A Study of Schema & Software Co-evolution for

Relational Databases in Free Open-Source Projects

A Thesis

submitted to the designated
by the Assembly
of the Department of Computer Science and Engineering

Examination Committee
by

Fation Shehaj

in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER
SYSTEMS ENGINEERING

WITH SPECIALIZATION
IN ADVANCED COMPUTER SYSTEMS

University of Ioannina
School of Engineering

Toannina 2021

Examining Committee:
e Panos Vassiliadis, Professor, Department of Computer Science and
Engineering, University of Ioannina (Supervisor)
¢ Nikolaos Mamoulis, Associate Professor, Department of Computer Science
and Engineering, University of loannina
* Apostolos Zarras, Associate Professor, Department of Computer Science and

Engineering, University of loannina

DEDICATION

To my family.

ACKNOWLEDGEMENTS

First of all, I would like to offer my special thanks to Professor Panos Vassiliadis,
my research supervisor, for his precious guidance and the collaboration we had.
Moreover, I wish to thank my parents for all the support and encouragement they

offered me throughout my study.

CONTENTS

CHAPTER 1 Introduction 1
O T 1 1
1.2 Structure of the Thesis..........ccooviiiiiiiiiiiiii 2

CHAPTER 2 Related Work 3
2.1 Case Studies of Schema and Software Co-Evolutioncccccuuviiiiiiniinnn, 3
2.2 Comparison to the State of the Art......cccoooiiiiiiiiiiiiiiiiii 7

CHAPTER 3 Manual analysis of schema and code co-evolution 9
3.1 EvolutionChartEXporter.........ccccvvvuuiiiiiiiiiiiiiiiiii e 10

3.1.1 Introduction to EvolutionChartEXporter..........cccceeevriiiiunnniiennn. 10
3.1.2 How it works, it’s Architecture and Designcccceeevviiiiniiinnn 10
3.1.3 Testing of EvolutionChartEXporter...........cccceeviiviuunniiiiniiiniinnnn. 12
3.2 Manual analysis of randomly selected projects from GitHub...................... 13
3.2.1 In-depth study of ALMOS_FROZEN projects............cccoevvrrnnnn. 15
3.2.2 In-depth study of FOCUSED-SHOT_n_FROZEN projects........ 23
3.2.3 In-depth study of MODERATE project........cccccoeevieiniiiiiiiinnnnn. 37
3.3 Results and findings from deep investigationcccoevviviiiiiiiinnininnnnnn, 49
CHAPTER 4 Cumulative analysis of schema and code co-evolution 55
4.1 Cumulative analysis and algorithm...........cccceviiiiiiiiiiiiiiiiiii 56
4.1.1 Introduction to cumulative analysis.........cccoceeeviiiiiiiiiiriininnne. 56
4.1.2 Algorithm of cumulative analysiscccoooeeiiiiiiiiiiiiiiinnn 57
4.1.3 A comment on the generation of Monthly Schema Stats 58
4.2 Expanding of EvolutionChartEXporter.........cccccvuviiiiiiiiiiiiiiiiiiiiiiinnnennnn, 59

4.2.1 How EvolutionChartExporter computes and visualize the
cumulative activity of the projectsccceeeviiiiiiiiiiiiiiiiiiiiiiiiii . 59
4.2.2 Testing the cumulative analysis of EvolutionChartExporter.... 63

4.3 Answering the research qUeSstionS..........ccocoeviiiiiiiiiiiiiiiiiiiii 63

4.3.1Research question 1: What percentage of the projects demonstrates
a "hand-in-hand" schema and source code co-evolution?ccceeeviiiiiiinnnnnnn. 64

4.3.2Research question 2: how premature is schema evolution

COMPLELIONT L.eiiiiiiiiiiiiiiiii ettt raa e e e e e 73
CHAPTER 5 Conclusion and Future Work 79
S T B 00 s Tl B 13 o) o 1= DU TP 79
D.2 FULUTE WOTK ettt ettt ettt e e e e e e s re e anaans 80

1

LIST OF FIGURES

Figure 3.1 Bar chart exported from EvolutionChartExporter (a) the exported image
from the EvolutionChartExporter and (b) the format of the input file............... 11
Figure 3.2 Taxa of Schema Evolution for FOSS Projects [4]............ccceevviiiiiiininnnnnn. 12
Figure 3.3 Schema and src commits for joomla-platform-categories, the image
produced from the first version of ECE...........cccccoiiiiiiiiiiiiiiienes 17
Figure 3.4 Schema and src commits for tld-list, the image produced from the first
version of ECE......cocoiiiiiiiiiiiiiiiiiiiiiii 19
Figure 3.5 Schema and src commits for gowebapp, the image produced from the
first version of ECE........ccouiiiiiiiiiiiiiii 23

Figure 3.6 Schema and src commits for acl, image produced from the first version

COOR. ottt 51
Figure 3.10 Grouped schema changes and their impact on source
COOR. ottt e 52
Figure 4.1 EvolutionChartExporter flowchart......c.ccccoviviiiiiiiiiiiiiiiiinniiiiiiin . 60
Figure 4.2 Class diagram of EvolutionChartExXporter..........c.cooooviiiiiiiiiiiiiiinnn 61

Figure 4.3 Line chart image of the cumulative analysis exported from the
EvolutionChartEXPOTter.......cccuuiiiiiiiiiiiiiiiiiriii e 62
Figure 4.4 File format of the exported cumulative file.................oc 62
Figure 4.5 Line charts were "hand-in-hand" co-evolution is applied for the taxa: (a)
FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)
MODERATE, (e) FocusedShot n LOW, (f) ACTIVE.....ccoooiviuiviiiiieeeiiieeeeennnnn. 65
Figure 4.6 Line charts were "hand-in-hand" co-evolution is not applied for the taxa:
(a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)
MODERATE, (e) FocusedShot n LOW, (f) ACTIVE...ciuuueiiiieeeeeeeeeeeeeeeeeennn. 66

1ii

Figure 4.7 "hand-in-hand" co-evolution for +5% range for the taxa: (a) FROZEN,
(b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d) MODERATE, (e)
FocusedShot n LOW, () ACTIVE.....uuuiiiiiieiiieieeeeeeeee ettt ee e e eveeeeeeans 68

Figure 4.8 Overall "hand-in-hand" co-evolution for +5% range: (a) Overall bar chart,
(b) Table with each taxon and overall............cceeeruueiiriniieeeriiiieeereiee e 69

Figure 4.9 "hand-in-hand" co-evolution for +10% range for the taxa: (a) FROZEN,
(b) ALMOST FROZEN, (¢) FocusedShot n FROZEN, (d) MODERATE, (e)
FocusedShot 1 LOW, () ACTIVE......iituiiiiiieee ettt e eee e 70

Figure 4.10 Overall "hand-in-hand" co-evolution for +10% range: (a) Overall bar
chart, (b) Table with each taxon and overall.........couueeueeeneeeeeieeeeeeeeeeeeeeeeaes 72

Figure 4.11 When (in %) each project reached a specific schema activity for the taxa:
(a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)
MODERATE, (e) FocusedShot n LOW, (f) ACTIVE..........cccccoevviinniiniininnnnn 75

Figure 4.12 Overall counting of when each project reached a specific schema activity:

(a) Overall bar chart, (b) Table with each taxon and overall........cccvveuunenn... 77

iv

LIST OF TABLES

Table 3.1 Commits related to schema for the joomlatools/joomla-platform-categories

PTOJECT. ceivutiiiiiiiiie ettt et e bbb e s e e aaa e e ee e 15
Table 3.2 Commits related to the schema for the umpirsky/tld-list project............. 18
Table 3.3 Commits related to the schema for the josephspurrier/gowebapp project..19
Table 3.4 Commits related to the schema for the accgit/acl project........................ 24
Table 3.5 Commits related to schema for the jasongrimes/silex-simpleuser project...32

Table 3.6 Commits related to schema for the mapbox/osm-comments-parser project

.. 37
Table 3.7 Reasons schema changes happen to each project............cccvveiiiiiiinnnnnnn. 52
Table 3.8 When schema commits happened to each project............cccevuvuiiiiiiinnnn. 53
Table 3.9 Who made schema commits to each project.........ccccceeeeviiiiiiniiiiiiiiinnnnn.. o4

LIST OF ALGORITHMS

Algorithm 4.1 Computation of cumulative percentage..........ccccceeeeviviivirinininieninnnns 57
Algorithm 4.2 Computation of "hand-in-hand" co-evolution..........................o. 64
Algorithm 4.3 Computation of 80-20 rule, and more..........cccccoeeviiiiiiiininiiiiiinnn... 74

vi

ABSTRACT

Fation Shehaj, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, June 2021

A Study of Schema & Software Co-evolution for Relational Databases in Free Open-
Source Projects

Advisor: Panos Vassiliadis, Professor

In this dissertation, we attempt to study and make an analysis on the co-evolution
of the database schema and source code. Studying the co-evolution is especially
important as it can identify patterns on how the code development can impact the
schema evolution, with the purpose to help designers and developers spend less time
modifying the storage and processing system for the provided information. Also,
through this study, the potential effects on software maintenance that would emerge
from the dependence of the source code and the database schema can be reduced or
even improve the performance of the software and potentially the development time.
The key question of this thesis is: Is there a correlation on how the evolution of a
software source code affects the evolution of the database schema, and if so, can we
categorize them? To answer this question, we used data from the commit history of
three hundred and fifty (350) projects, collected with the help of the GitHub
platform. The projects were divided into six categories, these categories are: frozen,
almost frozen, focused shot & frozen, moderate, focused shot & low and active.
First, we made an extensive, manually (non-automated) analysis of six randomly
selected projects. We tried to understand how the code and the database schema
evolve simultaneously and find possible patterns. We also developed software that
uses the data files from GitHub to visualize the code and database changes in real-
time using bar charts to help us identify possible patterns.

Finally, to draw more derailed conclusions, as we are not interested in all types of
changes in a SQL file, but only those that affect the schema of the database, we used
files that contained more information about the history of changes in the database,

to export diagrams with the cumulative changes for each program. This tool,

vii

incorporated in the previous one, is made to the standards of the Heraclitus tool
(GitHub: HeraclitusFire) and has also the ability to export these graphs into a web

format to better summarize the information.

Vviil

EKTETAMENH IEPIAHWYH

DOoatdy Xéyat, AM.Z. otn Mrnyovixn Asdopévwy xor I'TOAOYLOTIXWY ZLOTNUATWY,
Tunuoe Mrnyovixedyy H/Y xow ITAnpogopixng, [loAvteyvixry ZyxoAn, Ilavemiotiuio
lwoavvivewy, Todviog 2021

MeAétn g Zuv-eEEMEN Ttou ZyMuotog xor tov Kdduxa yia Zyeotoxég Baoelg
Aedopévwy oe Avorytod Kayduxa ‘Epyo.

EmBAénwy: MTavayiwtng Baotietadne, Kabnyntig

XE aUTN TNV OLTTAWUOTLXY] EQYOOLO ETULYELPOVUE YOL XAVOVUE L LEAETY] XOL OLVAAVOT)
oTNV OLY-EEENLEY TOL oYNULOTOS TNG Pdomng SedoUEVWY Xal ToL TtNYyoiov xwotxo. H
ULEAETN OwTVG NG ovLV-eEEMENG elvo ilaitepor onpovIixn xabwg Pmopel vo
evtomtioel potifo oTov TPOTMO UE TOV OTOLO M OVATTUEY] TOUL XWX UTTOPEL Vo
eETMNPEEAOEL TN €EEAMEN TOL oYNULOTOS, e ox0Ttd vo Bondnoet Toug oyedLooTéG XouL
TPOYQOLUOTLOTESG VO OLPLEPWYOLY ALYOTEPO YPOVO YLOL TNV TPOTOTTOLNOY] TOL TEATTOV
amobxevong xat emeEepyoaiog Tng TapeOUeYT S TAnpoopias. Eriong, néow avtg
™G UEAETNG UTOPOVY vor petwbody ov Tbavég GLVETELEG OTNV OLVTYEYNOY TOL
Aoytoptxod mov Bo TpoxvTTOY AGYO NG EEAPTNOT TOL XWOLXA X0l TOL CYNULOTOG
g Baorng dedopévwy M axdpo xor vo BeAtiwbel v atddoon Tov AOYLOULXOD %ot
EVOEYOUEVMS TOL YPOVOL AVATTTLENG TOU.

To Boowd epdTUa aLTG ™G OLTAWUOTIXNG epyoolog eival: YTAPYEL XATOLO
OLOYETLON OTOV TPOTO ToL 7 cEéMEN Tou Tyalov %Woxo €vOg AOYLOULXOD
emnpealer Ty cEEAEN Tng Pdomng Osdopévwy, xoL ayv VoL, TOPOVUE Vo TO
XOTNYOPLOTTOLYOOVE; [l vou OTTOVTNOOLUE TNV OULYXEXQPLUEVY, EQPWTNOY,
XONOLULOTTOLNOOE OEDOUEVO ATTO TO LOTOPLXKO TWY OAAXYWY ATTO TELOIXOOLOL TTEVYVTOL
(350) mpoypdppato (projects), Tov cLAAEYOMUay pe ™V Bovbela g TAATEOPUOG
tou GitHub. Ta épya (tpoypdppoto) xweiotnxoy oc éEL xaTnYoPIieS, oLYXEXPLUEVOL:
frozen, almost frozen, focused shot & frozen, moderate, focused shot & low and
active.

