
$row->privilege
=== ':all' ? $row-
>privilege =
Security\Permissi
on::ALL : $row-
>privilege;

CODE
const
PRIVILEGE_ALL =
':all';
$row->privilege ===
self::PRIVILEGE_ALL
? $row->privilege =
Security\Permission::
ALL : $row-
>privilege;

2017-09-20
06:50:19
+0200

Zdeně
k

0 1 DB
int(11) or int(10)

DB
Change data type for
all tables to
smallint(5)

CODE
No change

CODE
No change

2018-01-18
12:02:08
+0100

Zdeně
k

0 1 DB
(NULL, ':all')

DB
(NULL, '.*') into table
privileges

30

CODE
No change

CODE
No change

2018-01-18
12:07:04
+0100

Zdeně
k

0 1 DB
(NULL, '.*')

DB
(NULL, ':all') into
table privileges

CODE
No change

CODE
No change

2018-07-27
14:50:20
+0200

Zdeně
k

0 1 DB
No change

DB
No change, make all
inserts into one line

CODE
No change

CODE
No change

1) What: There are 6 tables created and ORM access to them. The developer
removed drop tables if they exist. Most of the commits were: insert/remove default
values or change them. Rename table/col_names (id->****Id) and classes/files.
Change data types. Fix the indentation or rearrange the code lines.
2) Why: Most commits to change default values.
3) When: Most of them are at the beginning of the repository's life, but there are
also commits at the middle and the end of the project’s life.
4) Where: There is only one db.sql file. Usually, Object related (ORM) files with
each table, or files/methods using them.
5) How: Usually to change default values, sometimes bug fixes, e.g. from
renames.
6) Who: See the second column for more.
 Zdeněk: 18/18 (one was the initial commit)

31

Figure 3.6 Schema and src commits for acl, the image produced from the first
version of ECE

5) jasongrimes__silex-simpleuser

About this project:

A simple, extensible, database-backed user provider for the Silex security service.

SimpleUser is an easy way to set up user accounts (authentication, authorization,

and user administration) in the Silex PHP micro-framework. The project provides

drop-in services for Silex that implement the missing user management pieces for

the Security component. The project includes a basic User model, a database-backed

user manager, controllers and views for user administration, and various supporting

features. The description of the project is from GitHub. The project was written in

PHP. The project started in 2013 and it was active for 3 years, there are 153 commits

made. The owner of the repository is Jason Grimes with 35 repositories, 43 followers

and 16 stars on GitHub.

32

Table 3.5 Commits related to the schema for the jasongrimes/silex-simpleuser
project

Date
YYYY-MM-
DD

Who #Sr
c
upd
ates

#SQ
L
upda
tes

State before State after

2013-04-14
14:53:22
+0000

Jason 6 1 DB
No DB

DB
CREATE TABLE
users (7 var)

CODE
No Code

CODE
First commit

2014-08-24
08:56:21 -
0400

Jason 2 1 DB
No change

DB
CREATE TABLE
user_custom_fields (3
var)

CODE
No change

CODE
Add functions into
the code to handle the
new table

2014-08-24
09:18:33 -
0400

Jason 0 1 DB
user_id INT(11)
UNSIGNED NOT
NULL
AUTO_INCREM
ENT
...
value
VARCHAR(255)
NOT NULL
DEFAULT ''

DB
Changes in the
user_custom_fields
table
user_id INT(11)
UNSIGNED NOT
NULL
...
value VARCHAR(255)
DEFAULT NULL

CODE
No change

CODE
No change

2014-08-24
09:31:08

Jason 0 1 DB
No change

DB
Add a new empty line
between two tables in
the sql file.

CODE
No change

CODE
No change

33

2014-08-24
10:02:09 -
0400

Jason 0 1 DB
`password`
VARCHAR(255)
NOT NULL
DEFAULT ''

DB
Changes in the users
table
`password`
VARCHAR(255)
DEFAULT NULL

CODE
No change

CODE
No change

2014-08-24
10:35:56 -
0400

Jason 1 0 DB
No change

DB
No change

CODE
No change

CODE
Extra code for the
new table when ->
Reconstitute a User
object from stored
data
if(!empty($data['custo
mFields'])){ $user-
>setCustomFields($dat
a['customFields']);
}

2014-09-04
00:52:31 -
0400

Jason 5 1 DB
No change

DB
Add SQLite (same
tables)

CODE
No change

CODE
Add DB tests for
SQLite tables

2014-10-01
17:14:25 -
0400

Jason 3 0 DB
No change

DB
No change

CODE
public function
getUsername(){
return $this-
>email;

CODE
Add an optional
username field, and
allow logging in with
either email or
username. (Username
is stored as a custom
field for backward
compatibility.)

34

Return username, if
not empty, otherwise
the email
public function
getUsername(){
return $this-
>getCustomField('user
name') ?: $this-
>email;}
See 2014-10-20 Jason
commit (username
was added the to db)

2014-10-20
01:52:10
+0200

enyoso
lutions

3 2 DB
No change

DB
Add for both MySQL
& SQLite new
columns.
alter table users add
username
varchar(100)
DEFAULT NULL;

CODE
No change

CODE
Add username in the
code and change the
structure of some
functions.

2014-10-20
01:52:10
+0200

enyoso
lutions

2 2 DB
No change

DB
Re-commit the same
changes with the
previous commit into
the 2 files.

CODE
No change

CODE
Re-commit the same
changes with the
previous commit into
the 2 files.

2014-10-20
01:58:47
+0200

enyoso
lutions

1 0 DB
No change

DB
No change

CODE
No change

CODE
Re-commit the same
changes from the.

35

Next commit cancels
this commit.

2014-10-20
23:17:27 -
0400

Jason 3 2 DB
No change

DB
Add 4 columns into
the users table, for
both mySql and
sqLite.

