
Multi-objective optimization for variance
counterbalancing in neural network training

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Dimitra Triantali

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina July 2021

Examining Committee:

• Konstantinos E. Parsopoulos (Advisor), Associate Professor, Department of
Computer Science and Engineering, University of Ioannina

• Konstantinos Blekas, Associate Professor, Department of Computer Science and
Engineering, University of Ioannina

• Lisimachos P. Kondi, Professor, Department of Computer Science and Engi-
neering, University of Ioannina

CONTENTS

List of Figures iii

List of Tables v

Abstract vii

Εκτεταμένη Περίληψη ix

1 Introduction 1
1.1 Aims and objectives . 1
1.2 Structure of the thesis . 4

2 Background Information 5
2.1 Variance counterbalancing . 5
2.2 Multi-objective optimization . 7

2.2.1 Pareto optimality . 7
2.2.2 Classification of multi-objective optimization methods 8
2.2.3 Weighted-aggregation methods 9
2.2.4 Non-sorting genetic algorithm . 12
2.2.5 Multi-objective particle swarm optimization algorithm 14

2.3 Radial basis function neural networks 16

3 Proposed Approach 19
3.1 Variance counterbalancing with multi-objective solvers 19
3.2 Application details for weighted aggregation approaches 20
3.3 Application details for non-sorting genetic algorithm 22
3.4 Application details for multi-objective particle swarm optimization al-

gorithm . 23

i

4 Experimental Analysis 25
4.1 Experimental phase 1: individual performance under different settings 28

4.1.1 Weighted aggregation approaches 28
4.1.2 Non‐sorting genetic algorithm . 33
4.1.3 Multi‐objective particle swarm optimization algorithm 35

4.2 Experimental phase 2: comparisons among multi-objective approaches 36
4.3 Experimental phase 3: comparisons between multi-objective methods

and BFGS . 37
4.3.1 Parameter tuning of the BFGS method 38
4.3.2 Comparisons between the methods 39
4.3.3 Running-time requirements . 40

4.4 Experimental phase 4: comparisons on different datasets 41
4.4.1 A noisy dataset . 41
4.4.2 The red wine dataset . 44

4.5 Why do we select variance counterbalancing? 48

5 Conclusions 51

Bibliography 53

A Appendix 55
A.1 Examined cases for the weighted aggregation approaches 56
A.2 Examined cases for the non-sorting genetic algorithm 84
A.3 Examined cases for the multi‐objective particle swarm optimization al-

gorithm . 96
A.4 Examined cases for the BFGS method 108

ii

LIST OF FIGURES

2.1 Architecture of an RBF network. 17

3.1 Objective values of the obtained solutions for consecutive VCB cycles
(blue dots) and the final solution of the method (red dot) for a single
experiment of each MO method. 21

4.1 The “Mexican Hat” function. 26
4.2 Training and Testing MSE of MO methods. 38
4.3 Training and Testing MSE for original and noisy datasets. 44
4.4 Training and Testing MSE FOR original and red wine datasets. 48

A.1 Boxplots of MSE for setting 1 (pd) of random wa 63
A.2 Boxplots of MSE for setting 2 (n) of random wa. 64
A.3 Boxplots of MSE for setting 3 (vcb) of random wa. 65
A.4 Boxplots of MSE for setting 4 (str) of random wa. 66
A.5 Boxplots of MSE for setting 5 (ps) of random wa. 67
A.6 Boxplots of MSE for setting 6 (vel) of random wa. 68
A.7 Boxplots of MSE for setting 7 (rest) of random wa. 69
A.8 Boxplots of MSE for setting 1 (pd) of bang-bang wa. 70
A.9 Boxplots of MSE for setting 2 (n) of bang-bang wa. 71
A.10 Boxplots of MSE for setting 3 (vcb) of bang-bang wa. 72
A.11 Boxplots of MSE for setting 4 (str) of bang-bang wa. 73
A.12 Boxplots of MSE for setting 5 (ps) of bang-bang wa. 74
A.13 Boxplots of MSE for setting 6 (vel) of bang-bang wa. 75
A.14 Boxplots of MSE for setting 7 (rest) of bang-bang wa. 76
A.15 Boxplots of MSE for setting 1 (pd) of dynamic wa. 77
A.16 Boxplots of MSE for setting 2 (n) of dynamic wa. 78

iii

A.17 Boxplots of MSE for setting 3 (vcb) of dynamic wa. 79
A.18 Boxplots of MSE for setting 4 (str) of dynamic wa. 80
A.19 Boxplots of MSE for setting 5 (ps) of dynamic wa. 81
A.20Boxplots of MSE for setting 6 (vel) of dynamic wa. 82
A.21 Boxplots of MSE for setting 7 (rest) of dynamic wa. 83
A.22Boxplots of MSE for setting 1 (pd) of NSGA-II. 85
A.23Boxplots of MSE for setting 2 (n) of NSGA-II. 87
A.24Boxplots of MSE for setting 3 (vcb) of NSGA-II. 89
A.25Boxplots of MSE for setting 4 (str) of NSGA-II. 91
A.26Boxplots of MSE for setting 5 (ps) of NSGA-II. 93
A.27 Boxplots of MSE for setting 6 (mut) of NSGA-II. 95
A.28Boxplots of MSE for setting 1 (pd) of MOPSO. 97
A.29Boxplots of MSE for setting 2 (n) of MOPSO. 99
A.30Boxplots of MSE for setting 3 (vcb) of MOPSO. 101
A.31 Boxplots of MSE for setting 4 (str) of MOPSO. 103
A.32Boxplots of MSE for setting 5 (ps) of MOPSO. 105
A.33Boxplots of MSE for setting 6 (vel) of MOPSO. 107
A.34Boxplots of MSE for setting 1 (pd) of BFGS. 109
A.35Boxplots of MSE for setting 2 (n) of BFGS. 110
A.36Boxplots of MSE for setting 3 (vcb) of BFGS. 111

iv

LIST OF TABLES

4.1 Fixed VCB-related parameters. 27
4.2 Fixed algorithm-related parameters. 27
4.3 Fixed RBF network-related parameters. 28
4.4 Parameter settings for the weighted aggregation approaches. 29
4.5 Parameter settings for NSGA-II. 33
4.6 Parameter settings for MOPSO. 35
4.7 Training MSE of the methods. 37
4.8 Testing MSE of the methods. 37
4.9 Wilcoxon ranksum tests of the WA methods. The corresponding p-

values are given in the parentheses. 38
4.10 Wilcoxon ranksum tests of the MO methods. The corresponding p-

values are given in the parentheses. 39
4.11 Parameter settings for BFGS. 39
4.12 Wilcoxon ranksum tests of the optimization methods. The correspond-

ing p-values are given in the parentheses. 40
4.13 Statistical values of training/running time (seconds) for all methods. . . 41
4.14 Training MSE using noisy dataset. 42
4.15 Testing MSE using noisy dataset. 42
4.16 Wilcoxon ranksum tests of the MO methods using noisy dataset. The

corresponding p-values are given in the parentheses. 43
4.17 Wilcoxon ranksum tests of the optimization methods using noisy dataset.

The corresponding p-values are given in the parentheses. 44
4.18 Wilcoxon ranksum tests of the MO methods using original and noisy

datasets. The corresponding p-values are given in the parentheses. . . . 45
4.19 Training MSE using the red wine dataset. 45
4.20 Testing MSE using the red wine dataset. 46

v

4.21 Wilcoxon ranksum tests of the MO methods using the red wine dataset.
The corresponding p-values are given in the parentheses. 46

4.22 Wilcoxon ranksum tests of the optimization methods using the red
wine dataset. The corresponding p-values are given in the parentheses. 47

4.23 Wilcoxon ranksum tests of the MO methods using original and red
wine datasets. The corresponding p-values are given in the parentheses. 47

4.24 Training MSE for VCB selection. 49
4.25 Testing MSE for VCB selection. 49
4.26 Wilcoxon ranksum tests of the methods for VCB selection. The corre-

sponding p-values are given in the parentheses. 50

A.1 Examined cases for setting 1 (pd) of the wa approaches. 56
A.2 Examined cases for setting 2 (n) of the wa approaches. 57
A.3 Examined cases for setting 3 (vcb) of the wa approaches. 58
A.4 Examined cases for setting 4 (str) of the wa approaches. 59
A.5 Examined cases for setting 5 (ps) of the wa approaches. 60
A.6 Examined cases for setting 6 (vel) of the wa approaches. 61
A.7 Examined cases for setting 7 (rest) of the wa approaches. 62
A.8 Examined cases for setting 1 (pd) of NSGA-II. 84
A.9 Examined cases for setting 2 (n) of NSGA-II. 86
A.10 Examined cases for setting 3 (vcb) of NSGA-II. 88
A.11 Examined cases for setting 4 (str) of NSGA-II. 90
A.12 Examined cases for setting 5 (ps) of NSGA-II. 92
A.13 Examined cases for setting 6 (mut) of NSGA-II. 94
A.14 Examined cases for setting 1 (pd) of MOPSO. 96
A.15 Examined cases for setting 2 (n) of MOPSO. 98
A.16 Examined cases for setting 3 (vcb) of MOPSO. 100
A.17 Examined cases for setting 4 (str) of MOPSO. 102
A.18 Examined cases for setting 5 (ps) of MOPSO. 104
A.19 Examined cases for setting 6 (vel) of MOPSO. 106
A.20Examined cases for setting 1 (pd) of BFGS. 108
A.21 Examined cases for setting 2 (n) of BFGS. 108
A.22Examined cases for setting 3 (vcb) of BFGS. 108

vi

ABSTRACT

Dimitra Triantali, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, July 2021.
Multi-objective optimization for variance counterbalancing in neural network training.
Advisor: Konstantinos E. Parsopoulos, Associate Professor.

Variance counterbalancing (VCB) is a recently proposed method for large-scale
stochastic learning. VCB aims at minimizing both the mean and the standard de-
viation of the squared error of the neural network over sets of randomly selected
mini-batches of the training dataset. For this purpose, gradient-based single-objective
optimization methods are typically used, despite the inherent biobjective nature of
the underlying minimization problem.

The present thesis studies the use of multi-objective optimization (MO) methods
for solving the VCB minimization problem. Both weighted aggregation and Pareto-
based evolutionary algorithms are used, including the state-of-the-art random, bang-
bang, and dynamic weighted aggregation approaches, as well as the widely used
NSGA-II and MOPSO algorithms.

The proposed multi-objective VCB approach is demonstrated on a regression task
using RBF neural networks. For this purpose, three different datasets are used. The
first two datasets refer to the interpolation of a multimodal real-valued function using
accurate and noisy training data, respectively, while the third one refers to the predic-
tion of red-wine quality based on its physicochemical properties. The obtained results
are statistically analyzed and compared to the standard VCB method. The analysis
suggests that the multi-objective methods can be highly competitive, thereby enhanc-
ing the VCB approach. Useful insights regarding the best-performing approaches and
the most influential parameters are derived.

vii

viii

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Δήμητρα Τριανταλή, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-
των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, Ιούλιος 2021.
Πολυκριτηριακή βελτιστοποίηση για την αντιστάθμιση της διασποράς στην εκπαί-
δευση νευρωνικών δικτύων.
Επιβλέπων: Κωνσταντίνος Ε. Παρσόπουλος, Αναπληρωτής Καθηγητής.

Η τεχνική της αντιστάθμισης της διασποράς (variance counterbalancing - VCB) προ-
τάθηκε πρόσφατα ως μια εναλλακτική μέθοδος για στοχαστική μάθηση νευρωνικών
δικτύων. Η τεχνική VCB στοχεύει στην ελαχιστοποίηση τόσο της μέσης τιμής όσο
και της διασποράς του τετραγωνικού σφάλματος του νευρωνικού δικτύου, αξιο-
ποιώντας τυχαία επιλεγμένα υποσύνολα του συνόλου εκπαίδευσης. Για το σκοπό
αυτό, χρησιμοποιούνται συνήθως κλασικές μέθοδοι μονοκριτηριακής βελτιστοποί-
ησης με παραγώγους, παρά την παρουσία δύο αντικειμενικών συναρτήσεων στο
υποκείμενο πρόβλημα ελαχιστοποίησης.

Η παρούσα διατριβή μελετά τη χρήση πολυκριτηριακών μεθόδων βελτιστοποί-
ησης στην τεχνική VCB. Στη μελέτη χρησιμοποιείται η μέθοδος συνάθροισης των
αντικειμενικών συναρτήσεων με βάρη (weighted aggregation), συμπεριλαμβανομέ-
νων των προσεγγίσεων random, bang-bang και dynamic, καθώς και Pareto εξελικτι-
κοί αλγόριθμοι, όπως οι NSGA-II και MOPSO.

Οι προτεινόμενες πολυκριτηριακές μέθοδοι εφαρμόζονται πειραματικά σε προ-
βλήματα παλινδρόμησης με χρήση RBF δικτύων. Για το σκοπό αυτό, χρησιμοποιού-
νται τρία διαφορετικά σύνολα δεδομένων. Τα δύο πρώτα σύνολα αφορούν στην πα-
ρεμβολή της πραγματικής συνάρτησης ”Mexican Hat” χρησιμοποιώντας, αντίστοιχα,
δεδομένα με και χωρίς θόρυβο, ενώ το τρίτο σύνολο αφορά στην πρόβλεψη της
ποιότητας του κόκκινου κρασιού με βάση τις φυσικοχημικές του ιδιότητες. Όλα τα
αποτελέσματα αναλύονται στατιστικά και συγκρίνονται με την υπάρχουσα μέθοδο

ix

VCB. Τα αποτελέσματα δείχνουν ότι οι πολυκριτηριακές μέθοδοι είναι εξαιρετικά
ανταγωνιστικές ως προς τις κλασικές μεθόδους. Επιπλέον, η στατιστική ανάλυση
παρέχει χρήσιμα συμπεράσματα για την απόδοση των αλγορίθμων και την επίδραση
των επιμέρους χαρακτηριστικών τους.

x

CHAPTER 1

INTRODUCTION

1.1 Aims and objectives

1.2 Structure of the thesis

1.1 Aims and objectives

A feedforward neural network (FNN) is an artificial neural network (ANN) where con-
nections between the nodes do not form a cycle. The FNN was the first and simplest
type of neural networks. In this network, the information moves in only one direc-
tion, from the input nodes, through the hidden nodes, and to the output nodes. There
are two types of FNN, the single-layer, the multi-layer perceptron. The first one is
the simplest kind of neural networks, since the inputs are fed directly to the outputs
via a series of weights. The second class consists of multiple layers of computational
units, usually forward interconnected. This way each neuron in one layer has directed
connections to the neurons of the subsequent layer.

The universal approximation theorem for neural networks states that every con-
tinuous function that maps intervals of real numbers to some output interval of real
numbers can be approximated arbitrarily closely by a multi-layer perceptron with
just one hidden layer. This result holds for a wide range of activation functions, e.g.
for the sigmoid function.

Designing and training an FNN resembles training in different machine learning
models. The training consists of the minimization of an error function, such as the

1

mean squared error (MSE). Once the network is trained, i.e., its weights and structure
are fixed, it becomes a deterministic function and it can be used to make predictions
on unknown data. However, when the number of training inputs is very large the
training becomes time-intensive and learning slows down.

There are three terms involved inseparably in the training of a network, i.e., the
input vectors, the epochs and the batch size. A training dataset is comprised of many
input vectors. An input vector may also be called a pattern, a sample, an instance, an
observation, or a feature vector. The second term, the number of epochs, defines the
iterations of the learning algorithm over the entire training dataset. The batch size is
another hyperparameter that defines the number of input vectors to work through
before updating the internal model parameters. Small values of batch size correspond
to a learning process that converges quickly, while large values result in a learning
process that converges slowly with more accurate estimates of the error.

Gradient descent (GD) is an optimization algorithm often used for updating the
parameters of the neural network by minimizing the underlying error function. GD
can vary in terms of the number of training patterns used to calculate error. The
three main types of gradient descent are batch, stochastic, and mini-batch.

Batch gradient descent (BGD) is a variation of the GD algorithm that calculates
the error for each input vector in the training dataset, but only updates the model
after all training vectors have been evaluated. So, all input vectors are used to create
one batch. The decreased update frequency of this method results in a more stable
error gradient and may result in a more stable convergence. Also, the method admits
parallel implementation due to the separation of the calculation of prediction errors
and the model update. On the other hand, the more stable error gradient may result
in premature convergence of the model to a sub-optimal set of parameters. The most
important disadvantage is that this method can become very slow for large datasets.

Stochastic gradient descent (SGD), calculates the error and updates the model for
each input vector in the training dataset. The frequent updates of SGD give an insight
into the performance of the model and the rate of improvement, while the increased
model update frequency can result in faster learning. Also, the noisy update process
can allow the model to avoid local minima (e.g. premature convergence). However,
updating the model so frequently is computationally expensive, especially on large
datasets. Moreover, the noisy learning process may disrupt the algorithm convergence
towards a local minimum.

2

Mini-batch gradient descent (MBGD) is the third variation of the GD algorithm that
splits the training dataset into small batches that are used to calculate model error and
update model coefficients. The batch size is more than one input vector and less than
the size of the training dataset. MBGD seeks to find a balance between the robustness
of SGD and the efficiency of BGD. The model update frequency is higher than BGD,
which allows for a more robust convergence, avoiding local minima. Also, MBGD
does not require having all training data in memory or in the algorithm implementa-
tion. However, mini-batch requires the configuration of an additional mini-batch size
hyperparameter for the learning algorithm [1].

There are many extensions to the optimization methods presented above designed
to improve the optimization process (same or better error in fewer iterations). Recently,
Lagari et al. [2] proposed the variance counterbalancing (VCB) algorithm, which is a
mini-batch algorithm for large-scale stochastic learning. This method minimizes an
objective function that comprises the average squared error over a randomly selected
set of mini-batches, along with a term that penalizes candidate solutions with large
squared error variance. Their experimental analysis makes it clear that the VCB
algorithm can overcome the high computational cost of the MSE of the network
over the full training set and still lead to fast convergence. Despite the fact that this
minimization problem is biobjective, i.e., it requires the minimization of both the
average squared error and the corresponding variance, it was treated as a bound-
constrained single-objective optimization problem.

The goal of this thesis is to investigate the performance of MO methods in solving
the VCB minimization problem respecting its biobjective nature. Following the current
state-of-the-art, both weighted aggregation and Pareto-based evolutionary algorithms
are used and compared to the VCB method.

The employed testbed for experimentation comprised the application of VCB on
RBF networks, due to their approximation capabilities, simple network structure,
compact topology, and fast learning. Three different datasets are used for the demon-
stration of the proposed approaches. The first two datasets refer to the interpolation
of the “Mexican Hat” function using accurate and noisy training data, respectively,
while the last dataset refers to the prediction of red wine quality based on its acidity
values.

All results are statistically analyzed and the NSGA-II and the MOPSO methods,
as the best-performing approaches, are compared to the standard VCB method. The

3

results suggest that MO methods are highly competitive, providing better solutions
in terms of the MSE of the network, without exceeding time constraints. Thus, they
can be used as a viable alternative to the classic gradient-based algorithms with the
VCB technique.

1.2 Structure of the thesis

The rest of the thesis is organized as follows: Chapter 2 contains the necessary back-
ground information. This includes the standard VCB algorithm, the general MO
framework, and the RBF neural networks. Chapter 3 analyzes the proposed approach,
while Chapter 4 is devoted to the experimental results. Chapter 5 concludes the thesis.
The Appendix contains all the examined cases, as well as, boxplot representation of
all the results.

4

CHAPTER 2

BACKGROUND INFORMATION

2.1 Variance counterbalancing

2.2 Multi‐objective optimization

2.3 Radial basis function neural networks

2.1 Variance counterbalancing

We consider the problem of approximating a continuous function g : X ⊂ Rd → R,
using a neural network. Putting it formally, let S be a training set containing N

pattern vectors:

S = {(x1, y1), ..., (xN , yN)} , (2.1)

with xi ∈ X ⊂ Rd, d is the dimension of each pattern vector and yi = g(xi) ∈ R, for all
i = 1, 2, ..., N . Training is performed by minimizing an error metric over the whole
training set S, such as the MSE:

E(w) =
1

N

N∑
i=1

(N(xi, w)− yi)
2 , (2.2)

where N(xi, w) is the network’s output using the i-th pattern vector xi; w is the vector
of network’s parameters; and yi is the desired output of the network. The minimiza-
tion of the error function is usually performed using gradient-based optimization
methods [3]. However, in large datasets this approach can be very time-consuming.

5

Stochastic learning ameliorates this problem by consecutively minimizing the net-
work’s MSE over randomly selected mini-batches.

Let K be the number of mini-batches of the training set S, with Si
(M), i = 1, ..., K

denoting the i-th one, containing M ≪ N pattern vectors selected at random:

Si
(M) = {(xi1, yi1), ..., (xiM , yiM)} ⊂ S . (2.3)

The associated minimization problem is given by:

Ei(w) =
1

M

M∑
j=1

(N(xij , w)− yij)
2 . (2.4)

A desirable minimizer w∗ is one that gives nice generalization properties to the neural
network. This means that w∗ retains small changes of the MSE among the mini-
batches. A convincingly hypothesis derived from this necessity is expressed as [2]:

E(w∗) ≈ Ei(w
∗), i = 1, 2, . . . (2.5)

Based on this assumption, a suitable objective function f can be constructed, where
the variance term is equal to:

σ2(w∗) =
1

K

K∑
i=1

(Ei(w
∗)− E(w∗))2 , (2.6)

and it can be used to counterbalance E(w∗). The objective of the problem is then
defined as the following vector function:

f(w∗) = [E(w∗) , σ2(w∗)] . (2.7)

In order to avoid the time-consuming computation of the MSE, E(w∗), over the whole
training set, it is suggested to approximate it with the average MSE over all mini-
batches [2]:

Ē(w∗) =
1

K

K∑
i=1

Ei(w
∗). (2.8)

If the corresponding approximate variance is calculated as:

σ̄2(w∗) =
1

K

K∑
i=1

(
Ei(w

∗)− Ē(w∗)
)2

, (2.9)

6

then, the vector objective function of the examined minimization problem can be
defined as:

f̄(w∗) = [Ē(w∗) , σ̄2(w∗)] . (2.10)

2.2 Multi‐objective optimization

A multi-objective optimization (MO) problem (also called multi-criteria, vector optimiza-
tion or multi-performance problem) is defined as the problem of finding a vector of
decision variables that satisfies constraints and optimizes a vector function whose
components represent a number of objective functions. These functions form a math-
ematical description of performance criteria, which are usually in conflict with each
other. Hence, the term “optimize” means finding a solution that would give the values
of all the objective functions that are acceptable to the decision maker [4].