ApYLxb, XAVOLUE ULOL EXTETAUEVY, U1 OWTOUXTOTOLMUEVY OvAAVOT ot €EL TuyoLo
ETUAEYUEVO TLROYQOUUOTA, TPOOTabwvTog vo xoatoAdfBoovpe Tov TEOTO TTOL
ekellooeTal 0 xWAxag xotl To oyNuo. Baong towtdypova xal vo. Bpodue mhova

potifo. Emiong, avamtiEope évo AOYLOPXO TTOL YOENOLUOTOLEL TOL QPYELOL UE TO

ix

totoptxd dedopévwy oamd to GitHub, yio vo omtixomoinoovue oe Sioypdppota
UTTEPOG TLG AAXYEG OTOV xWixar xo T Béomn otov xpdévo, wote vo pog Ponbnoct
voo evtomtioovpe mhovd potifo.

2TV OLVEYELD, YLOL VO EEAYOVWE TILO AETTTOUEQPY OLUTEQPAOUATO, XobWg dey pog
eVOLOPEPOLY OAeg oL aAdayég o évar SQL apyelo, aAAé pwoévo doeg emmpedlovy To
oYNUo TNG BAoTG, XONOLLOTIOLNOOUE OLPYELOL TTOV TTEQPLELY LY TTEPLGGATEPY] TTATPOPOPLO
YLOL TO LOTOPLXO AAAXYWDY OTNY [3AoY SESOUEVLY, YLO YO EEAYOVUE SLOYQAUUOTO UE
TLG OWPEEVTIXEG OAAOYESG Yiow x&be TpoYypoppa. To epyareio awtd, evowpotwdnxe
0T0 TPEONYOVUEVD, €ylve otor TEdTLUTAL Tov gpyoAeiov HpdxAertog (GitHub:
HeraclitusFire) xot éyet tnv Suvatoétnro. va €Edyel tor YOAOAUOTO oOTE o€

SLaSLUTLOXY LOPPY] YLOL XAADTEQRY] GVYOYY] TNG TTANPOPOPLOG.

CHAPTER 1

INTRODUCTION

1.1 Goals
1.2 Structure of the Thesis

1.1 Goals

The life cycle of each product includes a series of changes, there is no doubt about
that. A software product is not an exception to that maintenance process. The reasons
for those changes usually aim to fix potential problems and faults or extend the
product’s features. Almost every software product consists of a database. Due to the
increase of functionalities the source code usually becomes more dependent on the
database. This entails a sequence of changes and modifications to the database,
usually causing schema changes. The terms schema and software co-evolution refer
to those changes.

So far, there is a limited number of studies on this topic. That indicates the difficulty
of analyzing the schema and software co-evolution due to the unavailability of a
large number of open-source projects, with a database and the history in the correct
form, without gaps, to allow us to establish a solid conclusion. The importance of
studying the schema and software co-evolution can be realized if we consider the
problems that can be occurred due to the software changes, without the proper
database changes, leading to failures, information loss or even retrieving the wrong
information. To help the product maintenance or database evolution, it is critical to

identify potential patterns. In this way, we can eliminate all these effects caused by

1

the source code and database dependence, and possibly reduce the time and effort
required or even optimize the product.

Our approach to the topic consists of the research and the tools created to assist it.
First, we tried to better understand how schema and software co-evolve doing a
manual analysis of six randomly selected projects from our data. After that, we
automate the process of analyzing the history activity of software and schema. We
created a new tool that we named Evolution Chart Exporter, using the HeraclitusFire
(on GitHub) as a reference for the line and bar chart exporters. With this tool, we
were able to visualize the changes in each commit to the source code and database
and also visualize the cumulative activity for the project and the schema changes
over time.

In our research, we decided to answer two main questions.

o Research Question 1: What percentage of the projects demonstrates a "hand-
in-hand" co-evolution, where the schema evolution heartbeat closely follows
the heartbeat of the project?

e Research Question 2: What percentage of projects demonstrates the 80-20
rule reported in the literature [3], i.e., 80% of the schema evolution activity
was obtained in the first 20% of the time?

In Chapter 4 we analyze and answer these two questions. We present the process

and the algorithms we used to reach these findings.

1.2 Structure of the Thesis

This thesis consists of o four chapters. The contents of each chapter can be
summarized as follows. In Chapter 2, we analyze and highlight some of the most
significant work, done to contribute to the topic of schema co-evolution with code
and we explain how our work differentiates from the others. In Chapter 3, we made
a manual analysis on schema and code co-evolution for six randomly selected
projects. We also created a tool to help us visualize the number of files changed in
each commit for the project’s life. In this chapter, we introduced six questions and
we tried to answer them. In Chapter 4, we created a tool to compute the cumulative
activity for each project using files with more information on what changed in each

schema commit.

CHAPTER 2

RELATED WORK

2.1 Case Studies of Schema and Software Co-Evolution

2.2 Comparison to the State of the Art

This chapter presents the research work that has been previously done in schema
and software co-evolution and what has been achieved by the efforts in the literature.
The interest in this field has been extremely small in the last decades. In the first
subsection of this Chapter, we review the previous efforts and report on their results.
In the second subsection, we demonstrate a brief comparison of our work and the

studies of the first section.

2.1 Case Studies of Schema and Software Co-Evolution

In 2009, Dien-Yen Lin and Iulian Neamtiu [1] focused their research on the collateral
evolution of applications and databases. The authors use the term collateral evolution
to designate the lack of consistency when database and application code do not
coexist in sync. In this context, the authors define a formula for collateral evolution.
To understand the formula, we will define some parameters the authors used. First,
the authors used D to denote the data and F(D) to denote the data format.
Furthermore, the authors used Fec(D,X) to denote the expected format by client C,
version X and Fs(D,Y) to denote the format provided by the server S, version Y.

3

Now we can introduce the formula authors defined, let X and Y be the data client
and server versions that result from collateral evolution. Let Fc(D,X) be the format
expected by client C and let Fs(D,Y) be the format provided by the server S. The
collateral evolution is potentially incorrect if Fc¢(D,X) # Fs(D,Y). The authors used two
open-source projects, Mozilla and Monotone to study co-evolution and identify
changes to database schemas. Next, the authors studied the evolution of data format
in three major database management systems, SQLite, MySQL and PostgreSQL. The

main findings of this study are condensed as follows:

e The most frequent modifications are database schema changes followed by
additions and deletions of tables or attributes.

e Concerning the problem of data and software co-evolution, the database
schema and source code does not always evolve in sync. To avoid conflicts
with database and source code, Mozilla uses two methods, the first mechanism
is to ignore the collateral problem and assume that if a database exists, then
the schema version and the schema version of the app are in sync. The second
solution is to determine the versions of the application and database, perform
the schema migration and then access the database. On the other hand, in
Monotone, the authors encounter the collateral evolution problem with the
use of a centralized routine. The authors investigated table additions and
deletions and found “orphan” and useless tables that take up space.

e A different problem that the authors investigate is the file format that a
database management system produces. DBMS producers often change the
file format from one version to another for reasons like performance or storage
size. The most common way for dealing with problems that may show up is
to dump the database into a batch file of SQL commands and recreate the

database with the use of the new DBMS.

In 2011, Shengfeng Wu and Iulian Neamtiu [2] presented their work on schema
evolution analysis for embedded databases and proposed a system to automatically
extract embedded database schemas and source code with the purpose to
automatically compute the schema evolution. The authors studied the evolution

4

within eighteen years of four popular applications containing embedded databases.

The key findings of their study are outlined in the list below.

e A high frequency of table and attribute deletions denotes that embedded
databases are more prone to restructuring, rather than continuous growth.

e The early stages in schemas tend to have a higher number of changes, while
the later versions include few changes and the database stabilizes over time.

e The embedded databases have a lower change rate than the enterprise-class

databases.

In 2013, Dong Qiu, Bixin Li and Zhendong Su [3] made an empirical analysis for
the co-evolution of schema and code in database applications. The authors used ten
popular open-source projects for their study and posed three research questions to

answer how schemas and code co-evolve. These are:

e How frequently and extensively do database schemas evolve? This question
helps to understand whether they intensively evolve during an app’s
development and maintenance process.

e How do database schemas evolve? This question helps to understand what
schema change types usually occur in practice.

e How much application code has co-changed with a schema change? This

question helps to understand the real impact on application code. We are also

interested in whether certain schema change types tend to have more impact

on code than others.

The steps authors used to extract the information from project repositories and

answer these questions can be synopsized as follows:

e Locate schema files. Extract the schema files, most files have the .sql suffix
although some projects specify schema information using embedded SQL
statements (e.g. PHP files).

o Extract DB revisions. Identify DB revisions (commits) that contain
modifications to schema files, if a schema file is among the changed files of
revision i, then i is a DB revision.

o Extract valid DB revisions. Filter those revisions containing only related
schema changes.

o Extract atomic changes. Authors extract all schema changes by manually
comparing schema files of contiguous valid DB revisions.

e Co-change analysis. Analyze and calculate the real impact that has been

triggered by these atomic schema changes.

The authors analyzed how information is present in evolution history. Suppose R is
the set of valid DB revisions and C, represent all committed changes in the r revision,
r is the current one under analysis. Then SC, are the schema changes and CC,are

the code changes, both are subsets of the C,. The RC, is the actual code changes

caused by SC,.. CC, and RC, both can be empty, on the contrary to the SC,.. The

authors introduce four possible co-change situations:

(S1) ¢C, =@ and RC, #Q.
(S2) €C, =@ and RC, =Q.
(S3) €¢C, #@ and CC, NRC, #Q.
(S4) €C, #@ and CC, NRC, =Q.

The findings of this process are outlined in the subsequent list:

2.2

Database schemas evolve at a high rate during their lifecycle, on average 90
atomic schema changes per year. Also, the variety of their changes follows a
similar distribution in all ten projects.

In most of the projects, their schema size approaches 80% of their maximum
value within the first 20% of their lifetimes.

Schema changes urge considerable code modifications. Some change types
trigger more code changes than others.

More schema changes happened in a small number of tables and nearly half
of schema tables did not change.

Additions of tables or columns and datatype changes are the most frequent
changes at the low — level of change categories.

Co-change analyses can be crucial to automate database application evolution.
Moreover, the authors suggest three functionalities that a tool like this should

have.

Comparison to the State of the Art

In the previous section, we tried to present the most relevant work made until now

in the schema and software co-evolution. We attempted to give a synopsis of the

contribution of each work, leading us to a better understanding of the mechanism

7

that determines how schema and software co-evolve. In our work we analyze this
mechanism in a big dataset, using 350 projects and their history, we tried to
understand how both, schema and code co-evolve and locate patterns. We also made
the first steps to automate the process creating tools to visualize the history activity

for each project.

CHAPTER 3

MANUAL ANALYSIS OF SCHEMA AND CODE CO-

EVOLUTION

3.1 EvolutionChartExporter
3.1.1 Introduction to EvolutionChartExporter
3.1.2 How it works, its Architecture and Design
3.1.3 Testing of EvolutionChartExporter

3.2 Manual analysis of randomly selected projects from GitHub
3.2.1 In-depth study of ALMOS_FROZEN projects
3.2.2 In-depth study of FOCUSED-SHOT_n_FROZEN projects
3.2.3 In-depth study of MODERATE project

3.3 Results and findings from deep investigation

In this chapter, for a better understanding of schema and source code co-evolution,
we choose to make a deeper analysis of six randomly selected projects and manually
examined the history of the commits for these projects. We will present to you our
findings, the schema changes and the triggered code changes. Finally, we will cite
our findings from our deep analysis of the six projects and we will explain how this
study helped us further with our study. We are going to present you also a tool we
created to examine visually the occurrence of code and schema changes over time,
we named that tool EvolutionChartExporter (ECE). Finally, we tried to locate

patterns from the projects.

3.1 EvolutionChartExporter

3.1.1 Introduction to EvolutionChartExporter

The main reason we decided to create the EvolutionChartExporter tool is to visualize
how much code and schema changes have been committed over time. To create the
EvolutionChartExporter tool, we used as reference the chart exporter source code
from HeraclitusFire. Firstly, we will make a brief explanation of how this tool works.
In the next subsection, we will deeply analyze the EvolutionChartExporter, what are
its imports and how we extracted these files needed and what are the exports of this
tool. We will also introduce you to the design of the EvolutionChartExporter. In the
section that will follow, we will mention the tests we made to evaluate this tool. As
we mentioned, we collected the commit history for 350 projects from GitHub. Having
this amount of data is unable to select manually which projects we are going to
investigate further. Using EvolutionChartExporter, we are able to have a quick view

of each project’s commit history.

3.1.2 How it works, its Architecture and Design

As we mentioned, we used HeraclitusFire as a base to create our tool. HeraclitusFire
has the ability to create different types of charts. For our needs, we used the bar
exporter. The specific thing about this chart exporter is the ability to plot bars above
and below the x-axis. We used the x-axis for the time and the y axis for the number
of changed files in a commit. Above the x-axis, we plotted the number of changed
source code files and below the x-axis, we plotted the number of .sql changed files.
The y-axis counts the changes made. Figure 3.1 below shows an example: (a) the
exported image from the EvolutionChartExporter and (b) the format of the input

file.

10

Date Author NumAffectedFiles Contains .sql
2018-04-15 17:03:30 +0200 Sasa 11 3

Andreas 2
2016-01-20 11:48:50 +0100 Andreas 1
2016-01-16 15:05:46 +0100 umpirsky

2018-04-15 16:59:19 +0200 Sasa 1
2018-02-27 19:56:28 +0100 Sasa 4 0
2018-02-27 19:56:16 +0100 Sasa 11 3
2016-11-03 16:26:27 +0300 M 10 3
I III I I 2016-03-12 17:38:47 +0100 Sasa 1
I 2016-01-20 11:52:38 +0100

(a) (b)

Figure 3.1 Bar chart exported from EvolutionChartExporter (a) the exported image
from the EvolutionChartExporter and (b) the format of the input file

For our study, we separate the 350 projects into six taxa. The taxa we created were
the following, Frozen, Almost Frozen, Focused Shot and Frozen, Moderate, Focused
Shot and Low and Active. The algorithm used to classify the 350 projects was firstly

introduced in [4] and is shown in Figure 3.2.