CODE
No change

CODE
Add new fields to src
objects related to table
mapping (ORM).

2014-10-21
00:44:53
+0200

enyoso
lutions

2 2 DB
No change

DB
Cancel the changes
(alter...) made in the
previous commit.

CODE
No change

CODE
Cancel the changes
into the 2 from the 3
files changed in the
previous commit.
Cancels were made by
Jason (conflicts) who
started the project.

2014-10-25
16:19:26 -
0400

Jason 3 1 DB
No change

DB
Add support for
migrating the
database from version
1.x to 2.0 and back
again. Add-v1 SQLite

CODE
No change

CODE
Add readme and code
(and test) to help
migration from V1 to
V2.

Few update
in .md

 DB
No change

DB
No change

CODE
No change

CODE
Few updates, not
related to schema

36

2014-10-28
06:38:16 -
0400

Jason 1 0 DB
No change

DB
No change

CODE
'username' =>
$user-
>getUsername()

CODE
Fix bug causing email
address to be stored
as username
'username' => $user-
>getRealUsername()
View 2014-10-20
Jason commit.

1) What: Changes happened: create/add table, data type changes, add new

DBMS, add columns, add support for migration. Also, after a schema change,

commits were made to src, at the same commit or at the same day. There was one

bug fix 8 days after the db changed (last commit).

2) Why: To update schema with more info, add DBMS and migration ability.

3) When: At the beginning, middle and at the end of the project’s life.

4) Where: Usually to the same files (2 sql files, src files related to user model and

test files for the db).

5) How: Make changes in the db schema, add dbms and migration support.

6) Who: See the second column for more.

 Jason: 11/15 (one was the initial commit)

 enyosolutions: 4/15 (commits canceled due to conflicts)

37

Figure 3.7 Schema and src commits for silex-simpleuser, image produced from
the first version of ECE

3.2.3 In-depth study of MODERATE project

Finally, we selected one project randomly from the MODERATE taxon.

This project is:

1) mapbox/osm-comments-parser

6) mapbox__osm-comments-parser

About this project:

The project consists of parsers to read Notes and Changeset XML files and save them

in a Postgres DB. The project was written in JavaScript. The project started in 2015

and it was active for 2 years, there are 183 commits made. The owner of the

repository is the Mapbox organization with 55 people and 849 repositories on

GitHub.

Table 3.6 Commits related to the schema for the mapbox/osm-comments-parser
project

Date
YYYY-MM-
DD

Who #Sr
c
upd
ates

#SQ
L
upda
tes

State before State after

2015-11-10
11:51:44
+0530

Sanjay 18 1 DB
No DB

DB
First commit
CREATE TABLE IF
NOT EXISTS
users (var 2)
notes (var 5)
note_comments (var
6)
changesets (var 7)
changeset_tags (var
7)
changeset_comments
(var 5)

CODE CODE

38

No Code First commit, insert
readme and source
code, mostly in
javascript(1 js file for
each db table to
handle, ORM).
Test files added also.

2015-11-13
19:36:07
+0530

Sanjay 2 0 DB
No change

DB
No change

CODE
No change

CODE
Fix, add opened_by
user as an attribute
of notes
Add
var _ =
require('underscore');
and function to
handle it, change
functions that where
using node table

2015-11-16
13:03:58
+0530

Sanjay 3 0 DB
No change

DB
No change

CODE
var userID =
comment.UID
||null;
var userName =
comment.USER ||
null;
var timestamp =
comment.DATE;

CODE
Fix bug of not saving
discussion users and
timestamps correctly
var userID =
comment.attributes.U
ID || null;
var userName =
comment.attributes.U
SER || null;
var timestamp =
comment.attributes.D
ATE;

2015-11-19
12:05:42
+0530

Sanjay 3 2 DB
Into
create_tables.sql

DB
UPDATE changesets
SET bbox =
ST_MakeEnvelope(m
in_lon, min_lat,

39

1- Table
changesets
user_id integer
REFERENCES
users (id),
bbox
geometry(POLYGO
N, 4326)

2- Table
changeset_tags
changeset_id
integer
REFERENCES
changesets (id)
3- Table
changeset_commen
ts
changeset_id
integer
REFERENCES
changesets (id),
 user_id integer
REFERENCES
users (id) NULL

max_lon, max_lat,
4326);
1- Table
user_id integer,
min_lon float NULL,
min_lat float NULL,
max_lon float NULL,
max_lat float NULL,
bbox
geometry(POLYGON,
4326)NULL

2- Table
changeset_id integer

3- Table
changeset_id integer,
user_id integer NULL

Generate CSV files
that can be \Copied
into postgres, refs
ADD file
changesets/post_initia
l.sql

CODE
Xlo change

CODE
Add changesets/csv.js
and change functions
for the db changes

2015-11-23
14:14:24
+0530

Sanjay 0 1 DB
No change

DB
Add SQL file to
create indexes

CREATE INDEX
changesets_created_at
_idx ON
changesets(created_at
);
CREATE INDEX
changesets_closed_at_
idx ON

40

changesets(closed_at)
;
+++ more

CODE
No change

CODE
No change

2015-12-09
16:47:53
+0530

Sanjay 0 2 DB
No change

DB
move sql files to
scripts/ folder
create_indexes.sql →
scripts/create_indexes.
sql
create_tables.sql →
scripts/create_tables.sq
l

CODE
No change

CODE
Xlo change

2015-12-17
14:55:18
+0530

Sanjay 4 1 DB
No change

DB
Table changesets
Add:
discussion_count
integer

CODE
No change

CODE
Change functions.
Populate and write
test. Change
indentation.