Let the MO problem at hand comprise M objective functions. These functions
form a vector function defined as:

f(x) = [f1(x) , f2(x) , ..., fM(x)]. (2.11)

Let also W contain all feasible decision vectors, i.e., it is the search space under
consideration.

In most optimization problems there are restrictions imposed by its particular
characteristics or the available resources. Such restrictions must be satisfied to con-
sider a solution as being acceptable. All these restrictions are called constraints and
they describe dependencies among decision variables and constants (or parameters)
involved in the problem. The most common approach to handle constraints is the
use of penalty functions. The idea of penalty functions is to transform a constrained
optimization problem into an unconstrained one by adding (or subtracting) a certain
value to (from) the objective function based on the amount of constraint violation
present in a certain solution [4].

2.2.1 Pareto optimality

Minimization of vector functions gives rise to the concept of Pareto optimality.

7

Definition 2.1 (Pareto optimal). A decision vector x∗ ∈ W is Pareto optimal if there
is no other vector x ∈ W such that fi(x) ≤ fi(x

∗) for all i = 1, ..,M , and fj(x) < fj(x
∗)

for at least one j ∈ {1, ..,M}. ■
In simple words, x∗ is Pareto optimal if there exists no feasible vector x ∈ W that
would decrease one objective function without simultaneously increasing at least one
of the rest of the objective functions [4].

Definition 2.2 (Pareto dominance). A vector u = (u1, ..., uM) is said to dominate a
vector v = (v1, ..., vM) (denoted as u ⪯ v) if and only if u is partially less than v, i.e.,
∀ i ∈ {1, ..,M}, ui ≤ vi and ∃ j ∈ {1, ..,M} such that ui < vi. ■
The concept of Pareto dominance implies that, for a solution to dominate another
one, it should not be worse in any objective, while it must be strictly better in at least
one of them. Consequently, when comparing two solutions A and B, using Pareto
dominance, there are three possible outcomes: A dominates B, B dominates A, or A
and B are incomparable, i.e., not dominated by each other. This concept defines a set
of solutions called the Pareto optimal set. The vectors x∗ corresponding to solutions
included in the Pareto optimal set are called non-dominated [4]:

Definition 2.3 (Pareto optimal set). For a given MO problem f(x), the Pareto optimal
set is defined as: P ∗ = { x ∈ W | ∃/ x

′ ∈ W f(x′
) ⪯ f(x) }. ■

The image of the Pareto optimal set is called the Pareto front:

Definition 2.4 (Pareto front). For a given MO problem f(x) and Pareto optimal set
P ∗, the Pareto front is defined as: PF ∗ = { f = [f1(x) , ..., fM(x)] | x ∈ P ∗ }. ■
In general, it is impossible to find an analytical expression that represents the hyper-
surface corresponding to the Pareto front [4].

2.2.2 Classification of multi‐objective optimization methods

MO theory remained practically unexplored until the 1960s, when its mathematical
foundations were consolidated. Since then, a plethora of algorithms have been de-
veloped. There have been several attempts to classify MO algorithms currently in
use. Cohon and Marks [4] distinguished two stages in which, the solution of an MO
problem can be divided: (i) the optimization of objective functions involved, and (ii)
the process of deciding from the decision maker’s perspective. They proposed the
following popular classification of MO methods:

8

(a) Generating techniques (search ⇒ decide).
Those approaches (such as the global criterion method and goal programming)
assume that either a certain desired achievable goal or a certain pre-ordering of
the objectives can be performed by the decision maker prior to the search.

(b) Techniques that rely on prior preferences (decide ⇒ search).
These techniques (such as linear combination of weights and ϵ-constraint method)
do not require prior preference information from the decision maker.

(c) Techniques that rely on progressive articulation of preferences (decide ⇔ search).
These techniques (such as probabilistic trade-off development method and STEP
method) normally operate in three stages. First, they find a non-dominated solu-
tion, they get the reaction of the decision maker regarding this non−dominated
solution and modify the preferences of the objectives, accordingly. Finally, they
repeat the two previous steps until the decision maker is satisfied or no further
improvement is possible.

Up-to-date, there are various mathematical programming methods for solving non-
linear MO problems. However, they have several limitations. For example, some of
them require that the objectives (and the constraints) are differentiable. Other ap-
proaches are inapplicable to disconnected or non-convex Pareto fronts. Additionally,
most of them generate a single solution per run of the algorithm. These weaknesses
have motivated the use of metaheuristics.

A metaheuristic is a high-level search procedure that applies a set of rules based
on some source of knowledge, in order to explore the search space more efficiently. A
metaheuristic allows the generation of several elements of the Pareto optimal set in a
single run. Also, they require only minor information of the objective functions (e.g.,
no derivatives are required, and they are less susceptible to the shape or continuity
of the Pareto front). Metaheuristics have been established as efficient solvers in cases
traditional algorithms are either inapplicable or ineffective, and they are currently
widely used [4].

2.2.3 Weighted‐aggregation methods

A straightforward approach for addressing MO problems transforms the problem to
a single-objective one by aggregating all objective functions to a single one:

9

F (x, k) =
M∑
i=1

wi(k) fi(x), (2.12)

where wi(k) are the non-negative weights, i = 1, ...,M , assuming that:

M∑
i=1

wi = 1. (2.13)

The global minimizer of the derived function is a Pareto optimal point of the MO
problem, otherwise there would exist a feasible solution that improves at least one of
the objectives without increasing the others, hence, producing a smaller value of the
weighted sum.

The most simple form of the weighted aggregation approach is the conventional
method. In this case, the weights are fixed during the run. Using this approach, only a
single Pareto optimal solution can be obtained per run, while a priori knowledge of the
search space is required to choose the appropriate weights. Moreover, the procedure
shall be repeated several times to obtain the desired number of Pareto optimal points.
This is inefficient in most real-world problems. Also, this approach is unable to detect
solutions in concave regions of the Pareto front [5].

On the other hand, if the weights are changing during the run, the optimizer
can go through diverse points of the Pareto front. Changing the weights combination
during the optimization process resembles rotating the coordinate system together
with the Pareto front. Thus, when one weight decreases and the other increases, it is
equivalent to rotating the coordinate system counter clockwise. Since the weights are
non-negative, the maximal rotation angle is 90 degrees [5].

In the following paragraphs, we will focus on the biobjective case, which is the
case of our problem of interest, as we explained earlier. There are various dynamic
weighted aggregation variants in MO literature. The most popular ones are the fol-
lowing:

(a) Random weighted aggregation (Random WA)
In this case w1 is randomly selected between 0 and 1 while w2 is its complement:

w1(t) = rand() , w2(t) = 1− w1(t), (2.14)

where t stands for the iteration of the solver used for minimizing the function
of Eq.(2.12).

10

(b) Bang-bang weighted aggregation (Bang WA)
In this case, the Pareto front is abruptly rotated by 90 degrees. This means that
w1 is changed from 0 to 1, and w2 from 1 to 0, as follows:

w1(t) = sign

(
sin

(
2πt

33

))
, w2(t) = 1− w1(t). (2.15)

This abrupt change is due to the usage of the sign(.) function, which is defined
as follows:

sign(x) =


−1, if x < 0,

0, if x = 0,

1, if x > 0.

(2.16)

(c) Dynamic weighted aggregation (Dynamic WA)
In this case the Pareto front is gently rotated by 90 degrees. This means that
w1 is changed gradually from 0 to 1, and w2 from 1 to 0, as follows:

w1(t) =
∣∣∣ sin(2πt

66

) ∣∣∣ , w2(t) = 1− w1(t). (2.17)

The values 33 and 66 of the bang-bang and the dynamic wa approaches are the
change frequency of the weights. These values were selected based on the number of
iterations of the solver [6].

Regardless of the selected weighted aggregation scheme, a single-objective op-
timizer is required for the minimization of the objective function of Eq.(2.12). In
[6], the popular Particle Swarm Optimization (PSO) algorithm is suggested. PSO is a
population-based algorithm that simulates particle move. A group of individuals, re-
ferred to as particles, form the swarm. The position of each particle is a candidate
solution. The particles interact and cooperate with each other to move toward better
solutions.

Let a randomly generated population (within the given bounds) of size N that
moves within a D-dimensional space, and M objective functions. The i-th particle at
iteration t has a current position:

x
(t)
i = (xi1, xi2, ..., xiD), (2.18)

and it moves in the search space using an adaptable velocity:

11

v
(t)
i = (vi1, vi2, ..., viD). (2.19)

The best position achieved so far by the particle is denoted as:

p
(t)
i = (pi1, pi2, ..., piD), (2.20)

while the best solution achieved so far by the whole swarm is given as:

p(t)g = (pg1, pg2, ..., pgD), (2.21)

indicating the position where the smallest fitness has been achieved so far. The velocity
and the position of the i-th particle at the next iteration (t+1) are calculated according
to the following equations:

v
(t+1)
i = w v

(t)
i + c1 rand() (p

(t)
i − x

(t)
i) + c2 rand() (p

(t)
g − x

(t)
i), (2.22)

x
(t+1)
i = x

(t)
i + v

(t+1)
i , (2.23)

where w is the inertia factor; c1 and c2 are two positive constants, called cognitive
learning rate and social learning rate respectively; and rand() is a vector of D random
values in the range [0,1]. The parameters are set to their default values, w = 0.729,
c1 = c2 = 1.49, as suggested in the theoretical analysis of PSO. In addition, a constant,
vmax, is used to limit the velocities of particles [7].

2.2.4 Non‐sorting genetic algorithm

Non-sorting genetic algorithm ΙΙ (NSGA-II) is among the most popular MO algorithms
[4]. It has two mechanisms that distinguish it from other MO algorithms. The first one
is the fast non-dominated sorting of the population, and the second one is diversity
preservation.

Let a randomly generated population of size N that probes the D-dimensional
search space of a problem of M objectives. The i-th individual at iteration t has a
current position:

x
(t)
i = (xi1, xi2, ..., xiD), (2.24)

which is a candidate solution of the problem. In NSGA-II, we firstly sort the popula-
tion into different non-domination levels (fronts) Fi, where i is the front counter. For

12

each solution of the problem we calculate the domination count, which is the number
of solutions that dominate it, and find the set of solutions that are dominated by this
solution.

All solutions in the first non-dominated front F1 have zero domination count. For
each solution with zero domination count, we visit each member of its domination
set and reduce its domination count by one. If for any member the domination count
becomes zero, we put it in a separate list, indicating that it belongs to the next non-
dominated front. After that, the above procedure is continued with each member
of the separate list, and the third front is identified. The process continues until all
fronts are identified. Every solution is assigned a non-domination level and is never
visited again.

Secondly, we have to maintain good spread in the obtained set of solutions, in order
to promote diversity among the population members. This is achieved by sorting the
population according to each objective function value in ascending order. For each
objective function, the solutions with the smallest and largest function values are
assigned an infinite distance value. All other intermediate solutions are assigned a
distance value equal to the absolute normalized difference of the function values of
two adjacent solutions, as follows:

I[i]distance =
I[i+1]m − I[i−1]m

fmax
m − fmin

m

, (2.25)

where I[i]m refers to the m-th objective function value of the i-th solution in the
current non-dominated set I , and fmax

m , fmin
m , are the maximum and minimum values

of the m-th objective function, respectively. The overall crowding-distance value is
calculated as the sum of individual distance values corresponding to each objective.
Thus, each solution is assigned a distance.

So far, every individual in the population has a non-domination rank and a dis-
tance. During the selection process of the algorithm, when selecting between two
individuals, we prefer the one with the lowest rank. If both solutions belong to the
same front and have the same rank, we prefer the one with the highest value of
distance, because it is located in a less crowded region of the search space.

Having already initialized and sorted the population, the main loop of the method
begins. At first, we perform the binary tournament selection. During each generation, a
portion of the existing population is selected to breed a new generation. We create
pairs of solutions and we select one of them based on rank and distance.

13

After that, we apply the recombination and mutation operators. More specifically,
we first apply real-valued recombination to the selected parents. Two selected parents,
xi1

(t) and xi2
(t), are recombined creating two children. The recombinated j-th factor

of the offspring vector is:

o
(t)
j = rj xi1,j

(t) + (1− rj)xi2,j
(t), (2.26)

where rj is normally distributed in the interval [−z, 1+z], and z is a positive number.
Next, real-valued mutation is performed on the selected individuals. This operator
perturbs the values of genes using a normally distributed perturbation in [0, s2], where
s is equal to the 10% of the given bounds of the selected gene [8].

An offspring population is eventually generated and combined with the parent
population. The combined population is sorted according to the previous procedure.
The solutions belonging to the best non-dominated set F1 are the best solutions in
the combined population and must be emphasized more than any other solution. In
order to choose exactly the desired number of population members, we choose the
solutions with the smaller ranks. From the solutions of the last selected front, we
take the solutions with the higher values of distance [9].

2.2.5 Multi‐objective particle swarm optimization algorithm

Multi-objective particle swarm optimization (MOPSO) differs from other MO algorithms
because it uses an external repository for non-dominated solutions. We assume that
we have a randomly generated swarm of size N , a D-dimensional search space, and
M objective functions. Similarly to standard PSO, the i-th particle at iteration t defines
a current position:

x
(t)
i = (xi1, xi2, ..., xiD), (2.27)

that is a candidate solution of the problem at hand. The particle moves in the search
space with an adaptable velocity:

v
(t)
i = (vi1, vi2, ..., viD), (2.28)

while tracking the best position it achieved so far:

p
(t)
i = (pi1, pi2, ..., piD). (2.29)

14

The positions of the particles that represent non-dominated vectors are stored sepa-
rately in the repository. The positions of the non-dominated vectors define hypercubes
in the objective space in order to maintain solution diversity. Having already initial-
ized the population and the repository, the main loop of the method begins.

The velocity and the position of the i-th particle at the next iteration (t + 1) are
calculated according to the following equations:

v
(t+1)
i = w v

(t)
i + c1 rand() (p

(t)
i − x

(t)
i) + c2 rand() (reph − x

(t)
i), (2.30)

x
(t+1)
i = x

(t)
i + v

(t+1)
i , (2.31)

where w is the inertia factor; c1 and c2 are the cognitive and the social learning
rate, respectively; and rand() is a random number generator in the range [0,1]. The
parameters are set to their default values, w = 0.729, c1 = c2 = 1.49, as suggested
for PSO. The vector reph is taken from the repository, while the index h is selected
in the following way: each hypercube in objective space containing more than one
particle is assigned a fitness value equal to the result of dividing a random number
by the number of particles that it contains. Based on the implementation of MOPSO,
as described in [10], this random number is the 10. The fitness value assignment is
performed, such that less crowded hypercubes receive higher selection probabilities.
Then, roulette-wheel selection is applied using these fitness values to select the hy-
percube from which we will take the corresponding particle. Once the hypercube has
been selected, we select randomly a particle within it.

Then, a mutation operator is applied to the particles. The swarm is subdivided into
three parts of equal size. Each part adopts a different mutation scheme: the first part
has no mutation at all, the second part has uniform mutation (i.e., the range of each
decision variable is kept constant over generations), and the third part assumes a
non-uniform mutation (i.e., the range of each decision variable decreases over time).
Using these operators, we aim at achieving both exploration (uniform mutation) and
exploitation (non-uniform mutation) of the search space [11].

In order to keep the particles within the search space, in case of violation, the
decision variables are stopped to their boundaries, while the velocity is multiplied by
−1 so that it searches in the opposite direction in the next iteration.

The next step is to evaluate each of the particles in the swarm and update the
contents of the repository as well as the hypercubes. This update consists of inserting

15

all the currently non-dominated solutions into the repository. Any dominated solution
from the repository are eliminated in the process. Since the size of the repository
is limited, whenever it gets full, we give priority to those particles located in less
populated areas of the objective space.

Eventually, the best positions are updated. When the current position of the par-
ticle dominates its best position, it replaces it. Otherwise, if the current position is
dominated by the existing one, the latter is kept. If neither of them is dominated,
then we select one at random [10].

2.3 Radial basis function neural networks

The VCB technique can be applied on any type of neural networks. Our approach
adopts the widely used radial basis function (RBF) neural networks, which constitute
a special class of ANNs. An RBF is a feed-forward three-layered and fully-connected
neural network, having a topology as shown in Fig.(2.1). The first layer is the input
layer, i.e., a set of source nodes that connects the network to the environment. The
second layer is the hidden layer, which includes K neurons, each one implementing a
radial activation function. For this purpose, the Gaussian function is frequently used
as the radial basis function:

fk(x, uk, σk) = exp(−∥(x− uk)
2∥

2σ2
k

) , (2.32)

where x is the input of the network; ||.|| represents the Euclidean (l2) norm and uk

and σk are the center and the width of the k-th neuron, respectively.
The weighted outputs of the hidden layer are transmitted to the third layer, also

called the output layer. The output layer calculates the linear combination of hidden
layer outputs and bias to obtain the final output of the network for the specific
activation pattern of the input layer [12] :

y(x) =
K∑
k=1

wk fk(x, uk, σk) + b, (2.33)

where x is the activation pattern; K is the number of RBFs used; wk are the weights
of the network; b is the bias; and fk(.) is the activation function.

The aim of training an RBF network of K neurons is the determination of the

16

Figure 2.1: Architecture of an RBF network.

weights wk between the hidden layer and the output layer, the width σk of the hidden
layer base function, the center vectors uik of the hidden layer and the bias b, where
i = 1, ..., d, with d being the dimension of the training vector, and k = 1, ..., K. All
these parameters can be encoded in a decision vector as follows:

dv = [b , w1 , σ1 , u11 , u12 , ..., u1d , ..., wk , σK , uK1 , uK2 , ..., uKd]. (2.34)

Thus, the dimension of the network’s parameter space is equal to D = 1 +K d. The
predictions of the network are compared to the expected output outcomes, calculating
an error function, such as MSE [12].

A wide range of methods are used during the training of an RBF network, in-
cluding clustering and optimization algorithms. Using clustering techniques, such as
k-means, may result in dealing with two intrinsic disadvantages. The first is due to its
iterative nature, which can lead to long convergence times, and the second originates
from its inability to automatically determine the number of RBF centers, thus re-
sulting in a time consuming trial-and-error procedure for establishing the size of the
hidden layer [13]. A multitude of alternative techniques have been proposed to tackle
these disadvantages, such as gradient-based optimization methods [3]. However, the
necessity of gradient information of the function, results in high computational re-
quirements. For this reason, evolutionary algorithms are, recently, used during the
training of networks [7] [14]. They have lower computational requirements and at
the same time they have strong global search ability, robustness and can solve diffi-
cult problems with functions that do not possess properties, such as continuity and
differentiability.

17

18

CHAPTER 3

PROPOSED APPROACH

3.1 Variance counterbalancing with multi‐objective solvers

3.2 Application details for weighted aggregation approaches

3.3 Application details for non‐sorting genetic algorithm

3.4 Application details for multi‐objective particle swarm optimization algorithm

3.1 Variance counterbalancing with multi‐objective solvers

In the proposed approaches, the VCB algorithm described in Section 2.1 is studied
using the MO solvers described in Sections 2.2.3, 2.2.4 and 2.2.5. According to the
VCB method, the training of the neural network proceeds in cycles. At each cycle,
a set of mini-batches is selected at random, each mini-batch consisting of randomly
selected training vectors. Then, the selected MO method is applied, and a set of non-
dominated solutions is returned. We, having the role of the decision maker, may
follow different strategies for the evaluation of these solutions. We can either evaluate
all the non-dominated solutions, or evaluate a random number of them, or evaluate
only one randomly selected solution, in order to compute the MSE of the current
iteration using the whole training set.

At the end of each cycle a solution is available corresponding to a specific param-
eter setting of the neural network, as defined in the Eq.(2.34). At the same time, the
solution with the lowest MSE (final solution) over the whole training set for all cycles
is tracked and updated. In Fig.(3.1) we illustrate the objective values of the obtained

19

solutions for consecutive VCB cycles (blue dots), as well as, the final solution of the
method (red dot) for a single experiment of each MO Method.

The stopping conditions for the VCB method are as follows:

• The method reaches a predefined maximum number of network evaluations.
Οne network evaluation corresponds to the evaluation of the neural network on
a single training pattern.

• The method reaches a predefined maximum number of VCB cycles.

The algorithm stops as soon as either of the condition is satisfied.

3.2 Application details for weighted aggregation approaches

The weighted aggregation approaches equipped with the PSO solver are implemented
as described in Section 2.2.3. However, we made some modifications in order to gain
better results. The first modification is the use of an external archive storing the
non-dominated solutions visited by the algorithm. Any dominated solution from the
archive are eliminated in the process. Since the size of the archive is limited, whenever
it gets full, we select randomly such a number of individuals as the predefined archive
size.

The second modification refers to the initialization of the population. In every
call of the PSO solver, the swarm is initialized using the non-dominated solutions
stored at the external archive of the previous VCB cycle. When the number of these
solutions is smaller than the desired swarm size, we generate the remaining number
of individuals randomly in the search space of the problem.