/\

Aed has
A less than 4
/ \ __tive comm nS/?(/ \
/ -« — YES \\/ 4.10) Active commit s>
Total Activity is... > . less than 3 Reeds? /\

—~

X 2 .
\ 7\/ . NOQTolaIAaimyis,/

/ YES / i
/ /
zoro attr' <=1(attr's > 10 attr’'s / >\ v more than 90 atl’'s

/ up to €0 atfs
y 4
Focused Shot
(m) = b COM

Figure 3.2 Taxa of Schema Evolution for FOSS Projects [4]

For each of these projects, we created .tsv files, from the commit history GitHub
provides. The .tsv files consist of 4 columns, Date - Author - NumAffectedFiles -
Contains .sql. Date contains the date of a specific commit in GitHub, Author shows
the username of the person that made the commit. The next column,
NumAffectedFiles contains the number of all files committed. Finally, the Contains

.sql column indicates how many of them were SQL files. It has to be noted that the

1

third column is a superset containing the fourth column. These files are used from
ECE as input.

In our first attempt, we draw a bar for each commit of the .tsv file. This approach
had two problems. First, for projects with a lot of commits, the exported bar chart
was chaotic and second, it does not give the exact sense of how the project was
maintained over time. We also wanted to monitor the abstention of commits and so
on the absence of maintenance. To solve these problems, we decided to add a new
feature to ECE. Using our existing .tsv files, the ECE can create new .tsv files that
in each row have summed up all the commits for each month. In addition, for
months with no commits, it adds zero lines. The new exported images are based on
these new .tsv files. Next, to make it easier for the user to understand for each
commit how many were code changes and how many of them were SQL changes,
we plot above the x-axis only the number of source code changed, which means that
these are no more a superset containing the number of SQL files changed. Above
the x-axis, we plot only the number of SQL files changed.

Finally, to make it easier to check, compare and find patterns from the visual history
of the projects, we decided to add to the ECE the ability to create a .html file for

each taxon with all images.

3.1.3 Testing of EvolutionChartExporter

To use the EvolutionChartExporter tool and be sure that the exported bar charts are
correct, we made two types of tests, first, we implemented two unit tests and second,
we made visual tests for the exported images.

The unit tests we made were:

1. To check that the sum of commits for each month is correct. This JUnit test
is implemented in the SumTest.java class in the test package of ECE.

2. To check that the months with zero commit have a zero value for the source
code and OSQL changes. This JUnit test is implemented in the
AddZerosTest.java of the same package.

The way we implemented both these two tests is: First, we manually created files
with all the possible extreme and bad cases we thought and believed could happen.

After that, we manually created the files with the expected results from these tests
12

and the files we mentioned. In the end, we confirmed the equality from the expected
files and the produced file results from the ECE to check the correctness of these
Java classes.

The second type of test was to examine produced images visually. We made this
type of test because the only way to check if the exported images correspond to the
history from the .tsv files was by the eye. We randomly selected some of our projects
and checked if the exported images correspond to the .tsv files. We also made this
test to the exported images from our test .tsv files.

After all these tests we can say with confidence that ECE works properly and is safe

to use for similar research.

3.2 Manual analysis of randomly selected projects from GitHub

In this subsection, we present our manual examination of six randomly selected
projects. We selected some projects from different taxa for a deeper investigation to
better understand the code and schema coevolution. We selected three projects from
the Almost Frozen taxon, two from Focused Shot and Frozen taxon and one from
moderate. The reason we choose these three taxa is that the more active is a taxon,
there are more commits and schema changes to examine. For the same reason, we
decided to examine three projects from the first taxon and only one from the third.
As we will see, the last project had a huge difference in the commits required to
examine compared to the projects from the first taxon. We expected and noticed that
the number of commits to examining was increasing rapidly from one taxon to the
other. We believe that to do that process multiple times for the next taxa is almost
impossible.

Below, for each project we selected, we will place a table and make some cases and
conclusions we came to, from our deep analysis. Each table has 6 columns. The first
four columns are the same as the .tsv file. The next two columns show the state
before and after the code and the schema changes.

For all the projects presented, we manually examined their commits. As the projects
come with too many commits, we checked only the commits with a schema change
and we decided to use a ‘window’ of +3 commits from each schema change commit

to observe the impact of those database changes on the source code. Also, we
13

examined all commits with the word fix or bug to see if it was a schema change that
triggered the bug. This approach may lose some commits to source code related to
the schema changes but decreased the time required to do the process dramatically.
Next, in the tables, we show all the commits related to the schema changes and the
commits made to the code to match these schema changes. We show also the
commits triggered from a previous schema change to make fixies to the source code.
We don’t present here the commits related only to the code as we are interested in

schema and source code coevolution.

Annotations:

When there are no changes from one commit to another, we will write no change.
When this is written to the code, it means that in this commit, there were no changes
to the code related to the database changes. So, the code related to the database is
the same as the previous commit. For example, if a certain commit changed the way
a function computes an algorithmic result, we are not interested in that. When we
write no change to the DB, it means that in this commit the developers changed only
the code (src part) related to the database (usually these commits are a bug fix). The
‘no change’ refers always to the previous commit we present in the table and not the

previous commit made to the GitHub project.

For each project, we tried to answer six core questions. These questions are:

1) What kind of changes happened to the schema and at the src to sync with
schema evolution?

2) Why did these changes happen, for example, comments made to each commit?

3) When does schema evolution take place?

4) Where in the code/src is the impact of schema evolution and where is the
maintenance effort located?

5) How do people change the schema and maintain the source code?

6) Who is related to the DB/src changes?

14

3.2.1 In-depth study of ALMOS FROZEN projects

First, we selected three projects randomly from the ALMOST_FROZEN taxon.
These projects are:

1) joomlatools/joomla-platform-categories

2) umpirsky/tld-list

3) josephspurrier/gowebapp

1) joomlatools__joomla-platform-categories

About this project:

The project is a category extension for Joomlatools Platform (Joomlatools Platform is
a modern Joomla stack that helps you get started with the best development tools
and project structure). The description of the project is from GitHub. Joomla
Categories is open-source software licensed under the GPLv3 license. The project
uses PHP 7.0 and MySQL 5. The project started in 2015 and it was active for 3+
years, there are 63 commits made. The owner of the repository is the Joomlatools
organization with 6 people and 47 repositories on GitHub.

Table 3.1 Commits related to the schema for the joomlatools/joomla-platform-
categories project

Date Who #Src | #SQ ate before ate a
YYYY-MM- upd L
DD ates | upda

tes
2015-07-08 Johan |55 |2 DB DB
03:42:35 No DB Create 2 .sql files
+0200 (create table/drop

table #__categories).
1 table with 27 values.

T
CODE CODE

No Code 55 source code files.
Raw Queries
embedded.

15

2015-07-11
00:51:48
+0200

Johan

DB
No change

DB

- Rename
install.mysql.sql to
install.sql (file
renaming).

- Delete

uninstall. mysql.sql file
and create
uninstall.sql.

- Remove #__ prefix
from database table
names.

CODE
No change

CODE
Change references to
the new file names.

2017-02-08
11:44:42
+0800

Allan

53

DB
No change

DB

Change sizes and
encryption, e.g.

- varchar(255) to
varchar(400)

- utf8 to utf8mb4
- utf8 bin to
utf8mb4_bin

CODE
No change

CODE

- Change names,
indentation,
comments (2 md files
not changed).

- Refactor code.

- New embedded SQL
queries.

The removal of # _ prefix from table names (2015-07-11 commit) for the joomla-

platform-categories cost no changes in the source code. This project is a part of the

joomla-platform. After the manual search, we found that Joomla replaces the prefix,

the commit was to match the ‘parent’ project. The source code is still using the

prefix #__ for raw queries and uses the public static function getAssociations to get

an array of associations between database tables and #__tableName.

1) What:
2) Why:

Mostly code refactor.

joomla changes and joomlatools repository.

16

1 was the initial commit and 2 commits with changes to match the

3) When: 2 commits at the beginning of the repository’s life and 1 at the end.
4) Where: Commits related to com_category, it contains 7 packages and 3 files
(commits were made to resource and controller packets and the 3 files).

5) How: Data type changes and renames.

6) Who: See the second column for more.

Johan: 2/3 (one was the initial commit)
Allan: 1/3

Num AfectedFiles & Contans sql

AN N TRURINS R PR Bpp— ————

. NUmAS

Figure 3.3 Schema and src commits for joomla-platform-categories, the image
produced from the first version of ECE

2) umpirsky__tld-list

About this project:

This project is a huge list of all top-level domains (TLD) in all data formats. There
is not much source code. The available formats are: Text - JSON - YAML - XML -
HTML - CSV - SQL - MySQL - PostgreSQL - SQLite - PHP. The project started in
2016 and it was active for 2+ years, there are 12 commits made. The owner of the

repository is Sasa Stamenkovi¢ with 226 repositories, 361 followers and 277 stars on
GitHub.

17

Table 3.2 Commits related to the schema for the umpirsky/tld-list project
Date Who #Src | #5Q ate before ate a
YYYY-MM- upd |L
DD ates | upda
tes
2016-01-16 umpir |13 3 DB DB
15:05:46 sky No DB Creates 1 table(the
+0100 same 3 times) in 3
SQL files (MySQL,
PostgreSQL, SQLite)
Inserts all tld
domains
[
CODE CODE
No Code Same values in other
formats (PHP, txt,
JSON, HTML, etc)
[
2016-11-03 M 7 3 DB DB
16:26:27 No change Insert more values
+0300 i
CODE CODE
No change Insert the same values
to no SQL format files
[
2018-02-27 Sasa 8 3 DB DB
19:56:16 No change Insert more values
+0100 (delete some)
[
CODE CODE
No change Insert/delete the same
values to no SQL
format files
[
2018-04-15 Sasa 8 3 DB DB
17:03:30 No change Insert more values
+0200 (delete some)
[
CODE CODE
No change Insert/delete the same
values to no SQL
format files
1) What: Insert new values, in different formats.

2) Why:

To include more tld domains.

18

3) When: Commits made at the beginning-middle-end of the project life.
4) Where: Almost in all the files.
5) How: No schema changes.
6) Who: See the second column for more.
umpirsky: - 1/4 (one was the initial commit)
M: -1/4
Sasa: - 2/4

L

Figure 3.4 Schema and src commits for tld-list, the image produced from the
tirst version of ECE

3) josephspurrier__gowebapp

About this project:

This project is a basic MVC (Model-view-controller) Web Application in Go. The
web app has a public home page, authenticated home page, login page, register page,
about page, and a simple notepad to demonstrate the CRUD operations, the
description of the project is from GitHub (screenshots included on GitHub). The
project started in 2015 and it was active for 2 years, there are 71 commits made. The

owner of the repository is Joseph Spurrier with 50 repositories, 153 followers and
657 stars on GitHub.

Table 3.3 Commits related to the schema for the josephspurrier/gowebapp
project

Date Who | #Sr | #SQ BEda g0 State after
YYYY-MM- c L
DD

19

upd | upda
ates | tes
2015-06-28 Joseph |34 |1 DB DB
20:57:10 - No DB First commit
0400 CREATE TABLE
user_status
CREATE TABLE user
CODE CODE
No Code First commit
Add code
2015-07-04 Joseph | 18 1 DB DB
02:00:09 - No change Change path without
0400 file changes.
database/database.sql
- config/database.sq|
CODE CODE
No change Changes to DB
connection
2015-07-16 Joseph | 0 1 DB DB
16:34:09 - No change Update column sizes
0400 INT(10) to
TINYINT(1)
INT(1) to TINYINT(1)
CODE CODE
No change Update sizes in the
code also.
In Go language from
int to uint32 or uint8.
2015-07-26 Joseph | 6 2 DB DB
16:58:36 - No change Change the default
0400 database to use SQLite

20

(from MySQL to
SQLite)

Rename database
(webframework =>
gowebapp)

Add SQLite
configuration file

CODE CODE
No change Add SQLite driver
Change
models/structures/SQL
ite case
2016-01-31 Joseph | 4 DB DB
21:33:31 - No change Remove SQLite, set
0500 MySQL again as the
main DBMS
CODE CODE
No change Remove SQLite config
file
Remove SQLite case
Add Bolt/Mongo DBs
(as embedded GO
files)
2016-04-24 Joseph | 15 DB DB
11:09:13 - No change No DB changes
0400
CODE CODE
No change Updated variables
names according to
Lint (even db
names/models)
2016-04-26 Joseph |1 DB DB
01:55:51 - No change No DB changes
0400
CODE CODE
return Fixing bug
u.Objectld.Hex() return
u.ObjectID.Hex()
2016-04-26 Joseph | 16 DB DB
02:59:18 - No change CREATE TABLE note
0400 (6 var)
CODE CODE
No change Add note controller
(CRUD)

21

Delete unused models
(one model/user.go
for all three DBs)

2017-05-15 Shane |1 1 DB DB
22:21:09 - SET SET
0700 storage_engine = default_storage_engine
InnoDB;
= InnoDB;
to allow latest MySQL
to work
[
CODE CODE
No change Change the absolute
file path to relative

1) What: Code refactoring, change default dbms (x2 times), fix typos (e.g. 2016-
04-26 commit), create a new table.

2) Why: Refactoring code and adding more information into the new table.

3) When: Uniformly DB commits into project’s life.

4) Where: Usually commit changes to SQL files and all source code files
using/related to it. There were also bug fixes into 2 files. When there were commits
into the 2 SQL files, there were also commits to 4 specific src files. Sometimes, there
were massive changes to files into model, controller, route and shared packages (e.g.
when a new table was created).

5) How: Change default DBMS and add 1 table.

6) Who: See the second column for more.

Joseph: 8/9 (one was the initial commit)

22

Shane: 1/9

g

Num AffectedFiles & Contains.