2015-12-18
11:40:43
+0530

Sanjay 0 1 DB
No change

DB
Create index on
discussion_count and
comments timestamp
(for sorting)
CREATE INDEX
changesets_discussion
_count_idx ON
changesets(discussion
_count);
CREATE INDEX
changeset_comments_
timestamp_idx ON

41

changeset_comments(
timestamp);

CODE
No change

CODE
No change

2016-01-20
15:00:10
+0530

Sanjay 1 0 DB
No change

DB
No change

CODE
var updateQuery =
'UPDATE notes
SET created_at=$2,
closed_at=$3,
point=ST_GeomFr
omText($4, 4326)
where id=$1';

CODE
Update note if
closed_at has
changed
var updateQuery =
'UPDATE notes SET
created_at=$2,
closed_at=$3,
opened_by=$4,
point=ST_GeomFrom
Text($5, 4326) where
id=$1';

2016-02-23
13:31:37
+0530

Sanjay 0 1 DB
No change

DB
changesets/post_initia
l.sql
\COPY
users(id,name)
FROM 'csv/users.csv'
DELIMITERS ',' CSV;

CODE
No change

CODE
No change

2016-11-29
17:15:15
+0530

Sanjay 5 2 DB
\COPY
changesets(id,
created_at,
closed_at, is_open,
user_id,
num_changes,
min_lon, min_lat,
max_lon, max_lat)
FROM
'csv/changesets.csv'
DELIMITERS ','
CSV;

DB
Save is_unreplied
boolean, add to
schema
\COPY changesets(id,
created_at, closed_at,
is_open, user_id,
num_changes,
is_unreplied,
min_lon, min_lat,
max_lon, max_lat)

42

FROM
'csv/changesets.csv'
DELIMITERS ',' CSV;
Table changesets add
is_unreplied boolean

CODE
No change

CODE
Populate new value
and fix tests.

2016-11-29
17:53:21
+0530

Sanjay 1 0 DB
No change

DB
No change

CODE
No change

CODE
Add utils
module.exports = {};
module.exports.getIs
Unreplied =
getIsUnreplied;
function
getIsUnreplied(uid,
comments) {
var lastComment =
comments.slice(-
1)[0];
if
(lastComment.attribut
es.UID === uid) {
 return false;
 } else {
 return true;
 }
}

2016-11-29
18:33:58
+0530

Sanjay 2 2 DB
No change

DB
Add to changesets
username text
Add it to \COPY
changesets(...

CODE
No change

CODE
Populate new field

2016-11-30
11:38:29
+0530

Sanjay 4 3 DB
No change

DB
Deletes
changeset_tags table

43

Add to changesets
table
comment text NULL,
source text NULL,
created_by text
NULL,
imagery_used text
NULL,

Delete \COPY
changeset_tags(...

Remove 4 indexes
about
changeset_tags_...
Add CREATE
INDEX
changesets_comment_
tsvector_idx

CODE
No change

CODE
Remove functions
using the deleted
table
(changeset_tags) and
change functions
handling the changed
table (changesets).
Add
getChangesetTags()
to utils (retrieves the
4 new inserted values
to changesets table)

2016-12-01
12:34:35
+0530

Sanjay 1 1 DB
No change

DB
Add to
changeset_comments
username TEXT
NULL

CODE
No change

CODE
Add variable and
function using the
table
(changesets/db.js)

44

2016-12-01
12:39:50
+0530

Sanjay 1 1 DB
No change

DB
Add \COPY
changeset_comments(
...

CODE
No change

CODE
Handle username in
changeset_comments
for initial csv
generation.
Add attribs.USER ?
attribs.USER : null

2016-12-01
12:41:44
+0530

Sanjay 0 1 DB
No change

DB
Create indexes on
username fields

CODE
No change

CODE
No change

2017-01-16
17:45:52
+0530

Sanjay 4 2 DB
No change

DB
Add columns to
users table
name text,
first_edit
timestamptz,
changeset_count
integer,
num_changes integer
Add to post_initial
\COPY users(...

CODE
No change

CODE
Add additional user
metadata also to
functions

2017-01-25
12:17:17
+0530

Sanjay 6 2 DB
No change

DB
Add to \COPY
changesets(..,
discussion_count,...
CREATE INDEX
changesets_is_unrepli
ed_idx ON
changesets(is_unrepli
ed);

45

Field was added
2015-12-17

CODE
No change

CODE
Add it to csv file and
make/fix tests

2017-02-01
15:21:58
+0530

Sajjad 3 1 DB
No change

DB
CREATE TABLE IF
NOT EXISTS stats
(var 10)

CODE
objects/objUser.js

tags: {}

CODE
Change function
countTags(users, obj)
tags_modified: {},
tags_created: {},
tags_deleted: {}

2017-02-01
16:28:42
+0530

Sajjad 4 1 DB
id integer
PRIMARY KEY

DB
Change into table
stats
id serial PRIMARY
KEY

CODE
No change

CODE
Create objects/db.js to
write/save changes to
db, rename some
variables

2017-02-01
16:54:06
+0530

Sajjad 5 1 DB
first_edit
timestamptz

DB
Into table users
(nullable)
first_edit timestamptz
NULL

CODE
callback(userID)

CODE
Fix: callback(null,
userID);
Rename variables,
delete 2 js files,use
userModel instead of
objUser.js and tags.js
(not used any more,

46

see next commit, no
need to filter tags)

2017-02-01
18:04:08
+0530

Sajjad 6 0 DB
No change

DB
No change

CODE
No change

CODE
Creates changes/user-
model.js
Used in last commit
(deleted
changes/objUser.js)
Basic tests

2017-02-03
15:09:31
+0530

Sajjad 1 1 DB
changesets integer
NULL

DB
Table stats
changesets integer
ARRAY

CODE
val.changesets =
.size(.uniq(val.ch
angesets));

CODE
val.changesets =
_.uniq(val.changesets
);

2017-03-28
11:31:59
+0530

Kusha
n

1 0 DB
No change

DB
No change

CODE
var firstEditDate =
new
Date(userRow.first
_edit) ?
userRow.first_edit :
null;

CODE
In users/db.js file

var firstEditDate =
userRow.first_edit ?
new
Date(userRow.first_e
dit) : null;
After the 2017-02-01
commit.