One of the well-known weaknesses of population-based algorithms when they
are used to study functions with many local minima, is the tendency for premature
convergence to local minimizers. Partial or full population restarting is one of the
possible modifications addressing this issue. Our modification is the ability to restart
the swarm when the distance of the particles is lower than a given bound, assuming
that the individuals have stuck in a local minimum. In order to restart the population
we use the non-dominated solutions that are stored in the archive. If the number of
the archive’s solutions is smaller than the desired size of the population, we generate

20

Figure 3.1: Objective values of the obtained solutions for consecutive VCB cycles (blue
dots) and the final solution of the method (red dot) for a single experiment of each
MO method.

21

the remaining number of individuals randomly in the search space of the problem
we solve.

In order to keep the particles within the search space we do not only use the
constant vmax to limit the velocities of particles in the nearest bound. We select to
multiply the velocity by −1 so that they search in the opposite direction in the next
iteration.

A solution (particle) is evaluated using one of the three available weighted ag-
gregation methods, i.e., random, bang-bang, or dynamic approach. In each case, we
select to transform every objective function fi as follows,

fi(x) =
fi(x)− fmini (x)

fmaxi (x)− fmini (x)
(3.1)

where x is a solution; i = 1, ...,M , M the number of objective functions; fmaxi (x) and
fmini (x) are the maximum and minimum value of the objective function until the time
the method is called, respectively [15]. All objective functions after normalization will
be bounded by the values 0 and 1. This last modification for the weighted aggregation
approaches arised out of our desire to give the same magnitude to each objective
function.

3.3 Application details for non‐sorting genetic algorithm

The NSGA-II algorithm is implemented as described in Section 2.2.4. We introduced 3
modifications in order to gain results of higher quality. The first modification refers to
the initialization of the population. In every call of the NSGA-II solver, the population
is initialized using the Pareto solutions obtained of the previous VCB cycle. When the
number of these solutions is smaller than the desired population size, we produce
the remaining number of individuals randomly in the search space of the problem
at hand.

One disadvantage of NSGA-II is the premature convergence to local optima of
the objective functions. The problem is related to the loss of genetic diversity of
the population. For this reason, we test the individual’s genetic material, before the
crossover operation. If the individuals have the same genes, then the recombination
of their genetic material is ineffective, since the offsprings are simply clones of their
parents. So, we use only one individual in the recombination procedure as the first

22

parent, and we introduce a randomly generated individual as the second parent [16].
An increasing mutation rate is the third modification in our proposed approach.

This way, we have the opportunity to use an adaptive mutation rate if there is not an
improvement of the lowest value of the MSE using the entire training dataset over a
given bound of single-pattern evaluations [16].

3.4 Application details for multi‐objective particle swarm opti‐

mization algorithm

The MOPSO algorithm is implemented as described in Section 2.2.5. The only mod-
ification that we made is related to the initialization of the swarm. Similarly to the
rest of the methods described above, in every call of MOPSO the swarm is initialized
using the non-dominated solutions from the repository of the previous VCB cycle.
When the number of these solutions is smaller than the desired size of the swarm,
we generate the remaining particles randomly in the search space of the problem.

23

24

CHAPTER 4

EXPERIMENTAL ANALYSIS

4.1 Experimental phase 1: individual performance under different settings

4.2 Experimental phase 2: comparisons among multi‐objective approaches

4.3 Experimental phase 3: comparisons between multi‐objective methods and BFGS

4.4 Experimental phase 4: comparisons on different datasets

4.5 Why do we select variance counterbalancing?

The experimental analysis was based on the application of VCB on RBF networks.
Taking into consideration the stochasticity of the VCB algorithm as well as of the
selected MO methods, an appropriate analysis shall include a number of independent
experiments, and a complete statistical analysis of the obtained solutions.

The first test problem was the two-dimensional “Mexican Hat” function, defined
as:

f(x1, x2) =
sin (x2

1 + x2
2)√

x2
1 + x2

2

, (4.1)

which is depicted in Fig.(4.1). For this problem, 40000 two-dimensional pattern
vectors were taken as our dataset:

(x1, x2) ∈ [−5, 5]× [−5, 5]. (4.2)

In order to solve the VCB minimization problem, we used the MO methods presented
in Chapters 2 and 3. The basic VCB-related, algorithm-related, and network-related

25

Figure 4.1: The “Mexican Hat” function.

parameters of our experimental setup are reported in Tables 4.1, 4.2 and 4.3, re-
spectively. Besides the fixed parameters, we considered a number of parameters with
variable values, aiming at studying the performance of the MO algorithms under their
different settings. These parameters are:

• pd; percentage of the dataset that constitutes the training set.

• n; number of neurons for the network.

• vcb; number of cycles of the VCB method.

• str; strategy of evaluating the non-dominated solutions.

• ps; population size.

• mut; mutation strategy.

• vel; maximum velocity.

• rest; restart mechanism.

The values of these parameters are defined for each MO approach separately.
For each parameter setting 25 experiments were performed. The software was

developed and tested on MATLAB R2018a running on a Linux system. For the
statistical analysis, the one-sample Kolmogorov-Smirnov normalization test was used
to check if the data of each sample came from the normal distribution [17]. The
results showed that, in all cases, the data did not come from the normal distribution.

26

Table 4.1: Fixed VCB-related parameters.

Parameters Value

number of patterns 40000
number of mini-batches 20
patterns per mini-batch 50

training patterns dimension 2
maximum pattern evaluations 10000000

Table 4.2: Fixed algorithm-related parameters.

Parameters PSO NSGA-II MOPSO

w 0.729 - 0.729
c1 1.49 - 1.49
c2 1.49 - 1.49

number of grids - - 20
mutation rate - - 0.5
tournament size - 2 -

crossover probability - 0.5 -

Since each sample was acquired independently and its size was big enough, we used
the non-parametric Wilcoxon ranksum test to compare samples on the assumption of
having equal medians [17]. In case that the samples did not come from distributions
of equal medians, the one with the lower median was retained. In all comparisons, a
level of significance 0.05 was considered.

The results reported in all the provided tables are rounded to 4 decimal digits.
Also, the lowest value of interest is boldfaced whenever required.

Our experimental analysis comprised of the following four phases:

(a) Phase 1: Each ΜΟ algorithm was applied on the considered regression problem
for all combinations of the variable parameters. The experiments were divided in
different settings. For each setting, one of the parameters was of interest. Thus,
the performances of the algorithm under the different values of this parameter
were compared among them, for each combination of the rest of the parameters,
separately. This phase aimed at identifying the most influential parameter(s) for
each MO algorithm.

27

Table 4.3: Fixed RBF network-related parameters.

Parameters Value

min value of center components -5
max value of center components 5

min value of weights -20
max value of weights 20
min value of width 0.1
max value of width 2.0

(b) Phase 2: This phase consisted of statistical comparisons of different MO methods
among them.

(c) Phase 3: This phase included comparisons between MO methods and BFGS of
the standard VCB approach.

(d) Phase 4: This phase consisted of comparisons of the most representative methods
on different datasets.

4.1 Experimental phase 1: individual performance under different

settings

We conducted a number of experiments to identify promising parameter settings for
each MO method. Due to the huge number of experiments in phase 1, we provide
tables with the relevant settings for each algorithm, as well as boxplots of the at-
tained MSE values, in the Appendix, while summarizing the results in the following
paragraphs.

4.1.1 Weighted aggregation approaches

The three weighted aggregation methods, i.e., random wa, bang-bang wa, and dy-
namic wa were all applied, individually, under each one of the settings reported in
Table 4.4. For each setting, the corresponding parameter of interest was considered
and its effect on the algorithm performance was analyzed for all combinations of
the rest of the parameters. The considered parameter settings are reported in Tables

28

Table 4.4: Parameter settings for the weighted aggregation approaches.

Setting Examined parameter Values

1 pd { 0.6 , 0.8 }
2 n { 5 , 10 }
3 vcb { 10 , 20 }
4 str { 1 , 2 , 3 }
5 ps { 20 , 40 }
6 vel { 1 , 2 }
7 rest { 0 , 1 }

A.1-A.7 and the obtained solutions are illustrated in boxplots in Figs. A.1-A.21 in
the Appendix.

Random weighted aggregation

Regarding setting 1 (different pd value), there were 10 cases in total where the samples
of random wa with pd = 0.6 and pd = 0.8, respectively, did pass the Wilcoxon test
of different medians. Moreover, half of these cases performed better using a 60% of
the dataset as the training set. Thus, there seemed to be no special preference on the
training dataset size.

About setting 2 (number of neurons), all cases with 5 neurons outperformed those
with 10 neurons. As a result, using 5 neurons is clearly beneficial for this approach.

Concerning setting 3 (number of VCB cycles) we observed that there were 105
cases, out of 192, where the samples parsed the Wilcoxon test for different medians.
Since in all these cases 10 VCB cycles were preferred to run, using 10 VCB cycles,
instead of 20, is helpful for the approach.

Relating to setting 4 (evaluation strategy) we noticed that when we examined the
relation of the medians between the first and the second strategy there were 12 cases
where the samples parsed the Wilcoxon test for different medians. Since in most of
these cases, the first strategy was preferred, we recommend using the first strategy to
evaluate the non-dominated solutions, instead of the second. Next, we examined the
relation of the medians between the first and the third strategy and we observed that
there were 7 cases where the samples parsed the Wilcoxon test for different medians.
Since in most of these cases, the first strategy was preferred, we recommend using the

29

first strategy to evaluate the Pareto solutions, instead of the third. When we examined
the relation of the medians between the second and the third strategy there were 12
cases where the samples parsed the Wilcoxon test for different medians. Since in
the majority of these cases, the second strategy was preferred, we recommend using
the second strategy to evaluate the non-dominated solutions, instead of the third.
Eventually, we advocate evaluating all the non-dominated solutions, using the first
strategy.

About setting 5 (different swarm size) we noticed that there were 40 cases where
the samples parsed the Wilcoxon test for different medians. Since in all these cases
a swarm with 20 particles was preferred to run, we recommend using 20 individuals
for our population, instead of 40.

Regarding setting 6 (percentage of the velocity) we saw that there were 16 cases
where the samples parsed the Wilcoxon test for different medians. Since in the major-
ity of these cases a maximum velocity equal to 5% of the search space per dimension
was preferred, we advocate using it, instead of a maximum velocity equal to 20% of
the search space per dimension.

Concerning setting 7 (existence of a restart mechanism) we observed that there
were 14 cases where the samples parsed the Wilcoxon test for different medians.
Since in most of these cases a restart mechanism was performed, we recommend
restarting the population, if it is essential, in the implementation of the random wa
approach.

Almost all of the parameters of interest were selected for the random wa method,
based on exclusively the results of the experiments. Only the proportion of the dataset
that constitutes the training set was not strictly specified. We propose a 60% of the
dataset to constitute the training set, since the corresponding sample had lower MSE
standard deviation in both training and testing sets, compared to the sample that
used a 80% of the dataset as the training set.

Bang-bang weighted aggregation

Regarding setting 1 (different pd value), there were 7 cases in total where the samples
of bang-bang wa with pd = 0.6 and pd = 0.8, respectively, did pass the Wilcoxon test
of different medians. Since in the majority of these cases a 80% of the dataset was
preferred to constitute the training set of the approach, we recommend using 0.8 as
the selected pd value, instead of 0.6.

30

About setting 2 (number of neurons), all cases with 5 neurons outperformed these
with 10 neurons. As a result, using 5 neurons is clearly beneficial for this approach.

Concerning setting 3 (number of VCB cycles) we observed that there were 36 cases
where the samples parsed the Wilcoxon test for different medians. Since in most of
these cases 20 VCB cycles were preferred to run, using 20 VCB cycles, instead of 10,
seems helpful.

Relating to setting 4 (evaluation strategy) we noticed that when we examined
the relation of the medians between the first and the second strategy there were 10
cases where the samples parsed the Wilcoxon test for different medians. Since in the
majority of these cases, the second strategy was preferred, we recommend using the
second strategy to evaluate the non-dominated solutions, instead of the first. Next,
we examined the relation of the medians between the first and the third strategy
and we observed that there were 5 cases where the samples parsed the Wilcoxon test
for different medians. Since in most of these cases, the third strategy was preferred,
we recommend using the third strategy to evaluate the Pareto solutions, instead of
the first. When we examined the relation of the medians between the second and
the third strategy there were 7 cases where the samples parsed the Wilcoxon test for
different medians. Since in most of these cases, the second strategy was preferred,
we recommend using the second strategy to evaluate the non-dominated solutions,
instead of the third. Eventually, we advocate evaluating a random number of non-
dominated solutions, using the second evaluation strategy.

About setting 5 (different swarm size) we noticed that there were 42 cases where
the samples parsed the Wilcoxon test for different medians. Since in most of these
cases a swarm with 40 particles was preferred to run, we recommend using 40 indi-
viduals for our population, instead of 20.

Regarding setting 6 (percentage of the velocity) we saw that there were 8 cases
where the samples parsed the Wilcoxon test for different medians. Since in most of
these cases a maximum velocity equal to 5% of the search space per dimension was
preferred, we advocate using it, instead of a maximum velocity equal to 20% of the
search space per dimension.

Concerning setting 7 (existence of a restart mechanism) we observed that there
were 6 cases where the samples parsed the Wilcoxon test for different medians.
Since in the majority of these cases a restart mechanism was applied, we recommend
restarting the population, if it is essential, in the implementation of the bang-bang

31

wa approach.

Dynamic weighted aggregation

Regarding setting 1 (different pd value), there were 5 cases in total where the samples
of dynamic wa with pd = 0.6 and pd = 0.8, respectively, did pass the Wilcoxon test
of different medians. Moreover, most of these cases performed better using a 60% of
the dataset as the training set. Thus, the training set size is proposed to be equal to
60% of the dataset.

About setting 2 (number of neurons), all cases with 5 neurons surpassed those
with 10 neurons. As a result, using 5 neurons is clearly beneficial for this approach.

Concerning setting 3 (number of VCB cycles) we observed that there were 84
cases, out of 192, where the samples parsed the Wilcoxon test for different medians.
Since in all these cases 10 VCB cycles were preferred to run, using 10 VCB cycles,
instead of 20, seems helpful for the method.

Relating to setting 4 (evaluation strategy) we noticed that when we examined
the relation of the medians between the first and the second strategy there were 3
cases where the samples parsed the Wilcoxon test for different medians. Since in
most of these cases, the second strategy was preferred, we recommend using the
second strategy to evaluate the non-dominated solutions, instead of the first. Next,
we examined the relation of the medians between the first and the third strategy
and we observed that there were 5 cases where the samples parsed the Wilcoxon test
for different medians. Since in most of these cases, the third strategy was preferred,
we recommend using the third strategy to evaluate the Pareto solutions, instead of
the first. When we examined the relation of the medians between the second and
the third strategy there were 10 cases where the samples parsed the Wilcoxon test
for different medians. Since in the majority of these cases, the second strategy was
preferred, we recommend using the second strategy to evaluate the non-dominated
solutions, instead of the third. Eventually, we advocate evaluating a random number
of the non-dominated solutions, using the second strategy.

About setting 5 (different swarm size) we noticed that there were 72 cases where
the samples parsed the Wilcoxon test for different medians. Since in all these cases
a swarm with 20 particles was preferred to run, we recommend using 20 individuals
for our population, instead of 40.

Regarding setting 6 (percentage of the velocity) we saw that there were 6 cases

32

Table 4.5: Parameter settings for NSGA-II.

Setting Examined parameter Values

1 pd { 0.6 , 0.8 }
2 n { 5 , 10 }
3 vcb { 10 , 20 }
4 str { 1 , 2 , 3 }
5 ps { 20 , 40 }
6 mut { 1 , 2 }

where the samples parsed the Wilcoxon test for different medians. Since in the major-
ity of these cases a maximum velocity equal to 20% of the search space per dimension
was preferred, we advocate using it, instead of a maximum velocity equal to 5% of
the search space per dimension.

Concerning setting 7 (existence of a restart mechanism) we observed that there
were 4 cases where the samples parsed the Wilcoxon test for different medians. Half
of these cases performed better using a restart mechanism. Thus, there seemed to
be no special preference on the existence or not of a population restart. However,
having already specified almost all of the parameters of interest for the dynamic wa
method, based on exclusively the results of the experiments, we propose offering the
ability of applying a restart mechanism, since the corresponding sample had lower
MSE standard deviation and mean in both training and testing sets, compared to the
sample that could not apply restart.

4.1.2 Non‐sorting genetic algorithm

The NSGA-II algorithm was applied, under each one of the settings reported in Table
4.5. Probing the effect of the examined parameter under consideration of the rest. The
settings are reported in Tables A.8-A.13 and the obtained solutions are illustrated in
boxplots in Figs. A.22-A.27 in the Appendix.

Regarding setting 1 (different pd value), there were 2 cases, out of 96, where the
samples of NSGA-II with pd = 0.6 and pd = 0.8, respectively, did pass the Wilcoxon
test of different medians. Moreover, half of these cases performed better using a 60%
of the dataset as the training set. Thus, there seemed to be no special preference on
the training dataset size.

33

About setting 2 (number of neurons), all cases with 5 neurons outperformed those
with 10 neurons. As a result, using 5 neurons is clearly helpful for the method.

Concerning setting 3 (number of VCB cycles) we observed that there were 4 cases
where the samples parsed the Wilcoxon test for different medians. Since in all these
cases 10 VCB cycles were preferred to run, using 10 VCB cycles, instead of 20, is
beneficial for this approach.

Relating to setting 4 (evaluation strategy) we noticed that when we examined the
relation of the medians between the first and the second strategy there were 2 cases
where the samples parsed the Wilcoxon test for different medians. Since in these
cases, the second strategy was preferred, we recommend using the second strategy
to evaluate the non-dominated solutions, instead of the first. Next, we examined the
relation of the medians between the first and the third strategy and we observed
that there were 7 cases where the samples parsed the Wilcoxon test for different
medians. Since in these cases, the third strategy was preferred, we recommend using
the third strategy to evaluate the Pareto solutions, instead of the first. When we
examined the relation of the medians between the second and the third strategy there
was only 1 case where the samples parsed the Wilcoxon test for different medians.
In that case the third strategy was preferred. So, we recommend using the third
strategy to evaluate the non-dominated solutions, instead of the second. Eventually,
we advocate evaluating only one randomly selected non-dominated solution, using
the third strategy.

About setting 5 (different population size) we noticed that there were 27 cases
where the samples parsed the Wilcoxon test for different medians. Since in all these
cases a population with 40 individuals was preferred to run, we recommend using 40

individuals, instead of 20.
Regarding setting 6 (mutation strategy) we saw that there were 14 cases where

the samples parsed the Wilcoxon test for different medians. Since in all these cases an
adaptive mutation rate was preferred, we advocate using it, instead of using a fixed
one.

Almost all of the parameters of interest were selected for NSGA-II, based on
exclusively the results of the experiments. Only the proportion of the dataset that
constitutes the training set is not strictly specified. We propose a 60% of the dataset
as the training set, since the corresponding sample had lower MSE standard deviation
and mean in both training and testing sets, compared to the sample that used a 80%

34

Table 4.6: Parameter settings for MOPSO.

Setting Examined parameter Values

1 pd { 0.6 , 0.8 }
2 n { 5 , 10 }
3 vcb { 10 , 20 }
4 str { 1 , 2 , 3 }
5 ps { 20 , 40 }
6 vel { 1 , 2 }

of the dataset to constitute the training set.

4.1.3 Multi‐objective particle swarm optimization algorithm

The MOPSO algorithm was applied, under each one of the settings reported in Table
4.6. For each setting, the corresponding parameter of interest was considered and
its effect on the algorithm performance was analyzed for all combinations of the rest
of the parameters. The considered parameter settings are reported in Tables A.14-
A.19 and the obtained solutions are illustrated in boxplots in Figs. A.28-A.33 in the
Appendix of the thesis.

Regarding setting 1 (different pd value), there were 5 cases in total where the
samples of MOPSO with pd = 0.6 and pd = 0.8, respectively, did pass the Wilcoxon
test of different medians. Since in the majority of these cases a 60% of the dataset is
preferred to constitute the training set, we recommend using a 60%, instead of 80%,
of the dataset to train our network.

About setting 2 (number of neurons) we noticed that in 94, out of 96, cases the
samples of MOPSO with 5 neurons outstriped those with 10 neurons. As a result,
using 5 neurons is clearly beneficial for this approach.

Concerning setting 3 (number of VCB cycles) we observed that in 53 cases the
samples that used 10 VCB cycles exceeded those with 20 cycles. Thus, using 10 cycles
is useful for the MOPSO method.

Relating to setting 4 (evaluation strategy) we noticed that when we examined
the relation of the medians between the first and the second strategy there were 3
cases where the samples parsed the Wilcoxon test for different medians. Since in
most of these cases, the second strategy was preferred, we recommend using the

35

second strategy to evaluate the non-dominated solutions, instead of the first. Next,
we examined the relation of the medians between the first and the third strategy and
we observed that there were 7 cases where the samples parsed the Wilcoxon test for
different medians. Since in most of these cases, the third strategy was preferred, we
recommend using the third strategy to evaluate the Pareto solutions, instead of the
first. When we examined the relation of the medians between the second and the third
strategy there were 9 cases where the samples parsed the Wilcoxon test for different
medians. Since in the majority of these cases, the third strategy was preferred, we
recommend using the third strategy to evaluate the non-dominated solutions, instead
of the second. Eventually, we advocate evaluating only one randomly selected non-
dominated solution, using the third evaluation strategy.

About setting 5 (different swarm size) we noticed that in 64 cases the samples
parsed the Wilcoxon test for different medians, using 20 particles for the swarm. So,
we recommend using 20 individuals for our population, instead of 40.

Regarding setting 6 (percentage of the velocity) we saw that in 42 cases the samples
parsed the Wilcoxon test for different medians. Since in most of these cases having a
maximum velocity equal to 20% of the search space per dimension was preferred, we
advocate using a maximum velocity equal to 20%, instead of 5%, of the search space
per dimension.

4.2 Experimental phase 2: comparisons among multi‐objective ap‐

proaches

The most promising variants (set of parameters) of the ΜΟ methods were compared
among them in experimental phase 2. The basic statistical values of MSE in the
training and testing sets are illustrated in Tables 4.7 and 4.8 for the compared MO
methods. Figure 4.2 illustrates the training and testing MSE of the MO methods
together, indicating the lack of significant differences in the values of MSE between
the two sets for each method.