W NumAffectedFiles Bl Contains sql

Figure 3.5 Schema and src commits for gowebapp, the image produced from the
first version of ECE

3.2.2 In-depth study of FOCUSED-SHOT n FROZEN projects

Secondly, we selected three projects randomly from the FOCUSED-
SHOT n_FROZEN taxon.

These projects are:

1) accgit/acl

2) jasongrimes/silex-simpleuser

4) accgit__acl
About this project:
The project is a simple management of users’ permissions. The project is written in

JavaScript, PHP, Latte and CSS. The project started in 2017 and it was active for 2

23

years, there are 271 commits made. The owner of the repository is Zdenék Papucik

with 5 repositories, 5 followers and 27 stars on GitHub.

Table 3.4 Commits related to the schema for the accgit/acl project

Date Who #Sr | #SQ ate before ate a
YYYY-MM- c L
DD upd | upda

ates | tes
2017-05-23 Zdené |28 |1 DB DB
13:08:53 k No DB First commit
+0200 CREATE TABLE

privileges (2 var)
CREATE TABLE
resources (2 var)
CREATE TABLE
roles (3 var)
CREATE TABLE
permissions(5 var)
Foreign keys to first 3

tables
CREATE TABLE
users (4 var)

CREATE TABLE
access (3 var)
Foreign keys to users,
roles

--- Also

Insert in all tables
default values.

DROP TABLE IF
EXISTS for all 6
tables (in case of an

update)
[
CODE CODE
No Code First commit
Add code basically in
PHP

Include raw queries
into php files for each
table (ORM).

24

2017-06-02 Zdené | 2 1 DB DB
07:12:44 k INSERT INTO INSERT INTO ‘“access®
+0200 “access” (id", Cid", “role", “user")
‘role”, “user") VALUES
VALUES (NULL, 2, 1);
(NULL, 3, 1);
[
CODE CODE
No change Rename some classes
and files.
Changes not related to
inserted values.
Interesting fact that
the cache.access was
renamed to cache.acl -
> see commit 2017-
07-31 access table is
renamed to acl.
[
2017-06-29 Zdené |0 1 DB DB
12:20:48 k No change Remove all DROP
+0200 TABLE IF EXISTS
[
CODE CODE
No change No change
[
2017-07-27 Zdené |0 1 DB DB
10:47:59 k INSERT INTO INSERT INTO
+0200 ‘resources” (Cid", ‘resources” (Cid",
‘name’) VALUES “name’) VALUES
(NULL, (NULL, "Web:Web"),
"Web:Web’), (NULL, "Web:Login’);
(NULL,
"Web:Login’), Removes one default
(NULL, value
’Admin:Admin’);
[
CODE CODE
No change No change
[
2017-07-27 Zdené |1 1 DB DB
13:11:00 k No change INSERT INTO
+0200 ‘resources” (Cid",
‘name’) VALUES
(NULL, "Web:Web"),
(NULL, "Web:Login’),

25

(NULL,
’Admin:Admin’);

INSERT INTO ‘“roles®
(id, *name’, “parent’)
VALUES

(NULL, ’guest’, 0),
(NULL, 'member’, 1),
(NULL, ’admin’, 1);

Inserted one default
value in each table

CODE
// Admin role that
can do everything.
$acl-
>addRole(self::RO
LE_ADMIN);
$acl-
>allow(self::ROLE
_ADMIN,

CODE
// Admin role that can
do everything.

deletes one line in file
acl/Authorizator.php

Sacl-
>allow(self::ROLE_AD

Security\Permissi =~ MIN,
on::ALL, Security \ Permission::
Security\Permissi =~ ALL,
on::ALL); Security \ Permission::
ALL);
[
2017-07-27 Zdené DB DB
13:12:00 k INSERT INTO INSERT INTO ‘roles
+0200 “roles™Cid", (id®, “name’, “parent’)
‘name’, “parent’) VALUES
VALUES (NULL, ’guest’, 0),
(NULL, ’guest’, (NULL, 'member’, 1),
0), (NULL, ’admin’, 2);
(NULL, "'member’,
1), Last was 1
(NULL, ’admin’,
D;
[
CODE CODE
No change No change
[
2017-07-27 Zdené DB DB
13:13:02 k INSERT INTO
+0200 “access” (id",

26

“role®, “user")

INSERT INTO ‘access®

VALUES (id®, “role’, “user’)
(NULL, 2, 1); VALUES
(NULL, 3, 1);
(view 2017-06-02
commit)
CODE CODE
Xlo change Xlo change
2017-07-31 Zdené | 17 DB DB
11:31:57 k No change No change
+0200
CODE CODE
No change Rename all ‘id’ to
‘xxxxId’ for the next
commit (xxxx refers to
table’s name).
2017-07-31 Zdené |0 DB DB
12:09:40 k Delete TABLE CREATE TABLE acl
+0200 access (3 var) (3 var)
Renames Actually, rename

CREATE TABLE
“privileges® (

id” int(11)...
CREATE TABLE
‘resources” (

“id” int(11)...
CREATE TABLE
‘roles” (
idtint(11)...
CREATE TABLE
“users” (
“idhint(11)...
CREATE TABLE
“users” (

“id” int(11)...

27

access to acl

Move permissions
TABLE on top of the
file.

Change id in INSERT
for default values
from NULL to
number 1,2..

Renames
‘id’ _> ‘****Id’
CREATE TABLE
“privileges® (
“privilegeld”
unsigned...
CREATE TABLE
“resources” (
‘resourceld”
unsigned...
CREATE TABLE
‘roles” (
‘roleld” unsigned ...

CREATE TABLE

“users’ (
“userld” int(11)
unsigned ...
[
CODE CODE
No change No change. Variable

names in sync from
the previous commit.

2017-08-01 Zdené |0 1 DB DB

07:04:03 k No change Rearrange CREATE

+0200 TABLE
‘permissions’ and
‘acl’

Add them both in the
end of the file

CODE CODE

No change No change
2017-08-01 Zdené |0 1 DB | DB
07:04:03 k INSERT INTO Fix indentation (add
+0200 ‘pri\./ﬂ_eges‘ tabs)

(Cprivilegeld",

‘name") VALUES Make id in INSERT
(1, ‘default’); null from number,
e.g.,
INSERT INTO
“privileges®
(privilegeld®, “name")
VALUES
(NULL, "default’);

CODE CODE
No change No change
[
2017-08-03 Zdené |0 1 DB DB
08:31:52 k No change Commit just to add 1
+0200 tab
[
CODE CODE
No change No change
[
2017-08-03 Zdené |0 1 DB DB

28

08:33:40 k (NULL, INSERT INTO

+0200 ’Admin:Admin’), @ ‘resources
(NULL, (Cresourceld’, “name")
"Web:Login’), VALUES
(NULL, (NULL, 'Web:Web"),
"Web:Web’); (NULL, "Web:Login’),
(NULL,
’Admin:Admin’);
Rearrange...
i
CODE CODE
No change No change
i
2017-09-19 Zdené |1 1 DB DB
07:14:50 k INSERT INTO INSERT INTO
+0200 “privileges® “privileges®
(privilegeld", (Cprivilegeld’, “name")

‘name’) VALUES VALUES
(NULL, ’default’); (NULL, ’:all’),
(NULL, "default’);

:all was not a default

value
[
CODE CODE
$row->privilege const
=== "all’ ? $row- | PRIVILEGE ALL =
>privilege = all’;

Security\Permissi = $row->privilege ===
on::ALL : $row- self:: PRIVILEGE_ALL

>privilege; ? $row->privilege =
Security \ Permission::
ALL : $row-
>privilege;
i
2017-09-20 Zdené [0 1 DB DB
06:50:19 k int(11) or int(10) Change data type for
+0200 all tables to
smallint(5)
i
CODE CODE
No change No change
i
2018-01-18 Zdené [0 1 DB DB
12:02:08 k (NULL, ’:all’) (NULL, ".*) into table
+0100 privileges

29

CODE CODE
No change No change
[
2018-01-18 Zdené |0 1 DB DB
12:07:04 k (NULL, *.*) (NULL, ’:all’) into
+0100 table privileges
[
CODE CODE
No change No change
[
2018-07-27 Zdené |0 1 DB DB
14:50:20 k No change No change, make all
+0200 inserts into one line
[
CODE CODE
No change No change

1) What: There are 6 tables created and ORM access to them. The developer
removed drop tables if they exist. Most of the commits were: insert/remove default
values or change them. Rename table/col_names (id->***1d) and -classes/files.
Change data types. Fix the indentation or rearrange the code lines.

2) Why: Most commits to change default values.

3) When: Most of them are at the beginning of the repository’s life, but there are
also commits at the middle and the end of the project’s life.

4) Where: There is only one db.sql file. Usually, Object related (ORM) files with
each table, or files/methods using them.

5) How: Usually to change default values, sometimes bug fixes, e.g. from
renames.
6) Who: See the second column for more.

Zdené&k: 18/18 (one was the initial commit)

30

Num Affectediles & Contains sql

Ml

- NumAffecte

Figure 3.6 Schema and src commits for acl, the image produced from the first
version of ECE

5) jasongrimes__silex-simpleuser

About this project:

A simple, extensible, database-backed user provider for the Silex security service.
SimpleUser is an easy way to set up user accounts (authentication, authorization,
and user administration) in the Silex PHP micro-framework. The project provides
drop-in services for Silex that implement the missing user management pieces for
the Security component. The project includes a basic User model, a database-backed
user manager, controllers and views for user administration, and various supporting
features. The description of the project is from GitHub. The project was written in
PHP. The project started in 2013 and it was active for 3 years, there are 153 commits
made. The owner of the repository is Jason Grimes with 35 repositories, 43 followers

and 16 stars on GitHub.

31

Table 3.5 Commits related to the schema for the jasongrimes/silex-simpleuser

project
Date Who #Sr | #5Q ate before ate a
YYYY-MM- c L
DD upd | upda
ates | tes
2013-04-14 Jason |6 1 DB DB
14:53:22 No DB CREATE TABLE
+0000 users (7 var)
[
CODE CODE
No Code First commit
[
2014-08-24 Jason |2 1 DB DB
08:56:21 - No change CREATE TABLE
0400 user_custom_fields (3
var)
[
CODE CODE
No change Add functions into
the code to handle the
new table
[
2014-08-24 Jason |0 1 DB DB
09:18:33 - user_id INT(11) Changes in the
0400 UNSIGNED NOT | user_custom_fields
NULL table
AUTO_INCREM user_id INT(11)
ENT UNSIGNED NOT
NULL
value
VARCHAR(255) value VARCHAR(255)
NOT NULL DEFAULT NULL
DEFAULT ~
[
CODE CODE
No change No change
[
2014-08-24 Jason |0 1 DB DB
09:31:08 No change Add a new empty line
between two tables in
the sql file.
[
CODE CODE
No change No change

32

2014-08-24 Jason |0 1 DB DB
10:02:09 - “password” Changes in the users
0400 VARCHAR(255) table
NOT NULL “password’
DEFAULT ~ VARCHAR(255)
DEFAULT NULL
[
CODE CODE
No change No change
[
2014-08-24 Jason |1 0 DB DB
10:35:56 - No change No change
0400 i
CODE CODE
No change Extra code for the
new table when ->
Reconstitute a User
object from stored
data
if(lempty($data[’custo
mFields’])){ $user-
>setCustomFields($dat
a[’customFields’]);
}
[
2014-09-04 Jason |5 1 DB DB
00:52:31 - No change Add SQLite (same
0400 tables)
[
CODE CODE
No change Add DB tests for
SQLite tables
[
2014-10-01 Jason |3 0 DB DB
17:14:25 - No change No change
0400 |
CODE CODE
public function Add an optional
getUsername() { username field, and
return $this- allow logging in with
>email; either email or
username. (Username
is stored as a custom
field for backward
compatibility.)

33

Return username, if
not empty, otherwise
the email

public function
getUsername() {
return $this-
>getCustomField(Cuser
name’) ?: $this-
>email; }

See 2014-10-20 Jason
commit (username
was added the to db)

2014-10-20 enyoso | 3 2 DB DB

01:52:10 lutions No change Add for both MySQL
+0200 & SQLite new
columns.

alter table users add
username
varchar(100)
DEFAULT NULL;

CODE CODE

No change Add username in the
code and change the
structure of some

functions.
[
2014-10-20 enyoso | 2 2 DB DB
01:52:10 lutions No change Re-commit the same
+0200 changes with the
previous commit into
the 2 files.
[
CODE CODE
No change Re-commit the same

changes with the
previous commit into

the 2 files.
[
2014-10-20 enyoso | 1 0 DB DB
01:58:47 lutions No change No change
+0200 i
CODE CODE
No change Re-commit the same

changes from the.

34

Next commit cancels
this commit.

2014-10-20
23:17:27 -
0400

Jason

DB
No change

DB

Add 4 columns into
the users table, for
both mySql and
sqLite.

CODE
No change

CODE

Add new fields to src
objects related to table
mapping (ORM).

2014-10-21
00:44:53
+0200

enyoso
lutions

DB
No change

DB

Cancel the changes
(alter...) made in the
previous commit.

CODE
No change

CODE

Cancel the changes
into the 2 from the 3
files changed in the
previous commit.
Cancels were made by
Jason (conflicts) who
started the project.

2014-10-25
16:19:26 -
0400

Jason

DB
No change

DB

Add support for
migrating the
database from version
1.x to 2.0 and back
again. Add-v1 SQLite

CODE
No change

CODE

Add readme and code
(and test) to help
migration from V1 to
V2.

Few update
in .md

DB
No change

DB
No change

CODE
No change

35

CODE
Few updates, not
related to schema

2014-10-28 Jason |1 0 DB DB
06:38:16 - No change No change
0400 T
CODE CODE
‘username’ => Fix bug causing email
$user- address to be stored
>getUsername() as username
‘username’ => $user-
>getRealUsername()
View 2014-10-20
Jason commit.