2017-03-31
14:01:40
+0530

Kusha
n

2 0 DB
No change

DB
No change

CODE
var
checkUserQuery =
'SELECT id, name,

CODE
Add first_edit to
user select query,
wasn’t retrieved ->

47

changeset_count,
num_changes from
users where id=$1';

was always null (see
previous commit)
var checkUserQuery
= 'SELECT id, name,
changeset_count,
num_changes,
first_edit from users
where id=$1';

2017-04-07
16:55:35
+0530

Kusha
n

8 1 DB
id serial PRIMARY
KEY

DB
Table stats
id uuid PRIMARY
KEY

CODE
No change

CODE
No src changes
related to db
changes.
From the commit
comment: Fix
duplicate stats data
(adds replicationId),
add tests.

2017-04-07
17:55:17
+0530

Sanjay 0 1 DB
No change

DB
Add indexes
CREATE INDEX
stats_change_at_idx
ON stats(change_at);
CREATE INDEX
stats_uid_idx ON
stats(uid);

CODE
No change

CODE
No change

2017-08-03
16:38:23
+0530

Sajjad 3 1 DB
No change

DB
Table stats add rows
nodes_created bigint
ARRAY,
ways_created bigint
ARRAY,
relations_created
bigint ARRAY,
nodes_modified
bigint ARRAY,

48

ways_modified bigint
ARRAY,
relations_modified
bigint ARRAY,
nodes_deleted bigint
ARRAY,
ways_deleted bigint
ARRAY,
relations_deleted
bigint ARRAY

CODE
No change

CODE
Add new variables
from table to to the
code and to
counter.js

2017-08-04
12:26:02
+0530

Sajjad 1 0 DB
No change

DB
No change

CODE
No change

CODE
Add new field from
stats table to update
query

1) What: Create/delete tables not only at the beginning as usually for the previous

projects, also add/remove src code for these tables. Fix bugs into src occurred by

schema changes. Add features to the project. Move SQL files to a folder. Add/delete

attributes/columns into tables. Multiple data type changes in the project’s life.

2) Why: Add features to the project, bug fixes and code refactor.

3) When: Uniformly spread commits.

4) Where: Usually the same files (group of files).

5) How: Schema changes and src maintenance mostly.

6) Who: See the second column for more.

 Sanjay 27/30 (one was the initial commit)

 Kushan 3/30

49

Figure 3.8 Schema and src commits for osm-comments-parser, the image

produced from the first version of ECE

3.3 Results and findings from deep investigation

In this section, we group our findings and answer the six main questions mentioned

before for all projects together. We also locate and export patterns of how schema

and source code coevolve, for example frequently affected packages, how the schema

life compares to the source code life.

In general, we observed that at the very first commits, the developers uploaded a

large number of files and then mostly change and edit these files. That indicates that

possibly before the use of GitHub, developers have been working into the project

‘locally’, so, we have lost bug fixes and possibly schema changes. This phenomenon

seems to be more intense for the almost_frozen taxon, and the more active a taxon

was, the more the project has been developed progressively.

50

1) WHAT

We have mapped the schema and src changes for a better understanding of what

each group of schema changes cost to source code. In Figure 3.9, we depict at the

left column the projects we investigated. In the middle column, we depict the schema

changes we found in these projects and in the right column we depict the changes

that occurred to the source code. For each project, we used a different color to color

the project box border and arrows to schema changes (e.g. red color for the joomla-

platform-categories). We can summarize the schema changes and the source code

changes we found into fifteen and nine types respectively. The schema change types

are: File rename, File relocation, Update datatypes, Insert values (rows), Switch

DBMS, Create a new table, Delete table, Change of the storage engine,

Correcting/Updating previous values, Rename attributes, New DBMS added, Add

attributes (columns), Delete attributes (columns), Index, No schema changes. The

source code change types are: Changes unrelated to schema changes, Keep src in

sync with the new values, Sync sizes in code, Sync code, Table controller added,

cleanups’ of table models/code, Add DB tests, Fix bugs triggered from schema

changes (previous) and Various changes.

51

Figure 3.9 Analysis of schema changes per project and their impact on source

code

In Figure 3.9, to make it easier to find patterns, we categorized the schema changes
to a higher level. We can see where each schema change belongs from the colors the
blocks are colored.
These categories are:

1) Schema change @logical level (orange).
2) Change @accompanying data in the Data Definition Language File (blue).
3) Change @engine supported (green).
4) Change @accompanying database code (red).
5) Change @physical level (yellow).

52

Figure 3.10 Grouped schema changes and their impact on source code

In Figure 3.10 we can clearly identify what impact has each group of schema change
to the source code.

2) WHY

From our investigation of the six previous projects, we found out that in general, the
most commits were to insert new values, e.g. new default values, to add more
features to the project (e.g. a new table to save extra information or the user) and
code refactoring or bug fixes after schema changed.

Table 3.7 Reasons schema changes happen to each project

Project Reasons

1)joomlatools__joo
mla-platform-
categories

Changes to match joomla changes and joomlatools repository.

2)umpirsky__tld-
list

To include more tld domains (add rows).

53

3)josephspurrier__g
owebapp

Refactor the code and add extra information (a new table note was
added).

4)accgit__acl Most commits were to change default values (inserted rows e.g.
admin).