From the pairwise comparisons between the weighted aggregation methods re-
ported in Table 4.9, we can see that the performances of random wa and dynamic
wa were superior to the bang-bang wa. At the same time, these methods had lower
MSE mean and standard deviation in both training and testing sets, compared to the

36

Table 4.7: Training MSE of the methods.

Method min mean median max std

Random WA 0.0490 0.0598 0.0547 0.0782 0.0095
Bang WA 0.0585 0.0973 0.0783 0.2889 0.0509
Dynamic WA 0.0470 0.0603 0.0546 0.1093 0.0139
NSGA-II 0.0450 0.0513 0.0486 0.0819 0.0080
MOPSO 0.0472 0.0513 0.0489 0.0885 0.0088
BFGS 0.0496 0.1574 0.0705 1.8721 0.3631

Table 4.8: Testing MSE of the methods.

Method min mean median max std

Random WA 0.0495 0.0617 0.0563 0.0873 0.0109
Bang WA 0.0594 0.0995 0.0808 0.2782 0.0553
Dynamic WA 0.0467 0.0602 0.0533 0.1160 0.0153
NSGA-II 0.0451 0.0518 0.0492 0.0833 0.0082
MOPSO 0.0479 0.0529 0.0497 0.0957 0.0112
BFGS 0.0484 0.1548 0.0684 1.9073 0.3711

bang-bang wa method, indicating that they can produce more robust solutions for
the minimization problem we study.

After, we performed pairwise comparisons between the best-performing MO meth-
ods, that are reported in Table 4.10. We observe that the performances of Pareto-
based evolutionary algorithms were superior to the wa methods. At the same time,
the NSGA-II algorithm had the lowest MSE mean and standard deviation in both
training and testing sets among the MO methods.

4.3 Experimental phase 3: comparisons between multi‐objective

methods and BFGS

The proposed MO methods were compared also against the BFGS method that is
used with the standard VCB algorithm. Similarly to the MO methods, a tuning pro-
cedure based on different settings was also applied for the BFGS method, and it is

37

Figure 4.2: Training and Testing MSE of MO methods.

Table 4.9: Wilcoxon ranksum tests of the WA methods. The corresponding p-values
are given in the parentheses.

Compared algorithms
A -vs- B Training set Testing set

Random WA Bang WA + (0.0000) + (0.0000)
Random WA Dynamic WA = (0.7710) = (0.1870)
Bang WA Dynamic WA − (0.0000) − (0.0000)

[“+”: A is better than B] [“−”: B is better than A] [“=”: indifferent]

summarized below.

4.3.1 Parameter tuning of the BFGS method

We conducted a number of experiments to identify promising parameters similarly to
the MO methods. We examined 3 settings, as reported in Table 4.11. For each setting,
the corresponding parameter of interest was considered and its effect on the algorithm
performance was analyzed for all combinations of the rest of the parameters. The
considered parameter settings are reported in Tables A.20-A.22 and the obtained
solutions are illustrated in boxplots in Figs. A.34-A.36 in the Appendix of the thesis.

Regarding setting 1 (different pd value), there were 2 cases in total where the
samples of BFGS with pd = 0.6 and pd = 0.8, respectively, did pass the Wilcoxon

38

Table 4.10: Wilcoxon ranksum tests of the MO methods. The corresponding p-values
are given in the parentheses.

Compared algorithms
A -vs- B Training set Testing set

Random WA NSGA-II − (0.0000) − (0.0000)
Random WA MOPSO − (0.0000) − (0.0000)
Dynamic WA NSGA-II − (0.0001) − (0.0001)
Dynamic WA MOPSO − (0.0000) − (0.0000)

NSGA-II MOPSO = (0.6415) = (0.3320)

[“+”: A is better than B] [“−”: B is better than A] [“=”: indifferent]

Table 4.11: Parameter settings for BFGS.

Setting Examined parameter Values

1 pd { 0.6 , 0.8 }
2 n { 5 , 10 }
3 vcb { 10 , 20 }

test of different medians. Moreover, these cases performed better using a 80% of the
dataset as the training set. Thus, using 80% of the dataset to constitute the training
set is helpful for this approach.

About setting 2 (number of neurons), we observed that there were 2 cases where
the samples parsed the Wilcoxon test for different medians. Since in these cases
10 neurons, instead of 5, were preferred for the network, we recommend using 10

neurons.
Concerning setting 3 (number of VCB cycles) we observed that there was only 1

case where the samples parsed the Wilcoxon test for different medians. Since in that
case 10 VCB cycles were preferred to run, we propose applying 10 VCB cycles, instead
of 20.

4.3.2 Comparisons between the methods

The best-performing approaches of both weighted aggregation and Pareto-based MO
algorithms were compared with the standard VCB method with the BFGS solver. In
Tables 4.7 and 4.8 the basic statistical values of MSE in the training and testing sets

39

Table 4.12: Wilcoxon ranksum tests of the optimization methods. The corresponding
p-values are given in the parentheses.

Algorithm Case 1 Case 2 Case 3
A Training set Testing set Training set Testing set Training set Testing set

Random WA + (0.0004) + (0.0076) + (0.0001) + (0.0026) − (0.0001) − (0.0000)
Dynamic WA + (0.0001) + (0.0009) + (0.0026) + (0.0002) − (0.0031) + (0.0008)
NSGA-II + (0.0000) + (0.0000) + (0.0000) + (0.0000) = (0.1253) = (0.3320)
MOPSO + (0.0000) + (0.0000) + (0.0000) + (0.0000) + (0.0036) + (0.0181)

[“+”: A is better than BFGS] [“−”: BFGS is better than A] [“=”: indifferent]

are reported, using the proposed set of parameters for each method. According to the
statistical analysis of the optimization methods, we distinguished 3 cases. In Table
4.12 all the p-values of the pairwise comparisons are reported and explained below.

In the first case, we compared the methods using their proposed set of parameters.
From the pairwise comparisons, we can see that the performances of the MO methods
were superior to the BFGS method. At the same time, the MO methods exhibited lower
MSE mean and standard deviation in both training and testing sets compared to the
BFGS method. Interestingly, NSGA-II and MOPSO had 45.26 and 33.13 times smaller
MSE standard deviation in testing set compared to the BFGS method, respectively.

According to the parameter tuning, we proposed to use 5 neurons when we em-
ployed the MO methods, while for the BFGS method we proposed 10 neurons for
the neural network. For this reason, in the second case, we compared the optimiza-
tion methods when all of them used 5 neurons. From the pairwise comparisons, we
observe that the performances of the MO methods were again superior to the BFGS
method.

In the third case, we compared the methods when all of them used 10 neurons.
The pairwise comparisons between them produced mixed results, but we can notice
that the performance of NSGA-II was competitive to BFGS, while the performance of
MOPSO was superior to the BFGS method.

4.3.3 Running‐time requirements

In the previous sections, we focused on comparisons of the optimization methods with
respect to their MSE values. For this section we compared the best-performing MO
methods between them, as well as against the BFGS method, based on the required
running-time (in seconds) in training phase of each experiment. We ignored the time

40

Table 4.13: Statistical values of training/running time (seconds) for all methods.

Values min mean median max std

Random WA 19.6000 20.7480 21.0000 22.1000 0.7714
Dynamic WA 32.4000 34.4360 34.8000 35.8000 1.1467
NSGA-II 18.1000 18.3560 18.4000 18.6000 0.1261
MOPSO 16.5000 16.6240 16.6000 16.8000 0.0663
BFGS (n=5) 10.8000 32.0120 34.9000 46.0000 9.2848
BFGS (n=10) 30.9000 58.3240 58.0000 78.6000 13.5579

of the testing phase that was negligible in each case. The basic statistical values of
running-time for the training set are illustrated in Table 4.13, using the proposed set
of parameters for each method.

From the pairwise comparisons between the MO methods we got that the median
of the random wa sample was greater than the median of NSGA-II (p-value = 0.0000).
The median of the random wa sample was greater than the median of MOPSO (p-
value = 0.0000). The median of the dynamic wa sample was greater than the median
of NSGA-II (p-value = 0.0000). The median of the dynamic wa sample was greater
than the median of MOPSO (p-value = 0.0000). The median of NSGA-II sample was
greater than the median of MOPSO (p-value = 0.0000). Eventually, the performance
of MOPSO was superior to the other MO methods. Also, MOPSO had the lowest mean
and standard deviation of running-time.

From the pairwise comparisons between the MO methods and the BFGS method,
we got that the performance of each MO method was superior to BFGS (p-value =

0.0000). We received the same results when we compared the time complexity of the
methods when all of them used 5 and 10 neurons.

4.4 Experimental phase 4: comparisons on different datasets

4.4.1 A noisy dataset

This part of our analysis contained comparisons on different datasets, starting with
our regression model for the “Mexican Hat” function, using a noisy dataset, where
25% of the patterns in training were contained with noise. The noise follows the

41

Table 4.14: Training MSE using noisy dataset.

Values min mean median max std

Random WA 0.0909 0.1261 0.1186 0.2775 0.0491
Bang WA 0.0983 0.1234 0.1225 0.1831 0.0195
Dynamic WA 0.0830 0.1160 0.1048 0.3409 0.0501
NSGA-II 0.0833 0.0894 0.0894 0.1098 0.0051
MOPSO 0.0817 0.0936 0.0907 0.1687 0.0159
BFGS 0.0494 0.4396 0.0680 9.1855 1.8226

Table 4.15: Testing MSE using noisy dataset.

Values min mean median max std

Random WA 0.0529 0.0834 0.0720 0.2903 0.0556
Bang WA 0.0562 0.0793 0.0734 0.1496 0.0213
Dynamic WA 0.0471 0.0758 0.0609 0.2973 0.0490
NSGA-II 0.0450 0.0519 0.0521 0.0728 0.0053
MOPSO 0.0471 0.0545 0.0512 0.1189 0.0138
BFGS 0.0494 0.4591 0.0694 9.6090 1.9067

Gaussian distribution with mean value equal to the true function value and sigma
(standard deviation) equal to 0.01. The network was trained using the noisy function
values, while tested using the true function values. The basic statistical values of MSE
in both training and testing sets are reported in Tables 4.14 and 4.15.

The first step of the statistical analysis was the application of normality tests in
both training and testing samples using the one-sample Kolmogorov-Smirnov test.
The results showed that none of the samples came from the normal distribution at
a 0.05 significance level. So, we compared the methods, using the non-parametric
Wilcoxon ranksum test.

From the pairwise comparisons between the methods reported in Table 4.16,
we can see that the performances of NSGA-II and MOPSO were superior to the
other methods. At the same time, NSGA-II had the lowest MSE mean and standard
deviation in both training and testing sets.

Subsequently, we statistically compared NSGA-II and MOPSO with the BFGS
method, distinguishing 3 cases as for the noiseless case (original dataset). In Ta-

42

Table 4.16: Wilcoxon ranksum tests of the MO methods using noisy dataset. The
corresponding p-values are given in the parentheses.

Compared algorithms
A -vs- B Training set Testing set

Random WA Bang WA = (0.2523) = (0.1352)
Random WA Dynamic WA = (0.1403) = (0.3224)
Random WA NSGA-II − (0.0000) − (0.0000)
Random WA MOPSO − (0.0000) − (0.0000)
Bang WA Dynamic WA − (0.0047) − (0.0181)
Bang WA NSGA-II − (0.0000) − (0.0000)
Bang WA MOPSO − (0.0000) − (0.0000)

Dynamic WA NSGA-II − (0.0000) − (0.0001)
Dynamic WA MOPSO − (0.0009) − (0.0004)

NSGA-II MOPSO + (0.0181) = (0.5605)

[“+”: A is better than B] [“−”: B is better than A] [“=”: indifferent]

ble 4.17 all the p-values of the pairwise comparisons are reported. In the first case we
compared the methods using the proposed set of parameters of each method. From
the pairwise comparisons we can see that the performances of the MO methods were
superior to the BFGS method in the testing phase, while they were inferior in the
training phase. Interestingly, NSGA-II and MOPSO had a 359.75 and 138.17 times
smaller MSE standard deviation compared to the BFGS method in testing phase,
respectively.

In the second case we compared the optimization methods when all of them used
5 neurons. Just like in the first case, we can see that the performances of the MO
methods were superior to the BFGS method in testing, while they were inferior in
training.

In the third case we compared the methods when all of them used 10 neurons. The
pairwise comparisons between them produced mixed results, but the performance of
NSGA-II was competitive to the BFGS method in testing and inferior in training,
while the performance of MOPSO was superior to the BFGS method in testing and
inferior in training.

In Fig.(4.3), the training and testing MSE for both original and noisy datasets

43

Table 4.17: Wilcoxon ranksum tests of the optimization methods using noisy dataset.
The corresponding p-values are given in the parentheses.

Algorithm Case 1 Case 2 Case 3
A Training set Testing set Training set Testing set Training set Testing set

NSGA-II − (0.0000) + (0.0000) − (0.0000) + (0.0000) − (0.0000) = (0.2604)
MOPSO − (0.0000) + (0.0000) − (0.0000) + (0.0000) − (0.0000) + (0.0069)

[“+”: A is better than BFGS] [“−”: BFGS is better than A] [“=”: indifferent]

(a) Training MSE (b) Testing MSE

Figure 4.3: Training and Testing MSE for original and noisy datasets.

using the MO methods are illustrated. Afterwards, we compared statistically each
MO method for these datasets. From the pairwise comparisons between the methods
reported in Table 4.18, we can see that the performances of the MO methods in
training were better when they used the original dataset, while in testing phase the
results were mixed, since random wa and MOPSO were better when they used the
original dataset, while the remaining MO methods could perform equally efficient in
both datasets.

4.4.2 The red wine dataset

The last dataset that we used in our analysis was the Red Wine Quality dataset. The
dataset contains a total of 12 variables, which are recorded for 1599 observations. We
examined the quality of wine based on acidity. So, we used only 2 of the variables,
the fixed acidity, which are non-volatile acids that do not evaporate readily, and the
volatile acidity, which are high acetic acid in wine which leads to an unpleasant
vinegar taste [18]. We chose that dataset because industry players are of interest in
relating the human quality of tasting to wine’s chemical properties so that certification

44

Table 4.18: Wilcoxon ranksum tests of the MO methods using original and noisy
datasets. The corresponding p-values are given in the parentheses.

Compared algorithms
A -vs- B Training set Testing set

Random WA (original) Random WA (noisy) + (0.0000) + (0.0164)
Bang WA (original) Bang WA (noisy) + (0.0000) = (0.1567)

Dynamic WA (original) Dynamic WA (noisy) + (0.0000) = (0.1031)
NSGA-II (original) NSGA-II (noisy) + (0.0000) = (0.1744)
MOPSO (original) MOPSO (noisy) + (0.0000) + (0.0199)
[“+”: A is better than B] [“−”: B is better than A] [“=”: indifferent]

Table 4.19: Training MSE using the red wine dataset.

Setting 1 Setting 2
Algorithm min mean median max std min mean median max std
Random WA 0.5478 0.5744 0.5571 0.7515 0.0443 0.0214 0.0371 0.0257 0.1196 0.0245
Bang WA 0.5542 0.6033 0.5915 0.6971 0.0423 0.0250 0.0574 0.0373 0.1533 0.0370
Dynamic WA 0.5338 0.5645 0.5426 0.7660 0.0493 0.0221 0.0342 0.0315 0.0851 0.0144
NSGA-II 0.5568 0.5605 0.5606 0.5669 0.0019 0.0225 0.0230 0.0228 0.0249 0.0005
MOPSO 0.5247 0.5295 0.5287 0.5409 0.0045 0.0214 0.0223 0.0221 0.0247 0.0007
BFGS 0.5421 815.4536 0.5486 4193.6810 1401.0972 0.0220 489.9167 0.0226 3914.3024 999.6690

and quality assessment and assurance processes are more controlled.
In order to analyze the red wine dataset we made some modifications in our im-

plementation. First, the size of the dataset was reduced from 40000 to 1599 patterns.
Also, we noticed that the values of the fixed acidity are in range 4.6 to 15.9 and the
values of volatile acidity are in range 0.12 to 1.58. So, we chose to normalize the input
data. As a consequence the minimum and maximum value of the center components
became equal to 0 and 1, respectively. As concerns the output data we distinguished 2
settings. In the first setting, we do not normalize the output data, while in the second
one, we normalize it. The basic statistical values of MSE in both training and testing
sets in the examined settings are reported in Tables 4.19 and 4.20.

As for the former datasets, the first step of the statistical analysis was the appli-
cation of normality tests in all samples using the one-sample Kolmogorov-Smirnov
test. The results showed that none of the samples came from the normal distribution
at a 0.05 significance level. So, we compared the methods, using the non-parametric
Wilcoxon ranksum test.

From the pairwise comparisons between the methods reported in Table 4.21, we
notice that in both examined settings, the performances of NSGA-II and MOPSO were
superior to the other MO methods.

45

Table 4.20: Testing MSE using the red wine dataset.

Setting 1 Setting 2
Algorithm min mean median max std min mean median max std
Random WA 0.5532 0.5774 0.5608 0.7301 0.0405 0.0243 0.0437 0.0287 0.1530 0.0309
Bang WA 0.5359 0.5904 0.5806 0.7056 0.0490 0.0237 0.0543 0.0375 0.1468 0.0346
Dynamic WA 0.5710 0.6282 0.5894 1.0600 0.1043 0.0221 0.0346 0.0316 0.0857 0.0150
NSGA-II 0.5346 0.5417 0.5399 0.5680 0.0070 0.0208 0.0215 0.0214 0.0228 0.0005
MOPSO 0.5866 0.5934 0.5924 0.6076 0.0057 0.0226 0.0243 0.0243 0.0267 0.0011
BFGS 0.5592 822.1290 0.5758 4194.9224 1409.2182 0.0210 493.5759 0.0228 3939.9349 1005.6667

Table 4.21: Wilcoxon ranksum tests of the MO methods using the red wine dataset.
The corresponding p-values are given in the parentheses.

Compared algorithms Setting 1 Setting 2
A -vs- B Training set Testing set Training set Testing set

Random WA Bang WA + (0.0003) = (0.5475) + (0.0008) = (0.1116)
Random WA Dynamic WA − (0.0099) + (0.0000) = (0.3933) = (0.2523)
Random WA NSGA-II = (0.8009) − (0.0000) − (0.0090) − (0.0000)
Random WA MOPSO − (0.0000) + (0.0000) − (0.0000) − (0.0000)
Bang WA Dynamic WA − (0.0001) = (0.0598) − (0.0029) − (0.0085)
Bang WA NSGA-II − (0.0000) + (0.0000) − (0.0000) − (0.0000)
Bang WA MOPSO − (0.0000) = (0.0991) − (0.0000) − (0.0000)

Dynamic WA NSGA-II + (0.0164) − (0.0000) − (0.0000) − (0.0000)
Dynamic WA MOPSO − (0.0000) = (0.5869) − (0.0000) − (0.0018)

NSGA-II MOPSO − (0.0000) + (0.0000) − (0.0000) + (0.0000)
[“+”: A is better than B] [“−”: B is better than A] [“=”: indifferent]

Subsequently, we statistically compared NSGA-II and MOPSO with the BFGS
method, distinguishing 3 cases, as in the previous datasets. In Table 4.22 all the
p-values of the pairwise comparisons are reported. In the first case we compared the
methods using the proposed set of parameters of each method. From the pairwise
comparisons in both examined settings we can see that the performance of NSGA-II
was superior to BFGS in testing, while it was competitive to BFGS in training. Also,
the performance of MOPSO was superior to BFGS in training, while it was competitive
to BFGS in testing.

In the second case we compared the optimization methods when all of them used
5 neurons. Just like in the first case, from the pairwise comparisons in both examined
settings the performance of NSGA-II was superior to the BFGS method in testing,
while it was competitive to BFGS in training. Also, the performance of MOPSO was
superior to the BFGS method in training, while it was competitive to the BFGS method
in testing.

46

Table 4.22: Wilcoxon ranksum tests of the optimization methods using the red wine
dataset. The corresponding p-values are given in the parentheses.

Case 1 Case 2 Case 3
Setting Algorithm Training set Testing set Training set Testing set Training set Testing set

1
NSGA-II = (0.2990) + (0.0000) = (0.1744) + (0.0000) + (0.0000) = (0.1073)
MOPSO + (0.0000) = (0.0775) + (0.0000) = (0.7269) + (0.0000) = (0.0598)

2
NSGA-II = (0.6837) + (0.0002) = (0.1511) + (0.0000) = (0.3618) = (0.9690)
MOPSO + (0.0002) = (0.2604) = (0.0743) = (0.5737) = (0.2444) = (0.1253)

[“+”: A is better than BFGS] [“−”: BFGS is better than A] [“=”: indifferent]

Table 4.23: Wilcoxon ranksum tests of the MO methods using original and red wine
datasets. The corresponding p-values are given in the parentheses.

Compared algorithms Setting 1 Setting 2
A -vs- B Training set Testing set Training set Testing set

Random WA (original) Random WA (red wine) + (0.0000) + (0.0000) − (0.0000) − (0.0000)
Bang WA (original) Bang WA (red wine) + (0.0000) + (0.0000) − (0.0000) − (0.0000)

Dynamic WA (original) Dynamic WA (red wine) + (0.0000) + (0.0000) − (0.0000) − (0.0000)
NSGA-II (original) NSGA-II (red wine) + (0.0000) + (0.0000) − (0.0000) − (0.0000)
MOPSO (original) MOPSO (red wine) + (0.0000) + (0.0000) − (0.0000) − (0.0000)

[“+”: A is better than B] [“−”: B is better than A] [“=”: indifferent]

In the third case we compared the methods when all of them used 10 neurons.
From the pairwise comparisons we can notice that in the first setting the performances
of the MO methods were competitive to BFGS in testing, while they were superior
to the BFGS method in training. In the second setting the performances of the MO
methods were competitive to BFGS in both the training and testing phases.