1) What: Changes happened: create/add table, data type changes, add new
DBMS, add columns, add support for migration. Also, after a schema change,
commits were made to src, at the same commit or at the same day. There was one
bug fix 8 days after the db changed (last commit).
2) Why: To update schema with more info, add DBMS and migration ability.
3) When: At the beginning, middle and at the end of the project’s life.
4) Where: Usually to the same files (2 sql files, src files related to user model and
test files for the db).
5) How: Make changes in the db schema, add dbms and migration support.
6) Who: See the second column for more.

Jason: 11/15 (one was the initial commit)

enyosolutions: 4/15 (commits canceled due to conflicts)

asons s. ommitSummary.tsv.
Software & Schema Evolution over Time(versioniD)

NumAffctedfils & Contains gl

| \ ||’|l|||||||||H|| \H |||HI|‘|

Figure 3.7 Schema and src commits for silex-simpleuser, image produced from
the first version of ECE

3.2.3 In-depth study of MODERATE project

Finally, we selected one project randomly from the MODERATE taxon.
This project is:

1) mapbox/osm-comments-parser

6) mapbox__osm-comments-parser

About this project:

The project consists of parsers to read Notes and Changeset XML files and save them
in a Postgres DB. The project was written in JavaScript. The project started in 2015
and it was active for 2 years, there are 183 commits made. The owner of the
repository is the Mapbox organization with 55 people and 849 repositories on
GitHub.

Table 3.6 ~ Commits related to the schema for the mapbox/osm-comments-parser

project

Date Who #Sr | #SQ ate before ate a
YYYY-MM- c L

DD upd | upda

ates | tes

2015-11-10 Sanjay (18 |1 DB DB

11:51:44 No DB First commit

+0530 CREATE TABLE IF
NOT EXISTS

users (var 2)

notes (var 5)
note_comments (var
6)

changesets (var 7)
changeset_tags (var
7)
changeset_comments
(var 5)

\
CODE CODE

37

No Code First commit, insert
readme and source
code, mostly in
javascript(1 js file for
each db table to
handle, ORM).

Test files added also.

2015-11-13 Sanjay |2 0 DB DB
19:36:07 No change No change
+0530 \
CODE CODE
No change Fix, add opened_by
user as an attribute
of notes
Add
var _ =

require Cunderscore’);
and function to
handle it, change
functions that where
using node table

2015-11-16 Sanjay | 3 0 DB DB

13:03:58 No change No change

+0530 i
CODE CODE
var userlD = Fix bug of not saving
comment.UID discussion users and
Inull; timestamps correctly
var userName = var userlD =
comment.USER || comment.attributes.U
null; ID |l null;
var timestamp = var userName =
comment.DATE; comment.attributes.U

SER Il null;

var timestamp =
comment.attributes.D

ATE;
[
2015-11-19 Sanjay | 3 2 DB DB
12:05:42 Into UPDATE changesets
+0530 create_tables.sql SET bbox =

ST_MakeEnvelope(m
in_lon, min_lat,

38

1-Table
changesets

user_id integer
REFERENCES
users (id),

bbox
geometry(POLYGO
N, 4326)

2-Table
changeset_tags
changeset_id
integer
REFERENCES
changesets (id)
3-Table
changeset_commen
ts
changeset_id
integer
REFERENCES
changesets (id),
user_id integer
REFERENCES
users (id) NULL

max_lon, max_lat,
4326);

1-Table

user_id integer,
min_lon float NULL,
min_lat float NULL,
max_lon float NULL,
max_lat float NULL,
bbox
geometry(POLYGON,
4326)NULL

2-Table
changeset_id integer

3-Table
changeset_id integer,
user_id integer NULL

Generate CSV files
that can be \Copied
into postgres, refs
ADD file
changesets/post_initia

l.sql

CODE CODE
Xlo change Add changesets/csv.js
and change functions
for the db changes
2015-11-23 Sanjay DB DB
14:14:24 No change Add SQL file to
+0530 create indexes

39

CREATE INDEX
changesets_created_at
_idx ON
changesets(created_at
);
CREATE INDEX
changesets_closed_at_
idx ON

changesets(closed_at)

9

+++ more
[
CODE CODE
No change No change
[
2015-12-09 Sanjay DB DB
16:47:53 No change move sql files to
+0530 scripts/ folder
create_indexes.sql >
scripts/create_indexes.
sql
create_tables.sql -
scripts/create_tables.sq
I
[
CODE CODE
No change Xlo change
[
2015-12-17 Sanjay DB DB
14:55:18 No change Table changesets
+0530 Add:
discussion_count
integer
[
CODE CODE
No change Change functions.
Populate and write
test. Change
indentation.
[
2015-12-18 Sanjay DB DB
11:40:43 No change Create index on
+0530 discussion_count and

40

comments timestamp
(for sorting)
CREATE INDEX
changesets_discussion
_count_idx ON
changesets(discussion
_count);

CREATE INDEX
changeset_comments_
timestamp_idx ON

changeset_comments(

timestamp);
[
CODE CODE
No change No change
[
2016-01-20 Sanjay DB DB
15:00:10 No change No change
+0530 i
CODE CODE
var updateQuery = Update note if
"UPDATE notes closed_at has
SET created_at=$2, changed
closed_at=%3, var updateQuery =
point=ST_GeomFr "UPDATE notes SET
omText($4, 4326) created_at=$2,
where id=$1; closed_at=$3,
opened_by=3%4,
point=ST_GeomFrom
Text($5, 4326) where
id=$1";
[
2016-02-23 Sanjay DB DB
13:31:37 No change changesets/post_initia
+0530 l.sql
\COPY
users(id,name)
FROM ’csv/users.csv’
DELIMITERS °; CSV;
[
CODE CODE
No change No change
[
2016-11-29 Sanjay DB DB
17:15:15 \COPY Save is_unreplied
+0530 changesets(id, boolean. add to
created_at, ’

closed_at, is_open,
user_id,
num_changes,
min_lon, min_lat,
max_lon, max_lat)
FROM
‘csv/changesets.csv’
DELIMITERS °;
CSV;

41

schema

\COPY changesets(id,
created_at, closed_at,
is_open, user_id,
num_changes,
is_unreplied,
min_lon, min_lat,

max_lon, max_lat)

FROM
‘csv/changesets.csv’
DELIMITERS °; CSV;

Table changesets add
is_unreplied boolean

CODE CODE
No change Populate new value
and fix tests.

2016-11-29 Sanjay |1 0 DB DB
17:53:21 No change No change
+0530 |

CODE CODE

No change Add utils

module.exports = {};
module.exports.getls
Unreplied =
getlsUnreplied;
function
getIsUnreplied(uid,
comments) |
var lastComment =
comments.slice(-
DIO0];
if
(lastComment.attribut
es.UID === uid) {

return false;

} else {
return true;

}
}

2016-11-29 Sanjay |2 2 DB DB
18:33:58 No change Add to changesets
+0530 username text
Add it to \COPY
changesets(...
[
CODE CODE
No change Populate new field
[
2016-11-30 Sanjay | 4 3 DB DB
11:38:29 No change Deletes
+0530 changeset_tags table

42

Add to changesets
table

comment text NULL,
source text NULL,
created_by text
NULL,
imagery_used text
NULL,

Delete \COPY
changeset_tags(...

Remove 4 indexes
about
changeset_tags_...
Add CREATE
INDEX
changesets_comment_
tsvector_idx

CODE
No change

CODE

Remove functions
using the deleted
table
(changeset_tags) and
change functions
handling the changed
table (changesets).
Add
getChangesetTags()
to utils (retrieves the
4 new inserted values
to changesets table)

2016-12-01
12:34:35
+0530

Sanjay

DB
No change

DB
Add to
changeset_comments

username TEXT
NULL

CODE
No change

43

CODE

Add variable and
function using the
table
(changesets/db.js)

2016-12-01
12:39:50
+0530

Sanjay

DB
No change

DB
Add \COPY
changeset_comments(

CODE
No change

CODE

Handle username in
changeset_comments
for initial csv
generation.

Add attribs.USER ?
attribs.USER : null

2016-12-01
12:41:44
+0530

Sanjay

DB
No change

DB
Create indexes on
username fields

CODE
No change

CODE
No change

2017-01-16
17:45:52
+0530

Sanjay

DB
No change

DB

Add columns to
users table

name text,
first_edit
timestamptz,
changeset_count
integer,
num_changes integer
Add to post_initial
\COPY users(...

CODE
No change

CODE

Add additional user
metadata also to
functions

2017-01-25
12:17:17
+0530

Sanjay

DB
No change

b4

DB

Add to \COPY
changesets(..,
discussion_count,...
CREATE INDEX
changesets_is_unrepli
ed_idx ON
changesets(is_unrepli
ed);

Field was added

2015-12-17
CODE CODE
No change Add it to csv file and
make/fix tests
2017-02-01 Sajjad DB DB
15:21:58 No change CREATE TABLE IF
+0530 NOT EXISTS stats
(var 10)
CODE CODE
objects/objUser.js Change function
countTags(users, obj)
tags: {} tags_modified: {},
tags_created: {},
tags_deleted: {}
2017-02-01 Sajjad DB DB
16:28:42 id integer Change into table
+0530 PRIMARY KEY stats
id serial PRIMARY
KEY
CODE CODE
No change Create objects/db.js to
write/save changes to
db, rename some
variables
2017-02-01 Sajjad DB DB
16:54:06 first_edit Into table users
+0530 timestamptz (nullable)
first_edit timestamptz
NULL
CODE CODE
callback(userID) Fix: callback(null,
userID);

45

Rename variables,
delete 2 js files,use
userModel instead of
objUser.js and tags.js
(not used any more,

see next commit, no
need to filter tags)
[
2017-02-01 Sajjad | 6 0 DB DB
18:04:08 No change No change
+0530 |
CODE CODE
No change Creates changes/user-
model.js
Used in last commit
(deleted
changes/objUser.js)
Basic tests
[
2017-02-03 Sajjad |1 1 DB DB
15:09:31 changesets integer = Table stats
+0530 NULL changesets integer
ARRAY
[
CODE CODE
val.changesets = val.changesets =
.size(.uniq(val.ch _.uniq(val.changesets
angesets)););
[
2017-03-28 Kusha |1 0 DB DB
11:31:59 n No change No change
+0530 |
CODE CODE
var firstEditDate = In users/db.js file
new
Date(userRow.first var firstEditDate =
_edit) ? userRow.first_edit ?
userRow .first_edit : new
null; Date(userRow.first_e
dit) : null;
After the 2017-02-01
commit.
[
2017-03-31 Kusha |2 0 DB DB
14:01:40 n No change No change
+0530 |
CODE CODE
var Add first_edit to
checkUserQuery = user select query,
'SELECT id, name, wasn’t retrieved ->

46

changeset_count, was always null (see

num_changes from previous commit)

users where id=$1"; var checkUserQuery
= SELECT id, name,
changeset_count,
num_changes,
first_edit from users

where id=$1;
[
2017-04-07 Kusha |8 1 DB DB
16:55:35 n id serial PRIMARY Table stats
+0530 KEY id uuid PRIMARY
KEY
[
CODE CODE
No change No src changes
related to db
changes.

From the commit
comment: Fix
duplicate stats data
(adds replicationld),

add tests.
[
2017-04-07 Sanjay |0 1 DB DB
17:55:17 No change Add indexes
+0530 CREATE INDEX

stats_change_at_idx
ON stats(change_at);
CREATE INDEX
stats_uid_idx ON
stats(uid);

CODE CODE
No change No change

2017-08-03 Sajjad | 3 1 DB DB

16:38:23 No change Table stats add rows
+0530 nodes_created bigint
ARRAY,
ways_created bigint
ARRAY,
relations_created
bigint ARRAY,
nodes_modified
bigint ARRAY,

47

ways_modified bigint
ARRAY,
relations_modified
bigint ARRAY,
nodes_deleted bigint
ARRAY,
ways_deleted bigint
ARRAY,
relations_deleted
bigint ARRAY

CODE CODE

No change Add new variables
from table to to the
code and to
counter.js

2017-08-04 Sajjad |1 DB DB
12:26:02 No change No change
+0530

CODE CODE

No change Add new field from
stats table to update
query

1) What: Create/delete tables not only at the beginning as usually for the previous

projects, also add/remove src code for these tables. Fix bugs into src occurred by

schema changes. Add features to the project. Move SQL files to a folder. Add/delete

attributes/columns into tables. Multiple data type changes in the project’s life.

2) Why:
3) When:
4) Where:
5) How:
6) Who:

Add features to the project, bug fixes and code refactor.

Uniformly spread commits.

Usually the same files (group of files).

Schema changes and src maintenance mostly.

See the second column for more.

Sanjay 27/30 (one was the initial commit)

Kushan

3/30

48

Num Afectedls & Contans]

bl H\\[

l\\\,

Figure 3.8 Schema and src commits for osm-comments-parser, the image

produced from the first version of ECE

3.3 Results and findings from deep investigation

In this section, we group our findings and answer the six main questions mentioned
before for all projects together. We also locate and export patterns of how schema
and source code coevolve, for example frequently affected packages, how the schema
life compares to the source code life.

In general, we observed that at the very first commits, the developers uploaded a
large number of files and then mostly change and edit these files. That indicates that
possibly before the use of GitHub, developers have been working into the project
‘locally’, so, we have lost bug fixes and possibly schema changes. This phenomenon
seems to be more intense for the almost_frozen taxon, and the more active a taxon

was, the more the project has been developed progressively.