5)jasongrimes__sile
x-simpleuser

Update schema with more info, add new DBMS and migration
ability.

6)mapbox__osm-
comments-parser

Add new features, bug fixes and code refactoring.

3) WHEN

At the six projects we examined, we found that there were commits to the schema
and the source code while the project was alive. On most of them, the commits were
uniformly spread in relation to the project’s life.

Table 3.8 When schema commits happened to each project

Project When schema commits happened

1)joomlatools__joo
mla-platform-
categories

Two commits at the beginning of the project’s life and one at the
end.

2)umpirsky__tld-
list

Three commits, one at the beginning, one in the middle and one at
the end of the project’s life.

3)josephspurrier__g
owebapp

Uniformly spread commits to the database in the project’s life.

4)accgit__acl Most of the commits were at the beginning of the project, but there
are also commits at the middle and the end of the project’s life.

5)jasongrimes__sile
x-simpleuser

Uniform commits, at the beginning, in the middle and at the end
of the project’s life.

6)mapbox__osm-
comments-parser

Uniformly spread commits.

54

6) WHO

From what we can see, the projects with more active schema evolution, tend to have
most of the commits made to the project concentrated to one person.

Table 3.9 Who made schema commits to each project
Projects Percentage (%) of

developers committing
schema changes

Percentage (%) of commits made
by the developer with the highest

percentage of changes
joomlatools__joomla
-platform-categories

50% 66.6%

umpirsky__tld-list 100% 50%
josephspurrier__gow
ebapp

66.6% 88.8%

accgit__acl 50% 100%
jasongrimes__silex-
simpleuser

25% 73.3%

mapbox__osm-
comments-parser

50% 90%

55

CHAPTER 4

CUMULATIVE ANALYSIS OF SCHEMA AND CODE

CO-EVOLUTION

4.1 Cumulative analysis and algorithm

4.1.1 Introduction to cumulative analysis

4.1.2 Algorithm of cumulative analysis

4.1.3 Comment on the generation of monthly schema stats

4.2 Expanding of EvolutionChartExporter

4.2.1 How EvolutionChartExporter computes and visualize the cumulative

activity of the projects

4.2.2 Testing the cumulative analysis of EvolutionChartExporter

4.3 Answering the research questions

4.3.1 Research question 1, What percentage of the projects demonstrates a

"hand-in-hand" schema and source code co-evolution?

4.3.2 Research question 2, how premature is schema evolution completion?

In the following chapter, we provide a cumulative analysis of our dataset in order

to be able to answer the two research questions we introduced in chapter 1. We

added to the EvolutionChartExporter the ability to compute and visualize the

cumulative activity as we will show in the next sections. In the next sections of this

chapter, we present how we have obtained the required results and the algorithms

we used. Finally, we discuss our findings on the two research questions we made at

the beginning of this thesis.

56

4.1 Cumulative analysis and algorithm

4.1.1 Introduction to cumulative analysis

For our study in schema and software co-evolution, we made a cumulative analysis

of the activity for each project in every taxon. The cumulative percentage is a running

total of the percentage values occurring across a set of responses. The total will either

remain the same or increase, reaching the highest value of 100% after totalling all

of the previous percentages. For example, if the percentage of a project’s progression

in 4 quarters of a year is 40%, 25%, 20%, and 15%, respectively, the cumulative

percentage values would be 40%, 65%, 85%, and 100%, for each quarter.

The formula for the cumulative percentage is as follows:

𝑐𝑢𝑚𝑃𝑐𝑡 =
1

𝑇𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

ୀ

= 𝑐𝑢𝑚𝑃𝑐𝑡ିଵ +
𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑇𝑜𝑡𝑎𝑙𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦

with acitvityk being the activity in the k-th time unit, and TotalActivity is the total

amount of activity measured for the entire lifetime of a project.

The above formula obviously applies to all kinds of activity measurements, like

projectActivity, schemaEvolutionActivity, Expansion, Maintenance, etc.

Using the files from chapter 3, to find the projects duration and total activity and

the exported MonthlySchemaStats files from the Heraclitus (on GitHub:

https://github.com/pvassil/HeraclitusFire), we created a new file for each project with

the computed cumulative activities. The new file consists of six columns, these are:

Month, SchActivity, PrjActivity, cumulPtime, cumulSchActivity, cumulPrjActivity.

 The first column counts from 0…n, with n the project life in months.

 The SchActivity column, consists of the attributes changed from the commits

made in the month i, this value is computed by Heraclitus and is located in

the TotalAttrActivity column of the MonthlySchemaStats file.

 The PrjActivity counts the number of files that changed in the commits made

the month i (contains source code and database files).

 The cumulPtime contains the percentage of the projects’ life until the month

i.

57

 The cumulSchActivity column contains the cumulative percentage of the

SchActivity column over time.

 Finally, the cumulPrjActivity column contains the cumulative percentage of

PrjActivity values over time.

In section 4.2 we will explain the tool we created to compute the cumulative analysis

and the tests we made.

4.1.2 Algorithm of cumulative analysis

In the previous section, we gave a definition of what a cumulative percentage is. In

this section, we present the algorithm that we used for our research and we

implement it in the EvolutionChartExporter. The main feature of the cumulative

percentage is the use of the previous value [i-1] to find the current value [i].

 totDur is the total duration/life of the project in months

 totPrjAct is the total number of changed files, the sum of changed files in

every commit, contains the source code files and the database files (sum of all

prjActivity[]).

 totSchAct is the total number of changed attributes, the sum of changed

attributed according to the MonthlySchemaStats file exported from

HeraclitusFire (sum of all SchActivity[]).

 prjActivity[] is an array with the number of the changed files every month.

 SchActivity[] is an array with the number of changed attributes each month.