In Fig.(4.4), the training and testing MSE of both original and red wine datasets
using MO methods in the examined settings are illustrated. Next, we compared statis-
tically each MO method for these datasets. From the pairwise comparisons between
the methods reported in Table 4.23, we can see that as concerns the first setting the
performances of the MO methods were better when they used the original dataset,
while in the second setting the performances of the MO methods were better when
they used the red wine dataset.

47

(a) Training MSE (Setting 1) (b) Testing MSE (Setting 1)

(c) Training MSE (Setting 2) (d) Testing MSE (Setting 2)

Figure 4.4: Training and Testing MSE FOR original and red wine datasets.

4.5 Why do we select variance counterbalancing?

The present thesis studies the use of MO methods for solving the VCB minimization
problem. The last part of our analysis contained comparisons of NSGA-II, MOPSO
and the BFGS method when they used and when they ignored the VCB technique
in training of the neural network, based on the resulting MSE of the whole network.
The basic statistical values of MSE of the three methods in both training and testing
sets are illustrated in Tables 4.24 and 4.25, while the pairwise comparisons of the
methods in the examined cases are reported in Table 4.26.

To begin with, we selected the original dataset. From the pairwise comparisons
between the methods we can see that there is no statistically significant difference
between the methods when they used or when they ignored the VCB technique. Only
MOPSO performed better in training when it employed the VCB. At the same time,
as concerns the NSGA-II algorithm in both training and testing phases had smaller
MSE mean when it used the VCB technique, while the results about the standard

48

Table 4.24: Training MSE for VCB selection.

Original dataset Noisy dataset
Algorithm min mean median max std min mean median max std

V
CB

NSGA-II 0.0450 0.0513 0.0486 0.0819 0.0080 0.0833 0.0894 0.0894 0.1098 0.0051
MOPSO 0.0472 0.0513 0.0489 0.0885 0.0088 0.0817 0.0936 0.0907 0.1687 0.0159
BFGS 0.0496 0.1574 0.0705 1.8721 0.3631 0.0494 0.4396 0.0680 9.1855 1.8226

no
V
CB NSGA-II 0.0439 0.0521 0.0495 0.0674 0.0063 0.0814 0.0916 0.0889 0.1301 0.0106

MOPSO 0.0448 0.0557 0.0504 0.1022 0.0131 0.0800 0.0991 0.0909 0.1424 0.0171
BFGS 0.0501 0.1042 0.0692 0.9539 0.1772 0.0517 0.0698 0.0697 0.0853 0.0076

Table 4.25: Testing MSE for VCB selection.

Original dataset Noisy dataset
Algorithm min mean median max std min mean median max std

V
CB

NSGA-II 0.0451 0.0518 0.0492 0.0833 0.0082 0.0833 0.0894 0.0894 0.1098 0.0051
MOPSO 0.0479 0.0529 0.0497 0.0957 0.0112 0.0471 0.0545 0.0512 0.1189 0.0138
BFGS 0.0484 0.1548 0.0684 1.9073 0.3711 0.0494 0.4591 0.0694 9.6090 1.9067

no
V
CB NSGA-II 0.0439 0.0523 0.0499 0.0695 0.0060 0.0459 0.0538 0.0519 0.0809 0.0081

MOPSO 0.0444 0.0548 0.0504 0.0829 0.0106 0.0432 0.0582 0.0509 0.1150 0.0157
BFGS 0.0494 0.1064 0.0686 0.9542 0.1773 0.0510 0.0712 0.0695 0.1049 0.0120

deviation of MSE were better when the VCB was not applied. As concerns the MOPSO
method we observe that in training both the MSE mean and standard deviation were
smaller when the VCB was used, while in testing the results were mixed, since the
MSE mean was smaller when the VCB was applied and the standard deviation of
MSE was smaller when the VCB was ignored.

These results were the motivation to make the same comparisons using the noisy
dataset. From the pairwise comparisons between the methods we observe that there
is no statistically significant difference between the methods when they used or when
they neglected the VCB technique. Moreover, NSGA-II in training had smaller values
in both the MSE mean and standard deviation when it used the VCB technique, while
in testing the results were mixed, since the MSE mean was smaller when the VCB was
ignored and the standard deviation of MSE was smaller when the VCB was used.
As concerns the MOPSO algorithm we can see that in both phases the MSE mean
and standard deviation were smaller when the VCB was used. These results indicate
that applying the VCB technique in training of an RBF network using NSGA-II and
MOPSO can provide robust results.

49

Table 4.26: Wilcoxon ranksum tests of the methods for VCB selection. The corre-
sponding p-values are given in the parentheses.

Compared algorithms Original dataset Noisy dataset
A -vs- B Training set Testing set Training set Testing set

NSGA-II (VCB) NSGA-II (no VCB) = (0.2143) = (0.2003) = (0.8009) = (0.6276)
MOPSO (VCB) MOPSO (no VCB) + (0.0105) = (0.3130) = (0.3826) = (0.6837)
BFGS (VCB) BFGS (no VCB) = (0.1683) = (0.7562) = (0.3320) = (0.8462)

[“+”: A is better than B] [“−”: B is better than A] [“=”: indifferent]

50

CHAPTER 5

CONCLUSIONS

We studied the use of multi-objective methods for the recently proposed variance
counterbalancing algorithm for large-scale stochastic learning. The employed opti-
mization methods included the state-of-the-art weighted aggregation approaches, the
non-sorting genetic algorithm, and the multi-objective particle swarm optimization
algorithm. Our experimental analysis was based on the application of variance coun-
terbalancing on RBF networks, using three different datasets.

Having determined appropriate sets of parameters for each method, we statis-
tically compared them. Also, we compared the best-performing multi-objective ap-
proaches with the standard single-objective formulation of variance counterbalancing,
that employs the BFGS solver. The numerical experiments that we conducted and the
accompanying statistical analysis suggest that the multi-objective methods with our
proposed modifications, can be competitive and frequently superior to the original
single-objective variance counterbalancing approach.

In future extensions, the variance counterbalancing algorithm can be applied on a
variety of neural networks using real-world datasets, as well as on problems of higher
dimension.

51

52

BIBLIOGRAPHY

[1] J. Brownlee. A gentle introduction to mini-batch gradient descent and how to
configure batch size. [Online]. Available: https://machinelearningmastery.com/
gentle-introduction-mini-batch-gradient-descent-configure-batch-size/

[2] P. Lagari, L. Tsoukalas, and I. Lagaris, Variance Counterbalancing for Stochastic
Large-scale Learning, ser. International Journal on Artificial Intelligence Tools.
World Scientific, 2020, vol. 29.

[3] N. Karayiannis, “Reformulated radial basis neural networks trained by gradient
descent,” IEEE Transactions on Neural Networks, vol. 10, no. 3, pp. 657–671, 1999.

[4] C. Coello Coello, G. Lamont, and D. van Veldhuizen, Evolutionary Algorithms for
Solving Multi-Objective Problems, 2nd ed., ser. Genetic Algorithms and Evolution-
ary Computation. Springer US, 2007.

[5] Y. Jin, M. Olhofer, and B. Sendhoff, “Dynamic weighted aggregation for evo-
lutionary multi-objective optimization: Why does it work and how?” in Genetic
and Evolutionary Computation Conference, 2001, pp. 1042–1049.

[6] K. Parsopoulos and M. Vrahatis, “Particle swarm optimization method in multi-
objective problems,” in ACM Symposium on Applied Computing (SAC 2002), 2002,
pp. 603–607.

[7] Y. Liu, Q. Zheng, Z. Shi, and J. Chen, “Training radial basis function networks
with particle swarms,” in Advances in Neural Networks – ISNN 2004, 2004, pp.
317–322.

[8] A. Eiben and J. Smith, Introduction to Evolutionary Computing, 2nd ed., ser. Natural
Computing Series. Springer, 2015.

53

https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/
https://machinelearningmastery.com/gentle-introduction-mini-batch-gradient-descent-configure-batch-size/

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation,
vol. 6, no. 2, pp. 182–197, 2002.

[10] C. Coello and G. Pulido, “Handling multiple objectives with particle swarm op-
timization,” IEEE Transactions on Evolutionary Computation, vol. 8, no. 3, pp.
256–279, 2004.

[11] C. Coello and R. Sierra, “Improving pso-based multi-objective optimization using
crowding, mutation and ϵ-dominance,” in Evolutionary Multi-Criterion Optimiza-
tion, 2005, pp. 505–519.

[12] T. Kurban and E. Beşdok, “A comparison of rbf neural network training al-
gorithms for inertial sensor based terrain classification,” Sensors (Basel), vol. 9,
no. 8, pp. 6312–29, 2009.

[13] G. Montager, D. Giveki, M. Karami, and H. Rastegar, “Radial basis function
neural networks: A review,” Computer Reviews, vol. 1, no. 1, 2018.

[14] S. Ding, L. Xu, C. Su, and F. Jin, “An optimizing method of rbf neural network
based on genetic algorithm,” Neural Comput Applic, vol. 21, pp. 333–336, 2012.

[15] R. Marler and J. Arora, Survey of multi-objective optimization methods for engineering,
ser. Structural and Multidisciplinary Optimization. Springer, 2004, vol. 26.

[16] M. Rocha and J. Neves, Preventing Premature Convergence to Local Optima in Genetic
Algorithms via Random Offspring Generation, ser. Multiple Approaches to Intelligent
Systems. Springer, 1999, vol. 1611.

[17] G. Kanji, 100 Statistical Tests, 3rd ed. SAGE Publications, 2006.

[18] D. Nguyen. Red wine quality prediction using regression modeling
and machine learning. [Online]. Available: https://towardsdatascience.com/
red-wine-quality-prediction-using-regression-modeling-and-machine-learning

54

https://towardsdatascience.com/red-wine-quality-prediction-using-regression-modeling-and-machine-learning
https://towardsdatascience.com/red-wine-quality-prediction-using-regression-modeling-and-machine-learning

APPENDIX A

APPENDIX

A.1 Examined cases for the weighted aggregation approaches

A.2 Examined cases for the non‐sorting genetic algorithm

A.3 Examined cases for the multi‐objective particle swarm optimization algorithm

A.4 Examined cases for the BFGS method

The following pages contain all tables with the relevant settings and the boxplots of
the attained MSE values for each optimization method for the experimental phase 1.

55

A.1 Examined cases for the weighted aggregation approaches

Table A.1: Examined cases for setting 1 (pd) of the wa approaches.

ID Examined cases ID Examined cases
1(49) vcb=10 str=1 ps=20 vel=1 rest=0 25(73) vcb=20 str=1 ps=20 vel=1 rest=0
2(50) vcb=10 str=1 ps=20 vel=1 rest=1 26(74) vcb=20 str=1 ps=20 vel=1 rest=1
3(51) vcb=10 str=1 ps=20 vel=2 rest=0 27(75) vcb=20 str=1 ps=20 vel=2 rest=0
4(52) vcb=10 str=1 ps=20 vel=2 rest=1 28(76) vcb=20 str=1 ps=20 vel=2 rest=1
5(53) vcb=10 str=1 ps=40 vel=1 rest=0 29(77) vcb=20 str=1 ps=40 vel=1 rest=0
6(54) vcb=10 str=1 ps=40 vel=1 rest=1 30(78) vcb=20 str=1 ps=40 vel=1 rest=1
7(55) vcb=10 str=1 ps=40 vel=2 rest=0 31(79) vcb=20 str=1 ps=40 vel=2 rest=0
8(56) vcb=10 str=1 ps=40 vel=2 rest=1 32(80) vcb=20 str=1 ps=40 vel=2 rest=1
9(57) vcb=10 str=2 ps=20 vel=1 rest=0 33(81) vcb=20 str=2 ps=20 vel=1 rest=0
10(58) vcb=10 str=2 ps=20 vel=1 rest=1 34(82) vcb=20 str=2 ps=20 vel=1 rest=1
11(59) vcb=10 str=2 ps=20 vel=2 rest=0 35(83) vcb=20 str=2 ps=20 vel=2 rest=0
12(60) vcb=10 str=2 ps=20 vel=2 rest=1 36(84) vcb=20 str=2 ps=20 vel=2 rest=1
13(61) vcb=10 str=2 ps=40 vel=1 rest=0 37(85) vcb=20 str=2 ps=40 vel=1 rest=0
14(62) vcb=10 str=2 ps=40 vel=1 rest=1 38(86) vcb=20 str=2 ps=40 vel=1 rest=1
15(63) vcb=10 str=2 ps=40 vel=2 rest=0 39(87) vcb=20 str=2 ps=40 vel=2 rest=0
16(64) vcb=10 str=2 ps=40 vel=2 rest=1 40(88) vcb=20 str=2 ps=40 vel=2 rest=1
17(65) vcb=10 str=3 ps=20 vel=1 rest=0 41(89) vcb=20 str=3 ps=20 vel=1 rest=0
18(66) vcb=10 str=3 ps=20 vel=1 rest=1 42(90) vcb=20 str=3 ps=20 vel=1 rest=1
19(67) vcb=10 str=3 ps=20 vel=2 rest=0 43(91) vcb=20 str=3 ps=20 vel=2 rest=0
20(68) vcb=10 str=3 ps=20 vel=2 rest=1 44(92) vcb=20 str=3 ps=20 vel=2 rest=1
21(69) vcb=10 str=3 ps=40 vel=1 rest=0 45(93) vcb=20 str=3 ps=40 vel=1 rest=0
22(70) vcb=10 str=3 ps=40 vel=1 rest=1 46(94) vcb=20 str=3 ps=40 vel=1 rest=1
23(71) vcb=10 str=3 ps=40 vel=2 rest=0 47(95) vcb=20 str=3 ps=40 vel=2 rest=0
24(72) vcb=10 str=3 ps=40 vel=2 rest=1 48(96) vcb=20 str=3 ps=40 vel=2 rest=1

The first ID number is for n=5, while inside the parenthesis is for n=10

56

Table A.2: Examined cases for setting 2 (n) of the wa approaches.

ID Examined cases ID Examined cases
1(49) vcb=10 str=1 ps=20 vel=1 rest=0 25(73) vcb=20 str=1 ps=20 vel=1 rest=0
2(50) vcb=10 str=1 ps=20 vel=1 rest=1 26(74) vcb=20 str=1 ps=20 vel=1 rest=1
3(51) vcb=10 str=1 ps=20 vel=2 rest=0 27(75) vcb=20 str=1 ps=20 vel=2 rest=0
4(52) vcb=10 str=1 ps=20 vel=2 rest=1 28(76) vcb=20 str=1 ps=20 vel=2 rest=1
5(53) vcb=10 str=1 ps=40 vel=1 rest=0 29(77) vcb=20 str=1 ps=40 vel=1 rest=0
6(54) vcb=10 str=1 ps=40 vel=1 rest=1 30(78) vcb=20 str=1 ps=40 vel=1 rest=1
7(55) vcb=10 str=1 ps=40 vel=2 rest=0 31(79) vcb=20 str=1 ps=40 vel=2 rest=0
8(56) vcb=10 str=1 ps=40 vel=2 rest=1 32(80) vcb=20 str=1 ps=40 vel=2 rest=1
9(57) vcb=10 str=2 ps=20 vel=1 rest=0 33(81) vcb=20 str=2 ps=20 vel=1 rest=0
10(58) vcb=10 str=2 ps=20 vel=1 rest=1 34(82) vcb=20 str=2 ps=20 vel=1 rest=1
11(59) vcb=10 str=2 ps=20 vel=2 rest=0 35(83) vcb=20 str=2 ps=20 vel=2 rest=0
12(60) vcb=10 str=2 ps=20 vel=2 rest=1 36(84) vcb=20 str=2 ps=20 vel=2 rest=1
13(61) vcb=10 str=2 ps=40 vel=1 rest=0 37(85) vcb=20 str=2 ps=40 vel=1 rest=0
14(62) vcb=10 str=2 ps=40 vel=1 rest=1 38(86) vcb=20 str=2 ps=40 vel=1 rest=1
15(63) vcb=10 str=2 ps=40 vel=2 rest=0 39(87) vcb=20 str=2 ps=40 vel=2 rest=0
16(64) vcb=10 str=2 ps=40 vel=2 rest=1 40(88) vcb=20 str=2 ps=40 vel=2 rest=1
17(65) vcb=10 str=3 ps=20 vel=1 rest=0 41(89) vcb=20 str=3 ps=20 vel=1 rest=0
18(66) vcb=10 str=3 ps=20 vel=1 rest=1 42(90) vcb=20 str=3 ps=20 vel=1 rest=1
19(67) vcb=10 str=3 ps=20 vel=2 rest=0 43(91) vcb=20 str=3 ps=20 vel=2 rest=0
20(68) vcb=10 str=3 ps=20 vel=2 rest=1 44(92) vcb=20 str=3 ps=20 vel=2 rest=1
21(69) vcb=10 str=3 ps=40 vel=1 rest=0 45(93) vcb=20 str=3 ps=40 vel=1 rest=0
22(70) vcb=10 str=3 ps=40 vel=1 rest=1 46(94) vcb=20 str=3 ps=40 vel=1 rest=1
23(71) vcb=10 str=3 ps=40 vel=2 rest=0 47(95) vcb=20 str=3 ps=40 vel=2 rest=0
24(72) vcb=10 str=3 ps=40 vel=2 rest=1 48(96) vcb=20 str=3 ps=40 vel=2 rest=1

The first ID number is for pd=0.6, while inside the parenthesis is for pd=0.8

57

Table A.3: Examined cases for setting 3 (vcb) of the wa approaches.

ID Examined cases ID Examined cases
1(49) n=5 str=1 ps=20 vel=1 rest=0 25(73) n=10 str=1 ps=20 vel=1 rest=0
2(50) n=5 str=1 ps=20 vel=1 rest=1 26(74) n=10 str=1 ps=20 vel=1 rest=1
3(51) n=5 str=1 ps=20 vel=2 rest=0 27(75) n=10 str=1 ps=20 vel=2 rest=0
4(52) n=5 str=1 ps=20 vel=2 rest=1 28(76) n=10 str=1 ps=20 vel=2 rest=1
5(53) n=5 str=1 ps=40 vel=1 rest=0 29(77) n=10 str=1 ps=40 vel=1 rest=0
6(54) n=5 str=1 ps=40 vel=1 rest=1 30(78) n=10 str=1 ps=40 vel=1 rest=1
7(55) n=5 str=1 ps=40 vel=2 rest=0 31(79) n=10 str=1 ps=40 vel=2 rest=0
8(56) n=5 str=1 ps=40 vel=2 rest=1 32(80) n=10 str=1 ps=40 vel=2 rest=1
9(57) n=5 str=2 ps=20 vel=1 rest=0 33(81) n=10 str=2 ps=20 vel=1 rest=0
10(58) n=5 str=2 ps=20 vel=1 rest=1 34(82) n=10 str=2 ps=20 vel=1 rest=1
11(59) n=5 str=2 ps=20 vel=2 rest=0 35(83) n=10 str=2 ps=20 vel=2 rest=0
12(60) n=5 str=2 ps=20 vel=2 rest=1 36(84) n=10 str=2 ps=20 vel=2 rest=1
13(61) n=5 str=2 ps=40 vel=1 rest=0 37(85) n=10 str=2 ps=40 vel=1 rest=0
14(62) n=5 str=2 ps=40 vel=1 rest=1 38(86) n=10 str=2 ps=40 vel=1 rest=1
15(63) n=5 str=2 ps=40 vel=2 rest=0 39(87) n=10 str=2 ps=40 vel=2 rest=0
16(64) n=5 str=2 ps=40 vel=2 rest=1 40(88) n=10 str=2 ps=40 vel=2 rest=1
17(65) n=5 str=3 ps=20 vel=1 rest=0 41(89) n=10 str=3 ps=20 vel=1 rest=0
18(66) n=5 str=3 ps=20 vel=1 rest=1 42(90) n=10 str=3 ps=20 vel=1 rest=1
19(67) n=5 str=3 ps=20 vel=2 rest=0 43(91) n=10 str=3 ps=20 vel=2 rest=0
20(68) n=5 str=3 ps=20 vel=2 rest=1 44(92) n=10 str=3 ps=20 vel=2 rest=1
21(69) n=5 str=3 ps=40 vel=1 rest=0 45(93) n=10 str=3 ps=40 vel=1 rest=0
22(70) n=5 str=3 ps=40 vel=1 rest=1 46(94) n=10 str=3 ps=40 vel=1 rest=1
23(71) n=5 str=3 ps=40 vel=2 rest=0 47(95) n=10 str=3 ps=40 vel=2 rest=0
24(72) n=5 str=3 ps=40 vel=2 rest=1 48(96) n=10 str=3 ps=40 vel=2 rest=1

The first ID number is for pd=0.6, while inside the parenthesis is for pd=0.8

58

Table A.4: Examined cases for setting 4 (str) of the wa approaches.