49

1) WHAT

We have mapped the schema and src changes for a better understanding of what
each group of schema changes cost to source code. In Figure 3.9, we depict at the
left column the projects we investigated. In the middle column, we depict the schema
changes we found in these projects and in the right column we depict the changes
that occurred to the source code. For each project, we used a ditfferent color to color
the project box border and arrows to schema changes (e.g. red color for the joomla-
platform-categories). We can summarize the schema changes and the source code
changes we found into fifteen and nine types respectively. The schema change types
are: File rename, File relocation, Update datatypes, Insert values (rows), Switch
DBMS, Create a new table, Delete table, Change of the storage engine,
Correcting/Updating previous values, Rename attributes, New DBMS added, Add
attributes (columns), Delete attributes (columns), Index, No schema changes. The
source code change types are: Changes unrelated to schema changes, Keep src in
sync with the new values, Sync sizes in code, Sync code, Table controller added,
cleanups’ of table models/code, Add DB tests, Fix bugs triggered from schema

changes (previous) and Various changes.

50

=

ALMOST_FROZEN

)

platform-categories
~—

w» | Change unrelated to
77| schema changes

Y ——
i list
e ———

Keep src in sync with
the new values (e.g
! add or edit queries)

/ Sync sizes in code
' (e.g. in GO)
Sync code

)

josephspurrier/ | |
gowebapp

Se——

accgit/acl
jasongrimes/silex-
simpleuser

mapbox/osm-
comments-parser ﬂ

>
3| Table

—>)
Cleanups of "table
5| models'/code
P Add db tests

Fix bugs triggered
from schema
changes i

P

>
>
rd

addition

Figure 3.9 Analysis of schema changes per project and their impact on source
code

In Figure 3.9, to make it easier to find patterns, we categorized the schema changes
to a higher level. We can see where each schema change belongs from the colors the
blocks are colored.
These categories are:

1) Schema change @logical level (orange).

2) Change @accompanying data in the Data Definition Language File (blue).

3) Change @engine supported (green).

4) Change @accompanying database code (red).

5) Change @physical level (yellow).

51

SHEMA CHANGE SHEMA CHANGE

PROJECTS GROUPING GROUPING

e
[ALMOST_FROZEN

.
[Change unrelated to schema
changes
platform-categories N
—
| Sync sizesin code (e.g. in
GO)
—————
umpirsky/tid-list e
Keep src in sync with the
new values (e.g. add or edit
queries)
P

Table controller addition

gowebapp

Cleanups of "table
models"/code

accgit/acl

i j Sync code

—_—
Varaious changes

simpleuser

Change
N @physical level

Add db tests
MODERATE

mapbox/osm-
P

N——
h————

Fix bugs triggerd from
schema changes

iy

Figure 3.10 Grouped schema changes and their impact on source code

In Figure 3.10 we can clearly identify what impact has each group of schema change
to the source code.

2) WHY

From our investigation of the six previous projects, we found out that in general, the
most commits were to insert new values, e.g. new default values, to add more
features to the project (e.g. a new table to save extra information or the user) and
code refactoring or bug fixes after schema changed.

Table 3.7 Reasons schema changes happen to each project

Project Reasons

1)joomlatools__joo | Changes to match joomla changes and joomlatools repository.
mla-platform-
categories

2)umpirsky__tld- To include more tld domains (add rows).
list

52

3)josephspurrier__g
owebapp

Refactor the code and add extra information (a new table note was
added).

4)accgit__acl

Most commits were to change default values (inserted rows e.g.
admin).

5)jasongrimes__sile
x-simpleuser

Update schema with more info, add new DBMS and migration
ability.

6)mapbox__osm-
comments-parser

Add new features, bug fixes and code refactoring.

3) WHEN

At the six projects we examined, we found that there were commits to the schema

and the source code while the project was alive. On most of them, the commits were

uniformly spread in relation to the project’s life.

Table 3.8

When schema commits happened to each project

Project

When schema commits happened

1joomlatools__joo
mla-platform-
categories

Two commits at the beginning of the project’s life and one at the
end.

2)umpirsky__tld-
list

Three commits, one at the beginning, one in the middle and one at
the end of the project’s life.

3)josephspurrier__g
owebapp

Uniformly spread commits to the database in the project’s life.

4)accgit__acl

Most of the commits were at the beginning of the project, but there
are also commits at the middle and the end of the project’s life.

5)jasongrimes__sile
x-simpleuser

Uniform commits, at the beginning, in the middle and at the end
of the project’s life.

6)mapbox__osm-
comments-parser

Uniformly spread commits.

53

6) WHO

From what we can see, the projects with more active schema evolution, tend to have
most of the commits made to the project concentrated to one person.

Table 3.9

Who made schema commits to each project

Projects

Percentage (%) of
developers committing
schema changes

Percentage (%) of commits made
by the developer with the highest
percentage of changes

joomlatools__joomla 50% 66.6%
-platform-categories

umpirsky__tld-list 100% 50%

josephspurrier__gow 66.6% 88.8%
ebapp

accgit__acl 50% 100%
jasongrimes__silex- 25% 73.3%
simpleuser

mapbox__osm- 50% 90%

comments -parser

o4

CHAPTER 4

CUMULATIVE ANALYSIS OF SCHEMA AND CODE

CO-EVOLUTION

4.1 Cumulative analysis and algorithm
4.1.1 Introduction to cumulative analysis
4.1.2 Algorithm of cumulative analysis
4.1.3 Comment on the generation of monthly schema stats
4.2 Expanding of EvolutionChartExporter
4.2.1 How EvolutionChartExporter computes and visualize the cumulative
activity of the projects
4.2.2 Testing the cumulative analysis of EvolutionChartExporter
4.3 Answering the research questions
4.3.1 Research question 1, What percentage of the projects demonstrates a
"hand-in-hand" schema and source code co-evolution?

4.3.2 Research question 2, how premature is schema evolution completion?

In the following chapter, we provide a cumulative analysis of our dataset in order
to be able to answer the two research questions we introduced in chapter 1. We
added to the EvolutionChartExporter the ability to compute and visualize the
cumulative activity as we will show in the next sections. In the next sections of this
chapter, we present how we have obtained the required results and the algorithms
we used. Finally, we discuss our findings on the two research questions we made at

the beginning of this thesis.

55

4.1 Cumulative analysis and algorithm

4.1.1 Introduction to cumulative analysis

For our study in schema and software co-evolution, we made a cumulative analysis
of the activity for each project in every taxon. The cumulative percentage is a running
total of the percentage values occurring across a set of responses. The total will either
remain the same or increase, reaching the highest value of 100% after totalling all
of the previous percentages. For example, if the percentage of a project’s progression
in 4 quarters of a year is 40%, 25%, 20%, and 15%, respectively, the cumulative
percentage values would be 40%, 65%, 85%, and 100%, for each quarter.

The formula for the cumulative percentage is as follows:
i o
1 o activity;
cumPct; = Z activity, = cumPct;_; +

TotalActivity £ TotalActivity

with acitvityx being the activity in the k-th time unit, and TotalActivity is the total
amount of activity measured for the entire lifetime of a project.

The above formula obviously applies to all kinds of activity measurements, like
projectActivity, schemaEvolutionActivity, Expansion, Maintenance, etc.

Using the files from chapter 3, to find the projects duration and total activity and
the exported MonthlySchemaStats files from the Heraclitus (on GitHub:

https://github.com/pvassil/HeraclitusFire), we created a new file for each project with

the computed cumulative activities. The new file consists of six columns, these are:
Month, SchActivity, PrjActivity, cumulPtime, cumulSchActivity, cumulPrjActivity.

e The first column counts from 0...n, with n the project life in months.

e The SchActivity column, consists of the attributes changed from the commits
made in the month i, this value is computed by Heraclitus and is located in
the TotalAttrActivity column of the MonthlySchemaStats file.

e The PrjActivity counts the number of files that changed in the commits made
the month i (contains source code and database files).

e The cumulPtime contains the percentage of the projects’ life until the month
L.

o6

e The cumulSchActivity column contains the cumulative percentage of the
SchActivity column over time.
e Finally, the cumulPrjActivity column contains the cumulative percentage of
PrjActivity values over time.
In section 4.2 we will explain the tool we created to compute the cumulative analysis

and the tests we made.

4.1.2 Algorithm of cumulative analysis

In the previous section, we gave a definition of what a cumulative percentage is. In
this section, we present the algorithm that we used for our research and we
implement it in the EvolutionChartExporter. The main feature of the cumulative
percentage is the use of the previous value [i-1] to find the current value [i].

e totDur is the total duration/life of the project in months

o totPrjAct is the total number of changed files, the sum of changed files in
every commit, contains the source code files and the database files (sum of all
prjActivity[]).

e totSchAct is the total number of changed attributes, the sum of changed
attributed according to the MonthlySchemaStats file exported from
HeraclitusFire (sum of all SchActivity[]).

e prjActivity[] is an array with the number of the changed files every month.

e SchActivity[] is an array with the number of changed attributes each month.

The algorithm we implemented is introduced in Algorithm 4.1.

Algorithm Computation of the Cumulative percentage

int totDur = getTotalDuration()
int totPrjAct = getTotalPrjActivity()

1
2
3: int totSchAct = getTotalSchemaActivity()
4:

5: prjActivity[] = getPrjActivity()

6

SchActivity[] = getSchActivity()

o7

10:
11:
12:

13:

14:

15:;
16:

cumulPrjActivity[0] = prjActivity[0] / totPrjAct
cumulSchActivity[0] = SchActivity[0] / totSchAct
cumulPTime[0] = O

for each month i in 1..totDur

cumulPrjActivity[i] = cumulPrjActivity[i-1] + (PrjActivityl[i]
/TotPrjActivity)

cumulSchActivity[i] = cumulSchActivity[i-1] +
(SchActivity[i]/TotSch Activity)

cumulPtime[i] = i / totDur

end for

Algorithm 4.1 Computation of cumulative percentage

From the definition of cumulative percentage, we can see that all cumulative

variables cumulPrjActivity[n], cumulSchActivity[n], cumulPtime[n], with n equals to

the last month, have to be 1.0 (or 100%).

4.1.3

A comment on the generation of Monthly Schema Stats

Before we continue and present the tool we made to compute and visualize the

cumulative percentage, we will open a parenthesis to make a comment on how

Heraclitus produce the schema monthly stats and why we should know it. Heraclitus

produces two kinds of statistics:

Evolutionary statistics for the heartbeat of the schema evolution, in which, the
originating version of the schema life is not included: the aim of these statistics
is to quantify how much the schema has changed after its birth.

Monthly statistics for the heartbeat of the schema evolution, that compute the
number of changes for each month, and, in which, the originating version is

included.

Thus, the total sum of activity changes is different in these two kinds of evidence,

and differs with respect to the number of attributes born in the originating version.

In the rest of our deliberations, we will refer to the monthly stats, as this is the

58

respective measure that we can use to compare against the monthly stats of the

project activity.

4.2

4.2.1

Expanding of EvolutionChartExporter

How EvolutionChartExporter computes and visualize the

cumulative activity of the projects

In this chapter, we will present the extension we incorporated into the first version

of EvolutionChartExporter, as presented in section 3. The structure of the

EvolutionChartExporter remained the same, although we added the ability to the

software to create line charts this time.

In more detail, we implemented the next new classes:

ComputeCumulativeEngine: This is an engine class, responsible to compute
the cumulative percentage and extorting it to a file.

CumulativeDataLoader: This class was created to load the required files for
each project (CommitSummary and MonthlySchemaStats files). These files are
important to find the activities of each project and schema, as we saw in the
algorithm before. The loader uses the AddZeroEngine implemented in section
3, to add zero months with no activity, so the schema activity can match the
project activity.

CumulativeModel: This class is an object that contains the six values we save
to our cumulative file (these values are: Month, SchActivity, PrjActivity,
cumulPtime, cumulSchActivity, camulPrjActivity). Each object is an instance
of an activity month (one line in the file).

LineChartExporter: With this class, we were able to export the line chart
images. The line chart contains two lines, one for the project activity and one
for the schema activity.

ProduceCumulativelmageEngine: It is using the LineChartExporter to create
the images. For each project, we produce two images, one with a percentage
of the time, using the cumulTime column, and the other with absolute time,

using the month column.
59

Figure 4.1 shows a flow chart of how EvolutionChartExporter creates the cumulative

files and images.

EvolutionChartExporter Compute and
export cumulative files and images

For each project

v v

Read TotalAttrActivity values from
MonthlySchemasStats file

[|
v

Compute the cumulative percentage
for each project and save it to a tsv
file

Read CommitHistory values

Y

Use exported files
and plot line chart images with the

results.
Line chart type A Line chart type B
Y axis: % of activity (project/schema) Y axis: % of activity (project/schema)
X axis: absolute time in months X axis: cumulative % of time

Figure 4.1 EvolutionChartExporter flow chart.

Figure 4.2 shows the class diagram of the EvolutionChartExporter. Only the

functionality classes are shown here, the JUnit class tests are not shown.