The algorithm we implemented is introduced in Algorithm 4.1.

Algorithm Computation of the Cumulative percentage

1: int totDur = getTotalDuration()

2: int totPrjAct = getTotalPrjActivity()

3: int totSchAct = getTotalSchemaActivity()

4:

5: prjActivity[] = getPrjActivity()

6: SchActivity[] = getSchActivity()

58

7:

8: cumulPrjActivity[0] = prjActivity[0] / totPrjAct

9: cumulSchActivity[0] = SchActivity[0] / totSchAct

10: cumulPTime[0] = 0

11:

12: for each month i in 1..totDur

13:
 cumulPrjActivity[i] = cumulPrjActivity[i-1] + (PrjActivity[i]

/TotPrjActivity)

14:
 cumulSchActivity[i] = cumulSchActivity[i-1] +

(SchActivity[i]/TotSchActivity)

15: cumulPtime[i] = i / totDur

16: end for

Algorithm 4.1 Computation of cumulative percentage

From the definition of cumulative percentage, we can see that all cumulative

variables cumulPrjActivity[n], cumulSchActivity[n], cumulPtime[n], with n equals to

the last month, have to be 1.0 (or 100%).

4.1.3 A comment on the generation of Monthly Schema Stats

Before we continue and present the tool we made to compute and visualize the

cumulative percentage, we will open a parenthesis to make a comment on how

Heraclitus produce the schema monthly stats and why we should know it. Heraclitus

produces two kinds of statistics:

- Evolutionary statistics for the heartbeat of the schema evolution, in which, the

originating version of the schema life is not included: the aim of these statistics

is to quantify how much the schema has changed after its birth.

- Monthly statistics for the heartbeat of the schema evolution, that compute the

number of changes for each month, and, in which, the originating version is

included.

Thus, the total sum of activity changes is different in these two kinds of evidence,

and differs with respect to the number of attributes born in the originating version.

In the rest of our deliberations, we will refer to the monthly stats, as this is the

59

respective measure that we can use to compare against the monthly stats of the

project activity.

4.2 Expanding of EvolutionChartExporter

4.2.1 How EvolutionChartExporter computes and visualize the

cumulative activity of the projects

In this chapter, we will present the extension we incorporated into the first version

of EvolutionChartExporter, as presented in section 3. The structure of the

EvolutionChartExporter remained the same, although we added the ability to the

software to create line charts this time.

In more detail, we implemented the next new classes:

 ComputeCumulativeEngine: This is an engine class, responsible to compute

the cumulative percentage and extorting it to a file.

 CumulativeDataLoader: This class was created to load the required files for

each project (CommitSummary and MonthlySchemaStats files). These files are

important to find the activities of each project and schema, as we saw in the

algorithm before. The loader uses the AddZeroEngine implemented in section

3, to add zero months with no activity, so the schema activity can match the

project activity.

 CumulativeModel: This class is an object that contains the six values we save

to our cumulative file (these values are: Month, SchActivity, PrjActivity,

cumulPtime, cumulSchActivity, cumulPrjActivity). Each object is an instance

of an activity month (one line in the file).

 LineChartExporter: With this class, we were able to export the line chart

images. The line chart contains two lines, one for the project activity and one

for the schema activity.

 ProduceCumulativeImageEngine: It is using the LineChartExporter to create

the images. For each project, we produce two images, one with a percentage

of the time, using the cumulTime column, and the other with absolute time,

using the month column.

60

Figure 4.1 shows a flow chart of how EvolutionChartExporter creates the cumulative

files and images.

Figure 4.1 EvolutionChartExporter flow chart.

Figure 4.2 shows the class diagram of the EvolutionChartExporter. Only the

functionality classes are shown here, the JUnit class tests are not shown.

61

Figure 4.2 Class diagram of EvolutionChartExporter.

In Figure 4.3, we can see an example of a line chart image exported from the tool

we created. In the image, we can see that both of the lines are always increasing (or

remaining the same, never decreasing). Also, both lines end up at 100%, in the Y-

axis is 1.0 (represents the 100%). With the blue dotted line, we depict the schema

activity and with the green solid line, we depict the project activity.

62

Figure 4.3 Line chart image of the cumulative analysis exported from the

EvolutionChartExporter.

Finally, Figure 4.4 shows the file format of the exported tsv file from the

EvolutionChartExporter. As we can see, there are six columns, we explained in

section 4.1.1 what each column is.

Figure 4.4 File format of the exported cumulative file.

63

4.2.2 Testing the cumulative analysis of EvolutionChartExporter

To ensure that the cumulative algorithm is correctly implemented into our software,

we had to write and run some tests. To do that, we made two types of tests, same

as the first implementation of EvolutionChartExporter in chapter 3.

For the first type of test, we created two files, representing the input of the cumulative

analysis files, one matching the commitSummary format file and the other matching

the MonthlySchemaStats format. After that, we compute manually the results of the

cumulative analysis and created an expected cumulative result file. In the end, we

created the ComputeCumulativeTest JUnit test in java to read our two test files,

export the cumulative tsv file and compare it with the expected.

For the second type of test, we made a visual check into some randomly selected

projects to find possible mistakes. We made visual tests to the exported tsv files and

the exported line chart images.

4.3 Answering the research questions

At the very beginning of this thesis, we introduced two main research questions. In

this section, we will present the process we followed and our findings and results.

As mentioned in Chapter 1, these two researcher questions are:

 Research Question 1: What percentage of the projects demonstrates a "hand-

in-hand" co-evolution, where the schema evolution heartbeat closely follows

the heartbeat of the project?

 Research Question 2: What percentage of projects demonstrates the 80-20

rule reported in the literature [3], i.e., 80% of the schema evolution activity

was obtained in the first 20% of the time?