ID Examined cases ID Examined cases
1(33) n=5 vcb=10 ps=20 vel=1 rest=0 17(49) n=10 vcb=10 ps=20 vel=1 rest=0
2(34) n=5 vcb=10 ps=20 vel=1 rest=1 18(50) n=10 vcb=10 ps=20 vel=1 rest=1
3(35) n=5 vcb=10 ps=20 vel=2 rest=0 19(51) n=10 vcb=10 ps=20 vel=2 rest=0
4(36) n=5 vcb=10 ps=20 vel=2 rest=1 20(52) n=10 vcb=10 ps=20 vel=2 rest=1
5(37) n=5 vcb=10 ps=40 vel=1 rest=0 21(53) n=10 vcb=10 ps=40 vel=1 rest=0
6(38) n=5 vcb=10 ps=40 vel=1 rest=1 22(54) n=10 vcb=10 ps=40 vel=1 rest=1
7(39) n=5 vcb=10 ps=40 vel=2 rest=0 23(55) n=10 vcb=10 ps=40 vel=2 rest=0
8(40) n=5 vcb=10 ps=40 vel=2 rest=1 24(56) n=10 vcb=10 ps=40 vel=2 rest=1
9(41) n=5 vcb=20 ps=20 vel=1 rest=0 25(57) n=10 vcb=20 ps=20 vel=1 rest=0
10(42) n=5 vcb=20 ps=20 vel=1 rest=1 26(58) n=10 vcb=20 ps=20 vel=1 rest=1
11(43) n=5 vcb=20 ps=20 vel=2 rest=0 27(59) n=10 vcb=20 ps=20 vel=2 rest=0
12(44) n=5 vcb=20 ps=20 vel=2 rest=1 28(60) n=10 vcb=20 ps=20 vel=2 rest=1
13(45) n=5 vcb=20 ps=40 vel=1 rest=0 29(61) n=10 vcb=20 ps=40 vel=1 rest=0
14(46) n=5 vcb=20 ps=40 vel=1 rest=1 30(62) n=10 vcb=20 ps=40 vel=1 rest=1
15(47) n=5 vcb=20 ps=40 vel=2 rest=0 31(63) n=10 vcb=20 ps=40 vel=2 rest=0
16(48) n=5 vcb=20 ps=40 vel=2 rest=1 32(64) n=10 vcb=20 ps=40 vel=2 rest=1

The first ID number is for pd=0.6, while inside the parenthesis is for pd=0.8

59

Table A.5: Examined cases for setting 5 (ps) of the wa approaches.

ID Examined cases ID Examined cases
1(49) n=5 vcb=10 str=1 vel=1 rest=0 25(73) n=10 vcb=10 str=1 vel=1 rest=0
2(50) n=5 vcb=10 str=1 vel=1 rest=1 26(74) n=10 vcb=10 str=1 vel=1 rest=1
3(51) n=5 vcb=10 str=1 vel=2 rest=0 27(75) n=10 vcb=10 str=1 vel=2 rest=0
4(52) n=5 vcb=10 str=1 vel=2 rest=1 28(76) n=10 vcb=10 str=1 vel=2 rest=1
5(53) n=5 vcb=10 str=2 vel=1 rest=0 29(77) n=10 vcb=10 str=2 vel=1 rest=0
6(54) n=5 vcb=10 str=2 vel=1 rest=1 30(78) n=10 vcb=10 str=2 vel=1 rest=1
7(55) n=5 vcb=10 str=2 vel=2 rest=0 31(79) n=10 vcb=10 str=2 vel=2 rest=0
8(56) n=5 vcb=10 str=2 vel=2 rest=1 32(80) n=10 vcb=10 str=2 vel=2 rest=1
9(57) n=5 vcb=10 str=3 vel=1 rest=0 33(81) n=10 vcb=10 str=3 vel=1 rest=0
10(58) n=5 vcb=10 str=3 vel=1 rest=1 34(82) n=10 vcb=10 str=3 vel=1 rest=1
11(59) n=5 vcb=10 str=3 vel=2 rest=0 35(83) n=10 vcb=10 str=3 vel=2 rest=0
12(60) n=5 vcb=10 str=3 vel=2 rest=1 36(84) n=10 vcb=10 str=3 vel=2 rest=1
13(61) n=5 vcb=20 str=1 vel=1 rest=0 37(85) n=10 vcb=20 str=1 vel=1 rest=0
14(62) n=5 vcb=20 str=1 vel=1 rest=1 38(86) n=10 vcb=20 str=1 vel=1 rest=1
15(63) n=5 vcb=20 str=1 vel=2 rest=0 39(87) n=10 vcb=20 str=1 vel=2 rest=0
16(64) n=5 vcb=20 str=1 vel=2 rest=1 40(88) n=10 vcb=20 str=1 vel=2 rest=1
17(65) n=5 vcb=20 str=2 vel=1 rest=0 41(89) n=10 vcb=20 str=2 vel=1 rest=0
18(66) n=5 vcb=20 str=2 vel=1 rest=1 42(90) n=10 vcb=20 str=2 vel=1 rest=1
19(67) n=5 vcb=20 str=2 vel=2 rest=0 43(91) n=10 vcb=20 str=2 vel=2 rest=0
20(68) n=5 vcb=20 str=2 vel=2 rest=1 44(92) n=10 vcb=20 str=2 vel=2 rest=1
21(69) n=5 vcb=20 str=3 vel=1 rest=0 45(93) n=10 vcb=20 str=3 vel=1 rest=0
22(70) n=5 vcb=20 str=3 vel=1 rest=1 46(94) n=10 vcb=20 str=3 vel=1 rest=1
23(71) n=5 vcb=20 str=3 vel=2 rest=0 47(95) n=10 vcb=20 str=3 vel=2 rest=0
24(72) n=5 vcb=20 str=3 vel=2 rest=1 48(96) n=10 vcb=20 str=3 vel=2 rest=1

The first ID number is for pd=0.6, while inside the parenthesis is for pd=0.8

60

Table A.6: Examined cases for setting 6 (vel) of the wa approaches.

ID Examined cases ID Examined cases
1(49) n=5 vcb=10 str=1 ps=20 rest=0 25(73) n=10 vcb=10 str=1 ps=20 rest=0
2(50) n=5 vcb=10 str=1 ps=20 rest=1 26(74) n=10 vcb=10 str=1 ps=20 rest=1
3(51) n=5 vcb=10 str=1 ps=40 rest=0 27(75) n=10 vcb=10 str=1 ps=40 rest=0
4(52) n=5 vcb=10 str=1 ps=40 rest=1 28(76) n=10 vcb=10 str=1 ps=40 rest=1
5(53) n=5 vcb=10 str=2 ps=20 rest=0 29(77) n=10 vcb=10 str=2 ps=20 rest=0
6(54) n=5 vcb=10 str=2 ps=20 rest=1 30(78) n=10 vcb=10 str=2 ps=20 rest=1
7(55) n=5 vcb=10 str=2 ps=40 rest=0 31(79) n=10 vcb=10 str=2 ps=40 rest=0
8(56) n=5 vcb=10 str=2 ps=40 rest=1 32(80) n=10 vcb=10 str=2 ps=40 rest=1
9(57) n=5 vcb=10 str=3 ps=20 rest=0 33(81) n=10 vcb=10 str=3 ps=20 rest=0
10(58) n=5 vcb=10 str=3 ps=20 rest=1 34(82) n=10 vcb=10 str=3 ps=20 rest=1
11(59) n=5 vcb=10 str=3 ps=40 rest=0 35(83) n=10 vcb=10 str=3 ps=40 rest=0
12(60) n=5 vcb=10 str=3 ps=40 rest=1 36(84) n=10 vcb=10 str=3 ps=40 rest=1
13(61) n=5 vcb=20 str=1 ps=20 rest=0 37(85) n=10 vcb=20 str=1 ps=20 rest=0
14(62) n=5 vcb=20 str=1 ps=20 rest=1 38(86) n=10 vcb=20 str=1 ps=20 rest=1
15(63) n=5 vcb=20 str=1 ps=40 rest=0 39(87) n=10 vcb=20 str=1 ps=40 rest=0
16(64) n=5 vcb=20 str=1 ps=40 rest=1 40(88) n=10 vcb=20 str=1 ps=40 rest=1
17(65) n=5 vcb=20 str=2 ps=20 rest=0 41(89) n=10 vcb=20 str=2 ps=20 rest=0
18(66) n=5 vcb=20 str=2 ps=20 rest=1 42(90) n=10 vcb=20 str=2 ps=20 rest=1
19(67) n=5 vcb=20 str=2 ps=40 rest=0 43(91) n=10 vcb=20 str=2 ps=40 rest=0
20(68) n=5 vcb=20 str=2 ps=40 rest=1 44(92) n=10 vcb=20 str=2 ps=40 rest=1
21(69) n=5 vcb=20 str=3 ps=20 rest=0 45(93) n=10 vcb=20 str=3 ps=20 rest=0
22(70) n=5 vcb=20 str=3 ps=20 rest=1 46(94) n=10 vcb=20 str=3 ps=20 rest=1
23(71) n=5 vcb=20 str=3 ps=40 rest=0 47(95) n=10 vcb=20 str=3 ps=40 rest=0
24(72) n=5 vcb=20 str=3 ps=40 rest=1 48(96) n=10 vcb=20 str=3 ps=40 rest=1

The first ID number is for pd=0.6, while inside the parenthesis is for pd=0.8

61

Table A.7: Examined cases for setting 7 (rest) of the wa approaches.

ID Examined cases ID Examined cases
1(49) n=5 vcb=10 str=1 ps=20 vel=1 25(73) n=10 vcb=10 str=1 ps=20 vel=1
2(50) n=5 vcb=10 str=1 ps=20 vel=2 26(74) n=10 vcb=10 str=1 ps=20 vel=2
3(51) n=5 vcb=10 str=1 ps=40 vel=1 27(75) n=10 vcb=10 str=1 ps=40 vel=1
4(52) n=5 vcb=10 str=1 ps=40 vel=2 28(76) n=10 vcb=10 str=1 ps=40 vel=2
5(53) n=5 vcb=10 str=2 ps=20 vel=1 29(77) n=10 vcb=10 str=2 ps=20 vel=1
6(54) n=5 vcb=10 str=2 ps=20 vel=2 30(78) n=10 vcb=10 str=2 ps=20 vel=2
7(55) n=5 vcb=10 str=2 ps=40 vel=1 31(79) n=10 vcb=10 str=2 ps=40 vel=1
8(56) n=5 vcb=10 str=2 ps=40 vel=2 32(80) n=10 vcb=10 str=2 ps=40 vel=2
9(57) n=5 vcb=10 str=3 ps=20 vel=1 33(81) n=10 vcb=10 str=3 ps=20 vel=1
10(58) n=5 vcb=10 str=3 ps=20 vel=2 34(82) n=10 vcb=10 str=3 ps=20 vel=2
11(59) n=5 vcb=10 str=3 ps=40 vel=1 35(83) n=10 vcb=10 str=3 ps=40 vel=1
12(60) n=5 vcb=10 str=3 ps=40 vel=2 36(84) n=10 vcb=10 str=3 ps=40 vel=2
13(61) n=5 vcb=20 str=1 ps=20 vel=1 37(85) n=10 vcb=20 str=1 ps=20 vel=1
14(62) n=5 vcb=20 str=1 ps=20 vel=2 38(86) n=10 vcb=20 str=1 ps=20 vel=2
15(63) n=5 vcb=20 str=1 ps=40 vel=1 39(87) n=10 vcb=20 str=1 ps=40 vel=1
16(64) n=5 vcb=20 str=1 ps=40 vel=2 40(88) n=10 vcb=20 str=1 ps=40 vel=2
17(65) n=5 vcb=20 str=2 ps=20 vel=1 41(89) n=10 vcb=20 str=2 ps=20 vel=1
18(66) n=5 vcb=20 str=2 ps=20 vel=2 42(90) n=10 vcb=20 str=2 ps=20 vel=2
19(67) n=5 vcb=20 str=2 ps=40 vel=1 43(91) n=10 vcb=20 str=2 ps=40 vel=1
20(68) n=5 vcb=20 str=2 ps=40 vel=2 44(92) n=10 vcb=20 str=2 ps=40 vel=2
21(69) n=5 vcb=20 str=3 ps=20 vel=1 45(93) n=10 vcb=20 str=3 ps=20 vel=1
22(70) n=5 vcb=20 str=3 ps=20 vel=2 46(94) n=10 vcb=20 str=3 ps=20 vel=2
23(71) n=5 vcb=20 str=3 ps=40 vel=1 47(95) n=10 vcb=20 str=3 ps=40 vel=1
24(72) n=5 vcb=20 str=3 ps=40 vel=2 48(96) n=10 vcb=20 str=3 ps=40 vel=2

The first ID number is for pd=0.6, while inside the parenthesis is for pd=0.8

62

(a
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
6)

(b
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
8)

(c
)
Te
st
in
g
M
SE

(p
d=
0.
6)

(d
)
Te
st
in
g
M
SE

(p
d=
0.
8)

Fi
gu
re
A
.1
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
1
(p
d
)
of
ra
nd
om

w
a

63

(a
)
Tr
ai
ni
ng
M
SE

(n
=5
)

(b
)
Tr
ai
ni
ng
M
SE

(n
=1
0)

(c
)
Te
st
in
g
M
SE

(n
=5
)

(d
)
Te
st
in
g
M
SE

(n
=1
0)

Fi
gu
re
A
.2
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
2
(n
)
of
ra
nd
om

w
a.

64

(a
)
Tr
ai
ni
ng
M
SE

(v
cb
=1
0)

(b
)
Tr
ai
ni
ng
M
SE

(v
cb
=2
0)

(c
)
Te
st
in
g
M
SE

(v
cb
=1
0)

(d
)
Te
st
in
g
M
SE

(v
cb
=2
0)

Fi
gu
re
A
.3
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
3
(v
cb
)
of
ra
nd
om

w
a.

65

(a
)
Tr
ai
ni
ng
M
SE

(s
tr
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(s
tr
=2
)

(c
)
Tr
ai
ni
ng
M
SE

(s
tr
=3
)

(d
)
Te
st
in
g
M
SE

(s
tr
=1
)

(e
)
Te
st
in
g
M
SE

(s
tr
=2
)

(f
)
Te
st
in
g
M
SE

(s
tr
=3
)

Fi
gu
re
A
.4
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
4
(s
tr
)
of
ra
nd
om

w
a.

66

(a
)
Tr
ai
ni
ng
M
SE

(p
s=
20
)

(b
)
Tr
ai
ni
ng
M
SE

(p
s=
40
)

(c
)
Te
st
in
g
M
SE

(p
s=
20
)

(d
)
Te
st
in
g
M
SE

(p
s=
40
)

Fi
gu
re
A
.5
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
5
(p
s)
of
ra
nd
om

w
a.

67

(a
)
Tr
ai
ni
ng
M
SE

(v
el
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(v
el
=2
)

(c
)
Te
st
in
g
M
SE

(v
el
=1
)

(d
)
Te
st
in
g
M
SE

(v
el
=2
)

Fi
gu
re
A
.6
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
6
(v
el
)
of
ra
nd
om

w
a.

68

(a
)
Tr
ai
ni
ng
M
SE

(r
es
t=
0)

(b
)
Tr
ai
ni
ng
M
SE

(r
es
t=
1)

(c
)
Te
st
in
g
M
SE

(r
es
t=
0)

(d
)
Te
st
in
g
M
SE

(r
es
t=
1)

Fi
gu
re
A
.7
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
7
(r
es
t)
of
ra
nd
om

w
a.

69

(a
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
6)

(b
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
8)

(c
)
Te
st
in
g
M
SE

(p
d=
0.
6)

(d
)
Te
st
in
g
M
SE

(p
d=
0.
8)

Fi
gu
re
A
.8
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
1
(p
d
)
of
ba
ng
-b
an
g
w
a.

70

(a
)
Tr
ai
ni
ng
M
SE

(n
=5
)

(b
)
Tr
ai
ni
ng
M
SE

(n
=1
0)

(c
)
Te
st
in
g
M
SE

(n
=5
)

(d
)
Te
st
in
g
M
SE

(n
=1
0)

Fi
gu
re
A
.9
:B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
2
(n
)
of
ba
ng
-b
an
g
w
a.

71

(a
)
Tr
ai
ni
ng
M
SE

(v
cb
=1
0)

(b
)
Tr
ai
ni
ng
M
SE

(v
cb
=2
0)

(c
)
Te
st
in
g
M
SE

(v
cb
=1
0)

(d
)
Te
st
in
g
M
SE

(v
cb
=2
0)

Fi
gu
re
A
.1
0:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
3
(v
cb
)
of
ba
ng
-b
an
g
w
a.

72

(a
)
Tr
ai
ni
ng
M
SE

(s
tr
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(s
tr
=2
)

(c
)
Tr
ai
ni
ng
M
SE

(s
tr
=3
)

(d
)
Te
st
in
g
M
SE

(s
tr
=1
)

(e
)
Te
st
in
g
M
SE

(s
tr
=2
)

(f
)
Te
st
in
g
M
SE

(s
tr
=3
)

Fi
gu
re
A
.1
1:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
4
(s
tr
)
of
ba
ng
-b
an
g
w
a.

73

(a
)
Tr
ai
ni
ng
M
SE

(p
s=
20
)

(b
)
Tr
ai
ni
ng
M
SE

(p
s=
40
)

(c
)
Te
st
in
g
M
SE

(p
s=
20
)

(d
)
Te
st
in
g
M
SE

(p
s=
40
)

Fi
gu
re
A
.1
2:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
5
(p
s)
of
ba
ng
-b
an
g
w
a.

74

(a
)
Tr
ai
ni
ng
M
SE

(v
el
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(v
el
=2
)

(c
)
Te
st
in
g
M
SE

(v
el
=1
)

(d
)
Te
st
in
g
M
SE

(v
el
=2
)

Fi
gu
re
A
.1
3:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
6
(v
el
)
of
ba
ng
-b
an
g
w
a.

75

(a
)
Tr
ai
ni
ng
M
SE

(r
es
t=
0)

(b
)
Tr
ai
ni
ng
M
SE

(r
es
t=
1)

(c
)
Te
st
in
g
M
SE

(r
es
t=
0)

(d
)
Te
st
in
g
M
SE

(r
es
t=
1)

Fi
gu
re
A
.1
4:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
7
(r
es
t)
of
ba
ng
-b
an
g
w
a.

76

(a
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
6)

(b
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
8)

(c
)
Te
st
in
g
M
SE

(p
d=
0.
6)

(d
)
Te
st
in
g
M
SE

(p
d=
0.
8)

Fi
gu
re
A
.1
5:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
1
(p
d
)
of
dy
na
m
ic
w
a.

77

(a
)
Tr
ai
ni
ng
M
SE

(n
=5
)

(b
)
Tr
ai
ni
ng
M
SE

(n
=1
0)

(c
)
Te
st
in
g
M
SE

(n
=5
)

(d
)
Te
st
in
g
M
SE

(n
=1
0)

Fi
gu
re
A
.1
6:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
2
(n
)
of
dy
na
m
ic
w
a.

78

(a
)
Tr
ai
ni
ng
M
SE

(v
cb
=1
0)

(b
)
Tr
ai
ni
ng
M
SE

(v
cb
=2
0)

(c
)
Te
st
in
g
M
SE

(v
cb
=1
0)

(d
)
Te
st
in
g
M
SE

(v
cb
=2
0)

Fi
gu
re
A
.1
7:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
3
(v
cb
)
of
dy
na
m
ic
w
a.

79

(a
)
Tr
ai
ni
ng
M
SE

(s
tr
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(s
tr
=2
)

(c
)
Tr
ai
ni
ng
M
SE

(s
tr
=3
)

(d
)
Te
st
in
g
M
SE

(s
tr
=1
)

(e
)
Te
st
in
g
M
SE

(s
tr
=2
)

(f
)
Te
st
in
g
M
SE

(s
tr
=3
)

Fi
gu
re
A
.1
8:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
4
(s
tr
)
of
dy
na
m
ic
w
a.

80

(a
)
Tr
ai
ni
ng
M
SE

(p
s=
20
)

(b
)
Tr
ai
ni
ng
M
SE

(p
s=
40
)

(c
)
Te
st
in
g
M
SE

(p
s=
20
)

(d
)
Te
st
in
g
M
SE

(p
s=
40
)

Fi
gu
re
A
.1
9:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
5
(p
s)
of
dy
na
m
ic
w
a.

81

(a
)
Tr
ai
ni
ng
M
SE

(v
el
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(v
el
=2
)

(c
)
Te
st
in
g
M
SE

(v
el
=1
)

(d
)
Te
st
in
g
M
SE

(v
el
=2
)

Fi
gu
re
A
.2
0:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
6
(v
el
)
of
dy
na
m
ic
w
a.

82

(a
)
Tr
ai
ni
ng
M
SE

(r
es
t=
0)

(b
)
Tr
ai
ni
ng
M
SE

(r
es
t=
1)

(c
)
Te
st
in
g
M
SE

(r
es
t=
0)

(d
)
Te
st
in
g
M
SE

(r
es
t=
1)

Fi
gu
re
A
.2
1:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
7
(r
es
t)
of
dy
na
m
ic
w
a.

83

A.2 Examined cases for the non‐sorting genetic algorithm

Table A.8: Examined cases for setting 1 (pd) of NSGA-II.

ID Examined cases ID Examined cases
1 n=5 vcb=10 str=1 ps=20 mut=1 25 n=10 vcb=10 str=1 ps=20 mut=1
2 n=5 vcb=10 str=1 ps=20 mut=2 26 n=10 vcb=10 str=1 ps=20 mut=2
3 n=5 vcb=10 str=1 ps=40 mut=1 27 n=10 vcb=10 str=1 ps=40 mut=1
4 n=5 vcb=10 str=1 ps=40 mut=2 28 n=10 vcb=10 str=1 ps=40 mut=2
5 n=5 vcb=10 str=2 ps=20 mut=1 29 n=10 vcb=10 str=2 ps=20 mut=1
6 n=5 vcb=10 str=2 ps=20 mut=2 30 n=10 vcb=10 str=2 ps=20 mut=2
7 n=5 vcb=10 str=2 ps=40 mut=1 31 n=10 vcb=10 str=2 ps=40 mut=1
8 n=5 vcb=10 str=2 ps=40 mut=2 32 n=10 vcb=10 str=2 ps=40 mut=2
9 n=5 vcb=10 str=3 ps=20 mut=1 33 n=10 vcb=10 str=3 ps=20 mut=1
10 n=5 vcb=10 str=3 ps=20 mut=2 34 n=10 vcb=10 str=3 ps=20 mut=2
11 n=5 vcb=10 str=3 ps=40 mut=1 35 n=10 vcb=10 str=3 ps=40 mut=1
12 n=5 vcb=10 str=3 ps=40 mut=2 36 n=10 vcb=10 str=3 ps=40 mut=2
13 n=5 vcb=20 str=1 ps=20 mut=1 37 n=10 vcb=20 str=1 ps=20 mut=1
14 n=5 vcb=20 str=1 ps=20 mut=2 38 n=10 vcb=20 str=1 ps=20 mut=2
15 n=5 vcb=20 str=1 ps=40 mut=1 39 n=10 vcb=20 str=1 ps=40 mut=1
16 n=5 vcb=20 str=1 ps=40 mut=2 40 n=10 vcb=20 str=1 ps=40 mut=2
17 n=5 vcb=20 str=2 ps=20 mut=1 41 n=10 vcb=20 str=2 ps=20 mut=1
18 n=5 vcb=20 str=2 ps=20 mut=2 42 n=10 vcb=20 str=2 ps=20 mut=2
19 n=5 vcb=20 str=2 ps=40 mut=1 43 n=10 vcb=20 str=2 ps=40 mut=1
20 n=5 vcb=20 str=2 ps=40 mut=2 44 n=10 vcb=20 str=2 ps=40 mut=2
21 n=5 vcb=20 str=3 ps=20 mut=1 45 n=10 vcb=20 str=3 ps=20 mut=1
22 n=5 vcb=20 str=3 ps=20 mut=2 46 n=10 vcb=20 str=3 ps=20 mut=2
23 n=5 vcb=20 str=3 ps=40 mut=1 47 n=10 vcb=20 str=3 ps=40 mut=1
24 n=5 vcb=20 str=3 ps=40 mut=2 48 n=10 vcb=20 str=3 ps=40 mut=2

84

(a
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
6)

(b
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
8)

(c
)
Te
st
in
g
M
SE

(p
d=
0.
6)

(d
)
Te
st
in
g
M
SE

(p
d=
0.
8)

Fi
gu
re
A
.2
2:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
1
(p
d
)
of
N
SG
A
-I
I.