60

<ava Cassr>
©Mmain <<lava Ciass»>
(®SchemastatsMainEngine i ©ComputeCumulativeEngine
= exportiode: booean
@ flePatn: Sting cScnartFieroser Sirng o project Fle
o fleName: Sting o ieNamesCom Stngl) o tiuraton it
oS gbiCollction: ArrayList<ProjectHistory> & foderNamesCom: Stingl] © toPrAct int
puTupieCaiecton: Arsy st ojectstory> o fieNames um S i | otosomet e
o sttributePostions: HashMapeString teger> | & foderNamesSum ArrayListeSting> o prActivey: ArrayList<iteger>
o hesder: AmsyList<Sirng> denfieracer Sirng o schactuty. AmrsyListertegers
o _DESUGHODE Bosesn o fieCumumans: Sting] o testhiode: bosean
Sqsimter:Siing | = toercumuing Singl & ComputeCumiateEngine(Fie booean)
hasreaderiine booean " [Sno © cresteCumstueFie(jvod
SnunFieics: int 5 X @ computeQumiK) ArrayList<Cumuiatehlodet>
o stage: Stage <<lava Cass>> |- . @ start(Stage) void @ PrintDataToTabDelmtedFie(String) void
& SchemasiatshanEngne(Sting Sting S1age) oA g
B procasstieadsr() vod
© procucegures(nt :z:i::";:"@”g
8 oscstvoid .
o seusFasers(vas § iyt arl)
& ProduceHTM Engine(String String)
@ produceHTML()-boolean
© produceCumiteHTL(bodesn .
{obZerasColection) 0.+ Gprod
N <<ava Cass>> engine
<<iava Cass>> © sumEngine = fepatn:Sting
GProjectiistory. erane = fetame: Strng
i cPdeimeter: String. @ stage: Stage
cFhastieaderLine: boolean @ attributePostions: HashMap<String Integer> ~cumuativeModeL isy <<Java Cass>>
& header ArayList<Siring> P ®CumulativeModel
= _DEBUGMODE Boolean e
SProsuceCumilateimageEngne(Sting S Sage) VR
sSanColecton AnayListePraectistoy> S EROR STRG Strg
o monthnt
Srraectstoy Date Sing) [e 5 getCunulateData() ArrayList<Cunuiateloet> bt
i © getDate(Date @ format o Pracivy: it
-sunDoicolecton | o S = o curuPime: doutie
© getuthor(:Sting o i i e | cumuSchaciiy: double
o setautnor(String)vod e rn | H oo @ cummactuey: dowle
¢ © getumatecteaFies() it | FrDutaToTatOokmRs e vad i S oumiatveltodel)
s Gase> i © setfumaecteaFies(rt)vod Tachsigrvaia ! S Cumistieliodelin .t doute doutie doube)
©AddzerosEngine i © getContansSQL()int + © gethlonth()int
] i © setContainsSQL(nt)void H i © sethonthint)void
o sunZeroOnColecton ArrayLsteProectiston> Lotiotecton | © getVakeByPosiioniit Objct H © getSchactuay(nt
5 format SimpleDateFormat i tostring() String i H @ setSchactivey(int) void
FAddZerosEngne(ArrayList<Projectristory>) i 1 H © getrActiviy()int
© a0Zeros) ArrayLit<Pojectistory> ~cunuatveDstaLoadel, 0.1 _abfCotecton _| © SerACtY(m)void
i N © getCumuRime() double:
<ava Gass>> © setCumuRime(doutie) o
i (®CumulativeDataLoader © getCumISchACtivey() double:
H o © setCumuiSchActivity(double) void

o tteLine: Sting © getoumuPrAciiy():double
o header:ArayList<Sting> © setCumUPTActyty(doubie)vod
o prctiey: Arraylistertegers © geAIS TSV Strng
5 schActivty: AmayListeinteger> a

i .| & CumuiativeDataLoader()

© loacProjectristory(Strng)vols
© gefTotaDurationy it
© gefTotaProectactvey(it

-nstoryLoader (0.1 o 1 © gelTotalProjectActiveyL sty AmayLst<iteger>
<<lava Gss>> 01 e © getTotalSchemaActivey(Strng) rt
©@HistoryLoader i © gefTotatSchemactiyList):ArrayListeinteger>
e © getCumulatieData(Sting Sting bodlean) nt
o tteLine. Sting © getOnCotection() ArrayList<Cumiativeblode>
© header: AmrayList<Sting> © getrieader() ArrayList<String>
stypemt © getTiie() Sung

ristoryLoader(int)

@ load(String Siring boolean,ntyint

@ constructOiectFronRow (String)int

@ getObiCatection(ArrayList<Projectristory>
© getrieader(j:ArrayList<String>

@ gefTei():String

<<lavaGass> 1

©BarChartExporter o Gz
expoter (@ LineChartExporter
prTe—
© yAtrmue: Sirng
© yatrates: ArayLsteSting>
© xatriuaFos: veeger
© yAtruaFos: eeger
© yAtrmsFoss ArrayLstentegn> © yatrae: St
© atiutePostons: Fashhl<Sting Fieger> © yatrases: ArayLsteSting>
© xatrieFos. veeger
© crante sng © yatriesos veeger
© aupupatn Sting © yhtramseFoss: AmyListeneoers
© stage:Sage © atpuratn: Srng
© alseris ArrayList<Seres<Stng Nroers> © cranie: sng
© baCrart BarCrarSting Number>
= fomat:SimpDateFormat © atviuteostons: Hashhp<Sting Feger
e © suge:Sage
: © alserisLine: Areay steSeres humoer Nuoers>
et © lineChart: LineChart<Number Number>
o creseseres(uvaa
© selLabeFormater(NumberAXis vaid &L ArrayLs rteger Stage)
© repancruenDtCran) s o stvod
© savensngiScene Sing:void o craneTimeeres(t)vais
o saveCran)vaa © savensgiScene Sing void
© oetumOfDataPeSeries pArayLisertege> o saveCrunvoia
© oetumOfDatPeSees(pAraiscrteger>
© resonCrcerOHCran()vois
o FrDaTOTDelntece(Stng)vad

Figure 4.2 Class diagram of EvolutionChartExporter.

In Figure 4.3, we can see an example of a line chart image exported from the tool
we created. In the image, we can see that both of the lines are always increasing (or
remaining the same, never decreasing). Also, both lines end up at 100%, in the Y-
axis is 1.0 (represents the 100%). With the blue dotted line, we depict the schema

activity and with the green solid line, we depict the project activity.

61

0,99
0,96
0,93

0.9
0,87
0,84
0,81
0,78
0,75
0,72
0,69
0,66
0,63

0,6
0,57
0,54
0,51
0,48
0,45
0,42
0,39

Project Activity & Schema Activity

0,36
0,33

0,3
0,27
0,24
0,21
0,18

0,15

Cumulative analysis of cumulative_cgrates__cgrates.tsv over % time

= Project Activity o Schema Activity

0,12 f
0,09
i |

0,06
0,03

Y

M sraa s

o]

Figure 4.3 Line chart image of the cumulative analysis exported from the

20

40

60

80

Time progress (% months in project life)

EvolutionChartExporter.

Finally, Figure 4.4 shows the file format of the exported tsv file from the

EvolutionChartExporter. As we can see, there are six columns, we explained in

section 4.1.1 what each column is.

=
(@]
=
~+
[

20
14
57
97

NGOV B WNEREO®
S =
w
o0
()

0
0
0
0
0
0
0
1
1l
0
0

OO R LVLOODOONO W

Figure 4.4

OO OO ®

SchActivity PrjActivity cumulPtime
0.

0 0.0 0.039761431411530816
0.0 0.06759443339960239

.034482758620689655
.06896551724137931
.10344827586206896
.13793103448275862
.1724137931034483
.20689655172413793
.2413793103448276
.27586206896551724
.3103448275862069
.3448275862068966
.3793103448275862
.41379310344827586
.4482758620689655
.4827586206896552
.5172413793103449

0.3979238754325259
0.8754325259515571
0.8754325259515571
0.8754325259515571
0.8754325259515571
0.8754325259515571
0.8754325259515571
0.
0
0
0
0
0
0

8754325259515571

.8754325259515571
.8754325259515571
.9377162629757785
.9999999999999999
.9999999999999999
.9999999999999999

62

cumulSchActivity

4 0

OO OO0

18091451292246521

.37375745526838966
.37375745526838966
.3836978131212724
.3836978131212724
.38767395626242546
.38767395626242546
.38767395626242546
.38767395626242546
.38767395626242546
.584493041749503
.8330019880715707
.8330019880715707
.84493041749503

File format of the exported cumulative file.

cumulPrjActivity

4.2.2 Testing the cumulative analysis of EvolutionChartExporter

To ensure that the cumulative algorithm is correctly implemented into our software,
we had to write and run some tests. To do that, we made two types of tests, same
as the first implementation of EvolutionChartExporter in chapter 3.

For the first type of test, we created two files, representing the input of the cumulative
analysis files, one matching the commitSummary format file and the other matching
the MonthlySchemaStats format. After that, we compute manually the results of the
cumulative analysis and created an expected cumulative result file. In the end, we
created the ComputeCumulativeTest JUnit test in java to read our two test files,
export the cumulative tsv file and compare it with the expected.

For the second type of test, we made a visual check into some randomly selected
projects to find possible mistakes. We made visual tests to the exported tsv files and

the exported line chart images.

4.3 Answering the research questions

At the very beginning of this thesis, we introduced two main research questions. In
this section, we will present the process we followed and our findings and results.
As mentioned in Chapter 1, these two researcher questions are:

o Research Question 1: What percentage of the projects demonstrates a "hand-
in-hand" co-evolution, where the schema evolution heartbeat closely follows
the heartbeat of the project?

e Research Question 2: What percentage of projects demonstrates the 80-20
rule reported in the literature [3], i.e., 80% of the schema evolution activity
was obtained in the first 20% of the time?

In the following sections, we will analyze each question, and what we tried to better

understand by these two questions.

63

4.3.1 Research question 1: What percentage of the projects

demonstrates a "hand-in-hand" schema and source code co-evolution?

The first research question tries to understand if and how much the schema
evolution closely follows the projects’ evolution. To answer that, we used the files
we exported from the EvolutionChartExporter tool and we presented in the previous
sections. To measure the percentage of each project that fulfils the prerequisites,
"hand-in-hand" co-evolution, we used two range windows, +5% and £10%. We
created two python scripts to measure these and plot bar charts for each taxon and
an overall chart.

The algorithm counts for each month the distance between the schema evolution
and the project evolution, and divide it by the projects’ life to measure the "hand-

in-hand" percentage co-evolution. The algorithm is presented below.

Algorithm Computation of "hand-in-hand" co-evolution

1: for each taxon txn:

2: for each project prj:

3: prjLife = getProjectLife(); /* a list of months */
4: cnt10 = 0;

5: cntd = 0;

6: for each month m in prjLife:

7. if (abs(cumulPrjActivity — cumulSchActivity) < 0.1):
8: cnt10++;

9: if (abs(cumulPrjActivity — cumulSchActivity) < 0.05):
10: cntd++;

11: end if

12: end if

13: end for

14: handInHand10perc = (100*cnt10)/prjLife;

15: handInHandb5perc = (100*cnt5)/prijLife;

16: end for

17: end for

Algorithm 4.2 Computation of "hand-in-hand" co-evolution.

64

e
——-—-——-———————

ES

(a)

3 b
g e e e e e e e | 'g
e
Se——
5 et T
|
|
gosrens
i
|
7 i
o = |
f
1 | -
- 1 !
g [} !
g |
: ' =)
§ | § =
2 ' P anac]
l | ,o
z 1 ’
£ e e e e =
P ! poed A
£ 7l Vi %4
£ | £ h ==
! AR
/ Py
== 1
==
! |
! |
|
! -
!,
i
I /
)
_———————————————————~| Y i———

(e)

®

Figure 4.5 Line charts were "hand-in-hand" co-evolution is applied for the taxa:
(a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)
MODERATE, (e) FocusedShot n LOW, (f) ACTIVE.

65

....................

()

........

....

(d)

........

(e)

....................

®

Figure 4.6 Line charts were "hand-in-hand" co-evolution is not applied for the
taxa: (a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)
MODERATE, (e) FocusedShot n LOW, (f) ACTIVE.

66

In Figure 4.5 we quote as an example, a line chart for each taxon, where the “hand-
in-hand” schema and source code co-evolution is applied in a large percentage of
the project’s life. The line charts are extracted from the EvolutionChartExporter.

In Figure 4.6 we quote as an example, a line chart for each taxon, where the “hand-

in-hand” schema and source code co-evolution is not applied.

We grouped the projects into five ‘buckets’, each ‘bucket’ shows the percentage of
time in which the project and schema evolution is "hand-in-hand". These ‘buckets’
are: [0%-20%) — [20%-40%) — [40%-60%) — [60%-80%) — [80%-100%]. So, for a
specific project, the schema cumulative percentage line is hand-in-hand with its
project cumulative percentage line in 55% of the months, the project is allocated to
the 40%-59% bucket. We do this assignment for each project and then, we can
count, (for each taxon and overall) what fraction of the population belongs to each
bucket.

To help us to better understand and extract results, we visualized these ‘buckets’
into bar charts and also created two tables for the +5% and +10% windows range.
In bar charts are shown, in Y-axis the number of projects that belongs to each bucket
and in X-axis is the five ‘buckets’.

In Figure 4.7, we can see the charts for the "hand-in-hand" co-evolution we found

for the +5% window range.

67

Schema/Software hand-in-hand for taxon: 1_ALMOST_FROZEN

Schema/Software hand-in-hand for taxon: 0_FROZEN !
- computed with 5%

computed with 5%

121
204

101

illlll?lllh

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100% 0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%
Percentage of hand-in-hand Percentage of hand-in-hand

(a) (b)

Schema/Software hand-in-hand for taxon: 1_FocusedShot_n_FROZEN Schema/Software hand-in-hand for taxon: 2 MODERATE
computed with 5% computed with 5% -

i 1,

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100% 0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79%
Percentage of hand-in-hand Percentage of hand-in-hand

() (d)

Schema/Software hand-in-hand for taxon: 3_FocusedShot_n_LOW Schema/Software hand-in-hand for taxon: 4_ACTIVE
computed with 5% computed with 5%

Number of projects
Number of projects

v

©

-~ w
L L

w
s
Number of projects
o

Number of projects

- N]
L L
N

o

80'%'-100%

N

-

L

N

7 7

6 6
v 5 w 54
© ©
2 2
o o
S 4 G 4
k3 b
° c
2 2
EB] k I
5 5
- 4 -4

14
0 0 o

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%

Percentage of hand-in-hand

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79%

Percentage of hand-in-hand

(e) 63)

"Hand-in-hand" co-evolution for +5% range for the taxa: (a)

80'%'-100%

Figure 4.7
FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d) MODERATE,
(e) FocusedShot n LOW, (f) ACTIVE.