In the following sections, we will analyze each question, and what we tried to better

understand by these two questions.

64

4.3.1 Research question 1: What percentage of the projects

demonstrates a "hand-in-hand" schema and source code co-evolution?

The first research question tries to understand if and how much the schema

evolution closely follows the projects’ evolution. To answer that, we used the files

we exported from the EvolutionChartExporter tool and we presented in the previous

sections. To measure the percentage of each project that fulfils the prerequisites,

"hand-in-hand" co-evolution, we used two range windows, ±5% and ±10%. We

created two python scripts to measure these and plot bar charts for each taxon and

an overall chart.

The algorithm counts for each month the distance between the schema evolution

and the project evolution, and divide it by the projects’ life to measure the "hand-

in-hand" percentage co-evolution. The algorithm is presented below.

Algorithm Computation of "hand-in-hand" co-evolution

1: for each taxon txn:

2: for each project prj:

3: prjLife = getProjectLife(); /* a list of months */

4: cnt10 = 0;

5: cnt5 = 0;

6: for each month m in prjLife:

7: if (abs(cumulPrjActivity – cumulSchActivity) ≤ 0.1):

8: cnt10++;

9: if (abs(cumulPrjActivity – cumulSchActivity) ≤ 0.05):

10: cnt5++;

11: end if

12: end if

13: end for

14: handInHand10perc = (100*cnt10)/prjLife;

15: handInHand5perc = (100*cnt5)/prjLife;

16: end for

17: end for

Algorithm 4.2 Computation of "hand-in-hand" co-evolution.

65

(a) (b)

(c) (d)

(e) (f)

Figure 4.5 Line charts were "hand-in-hand" co-evolution is applied for the taxa:

(a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)

MODERATE, (e) FocusedShot n LOW, (f) ACTIVE.

66

(a) (b)

(c) (d)

(e) (f)

Figure 4.6 Line charts were "hand-in-hand" co-evolution is not applied for the

taxa: (a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)

MODERATE, (e) FocusedShot n LOW, (f) ACTIVE.

67

In Figure 4.5 we quote as an example, a line chart for each taxon, where the “hand-

in-hand” schema and source code co-evolution is applied in a large percentage of

the project’s life. The line charts are extracted from the EvolutionChartExporter.

In Figure 4.6 we quote as an example, a line chart for each taxon, where the “hand-

in-hand” schema and source code co-evolution is not applied.

We grouped the projects into five ‘buckets’, each ‘bucket’ shows the percentage of

time in which the project and schema evolution is "hand-in-hand". These ‘buckets’

are: [0%-20%) – [20%-40%) – [40%-60%) – [60%-80%) – [80%-100%]. So, for a

specific project, the schema cumulative percentage line is hand-in-hand with its

project cumulative percentage line in 55% of the months, the project is allocated to

the 40%-59% bucket. We do this assignment for each project and then, we can

count, (for each taxon and overall) what fraction of the population belongs to each

bucket.

To help us to better understand and extract results, we visualized these ‘buckets’

into bar charts and also created two tables for the ±5% and ±10% windows range.

In bar charts are shown, in Y-axis the number of projects that belongs to each bucket

and in X-axis is the five ‘buckets’.

In Figure 4.7, we can see the charts for the "hand-in-hand" co-evolution we found

for the ±5% window range.

68

(a) (b)

(c) (d)

(e) (f)

Figure 4.7 "Hand-in-hand" co-evolution for ±5% range for the taxa: (a)

FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d) MODERATE,

(e) FocusedShot n LOW, (f) ACTIVE.

69

Figure 4.8 shows the overall measures for ±5% range.

(a)

(b)

Figure 4.8 Overall "hand-in-hand" co-evolution for ±5% range: (a) Overall bar

chart, (b) Table with each taxon and overall.

70

(a) (b)

(c) (d)

(e) (f)

Figure 4.9 "hand-in-hand" co-evolution for ±10% range for the taxa: (a)

FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d) MODERATE,

(e) FocusedShot n LOW, (f) ACTIVE.

71

As we can see, for the window of ±5% range, the "hand-in-hand" co-evolution

decreases over time, this is shown clearly in the overall results. Also, we can conclude

that the four first taxa, that are less active, most of the projects have a very small

percentage of "hand-in-hand" co-evolution. On the other hand, the most active taxa,

the FocusedShot n LOW and ACTIVE tend to have a small or average percentage

of "hand-in-hand" co-evolution.

We also used a ±10% window range, double the previous range. We expect the life

percentage of the "hand-in-hand" to move to the ‘right’ for all the taxa.

In Figure 4.9, we can see the results for each taxon.

72

Figure 4.10 shows the overall measures for ±10% range.

(a)

(b)

73

Figure 4.10 Overall "hand-in-hand" co-evolution for ±10% range: (a) Overall bar

chart, (b) Table with each taxon and overall.

As we can, the life percentage that a project and schema evolution is "hand-in-hand"

increased. We can observe that more than 1/5 of the projects are "hand-in-hand" co-

evolving almost completely.

4.3.2 Research question 2: how premature is schema evolution

completion?

The second research question is a result reported in the literature [3], the “80-20

rule”, suggesting that 80% of the schema changes are completed in the first 20% of

the projects’ life. We wanted to see if this rule applies to a large number of projects.

To answer that, we used the exported files from the EvolutionChartExporter. We

created again two scripts to count and plot the results. The first script counts when

in the projects’ life, in percentage, the schema activity reaches a specific percentage.

Using this script, we create, for each taxon, a file that has the project name, the

projects’ life in months and projects’ life percentage, we decided to broaden the

research so we took four cases when the schema activity reaches 50%, 75%, 80%

and 100%. To find these percentages, we implemented an algorithm that is

introduced in Algorithm 4.3.