85

Table A.9: Examined cases for setting 2 (n) of NSGA-II.

ID Examined cases ID Examined cases
1 pd=0.6 vcb=10 str=1 ps=20 mut=1 25 pd=0.8 vcb=10 str=1 ps=20 mut=1
2 pd=0.6 vcb=10 str=1 ps=20 mut=2 26 pd=0.8 vcb=10 str=1 ps=20 mut=2
3 pd=0.6 vcb=10 str=1 ps=40 mut=1 27 pd=0.8 vcb=10 str=1 ps=40 mut=1
4 pd=0.6 vcb=10 str=1 ps=40 mut=2 28 pd=0.8 vcb=10 str=1 ps=40 mut=2
5 pd=0.6 vcb=10 str=2 ps=20 mut=1 29 pd=0.8 vcb=10 str=2 ps=20 mut=1
6 pd=0.6 vcb=10 str=2 ps=20 mut=2 30 pd=0.8 vcb=10 str=2 ps=20 mut=2
7 pd=0.6 vcb=10 str=2 ps=40 mut=1 31 pd=0.8 vcb=10 str=2 ps=40 mut=1
8 pd=0.6 vcb=10 str=2 ps=40 mut=2 32 pd=0.8 vcb=10 str=2 ps=40 mut=2
9 pd=0.6 vcb=10 str=3 ps=20 mut=1 33 pd=0.8 vcb=10 str=3 ps=20 mut=1
10 pd=0.6 vcb=10 str=3 ps=20 mut=2 34 pd=0.8 vcb=10 str=3 ps=20 mut=2
11 pd=0.6 vcb=10 str=3 ps=40 mut=1 35 pd=0.8 vcb=10 str=3 ps=40 mut=1
12 pd=0.6 vcb=10 str=3 ps=40 mut=2 36 pd=0.8 vcb=10 str=3 ps=40 mut=2
13 pd=0.6 vcb=20 str=1 ps=20 mut=1 37 pd=0.8 vcb=20 str=1 ps=20 mut=1
14 pd=0.6 vcb=20 str=1 ps=20 mut=2 38 pd=0.8 vcb=20 str=1 ps=20 mut=2
15 pd=0.6 vcb=20 str=1 ps=40 mut=1 39 pd=0.8 vcb=20 str=1 ps=40 mut=1
16 pd=0.6 vcb=20 str=1 ps=40 mut=2 40 pd=0.8 vcb=20 str=1 ps=40 mut=2
17 pd=0.6 vcb=20 str=2 ps=20 mut=1 41 pd=0.8 vcb=20 str=2 ps=20 mut=1
18 pd=0.6 vcb=20 str=2 ps=20 mut=2 42 pd=0.8 vcb=20 str=2 ps=20 mut=2
19 pd=0.6 vcb=20 str=2 ps=40 mut=1 43 pd=0.8 vcb=20 str=2 ps=40 mut=1
20 pd=0.6 vcb=20 str=2 ps=40 mut=2 44 pd=0.8 vcb=20 str=2 ps=40 mut=2
21 pd=0.6 vcb=20 str=3 ps=20 mut=1 45 pd=0.8 vcb=20 str=3 ps=20 mut=1
22 pd=0.6 vcb=20 str=3 ps=20 mut=2 46 pd=0.8 vcb=20 str=3 ps=20 mut=2
23 pd=0.6 vcb=20 str=3 ps=40 mut=1 47 pd=0.8 vcb=20 str=3 ps=40 mut=1
24 pd=0.6 vcb=20 str=3 ps=40 mut=2 48 pd=0.8 vcb=20 str=3 ps=40 mut=2

86

(a
)
Tr
ai
ni
ng
M
SE

(n
=5
)

(b
)
Tr
ai
ni
ng
M
SE

(n
=1
0)

(c
)
Te
st
in
g
M
SE

(n
=5
)

(d
)
Te
st
in
g
M
SE

(n
=1
0)

Fi
gu
re
A
.2
3:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
2
(n
)
of
N
SG
A
-I
I.

87

Table A.10: Examined cases for setting 3 (vcb) of NSGA-II.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 str=1 ps=20 mut=1 25 pd=0.8 n=5 str=1 ps=20 mut=1
2 pd=0.6 n=5 str=1 ps=20 mut=2 26 pd=0.8 n=5 str=1 ps=20 mut=2
3 pd=0.6 n=5 str=1 ps=40 mut=1 27 pd=0.8 n=5 str=1 ps=40 mut=1
4 pd=0.6 n=5 str=1 ps=40 mut=2 28 pd=0.8 n=5 str=1 ps=40 mut=2
5 pd=0.6 n=5 str=2 ps=20 mut=1 29 pd=0.8 n=5 str=2 ps=20 mut=1
6 pd=0.6 n=5 str=2 ps=20 mut=2 30 pd=0.8 n=5 str=2 ps=20 mut=2
7 pd=0.6 n=5 str=2 ps=40 mut=1 31 pd=0.8 n=5 str=2 ps=40 mut=1
8 pd=0.6 n=5 str=2 ps=40 mut=2 32 pd=0.8 n=5 str=2 ps=40 mut=2
9 pd=0.6 n=5 str=3 ps=20 mut=1 33 pd=0.8 n=5 str=3 ps=20 mut=1
10 pd=0.6 n=5 str=3 ps=20 mut=2 34 pd=0.8 n=5 str=3 ps=20 mut=2
11 pd=0.6 n=5 str=3 ps=40 mut=1 35 pd=0.8 n=5 str=3 ps=40 mut=1
12 pd=0.6 n=5 str=3 ps=40 mut=2 36 pd=0.8 n=5 str=3 ps=40 mut=2
13 pd=0.6 n=10 str=1 ps=20 mut=1 37 pd=0.8 n=10 str=1 ps=20 mut=1
14 pd=0.6 n=10 str=1 ps=20 mut=2 38 pd=0.8 n=10 str=1 ps=20 mut=2
15 pd=0.6 n=10 str=1 ps=40 mut=1 39 pd=0.8 n=10 str=1 ps=40 mut=1
16 pd=0.6 n=10 str=1 ps=40 mut=2 40 pd=0.8 n=10 str=1 ps=40 mut=2
17 pd=0.6 n=10 str=2 ps=20 mut=1 41 pd=0.8 n=10 str=2 ps=20 mut=1
18 pd=0.6 n=10 str=2 ps=20 mut=2 42 pd=0.8 n=10 str=2 ps=20 mut=2
19 pd=0.6 n=10 str=2 ps=40 mut=1 43 pd=0.8 n=10 str=2 ps=40 mut=1
20 pd=0.6 n=10 str=2 ps=40 mut=2 44 pd=0.8 n=10 str=2 ps=40 mut=2
21 pd=0.6 n=10 str=3 ps=20 mut=1 45 pd=0.8 n=10 str=3 ps=20 mut=1
22 pd=0.6 n=10 str=3 ps=20 mut=2 46 pd=0.8 n=10 str=3 ps=20 mut=2
23 pd=0.6 n=10 str=3 ps=40 mut=1 47 pd=0.8 n=10 str=3 ps=40 mut=1
24 pd=0.6 n=10 str=3 ps=40 mut=2 48 pd=0.8 n=10 str=3 ps=40 mut=2

88

(a
)
Tr
ai
ni
ng
M
SE

(v
cb
=1
0)

(b
)
Tr
ai
ni
ng
M
SE

(v
cb
=2
0)

(c
)
Te
st
in
g
M
SE

(v
cb
=1
0)

(d
)
Te
st
in
g
M
SE

(v
cb
=2
0)

Fi
gu
re
A
.2
4:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
3
(v
cb
)
of
N
SG
A
-I
I.

89

Table A.11: Examined cases for setting 4 (str) of NSGA-II.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 vcb=10 ps=20 mut=1 17 pd=0.8 n=5 vcb=10 ps=20 mut=1
2 pd=0.6 n=5 vcb=10 ps=20 mut=2 18 pd=0.8 n=5 vcb=10 ps=20 mut=2
3 pd=0.6 n=5 vcb=10 ps=40 mut=1 19 pd=0.8 n=5 vcb=10 ps=40 mut=1
4 pd=0.6 n=5 vcb=10 ps=40 mut=2 20 pd=0.8 n=5 vcb=10 ps=40 mut=2
5 pd=0.6 n=5 vcb=20 ps=20 mut=1 21 pd=0.8 n=5 vcb=20 ps=20 mut=1
6 pd=0.6 n=5 vcb=20 ps=20 mut=2 22 pd=0.8 n=5 vcb=20 ps=20 mut=2
7 pd=0.6 n=5 vcb=20 ps=40 mut=1 23 pd=0.8 n=5 vcb=20 ps=40 mut=1
8 pd=0.6 n=5 vcb=20 ps=40 mut=2 24 pd=0.8 n=5 vcb=20 ps=40 mut=2
9 pd=0.6 n=5 vcb=20 ps=40 mut=2 25 pd=0.8 n=5 vcb=20 ps=40 mut=2
10 pd=0.6 n=5 vcb=20 ps=40 mut=2 26 pd=0.8 n=5 vcb=20 ps=40 mut=2
11 pd=0.6 n=10 vcb=10 ps=40 mut=1 27 pd=0.8 n=10 vcb=10 ps=40 mut=1
12 pd=0.6 n=10 vcb=10 ps=40 mut=2 28 pd=0.8 n=10 vcb=10 ps=40 mut=2
13 pd=0.6 n=10 vcb=20 ps=20 mut=1 29 pd=0.8 n=10 vcb=20 ps=20 mut=1
14 pd=0.6 n=10 vcb=20 ps=20 mut=2 30 pd=0.8 n=10 vcb=20 ps=20 mut=2
15 pd=0.6 n=10 vcb=20 ps=40 mut=1 31 pd=0.8 n=10 vcb=20 ps=40 mut=1
16 pd=0.6 n=10 vcb=20 ps=40 mut=2 32 pd=0.8 n=10 vcb=20 ps=40 mut=2

90

(a
)
Tr
ai
ni
ng
M
SE

(s
tr
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(s
tr
=2
)

(c
)
Tr
ai
ni
ng
M
SE

(s
tr
=3
)

(d
)
Te
st
in
g
M
SE

(s
tr
=1
)

(e
)
Te
st
in
g
M
SE

(s
tr
=2
)

(f
)
Te
st
in
g
M
SE

(s
tr
=3
)

Fi
gu
re
A
.2
5:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
4
(s
tr
)
of
N
SG
A
-I
I.

91

Table A.12: Examined cases for setting 5 (ps) of NSGA-II.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 vcb=10 str=1 mut=1 25 pd=0.8 n=5 vcb=10 str=1 mut=1
2 pd=0.6 n=5 vcb=10 str=1 mut=2 26 pd=0.8 n=5 vcb=10 str=1 mut=2
3 pd=0.6 n=5 vcb=10 str=2 mut=1 27 pd=0.8 n=5 vcb=10 str=2 mut=1
4 pd=0.6 n=5 vcb=10 str=2 mut=2 28 pd=0.8 n=5 vcb=10 str=2 mut=2
5 pd=0.6 n=5 vcb=10 str=3 mut=1 29 pd=0.8 n=5 vcb=10 str=3 mut=1
6 pd=0.6 n=5 vcb=10 str=3 mut=2 30 pd=0.8 n=5 vcb=10 str=3 mut=2
7 pd=0.6 n=5 vcb=20 str=1 mut=1 31 pd=0.8 n=5 vcb=20 str=1 mut=1
8 pd=0.6 n=5 vcb=20 str=1 mut=2 32 pd=0.8 n=5 vcb=20 str=1 mut=2
9 pd=0.6 n=5 vcb=20 str=2 mut=1 33 pd=0.8 n=5 vcb=20 str=2 mut=1
10 pd=0.6 n=5 vcb=20 str=2 mut=2 34 pd=0.8 n=5 vcb=20 str=2 mut=2
11 pd=0.6 n=5 vcb=20 str=3 mut=1 35 pd=0.8 n=5 vcb=20 str=3 mut=1
12 pd=0.6 n=5 vcb=20 str=3 mut=2 36 pd=0.8 n=5 vcb=20 str=3 mut=2
13 pd=0.6 n=10 vcb=10 str=1 mut=1 37 pd=0.8 n=10 vcb=10 str=1 mut=1
14 pd=0.6 n=10 vcb=10 str=1 mut=2 38 pd=0.8 n=10 vcb=10 str=1 mut=2
15 pd=0.6 n=10 vcb=10 str=2 mut=1 39 pd=0.8 n=10 vcb=10 str=2 mut=1
16 pd=0.6 n=10 vcb=10 str=2 mut=2 40 pd=0.8 n=10 vcb=10 str=2 mut=2
17 pd=0.6 n=10 vcb=10 str=3 mut=1 41 pd=0.8 n=10 vcb=10 str=3 mut=1
18 pd=0.6 n=10 vcb=10 str=3 mut=2 42 pd=0.8 n=10 vcb=10 str=3 mut=2
19 pd=0.6 n=10 vcb=20 str=1 mut=1 43 pd=0.8 n=10 vcb=20 str=1 mut=1
20 pd=0.6 n=10 vcb=20 str=1 mut=2 44 pd=0.8 n=10 vcb=20 str=1 mut=2
21 pd=0.6 n=10 vcb=20 str=2 mut=1 45 pd=0.8 n=10 vcb=20 str=2 mut=1
22 pd=0.6 n=10 vcb=20 str=2 mut=2 46 pd=0.8 n=10 vcb=20 str=2 mut=2
23 pd=0.6 n=10 vcb=20 str=3 mut=1 47 pd=0.8 n=10 vcb=20 str=3 mut=1
24 pd=0.6 n=10 vcb=20 str=3 mut=2 48 pd=0.8 n=10 vcb=20 str=3 mut=2

92

(a
)
Tr
ai
ni
ng
M
SE

(p
s=
20
)

(b
)
Tr
ai
ni
ng
M
SE

(p
s=
40
)

(c
)
Te
st
in
g
M
SE

(p
s=
20
)

(d
)
Te
st
in
g
M
SE

(p
s=
40
)

Fi
gu
re
A
.2
6:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
5
(p
s)
of
N
SG
A
-I
I.

93

Table A.13: Examined cases for setting 6 (mut) of NSGA-II.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 vcb=10 str=1 ps=20 25 pd=0.8 n=5 vcb=10 str=1 ps=20
2 pd=0.6 n=5 vcb=10 str=1 ps=40 26 pd=0.8 n=5 vcb=10 str=1 ps=40
3 pd=0.6 n=5 vcb=10 str=2 ps=20 27 pd=0.8 n=5 vcb=10 str=2 ps=20
4 pd=0.6 n=5 vcb=10 str=2 ps=40 28 pd=0.8 n=5 vcb=10 str=2 ps=40
5 pd=0.6 n=5 vcb=10 str=3 ps=20 29 pd=0.8 n=5 vcb=10 str=3 ps=20
6 pd=0.6 n=5 vcb=10 str=3 ps=40 30 pd=0.8 n=5 vcb=10 str=3 ps=40
7 pd=0.6 n=5 vcb=20 str=1 ps=20 31 pd=0.8 n=5 vcb=20 str=1 ps=20
8 pd=0.6 n=5 vcb=20 str=1 ps=40 32 pd=0.8 n=5 vcb=20 str=1 ps=40
9 pd=0.6 n=5 vcb=20 str=2 ps=20 33 pd=0.8 n=5 vcb=20 str=2 ps=20
10 pd=0.6 n=5 vcb=20 str=2 ps=40 34 pd=0.8 n=5 vcb=20 str=2 ps=40
11 pd=0.6 n=5 vcb=20 str=3 ps=20 35 pd=0.8 n=5 vcb=20 str=3 ps=20
12 pd=0.6 n=5 vcb=20 str=3 ps=40 36 pd=0.8 n=5 vcb=20 str=3 ps=40
13 pd=0.6 n=10 vcb=10 str=1 ps=20 37 pd=0.8 n=10 vcb=10 str=1 ps=20
14 pd=0.6 n=10 vcb=10 str=1 ps=40 38 pd=0.8 n=10 vcb=10 str=1 ps=40
15 pd=0.6 n=10 vcb=10 str=2 ps=20 39 pd=0.8 n=10 vcb=10 str=2 ps=20
16 pd=0.6 n=10 vcb=10 str=2 ps=40 40 pd=0.8 n=10 vcb=10 str=2 ps=40
17 pd=0.6 n=10 vcb=10 str=3 ps=20 41 pd=0.8 n=10 vcb=10 str=3 ps=20
18 pd=0.6 n=10 vcb=10 str=3 ps=40 42 pd=0.8 n=10 vcb=10 str=3 ps=40
19 pd=0.6 n=10 vcb=20 str=1 ps=20 43 pd=0.8 n=10 vcb=20 str=1 ps=20
20 pd=0.6 n=10 vcb=20 str=1 ps=40 44 pd=0.8 n=10 vcb=20 str=1 ps=40
21 pd=0.6 n=10 vcb=20 str=2 ps=20 45 pd=0.8 n=10 vcb=20 str=2 ps=20
22 pd=0.6 n=10 vcb=20 str=2 ps=40 46 pd=0.8 n=10 vcb=20 str=2 ps=40
23 pd=0.6 n=10 vcb=20 str=3 ps=20 47 pd=0.8 n=10 vcb=20 str=3 ps=20
24 pd=0.6 n=10 vcb=20 str=3 ps=40 48 pd=0.8 n=10 vcb=20 str=3 ps=40

94

(a
)
Tr
ai
ni
ng
M
SE

(m
ut
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(m
ut
=2
)

(c
)
Te
st
in
g
M
SE

(m
ut
=1
)

(d
)
Te
st
in
g
M
SE

(m
ut
=2
)

Fi
gu
re
A
.2
7:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
6
(m

u
t)
of
N
SG
A
-I
I.

95

A.3 Examined cases for the multi‐objective particle swarm opti‐

mization algorithm

Table A.14: Examined cases for setting 1 (pd) of MOPSO.

ID Examined cases ID Examined cases
1 n=5 vcb=10 str=1 ps=20 vel=1 25 n=10 vcb=10 str=1 ps=20 vel=1
2 n=5 vcb=10 str=1 ps=20 vel=2 26 n=10 vcb=10 str=1 ps=20 vel=2
3 n=5 vcb=10 str=1 ps=40 vel=1 27 n=10 vcb=10 str=1 ps=40 vel=1
4 n=5 vcb=10 str=1 ps=40 vel=2 28 n=10 vcb=10 str=1 ps=40 vel=2
5 n=5 vcb=10 str=2 ps=20 vel=1 29 n=10 vcb=10 str=2 ps=20 vel=1
6 n=5 vcb=10 str=2 ps=20 vel=2 30 n=10 vcb=10 str=2 ps=20 vel=2
7 n=5 vcb=10 str=2 ps=40 vel=1 31 n=10 vcb=10 str=2 ps=40 vel=1
8 n=5 vcb=10 str=2 ps=40 vel=2 32 n=10 vcb=10 str=2 ps=40 vel=2
9 n=5 vcb=10 str=3 ps=20 vel=1 33 n=10 vcb=10 str=3 ps=20 vel=1
10 n=5 vcb=10 str=3 ps=20 vel=2 34 n=10 vcb=10 str=3 ps=20 vel=2
11 n=5 vcb=10 str=3 ps=40 vel=1 35 n=10 vcb=10 str=3 ps=40 vel=1
12 n=5 vcb=10 str=3 ps=40 vel=2 36 n=10 vcb=10 str=3 ps=40 vel=2
13 n=5 vcb=20 str=1 ps=20 vel=1 37 n=10 vcb=20 str=1 ps=20 vel=1
14 n=5 vcb=20 str=1 ps=20 vel=2 38 n=10 vcb=20 str=1 ps=20 vel=2
15 n=5 vcb=20 str=1 ps=40 vel=1 39 n=10 vcb=20 str=1 ps=40 vel=1
16 n=5 vcb=20 str=1 ps=40 vel=2 40 n=10 vcb=20 str=1 ps=40 vel=2
17 n=5 vcb=20 str=2 ps=20 vel=1 41 n=10 vcb=20 str=2 ps=20 vel=1
18 n=5 vcb=20 str=2 ps=20 vel=2 42 n=10 vcb=20 str=2 ps=20 vel=2
19 n=5 vcb=20 str=2 ps=40 vel=1 43 n=10 vcb=20 str=2 ps=40 vel=1
20 n=5 vcb=20 str=2 ps=40 vel=2 44 n=10 vcb=20 str=2 ps=40 vel=2
21 n=5 vcb=20 str=3 ps=20 vel=1 45 n=10 vcb=20 str=3 ps=20 vel=1
22 n=5 vcb=20 str=3 ps=20 vel=2 46 n=10 vcb=20 str=3 ps=20 vel=2
23 n=5 vcb=20 str=3 ps=40 vel=1 47 n=10 vcb=20 str=3 ps=40 vel=1
24 n=5 vcb=20 str=3 ps=40 vel=2 48 n=10 vcb=20 str=3 ps=40 vel=2

96

(a
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
6)

(b
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
8)

(c
)
Te
st
in
g
M
SE

(p
d=
0.
6)

(d
)
Te
st
in
g
M
SE

(p
d=
0.
8)

Fi
gu
re
A
.2
8:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
1
(p
d
)
of
M
O
PS
O
.