68

Figure 4.8 shows the overall measures for +5% range.

Schema/Software hand-in-hand for taxon: Overall
computed with 5%

60 -

50 A

3

N ' [
0

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%
Percentage of hand-in-hand

(a)
Table with 5% hand-in-hand

H
o
!

Number of projects
o

N
o
!

13 5 6 5 5
23 15 10 11 6
5 8 4 4 4
11 10 5 2 1
3 5 7 1 4
7 6 6 3 0
62 49 38 26 20
(b)

Figure 4.8 Overall "hand-in-hand" co-evolution for +5% range: (a) Overall bar

chart, (b) Table with each taxon and overall.

69

Schema/Software hand-in-hand for taxon: 0_FROZEN
computed with 10%

il

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%
Percentage of hand-in-hand

(a)

Schema/Software hand-in-hand for taxon: 1_FocusedShot_n_FROZEN
computed with 10%

Number of projects
»

[N]

8 -
9
8°1
2
Q
s
8 a4
[5
3
z
2]
04
0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%
Percentage of hand-in-hand
()
Schema/Software hand-in-hand for taxon: 3_FocusedShot_n_LOW
computed with 10%
8
7
6
a
g
&5
Q
o 41
o
Qo
£s]
33
2
14
0

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79%

Percentage of hand-in-hand

(e)

80'%'-100%

Schema/Software hand-in-hand for taxon: 1_ALMOST_FROZEN
computed with 10%

i

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%
Percentage of hand-in-hand

(b)

Schema/Software hand-in-hand for taxon: 2_ MODERATE
computed with 10%

.I|I-l

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%
Percentage of hand-in-hand

(d)

Schema/Software hand-in-hand for taxon: 4_ACTIVE
computed with 10%

Al

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%
Percentage of hand-in-hand

®

17.54

15.0 4

12.5 4

10.0 4

Number of projects
~
n
L

v
=]
L

N
0
L

o
=
I

Number of projects
o (=]

IS

N

Number of projects

Figure 4.9

"hand-in-hand" co-evolution for +10% range for the taxa: (a)

FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d) MODERATE,
(e) FocusedShot n LOW, (f) ACTIVE.

70

As we can see, for the window of +5% range, the "hand-in-hand" co-evolution
decreases over time, this is shown clearly in the overall results. Also, we can conclude
that the four first taxa, that are less active, most of the projects have a very small
percentage of "hand-in-hand" co-evolution. On the other hand, the most active taxa,
the FocusedShot n LOW and ACTIVE tend to have a small or average percentage
of "hand-in-hand" co-evolution.

We also used a +10% window range, double the previous range. We expect the life
percentage of the "hand-in-hand" to move to the ‘right’ for all the taxa.

In Figure 4.9, we can see the results for each taxon.

71

Figure 4.10 shows the overall measures for +10% range.

Schema/Software hand-in-hand for taxon: Overall
computed with 10%

il

0'%'-19% 20'%'-39% 40'%'-59% 60'%'-79% 80'%'-100%
Percentage of hand-in-hand

(a)
Table with 10% hand-in-hand

w
o
1

Number of projects
N
o

5 9 4 7 8
13 18 9 12 13
2 4 5 5 9
5 7 1 2 4
0 4 8 2 6
3 5 7 4 3
29 47 44 32 43
(b)

72

Figure 4.10 Overall "hand-in-hand" co-evolution for +10% range: (a) Overall bar

chart, (b) Table with each taxon and overall.

As we can, the life percentage that a project and schema evolution is "hand-in-hand"
increased. We can observe that more than 1/5 of the projects are "hand-in-hand" co-

evolving almost completely.

4.3.2 Research question 2: how premature is schema evolution

completion?

The second research question is a result reported in the literature [3], the “80-20
rule”, suggesting that 80% of the schema changes are completed in the first 20% of
the projects’ life. We wanted to see if this rule applies to a large number of projects.
To answer that, we used the exported files from the EvolutionChartExporter. We
created again two scripts to count and plot the results. The first script counts when
in the projects’ life, in percentage, the schema activity reaches a specific percentage.
Using this script, we create, for each taxon, a file that has the project name, the
projects’ life in months and projects’ life percentage, we decided to broaden the
research so we took four cases when the schema activity reaches 50%, 75%, 80%
and 100%. To find these percentages, we implemented an algorithm that is

introduced in Algorithm 4.3.

73

Algorithm Computation of 80-20 rule, and more

1: for each taxon txn:

2 for each project prj:

3 time = [0, 0, 0, 0; // for [50%, 75%, 80%, 100%]
4 for each month m in prjLife:

5: if (cumulSchActivity = 1.0):

6 time[3] = cumulPTime;

7 else if (cumulSchActivity > 0.8):
8 time[2] = cumulPTime;

9 else if (cumulSchActivity > 0.75):
10: time[1] = cumulPTime;

11: else if (cumulSchActivity > 0.5):
12: time[0] = cumulPTime;

13: end if

14: end for

15: end for

16: end for

Algorithm 4.3 Computation of 80-20 rule, and more

Using this algorithm, we found at which percentage of the time, each project reached
50%, 75% 80% and 100% of schema activity. Moreover, based on the findings, we
also created a script to visualize these measures.
Figure 4.11 depicts several instances of our measurements as a bar chart. In each
bar chart, we observe the following characteristics:
- The horizontal axis refers to the percentage of schema activity measured.
- The series refers to the range of project lifetime within which this activity was
obtained (again as a percentage of a total lifetime).
- The vertical axis counts how many projects refer to this combination of what
percentage of evolutionary activity was completed within this percentage of

the time.

74

Number of projects

Number of projects

Percentages by schema Activity (as group) Percentages by schema Activity (as group)

and when it reach it (in priLife %) and when it reach it (in prjLife %)
for taxon: 0 FROZEN for taxon: 1_ALMOST_FROZEN
7T 7T 2T 7T a3 —
= 20% priLife = 20% prjLife
20.01 == 50% priLife 40 4 39 mmm 50% priLife
== 80% priLife =4 = 80% priLife
17.5 1 == 100% priLife == 100% priLife
15.0 A 2 304
5
2
o
12.5 A a
‘s
10.0 4 % 204 18
£ .16
7.5 2 14
12
5.0 1 10 = = 9
: 7 8 4 7
5
2.5
0.0 -
50% 75% 80% 100% 50% 75% 80% 100%
(a) (b)
Percentages by schema Activity (as group) Percentages by schema Activity (as group)
and when it reach it (in prjLife %) and when it reach it (in prijLife %)
for taxon: 1_FocusedShot_n_FROZEN for taxon: 2_MODERATE
I5 18
= 20% priLife 175 4 = 20% priLife
14 mm 50% prjLife mmm 50% priLife
mmm 80% prjLife = 80% prjLife
o mm 100% priLife 15.0 1 m= 100% priLife
11 13
o ;3; 12.5 4
g
8 S 1004
3
61 £ 754
3
2
4 5.0
21 2.5
0- 0.0 -
50% 75% 80% 100%
() (D
Percentages by schema Activity (as group) Percentages by schema Activity (as group)
and when it reach it (in priLife %) and when it reach it (in prjLife %)
for taxon: 3_FocusedShot_n_LOW for taxon: 4_ACTIVE
10 12
10 A = 20% prjLife 12 { mmm 20% prjLife
mmm 50% prjLife mmm 50% priLife
mmm 80% prijLife mmm 80% prjLife
a4 == 100% priLife 101 wmm 100% priLife
” 77 77 "
2 6+ 3
Q (=%
5 5
o e
[v
Qo Qo
E 4 E
z z
2

(e) ()

Figure 4.11 When (in %) each project reached a specific schema activity for the
taxa: (a) FROZEN, (b) ALMOST FROZEN, (c) FocusedShot n FROZEN, (d)
MODERATE, (e) FocusedShot n LOW, (f) ACTIVE.

75

For example, in Figure 4.11 (b), for the x-axis value of 80% (meaning that we
measure when 80% of evolutionary activity was reached), we see that out of the 65
projects, 37 of them completed this 80% of activity within 20% of their project
lifetime (the blue bar), 9 of them completed this 80% of activity between 21%-50%
of their lifetime, 7 of them between 51% - 80% of their lifetime, and 12 of them
between 81%-100% of their lifetime. Figure 4.11 shows the results from our analysis

for each taxon.

In Figure 4.12, we can see the overall results and a table with all results for each

taxon and the overall.

76

Percentages by schema Activity (as group)
and when it reach it (in priLife %)
for taxon: Overall

114

= 20% prjLife
mm 50% prjlLife
. 80% prjlLife
= 100% prjLife

Number of projects

50% 75% 80% 100%

(a)

Number of projects that reached x% of schema activity, and when

ProjectLife Schema Activity 50% Schema Activity 75% Schema Activity 80% Schema Activity 100%

. 20% .21 . 21 .21 -2
.« 50% .5 .5 + 6 %6
0_FROZEN . 80% .5 .5 .5 .5
« 100% .2 . 2 .2 .« 2
. 20% . 43 . 39 . 37 . 17
. 50% & 7 . 8 .9 . 16
1_ALMOST_FROZEN . 80% & =7 . 7 . 14
« 100% « 10 « 1 o 12 « 18
. 20% . 15 . 13 . 12 - M
. 50% « 0 o1 o1 1
1_FocusedShot_n_FROZEN L e .5 .6 .6 .6
« 100% « 5 « 5 . 6 « 7
« 20% « 18 « 13 o 12 « 6
» 50% « 6 -7 o 7 . 4
2_MODERATE . 80% 51 & T ¥ .6
« 100% [.2 .2 - 13
Task 5
- 20 M 7 i 3
3_FocusedShot_n_LOW « 50%
il Ln_| o1 .2 .2 .4
« 80% .2 o4 . 4 « 10
« 100%
« 20% « 8 « 5 « 5 « 0
. 50% .« 7 « 7 « 6 « 5
4_ACTIVE . 80% .5 o 7 .8 .5
« 100% (I .3 + 3 + 12
.« 20% . 114 . 98 . 94 . 60
. 50% . 34 . 36 . 36 .33
Overall . 80% . 126 ¢ 34 . 36 e 40
« 100% o 21 . 27 e 29 . 62

()
Figure 4.12 Overall counting of when each project reached a specific schema

activity: (a) Overall bar chart, (b) Table with each taxon and overall.

77

It is important to understand that each group is computed separate from the other,
all projects appear in every group, in the same bar on in another of the same group.
For example, a project that in its 20% of life has a schema activity of 76%, is counted
in both 50% and 75% groups in the same bar. The sum of the projects in each group
is equal to the number of projects in the taxon or all, for the overall.

In our bar charts, the 80-20 rule is represented by the blue bar (the first 20% of the
project’s life) in the 80% group. We can observe that the rule, applies to the overall
projects, almost half of them. We can also observe that this rule happens more often

in the none so active projects.

78

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

5.2 Future work

The final chapter of this thesis summarizes the major findings of our study, we
outline the research questions made in the introductory chapter and we propose

potential future work.

5.1 Conclusions

The aim of this thesis was to study the schema and software co-evolution. This
research field is still in its early stages. The analysis of the history of a project hides
lots of difficulties, is a difficult process to automate and a very time-consuming
procedure to make manually. This thesis used a large collection of projects and their
history and extorted statistical results.

Firstly, we studied the relevant researches made to the field of schema and software
co-evolution. Then we made a manual analysis of six randomly selected projects,
with the expectation to better understand what changes are made during the project
life, why, where and how developers affect the schema and software. When these
changes are most likely to take place and who is usually making changes to the
schema.

Finally, we answered two research questions, these questions are: (a) What
percentage of the projects demonstrates a "hand-in-hand" co-evolution, where the
schema evolution heartbeat closely follows the heartbeat of the project? and (b) What
percentage of projects demonstrates the 80-20 rule reported in the literature [3]. IL.e.,
80% of the schema evolution activity was obtained in the first 20% of the time? In

our research, we studied also 50%, 75% and 100%. For the first research question

79

we found that overall, 1/5 of the projects are co-evolving hand-in-hand. For the
second research question, we found that the 80-20 rule is not negligible and was
applied in half of our projects.

We also presented a tool we made, called EvolutionChartExporter to help us

compute the required metrics and visualize these for a better understanding.

5.2 Future work

In follow-up work, one can better define the source code activity and extract the
actual software changes. Also, a deeper investigation and automation of schema
activity extraction can possibly give better grouping, taxa, and as a result of these a
better understanding of the schema and software co-evolution. Finally, we created a
new tool, the EvolutionChartExporter, in future work, someone can add new features

and metrics.

80

REFERENCES

[1]

[2]

[3]

[4]

Dien-Yen Lin, Iulian Neamtiu [YeNe09]. Collateral Evolution of

Applications and Databases, 2009.

Shengfeng Wu, Iulian Neamtiu [WuNe11]. Schema Evolution Analysis
for Embedded Databases, 2011.

Dong Qiu, Bixin Li, Zhendong Su [QuLS13]. An Empirical Analysis of

the Co-evolution of Schema and Code in Database Applications, 2013.

Panos Vassiliadis [Vass21]. Profiles of Schema Evolution in Free Open-
Source Software Projects. 37th IEEE International Conference on Data

Engineering (ICDE °21), Chania, Crete, Greece, 19-22 April 2021

81

82

SHORT BIOGRAPHICAL SKETCH

Fation Shehaj was born in Fieri, Albania. In 2017, he received his Diploma in
Computer Science and Engineering from the University of Ioannina. After fulfilling
his military obligations, we worked as a freelance developer for a local company in
Rhodes. In 2019, he started his graduate studies at the Department of Computer
Science & Engineering at the University of Ioannina while working as a mobile

developer in the R&D hub of a private company specialized in medical solutions.

83