74

Algorithm Computation of 80-20 rule, and more

1: for each taxon txn:

2: for each project prj:

3: time = [0, 0, 0, 0; // for [50%, 75%, 80%, 100%]

4: for each month m in prjLife:

5: if (cumulSchActivity = 1.0):

6: time[3] = cumulPTime;

7: else if (cumulSchActivity ≥ 0.8):

8: time[2] = cumulPTime;

9: else if (cumulSchActivity ≥ 0.75):

10: time[1] = cumulPTime;

11: else if (cumulSchActivity ≥ 0.5):

12: time[0] = cumulPTime;

13: end if

14: end for

15: end for

16: end for

Algorithm 4.3 Computation of 80-20 rule, and more

Using this algorithm, we found at which percentage of the time, each project reached

50%, 75% 80% and 100% of schema activity. Moreover, based on the findings, we

also created a script to visualize these measures.

Figure 4.11 depicts several instances of our measurements as a bar chart. In each

bar chart, we observe the following characteristics:

- The horizontal axis refers to the percentage of schema activity measured.

- The series refers to the range of project lifetime within which this activity was

obtained (again as a percentage of a total lifetime).

- The vertical axis counts how many projects refer to this combination of what

percentage of evolutionary activity was completed within this percentage of

the time.

75

(a) (b)

(c) (d)

(e) (f)

Figure 4.11 When (in %) each project reached a specific schema activity for the

taxa: (a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)

MODERATE, (e) FocusedShot n LOW, (f) ACTIVE.

76

For example, in Figure 4.11 (b), for the x-axis value of 80% (meaning that we

measure when 80% of evolutionary activity was reached), we see that out of the 65

projects, 37 of them completed this 80% of activity within 20% of their project

lifetime (the blue bar), 9 of them completed this 80% of activity between 21%-50%

of their lifetime, 7 of them between 51% - 80% of their lifetime, and 12 of them

between 81%-100% of their lifetime. Figure 4.11 shows the results from our analysis

for each taxon.

In Figure 4.12, we can see the overall results and a table with all results for each

taxon and the overall.

77

(a)

(b)

Figure 4.12 Overall counting of when each project reached a specific schema

activity: (a) Overall bar chart, (b) Table with each taxon and overall.

78

It is important to understand that each group is computed separate from the other,

all projects appear in every group, in the same bar on in another of the same group.

For example, a project that in its 20% of life has a schema activity of 76%, is counted

in both 50% and 75% groups in the same bar. The sum of the projects in each group

is equal to the number of projects in the taxon or all, for the overall.

In our bar charts, the 80-20 rule is represented by the blue bar (the first 20% of the

project’s life) in the 80% group. We can observe that the rule, applies to the overall

projects, almost half of them. We can also observe that this rule happens more often

in the none so active projects.

79

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

5.2 Future work

The final chapter of this thesis summarizes the major findings of our study, we

outline the research questions made in the introductory chapter and we propose

potential future work.

5.1 Conclusions

The aim of this thesis was to study the schema and software co-evolution. This

research field is still in its early stages. The analysis of the history of a project hides

lots of difficulties, is a difficult process to automate and a very time-consuming

procedure to make manually. This thesis used a large collection of projects and their

history and extorted statistical results.

Firstly, we studied the relevant researches made to the field of schema and software

co-evolution. Then we made a manual analysis of six randomly selected projects,

with the expectation to better understand what changes are made during the project

life, why, where and how developers affect the schema and software. When these

changes are most likely to take place and who is usually making changes to the

schema.

Finally, we answered two research questions, these questions are: (a) What

percentage of the projects demonstrates a "hand-in-hand" co-evolution, where the

schema evolution heartbeat closely follows the heartbeat of the project? and (b) What

percentage of projects demonstrates the 80-20 rule reported in the literature [3]. I.e.,

80% of the schema evolution activity was obtained in the first 20% of the time? In

our research, we studied also 50%, 75% and 100%. For the first research question

80

we found that overall, 1/5 of the projects are co-evolving hand-in-hand. For the

second research question, we found that the 80-20 rule is not negligible and was

applied in half of our projects.

We also presented a tool we made, called EvolutionChartExporter to help us

compute the required metrics and visualize these for a better understanding.

5.2 Future work

In follow-up work, one can better define the source code activity and extract the

actual software changes. Also, a deeper investigation and automation of schema

activity extraction can possibly give better grouping, taxa, and as a result of these a

better understanding of the schema and software co-evolution. Finally, we created a

new tool, the EvolutionChartExporter, in future work, someone can add new features

and metrics.

81

REFERENCES

[1] Dien-Yen Lin, Iulian Neamtiu [YeNe09]. Collateral Evolution of

Applications and Databases, 2009.

[2] Shengfeng Wu, Iulian Neamtiu [WuNe11]. Schema Evolution Analysis

for Embedded Databases, 2011.

[3] Dong Qiu, Bixin Li, Zhendong Su [QuLS13]. An Empirical Analysis of

the Co-evolution of Schema and Code in Database Applications, 2013.

[4] Panos Vassiliadis [Vass21]. Profiles of Schema Evolution in Free Open-

Source Software Projects. 37th IEEE International Conference on Data

Engineering (ICDE '21), Chania, Crete, Greece, 19-22 April 2021

82

83

SHORT BIOGRAPHICAL SKETCH

Fation Shehaj was born in Fieri, Albania. In 2017, he received his Diploma in

Computer Science and Engineering from the University of Ioannina. After fulfilling

his military obligations, we worked as a freelance developer for a local company in

Rhodes. In 2019, he started his graduate studies at the Department of Computer

Science & Engineering at the University of Ioannina while working as a mobile

developer in the R&D hub of a private company specialized in medical solutions.