97

Table A.15: Examined cases for setting 2 (n) of MOPSO.

ID Examined cases ID Examined cases
1 pd=0.6 vcb=10 str=1 ps=20 vel=1 25 pd=0.8 vcb=10 str=1 ps=20 vel=1
2 pd=0.6 vcb=10 str=1 ps=20 vel=2 26 pd=0.8 vcb=10 str=1 ps=20 vel=2
3 pd=0.6 vcb=10 str=1 ps=40 vel=1 27 pd=0.8 vcb=10 str=1 ps=40 vel=1
4 pd=0.6 vcb=10 str=1 ps=40 vel=2 28 pd=0.8 vcb=10 str=1 ps=40 vel=2
5 pd=0.6 vcb=10 str=2 ps=20 vel=1 29 pd=0.8 vcb=10 str=2 ps=20 vel=1
6 pd=0.6 vcb=10 str=2 ps=20 vel=2 30 pd=0.8 vcb=10 str=2 ps=20 vel=2
7 pd=0.6 vcb=10 str=2 ps=40 vel=1 31 pd=0.8 vcb=10 str=2 ps=40 vel=1
8 pd=0.6 vcb=10 str=2 ps=40 vel=2 32 pd=0.8 vcb=10 str=2 ps=40 vel=2
9 pd=0.6 vcb=10 str=3 ps=20 vel=1 33 pd=0.8 vcb=10 str=3 ps=20 vel=1
10 pd=0.6 vcb=10 str=3 ps=20 vel=2 34 pd=0.8 vcb=10 str=3 ps=20 vel=2
11 pd=0.6 vcb=10 str=3 ps=40 vel=1 35 pd=0.8 vcb=10 str=3 ps=40 vel=1
12 pd=0.6 vcb=10 str=3 ps=40 vel=2 36 pd=0.8 vcb=10 str=3 ps=40 vel=2
13 pd=0.6 vcb=20 str=1 ps=20 vel=1 37 pd=0.8 vcb=20 str=1 ps=20 vel=1
14 pd=0.6 vcb=20 str=1 ps=20 vel=2 38 pd=0.8 vcb=20 str=1 ps=20 vel=2
15 pd=0.6 vcb=20 str=1 ps=40 vel=1 39 pd=0.8 vcb=20 str=1 ps=40 vel=1
16 pd=0.6 vcb=20 str=1 ps=40 vel=2 40 pd=0.8 vcb=20 str=1 ps=40 vel=2
17 pd=0.6 vcb=20 str=2 ps=20 vel=1 41 pd=0.8 vcb=20 str=2 ps=20 vel=1
18 pd=0.6 vcb=20 str=2 ps=20 vel=2 42 pd=0.8 vcb=20 str=2 ps=20 vel=2
19 pd=0.6 vcb=20 str=2 ps=40 vel=1 43 pd=0.8 vcb=20 str=2 ps=40 vel=1
20 pd=0.6 vcb=20 str=2 ps=40 vel=2 44 pd=0.8 vcb=20 str=2 ps=40 vel=2
21 pd=0.6 vcb=20 str=3 ps=20 vel=1 45 pd=0.8 vcb=20 str=3 ps=20 vel=1
22 pd=0.6 vcb=20 str=3 ps=20 vel=2 46 pd=0.8 vcb=20 str=3 ps=20 vel=2
23 pd=0.6 vcb=20 str=3 ps=40 vel=1 47 pd=0.8 vcb=20 str=3 ps=40 vel=1
24 pd=0.6 vcb=20 str=3 ps=40 vel=2 48 pd=0.8 vcb=20 str=3 ps=40 vel=2

98

(a
)
Tr
ai
ni
ng
M
SE

(n
=5
)

(b
)
Tr
ai
ni
ng
M
SE

(n
=1
0)

(c
)
Te
st
in
g
M
SE

(n
=5
)

(d
)
Te
st
in
g
M
SE

(n
=1
0)

Fi
gu
re
A
.2
9:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
2
(n
)
of
M
O
PS
O
.

99

Table A.16: Examined cases for setting 3 (vcb) of MOPSO.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 str=1 ps=20 vel=1 25 pd=0.8 n=5 str=1 ps=20 vel=1
2 pd=0.6 n=5 str=1 ps=20 vel=2 26 pd=0.8 n=5 str=1 ps=20 vel=2
3 pd=0.6 n=5 str=1 ps=40 vel=1 27 pd=0.8 n=5 str=1 ps=40 vel=1
4 pd=0.6 n=5 str=1 ps=40 vel=2 28 pd=0.8 n=5 str=1 ps=40 vel=2
5 pd=0.6 n=5 str=2 ps=20 vel=1 29 pd=0.8 n=5 str=2 ps=20 vel=1
6 pd=0.6 n=5 str=2 ps=20 vel=2 30 pd=0.8 n=5 str=2 ps=20 vel=2
7 pd=0.6 n=5 str=2 ps=40 vel=1 31 pd=0.8 n=5 str=2 ps=40 vel=1
8 pd=0.6 n=5 str=2 ps=40 vel=2 32 pd=0.8 n=5 str=2 ps=40 vel=2
9 pd=0.6 n=5 str=3 ps=20 vel=1 33 pd=0.8 n=5 str=3 ps=20 vel=1
10 pd=0.6 n=5 str=3 ps=20 vel=2 34 pd=0.8 n=5 str=3 ps=20 vel=2
11 pd=0.6 n=5 str=3 ps=40 vel=1 35 pd=0.8 n=5 str=3 ps=40 vel=1
12 pd=0.6 n=5 str=3 ps=40 vel=2 36 pd=0.8 n=5 str=3 ps=40 vel=2
13 pd=0.6 n=10 str=1 ps=20 vel=1 37 pd=0.8 n=10 str=1 ps=20 vel=1
14 pd=0.6 n=10 str=1 ps=20 vel=2 38 pd=0.8 n=10 str=1 ps=20 vel=2
15 pd=0.6 n=10 str=1 ps=40 vel=1 39 pd=0.8 n=10 str=1 ps=40 vel=1
16 pd=0.6 n=10 str=1 ps=40 vel=2 40 pd=0.8 n=10 str=1 ps=40 vel=2
17 pd=0.6 n=10 str=2 ps=20 vel=1 41 pd=0.8 n=10 str=2 ps=20 vel=1
18 pd=0.6 n=10 str=2 ps=20 vel=2 42 pd=0.8 n=10 str=2 ps=20 vel=2
19 pd=0.6 n=10 str=2 ps=40 vel=1 43 pd=0.8 n=10 str=2 ps=40 vel=1
20 pd=0.6 n=10 str=2 ps=40 vel=2 44 pd=0.8 n=10 str=2 ps=40 vel=2
21 pd=0.6 n=10 str=3 ps=20 vel=1 45 pd=0.8 n=10 str=3 ps=20 vel=1
22 pd=0.6 n=10 str=3 ps=20 vel=2 46 pd=0.8 n=10 str=3 ps=20 vel=2
23 pd=0.6 n=10 str=3 ps=40 vel=1 47 pd=0.8 n=10 str=3 ps=40 vel=1
24 pd=0.6 n=10 str=3 ps=40 vel=2 48 pd=0.8 n=10 str=3 ps=40 vel=2

100

(a
)
Tr
ai
ni
ng
M
SE

(v
cb
=1
0)

(b
)
Tr
ai
ni
ng
M
SE

(v
cb
=2
0)

(c
)
Te
st
in
g
M
SE

(v
cb
=1
0)

(d
)
Te
st
in
g
M
SE

(v
cb
=2
0)

Fi
gu
re
A
.3
0:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
3
(v
cb
)
of
M
O
PS
O
.

101

Table A.17: Examined cases for setting 4 (str) of MOPSO.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 vcb=10 ps=20 vel=1 17 pd=0.8 n=5 vcb=10 ps=20 vel=1
2 pd=0.6 n=5 vcb=10 ps=20 vel=2 18 pd=0.8 n=5 vcb=10 ps=20 vel=2
3 pd=0.6 n=5 vcb=10 ps=40 vel=1 19 pd=0.8 n=5 vcb=10 ps=40 vel=1
4 pd=0.6 n=5 vcb=10 ps=40 vel=2 20 pd=0.8 n=5 vcb=10 ps=40 vel=2
5 pd=0.6 n=5 vcb=20 ps=20 vel=1 21 pd=0.8 n=5 vcb=20 ps=20 vel=1
6 pd=0.6 n=5 vcb=20 ps=20 vel=2 22 pd=0.8 n=5 vcb=20 ps=20 vel=2
7 pd=0.6 n=5 vcb=20 ps=40 vel=1 23 pd=0.8 n=5 vcb=20 ps=40 vel=1
8 pd=0.6 n=5 vcb=20 ps=40 vel=2 24 pd=0.8 n=5 vcb=20 ps=40 vel=2
9 pd=0.6 n=5 vcb=20 ps=40 vel=2 25 pd=0.8 n=5 vcb=20 ps=40 vel=2
10 pd=0.6 n=5 vcb=20 ps=40 vel=2 26 pd=0.8 n=5 vcb=20 ps=40 vel=2
11 pd=0.6 n=10 vcb=10 ps=40 vel=1 27 pd=0.8 n=10 vcb=10 ps=40 vel=1
12 pd=0.6 n=10 vcb=10 ps=40 vel=2 28 pd=0.8 n=10 vcb=10 ps=40 vel=2
13 pd=0.6 n=10 vcb=20 ps=20 vel=1 29 pd=0.8 n=10 vcb=20 ps=20 vel=1
14 pd=0.6 n=10 vcb=20 ps=20 vel=2 30 pd=0.8 n=10 vcb=20 ps=20 vel=2
15 pd=0.6 n=10 vcb=20 ps=40 vel=1 31 pd=0.8 n=10 vcb=20 ps=40 vel=1
16 pd=0.6 n=10 vcb=20 ps=40 vel=2 32 pd=0.8 n=10 vcb=20 ps=40 vel=2

102

(a
)
Tr
ai
ni
ng
M
SE

(s
tr
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(s
tr
=2
)

(c
)
Tr
ai
ni
ng
M
SE

(s
tr
=3
)

(d
)
Te
st
in
g
M
SE

(s
tr
=1
)

(e
)
Te
st
in
g
M
SE

(s
tr
=2
)

(f
)
Te
st
in
g
M
SE

(s
tr
=3
)

Fi
gu
re
A
.3
1:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
4
(s
tr
)
of
M
O
PS
O
.

103

Table A.18: Examined cases for setting 5 (ps) of MOPSO.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 vcb=10 str=1 vel=1 25 pd=0.8 n=5 vcb=10 str=1 vel=1
2 pd=0.6 n=5 vcb=10 str=1 vel=2 26 pd=0.8 n=5 vcb=10 str=1 vel=2
3 pd=0.6 n=5 vcb=10 str=2 vel=1 27 pd=0.8 n=5 vcb=10 str=2 vel=1
4 pd=0.6 n=5 vcb=10 str=2 vel=2 28 pd=0.8 n=5 vcb=10 str=2 vel=2
5 pd=0.6 n=5 vcb=10 str=3 vel=1 29 pd=0.8 n=5 vcb=10 str=3 vel=1
6 pd=0.6 n=5 vcb=10 str=3 vel=2 30 pd=0.8 n=5 vcb=10 str=3 vel=2
7 pd=0.6 n=5 vcb=20 str=1 vel=1 31 pd=0.8 n=5 vcb=20 str=1 vel=1
8 pd=0.6 n=5 vcb=20 str=1 vel=2 32 pd=0.8 n=5 vcb=20 str=1 vel=2
9 pd=0.6 n=5 vcb=20 str=2 vel=1 33 pd=0.8 n=5 vcb=20 str=2 vel=1
10 pd=0.6 n=5 vcb=20 str=2 vel=2 34 pd=0.8 n=5 vcb=20 str=2 vel=2
11 pd=0.6 n=5 vcb=20 str=3 vel=1 35 pd=0.8 n=5 vcb=20 str=3 vel=1
12 pd=0.6 n=5 vcb=20 str=3 vel=2 36 pd=0.8 n=5 vcb=20 str=3 vel=2
13 pd=0.6 n=10 vcb=10 str=1 vel=1 37 pd=0.8 n=10 vcb=10 str=1 vel=1
14 pd=0.6 n=10 vcb=10 str=1 vel=2 38 pd=0.8 n=10 vcb=10 str=1 vel=2
15 pd=0.6 n=10 vcb=10 str=2 vel=1 39 pd=0.8 n=10 vcb=10 str=2 vel=1
16 pd=0.6 n=10 vcb=10 str=2 vel=2 40 pd=0.8 n=10 vcb=10 str=2 vel=2
17 pd=0.6 n=10 vcb=10 str=3 vel=1 41 pd=0.8 n=10 vcb=10 str=3 vel=1
18 pd=0.6 n=10 vcb=10 str=3 vel=2 42 pd=0.8 n=10 vcb=10 str=3 vel=2
19 pd=0.6 n=10 vcb=20 str=1 vel=1 43 pd=0.8 n=10 vcb=20 str=1 vel=1
20 pd=0.6 n=10 vcb=20 str=1 vel=2 44 pd=0.8 n=10 vcb=20 str=1 vel=2
21 pd=0.6 n=10 vcb=20 str=2 vel=1 45 pd=0.8 n=10 vcb=20 str=2 vel=1
22 pd=0.6 n=10 vcb=20 str=2 vel=2 46 pd=0.8 n=10 vcb=20 str=2 vel=2
23 pd=0.6 n=10 vcb=20 str=3 vel=1 47 pd=0.8 n=10 vcb=20 str=3 vel=1
24 pd=0.6 n=10 vcb=20 str=3 vel=2 48 pd=0.8 n=10 vcb=20 str=3 vel=2

104

(a
)
Tr
ai
ni
ng
M
SE

(p
s=
20
)

(b
)
Tr
ai
ni
ng
M
SE

(p
s=
40
)

(c
)
Te
st
in
g
M
SE

(p
s=
20
)

(d
)
Te
st
in
g
M
SE

(p
s=
40
)

Fi
gu
re
A
.3
2:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
5
(p
s)
of
M
O
PS
O
.

105

Table A.19: Examined cases for setting 6 (vel) of MOPSO.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 vcb=10 str=1 ps=20 25 pd=0.8 n=5 vcb=10 str=1 ps=20
2 pd=0.6 n=5 vcb=10 str=1 ps=40 26 pd=0.8 n=5 vcb=10 str=1 ps=40
3 pd=0.6 n=5 vcb=10 str=2 ps=20 27 pd=0.8 n=5 vcb=10 str=2 ps=20
4 pd=0.6 n=5 vcb=10 str=2 ps=40 28 pd=0.8 n=5 vcb=10 str=2 ps=40
5 pd=0.6 n=5 vcb=10 str=3 ps=20 29 pd=0.8 n=5 vcb=10 str=3 ps=20
6 pd=0.6 n=5 vcb=10 str=3 ps=40 30 pd=0.8 n=5 vcb=10 str=3 ps=40
7 pd=0.6 n=5 vcb=20 str=1 ps=20 31 pd=0.8 n=5 vcb=20 str=1 ps=20
8 pd=0.6 n=5 vcb=20 str=1 ps=40 32 pd=0.8 n=5 vcb=20 str=1 ps=40
9 pd=0.6 n=5 vcb=20 str=2 ps=20 33 pd=0.8 n=5 vcb=20 str=2 ps=20
10 pd=0.6 n=5 vcb=20 str=2 ps=40 34 pd=0.8 n=5 vcb=20 str=2 ps=40
11 pd=0.6 n=5 vcb=20 str=3 ps=20 35 pd=0.8 n=5 vcb=20 str=3 ps=20
12 pd=0.6 n=5 vcb=20 str=3 ps=40 36 pd=0.8 n=5 vcb=20 str=3 ps=40
13 pd=0.6 n=10 vcb=10 str=1 ps=20 37 pd=0.8 n=10 vcb=10 str=1 ps=20
14 pd=0.6 n=10 vcb=10 str=1 ps=40 38 pd=0.8 n=10 vcb=10 str=1 ps=40
15 pd=0.6 n=10 vcb=10 str=2 ps=20 39 pd=0.8 n=10 vcb=10 str=2 ps=20
16 pd=0.6 n=10 vcb=10 str=2 ps=40 40 pd=0.8 n=10 vcb=10 str=2 ps=40
17 pd=0.6 n=10 vcb=10 str=3 ps=20 41 pd=0.8 n=10 vcb=10 str=3 ps=20
18 pd=0.6 n=10 vcb=10 str=3 ps=40 42 pd=0.8 n=10 vcb=10 str=3 ps=40
19 pd=0.6 n=10 vcb=20 str=1 ps=20 43 pd=0.8 n=10 vcb=20 str=1 ps=20
20 pd=0.6 n=10 vcb=20 str=1 ps=40 44 pd=0.8 n=10 vcb=20 str=1 ps=40
21 pd=0.6 n=10 vcb=20 str=2 ps=20 45 pd=0.8 n=10 vcb=20 str=2 ps=20
22 pd=0.6 n=10 vcb=20 str=2 ps=40 46 pd=0.8 n=10 vcb=20 str=2 ps=40
23 pd=0.6 n=10 vcb=20 str=3 ps=20 47 pd=0.8 n=10 vcb=20 str=3 ps=20
24 pd=0.6 n=10 vcb=20 str=3 ps=40 48 pd=0.8 n=10 vcb=20 str=3 ps=40

106

(a
)
Tr
ai
ni
ng
M
SE

(v
el
=1
)

(b
)
Tr
ai
ni
ng
M
SE

(v
el
=2
)

(c
)
Te
st
in
g
M
SE

(v
el
=1
)

(d
)
Te
st
in
g
M
SE

(v
el
=2
)

Fi
gu
re
A
.3
3:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
6
(v
el
)
of
M
O
PS
O
.

107

A.4 Examined cases for the BFGS method

Table A.20: Examined cases for setting 1 (pd) of BFGS.

ID Examined cases ID Examined cases
1 n=5 vcb=10 3 n=10 vcb=10
2 n=5 vcb=20 4 n=10 vcb=20

Table A.21: Examined cases for setting 2 (n) of BFGS.

ID Examined cases ID Examined cases
1 pd=0.6 vcb=10 3 pd=0.8 vcb=10
2 pd=0.6 vcb=20 4 pd=0.8 vcb=20

Table A.22: Examined cases for setting 3 (vcb) of BFGS.

ID Examined cases ID Examined cases
1 pd=0.6 n=5 3 pd=0.8 n=5
2 pd=0.6 n=10 4 pd=0.8 n=10

108

(a
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
6)

(b
)
Tr
ai
ni
ng
M
SE

(p
d=
0.
8)

(c
)
Te
st
in
g
M
SE

(p
d=
0.
6)

(d
)
Te
st
in
g
M
SE

(p
d=
0.
8)

Fi
gu
re
A
.3
4:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
1
(p
d
)
of
B
FG
S.

109

(a
)
Tr
ai
ni
ng
M
SE

(n
=5
)

(b
)
Tr
ai
ni
ng
M
SE

(n
=1
0)

(c
)
Te
st
in
g
M
SE

(n
=5
)

(d
)
Te
st
in
g
M
SE

(n
=5
)

Fi
gu
re
A
.3
5:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
2
(n
)
of
B
FG
S.

110

(a
)
Tr
ai
ni
ng
M
SE

(v
cb
=1
0)

(b
)
Tr
ai
ni
ng
M
SE

(v
cb
=2
0)

(c
)
Te
st
in
g
M
SE

(v
cb
=1
0)

(d
)
Te
st
in
g
M
SE

(v
cb
=2
0)

Fi
gu
re
A
.3
6:
B
ox
pl
ot
s
of
M
SE

fo
r
se
tti
ng
3
(v
cb
)
of
B
FG
S.

111

	Contents
	List of Figures
	List of Tables
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Aims and objectives
	Structure of the thesis

	Background Information
	Variance counterbalancing
	Multi-objective optimization
	Pareto optimality
	Classification of multi-objective optimization methods
	Weighted-aggregation methods
	Non-sorting genetic algorithm
	Multi-objective particle swarm optimization algorithm

	Radial basis function neural networks

	Proposed Approach
	Variance counterbalancing with multi-objective solvers
	Application details for weighted aggregation approaches
	Application details for non-sorting genetic algorithm
	Application details for multi-objective particle swarm optimization algorithm

	Experimental Analysis
	Experimental phase 1: individual performance under different settings
	Weighted aggregation approaches
	Non‐sorting genetic algorithm
	Multi‐objective particle swarm optimization algorithm

	Experimental phase 2: comparisons among multi-objective approaches
	Experimental phase 3: comparisons between multi-objective methods and BFGS
	Parameter tuning of the BFGS method
	Comparisons between the methods
	Running-time requirements

	Experimental phase 4: comparisons on different datasets
	A noisy dataset
	The red wine dataset

	Why do we select variance counterbalancing?

	Conclusions
	Bibliography
	Appendix
	Examined cases for the weighted aggregation approaches
	Examined cases for the non-sorting genetic algorithm
	Examined cases for the multi‐objective particle swarm optimization algorithm
	Examined cases for the BFGS method

